CHAPTER FOUR

Investigation of absorption-dispersion relation without

dipole-dipole interaction (off resonance case)

4.1 Introduction

We proceed our investigation of the absorption-dispersion relation from two
collective atoms damped by a normal vacuum without the inclusion of dipole-dipole
interaction and driven by a detuned laser. Our aim is to study the absorption-dispersion
profile with finite detunings and without dipole-dipole interaction. We intend to know
how the spectrum looks like in comparison with the corresponding zero detuning case
with dipole-dipole interaction as done in previous chapter. The motivation is to

achieve finite dispersion accompanied by zero absorption.

The formal apparatus used here is the secular approximation technique which has
been applied with considerable success to a variety of atom-field interaction problems.
The technique was first introduced by Agarwal et al [4.1] to a system of N atoms with
zero detuning and driven by a strong monochromatic driving field. Later, the method
has been generalised with non-zero detuning in the two atoms system [4.2-4.6]. The

fact that they were restricted only to two atoms system was due to a difficulty in
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obtaining a closed set of equations when a detuning is present. In 1985, Lawande et al
[4.7] made a further generalisation by including phase and amplitude fluctuations of
the strong driving field and also take into account dipole-dipole interactions. This
generalisation has a limitation because it is only valid in the regime of small dipole
interactions. Later Cordes [4.8] made another improvement by extending the secular
approximation technique that includes dipole-dipole interaction coupling comparable
in strength with the Rabi frequency. Now, the new ‘slowly varying’ operators are no
longer simply a rotation of the original collective operators, but rather involve the
complete set of eight atomic operators for the two atoms system. In this generalisation,
it is crucial to include the full undamped Hamiltonian H, in carrying out the
transformation to a set of slowly varying operators. The failure to include the complete
H, in the transformation leads to a limited form of secular approximation with a
restricted range of validity. Cordes analysis was carried out only for the case of zero
detuning. To extend for non-zero detuning, more effort is required as the calculation
will be much more complicated particulary in both the decoupling and solving of the
operator differential equations for S* and S’ and in the succeeding stages of the
calculation. By simplifying the technique i.e. ignoring dipole-dipole interactions, we
observe that the absorption spectra vanish for zero detuning unless one goes beyond
the lowest order of the secular approximation [4.6]. Hence, we use a secular
approximation tecnique only for the case of non-zero detuning and not taking into
account dipole-dipole interactions between the atoms .So, the cooperative behaviour
stems entirely from the mutual coupling of the two atoms with the strong coherent

driving field.
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42 Master equation without dipole-dipole interactions

The particular master equation describing the evolution of a system of two

closely spaced two-level atoms in a rotating frame at frequency o, (the laser

frequency) is [4.4]:

p_ . . e g
$=—l[Ho,p]—y(S Sp+pSS -257pS") @2.1)

where 2y is the Einstein A coefficient, S* and S are the usual collective atomic
dipole operators and pis the reduced atomic density operator. H, is the Hamiltonian
describing the coupling of the atoms to an external coherent driving field of frequency
O

H, =-QS +87)-AS'=-2Q8" -A8* (42.2)

2Q is the Rabi'frequency, A =0, ~0, is the detuning of the laser from the atomic
resonance and S* = %[S ,S” ] For high field strengths, Q>>2y, an approximation first

introduced by Cordes [4.4] can be used to simplify the master equation (4.2.1).

Consider the new operators

S()=VRSVI()  i=123 423)
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where

st =g ST =g* S’ =8* (4.2.4)
V(t) = exp(=iH,t) 42.5)

The transformed operators S'(t) have the property that their expectation values are
slowly varying. In particular, we have the equation of motion for (t/S'(t)[t) (in

Schrodinger picture with the states [t))

4ol =TS 2
d‘<t|S (Olt) =TS P +<

ot

=—yTrS'(S*S"p+pS'S™ -287pS™) (4.2.6)

The idea underlying the approximation technique is to evaluate the S' using equation
(4.2.3), express S'in terms of S', and then replace S* in the master equation (4.2.1).
As a result certain terms are slowly varying while others are rapidly oscillating. The
secular approximation then consists of dropping these rapidly oscillating terms. Using

equations (4.2.2)-(4.2.4) we eventually get

240Q
—smat)S’ +——(1-cosat)s*
o o

x
2

_. 4Q+A t A
S - a-COSa S'—(
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5 (2 20
Sy = (;sinu!)sx +(cosat)S* —(?sinatjs’ @27

5288 Q & +4Qcosat
St=—5 (l—cosm)S‘+(2—sinm)Sy+$sx
) o o
where 0‘=(4QZ+A1)I:i5 the lised Rabi frequency. Further, using

S* =S* +iS¥ we get

§?=—-—R" +—R™ +—R?
a
(4.2.8)
where
R =(_£§* +5 +£gz)e...,.
o o
R =(L50 450 2025
o a
R* =(£§x +A§;)
o o
(4.2.9)
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It then follows from equations (4.2.7) and (4.2.9) that

l - - y
R‘=§(R +R7)=S

=——§ 4§t (4.2.10)

The R operators (R‘ JR? ,R‘)bcing arotation of the S operators obey the usual angular

momentum commutation relations. For intense fields, the operators R*vary with time
approximately as exp(Fiat), while R” is a slowly varying operator. From equation
(4.2.1) and using equation (4.2.8) and also dropping rapidly oscillating terms such as

R'R*,R*R"*,etc. we find an approximate master equation of the form

% =ia[R%,p] - 7{(1 - )R*R*p+ pR"R* ~ 2R*pR")

+l(1 +é)-(R‘R'p+pR'R‘ ~2RpR")
4 o

+ (1 —s]z(R'R'p+pR'R’ -2R°pR)} 42.11)

al—

2
where r=[é) . The equation of motion for the expectation value of an arbitrary
a

operator O follows from (4.2.11):
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(0)=ia{[o,R*]) - {(1- r)([0.R*}R?))
+%(1 sof(lo.r R+ [o.r J )
s (forjr])-flox el wam

where anti commutator [A,B]‘ = AB + BA. Further, we now introduce the additional

operators

L=R*R" +R*R* L"=R*R™ +R"R*

N=R'R™+RR" A=R'R" B=R"R" (4.2.13)

The eight operators R*, R™, R*, L, L', N, A and B with their identity form a
complete set of independent atomic operators in the triplet subspace of a two atoms
system. Using (4.2.12) and (4.2.13), we get the equations of motion for the

transformed operators

(1) =[-ia- 241 o) J o)+ 2w
<R‘> =—y(1+ r)<R’)-§Y(N>

(L)= [— ia —%y(l +%r):|(L)— 37%(](')
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(N) =3y(1+1)(N) +4y é(k‘)+ 8y(1+1)
(A)=[-2ic - y(5-3n)|(A)

(B) = [2ia - 7(5-3r)|(B)

(4.2.14)

Equations for (R') and <L ) form a coupled pair, as do equations for (R‘) and <N>
In a two atoms system, at most two quantities get coupled together when the R

variables are used. For example, consider equation (4.2.9). It is known that <R‘) has
the characteristic time dependence exp(-iat) while <R'> depends on exp(iat) and
(R*)is constant. Therefore, in addition to (R*). only (L) could possibly enter the
equation of motion for (R‘> and conversely. Similar arguments apply to <R'>and
(N). Imposing Laplace transforms on the equations for (R‘) and (L) and eliminating

(L) result in the following:

(T)= E](—S){[sar o+ 377(1 - %H(L(O)) - 3Au"y<R‘(0)>} (4.2.15)
(T)= f%(s){[s- o +37y](1 - %J(L‘(O))—SAOL“*/(R'(O))} (4.2.16)
(R*)= ﬁ{[ﬁ i+ 777(1 + %J](R’(O)} + Aa"y(L(O))} @217)
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(R)= ﬁ{[s— i+ 777(1 + %E)](R'(O)) + A y(L (0))} (4.2.18)

f.(s)=(s+io+y;)(s+io+7v,)

f_(s)=(s—ia+y,)(s—ia+y,)

s =Y[%(5+r)—~/l—r+rz]

Ys =Y|:%(5+r)+m:|

(4.2.19)

Note that now s is the Laplace transform variable. Also from the equations for (R‘)

and <N> in equation (4.2.14) we obtain

(R)=¢ is) {[S+ 3101+ D[R (0) - S (N(0) - s?lz (1+ r)} 220)

2 2
(N):f15){[s+y(1+r)](N(o))+%(R‘(o))+8y(1+r)+w} 4.2.21)
where

f,(s):(s+y|)(s+yz)
v, =y(1+30)
v, =7(3+1)

(4.2.22)
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Finally, from equations for (A) and (B) in equation (4.2.14) we get via Laplace

transformation:

/\
>0
<

= m(A(O)) (4.2.23)

. 1
(B)= m<3(0» (4.2.24)

Combining equations (4.2.8), (4.2.17), (4.2.18) and (4.2.20) and using the quantum
regression theorem [4.9] yields the Laplace transform of the two - time atomic

correlation function:

—~——

<§'(! +1)8° ('c)>“ = ]d'{ exp(-sr)(S‘(t + t)S'(t))

0

s

- 2fi(s) (1 *2){[” fa *777(1 +%J](R’S’)“ . Aa"y(LS')ﬁ}
%(s)(l —2){[5—ia+72—y(l+%)](]{'s-)“ +A'1"7(L‘S')“}

+ ai‘?s) {[s +3(+rfR'S) - Aay(NS7) —@(1 + r)(S')“}

(4.2.25)

Similarly ,
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<§ (v)S* (t+t) Idtexp sr)( '(t)S'(l+1))“

- zfi(s)(ui){[sﬂa +7?[1+ ]J(s R°), +Aa"y(S'L>“JL

+2ff(s)(l—2){[s—la+7—(1+ )J(s R7), +Aa"1(S'L')“)>

2 sk, s, 800 s }

(4.2.26)

The steady-state expectation values in equations (4.2.25) and (4.2.26) can be evaluated
by expressing all the products of the operators entirely in terms of the R operators and

results in the following :

(R*), =(L), =(L"), =(A), =(B), =0
(R?), =-280’D"(1+1)

(N), =24a*D™'(1+1)°
(rRs), === 2(1-2)0-r)

(Rs7), = —#(1 +§)(1 -r?)

(R*s7), =(S'R"), = Q’D"(1+6r+1)
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(S‘R‘)“.= i°‘420-| {(1 _s)“ - r)—4(r + 2)}(1 +1)
ST A
0.t Do -

(L), = —i{%(l —%j[&l‘D"'(l +1)’ -8]+ Au“D"(l +§J(1 - r)}

(Ls7), = iAa"D"(l - ﬁ—)(l -1)

(Ls™) =iAa"D"(1+§J(I—l‘)

(Ns),, =(S'N), = -84Qa’D™(1+1)
(4.2.27)

where

a*(1+3r)(3+r1)

D=
4

Note: There are two printing errors occurred on some of the expressions in equation

(4.2.27) in ref[4.4].
4.3  Absorption and dispersion spectrum

The steady-state absorption spectrum in the rotating frame is defined by the

Fourier transform (see e.g Cordes and Chevary (1984) [4.6]) : s
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R(0)=Re ]dr exp(- st)!Lm°<[S"(tlS’(t+ t)b (4.3.1)

From equations (4.2.25), (4.2.26) and (4.3.1), we thus get:

R(0) = Re{zfj(s)(l + gjﬂu i +72—7[1 +§)}( STR]) Ay S',LDSJ

7@ ( _2)[[5_ s 2 *%ﬂqs**"])“ + M"Y([S‘l‘])‘,}}

s=i(w-0,)

(432)

The commutators [S’.R']. [S‘.L]. [S".R’] and [S’,L'] can be calculated using

equation (4.2.8) and are

(5 x°]), = 2isa’D(1+ 214
(5 D, = 2i00D(1- 212
(), =51 - swrp )
57, =51+ 2)oa'n " 5

(4.33)
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Finally, we get our approximation for the two-atom absorption spectrum:

R(o)= Re[%(s)(] + 3] z{[sﬂa +77Y(] +¥)J%a’(l +1)- %[%a‘(l +1)° —8]}

sl [ 20 el

s=i(0-0, )

(43.4)

For the dispersion spectra, it is represented by corresponding the imaginary part of

complex Fourier transform see e.g.[4.10]:

1w) = Im]‘dtexp(— sr){EEqS'(t).S‘(r + t)])
= lm{—zﬁ(l +§):{[s+ ia +771(l +¥)J%u’(l +r1) —%(%u'(l +1)’° —8)}

_%(s)(l —é)z{[s— i +72—7(1 +%J]%a’(l + r)—%(g_%w(l N r)z)”

sei(0-0,)

(4.3.5)
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4.4 Results and discussions

We now use equations (4.3.4) and (4.3.5) to study the absorption-dispersion
relation from two collective atoms without the inclusion of dipole-dipole interaction
and driven by a detuned laser. From both equations, we find that absorption and

dispersion spectra vanish for zero detuning. This agrees with Cordes et al. [4.6]. When

a fixed strong coherent field is applied (e.g. Q =40 ) with finite detuning, we find that
Y

all spectra are asymmetric as expected. Essentially, we get absorption at ® =, +a

and amplification at ® =, —a where a=m. The amplification and
absorption can be explained systematically by using the dressed atomic states [4.11]
(see figure 4.3.1). At © = o, the populations of the dressed states are equal, therefore
there is no gain at the central atomic frequency (see figures 4.3.2-4.3.6). But the
populations are different at ® # o, . Therefore, when w =, +a, the probe that
tuned to one of the Rabi sidebands would experience absorption. When o = -o,
the probe tuned another Rabi sideband would experience amplification due to the

population inversion between the dressed states [4.12]. Increasing the detuning

gradually to larger values (say from L3 10 to & 40 ) as in figures 4.3.2-4.3.5, the
¥ Y

amplification is essentially unchanged but on the other hand absorption gradually

increases. We observe that the absorption lineshape is Lorentzian. Note that results for

A 250" (see figure 4.3.6) are similar to those as exhibited in figures 4.3.2-4.3.5. To
Y
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confirm these analytical spectrum, we have plotted the corresponding numerical ones -
see figure 4.3.7. Our numerical result is calculated by using a density matrix method as
done for example in [4.13]. We observe that the magnitudes of maximum absorption
and amplification are comparatively bigger than the corresponding analytical ones.

Also, there is a dispersive profile at the central frequency for the numerical result

E,+Q
E,

o,
E,-Q

o, +Q
E,_+Q
w, -2Q

E.

o, +Q

Y

L_——EHI_Q

Figure 4.3.1 Energy levels of the dressed atomic states and transition process

corresponding to unequal population when ® #, .

which is not present for the analytical one. The dispersive profile from the numerical

result is caused by the factor ) which is ignored in the secular approximation

technique. Nevertheless, in general both analytical and numerical results are in very

good agreement .
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We now study the corresponding dispersion spectrum from the two atoms driven

by a strong detuned laser. Figure 4.3.8 shows a symmetrical dispersion spectrum

which belongs to the Rayleigh-wing type (since A=0.I). Note, however, that the
Y

refractive index does not vanish at the central frequency. This is also for other values
. A i i B N i s
of =#0 in figures 4.3.9-4.3.12. As detuning gradually increases. we find that the
Y
maximum magnitudes of the dispersions also change. We obtained significant
dispersions on both sides of the central frequency. Figure 4.3.13 is just to show

A >50 would produce similar results as for A 40. We also plot the corresponding
Y Y

numerical dispersion in figure 4.3.14. Again the numerical dispersion spectrum is
slightly different compared to the analytical one and a non-zero dip exists at the central

frequency which is washed out in the analytical results. Again, a non-zero dip exists in
the numerical result due to the factor o which is ignored in the secular approximation

technique. Otherwise, in general both analytical and numerical results are in very good

agreement.

In figures 4.3.15-4.3.19, we plot the analytical absorption-dispersion spectra.
Clearly for finite detunings we do not find any large refractive index accompanied by
vanishing absorption at the side bands. This is confirmed by the numerical result in
figure 4.3.20. However, interestingly both analytical and numerical results show that

we can get finite dispersion accompanied by zero absorption at the central frequency
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of the spectrum. In figure 4.3.21 we plot the numerical result when é=0 and
Y

9:40. Clearly, we can conclude that finite dispersion accompanied by zero
Y

absorption at the Rabi sidebands is a feature unique for the collective atomic system

driven by a strong detuned laser.
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Figure 4.3.2 Plot of approximate absorption spectrum for two collective atoms driven by
a detuned laser
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Figure 4.3.3  Plot of approximate absorption spectrum for two collective atoms driven by
a aetuned 1aser
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Figure 4.3.4 Plot of approximate absorption spectrum for two collective atoms driven by
a detuned laser
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Figure 4.3.5 Plot of approximate absorption spectrum for two collective atoms driven by
a detuned laser
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Figure 4.3.6 Plot of approximate absorption spectrum for two collective atoms driven by
a detuned laser
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Figure 4.3.7 Plot of numerical absorption spectrum for two collective atoms driven by

a detuned laser
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Figure 4.3.8 Plot of approximate dispersion spectrum for two collective atoms driven by

a detuned laser
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Figure 4.3.9 Plot of approximate dispersion spectrum for two collective atoms driven by

a detuned laser
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Figure 4.3.10 Plot of approximate dispersion spectrum for two collective atoms driven by

a detuned laser
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Figure 4.3.11 Plot of approximate dispersion spectrum for two collective atoms driven by
a detuned laser
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Figure 4.3.12 Plot of approximate dispersion spectrum for two collective atoms driven by
a detuned laser
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Figure 4.3.13 Plot of approximate dispersion spectrum for two collective atoms driven by
a detuned laser
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Figure 4.3.14 Plot of numerical dispersion spectrum for two collective atoms driven by

a detuned laser
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Figure 4.3.15 Plot of approximate absorption-dispersion spectrum for two collective atoms
driven by a detuned laser. The solid and dashed lines represent the
absorption and dispersion soectrum respectively.
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Figure 4.3.16 Plot of approximate absorption-dispersion spectrum for two collective atoms
driven by a detuned laser The solid and dashed lines represent the
absorption and dispersion spectrum respectively.
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Figure 4.3.17 Plot of approximate absorption-dispersion spectrum for two collective atoms
driven by a detuned laser. The solid and dashed lines represent the
absorption and dispersion spectrum respectively.

85



0.5

0.4

0.3

0.2

0.1

0.0

2 4
L Y
E
| " 1 n 1 L ] I |
-200 -100 0 100 200 - ”‘Y“‘

Figure 4.3.18  Plot of approximate absorption-dispersion spectrum for two collective atom:
driven by a detuned laser. The solid and dashed lines represent the
absorption and dispersion spectrum respectively.
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Figure 4.3.19 Plot of approximate absorption-dispersion spectrum for two collective atoms
driven by a detuned laser. The solid and dashed lines represent the
absorption and dispersion spectrum respectively.
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Figure 4.3.21 Plot of numerical absorption-dispersion spectrum for two collective atoms
driven by a resonant laser. The solid and dashed lines represent the
absorption and dispersion spectrum respectively.
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