Chapter 3 Data, Methodology and the Theoretical
Approach in the Analysis of Time Series

3.1 Data

The meteorological data used in this study are obtained from two different
sources. The first set of data, the NCEP/NCAR Reanalysis Monthly Mean data, is
obtained from the National Centre of Environment Prediction (NCEP) in the United
States of America. The other set of data, the Upper Air Observation (UAO) data, is

obtained from the Malaysian Meteorological Service in Malaysia.

3.1.1 The NCEP/NCAR Reanalysis Monthly Mean Data

The NCEP/NCAR Reanalysis Monthly Mean data contains at least 41 years of
complete monthly mean global data stored in a 2.5°x2.5° gridded format from the year
1958 to 1998. The length of the data is considered appropriate for the study of QBO and
TBO as both oscillations have typical periods of 22-29 months. The meteorological
parameters being used are the 10 levels of upper air zonal wind, the 500-hPa geopotential
height and the SST. The 10 levels of upper air are at 925, 859, 700, 500, 300, 250, 200,
100, 50 and 20 hPa. Each of these data fields is either an analyzed field or an

average/ ion of forecast produced by a model. The accuracy of these data

depends very much on the observational data coverage, and thus these data fields may not
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resemble the actual atmosphere accurately. Only data at grid points within a rectangular

box covering Malaysia and its adj seas are considered. This box covers an area

Y

bounded by 100°E-120°E longitudinally and 0°-7.5°N latitudinally. Thus a total of 36
grid point values are being used to calculate the area-average of each data type, except

SST, to represent the Malaysian region as shown in Figure 3.1. Only 21 out of the 36

grid points are located at sea, thus the age of SST is puted by using these 21
grid point values. These monthly area-averages are computed by using the Grid Analysis

and Display System (GrADS) software.
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Figure 3.1 Map showing the 36 grld points (open squares) of the NCEP/NCAR Reanalysis
Monthly Mean data where are being dto pute the monthly
mean area-averages for the Malaysmn reglon Close circles show the five locations of the Upper
Air Observation stations where tropopause heights are extracted.

3.1.2 The Upper Air Observation (UAO) Data
The UAO data consists of daily upper air data obtained from soundings at eight
locations in Malaysia twice a day at 0000 and 1200 UTC. Only one data field, the

tropopause height, is being extracted from this data. The data series consisting of
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monthly mean tropopause height are obtained by averaging the daily values extracted at
0000 UTC from four stations in Peninsular Malaysia and one station in East Malaysia.
The locations of these five stations are shown in Figure 3.1. The remaining three stations
have data series that are either too short or incomplete. The lengths of these five data
series are different as each station started its operation at different time. Table 3.1 shows
the starting dates and the corresponding lengths of these data series of the five UAO

stations. All UAO data are only available up to the year 1996.

Station name Start date (month, year) Length of data series
Bayan Lepas January, 1967 30 years
Subang / Petaling Jaya July, 1971 25 years 6 months
Kota Bharu January, 1973 24 years
Kuantan September, 1971 25 years 4 months
Kota Kinabalu July, 1968 28 years 6 months

Table 3.1 Table showing the start dates and the lengths of the monthly mean
tropopause height data series of the five UAO stations in Malaysia.

3.2 Data Filtering

Most, if not all, meteorological data have an obvious annual cycle, which is of no
interest in this study. Another irrelevant feature is the long-term trend exhibited by most
meteorological parameters. Thus all data series are filtered to remove both the annual
cycle and the long-term trend before any analysis is carried out.

Power spectral analyses are first carried out with annual cycles and long-term
trends being removed. In order to enhance the QBO and TBO features, another moving-
average filter is used to filter all data series before further power spectral analyses are

carried out.
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3.2.1 Annual Cycle Filtering

Since most data series contain substantial trends, it is inadequate to just simply
calculate the average of each month and compare it with the overall average figure, either
as a difference or as a ratio, to eliminate the seasonal fluctuations (Chatfield, 1975). A

common and effective way to eliminate the annual cycle is to calculate the moving

average
= = JoXig +Xis + Xy F Xy Xy Xy X H Xy F Xy + Xy + Xy + X s + S X 1)
12
Note that the sum of the weights is 1. That is,
6
Sow =1. ()]

i=t-6
A simple moving average cannot be used as this would span 12 months and would not be
centred on an integer value of 7. A simple moving average over 13 months cannot be

used as this would give twice as much weight to the month appearing at both ends.

3.2.2 Long-Term Trend Filtering

A special type of filtering, which is particularly useful for removing a trend, is
simply to difference a given time series until it becomes stationary (Chatfield, 1975). For
non-seasonal data, first-order difference is usually sufficient to attain apparent stationary,

so that the new series {y,,.“,y”_,} is formed from the original series {x,,...,x"} by

Vi =X X 3)

3.2.3 The Moving-Average Filter

When applied to a time series, a moving average of any sort will have the effect of

altering the amplitude and often the phase as well, of the variations in the series, but to an
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extent that differs for each wavelength component of variation (WMO, 1971). In this
way, the moving average serves to change the spectrum of the original series, just as a
coloured filter changes the optical spectrum of a light ray passing through it. Hence, a
moving average can be regarded as a mathematical filter, and changing the manner in
which the successive values of the series are weighted to obtain the average can alter the
frequency response of the filter.

Consider symmetrical moving averages, that is, to filters in which the weighting
of successive terms of a series varies symmetrically both backward and forwards from a
central weight. Symmetry of this kind is necessary, but not always sufficient; to preclude
shifts of phase in a series when operated on by the filter. Mathematically we may express

such a filter by the equation

5= YW @

i=n
where w, is the weight by which the value of the series i units removed from ¢ is
multiplied. The length of this filter is 2z +1 time units.

The filter defined by equation (4) has a response function that depends on
frequency. If frequency is arbitrarily expressed in cycles per interval between successive

observations in the time series, the response function can be written as
.
R(f)=w, +2) w, cos27fk . )
k=1
The response function measures the amplitude of variation in the time series after

filtering relative to that before filtering, for any given frequency of variation, 1.

Inasmuch as in the study of climatic fluctuations we are interested only in a
particular range of wavelengths of time series. The response function of a moving-

average filter has one desirable characteristic; namely, it passes the range of certain
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required wavelengths with the least diminution of amplitude and filters out a large
proportion of the variation at other wavelengths. The fact that the responses of some
moving average filters become appreciably negative in certain ranges of wavelength can
introduce serious difficulties of interpretation when the results of using these particular
filters are examined.

It is relatively easy to modify the weights in a moving average to prevent the
response from ever becoming negative. Admittedly the use of a moving average in which
the weights are unequal greatly increases the labour involved in computing it. However,

the improvement in the result is often well worth the added labour.

3.2.3.1 The Binomial Low-Pass Filter

A simple moving-average filter that has greatly improved response characteristics
can be achieved by setting the weights in equation (4) proportional to the ordinates of a
Gaussian probability curve, or what amounts to essentially the same thing, the weights

may be set proportional to the binomial coefficients

L
&Ky @

which for large 7 closely approximate to the Gaussian curve ordinates. The appropriate
factor of proportionality is easily determined by the condition that in equation (4) the

weights should all add up to one. That is,

Sw =1, ©)

The choice of 7 depends on individual application. A reasonably good choice of 7 inan
actual application can be determined by setting the cut-off wavelength equal to about 4-6

standard deviations of the Gaussian curve or the binomial distribution involved. The
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standard deviation, o, of the binomial distribution is given by

a‘=ﬂ. (8)

This type of weighted moving average has a response function that is equal to
unity at infinite wavelengths, and that trails off asymptotically to zero with decreasing
wavelength. In particular, for this binomial weighted moving average, the response
function is approximately

R(f)=cos"af . ©)

A moving average with this sort of response is commonly known as a low-pass filter.

3.2.3.2 The Band-Pass Filter
It is often useful to design a moving average that will filter out not only the
shorter wavelengths in a series but also the longer wavelengths as well. More

particularly, one may wish to study variations in a series that lic in a rather narrow range

1nd. 1

of lengths only and all other wa hs both longer and shorter. It is not

difficult to design a filter of this kind, by calculating an appropriate set of weights that
will tune the filtered output to the range of wavelengths desired. Such a filter is known as
a band-pass filter.

One might suppose that the ideal band-pass filter is one in which the frequency
response is unity for a narrow band of wavelengths, and drops abruptly to zero on both
sides of this band. However, it is difficult to design such a sharp band-pass filter
theoretically. In order to do so, a system of weights that fluctuated rapidly in sign and
magnitude from one term to the next is needed, and a very large total number of weights
are required as well. The application of such a filter to short time series would leave

many original values near both ends of the series unrepresented by filtered values, and the
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labour of computing the filtered values would be very great.

Itis easier to design a band-pass filter in which the frequency response decreases
rather gradually on both sides of the central frequency of special interest, but preserves
the phase and amplitude of the latter with excellent fidelity. A band-pass filter having
this property is typified by a relatively small total number of weights, and by weight
values that vary only slowly from one term to the next. Such a filter may be constructed
by the "differenced low-pass filter" method.

Suppose that a time series y, is subjected to two low-pass filtering by either the
Gaussian ordinate or binomial coefficient method. By defining ¥, as the series smoothed
by the short- period filter and y, as the series smoothed by the long-period filter, there
will be a range of wavelengths for which the frequency response R(f) of the short-
period filter is large but for which the frequency response R'(f") of the long-period filter
is small. If, then, by subtracting y, from ¥, anew series will be generated in which only
those wavelengths of variation in the original series y, that lie between a certain
frequency range will be emphasised.

Subtracting a series after being smoothed by one low-pass filter from the same
series after being smoothed by another low-pass filter, the result is the same as if a band-
pass filter has filtered the original series only once. The frequency response R"(f) of the
latter filter can in fact be represented by the difference of R(f) and R'(f). Thatis,

R'(f)=R(N)-R'(f), (10)
and merely differencing the corresponding weights of the two low-pass filters can derive

the band-pass filter itself. That is to say if

D= D W Ve (1

=i
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and, by applying equation (9),

R'(f)=cos" nf , (12)
then, the frequency response of the band-pass filter becomes

R"(f) =cos” nf —cos” nf (13)

and the band-pass filter is simply subtracting equation (11) from equation (4). That is,

V=V == W= W)y (14)

i==n"
However, renormalization to satisfy equation (7) may be required.
In order to emphasise the range of frequency that typically represents the QBO

and TBO, a binomial band-pass filter with frequency response function as shown in

Figure 3.2 is used.

Period (months)

Frequency response R(f)

L 16-55 months |

o5 o
Frequency (cycles per month)

Figure 3.2 Frequency response function of the binomial band-pass filter used to emphasise
periods that typically represent the QBO and TBO.
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3.3  Methods of Analysis

3.3.1 Autocorrelation

As all meteorological data series used here are continuous series, persistence is
typically characterized in terms of their serial correlations, or temporal autocorrelations.
Autocorrelation means correlation of a variable with itself, so that temporal
autocorrelation indicates the correlation of a variable with its own future and past values.
Here, autocorrelations were computed as Pearson product-moment correlation
coefficients.

The Pearson product-moment coefficient of linear correlation between two series
x and y is the ratio of the sample covariance of the two series to the product of the two
standard deviations (Wilks, 1995). That is,

_ cov(x, y)

5.8,

ﬁglm ~5)0, -]

= — ) 7 _— 7 (15)
2
S (x -x —_— .
[n_lg(. )] ["_lgj(y. y)]
where 7 is the number of terms in the x as well as y series.
After some algebraic ipulation of the ions in the correlation

coefficient, the computational form for the correlation coefficient becomes

$n-LEnt
i=1 i=1

- . (16)

)]

The process of computing autocorrelation can be visualized by imagining two

copies of the same series x being written, with one copy shifted by one unit of time to
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form n -1 pairs of lagged data. Autocorrelations are then comp by

.

these

lagged data pairs into equation (15). Hence, the lag-1 autocorrelation is expressed by

PR CHEER)
i=1 a7

o . %
[z(x..-f.)'zu,—x.)']

where the sample mean of the first # —1 values is denoted by the subscript "-" and that of
the last n—1 values by the subscript "+".
While the lag-1 autocorrelation is the most commonly computed measure of

persi itis also imes of interest to pute autocorrelations at longer lags as

the two series are shifted by more than one time unit. Equation (17) can be generalized to
the lag- k autocorrelation coefficient using

n-k
DI =% )(x,,, - X,)]
- i=1 N (l 8)

nk n %
[Z(x, %)) —f‘)’]

i=k+1

e

Here the subscripts "-" and "+" now indicate sample means over the first and last n -k
data values respectively. As a time series is shifted increasingly relative to itself, there
are progressively less overlapping data pairs to work with. As much data is lost at large
lags, usually only the lowest few values of k& will be of interest.

If the data series is sufficiently long, the overall sample mean will be very close to
the subset averages of the first and last n—k values. The overall sample standard
deviation will also be close to the standard deviations of the two subset for the first and

last n -k values. Invoking these ptions leads to the computational approximation

n-k
20 = D), ~T)
Z":(x, -x)?

i=1

n=
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f(xixiok)_(” -k)x?
= (19)

i=1

Together, the collection of autocorrelations computed for various lags is called an
autocorrelation function. Often autocorrelation functions are displayed graphically, with
the autocorrelations plotted as a function of lag.

The statistical significance of the lag-one autocorrelation #, for the null
hypothesis of randomness is tested. Before doing this test, the sample frequency
distribution of the values of the series is examined. Since the frequency distributions of
the meteorological data series approximate to the Gaussian distributions, and it is
generally sufficient to base the significance test on a desired probability point of the
Gaussian distribution when the data length n is greater than 40, the exact one-tail

significance point test (WMO, 1971)

-1+t Vn-2 20)
n-1

(), =
can be used. Here t, is the value of the standard deviate in the Gaussian distribution
corresponding to the desired significance point of 7, .

In the present study, the minimum data length used is the tropopause height data
series from Kota Bharu station. This data length, after the annual cycle and trend have
been removed, and the series further filtered by the band pass filter, is 236. To test the
sample 7, against the null hypothesis that 7, is no larger than the value appropriates to
randomness, the one-tailed 95% probability point of t, is chosen. From an extracted
table (Hald, 1952) of probability points of Gaussian normal distribution in Appendix li,
the value of t, is 1.645. By putting this value of t, into equation (20) and using the plus

sign in the numerator,
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—1+1.645236-2 _

236-1

") = 0.1028.

Therefore, if and only if the sample value of #, is larger than 0.1028, the series of
the tropopause height from Kota Bharu station can be concluded to be non-random at the
95% significance level.

It is noted, from equation (20), that the value of (r,), is inversely proportional to
the square root of n. Hence, for all other meteorological data series, which have data
length longer than 236, the value of (), will be smaller than 0.1028.

In general, the one-tailed significance test used here is appropriate because most
alternatives to randomness with which meteorological series are concerned would be

expected to increase the value of 7, .

3.3.2 Pearson Cross Correlation
Analogous to autocorrelation, the general lag-k Pearson cross correlation
coefficient between two data series x and y , from equation (18), is

n-k
DI = F )W — 7))
(ry)y =—2 . 1)

n-k n %
[Z(x, T Y —i‘)’]
i=1 i=k+1

Here, the lagged data pairs are formed by shifting & units time the series y with respect

to the series x. Hence, the subscripts "-" and "+" now indicate sample means over the
first and last #n —k data values of the data series x and y respectively.

Similar to equation (19), for sufficiently long data series of x and y, the

computational approximation becomes
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As before, the graphical display of a collection of Pearson cross correlations
computed for various lags is called the Pearson cross correlation function.
Lastly, the statistical significance of (r,,), for the null hypothesis of randomness
can be tested by using the exact one-tail significance point test similar to the one

appropriate for testing the randomness of 7, .

3.3.3 Power Spectrum Analysis
3.3.3.1 Harmonic Analysis

In general, a data series x consisting of n points can be represented exactly,
meaning that a harmonic function can be found that passes through each of the points, by

adding together a series of 7/2 harmonic functions (Wilks, 1995),

)
etz

where the n/2 terms in the summation are harmonics with frequencies

27k
w, = T 24

When k =1, the first harmonic has a fundamental frequency @, = 27z/n.
In general, the coefficients in the second line of equation (23), 4, and B,
corresponding to particular data series x, can be found using multiple regression

methods, but if the series is equally spaced in time and contains no missing values, these
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coefficients can be obtained more easily using

2 27kt
A == —_ 25
A "gx,cos[ " ) (252)
and
B, =521, sin(@). (25b)
n'. n

Having computed these coefficients, the amplitude, C, , in the first line of equation (23),
can be obtained, separately for each harmonic, by computing
¢, =(4+B). (26)
Notice that equations (25) do not depend on any harmonic other than the one
whose coefficients are being computed. This fact implies that the coefficients 4, and
B, for any particular harmonic can be computed independently of those for any other
harmonic. It is a remarkable property of the harmonic functions that they are
uncorrelated so that the amplitude and phase for the first or second harmonic are the same
regardless of whether they will be used in an equation with the third, fourth, or any other
harmonics. This remarkable attribute of the harmonic functions is a consequence of what
is called the orthogonality property of the sine and cosine functions.
Since the relationships between harmonic predictor variables and the data series x;
do not depend on what other harmonic functions are also being used to represent the

series, the proportion of the variance of x, accounted for by each harmonic is also fixed.

When this proportion is expressed as the R” statistic y puted in regr

the R? for the k" harmonic is simply
_n2C}

R} =
F(n-1)s?

@27

where s? is simply the sample variance of the data series. Notice that the strength of the
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relationship between the k" harmonic and the data series is expressed entirely by the
amplitude C, . The phase angle ¢, is necessary only to determine the positioning of the
cosine curve in time. Furthermore, since each harmonic provides independent
information about the data series, the joint R* exhibited by a regression equation with
only harmonic predictors is simply the sum of the R} values for each of the harmonics. If
all the n/2 possible harmonics are used as predictors, then the total R* will be exactly 1.

That is,

R*=Y R} =1. (28)

3.3.3.2 Spectral Analysis

Equation (23) says that a data series x, of length n can be completely specified in
terms of the n parameters of n/2 harmonic functions. Equivalently, it can be said that
the data series x, is transformed into new set of quantities 4, and B, according to
equations (25). For this reason, equations (25) are called the discrete Fourier transform.
According to equation (28), this data transformation accounts for all the variation in the
series x,.

The foregoing suggests that a different way to look at a time series is as a
collection of Fourier coefficients 4, and B, that are a function of frequency @, , rather
than as a collection of data point x, measured as a function of time.

The characteristics of a time series that has been Fourier-transformed into the
frequency domain are most often examined graphically, using a plot known as the power
spectrum, or the periodogram. In simplest form, this plot of a spectrum consists of the

squared amplitudes C; as a function of the frequencies @, . Equation (27) can be used to
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rescale the vertical axis numerically so that the plotted points become proportional to the
squared amplitudes. As a result, the power spectrum becomes a plot of normalized
spectral density against frequency. The horizontal axis of the power spectrum consists of
n/2 frequencies , ifniseven, and (n—1)/2 frequenciesif # is odd. The smallest of
these is the fundamental frequency @, = 277/n, which corresponds to the cosine wave
that executes a single cycle over the n time points. The highest frequency ®,, =7,
called the Nyquist frequency, corresponds to the cosine wave that executes a full cycle
over only two time intervals, and that executes n/2 cycles over the full data record. The
Nyquist frequency depends on the time resolution of the original data series x,, and

imposes an important limitation on the information available from a spectral analysis.
Instead of using the angular frequency, a common alternative for the horizontal

axis is to use the frequencies
o,
=—t, (29)
74

Under this alternative convention, the allowable frequencies range from f, =1/n for the
fundamental to f;,,, =1/2 for the Nyquist frequency. The horizontal axis can also be

scaled according to the reciprocal of the frequencies, or the periods

7, = 60)

n
k
3.3.3.3 Smoothing the Power Spectrum

The spectral density §, of a power spectrum can be smoothed by a number of

different methods. In the "Hanning" method (WMO 1971), the smoothing formulae are
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(fk +fm)- k=1

(e +25, +50), k=23,...,m-1 @31)

Y

(ﬁm*'fk)- k=m

where m < n/2, is the maximum number of lags.

Note that for any smoothing function applied to sample spectra, the increased
smoothness and representativeness of the resulting spectra come at the expense of
decreased frequency resolution. Essentially, stability of the sampling distributions of the
spectra estimates is obtained by smearing spectral information from a range of
frequencies across a frequency band. Hence smoothing across broader bands produces
less erratic estimates, but hides sharp contributions made at particular frequencies. In

practice, some compromise between stability and resolution is needed.

3.3.3.4 Tests of Statistical Significance applied to Power Spectra

To test for statistical significance of power spectra, a "null"-hypothesis continuum
has to be fitted to the spectrum.

In general, if the lag-one serial correlation coefficient r, of the series does not
differ from zero by a statistically significant amount, the series should be regarded as free
from persistence. In this case, the appropriate "null" continuum is that of "white noise", or
in other words, a horizontal straight line whose value is everywhere equal to the average
of the values of all the raw spectral estimates in the computed spectrum.

On the other hand, if the lag-one serial correlation coefficient 7, of the series
differs from zero by a statistically significant amount, the lag-two and lag-three serial

correlation coefficients, 7, and r, respectively, have to be checked. Ifboth r, and r,

approximate to the exponential relation
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roart, k=23,...,etc, (32)

then the appropriate "null" conti should be d that of Markov "red noise"
whose shape depends on the unknown value of the lag-one correlation coefficient for the
population p . If the sample lag-one coefficient 7, is an unbiased estimate of p, the
following equation

1-r}

§——— 4 —— 33
1 +r} —2r, cos(nk/m) 63

S =

for various choices of harmonic number k between k =1 and k = n/2 canbe evaluated.
In equation (33) § is the average of all the raw spectral estimates §, in the computed
spectrum. The resulting values of S, may then be plotted superposed on the sample
spectrum, and a smooth curve passed through these values to arrive at the required "null"
continuum. Notice that in the presence of trend or a slippage of the mean r, may
overestimate the value of . Under these circumstances, a better estimate of p may be
obtained as the ratio r, /r, .

Finally, if it is found that the lag-one serial correlation coefficient #, of the series
differs significantly from zero, but that the coefficients for higher lags do not bear an
exponential relationship to #,, then it is doubtful that simple Markov persistence is the
dominant form of non-randomness in the series. In this event, the Markov "red noise"
continuum described in the preceding paragraph may not be appropriate. Nevertheless, it
is suggested that the Markov "red noise" continuum be computed as before. If this
continuum is in fact erroneous, the discrepancy will be made apparent during the next
step of the analysis of statistical significance and a more appropriate form of "nuli"
continuum may suggest itself at that stage.

Once an initial choice of "null" continuum has been made, and plotted superposed
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on the spectrum, the consistency of the spectrum with the continuum can be evaluated by
comparing the value of each spectral estimate §, with the local value of the "null"
continuum. If none of the spectral estimates deviates by a statistically significant amount
from the continuum, the continuum does in fact approximate to the true spectrum of the
population series. On the other hand, if one or more of the spectral estimates deviate
significantly from the continuum, the continuum is not a satisfactory approximation to the
true spectrum of the population series. In that case, the shape of the continuum is
modified to one that fits satisfactory, or the magnitude of the discrepancy as well as the
range of wavelengths involved be established and the form of non-randomness that it
indicates to be present in the series be specified.

The statistic associated with each spectral estimate, on the basis of which the
statistical significance of the deviation of that estimate from the "null" continuum can be
determined, is the ratio of the magnitude of the spectral estimate to the local magnitude of
the continuum. This ratio has been found (Tukey, 1950) to be distributed as chi-square
divided by degree of freedom. The degree of freedom v of each estimate of a spectrum
that is based on a record length of n values and a maximum lag number of m is given by

2n—
e m/Z-
m

(34)
Therefore, if the local value of the continuum approximates the true magnitude of the
population spectrum, this value corresponds to the 50% point of the 7 /v distribution
appropriate to the sample. The ratio of any sample spectral estimate §, to its local value
of the continuum is then compared with the critical percentage point levels of a z* v
distribution for the proper value of v, and this comparison establishes the level of
statistical significance required.

In a given sample spectrum, the 95% point of the z* /v distribution is the same
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for all spectral estimates §,. In other words, the 95% confidence limit for the "null"

continuum is given by a second continuum whose value for any wavelength in the
spectrum is equal to a certain fixed multiple (greater than one) of the value of the "null"
continuum at that wavelength. Similarly, the 5% confidence limit for the "null"
continuum is given by a third continuum the value of which for any wavelength in the
spectrum is equal to a certain fixed fraction (less than one) of the value of the "null"
continuum at that wavelength. The 95% and 5% points of the z* /v distribution for the
appropriate degree of freedom v can be found by using the extracted table (Hald 1952) of
probability points of /v distribution in Appendix B.

Once the desired confidence limits of the continuum have been added graphically
to the spectrum, it can be seen at a glance if any of the spectral estimates lie outside these
limits, either above the 95% limit or below the 5% limit. If none do, then it is justified in
concluding that the sample spectrum does in fact derive from a population the spectrum
of which approximates to the "null" continuum. Should any spectral estimate be found to
exceed the 95% confidence limit of the continuum, the decision as to what this means
should properly depend on which of the two following circumstances apply.

(i) The spectral estimate in question corresponds in wavelength to an

oscillation, such as the well-known biennial oscillation, suspected on a

priori grounds that might be contained in this series. The problem of

interpreting the statistical significance of the biennial oscillation in this

particular spectrum is straightforward: the biennial oscillation is
significant at or above the 95% confidence level.
(i)  The spectral estimate in question corresponds to wavelengths that have

not seemed noteworthy in previous studies of other climatological time
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series and that are unrelated to any known physical processes either in the
atmosphere itself or elsewhere in the earth's physical environment that
might be expected to influence climate. Under these circumstances, it is
required to base the judgement of statistical significance on a more

stringent criterion than before.
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