CLOSED STACKS

ANALYTICAL INVESTIGATION OF THE EFFECT OF DIPOLE-DIPOLE INTERACTION ON DISPERSION SPECTRUM

MOHD RAFIE JOHAN

A dissertation submitted in partial fulfilment for the degree of

Master of Philosophy

At the Institute of Postgraduate Studies and Research

University of Malaya

Kuala Lumpur

1997
Sepintas kenangan buat Emak, Abah, Shima dan Keluarga tercinta
ABSTRAK

Penyelidikan dilakukan keatas spektrum penyerapan-penyerakan bagi dua atom dua paras yang dipacu oleh suatu medan kuat yang koheren dan mengalami lembapan dalam vakum normal. Dua kes telah diuji: Dalam keadaan resonan bersama interaksi dwi-kutub dan keadaan bukan resonan tanpa interaksi dwi-kutub.

ABSTRACT

A study is made of the absorption-dispersion spectra of two collective two-level atoms driven by a strong coherent field and damped by normal vacuum. Two cases are examined: on-resonance case with the inclusion of dipole-dipole interaction and off-resonance case without the inclusion of dipole-dipole interaction.

In the on-resonance case, we have solved analytically the master equation for the reduced atomic density operator for the coherently driven Dicke model interacting with a normal vacuum and used a symbolic manipulating software to obtain the absorption-dispersion spectra. We show that for large Rabi frequencies of the driving field (i.e. when the frequency of laser is tuned to the atomic transition frequency), the index of refraction can be enhanced at vanishing absorption. However, when the frequency of laser is not tuned to the atomic transition frequency, we do not find any large refractive index accompanied by vanishing absorption. We also find that the presence of the dipole-dipole interaction is essential for the Rabi side bands to split into doublets and also the existence for additional Rabi side bands. This confirms results obtained by Agarwal et al. (1981).

In the off-resonance case, the secular approximation technique for a system of two two-level atoms is used to calculate an analytical expression for the absorption-dispersion spectra. We show that, in the presence of detuning we do not find any large refractive index accompanied by vanishing absorption at the Rabi side bands. However, at the central frequency of the spectrum, we show that the dispersion is finite when absorption is zero. This is confirmed by numerical results.
ACKNOWLEDGEMENTS

I would like to express my deep gratitude to Associate Professor Dr. Mohamed Ridza Wahiddin and Associate Professor Dr. Muhamad Rasat Muhamad for the supervision, encouraging and directing me in this research. My thought was further enriched during the period their supervised my work. I would like to acknowledge that most of this research was supported by the IPT, IRPA 04-07-4-169. My gratitude also goes to the University of Malaya for financial assistance received under ‘studentship and tutorship’ scheme. My thanks also goes to Dr. J.G.Cordes from the Dalhousie University, Department of Physics, Halifax, Nova Scotia, Canada for valuable discussion about concept of secular approximation technique. I would like also to thanks Professor S.S.Hassan from Ain Shams University, Faculty of Science, Department of Mathematics, Cairo, Egypt and Dr. Z.Ficek from Queensland University, Department of Physics, Brisbane, Australia for inspiring conversations and stimulating discussions during their visited to the University of Malaya. My gratitude extends to all members of the Quantum Optics Unit, in particular S.K.Ng, K.T. Lim, S.K.Foong, K.L.Ting and Associate Professor Dr. Suzeini Abdul Halim for their help in various ways. Also my special thanks to Mohamad Halim, Khedr, S.S.Woon and Y.H.Low from Molecular Electronic Laboratory in helping me completing my M.Phil course. I would also like to show my sincere appreciation to Miss Habibah in Physics Department of Science Faculty and Miss Zubaidah from Institute of Postgraduate Studies and Research for their assistance and generous hospitality.

It is impossible for me to finish this acknowledgement without emphasizing the constant cooperation, encouragement, support and love of my family especially my mother for their prayers. Finally, I wish to record my deepest gratitude and appreciation to Norhasimah. Thank you for being understanding, supporting and loving. To her I dedicate this dissertation with great love. And for all those who were involved whose names I am unable to list down, I only could turn and pray to Allah the Almighty to repay them in the best of His Wisdom.
CONTENTS

CHAPTER ONE: INTRODUCTION

1.1 Historical review 1
1.2 Aim and objective 2

CHAPTER TWO: SOME FUNDAMENTAL CONCEPTS IN QUANTUM OPTICS

2.1 Introduction 6
2.2 Formulation of quantum mechanics 6
 2.2.1 Hilbert space 7
 2.2.2 Linear operators 9
 2.2.3 Statistical states in quantum theory 11
2.3 Quantization of the harmonic oscillator 13
2.4 Equation of motion in quantum mechanics 21
2.5 The two level atom 24

CHAPTER THREE: INVESTIGATION OF ABSORPTION-DISPERSION RELATION WITH DIPOLE-DIPOLE INTERACTION (ON-RESONANCE CASE)

3.1 Introduction 28
3.2 Master equation with dipole-dipole interactions 29
3.3 Absorption and dispersion spectrum 35
3.4 Results and discussions 38
CHAPTER FOUR: INVESTIGATION OF ABSORPTION-DISPERSION RELATION WITHOUT DIPOLE-DIPOLE INTERACTION (OFF-RESONANCE CASE)

4.1 Introduction
4.2 Master equation without dipole-dipole interactions
4.3 Absorption and dispersion spectrum
4.4 Results and discussions

APPENDIX