
DEEP Q-NETWORK FOR JUST-IN-TIME SOFTWARE
DEFECT PREDICTION

AHMAD MUHAIMIN BIN ISMAIL

FACULTY OF COMPUTER SCIENCE & INFORMATION
TECHNOLOGY

UNIVERSITI MALAYA
KUALA LUMPUR

 2023

Univ
ers

iti
Mala

ya

DEEP Q-NETWORK FOR JUST-IN-TIME SOFTWARE

DEFECT PREDICTION

AHMAD MUHAIMIN BIN ISMAIL

THESIS SUBMITTED IN FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF DOCTOR OF

PHILOSOPY

FACULTY OF COMPUTER SCIENCE AND

INFORMATION TECHNOLOGY
UNIVERSITY OF MALAYA

KUALA LUMPUR

2023 Univ
ers

iti
Mala

ya

iii

UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Ahmad Muhaimin Bin Ismail

Matric No: 17202117/1 /WVA190005

Name of Degree: Doctor of Philosophy

Title: Deep Q-Network for Just-in-Time Software Defect Prediction

Field of Study: Software Quality

 I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair
dealing and for permitted purposes and any excerpt or extract from, or
reference to or reproduction of any copyright work has been disclosed
expressly and sufficiently and the title of the Work and its authorship have
been acknowledged in this Work;
(4) I do not have any actual knowledge nor do I ought reasonably to know
that the making of this work constitutes an infringement of any copyright
work;
(5) I hereby assign all and every rights in the copyright to this Work to the
University of Malaya (“UM”), who henceforth shall be owner of the
copyright in this Work and that any reproduction or use in any form or by any
means whatsoever is prohibited without the written consent of UM having
been first had and obtained;
(6) I am fully aware that if in the course of making this Work I have
infringed any copyright whether intentionally or otherwise, I may be subject
to legal action or any other action as may be determined by UM.

Candidate’s Signature Date:

Subscribed and solemnly declared before,

Witness’s Signature Date:

Name:

Designation:

Univ
ers

iti
Mala

ya

iv

DEEP Q-NETWORK FOR JUST-IN-TIME SOFTWARE DEFECT

PREDICTION

ABSTRACT

Mitigating software defects at code level at early stages allows for long-term

maintenance of software quality. According to IBM's report, the cost of fixing an error

rises exponentially as software moves forward in software development lifecycle. The

cost to fix defects after software release is up to 15 times more than the fixing cost for

defects uncovered during the initial software development phase. Quality assurance

relies on code reviews to identify and fix software defects. Apart from code

optimization and formal inspection, software defect prediction makes use of limited

resources as part of the code review process to identify the most cost-effective way to

discover defects. A software defect prediction approach is conducted at three levels of

granularity: modules, files, and changes. Change level prediction, also referred to as

Just-in-Time software defect prediction, assists in reducing the amount of code coverage

without inspecting the entire file or package. Nevertheless, an inaccurate model of Just-

in-Time software defect prediction impedes both prevention and recovery of defects.

The accuracy of prediction is mainly adversely affected by imbalanced class

distributions and rate of false results. Accordingly, the focus of this study is on the

problems of ineffective oversampling in imbalanced class distributions and high false-

positive rates in effort-aware software defect prediction. This study proposes a reliable

framework for Just-in-Time software defect prediction to accurately predict software

defects during the code change process using Deep Q-Network (DQN). The proposed

framework consists of two modified parts: 1) rebalancing class distribution within

training datasets by kernel-based cross oversampling, and 2) using DQN as a defect

classifier for accurate prediction. The proposed framework is further validated by

Univ
ers

iti
Mala

ya

v

checking the constructed prediction model for efficiency in effort cost and prediction

accuracy in open-source software projects. Validation of the prediction model is

performed through within-project prediction, cross-project prediction, and timewise

prediction to ensure model reliability. The quality assurance team can improve software

defect localization by prioritizing testing based on Just-in-Time software defect

prediction.

Keywords: Software quality, code review, just-in-time software defect prediction

framework

Univ
ers

iti
Mala

ya

vi

Q-RANGKAIAN MENDALAM UNTUK RAMALAN KECACATAN PERISIAN

SECARA TEPAT MASANYA

ABSTRAK

Mengurangkan cela perisian pada tahap kod di peringkat awal membolehkan

pemeliharaan jangka panjang terhadap kualiti perisian. Menurut laporan IBM, kos untuk

memperbaiki suatu cela perisian meningkat secara eksponen seiring dengan peredaran

perisian dalam kitaran pembangunan perisian. Kos untuk memperbetulkan cela perisian

selepas perisian dikeluarkan adalah sehingga 15 kali lebih tinggi daripada kos

memperbaiki cela perisian yang ditemui semasa fasa pembangunan perisian awal.

Jaminan kualiti bergantung kepada semakan kod untuk mengenal pasti dan

memperbaiki cela perisian. Selain daripada pengoptimuman kod dan pemeriksaan

formal, ramalan cela perisian menggunakan sumber terhad sebagai sebahagian daripada

proses semakan kod untuk mengenal pasti cara yang paling berkesan dari segi kos untuk

mengesan cela perisian. Pendekatan ramalan cela perisian dijalankan pada tiga tahap

granulariti: modul, fail, dan perubahan. Ramalan peringkat perubahan, juga dikenali

sebagai ramalan cela perisian "Just-in-Time," membantu mengurangkan jumlah liputan

kod tanpa menyemak keseluruhan fail atau pakej. Walaubagaimanpun, model ramalan

cela perisian "Just-in-Time" yang tidak tepat menghalang pencegahan dan pemulihan

cela perisian. Prestasi ramalan terjejas oleh taburan kelas yang tidak seimbang dan

kadar keputusan yang palsu. Oleh itu, tumpuan kajian ini adalah pada masalah

memperbanyak sampel yang tidak berkesan dalam taburan kelas yang tidak seimbang

dan kadar positif palsu yang tinggi dalam ramalan cela perisian yang peka terhadap

usaha. Kajian ini mencadangkan satu kerangka yang berkesan bagi ramalan cela

perisian "Just-in-Time" untuk meramalkan cela perisian secara tepat semasa perubahan

kod menggunakan Deep Q-Network (DQN). Kerangka yang dicadangkan terdiri

Univ
ers

iti
Mala

ya

vii

daripada dua bahagian yang telah diubahsuai: 1) mengimbangi taburan kelas dalam

dataset latihan melalui memperbanyakan sample secara silang berasaskan kernel, dan 2)

menggunakan DQN sebagai pengklasifikasi cela perisian untuk ramalan yang tepat.

Kerangka yang dicadangkan ini kemudian disahkan melalui pemeriksaan model

ramalan yang dibina untuk kecekapan dalam kos usaha dan ketepatan ramalan dalam

projek perisian sumber terbuka. Pengesahan model ramalan dilakukan melalui

peramalan dalam projek, peramalan secara silang projek, dan peramalan berdasarkan

perubahan masa untuk memastikan kebolehpercayaan model. Pasukan jaminan kualiti

boleh meningkatkan penyetempatan cela perisian dengan mengutamakan pengujian

berdasarkan ramalan cela perisian "Just-in-Time".

Kata kunci: Qualiti perisian, semakan kod, rangka kerja ramalan cela perisian secara

tepat masanya

Univ
ers

iti
Mala

ya

viii

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious, the Most Merciful, I begin this

acknowledgment with praise and gratitude to Allah the Almighty, whose guidance and

blessings have illuminated my path throughout this Ph.D. journey. Completing a Ph.D.

thesis is a journey that requires the collective effort, support, and encouragement of

many individuals. I am deeply grateful to all those who have played pivotal roles in this

academic endeavour. Foremost, I extend my heartfelt gratitude to my esteemed

supervisors, Assoc. Prof. Dr. Siti Hafizah Ab Hamid, and Dr. Asmiza Abdul Sani. Your

wisdom, guidance, and scholarly insights have been the cornerstone of my research

journey. Your dedication to my intellectual growth, patience in addressing my queries,

and unwavering support throughout this rigorous process have been invaluable. I am

truly fortunate to have had the privilege of your mentorship. I would like to express my

profound appreciation to my friends and family who have stood by me with unwavering

support and understanding. To my beloved spouse, Allya Nadira Abdul Rashid, your

love, patience, and belief in my abilities have been a constant source of inspiration. You

provided the emotional support that sustained me through the challenges of this Ph.D.

journey. To my dear mother, Mariam Awang, your sacrifices, and unending

encouragement have been a driving force in my pursuit of knowledge. Your unwavering

faith in me has been a source of strength. This Ph.D. thesis represents the culmination of

years of dedication and hard work, and it is a testament to the collaborative spirit of

those who have contributed to this endeavour. Each of you has played a significant role

in shaping my academic journey, and for that, I am profoundly thankful.

Univ
ers

iti
Mala

ya

ix

TABLE OF CONTENTS

ABSTRACT .. iv

ABSTRAK .. vi

LIST OF FIGURES ... xiv

LIST OF TABLES .. xvii

LIST OF SYMBOLS AND ABBREVIATIONS ... xix

CHAPTER 1: INTRODUCTION .. 1

1.1 Research Background ... 1

1.2 Motivation .. 4

1.3 Statements of Problem .. 6

1.3.1 Ineffective Oversampling in Imbalance Class Distribution 6

1.3.2 High False Positive Rate in Effort Awareness Evaluation 8

1.4 Scope of Research .. 9

1.5 Research Objectives ... 10

1.6 Research Methodology ... 11

1.6.1 Phase 1 .. 12

1.6.2 Phase 2 .. 15

1.6.3 Phase 3 .. 17

1.6.4 Phase 4 .. 19

1.7 Research Significance .. 20

Univ
ers

iti
Mala

ya

x

1.8 Thesis Structure .. 21

CHAPTER 2: OVERVIEW OF SOFTWARE DEFECT PREDICTION 24

2.1 Automated code review .. 24

2.2 Just-in-Time Software Defect Prediction ... 28

2.2.1 Software Metrics ... 29

2.2.2 Software Defect Dataset .. 30

2.2.3 Machine Learning ... 35

2.3 Change Level Software Metrics ... 37

2.4 Inaccurate Factors Affecting Software Metrics .. 46

2.4.1 Multicollinearity Features ... 46

2.4.2 Semantic Information .. 53

2.4.3 Noisy Data ... 56

2.5 Resampling in Imbalance Class Distribution ... 66

2.6 Oversampling for Imbalanced Datasets ... 69

2.6.1 Impact of Oversampling .. 74

2.7 Modeling Approaches for Defect Classifier ... 76

2.7.1 Impact of Classifier Techniques.. 79

2.8 Effort-Aware Model ... 80

2.9 Potential of Deep Reinforcement Learning in Software Engineering 82

2.10 Open Issues in Prediction of Software Defects .. 87

2.10.1 Prediction of heterogeneous metrics ... 87

Univ
ers

iti
Mala

ya

xi

2.10.2 Model Optimization .. 89

2.10.3 Latency of Data Evolution .. 90

2.10.4 High False Alarm in Imbalanced Dataset ... 91

2.11 Summary .. 92

CHAPTER 3: EXPERIMENTAL ANALYSIS ON OVERSAMPLING AND

EFFORT AWARENESS IN JIT-SDP ... 94

3.1 Oversampling for Imbalance Class Distribution .. 94

3.1.1 Experimental Setup ... 95

3.1.2 Data Distribution ... 98

3.1.3 Baseline Techniques.. 102

3.1.4 Result and Discussion ... 105

3.1.5 Threat to Validity .. 110

3.1.6 Conclusion .. 110

3.2 False Positives Prediction in Effort Awareness Evaluation 112

3.2.1 Experimental Setup ... 112

3.2.2 Result and Discussion ... 115

3.2.3 Threat to Validity .. 116

3.2.4 Conclusion .. 117

CHAPTER 4: DEVELOPMENT OF JUST-IN-TIME SOFTWARE DEFECT

PREDICTION ... 120

4.1 Development Phases ... 120

4.1.1 Data Extraction.. 120

Univ
ers

iti
Mala

ya

xii

4.1.2 Data Preprocessing .. 122

4.1.3 Model Training and Prediction ... 129

4.2 Kernel Analysis and Crossover Oversampling Algorithm 131

4.2.1 Phase 1: Diversity Measurement ... 133

4.2.2 Phase 2: Data Partitioning ... 135

4.2.3 Phase 3: Synthetic Data Generation .. 137

4.2.4 Summary ... 141

4.3 Deep Q-Network in Just-in-Time Software Defect Prediction 141

4.3.1 Problem Definition .. 142

4.3.2 Agent ... 144

4.3.3 Reward .. 147

4.3.4 Q-Network... 148

4.3.5 Summary ... 150

CHAPTER 5: EVALUATION OF IMPROVED JUST-IN-TIME SOFTWARE

DEFECT PREDICTION FRAMEWORK ... 152

5.1 Predictions performance of Kernel Cross-oversampling 152

5.1.1 Baseline Techniques.. 153

5.1.2 Datasets ... 155

5.1.3 Experiment Settings .. 156

5.1.4 Performance Indicators ... 157

5.1.5 Experimental Results .. 158

5.1.6 Discussion ... 168

5.1.7 Threat of Validity .. 169

Univ
ers

iti
Mala

ya

xiii

5.1.8 Conclusion .. 170

5.2 Effort Aware Performance of Deep Q-Network and Kernel Cross-

Oversampling in Reducing False Positives ... 172

5.2.1 Baseline Frameworks .. 172

5.2.2 Datasets ... 174

5.2.3 Performance Indicators ... 175

5.2.4 Prediction Settings .. 176

5.2.5 Hyperparameter Tuning .. 177

5.2.6 Experimental Results .. 181

5.2.7 Discussion ... 187

5.2.8 Threat of validity ... 190

5.2.9 Conclusion .. 191

CHAPTER 6: CONCLUSION ... 192

6.1 Contributions ... 192

6.2 Research limitations .. 194

6.3 Future Works ... 195

6.4 Research Impact .. 197

REFERENCE .. 199

Univ
ers

iti
Mala

ya

xiv

LIST OF FIGURES

Figure 1: High overlap data instances in imbalance distribution of Eclipse-JDT............. 7

Figure 2: Accuracy of JIT-SDP model across 10-folds of oversampled datasets 8

Figure 3: Accuracy of JIT-SDP models based on 20% of inspection effort 9

Figure 4: Scope of this research work ... 10

Figure 5: SMART method .. 12

Figure 6: Progress of new approaches in JIT-SDP works... 14

Figure 7: Overview of literature review .. 14

Figure 8: Process of balancing imbalance class distribution .. 17

Figure 9: Mapping of agent and environment of DQN ... 19

Figure 10: Overview of code review ... 26

Figure 11: Limitations and recommendation of current code review 28

Figure 12: Extraction process of software metrics .. 30

Figure 13: Workflow of machine learning in software defect prediction 35

Figure 14: Existing software metrics .. 41

Figure 15: Issues of change level metrics ... 46

Figure 16: Taxonomy of handling multicollinearity features ... 47

Figure 17: Metrics representation process .. 51

Figure 18:Types of semantic features ... 53

Figure 19: Categories of noise handling approach .. 56

Figure 20: Classification of imbalance learning in SDP ... 63

Figure 21: Resampling imbalance dataset into balanced datasets 67

Figure 22: Taxonomy of oversampling in SDP .. 70

Figure 23: Open issues of JIT-SDP ... 87

Figure 24: CPDP-based heterogeneous data workflow .. 88

Univ
ers

iti
Mala

ya

xv

Figure 25: Procedure of comparison for oversampling techniques 98

Figure 26 : Data distribution after transformation .. 99

Figure 27: Addition of noise in Bugzilla dataset .. 100

Figure 28: Addition of noise in Columba dataset ... 100

Figure 29: Addition of noise in Postgres dataset .. 101

Figure 30: Addition of noise in JDT dataset ... 101

Figure 31 Addition of noise in Eclipse-Platform dataset .. 102

Figure 32: Addition of noise in Mozilla dataset ... 102

Figure 33: Without additional noise .. 108

Figure 34: Performance of prediction with the addition of noise data 109

Figure 35: Defect prediction in 20 percent of efforts .. 119

Figure 36: Conceptual framework of developing JIT-SDP model 122

Figure 37: Skewness of data measurement across software metrics dimension 124

Figure 38: Correlation analysis of software metrics ... 125

Figure 39: Scenarios of cross-validation ... 127

Figure 40: Alberg diagram based on Popt... 131

Figure 41: Overview of proposed oversampling technique .. 133

Figure 42: Spectral clustering within KPCA transformed data 137

Figure 43: Example of multi-point crossover ... 139

Figure 44: Crossover process across generations ... 140

Figure 45: Conceptual diagram of deep reinforcement learning 144

Figure 46: Updates of network models ... 146

Figure 47: Code review with JIT-SDP model ... 148

Figure 48: F-score of six datasets for within project validation 161

Figure 49: Resampling performance in cross project prediction 165

Univ
ers

iti
Mala

ya

xvi

Figure 50: F-score of six datasets 10-fold timewise predictions................................... 167

Figure 51: Architecture of Network model in DQN ... 178

Figure 52: Accuracy of network model for each tuning trial .. 180

Univ
ers

iti
Mala

ya

xvii

LIST OF TABLES

Table 1: Mapping of research objectives, methodology, and outcome 11

Table 2: Description of software project datasets ... 33

Table 3: Dimensions of change metrics .. 34

Table 4: Software metrics for JIT-SDP ... 42

Table 5: Change level software metrics .. 44

Table 6: Dimensionality reduction in JIT-SDP works .. 50

Table 7: Context of source code information during code changes 55

Table 8: Previous studies of JIT-SDP using semantic-based features 55

Table 9: Factors of mislabelled data treatment ... 61

Table 10: Variant of SZZ algorithm.. 62

Table 11: Imbalance learning strategies in SDP ... 64

Table 12: Factors of consideration on resampling imbalanced datasets 67

Table 13: Oversampling techniques in defect prediction .. 72

Table 14: Machine learning in the JIT-SDP model .. 78

Table 15: DRL approaches in software engineering ... 84

Table 16: Examples of model-based methods .. 84

Table 17: Summary of previous effort-awareness JIT-SDP models 85

Table 18: Mapping of experimental objectives with research questions 95

Table 19: Overview of oversampling techniques.. 104

Table 20: Median of F1-scores after 10-folds stratified cross validation 108

Table 21: Mapping of research objectives and research questions 112

Table 22: Accuracy performance of base learners .. 118

Table 23: Mapping of proposed oversampling ... 128

Table 24: Confusion matrix .. 130

Univ
ers

iti
Mala

ya

xviii

Table 25: Imbalanced class datasets ... 155

Table 26: Sparsity of datasets after data resampling ... 159

Table 27: Prediction performance in F-score by resampling techniques 162

Table 28: Average of F-score for cross project prediction ... 163

Table 29: F-score of JIT-SDP models for cross project prediction 164

Table 30: Average of F-score in timewise predictions ... 166

Table 31: Statistics of datasets .. 175

Table 32: Hyperparameters considered in Q-network of DQN 179

Table 33: Configuration of optimized hyperparameters in network model of DQN 180

Table 34: Prediction accuracy in within project prediction .. 182

Table 35: Benefit of effort awareness in within project prediction 182

Table 36 : Popt performance in within project prediction .. 183

Table 37: F-scores in cross prediction of baseline frameworks 184

Table 38: Benefit of effort awareness in cross project prediction 184

Table 39: Popt performance in cross project prediction ... 185

Table 40: F-scores in timewise prediction of baseline frameworks 186

Table 41: Benefit of effort awareness in timewise prediction 186

Table 42: Popt performance in timewise prediction ... 187

Univ
ers

iti
Mala

ya

xix

LIST OF SYMBOLS AND ABBREVIATIONS

DRL : Deep Reinforcement Learning

DQN : Deep Q-Network

JIT-SDP : Just-in-Time Software Defect Prediction

KCO Kernel Crossover Oversampling

KPCA Kernel Principal Component Analysis

LOC : Line of Code

PCA Principal Component Analysis

SQA : Software Quality Assurance

SDP : Software Defect Prediction

Univ
ers

iti
Mala

ya

1

CHAPTER 1: INTRODUCTION

COVID-19 pandemic affected many businesses, small to large enterprises are forced to

quickly reorganize working processes and accelerate IT priorities and technology

roadmaps. In a recent report by Accelerated Strategies Group, 63.3% of business

respondents noted that they accelerated digital transformation as a priority for their

companies (Gartner, 2021). Their primary focus is based on contactless services, cloud

migration, and DevOps activities. Since digital products determine the creation of

sustainable and adaptable businesses, the development of software systems plays a

critical role in building a better post-pandemic world.

1.1 Research Background

Software systems are becoming increasingly complex and are used in everything

from mobile devices to space shuttles. The increasing importance and complexity of

software systems in our daily lives make software quality a critical, yet extremely

difficult issue to address. A well-developed software system increases the organization's

reputation, promotes customer trust in software products, improves workflow

efficiency, and provides a real competitive advantage (Ramler et al., 2019). Therefore,

it is imperative to ensure that the software being built is reliable and fulfills its quality

objectives. The quality and reliability of the software depend on the software defects

that existed in the system. The higher number of defects decreases the reliability of the

software, and a lot of effort is required to maintain the software quality. Gartner's 2012

report states that 20% - 28% of failure potentially happen to software projects ranging

from small to large size because of the complexity and low quality of the requirements

blueprint (Alami, 2016), which requires 60% - 80% correct effort (Ebert, 2007).

Univ
ers

iti
Mala

ya

2

Software Quality Assurance (SQA) provides a set of activities that ensure software

meets a specific quality level and takes up a large amount of the maintenance effort. In

SQA, the code review process helps developers to find and fix mistakes overlooked in

the initial development phase, improving both the overall quality of software and the

developers' skills (Beller et al., 2014). The code review process intends to

systematically inspect source code for improvement and defects. Nevertheless, code

review often involves repetitive and tedious tasks that increase the mental burden on

reviewers and hamper their effectiveness (Singh et al., 2017). Code review is a widely

used approach to support software quality (Kononenko et al., 2016). In a code review,

large teams of authors and reviewers take turns creating and reviewing source code,

sharing knowledge, proposing advice, fixing bugs, and promoting excellence. One of

the most challenging aspects of code review is the ability to predict defects in the code.

The researchers propose alternative techniques to improve the code review process,

specifically by examining how to support developers and reduce the required cognitive

effort. One solution aims to support code review with artificial intelligence aimed at

maximizing reviewers' efficiency without increasing the cost of their review. Promising

practice in this sense is predictive analysis, which aims to automatically predict the

areas of source code that are most likely to be problematic, thus drawing the reviewer's

attention.

Software defect prediction (SDP) allows for more efficient code review by predicting

the defects prone to a software project in a cost-effective manner. SDP enables software

defects to be predicted before they are observed by looking at the underlying properties

of project artifacts. A software project in the context of SDP is a collection of

procedures for the development of an intended software product with software versions

by the related software artifacts. The software version contains an abundance of historic

software project development information stored in software repositories. Two ways in

Univ
ers

iti
Mala

ya

3

which the development information is stored: 1) within-project and 2) cross-project.

Within-project version consists of the historical software development information

extracted from prior software project releases. The cross-project version consists of the

software development information extracted from version releases of other similar

software projects. The historic software project development information consists of

three sets of information: 1) a set of software metrics, 2) defects information, and 3)

meta-information about the software project. This information is critical to project

managers in improving their software development practices, especially in tracking and

fixing defects in software releases (Tosun et al., 2010).

Current fast advancement technologies place project managers constantly to respond

faster to technological changes and new requirements by releasing new software

versions in a limited amount of time and budgets. To handle such situations, other than

static code analysis and software defect localization, SDP is a solution that enables the

identification of future defects in an optimized and cost-effective way for the software

project at early stage. It is also capable to provide feedback on software defects which

only detected in future software releases. To date, the extensive research on SDP has

driven the involvement of more industries to participate in bringing more additional

resources toward open-source software projects (Li et al., 2018). For that reason, the

research on the SDP approach is expected to be growing more in upcoming years due to

the availability of more public access software projects. The SDP approach is available

to be deployed at several levels in open-access software projects. The SDP approach is

performed at three granularity levels: 1) module, 2) file, and 3) changes level. Module-

level SDP involves the prediction of the defect-prone modules before the testing phase.

File-level SDP is conducted before a software release to act as a quality control step for

software releases. Change-level of SDP is a continuous activity of quality control for

each submission of code changes.

Univ
ers

iti
Mala

ya

4

Changes level of SDP were first proposed by Mockus and Weiss (2002)

recommending which code changes to software projects need to be inspected first based

on the risk of introducing defects. Information within code changes is critical to be

understood by the developers to carry out tasks on features addition, defects fixing,

performance improvement, troubleshooting, and code maintenance (Misirli et al.,

2016). To date, code changes level prediction is also known as Just-in-Time SDP (JIT-

SDP) (Kamei et al., 2013). JIT-SDP enables the prediction process to be done once

source code changes are committed in the version control system. The prediction

process helps increase our understanding of software defect patterns in the early

development phase which is exploited further for the quality control scheme.

Accordingly, this research proposes an approach to improve the performance of JIT-

SDP in more effective ways. JIT-SDP offers two advantages over module and file

prediction levels. First, it reduces the amount of code coverage without having to

examine whole files or packages during code review. Secondly, code change level

prediction also is used to identify whether a certain change causes a defect at check-in

code transaction. Thus, the developers are able to allocate the limited test resources in a

more efficient way for practical application.

1.2 Motivation

As with any research work, several factors motivate the purpose of producing the

research. Similarly, the following three significant factors motivated this research.

(a) Difficulty in software defect management. Managing the number of defects is an

important aspect. Finding and fixing the defects cost lots of money. The data from

the Gartner report in 2018, American companies spent around 42% money spend

on software defects in IT products. Usually, software developers find and detect

software defects through the process of testing. However, this is an expensive

Univ
ers

iti
Mala

ya

5

process that takes a long time and unworthy the cost before release. Ultimately,

most of the testing only happens at a later stage of software development. During

testing, if the defect rate is higher than the acceptable level, the software

development team is faced with a dilemma: to postpone the software release to fix

these defects or to release the software products containing defects.

(b) Cost-effective process. The interests of software engineering in quality assurance

are activities such as testing, verification and validation, defect tolerance, and

software defect prediction. Software defect prediction effectively reduces the

testing effort by identifying early signs of the potential of defect-inducing source

code. Therefore, the identified defect source code can easily be fixed by developers,

which reduces testing effort.

(c) Automated code review tools. Software defect prediction attracted the attention of

large companies, which began experimenting with augmented code review tools

(Gray et al., 2011; Tosun et al., 2010; Yan et al., 2020). For example, Google

developers evaluated FixCache (Sadowski et al., 2011) which is a well-known tool

for the defect prediction model. The evaluation of SDP is conducted in a typical

working environment as a code review tool for the company (Lewis et al., 2013).

FixCache uses a newly developed concept of defect locality which provides

excellent results within controlled environments with minimal interactions with

external factors. The developers of Google found, however, that the defects result

generated are too imprecise to work in practice as code review recommendations. It

is imperative that more research is conducted to improve the prediction results. In

the context of this research, deep reinforcement learning with a quality-balanced

training dataset provides an effective prediction of software defects based on the

characteristics of code change metrics provided.

Univ
ers

iti
Mala

ya

6

Despite many research attempts, all the factors mentioned above remained relevant

and strongly motivated the production of this research toward the advancement of the

software defect prediction domain.

1.3 Statements of Problem

The primary focus of this research is the issue of inaccurate prediction. Accurate

prediction of software defects is important to ensure the quality of software during the

software development process before software failure occurs. It helps developers to

check and locate defects immediately at the time they are introduced. However, an

inaccurate defect prediction causes the generation of false positives on non-defective

instances that are predicted as defective labels and false negatives on defective instances

that are predicted as non-defective labels. Getting false alarms wastes resources during

the code review process. Particularly, the developer's effort and time to review the false

result thus, cause frustration to the developers (Lewis et al., 2013). Primarily two

problems that severely impact the prediction accuracy are identified, 1) ineffective

oversampling in imbalance class distribution and 2) high false-positive rate in effort

awareness evaluation.

1.3.1 Ineffective Oversampling in Imbalance Class Distribution

Software project datasets tend to have highly skewed class distributions (Song et al.,

2018). In a skewed data distribution, the majority of data is in the clean class and a

small portion of data is in the defect class. A skewed distribution is also called

imbalanced data. To balance the number of instances in the minority class of the defect

class, oversampling generates more synthetic instances. However, the defect data

generated by oversampling are often duplicated or overlapped within the spatial

distribution (Li et al., 2018). A key characteristic of SDP imbalance datasets is the lack

Univ
ers

iti
Mala

ya

7

of variation and the lack of information about the distribution of data (Bird et al., 2009;

Chen et al., 2018). Figure 1 illustrates an example of spatial distribution with many

overlapped data points. The problem of overlapped data instances negatively impacts

prediction models that utilize oversampled data. Figure 2 illustrates the performance of

the Logistic Regression classifier in JIT-SDP using oversampled data from

oversampling techniques (Barua et al., 2014; Chawla et al., 2002; Haibo He et al.,

2008; Han et al., 2005; Lunardon et al., 2014). All baseline techniques, however, fail to

distinguish their accuracy performance in imbalanced datasets which result in similar

performance. This observation is influenced by the limited number of empty spaces

available within the minority class (defect). A complex boundary line resulted in a small

distance between the new and old data (Bellinger et al., 2016; Han et al., 2023).

Accordingly, defects data are generated into clean class data spaces, which accounts for

the problem of overlapping class spatial distributions.

Figure 1: High overlap data instances in imbalance distribution of Eclipse-JDT

Univ
ers

iti
Mala

ya

8

Figure 2: Accuracy of JIT-SDP model across 10-folds of oversampled datasets

1.3.2 High False Positive Rate in Effort Awareness Evaluation

For the prediction model to be cost-effective, the costs associated with quality

assurance (QA) efforts such as code inspection and defect fixing must always be

measured (Arisholm et al., 2010). Without QA efforts, the cost-effectiveness of the JIT-

SDP model is uncertain. QA teams are particularly interested in determining how much

time and effort it will take to fix a specific software defect (Feng et al., 2021). For

instance, cost-benefit analyses are used to determine whether code inspections are worth

the effort of fixing a defect. Accordingly, the accuracy of the prediction should be

reflected in the effort awareness of the JIT-SDP model. A high rate of false predicted

defects is associated with the performance of the effort-aware JIT-SDP model (Huang et

al., 2019) . In Figure 3, more than 50% of false positives were generated by different

effort-aware JIT-SDP models. A high false positive rate indicates that the effort

awareness in JIT-SDP is still insufficient to ensure cost-effectiveness. The current

effort-aware metric (ACC) may identify a wrong best JIT-SDP model that does not

benefit the user to the maximum extent (Çarka et al., 2022). Thus, the high false

positive rate of the effort aware JIT-SDP model hinders the practical adoption of

prediction models in the industry.

Univ
ers

iti
Mala

ya

9

Figure 3: Accuracy of JIT-SDP models based on 20% of inspection effort

1.4 Scope of Research

This research is focused on utilizing Deep Q-Network (DQN) to address inaccurate

software defect prediction. Based on the modern code review perspective, the research

focuses on the prediction of software defects. The prediction of software defects is

performed during the code transaction phase (JIT level). Data from three sources is

utilized in this study in order to predict software defects, which include within-project,

cross-project, and timewise datasets. Within-project data provides information regarding

historical software development as gathered from previous software project releases. In

cross-project data, software development information is extracted from the versions of

other similar projects that have been released. A time-based data set is compiled based

on the development timeframe of software. It is important to note that the primary

concern in this prediction is the issue of inaccurate defect prediction. In Figure 4, the

highlighted boxes illustrate the overall focus of this research project.

Univ
ers

iti
Mala

ya

10

Figure 4: Scope of this research work

1.5 Research Objectives

This research aims to develop a Just-in-Time software defect prediction framework

that enhances the accuracy performance with an increase of effort-aware prediction. To

achieve this aim, this research aligns with the following set of objectives:

1. To determine the similarities and limitations of the existing Just-in-Time software

defect prediction frameworks.

2. To design balanced datasets using an oversampling technique based on kernel

analysis and cross-over interpolation.

3. To develop a model for Just-in-Time software defect prediction using Deep Q-

Network.

Software Quality
Assurance

Static analysis

Cost Analysis

Effort Prediction

Defect estimation

Formal inspection

Physical meeting

Manual code
review

Modern code
review

Bug localisation Software defect
prediction

Prediciton
scenarios

Within project
data

Cross project data

Timewise data

Hetrogeneous data

Granularity

Module level JIT level

Issues

complexity of code change
features extraction

Inaccurate defect prediction

Hetergenous cross prediction

Class/File level

Code optimization

Dynamic analysis

Univ
ers

iti
Mala

ya

11

4. To evaluate the prediction performance of the proposed framework using the

proposed oversampling and Deep Q-network for within-project validation, cross-

project validation, and time-sensitive validation.

1.6 Research Methodology

This research is conducted according to four phases corresponding to the four

research objectives as shown in Table 1. Figure 5 shows the mapping of research

objectives, methodology, questions, and outcomes using SMART method. The phases

of the research methodology are outlined as follows.

Table 1: Mapping of research objectives, methodology, and outcome

PHASE RESEARCH OBJECTIVES METHODOLOGY OUTCOME

Phase
1

To determine the similarities

and limitations of the

existing Just-in-Time

software defect prediction

framework (RO1)

• Comprehensive literature

review

(Sections 2.2 to 2.8)

• Experimental setup

(Sections 3.1.1 and

3.2.1)

1.Review of existing

framework (Chapter 2):

• Taxonomy of the literature

in JIT-SDP frameworks

• Limitation of existing JIT-

SDP frameworks.

2.Comparison of experimental

results for existing frameworks

(Chapter 3)

Phase
2

To design balanced datasets

using an oversampling

algorithm based on kernel

analysis and cross-over

interpolation (RO2)

• Data collection

(Section 4.1.1)

• Experiment setup

(Section 5.1.3)

• Statistical analysis

(Section 5.1.5)

• Kernel crossover

oversampling algorithm

(KCO) (Section 4.2)

• Balanced class dataset

generation with an increase

in data diversity

(Section 5.1)

Phase
3

To develop a model for Just-

in-Time software defect

prediction using Deep Q-

Network (RO3)

• Model design (Section

4.3)

• Experiment setup

(Section 5.2)

• A JIT-SDP model for higher

prediction accuracy and

effort-awareness contexts

(Section 5.2.6)

• Framework of DQN with

KCO (Section 5.2)

Univ
ers

iti
Mala

ya

12

Phase
4

To evaluate the prediction

performance of the proposed

framework using within-

project validation, cross-

project validation, and time-

sensitive validation (RO4)

• Comparative evaluation

(Section 5.2.4)

• Model reliability

(Sections 5.2.4 and

5.2.5)

• Results of performance

comparison with existing

approaches and validation

with software projects

(Sections 5.2.6 and 5.2.7)

Figure 5: SMART method

1.6.1 Phase 1

The first phase of the research methodology according to the research question

(RO1). Specifically, the research seeks to identify and investigate the research gap

affecting inaccurate SDP predictions; with a focus on JIT-SDP. A comprehensive

Specific
Goal (S)

RO1

RO2

RO3

RO4

Measurable
(M)

Literature review

Data distribution
analysis and
experiment

Model design and
experiment

Performance
evaluation and

model reliability

Attainable
(A)

Database access
and literature

search

Oversampling
imbalanced data
and experiment
setup with new

preprocessed data

Experiment setup
with deep

reinforcement
learning

implementation

- Evaluation
metrics (accuracy

and effort
awareness)

- Implementation
of proposed

framework in
software projects

Relevant
(R)

To determine the
similarities and

limitations of the
existing

frameworks

To obtain
balanced class

training datasets
for modeling of

JIT-SDP

To obtain good
prediction

accuracy with
efficient effort
awareness cost

- Report
performance of

proposed
frameworks and

baselines

Time (T)

1/09/2019

1/10/2020

1/03/2021

01/09/2021

Univ
ers

iti
Mala

ya

13

literature review is conducted using popular database engines, including IEEE,

Springer, ScienceDirect, ACM, and Google Scholar. In this review, the state-of-the-art

techniques within existing frameworks of JIT-SDP are examined from 2013 to 2023,

since JIT-SDP was first introduced by Kamei in 2013. Figure 6 depicts JIT-SDP trends

over the last few years. An analysis of research issues and trends is presented in the

review. Figure 7 illustrates an overview of the review during this phase.

According to the extensive literature review, two research problems contribute to

inaccurate software defect predictions. The identified problems are based on imbalances

in class distribution and effort awareness context. Further analysis of the identified

problem by comparing the performance of baselines JIT-SDP in two separate

experiments. The first experiment addresses the problem of ineffective oversampling in

imbalance classes. This experiment examined which oversampling techniques perform

better under different imbalanced class settings. This experiment aims to determine

whether oversampling techniques deliver different predictions when dealing with

overlapping class distributions that vary in characteristics depending on data

characteristics. Various oversampling techniques are compared, including SMOTE,

SMOTE-Borderline, ADASYN, GAZZAH, MWMOTE, ROSE, and MAHAKIL. The

second experiment compares baseline classifiers in JIT-SDP against false positive

results associated with effort awareness evaluations. Effort awareness of the JIT-SDP

model needs to be consistently reflected in the quality of predictions. Therefore, the

false positive rate is considered in the evaluation of the effort-aware model to assess the

efficacy of using machine learning methodology concerning classifier accuracy

performance.

Univ
ers

iti
Mala

ya

14

Figure 6: Progress of new approaches in JIT-SDP works

Figure 7: Overview of literature review

•ACM

•Digital Library,

•IEEExplore

•Google Scholar

•Web of Science

Search Engine

•Conference proceedings

•Journal articles

•Book chapters

•Websites/Blogs

Literature

•Components of software
defect prediction

•Software metrics

•Factors of prediction
accuracy

•Trends and issues

Review output

Univ
ers

iti
Mala

ya

15

1.6.2 Phase 2

The second phase (RO2) of the research methodology focuses on the development

of a new oversampling technique for balancing the class distribution of target datasets.

Oversampling presents a challenge since existing techniques generally introduces

duplicate or overlapped instances into the distribution of the existing data (Zhao et al.,

2023) . Zhang et al. (2021) considering spatial distribution of samples in oversampling.

Spatial distribution causes the boundaries between different types of samples to become

blurred. Several important aspects to consider when analyzing the spatial distribution of

samples, including class imbalance severity, clustering, overlap class and distribution

shape (Lorena et al., 2020). For imbalance severity, a highly imbalanced dataset where

the majority class significantly outnumbers the minority class produces class imbalance

bias. As a result, minority class predictions are less accurate as the model tends to

predict the majority class more frequently. Second, grouping or clustering instances

belonging to the same class impacts the performance of a machine learning model. In

densely grouped classes, the model has difficulty separating instances from those of

other classes. In class overlap, the extent to which instances of different classes overlap

or intermingle with each other. If instances are tightly clustered and overlap heavily, the

model may have difficulty distinguishing between classes. Lastly, the distribution shape

of the spatial distribution of instances across classes can also impact the performance of

a machine learning model. For example, a dataset with instances spread evenly across a

region may perform better than a dataset with instances tightly clustered in a few areas.

Motivating from spatial distribution, this study improves the ability to coop with

the characteristic of spatial distribution by proposing Kernel Cross-oversampling

(KCO). During this phase, several processes are conducted to ensure that the training

datasets have the desired quality. The first step involves extracting the code change data

Univ
ers

iti
Mala

ya

16

into software metrics. The extracted metrics are then used to analyze the distribution of

classes. To determine the most effective experimental settings, the model parameter

parameters are tuned based on an analysis of the data distribution for each of the

software project datasets. Next, synthetic data of the defect class are generated using the

proposed oversampling technique. The proposed technique includes three components:

kernel-based principal component analysis (KPCA), spectral clustering, and crossover

interpolation. As part of the proposed oversampling process, the first part is devoted to

representing multidimensional features into two-dimensional features by employing

KPCA. In this way, correlations between data instances are distinguished with

visualization of data distribution. The second component of the proposed oversampling

consists of deploying spectral clustering to explore the distribution of data for the

plotted data distribution of the first component. The spectral clustering method allows

for the separation of data distribution sources into several data clusters. Each of these

clusters is measured based on the proportion of clean class data within the cluster. A

candidate region for the generation of synthetic defect data is chosen from three clusters

with the lowest number of clean class data. The selection is based on the premise that

clusters with a low percentage of majority classes yield good neighborhoods and low-

occupied space for the generation of synthetic data. The generation of new defect data

by cross-interpolating according to template parents within the selected data clusters.

Interpolating for new data continues to iterate until a balanced distribution of data

classes is achieved. Figure 8 provides the overall work in balancing the class

distribution of the training data. The balanced training data are now ready for

deployment into the machine learning algorithm.

Univ
ers

iti
Mala

ya

17

Figure 8: Process of balancing imbalance class distribution

1.6.3 Phase 3

The third phase of the research methodology (RO3) focuses on developing a

prediction model utilizing DQN to enhance the accuracy of the defect classifier by

taking effort into account when classifying software changes. Defect classifiers suffer

from poor prediction when data drift occurs within the properties of code changes

(Tabassum et al., 2023). One of the main challenges associated with JIT-SDP is the

high rate of false positive predictions (Quach et al., 2021). Improvements needed to be

made regarding the handling of data drift which source of false positives prediction. It is

advisable to explore specific aspects of handling data drift, including continuous model

refinement (online classification learning), dividing the data by period, and measuring

the evolution of defect-inducing change patterns (Tabassum et al., 2023; Tan et al.,

2015). Therefore, JIT-SDP will need an effective classifier that can reduce the effect of

false positives prediction, such offered by DQN. For this phase, the pre-processed

training data generated in Phase 2 is used to construct a DQN framework for JIT-SDP.

DQN framework consists of two parts, namely environment, and agent. In the

environment, code reviewing is formulated as a virtual environment in which DQN can

Univ
ers

iti
Mala

ya

18

interact and earn rewards based on actions taken during the learning process. As part of

training the model, the environment stores training samples and rewards or punishes

correct and incorrect predictions.

The second component, namely the agent, is composed of two subcomponents: the

deep learning model and action memory. In the agent of DQN, Q-network model is fed

with training data from action-memory using a mini-batch learning mechanism. Q-

network is based on a neural network algorithm. Q-network consists of many

hyperparameters and finding the best combination of parameters is treated as a search

problem. The values of hyperparameters cannot be determined from a regular learning

process. Consequently, hyperparameters must be tuned before DQN training begins.

This study adopts hyperband tuner strategy (Li et al., 2018) for hyperparameter tuning.

For the action-memory mechanism is based on the decayed epsilon policy. The final

output of this phase is a deep learning model for JIT-SDP. The constructed deep

learning model is now ready for evaluation with other techniques to achieve a better

balance between accuracy and effort awareness. Figure 9 shows the overview of

training of DQN as JIT-SDP model.

Univ
ers

iti
Mala

ya

19

Figure 9: Mapping of agent and environment of DQN

1.6.4 Phase 4

The last phase of this methodology (RO4) focuses on the evaluation and

comparison of the proposed framework with baseline frameworks. In this respect, Phase

4 evaluates the classifiers in JIT-SDP based on two performances such as prediction

accuracy in F-scores and effort awareness. To test the model reliability, the proposed

framework is implemented in software projects such as Columba, Bugzilla, Postgres,

Mozilla, Eclipse.Platform and Eclipse.JDT. The phase further compares the

performance of the proposed framework and baseline frameworks in three prediction

scenarios namely within-project prediction, cross-project prediction, and time-wise

prediction. Within project-prediction is performed within the same software project

data. In this context, StratifiedKFold is used in this scenario to ensure that the class

distribution in the datasets is kept in the training and test splits. The datasets are

randomly divided into ten folds, with eight folds serving as training data and the

Univ
ers

iti
Mala

ya

20

remaining fold serving as test data. Each fold is only used as a testing dataset once in

cross-validation. Furthermore, the data need to be folded in such a way that each fold

consists of the same proportions as the original dataset. The average result is recorded

using StratifiedKFold to strengthen the reliability of the experiment outcomes.

Timewise-validation is also performed within the same project, which takes into

account changes in chronological sequence. The chronological order of the changes data

for each software project is ordered based on the commit date The changes made during

the same month period are then aggregated. Assume that the modifications in a project

are divided into n components. For example, the datasets (1 ≤ i ≤ n - 5) for training data

and testing data consist of changes committed for two consecutive months. To predict

testing data for parts i+4 and i+5, a prediction model m is developed using a

combination of part i till part i+1 as training data. Cross-project prediction provides the

predictive performance according to prediction across different software projects. The

training data set on one project is used to predict defect-proneness in another project as

the testing data set. For a set of n projects, this method produces n * (n - 1) prediction

effectiveness values (Zhu et al., 2020). For this research, six projects are used as the

subject projects. Accordingly, each prediction models produces 6 × (6 - 1) = 30

prediction effectiveness values.

1.7 Research Significance

The research provides efficient effort-awareness and higher accuracy in the

prediction of software defects based on given code changes. This research believes that

with appropriate solutions, an accurate and effective JIT-SDP model is achieved.

Throughout this research, the importance of considering the advancement of classifier

techniques, and the impact of having a set of quality defect datasets are given. The

proposed framework reduces the efforts during code review by helping to uncover more

Univ
ers

iti
Mala

ya

21

risky changes in the software project that not be reachable by the regular testing

process. The proposed framework provides better results compared to other state-of-the-

art frameworks in JIT-SDP overall performance.

This research provides valuable findings for both researchers and practitioners. For

researchers, this research provides a new baseline model that need to be used in future

JIT-SDP studies for evaluation of accuracy and effort-aware performance. For

practitioners, this research provides an accurate prediction model for effort-aware JIT-

SDP. The prediction model developed by the proposed framework is benefiting QA

teams to help prioritize test cases and enhance static defect localization. Moreover, the

solution provided by this research potentially be utilized in different research domains.

For instance, the proposed oversampling technique is possible to apply for imbalance

learning in other research domains such as static code analysis, development effort

prediction, and code vulnerability prediction. Especially, the studies that utilize software

metrics as the features or independent variables of the research problem. In addition,

further application of the proposed deep reinforcement learning technique for JIT-SDP

provides more depth analysis available for defect localization and production cost

analysis studies.

1.8 Thesis Structure

Chapter 2 introduces the JIT-SDP frameworks for identifying the similarities and

limitations of existing works following Phase 1 of research methodology. The review

provides detailed background on JIT-SDP to allow a better understanding of the current

research landscape. It also goes into detail on the progress in JIT-SDP approaches,

starting from the software metrics until the most recent modelling of the prediction

model by machine learning-based classification. The discussion maps the technique to a

clear chronology to uncover the advantages and limitations of prior techniques. Finally,

Univ
ers

iti
Mala

ya

22

the chapter also presents open issues in the prediction of software defects relevant to the

current state-of-the-art in the domain. The output of this chapter enables investigation of

the available classification taxonomies of current approaches and highlights their

limitations.

Chapter 3 discusses Phase 1 of the research methodology by analyzing the

limitations of existing work in the context of the identified problem statements. In the

first section, the factors that contributed to the research problem of ineffective

oversampling in imbalanced class distribution are analysed. The analysis provides

classification results for the prediction of software defects based on balanced datasets

provided by state-of-the-art oversampling techniques. The results of the analysis

provide a deeper understanding of how the distribution of data in imbalance class

datasets affected the performance of oversampling techniques. In the second section, the

problem of predicting false positives in effort awareness evaluation is analysed and

discussed in order to comprehend the current state of classifier selection. The analysis

reveals how the selection of classifiers plays a crucial role in minimising false alarm

results. Several baseline classifiers in JIT-SDP are evaluated and compared throughout

the analysis to provide an overview of the performance of effort-aware models based on

these classifiers.

Chapter 4 presents the development of the proposed JIT-SDP framework, aligned

with Phases 2 and 3 of the research methodology. The chapter is organized into three

sections reflecting the stages in the development of the proposed framework. The first

section provides an overview of the process involved in developing the JIT-SDP model.

JIT-SDP model development is divided into three phases: data extraction, data pre-

processing, and training and prediction of the model. Following the second section,

which corresponds to Phase 2, a new oversampling technique is developed to handle the

Univ
ers

iti
Mala

ya

23

problem of overlapping spatial distribution within imbalanced datasets during data pre-

processing. The technique relies on kernel analysis and spectral clustering to facilitate

crossover interpolation for new samples of data. A key benefit of this technique is the

improvement of the quality of training data for modelling the JIT-SDP model. The third

section, which is part of the training and prediction process, is concerned with the

development of DQN algorithm in order to generate a prediction model with a focus on

reducing false positive predictions which corresponds to Phase 3. Application of DQN

algorithm as JIT-SDP classifier provides more depth learning for capturing the pattern

of software defects during code changes. The framework utilizes incremental learning

with help from DQN and improvises on the existing classifier chain approach to achieve

the objectives

Chapter 5, which is align with Phase 4 of the methodology, presents the results and

discussion of the proposed solution in two sections. For the first section, evaluations of

the proposed oversampling technique along with baseline techniques are done in the

interests of both compare and showcase the robustness of the proposed solution. In the

second section, experimental results from the application of DQN into JIT-SDP are

discussed. The experimental evaluation compares the existing frameworks and the

proposed framework with DQN embedded as a classifier.

Chapter 6 presents the conclusion to the research. This chapter revisits the

contributions and maps them to the initial objectives of this study. Furthermore, it

highlights the limitations of this study and makes valuable suggestions for future

research. The chapter concludes by briefly discussing future directions and efforts to

expand the research boundaries in software defect prediction.

Univ
ers

iti
Mala

ya

24

CHAPTER 2: OVERVIEW OF SOFTWARE DEFECT PREDICTION

Software defects are more likely to be introduced over time. The domain has

experienced significant evolution over the years due to various solutions that create a

heterogeneous landscape. To understand the domain, this chapter discusses the literature

on Software Defect Prediction (SDP). The literature review pays special attention to

Just-in-Time Software Defect Prediction (JIT-SDP) context central to this research.

Initially, this chapter presents some details regarding the introduction to the code

review, which prompted the development of JIT-SDP. The second section provides

background information about JIT-SDP and explains it in detail. The next section

provides further information regarding the change level of software metrics. The section

that follows discusses factors that influence the effectiveness of software metrics.

Following is a discussion of existing oversampling techniques for imbalanced defect

datasets. Following are further details regarding machine learning approaches and

effort-aware models in JIT-SDP. In the preceding section, the need for advanced

classifier and predictor approaches is discussed, along with the possibility of applying

deep reinforcement learning to software engineering. Lastly, several issues have been

identified to the extent that these issues require further discussion.

2.1 Automated code review

An important step in making a high-quality, secure software application is to

implement automated code review. Developers tend to make mistakes during software

development, thus by using best practices for a systematic code review is an effective

way to improve the quality of software. Despite a manual review using the knowledge

and skills of the code review team, security threats in source code that are meant to hide

from users still at risk. Manual code review adds fresh perspectives from experts to

identify logic errors, confirm the code works, and hold the developer accountable.

Univ
ers

iti
Mala

ya

25

Having a team of experts check newly written code for source code purpose and logic is

invaluable during manual code review. However, manual code review focuses more on

the logic and intent of source code. Automated code review supplemented with manual

review results in a safer and more efficient application much faster than manual review

alone. Automated code review provides faster speed, higher accuracy, and better defect

detection during the software development process.

During an automated code review, the source code is compared to a standard set of

rules for common mistakes or security risks. Figure 10 illustrates the code review

process, which consists of four primary steps:

1. Upload code changes by developers. Code authors or developers submit and upload

code changes into code review tool for code inspection. Developers then invite the

reviewer to perform the code review.

2. Examine and review the changes by reviewers. Reviewers evaluate the technical

parts of the proposed change and provide feedbacks to the developers. Reviewers

also give a score to show whether approve (positive value) or disapprove (negative

value) for the proposed changes.

3. Revise the proposed changes. The developers make changes to the proposed

changes based on the comments and then upload a new version to the code review

tool.

4. Integrate the approved changes. Steps 2 and 3 are repeated until reviewers

determine that the quality of the code change is sufficient for integration. The

proposed changes then automatically upload and integrate into the code base.

Univ
ers

iti
Mala

ya

26

Figure 10: Overview of code review

The code review process often results in false alarms, but it still provides resistance

to the software and improves its overall performance (Kononenko et al., 2016).

Removing false alarms from automated code reviews is an effective method of

increasing both the quality and security of source code. A major challenge in the code

review process is the effort of reviewers to conduct code inspections. To communicate

an issue, a code reviewer needs to examine hundreds of lines of code and make

comments regarding any possible defects. Tools such as Gerrit

(https://www.gerritcodereview.com), Collaborator

(https://smartbear.com/product/collaborator), and diff-styles (https://git-

scm.com/docs/git-diff) have proven effective at detecting design flaws and coding

violations. By integrating static analysis processes into code review, particularly JIT-

SDP, the code reviewer reduces the amount of time and effort that they must devote to

reviewing the code. Static analysis assists in automatically detecting coding standards

violations and style violations. Consequently, reviewers concentrate more on important

tasks, such as identifying logical flaws and optimizing code. However, code reviewers

are still expected to go over the analysis results and identify relevant issues that were

Univ
ers

iti
Mala

ya

27

not picked up by the analysis, as well as comment on any issues that the analysis

missed.

Code review tools are generally divided into generations. According to Hedberg

(2004), the current (5th) generation is expected to offer increased flexibility in terms of

supporting documents and processes. The current generation of tools however has

several limitations, which are described as follows.

1. Developer experience plays a significant role in variation in defect detection in

code reviews, as it depends heavily on the experience of the reviewers for the

artifacts (code changes) under review. According to several studies (Kononenko et

al., 2016; Lewis et al., 2013; Mockus, 2016; Sikic et al., 2021), the number of

defects discovered during the review process correlates with the level of expertise

of reviewers. Nevertheless, recommending and manually selecting appropriate

reviewers is difficult for large developer teams.

2. Understanding the code under review is required. Effectiveness of the review

process affects the ability of the reviewer to comprehend proposed changes

(Mantyla & Lassenius, 2009). Without a detailed code analysis, reviewers are

unable to comprehend proposed changes, resulting in greater variation and

ineffective defect detection.

3. Manual selection of relevant change subsets for large change sets or code

fragments within code changes is challenging. When dealing with large changes,

code review often resorts to reviewing a large number of small changes (Baum &

Schneider, 2016). Reviewing only small changes generates high overhead and

duplicate effort. It is important that the change under review meet certain quality

requirements rather than the size of the change.

Univ
ers

iti
Mala

ya

28

Towards higher review effectiveness, cognitive support code review tools, which are

called sixth generation tools, need to provide more flexibility with better cognitive

support (Baum & Schneider, 2016). Thus, implementing JIT-SDP model within code

review will provide a better understanding of defect-proneness and software quality. A

mapping of current limitations on code review with JIT-SDP opportunities is shown in

Figure 11.

Figure 11: Limitations and recommendation of current code review

2.2 Just-in-Time Software Defect Prediction

In SDP, software defect proneness is predicted without executing software parts

using the underlying characteristics of a software project in order to predict the

likelihood of defects. In software engineering, SDP has been a major research area for

the past four decades (Wan et al., 2018). Akiyama (1971) conducted the first study on

SDP in 1971 in order to estimate the number of software defects by assuming complex

source code was prone to introducing software defects. A simple prediction model for

software complexity was proposed based on lines of code as an indicator of complexity.

Nevertheless, simply relying on this metric is insufficient to represent software

complexity. In turn, modern SDP approaches used a variety of software metrics to

represent the complexity of software projects (Meiliana et al., 2017; Piotrowski &

Madeyski, 2020; Punitha & Chitra, 2013; Radjenović et al., 2013; A. Singh et al.,

2018).

Current limitation factors

• Developer experience
• Depth understanding
• Large changes

Possibilities via JIT-SDP

• Reviewer recomendation
• Defect proneness
• Prioritizing effort aware changes

Univ
ers

iti
Mala

ya

29

The previous SDP approaches are impractical for large-scale software development

since module granularity is often set as a file or method. Consequently, the JIT-SDP

approach is introduced to handle the prediction process on code changes that are more

detailed. Due to its ability to yield practical results during check-in time (Kamei et al.,

2013), JIT-SDP is argued to be superior to other SDP (module and class level).

Companies such as Avaya, BlackBerry, Cisco, Ubisoft, and Google (Lewis et al., 2013;

Mockus & Weiss, 2002; Nayrolles & Hamou-Lhadj, 2018; Shihab et al., 2012; Tan et

al., 2015) have implemented JIT-SDP frameworks to improve their software project

reliability. In the course of software development and maintenance, developers may

submit code changes for various reasons, including fixing defects, extending

functionality, refactoring codes, and improving system performance. In JIT-SDP, these

changes are classified into two groups: defective changes and clean changes. A

defective change is a change that is prone to introducing one or more defects, while a

clean change is a change that is not likely to introduce any defects. In general, these

changes are quantified in the form of software metrics.

2.2.1 Software Metrics

Software projects require measurements for quality assurance, performance,

debugging, management, and cost estimation. Measurements are also crucial to

discovering defects in software components. Software metrics are the most commonly

used type of measurement. Software metrics are used to predict software defects. A

prediction model is constructed on the basis of software metrics which is intended to

predict the maximum number of software defects. Generally, software repositories such

as version control systems and issue tracking systems provide software metrics based on

data gathered from software development. Figure 12 summarizes the process of

extracting software metrics from these repositories.

Univ
ers

iti
Mala

ya

30

Software metrics are broadly divided into two types: code metrics and process

metrics. A code metric reflects the complexity of the source code. Based on the

hypothesis that source code with higher complexity is more likely to contain defects. In

contrast, process metrics provide insight into many aspects of the software development

process, including changes in source code, ownership of source code files, developer

interactions, dependency analysis, and project team organization (Li et al., 2018).

Process metrics are more useful than code metrics in building a prediction model due to

the stagnation of code metrics (Rahman & Devanbu, 2013). A study showed that

various process metrics have been utilized in recent years to model JIT-SDP,

particularly those involving code change levels (Son et al., 2019). The discussion of

change level software metrics continues in Section 2.3.

Figure 12: Extraction process of software metrics

2.2.2 Software Defect Dataset

Software defects are classified into two types: functional defects and maintainability

defects. Functional defects are defects discovered in functional requirements that result

in direct software failure. Maintainability defects, on the other hand, are found in design

specification, implementation, and maintenance. However, since maintainability defects

Report defectID

Locate defect

Issue tracking system

Software metrics Extract features

Version control
system

Univ
ers

iti
Mala

ya

31

are generally less expensive to fix than requirement defects, JIT-SDP more focusing on

design defects.

Application of software metrics, in general, is a robust predictor to train a JIT-SDP

model from software defect datasets. JIT-SDP employs both public and private datasets.

Public datasets are usually open-source data extracted from primary and secondary

sources of code repositories. Primary source data typically are mined from VCS (e.g.

GIT) integration code repositories such as GitHub, Bitbucket, Gitlab, Jenkins, and

Codebase. These data are extracted from software projects such as Mozilla, AgroUML,

Eclipse.platform, EclipseJDT, Columba, PostgreSQL, Linux kernel, Bugzilla (Buz),

Lucene (Luc), Jackrabbit, Xorg, ArgoUML, GWT, Jaxen, JRuby, Xstream, SWT, QT,

OPENSTACK, Hadoop, Camel, Gerrit, Osmand, Bitcoin and Gimp. Practically, the

primary source data first needs to be pre-processed which involves the metrics data

extraction and data labeling, before being ready to be used as a set of training data for

the prediction models.

Data from a secondary source is directly used as a training dataset due to software

metrics that are already calculated or already available from its software artifact. Private

datasets are those that are created for industrial applications that are not made public.

Most companies/organizations are concerned about the privacy preservation aspect of

their software projects, therefore extracting these datasets is often difficult. Private

datasets are therefore mainly accessible via restricted or closed-access repositories for

internal research.

Interestingly, prior studies (Gray et al., 2011; Jiarpakdee & Hassan, 2011; Mockus &

Weiss, 2002) criticized the poor quality of existing defect dataset that is often used to

train defect prediction models which leads to biased prediction performance. Since the

classification algorithms used to train the prediction model are insignificantly impacted

Univ
ers

iti
Mala

ya

32

the performance of the prediction result (Ghotra et al., 2015), various data

preprocessing is beneficial to detect and mitigate biases in the defect datasets. The

biases that existed are attributed to the complexity of a classification problem,

especially in JIT-SDP. The complexity of a classification problem (Lorena et al., 2019)

is mainly based on three main factors. These are, 1) the ambiguity of the classes, 2) the

sparsity and dimensionality of the data, and 3) the complexity of the boundary

separating the classes.

For ambiguity of class boundaries, it occurs when the characteristics of data classes

in a dataset are improperly represented. As a result, overlapping and unbalanced data

instances are introduced (Chen et al., 2016). To enhance the JIT-SDP model's

classification accuracy, it is critical to consider how change information is represented

as model features within datasets. In the absence of improper data representation,

defective change examples are likely to be hidden by non-defective examples due to the

complex distribution of data. There is a curse of dimensionality associated with sparsity

and dimensionality data, which results in overfitting that is caused by having too many

features for the datasets (Shivaji et al., 2013). Instead of selecting the entire set of

features, which is indeed costly in terms of classification costs, it is imperative to select

only meaningful subsets of features to represent datasets. In the context of complexity

boundaries, the area surrounding class boundaries where defects and non-defect classes

often overlap is considered the complexity boundary. Nevertheless, whether this

information should be considered noise or as informative remains worth of

investigation. Noise instances are presumably reduced when class decision boundaries

are enhanced

In previous experiments on JIT-SDP, experiments only examined the risk of code

changes in commercial or open-source projects. Usually, the experiments evaluated

Univ
ers

iti
Mala

ya

33

code changes data from public repositories. The datasets are associated with six

software projects: Columba, Bugzilla, Postgres, JDT, Platform, and Mozilla. Table 2

shows a summary of the selected datasets. Columba is a Java-based email client with a

user graphical interface, wizards, and internalization support. Bugzilla is a web-based

bug tracking system and testing tool. PostgreSQL is a powerful, open-source object-

relational database system. Eclipse-JDT (JDT) is an IDE supporting the development of

any Java application which includes features like syntax highlighting, content

assistance, refactoring support, and debugging tools. Eclipse-Platform (Platform) is an

open-source integrated development environment for programming and supports

plugins that allow developers to extend its functionality. Datasets used in this

experiment are derived from the extractor of code changes by SZZ algorithm. The

features are based on change metrics by Kamei et al. (2013) that are associated with

code and process metrics. Table 3 provides the features detail according to change

metrics.

Table 2: Description of software project datasets

Project Language Description No of

changes

Period Defect %

Bugzilla

(BUG)

Java Web-based bug tracking

system

4620 08/1998–

12/2006

37

Columba

(COL)

PERL Email client written in Java 4455 11/2002–

07/2006

31

Eclipse JDT

(JDT)

C++ Java development tool 35,386 05/2001–

12/2007

14

Eclipse

platform

(PLA)

Java Integrated development

environment for

programming language

64,250 07/1996–

05/2010

15

Mozilla

(MOZ)

Java Web browser application 98,275 08/1998–

12/2006

5

PostgresSQL

(POS)

C++ Object-relational database

system

20,431 11/2002–

07/2006

25

Univ
ers

iti
Mala

ya

34

Table 3: Dimensions of change metrics

Dimension Name Definition Description

D
if

fu
si

o
n

NS Number of modified

subsystems

Change modifying many subsystems are more

likely to be defect-prone

NM Number of modified

directories

Many directories in a change are more likely to

be defect-prone

NF Number of modified files Change touching many files is more likely to be

defect-prone

Entropy Distribution of modified

code across each file

Changes with high entropy are more likely to be

defect-prone due to developers' need to recall

changes across files

S
iz

e

LA Line of code added More lines of code added are likely to introduce

defects

LD Line of code deleted More lines of code deleted are likely to introduce

defects

LT Line of code in a file

before the change

The larger the file, the more likely a change

introducing defects

P
u

rp
o

se
 FIX Whether or not the

change is a defect fix

Fixing a defect indicates that an area where errors

are more likely to occur

H
is

to
ry

NDEV Number of developers

involved in the changes

The larger number of developers is more likely to

introduce defects because files revised gave many

different designs thought and coding styles

AGE The average time interval

between the last and

current change

The lower AGE tends to introduce defect

NUC Number of unique

changes to modified files

The larger spread of modified files, the higher

complexity

E
x

p
er

ie
n

ce

EXP Developer experience More experience developers are less likely to

introduce defects

REXP Recent developer

experience

A developer modified the files recently is less

likely to introduce defects

SEXP Developer experience on

a subsystem

Developers are familiar with subsystems

modified are less likely introduce defects

Univ
ers

iti
Mala

ya

35

2.2.3 Machine Learning

JIT-SDP adopts two primary approaches to machine learning: 1) Data pre-

processing, and 2) Modelling of defect classifiers. It is considered optional to use

machine learning for data pre-processing in the JIT-SDP framework. It is a method for

preparing data to increase the reliability and consistency of raw software defect datasets.

Contrary to machine learning for software defect classifiers, it is an iterative process of

fitting the available data into machine learning algorithms to construct the model.

Figure 13 illustrates the workflow of the machine learning approaches in modeling

defect prediction.

Figure 13: Workflow of machine learning in software defect prediction

For JIT-SDP, data preprocessing is as important as machine learning. In fact, most of

the work required to create an effective machine learning model for software defect

prediction consists of preparing and managing the data used to train the model (Bowes

et al., 2018). Software defect datasets are known to be incomplete, class imbalanced,

and redundant (Kim et al., 2011; Meiliana et al., 2017; Pandey et al., 2021). This means

Univ
ers

iti
Mala

ya

36

that data extracted from the software under development produce inconsistent and

unsatisfactory training datasets for JIT-SDP modeling. Data preprocessing becomes

increasingly important in software defect prediction, many researchers start developing

machine learning techniques for preprocessing software defect datasets (Akmel et al.,

2018). Some of the most popular machine learning techniques for data preprocessing in

software defect prediction include feature extraction (Fan et al., 2021; Malhotra &

Khan, 2020; Rosen et al., 2015), data cleaning (Gray et al., 2011; Mockus, 2016), and

feature selection(Hosseini et al., 2018a; Huda et al., 2017; Laradji et al., 2014; Shivaji

et al., 2013).

The most popular methodology for modeling the JIT-SDP classifiers involves

machine learning. In the literature on JIT-SDP, four categories of machine learning are

found: supervised, unsupervised, semi-supervised, and ensemble classifiers. Supervised

learning refers to the utilization of all labeled training data when developing the

prediction model. A semi-supervised learning method uses a limited number of labeled

training data and a large number of unlabelled data in order to construct the JIT-SDP

models. In unsupervised learning, unlabelled data are used in modeling the prediction

model without the need for labeled training data. Ensemble learning involves combining

the predictions from two or more models. Detailed discussion is provided in Section

2.7.

Machine learning is indeed widely used for software defect prediction; however,

the preprocessing of data and the training of the classifier need for improvement to

handle inaccurate issues. In a review of various studies, we found that many have

focused primarily on data preprocessing as part of their experimental design. A limited

amount of attention is paid to the generalized perspective of the proposed

models. Although various advanced classification methods are proposed for the JIT-

Univ
ers

iti
Mala

ya

37

SDP, the true potential of classification methods is not yet fully explored. The reason is

that the preprocessing aspect of training data is still inadequate. For this reason, the

classifier of the prediction model produces results biased toward noisy data. To this end,

it is necessary to conduct a proper preprocessing of the raw data with the aid of

algorithms. In addition, it is necessary to use advanced machine learning algorithms as

the model classifier for achieving unbiased results.

2.3 Change Level Software Metrics

Software metrics from various factors are available as model features for JIT-SDP

to assist in predicting whether a code change will introduce future defects. Figure 14

illustrates how prior studies utilized code and process metrics. In terms of code metrics,

these metrics indicate the complexity of the source code, whereas process metrics define

the complexity of the development process. Code metrics are generally categorized as

measures of size, complexity, and object-oriented features. Both size and complexity

metrics are based on file-level measurements, whereas object-oriented measurements

are based on class-level measurements. Source code analysis tools are capable of

calculating these code metrics automatically to allow for the automatic calculation of

these code metrics. However, a common threat associated with analysis tools is that the

same metrics calculated by different tools often produce different values for the same

source code files. The use of code metrics alone as a prediction feature is not sufficient

to represent the actual characteristics of source code during a code change. As a result,

improvement in prediction performance is mostly driven by a combination of both code

and process metrics.

Several JIT-SDP works have combined code metrics with process metrics to

represent features of code changes, including dependency network metrics (Herzig et

al., 2016; Zimmermann & Nagappan, 2008), change burst metrics (He et al., 2016;

Univ
ers

iti
Mala

ya

38

Nagappan et al., 2010), change metrics (Kamei et al., 2013; Yang et al., 2016; Yang et

al., 2017;Chen et al, 2018, Qiao and Wang, 2019; Huang et al., 2019), complexity

entropy metrics (Singh & Chaturvedi, 2013), antipattern metrics (Taba et al., 2013),

periodic experience metrics (Ozcan and Tosun, 2018), and context metrics (Kondo et

al., 2019). Table 4 provides a brief description of each of these metrics.

• Dependency network metrics: Zimmerman and Nagappan (2008) proposed

information flow between code entities modeled by code dependency graphs. The

metrics allow the identification of source files that are more prone to introducing

defects. They showed that interactions between files resulting strong defect

prediction capabilities. A set of network metrics comprises of three groups of

dependency graphs. The first are the ego metrics, which calculate the properties of

complexity neighborhoods within the local network within the dependency graph.

The second group of metrics in the dependency graph relates to structural metrics

which measure the size of the sub-networks that are connected to each of the data

nodes in the graph. Lastly, centrality metrics describe how many nodes are

dependent on each other. A node with a large number of dependencies is more

prone to defects. On the basis of semantic interaction features within a code change,

the metrics proposed by them enable the prediction of defects.

• Change burst metrics: Nagappan et al. (2010) introduce the concept of change

bursts and extract them from a series of changes. A change burst is a sequence of

consecutive changes. It is defined by two parameters, namely the gap size and the

burst size. Burst size is the minimum number of changes in a burst. Increasing the

gap size yields longer bursts and increasing burst size eliminates shorter bursts. The

metrics include four main group metrics: change metrics (measured by the size and

extent of the changes), temporal metrics (measured by when change bursts

occurred), developer metrics (measured by the properties of developers involved

Univ
ers

iti
Mala

ya

39

during the changes), and code churn metrics (measured by the number of lines

added, deleted, or modified during the changes). The proposed metrics allowed the

prediction of defects to be performed despite the lack of information regarding the

software requirements (i.e., relying only on the change history). A change with a

higher amount of change burst indicates the source code is likely to produce more

defects.

• Change metrics: Kamei et al. (2013) proposed software metrics for change

measures to predict whether a change introduces a future defect or not by

considering fourteen factors grouped into five dimensions (i.e. diffusion, size,

purpose, history and experience). Diffusion refers to the number of files a change

involves where a highly distributed change is more complex and harder to

understand. Size indicates the size of LOC within code churn operation. Purpose

gives the number of defect-fixing changes. History provides the number of previous

changes and defect fixes. Experience describes experience information about

developers. These five dimensions are the metrics combination of code metrics (i.e.

LOC and code complexity) and process metrics (i.e. code churn, code ownership,

and context of change). Recently, the measurement of these change metrics able to

be generated by using a web application called CommitGuru which (Rosen et al.,

2015) provide publicly. Change metrics enable the prediction on the risk of code

changes by predict defect proneness at the time of submitting commits.

• Periodic developer metrics: Ozcan and Tosun (2018) proposed the measurements

of periodic developer experience considering the contextual knowledge of

developers on files and directories during commit time. Three aggregation methods

(minimum, maximum and average) are used to measure characteristics of files of

the related commit for developer experience. The proposed metrics aiming to

capture experience of developers (previous knowledge) on files, commits and

Univ
ers

iti
Mala

ya

40

activities. Different developers have different/similar knowledge at the end of code

development. Thus, measuring their experience periodically give more generalized

characteristics developers-based defect prediction model. The periodic developer

experience is found to be more effective capturing the defect proneness compared

to activity-based metrics (code churn activity).

• Context metrics: Kondo et al. (2019) proposed context metrics which involves

counting keywords and word in the context of a change. The intuition of counting

words due to a context with more words is likely to be more complex than a context

that has less words. As for ‘keyword’, it refers to the keyword defined in the

programming language of the source code. The number of keywords in the context

gives indication of the nested degree of a change. A change with a larger number of

keywords is likely to more complex than a change that has fewer keywords around

it. Higher complexity of the change indicates the more likelihood that the change is

a defective change.

• Aggregated change metrics: Šikić et al. (2021) describe the chronological order of

the changes by aggregating the data of all changes made to the software between

two versions. The proposed metrics aggregated previous existing change metrics by

representing a chronology of commits. The metrics comprises of fourteen different

aggregated change metrics which are extended from change metrics by Kamei et al.

(2013)). Aggregated change metrics consider sequential and chronological order of

all changes to capture more generalized defective change characteristics during the

development process.

Vast majority of researchers in JIT-SDP works tended to focus on utilizing software

metrics by Kamei et al. (2013). Over the past five years, only a few applications of

other software metrics as the features of the prediction model: Dependency metrics,

Change burst metrics, Periodic developer metrics, Context metrics, and Aggregated

Univ
ers

iti
Mala

ya

41

metrics. One of the increasing concerns on the current software metrics is that existing

metrics for JIT-SDP have reached a performance limit. Moreover, the emergence of

various object-oriented approaches during software development required more aspects

of consideration for change-based metrics. Thus, the development of new metrics is

required

The effectiveness of available software metrics varies across different software

project datasets. This is largely because software metrics selection is influenced by

software projects in the existing study (Xia et al., 2014). Therefore, it is imperative to

choose software metrics since they aid in improving prediction performance. Summary

of the related work in JIT-SDP involving usage change level software metrics is

presented in Table 5

Figure 14: Existing software metrics

Software metrics

Code metrics

Size

Complexity

Object-oriented

Process metrics

Code churn

Code ownership

Context of change

Code deltas

Interaction network
Univ

ers
iti

Mala
ya

42

Table 4: Software metrics for JIT-SDP

Software Metrics
Change

Attribute
Description Metric Name Limitations

Dependency network

metrics

(Herzig et al., 2016;

Zimmermann & Nagappan,

2008)

Dependency Information flow between code

entities in code dependency graph

Size, Ties, Pairs, Density,

WeakComp, nWeakComp,

TwoStepReach,

ReachEfficency, Brokerage,

nBrokerage, EgoBetween,

nEgoBetween, EffSize,

Efficiency, Constraint,

Hierarchy

Developer factors are

neglected in the network

metrics, but humans are the

ones who introduce defects

Change burst metrics

(He et al., 2016; Nagappan

et al., 2010)

Sequence Sequence of changes factor by

extracting series of consecutive

changes information.

NOC, NOCC,NOCB, TBS,

MaxCB, NOCE , NOCL,

TFB, TLB, TMB, NDEV,

CT, TCB, MCB

The gap between sequence of

changes needed to be fine

adjusted to obtain a good

prediction result.

Distribution of defects across

sequence of changes is ignored

Complexity Entropy metrics

(Singh & Chaturvedi, 2013)
Complexity

Entropy of the complexity of code

changes over a period of time
HCPF, HCM

The value of entropy

parameters for decay function

needs to be adjusted properly

to obtain best results
Univ

ers
iti

Mala
ya

43

Antipattern metrics

(Taba et al., 2013)
Antipattern Antipattern properties in a file NAP, ANA, ACM, ARL

Performance of metrics is

highly dependent on the

number of antipatterns

computed with DÉCOR tool.

Change metrics

(Chen et al., 2018; Huang et

al., 2019; Kamei et al.,

2013; Yang et al., 2015,

2017)

Diffusion

Distribution of a change as a highly

distributed change have more

complex and harder to understand

NS, ND, NF, Entropy

Correlation analyses are

required because the problem

of multicollinearity

(redundant) often is found on

these metrics

Size Size of a change LA, LD,LT

Purpose Number of changes to fix defect FIX

History History of previous changes and

defect fixes

NDEV, AGE, NUC

Experience Experience information about

developers

EXP, REXP, SEXP

Periodic experience metrics

(Ozcan and Tosun, 2018)

Periodic Developer’s prior knowledge on files,

commits and activities periodically

calculated

ExpLocAvg,ExpDirectoryLo

cAvg, ExpComAvg,

ExpDirectoryComAvg,

EditFreqAvg,

ExpBuggyComAvg

ExpImprovComAvg,

ExpNewFeatureAvg,

ETotalLocAvg,

NumOfDeveloperAvg

Insignificant in case of

software project that only have

few source code revisions

(limited incremental developer

information)

Univ
ers

iti
Mala

ya

44

Context metrics

(Kondo et al., 2019)

Context Information in the lines that surround

the changed lines of a commit (i.e.

code churn based on keywords)

NCW, NCKW The metrics assumption is that

the number of keywords

(context) in changed regions

indicate the nested change

which contribute to defect-

proneness. As time goes on,

source code eventually achieve

maturity and nested changes

are unlikely to occur frequently

Table 5: Change level software metrics

Related Works Software metrics Classifier algorithm Project datasets Size of data Types of prediction

(Singh &

Chaturvedi, 2013)

Complexity entropy

metrics

LR and SVR Public: Moz Total:17992

*All defective changes

Within project

(Taba et al., 2013) Antipattern metrics LR Public: AgroUML and

Eclipse

Total:168881

(Defect:56078)

Cross and within

project

(Kamei et al., 2013) Change metrics LR Public: Buz, Col, JDT,

Pla, Moz, and Pos

Private: 5 java projects

Total:260519

(Defect:27015)

*Only available for

public dataset

Within project Univ
ers

iti
Mala

ya

45

(Yang et al., 2015) Change metrics DBN Public: Buz, Col, JDT,

Pla, Moz, and Pos

Total:227417

(Defect:27015)

Within project

(Herzig et al., 2016) Dependency network

metrics

LR,knn, RP, and SVM Public: ArgoUML

GWT, Jaxen, JRuby

and Xstream

Total:36050

(Defect:7202)

Within project

(He et al., 2016) Change burst metrics RF Public: Eclipse, JDT,

and SWT

Total:18251

(Defect:11269)

Within project

(Yang et al., 2017) Change metrics RF Public: Buz, Col, JDT,

Pla, Moz, and Pos

Total:227417

(Defect:27015)

Cross and within

project

(Chen et al., 2018) Change metrics LR Public: Buz, Col, JDT,

Pla, Moz, and Pos

Total:227417

(Defect:27015)

Cross and within

project

(Ozcan and Tosun,

2018)

Periodic developer metrics LR, NB, kNN, J48, and

RF

Public: Luc and

Jackrabbit

Total:5422

(Defect:2234)

Within project

(Huang et al., 2019) Change metrics LR, RF, SMO, kNN,

J48, and NB

Public: Buz, Col, JDT,

Pla, Moz, and Pos

Total:227417

(Defect:27015)

Cross and within

project

(Kondo et al., 2019) Context metrics LR and RF Public: Hadoop, Camel,

Gerrit, Osmand, Bitcoin

and Gimp

Total:137062

(Defect:27317)

Within project

 Univ
ers

iti
Mala

ya

46

2.4 Inaccurate Factors Affecting Software Metrics

Same metrics may perform well in one organization while failing miserably in

another organization (Chen et al., 2021). Performance issues with software metrics are

also compounded by data preprocessing issues. Figure 15 shows the factors contributing

to the inaccuracy of JIT-SDP performance related to software metrics as model features.

Figure 15: Issues of change level metrics

2.4.1 Multicollinearity Features

The relationship between metrics of code changes and the defect prediction output is

very complex (Qiao & Wang, 2019). In addition, software metrics often show

multicollinearity between features, making it imperative to eliminate highly correlated

features. As a result, multicollinearity reduces the number of features available for

prediction models, resulting in a lack of coverage of code change properties. In

consequence, the accuracy of the prediction models suffers. Classification of

multicollinearity among features in prior studies can be attributed as Figure 16

Multicollinearity

•High dimensionality
features

•Less generalized features

Semantic infomation

•Lack of abstract information

•Heterogenous metrics

Noisy data

•Outliers

•Mislabeled/Duplicated data

•Imbalance class distribution

Univ
ers

iti
Mala

ya

47

Figure 16: Taxonomy of handling multicollinearity features

1) Dimensionality Reduction

High dimensionality features contributed to high correlation among software metrics

which often occur in SDP. It is a condition that negatively impacts the generalizability

of the prediction model (Mamun et al., 2017; Jiarpakdee & Hassan, 2011). Curse of

high dimensionality is mainly attributed to irrelevant or correlated features that existed

within JIT-SDP datasets. In these datasets, two forms of correlation among metrics are

commonly existed: collinearity and multicollinearity. For collinearity, one metric is

linearly predicted by another metric. In contrast to multicollinearity, it is a condition in

which one metric is linearly predicted by a combination of two or more metrics.

Dimensionality reduction identifies and removes correlated/irrelevant features to ensure

that only discriminant features are selected as the training datasets for the classification

models. The reduction of features in the context of JIT-SDP is based on two criteria:

high correlation filter and rank of information gain.

• High correlation filter is a process of reducing the relevance of features by their

correlation with dependent variables. Filter-based approaches provide faster

features selection due to not requiring training of the models. It reduces the

complexity of a model which makes it easier to interpret. Thus, the removal of

highly correlated features increases the speed of learning algorithms, decreases

bias measures, and higher interpretability of model or simpler model.

Multicollinearity
features

Dimensionality
reduction

High correlation
filter

Rank of information
gain

Metrics
representation

Sequence of file
versions

Reconstruction errors

Univ
ers

iti
Mala

ya

48

• Rank of information gain is a process of sorting features regarding the amount of

information gained through the selected feature whether the change data is

defective or clean. The lower-ranked features are selected as irrelevant features

that needed to be removed.

For high correlation features, the reduction is based on the analysis of correlation

among individual software metrics. Two variants of correlation analyses are found in

JIT-SDP works, which are described as follows:

• Spearman correlation analyses measure the correlation between two metrics. The

pair of metrics with correlation coefficients above the specified threshold level is

considered highly correlated features. The aim is to find the best subset of metrics

that have the highest correlation with the classification outcome while having a

low correlation between themselves. Spearman correlation test is known to be

resilient toward abnormal distributions as commonly present in defect datasets

• Variance inflation factor (VIF) helps to find the multicollinearity among metrics

by constructing a regression model to predict metrics based on a combination of

other metrics. The measurement of VIF scores is calculated through the model

fitting error between a regression model constructed by other metrics with metrics

under examination. A metric is considered multicollinearity with other metrics in

case of VIF score reaches a specified threshold value.

For high rank of information gain, prior works focus on using information gain

algorithm (Quinlan, 1986), which enables the measurement of gain provided by each

metric toward defects prediction. The algorithm quantifies the entropy value of the

prediction model in case of excluding the individual metrics as the subset of selected

features. Each metric is sorted according to its contribution to the decision of the model.

The highest expected reduction of information gained is ranked at the top of the list.

Univ
ers

iti
Mala

ya

49

The output of this algorithm provides a subset of features that are capable of positively

influencing the relationship between selections of certain metrics with defect-proneness

changes.

The correlation between software metrics makes it difficult to identify precisely

which features are responsible for the predictive power of the SDP model. In addition,

these highly correlated features increase model training time, reduction in model

accuracy and performance due to overfitting toward correlated features (Hawkins,

2004). Therefore, the first step in SDP is to identify and remove correlated/irrelevant

software metrics which ensuring that only discriminant features are selected as the

training datasets for the classification models. According to Lorena et al. (2019) and

Shivaji et al. (2013), the accuracy of prediction remains unaffected using a small

number of features, and even the performance is improved in some cases.

For JIT-SDP, filter-based selection techniques are widely used to reduce the

dimensionality of features in training datasets. Most studies utilized a high correlation

filter (i.e. spearman test) to remove redundant/irrelevant metrics for their training data

as illustrated in Table 6. In contrast to Pascarella et al. (2019) works, they utilized

information gain algorithm to eliminate the less informative metrics and only selected

the higher informative gain metrics for their prediction model. Nevertheless, the

selection of the best subset metrics according to a filter criterion produce differently for

the other filter criteria. (Jiarpakdee et al., 2018) argued that low consistency among

filters-based techniques is the result of different evaluation criteria producing different

subsets of metrics. Moreover, better performance not always achievable via metrics

reduction. Occasionally, the previously removed metrics become important in future

revisions causing lower prediction quality.

Univ
ers

iti
Mala

ya

50

Table 6: Dimensionality reduction in JIT-SDP works

Related Works Software Metrics Dimensionality Reduction

Yang et al. (2016)

Change metrics

(Kamei et al., 2013)

High correlation filter

Yang et al. (2017)

Cho et al. (2018)

Huang et al. (2018)

Chen et al. (2018)

Yang et al. (2019)

Cabral et al. (2019)

Li et al. (2020)

Zheng et al. (2021)

Pascarella et al. (2019) Rank of information gain

Ozcan & Tosun (2018)
Periodic developer metrics

(Ozcan & Tosun, 2018)
High correlation filter

Sikic et al. (2021)
Aggregated metrics

(Sikic et al., 2021)
High correlation filter

2) Metrics Representation

For metrics representation, the features are provided with mapping data (set of

features) to learn the representation of itself. Representative learners are mainly based

on deep learning approaches of finding a representation of the basic features into

abstract deep semantic features by the integration functions. Figure 17 describes the

detailed workflow of the metrics presentation process. Different integration functions

are available in the literature. In particular, functions such as the sequence of file

versions (Liu et al., 2018), and minimizing reconstruction errors (Zhu et al., 2020) are

reported in related studies of JIT-SDP. In summary, each of these criteria is as follows:

Univ
ers

iti
Mala

ya

51

• Sequence of file versions provides information regarding the historical changes

of source files across version sequences. It describes how source files/code

change over project evolution. The information is useful for representing

traditional software metrics in continuous software versions as defect predictor

features.

• Reconstruction errors measure the difference cost between input software

metrics and the consequence of reconstruction of compressed features by

network algorithm. The minimized reconstruction errors are regarded as a

compressed representation of software metrics. The pre-processed metrics by

this criterion have robust features representation and more generalized

capability.

Figure 17: Metrics representation process

Instead of removing the correlated metrics, the prior works (Liu et al., 2018; Zhu et

al., 2020) employ metrics representative approaches to provide a better selection of

metrics for building a defect classifier. They enhanced the robustness of software

metrics, thereby the represented metrics provide greater generalization ability and are

more robust in constructing the prediction model. The usage of metrics representation

approaches enables the construction of basic code change features into deep abstract

Univ
ers

iti
Mala

ya

52

semantic features. The main drawback of these techniques, however, producing a higher

risk of overfitting than filter techniques and are computationally expensive (Li et al.,

2018; Wu et al., 2016). These techniques apply only to datasets of reasonable features

dimensionality. In case of data dimensionality is very high, the number of weights in the

network overly larger to find a near-optimal setting of the network

Autoencoders are used for representation learning by utilizing neural networks. It

comprises of multilayer (input layer, hidden layers, and output layers) feed-forward

neural network. The design is based on neural network architecture such that a

compressed knowledge representation of the original input is produced by integration

functions. It extracts deep representations from the traditional software metrics.

Autoencoders usually have a high number of features connections. Therefore, it

converges slowly and is likely to get stuck in local minima. Autoencoder-generated

features are often used to replace the original features in deep learning to produce better

results. To the best of our knowledge, the application of autoencoders is very limited in

the field of SDP.

Historical Version Sequence of Metrics (HVSM) helps to highlight the trend of

code changes throughout version sequence information of files (Liu et al., 2018). It

provides a representation of changing information by joining code and process metrics

in a specific number of continuous historical versions. In contrast, existing process

metrics only consider the change information between two adjacent versions. Therefore,

the discovery of sequence historical information of whole revisions is unavailable for

extraction. HVSM requires an efficient neural network classifier in handling the

sequential data, which is capable of training in data with different lengths of input. Even

though with consideration of only code metrics, the metrics representation of this

approach is claimed to outperform baseline classifiers trained with both code and

process metrics.

Univ
ers

iti
Mala

ya

53

2.4.2 Semantic Information

Existing software metrics are unable to distinguish programs with different

semantics because of the inability to capture abstract information within source code

during the code change process. Figure 18 shows the types of semantic features

extracted from the source code. The details of each feature are presented in Table 7.

Figure 18:Types of semantic features

To bridge the gap between semantic information and SDP, it is necessary to use

source code semantic representations. The semantics features are collected by applying

a deep learning algorithm to a representation of source code in the form of an Abstract

Syntax Tree (AST) or Control Flow Graph (CFG). The construction of semantic

features is based on three main steps: 1) Parsing source code/commit message for

changes into token vectors in form of AST or CFG, 2) Mapping and normalizing each

type of vector in numerical vectors and 3) training the deep learning algorithm with the

input vectors to generate features.

Table 8 provides a brief description of previous JIT-SDP studies utilizing semantic

features. Semantic-based features allow for different contextual information of the same

source code characteristics to be distinguished. The extraction of these features heavily

relies on the choice of deep learning architecture used to learn the semantic

representation of the source code. To analyze ASTs of source code during code

Types of Semantic
Information

Code snippet

Bag of words

Code churn

Code metadata

Keyword in
commit message

Code authorship

Univ
ers

iti
Mala

ya

54

changes, different deep learning approaches adopted different architectures and learning

processes (Wang et al., 2018). Thus, it prevents the extracted semantic features from

having the same properties value. The biggest advantage of deep learning based

semantic features is its resistance to nonlinear combination relationships between

features compared to conventional software metrics.

Prior studies of JIT-SDP have often ignored the semantic information within code

changes. The explanation for this condition is that semantic information is usually

buried deep within the source code. Simple deep learning approaches such as DBN,

CNN, and RF are commonly used to learn the context of code changes. Nevertheless,

the advancement of various modern pre-processing data techniques such as noise

reduction, data tagging algorithm, and untangling change algorithm in these recent years

has made it possible to produce more reliable data input for deep learning process.

These techniques help to provide more opportunities for more complex machine

learning approaches to be applied in capturing more information in the context of code

changes. More advanced machine learning requires higher data amount and quality

compared to other conventional approaches. Besides, JIT-SDP studies primarily

concentrate on predicting functional defects. However, in code review practice,

developers find more reliability defects rather than functional defects (Mantyla &

Lassenius, 2009). The context of code changes in a different type of defect remains

unexplored. Further studies on the context of various classes of defects during code

changes are significant in the modeling of JIT-SDP.

Univ
ers

iti
Mala

ya

55

Table 7: Context of source code information during code changes

Semantic

features

Description Intuition Limitation

Changed code snippets

Vector of words Information occurrence

of each individual word

in ASTs

Defect cause by calling

wrong words (class,

function, and variable) and

LOC with more words is

likely to be more complex

Number of words in LOC

became less informative

due to refactoring code and

code optimization process

often occurred as software

development reached

maturity across time

Code churn Information regarding

the context of code churn

in LOC

Syntax information is often

incomplete in code snippets

and changes also have

different locations for

added and deleted lines.

Code churn snippets are

project specific features

which are rarely or never

appear in changes from

different project.

Therefore, it is unsuited

for cross project defect

prediction.

Commit metadata

Keywords in

commit message

Number of keywords

occurrence in a commit

message

Occasionally, developers

write defect identifier in a

commit message and more

keywords indicate more

complex changes

Number of keywords are

limited in case of having a

short message and defect

identifiers not always

written on commit logs

Authorship Developer information

regarding history commit

activities

Developer’s unique

defective change patterns

possibly to be captured

Insignificant for software

development with limited

developer collaboration

Table 8: Previous studies of JIT-SDP using semantic-based features

Context/Research
Jiang et

al. (2013)

Xia et al.

(2016)

Wang et

al. (2018)

Hoang et al.

(2019)

Pornprasit &

Tantithamthavorn

(2021)

Code

snippets

Bag of

words
✔

Code

churn
✔ ✔

✔ ✔

Univ
ers

iti
Mala

ya

56

Commit

metadata

Commit

message
✔

✔ ✔ ✔

Authorship ✔ ✔ ✔

2.4.3 Noisy Data

To determine whether a file or change is defective or clean, many researchers

examine the defect database and version archives for open-source systems (Wahono,

2015). However, recent studies (Bird et al., 2009; Hosseini et al., 2018b) have

demonstrated that data gathered from mining software repositories contain a high level

of noise. The presence of noise in the data adversely affects the accuracy of defect

prediction. Defect dataset noises indirectly influence prediction performance in a

significant manner. In fact that the prediction performance decreases significantly when

the dataset contains more than 35% of both false positives and false negatives (Kim et

al., 2011), especially for machine learning algorithms that lack robust noise resistance.

In order to mitigate noise in input data, researchers have employed noise handling

approaches for several sources of noise. We have categorized noise handling methods

into three categories, as shown in Figure 19, as follows: 1) removing outliers, 2)

reducing mislabelled data, and 3) resampling imbalanced class data.

Figure 19: Categories of noise handling approach

Noise
handling

Outliers removal

Percentage
of likelihood

Centriod of
data

Misslabeled data
reduction

Data
partition

Automated
labeling

awareness

Resampling of
imbalance class

datasets

Dynamic
Imbalance

rate
Randomness Interpolation

Univ
ers

iti
Mala

ya

57

1) Removal of Outliers

In a defect dataset, outliers are the instances that significantly deviated from the

general observations of the dataset. The outliers are considered as noisy instances that

seriously downgraded the performance of a defect classifier algorithm. Nevertheless, the

removal of instances by considering them as outliers negatively leads to biased learning

due to significant loss of defect information carried by those instances (Tang and

Khoshgoftaar, 2004). Therefore, careful detection and removal of outliers are

particularly important in the SDP since it is an uncertainty line between the outlier

instances and normal instances. The detection of outliers is mainly done based on two

criteria in the existing studies, which are the percentage of likelihood of instances to be

outliers and data dispersion from the centroid of data distribution. Details of these two

criteria are as follows:

• Percentage of likelihood measures the possibility of an instance becoming an

outlier by evaluating the likelihood measurement such as Euclidean distance

between the test instances with neighboring opposite class instances. The test

instances are tagged as outliers when the percentage values reach a specific

threshold.

• Centroid of data guides the selection of outliers according to the distance between

the test instance and the centroid of its closest large cluster generated by a

clustering algorithm. The top-ranked instances in each class are tagged as

potential outliers.

To remove outliers in defect datasets, (Tang & Khoshgoftaar, 2004) provided

Clustering-based Noise Detection (CBND) that utilized the centroid of data distribution

to find the outliers. The outliers are identified according to the distance between test

instances and the centroid of the nearest cluster which is generated from K-means

Univ
ers

iti
Mala

ya

58

algorithm. The algorithm consists of two hyperparameters which are the noise factor or

threshold value and the number of clusters within data classes. This algorithm selected

the top-ranked samples for each cluster as the potential outlier instances. The selected

samples are according to large difference in distance from the centroid.

In addition, Kim et al. (2011) proposed Closest List Noise Identification (CLNI). It is

capable to detect outlier instances and it is possible to eliminate them for cleaner defect

datasets. CNLI algorithm measures the likelihood of instances in the datasets to be the

opposite label. The percentage of likelihood is based on the distance of all instances that

are close to the examined instance. The distance ratio between the neighboring instances

and the examined instance is calculated. The examined instance is considered as a noise

(outliers) instance in case of the percentage of likelihood exceed a specified threshold

value. Thus, CLNI is capable to remove the outliers and excluding them from

consideration for training data.

Chen et al. (2016) proposed neighbor cleaning learning (NCL) to eliminate outliers

from the majority class of defect datasets by identifying class overlap instances. The

main idea is to identify the potential overlapped instances from majority class by locate

the nearest neighbor of opposite labeled instances. The overlapped instances are easily

identified especially in the case of the larger number of neighbor instances and the

opposite instances are loosely clustered. It also utilized Euclidean distance to evaluate

the difference between the test instances with neighboring instances. The removal of

overlapped instances that consider the outlier instances has a greater impact on

imbalanced datasets.

In the context of JIT-SDP, the effect of outliers is increasing concern due to

potentially generating more false alarm results, especially in the case of adopting

oversampling approaches. Surprisingly, it is found that only recent works by Wang et

Univ
ers

iti
Mala

ya

59

al. (2018) utilized an outlier removal technique by employing CLNI. One of the

possible explanations for this lack of application is the outlier tolerant capabilities of

advanced classifier algorithms such as ensemble learning and deep learning approaches.

Nevertheless, outlier detection and removal techniques still are relevant to reduce the

potential impact of false alarm instances in training data.

2) Mislabelled data reduction

Identifying defect-inducing changes from historical changes in a software project is a

key task for JIT-SDP. It is inefficient to manually identify defect-inducing changes in

the projects with a large number of historical changes. Thus, automated labeling

approaches especially SZZ algorithms are preferable to identify defect-inducing

changes. Prior studies observed that conventional automated labeling is affected by a

large amount of noise (e.g., changes that only modify code comments or blank lines),

which results in mislabeled changes (Fan et al., 2019; Herzig et al., 2013). The

mislabeled changes include false positives and false negatives. In this context, false

positives refer to changes that do not introduce any defects but are labeled as defective

changes, and false negatives refer to the changes that are labeled as clean instead of

defective changes. The mislabeled changes contributed to the wasted of the developer’s

effort to inspect false-positive changes. Mislabeling data severely impacts the defects

count and overall performance of the prediction models (Li et al., 2018). It is

challenging to obtain defect datasets in JIT-SDP with the absence of mislabeled changes

that truly clean datasets without noise. Many prior studies (Herzig et al., 2016;

Pascarella et al., 2019; Trautsch et al., 2020) utilized different mislabeled data reduction

by considering two contexts: which are data partition and awareness in automated

labeling. Table 9 provides some brief information on the context of mislabeled

treatment.

Univ
ers

iti
Mala

ya

60

With respect to JIT-SDP, data partitioning during data pre-processing is associated

with tangled code changes which frequently occur during the submission of code

changes to revision control systems. The tangled changes contribute significantly to the

difficulty of identifying lines of code based on the defect identifier in the issue report. In

addition, tangled changes are found to increase the number of files associated with

defects. Since the number of files is affected by the number of defects, ignoring tangled

changes in the defect datasets generates an amount of noise that substantially impacts

the estimated defects. Accordingly, Herzig et al. (2016) suggested dividing code change

sets into smaller pieces to untangle the code changes. Each partition contains code

changes with closely related instances. Data dependencies between code changes are

considered when determining whether they are related or not. With the use of

untangling algorithms, it is possible to simplify the process of untangling changes

automatically, which reduces the significance of noise generated by tangled changes.

Prior JIT-SDP studies utilized SZZ algorithm (Śliwerski et al., 2005) to

automatically generate the label for defect datasets. The standard version of the SZZ

algorithm comprises the following steps: 1) Identify defect-fixing changes, 2) Identify

buggy lines, 3) Trace potential defect-inducing changes, and 4) Filter incorrect defect-

introducing changes. Due to the foundational role of the SZZ algorithm, researchers

have raised concerns about the quality of SZZ-generated data (Fan et al., 2019). SZZ

algorithm is known to be affected by a large amount of noises, which results in false

labeled data. Noises in the automated data labeling process are generated due to

modifications such as in code format, refactoring, comment lines, and meta-changes.

The variants of the SZZ algorithm in handling these noises are explained as given in

Table 10.

Univ
ers

iti
Mala

ya

61

Over the past recent years, there is little attention to the reduction of mislabeled

data approaches. Although most of the studies have utilized automated labeling

techniques by SZZ algorithm, a few studies (Herzig et al., 2016; Pascarella et al., 2019;

Zhu et al., 2020) utilized mislabeled treatment approaches in cleaning false labeled

instances in the generated datasets. In fact, the impact of mislabeling insignificantly

affected the overall precision of the constructed defect prediction model

(Tantithamthavorn et al., 2019). Nonetheless, ignoring these mislabeled data lead to

additional waste of inspection effort, and the interpretation of the model is also

negatively affected (Fan et al., 2019).

Table 9: Factors of mislabelled data treatment

Factors Context Consideration

Data partition

Developers often submit a single commit
with multiple context/task changes at once.
Consequently, overlapped files or code are
found for each of these tangling changes.
Thus, making the confusion about the actual
label of these changes

Converting tangled changes
into smaller partitions of
data based on the context of
changes (e.g. data
dependency, operations and
commit keywords) reduces
the complexity of changes.

Automated
labeling

Non-
informative
line

Format/indentation modifications and
comment lines can cause automatic labeling
to misidentify these lines as part of the
defective lines.

Format/indentation
modifications must be
ignored as the behaviors of
the code are unaffected by
these lines. Thus, reducing
the false positives instances

Meta-
changes

Meta-changes are branch change (e.g.
copying code in a branch to a new branch),
properties changes (e.g. file properties
modification such as permission), and
branch merge (e.g. from one branch to
another). The source code in this
modification is unchanged. Thereby, meta-
changes are mistakenly regarded as
defective lines in automated labeling

Ignoring meta-changes
reduces the possibility of
false positives.

Refactoring in case of defective changes are identified
incorrectly as a part of defects due to the
impact of refactoring modification (e.g.
changes in function/file name). Refactoring
modification is unlikely to involve defects
fixing changes.

Refactoring lines should be
ignored to avoid
mislabelling defect-
inducing lines

Univ
ers

iti
Mala

ya

62

Table 10: Variant of SZZ algorithm

Variants of

SZZ

Biases

factors

Identification of buggy

lines

Identification of defective

changes

Standard

SZZ

(Śliwerski et

al., 2005)

N/A Lines of code related to

defect-fixing changes are

considered buggy lines

The latest code changes that

involve modifications before

defect-fixing changes are

considered defective

changes

AG-SZZ

(Kim et al.,

2006)

Non-

informative

line

Non-informative lines

related to defect-fixing

changes are excluded from

the identification of buggy

lines

An annotation graph is used

to record modification series

of lines of code. A depth-

first search algorithm is used

to identify the defective

changes from the annotation

graph.

MA-SZZ

(Da Costa et

al., 2017)

Meta-

changes

Non-informative lines and

those lines involving

refactoring modification

related to defect-fixing

changes are excluded from

the identification of buggy

lines

Improve the AG-SZZ

version by considering the

meta-changes associated

with buggy lines

RA-SZZ

(Neto et al.,

2018)

Refactoring

modification

Non-informative lines and

those lines involving

refactoring modification

related to defect-fixing

changes are excluded from

the identification of buggy

lines

Improve the MA-SZZ

version by considering the

refactoring modification

associated with buggy lines

3) Imbalance learning from class distribution

In general, JIT-SDP datasets consist of one big problem which is a large amount of

training data needed to train the model. Unfortunately, the required data is unavailable

Univ
ers

iti
Mala

ya

63

in the initial phase of software development. For this reason, the available datasets are

known to have a highly skewed distribution (Chen et al., 2016). In this situation, the

clean class is dominant in the data set as compared to data of defect class data. The

imbalance in the class distribution of data leads to biases in the learning of the

prediction model toward the data of the clean class. Consequently, the prediction model

yield misclassification results.

The dataset usually is prepared from the number of clean and defective classes of a

software project. In prior studies, researchers used a lot of balanced and imbalanced

datasets to predict the defect. The performance of the defect prediction model by using

balanced and imbalanced datasets makes a big impact on software testing. The class

imbalance problem is well-recognized as one of the major causes of the poor

performance of software defect prediction models (Song et al., 2018). In summary,

Figure 20 shows the imbalance learning can be classified into resampling techniques,

classification learning, and ensemble learning.

Figure 20: Classification of imbalance learning in SDP

Im
b

al
an

ce

le
ar

n
in

g

Data level Resampling

Undersampling

Oversampling

Algorithm level

Classification learning

Threshold adjustment

Cost-sensitive learning

Deep learning

Ensemble learning

Boosting

Bagging

Vote

Random Forest

Univ
ers

iti
Mala

ya

64

Although several class-imbalance learning methods are presented in software defect

prediction, there still exists room for improvement. Specifically, the resampling

technique techniques usually need to remove or append lots of samples to achieve the

class-balanced state, which leads to addition of noise due to insignificant synthetic

instances. For cost-sensitive learning methods, how to set the cost value is a problem

not yet being effectively solved. In ensemble learning techniques, how to effectively

guarantee and utilize the diversity of individual classifiers is not addressed carefully.

Majority of the imbalance learning adopted by previous JIT-SDP frameworks are

resampling methods. (Chen et al., 2018; Huang et al., 2019; Kamei et al., 2013; Kondo

et al., 2019; Qiao & Wang, 2019; Wang et al., 2018; Yang et al., 2015, 2017; Yang et

al., 2016). However, their works limit to the weakness as shown in Table 11.

Alternatively, Cabral et al. (2019) utilized ensemble-based imbalance learning focusing

on data drift problems which are also known as class imbalance evolution. Data drift is

a change in the input data generation process, affecting the underlying probabilities of

the data. These previous studies showed the effectiveness of the proposed oversampling

technique for imbalanced data. Existing imbalance learning, however, do not consider

overlapping data within class distributions. This results in ineffective performance as

data overlapping prevents the identification of suitable regions for selecting hard-to-

learn samples.

Table 11: Imbalance learning strategies in SDP

RELATED

WORKS
STRATEGY FOCUS PROBLEM STRENGTH WEAKNESS

(Cabral et al.,

2019)

Ensemble-based

learning – bagging

oversampling

technique

Data drifting -

data imbalance

evolution due to

the evolution or

Consider class

imbalance

evolution

Suitable for JIT-

Base machine

learner choices

highly influence

the sampling

Univ
ers

iti
Mala

ya

65

maturing process

in software project

SDP results

(Huda et al.,

2018)

Ensemble-based

learning – three

bases

oversampling

technique

incorporate with

random forest

algorithm

Bias of

conventional

sampling

approaches

Reduce false-

negative rate in

imbalance data

and improve

cost-sensitive

classification

performance

Base machine

learner choices

highly influence

the results

(Bennin et al.,

2018)

Resampling –

MAHAKIL

(oversampling)

High false

positives and less

diverse data in

oversampling

Generate new

samples that

have the

characteristics of

previous

instances

Diversity within

the data

distribution

Risk of

duplicated data

sampling

instances with

the same output

value

(Jing et al.,

2017)

Ensemble-based

and cost-sensitive

learning - ISDA

Solve normal

imbalance

problem

Suitable for both

within and cross-

version

imbalanced data

Ignore the

diversity of data

distribution

(Ryu et al.,

2016)

Cost-sensitive

learning - multi-

objective

multi-objective

cost in imbalance

learning

Maximize defect

detection and

minimize false

alarm probability

Optimization

algorithm

choices highly

influence the

results

(Chen et al.,

2016)

Ensemble-based

learning –

boosting with

under-sampling

(AdaBoost)

Solve normal

imbalance

problem

Improve random

under-sampling

results

Inconsistence

results due to

random

sampling

(Wu et al.,

2016)

Cost sensitive

learning - cost-

Solve imbalance

problem in

Maximize type II

misclassification

Suitable only for

module level

Univ
ers

iti
Mala

ya

66

sensitive local

collaborative

representation

collaborative

representation

classifier-based

SDP

defect prediction

(Siers &

Islam, 2015)

Ensemble-based

learning –

SMOTE

incorporates with

decision forest

algorithm

(oversampling)

Balancing

majority and

minority class

instances for

lower

classification cost

Minimize

classification

cost

Inconsistence

results due to

random

sampling

(Liu et al.,

2014)

Cost-sensitive

learning - Two

stage cost learning

(classification and

features selection

stages)

Solve normal

imbalance

problem

Improve the

efficiency of

both

classification

and features

selection cost

Ignore the

diversity of data

distribution

2.5 Resampling in Imbalance Class Distribution

The performance of the defect prediction model by using balanced and imbalanced

data sets makes a big impact on the discovery of future defects. The class imbalance

problem is well-recognized as one of the major causes of the poor performance of the

prediction models. Many preprocessing approaches are proposed to solve the class-

imbalance problem, particularly by resampling approaches (Song et al., 2018), which

are classified into under-sampling and oversampling approaches as illustrated in Figure

21. The under-sampling selects only a subset of majority class instances to ensure the

equality of the instances for the majority and minority classes in model training.

Oversampling generates more synthetic/duplicated instances for the minority class to

balance with the number of instances in the majority class. In the literature, resampling

data class distribution is conducted which involves several sampling factors as

summarized in Table 12.

Univ
ers

iti
Mala

ya

67

Figure 21: Resampling imbalance dataset into balanced datasets

Table 12: Factors of consideration on resampling imbalanced datasets

Factors Description Justification

Dynamic

imbalance rate

Change in resampling rate

throughout time

Imbalance ratios are found to be dynamic

rather than a fixed rate for a whole dataset.

Randomness Selection of random instances

from a large population of

defect/clean class

Equal chances for each instance to be

selected for resampling and unlikely to be

biased representation

Sequential-based

evaluation

Selection of instances based

on sequential evaluation

Exploring the significant level of each

individual instance helps produce more

quality samples.

Interpolation Constructing new instances

within the range of a discrete

set of a few instances

New generated instances within a

neighborhood of existing instances

improve the generalization capacity of

classification

Random under-sampling is the simplest and most common approach for resampling

in imbalance defect datasets (Chen et al., 2016; Kamei et al., 2013). This approach

ensures the majority class instances (non-defective changes) are randomly removed

until the number of instances for the majority and minority classes is at the same level.

It is known that the under-sampling approach provide a compact balanced set of training

Univ
ers

iti
Mala

ya

68

data with reduction in cost for learning process. Conversely, random oversampling

adopts the strategy of simply duplicating instances to increase the number of defective

change instances until reaching the number of non-defective change instances. Applying

random over-sampling, however, results in a higher risk of overlapped/duplicated labels

for defect datasets. Despite the limitations of these random based resampling, the

application in preprocessing imbalance defect datasets is easier and computationally

inexpensive compared to other approaches such as cost-sensitive learning and hybrid

techniques.

Synthetic minority over-sampling technique (SMOTE) is an improved technique of

standard random oversampling (Chawla et al., 2002). It is a process of interpolation that

synthesize new instances for the minority class. The new instances are created using

random interpolation between several instances within a defined neighborhood. Thus,

the generated instance is based on features value and their relationship instead of only

considering the data distribution. SMOTE is considered as a foundation approach for

the research community in class imbalance classification. For this reason, many

extensions and alternatives are suggested since its release to increase its success in

various scenarios (Fernandez et al., 2018).

Liu et al. (2008) introduced an under-sampling approach based on the iteration

process by considering sequential evaluation to guide the sampling process for

subsequent classifiers. The proposed approach sampling multiple subsets of majority

class instances and training each of these subsets based on the ensemble classifier

approach. For each iteration, the majority of class instances that are correctly classified

by the current iteration are removed from consideration for the next iteration. Since

several subset samples provide more details than a single subset, this approach provides

better use of the majority class than traditional random under-sampling. Thus, an

Univ
ers

iti
Mala

ya

69

efficient process of downsizing the majority class instance is achieved due to the fact it

requires a shorter training time.

Cabral et al. (2019) recently proposed oversampling rate boosting (ORB) to cope

with class imbalance evolution. They proposed adjusting the resampling rate over time

rather than always using 1:1 ratio of the balanced defect dataset for resampling. Since

the resampling rate does evolve throughout time, the proposed oversampling approach

automatically readjusts the resampling rate according to the ratio of current instances

class distribution. For example, in case of the prediction is considered biased toward the

non-defective class, the resampling rate of the defect class need to be adjusted

accordingly. The proposed approach is specifically useful in resampling defect datasets

for online learning-based machine learning framework.

Some existing works adopted more advanced resampling approaches, such as

under-sampling incremental-based evaluation (Chen et al., 2016), ORB (Cabral et al.,

2019), and SMOTE (Chawla et al., 2002; Zhu et al., 2020). Despite the fact that greater

predictive impact for resampling on the minority class than on the majority class, most

of the recent works pre-processed the imbalance dataset by an under-sampling

approach. The reason is attributed to the fact of under-sampling requires shorter training

time and a simpler process compared to oversampling (Liu et al., 2008). Consequently,

prior JIT-SDP research typically used under-sampling rather than oversampling (Zhao

et al., 2022).

2.6 Oversampling for Imbalanced Datasets

Oversampling is an efficient and common technique for resampling imbalanced

data. The purpose of oversampling is to make sure that the distribution of classes is

balanced by increasing the number of samples of the minority class. The most common

Univ
ers

iti
Mala

ya

70

method for predicting software defects is to oversample the minority (defective)

samples. In practice, oversampling is useful for improving classification performance

on datasets with an imbalance distribution. In this review, we summarize the

components of oversampling techniques for SDP as shown in Figure 22. To achieve the

desired distribution of data within SDP datasets, oversampling is composed of several

components. The components are as follows:

i. Factors: consideration factors for oversampling focuses on data distribution

ii. Distribution analysis: analysis of individual instances according to

measurements of the relationship between them.

iii. Intra-clustering: partitioning approaches within data distribution based on data

classes

iv. Parent selection: selection of data template or guidance for interpolation of new

synthetic data

v. Interpolate: interpolation techniques for the generation of new synthetic data

Figure 22: Taxonomy of oversampling in SDP

Oversampling

Factors

Decision
boundary

Data diversity

Spatial
distribution

High
dimensionality

Analysis of
distribution

Euclidian
distances

Kernel density
estimation

Mahalanobis
distances

Linear
discriminant

Intra-clustering

KNN

K-means

Rule based
partition

Parent
selection

Random

Adaptive

Pairing

Ranking

Interpolate

KNN

Bootstraping

Cross-over

Univ
ers

iti
Mala

ya

71

The fact that imbalanced class distributions adversely affect machine learning based

models is well-established. Although deep learning proved to be a powerful tool in

SDP, class imbalance distributions negatively affect the performance of machine

learning algorithms since most classifiers are trained by overfitting on majority classes.

In JIT-SDP, various oversampling techniques are designed to improve the performance

of minority classes. Table 13 summarizes recent work related to oversampling.

Reviewing the oversampling of SDP as illustrated in Table 13, it is evident that

most of the prior techniques attempt to create new data near the boundaries of the

distribution. They assert that instances near the decision boundaries are likely to be

more informative. For this reason, the empty spaces in the data distribution are less

covered. On the contrary, several studies (Bennin et al. 2018; Li et al., 2019; Gong et

al., 2019; Zhang et al., 2021) focus on increasing the occupied spaces in data

distribution by increasing the diversity of data. The diversity of data within the

distribution needs to be diverse concerning to minimize intraclass imbalance, especially

for distributions with weak generalizability. Nevertheless, it is still true that diverse data

widen the decision boundaries with respect to distribution. For this reason, some

oversampling attempts to consider more than one factor such as spatial distribution and

multidimensionality in the generation of new data (Liu et al., 2020; Feng et al., 2021;

Zhang et al., 2021). For spatial distribution, samples within dense distributions are

assumed to be difficult to learn, thus introducing duplicates into the original datasets. In

the case of oversampling that is specifically associated with spatial distribution, the

process highly dependent on the data partitioning algorithm and narrowing of boundary

boundaries. For multidimensionality, potential downsides are the tendency to ignore the

high informative instances and the bias toward high correlated features. Therefore,

consideration of contributing factors remains a challenge for oversampling, especially

for SDP data.

Univ
ers

iti
Mala

ya

72

Table 13: Oversampling techniques in defect prediction

Technique Focus Distribution

analysis

Intra partition Data selection Interpolation

SMOTE

(Chawla et al., 2002)

Decision boundary Euclidian

distance

None Random KNN – nearest interpolate

Borderline-SMOTE

(Han et al., 2005)

Decision boundary Euclidian

distance

None Random - select instances

close to borderline

KNN – nearest interpolate

ADASYN

(He et al., 2008)

Decision boundary Euclidian

distance

None Random - select instances

hard to learn

KNN – nearest interpolate

MWMOTE

(Barua et al., 2014)

Decision boundary Euclidian

distance

KNN Random – select instance

within cluster close to

borderline

KNN – nearest interpolate

ROSE

(Lunardon et al., 2014)

Decision boundary Kernel density

estimation

None Random Smoothed bootstrapping

MAHAKIL

(Bennin et al., 2018)

Data diversity Mahalanobis

distance

Rule based Pairing – inheritance at

different level of parent

Cross-over interpolate –

genetic algorithm

A-SUWO

(Choirunnisa et al., 2018)

Decision boundary

Spatial distribution

Linear

discriminant

analysis

KNN Random - select instances

within clusters that have

minimum overlapped labels

KNN – nearest interpolate

ACWO

(Zha et al., 2018)

Decision boundary Euclidian

distance

K-means Adaptive - selection on

centroid points of large

KNN – nearest interpolate Univ
ers

iti
Mala

ya

73

clusters

K-means based

oversampling

(Li et al., 2019)

Data diversity Euclidian

distance

K-means Random – select within

clusters

KNN – nearest interpolate

KMFOS

(Gong et al., 2019)

Data diversity Euclidian

distance

K-means Pairing – select two instances

from different clusters

Cross-over interpolate –

genetic algorithm

SDSMOTE

(Liu et al., 2020)

Spatial distribution

Data diversity

Euclidian

distance

None Ranking – select high

difficulty instances

KNN – nearest interpolate

DVS

(Zhang et al., 2020)

Data diversity

High

dimensionality

Kernel density

estimation

None Random – select according to

eigenvalue of variance density

Cross-over interpolate –

genetic algorithm

COSTE

(Feng et al., 2021)

Data diversity

High

dimensionality

Multivariate

correlation

None Ranking – select instances

with low complexity

KNN – nearest interpolate

K-means MAHAKIL

(Zhang et al., 2021)

Spatial distribution

Data diversity

Mahalanobis

distance

Rule based

K-means

Pairing – inheritance pairing Cross-over interpolate –

genetic algorithm

Univ
ers

iti
Mala

ya

74

2.6.1 Impact of Oversampling

Simple oversampling adds duplicated samples from the original dataset, resulting to

overfitting and numerical stability problem. In order to rebalance the class distribution

of imbalanced data, advanced oversampling is required to avoid duplicating samples.

The impact of advanced oversampling techniques depends on experimental settings,

comprises of evaluation metrics, modeling classifiers and imbalanced ratio.

Evaluation metrics are critical in assessing classification performance by

oversampling and guiding classifier modelling of defect prediction in imbalanced class

data. For instance, the accuracy metric for an imbalanced classification problem is

dangerously deceptive with respect to bias classification. This is because the accuracy

metric is insensitive to datasets with a skewed distribution such in JIT-SDP datasets.

Furthermore, as pointed by Tantithamthavorn et al. (2018) defect prediction models

through oversampled datasets produce better Recall improvement but low in AUC

performance. The issue arises due to the evaluation preference bias performance

towards cases that are inadequately represented in the available data samples (Branco et

al., 2016). Consequently, diverse evaluation metrics are necessary when working with

an imbalanced classification.

In addition, the performance of oversampling techniques is contingent on the

selection of modelling classifiers for JIT-SDP, which are based on supervised,

unsupervised, and semi-supervised machine learning. Without transformation by

oversampling in imbalanced data, machine learning algorithms learn more on the traits

in the clean class data at the expense of learning the traits in the defect class data. Due

to the fact that oversampling adds duplicate or similar data samples to the original,

training datasets for the classifier eventually contain multiple overlapped samples.

Later, resulting in overfitting for machine learning. Thus, oversampling especially in

Univ
ers

iti
Mala

ya

75

within-project defect prediction models perform better than cross-project models.

Classifier techniques like logistic regression, k-nearest neighbor and support vector

machine are sensitive to oversampling techniques which affect the interpretation of

defect prediction models. In other hand, random forest, and neural networks tend to be

less sensitive (Tantithamthavorn et al., 2018). To conclude, the influence of

oversampling on the interpretation of defect prediction models is highly dependent on

the classifier techniques employed, indicating that oversampling techniques must be

avoided when deriving knowledge or defect patterns from defect prediction models.

Highly imbalanced ratio is prominent in defect prediction datasets.

Tantithamthavorn et al. (2018) found that 8% of the defect datasets consist of a

defective ratio between 45%-55%. Indicating that only a small portion of defect dataset

is based on small imbalanced ratio. In a dataset with highly imbalanced classes, if the

classifier always predicts the majority class without any feature analysis. The results

will still have a high rate of accuracy, which is obviously deceptive. In respect to

oversampling in highly imbalanced datasets, techniques such as SMOTE, random

oversampling and ROSE work well with different problems to a certain extent. Highly

imbalanced datasets correlated with high false alarm rate during modelling (Menzies et

al., 2007). Generating as much diverse synthetic data as possible restricted within the

region of the defect class provides high recall and low false alarm rate (Bennin et al.,

2018). When the oversampling technique generates synthetic samples that are widely

dispersed but appropriately located within the decision boundary or region of the

minority class, the false rate is reduced without compromising overall performance. In

conclusion, the performance of oversampling varies greatly depending on the

imbalanced ratio dataset.

Univ
ers

iti
Mala

ya

76

2.7 Modeling Approaches for Defect Classifier

A variety of machine learning approaches for JIT-SDP studies is found in the

literature. As reported by Catal et al. (2011), machine learning is proved as the most

successful approach compared to statistical approaches. Machine learning approaches in

modelling JIT-SDP exist based on either prediction of defect proneness of code changes

(classification) or effort-aware prediction (regression). For prediction of defect

proneness, JIT-SDP classifies the given code changes into defective or clean classes. On

the other hand, the prediction based on regression refers to the prediction of a certain

number of defects found in the given code changes information. This type of prediction

model assigns an estimated number of defects for each of the code changes instead of

classifying them into defective or clean change classes.

Modelling of JIT-SDP involves of formulating prediction of defect proneness or

defect inducing at the granularity of code changes. Prior JIT-SDP typically utilised

machine learning with batch learning to formulate such a model. Training instances are

not required to be arranged sequentially in batch learning. Consequently, some studies

(Cabral et al., 2019; Tan et al., 2015) contend that batch learning is unrealistic and that

an alternative is to model online learning settings. Online learning necessitates the

arrangement of training and testing instances in accordance with the arrival date of data

in version control systems. Modelling of JIT-SDP consists primarily of two types of

prediction projects: within-project prediction and cross-project prediction.

In general, machine learning algorithms are divided into three categories:

supervised, semi-supervised, and unsupervised techniques. Supervised learning

leverages the usefulness of defective or clean label information as the training datasets

to build the prediction model. The techniques operate with supervision provided using

the outcome of each training instance. In contrast, unsupervised learning enables the

Univ
ers

iti
Mala

ya

77

development of the JIT-SDP model in the absence of defect data. Unsupervised learning

ensures the modelling of JIT-SDP is done without requiring any labelling of code

change information. Semi-supervised learning is the combination of supervised and

unsupervised learning. The learning process only uses small amounts of defect data

while utilizing a greater number of unlabelled code changes information. This technique

is usually used when the prediction is related to the new software projects that have few

version releases or less defect information. Table 14 summarize some of the works in

JIT-SDP based on these categories.

Most commonly choices of modelling in JIT-SDP are by using supervised learning

as tabulated in Table 14. Nevertheless, gathering enough data is a challenging process

for new projects or projects with limited development history. Data collection is one of

the known challenges in the supervised SDP model. Existing works (Yang et al., 2016;

Liu et al., 2017) reported that unsupervised models produce a prediction performance

superior to most supervised models. Unfortunately, the limitation of the unsupervised

model is that it produces many false alarm results and poor prediction performance,

especially in terms of F1-score (Huang et al., 2019). Thus, semi-supervised learning is

explored for JIT-SDP due to its capability to produce substantial improvement in

learning accuracy with a small amount of labelled data. Interestingly, three studies (He

et al., 2016; Liu et al., 2017; Li et al., 2020) concerning the semi-supervised model in

the context of JIT-SDP.

Univ
ers

iti
Mala

ya

78

JIT-SDP looks at a wide range of classifier techniques, from standalone learners to

ensemble-based learners, to find the best models. Commonly used standalone classifier

includes Logistic Regression (Chen et al., 2018; Kamei et al., 2013; Taba et al., 2013),

Naïve bayes (Jahanshahi et al., 2019), Support Vector Machine (Amasaki et al., 2021),

Decision Tree(Yang et al., 2017), and Neural Network (Qiao & Wang, 2019). Whereas

for ensemble-based learners range from single ensemble learner such as Random Forest

(Sikic et al., 2021) to multi-layer ensembles (Wang et al., 2016; Yang et al., 2017).

Table 14: Machine learning in the JIT-SDP model

Types of

classifiers
Reference Types of learning

Algorithm

Standalone

model

(Kamei et al., 2013) Supervised learning LR

(Singh and

Chaturvedi, 2013)

Supervised learning LR and SVR

(Taba et al., 2013) Supervised learning LR

(Yang et al., 2015) Supervised learning LR

(Yang et al., 2016) Unsupervised

learning

-

(Liu et al., 2017) Unsupervised

learning

-

(Chen et al., 2018) Supervised learning LR

Ensemble

model

(Jiang et al., 2013) Supervised learning LR, NB and ADTree

(Herzig et al., 2016) Supervised learning kNN, LR, RP, and

SVM

(He et al., 2016) Semi-supervised

learning

RF

(Xia et al., 2016) Supervised learning ADTree

(Yang et al., 2017) Supervised learning RF

(Ozcan and Tosun,

2018)

Supervised learning IBK, J48, LR, NB,

and RF

(Wang et al., 2018) Supervised learning NB and LR

(Qiao and Wang,

2019)

Supervised learning NN

(Kondo et al., 2019) Supervised learning LR and RF

Univ
ers

iti
Mala

ya

79

(Hoang et al., 2019) Supervised learning CNN

(Huang et al., 2019) Supervised learning CBT+

(Li et al., 2020) Semi-supervised

learning

Ti-training

(Zhu et al., 2021) Supervised learning DEA-CNN

(Zheng et al., 2021) Supervised learning RF

2.7.1 Impact of Classifier Techniques

It is evident that different machine learning methods used in building the prediction

model resulted in differences in the changes predicted as defective. As each classifier

identifies distinct subsets of defects, certain features should be examined to determine if

certain features are compatible with specific classifiers. Classifiers perform significantly

better when combined with particular sets of features, such as reduced features or

uncorrelated features (Bowes et al., 2018). Through the selection of the data features

most relevant to the classification problem, it is possible to reduce the amount of noise

in the data. The result makes it easier for the classifier to learn from the data. The

selection of the most relevant features ensures that a model is less likely to overfit

training samples, and more generalizable to new data. Furthermore, the selection of

features impacts the effectiveness of classifiers by simplifying models. In addition to

faster training and improved interpretation capability, the selection of features is also an

optimization problem. Regardless of the selection approaches chosen, it is important to

note that feature selection is an optimization problem. The result implies no guarantee

that an optimal subset of features has been identified. A robust subset of features that

performs well on the training data, however, requires careful tuning in order to achieve

optimal subsets.

Univ
ers

iti
Mala

ya

80

Effective prediction models require fine-tuning of the classifier. The purpose of

parameter tuning is to find the optimal parameter values necessary to obtain the most

optimal configuration of a classifier. The tuning process involves trying different

combinations of parameters to determine the combination that achieves the highest level

of accuracy for training data. Mahmood et al. (2018) observed that, despite tuning the

parameters of the prediction models to improve performance, previous studies of JIT-

SDP have generally failed to account for the tuning process. Nonetheless, tuning

classifiers improves the overall performance of the prediction model significantly (Fu et

al., 2016; Menzies et al., 2008). Classifiers with many parameters have an adverse

effect on classification performance, which necessitates a more cautious selection of

parameter values. In instances where there are a large number of datasets at scale,

automatic tuning of classifiers is preferable to manual tuning. As a result of the

classifier tuning analyses, it is indicated that attention should be focused on enriching

the classifier optimization process to reach a more accurate JIT-SDP model.

2.8 Effort-Aware Model

Through the JIT-SDP model, the developers are capable of easily assigning the

available test resources to defective parts to enhance the quality of software in the early

stages of the development life cycle. For instance, if only 20% of the testing resources

are available, the developers concentrate these testing resources on inspecting and fixing

software parts that are more vulnerable to defects. Therefore, this provides an

opportunity to deploy high-quality, low-cost, and maintainable software in a given time,

resource, and budget. For this reason, it became a popular research topic in the software

engineering field.

In the context of JIT-SDP studies, the effort-aware model refers to ranking the

predicted software defect proneness according to a certain allocation of QA efforts. The

Univ
ers

iti
Mala

ya

81

effectiveness of an effort-aware model of JIT-SDP is important to help the developers

find more defects with less effort. As a result, the developers allocate limited testing or

inspection resources to the most defect-prone code changes with the help of the effort-

aware JIT-SDP model. To simplify, effort-aware models are considered as a direct

extension of JIT-SDP. From the view of practice, it is more realistic and useful to apply

effort-aware JIT-SDP models in the actual software development. Subsequently,

improves production efficiency and quality, and reduces the development cost and

software risk (Li et al., 2018).

Over the last decade, a few numbers of JIT-SDP studies mainly focus on improving

the efficiency of effort awareness. Table 17 shows the related works on the effort-aware

model of JIT-SDP. Since effort-awareness in JIT-SDP started in the year 2013, the

application of the approaches is limited to a few open-source projects and not

generalized well with other software projects. They used ACC and Popt for performance

measurement. These metrics consider the inspection effort uniform for every LOC. In

practice, however, one change in the LOC of a complex file requires more inspection

effort compared to those changes that happen during initial code development.

Therefore, the indication of these two metrics insufficient to show actual reflection of

the performance of effort awareness for the JIT-SDP model. In addition, the previous

effort-aware model has only a few prediction ranking factors such as defect density, risk

of defect, size of changes, and the ratio between benefit and cost. These factors are used

to prioritize which changes must be inspected first while considering limited resources.

The choice of prediction ranking factors used for the effort-aware model resulting

different effort awareness performances. To improve the effort awareness performance

in the JIT-SDP model, previous works have employed a multi-objective approach (Chen

et al., 2018) and an ensemble-based model (Albahli, 2019; Li et al., 2020). Despite

these solutions improving effort awareness performance, the trained models only

Univ
ers

iti
Mala

ya

82

generalize well with the trained datasets and have no guarantee of finding the optimal

balance between prediction accuracy and effort awareness performance. It is a conflict

between prediction accuracy and effort awareness performances during the model

construction phase of an effort-aware model (Chen et al., 2018). More defects are found

when more resources are spent on code inspection efforts.

2.9 Potential of Deep Reinforcement Learning in Software Engineering

Deep reinforcement learning (DRL) techniques are composed of two parts: a deep

neural network that learns the state representation of the environment, and a policy

network that selects actions. The deep neural network is used to approximate the value

function, which is the expected long-term return from taking any action in any state.

The policy network or network model uses this approximation along with feedback

received after each action taken to learn what sequence of actions will result in

maximum rewards.

Algorithms for solving the DRL problems that use models and planning are called

model-based algorithms, as opposed to simpler model-free algorithms that are based on

trial-and-error learners. Model-based algorithms use the deep neural network to

approximate both the reward function and the transition distributions. The learned

model is then employed in a variety of ways, including detection and prediction. Two

main approaches are used to describe the policy as a planner or to utilize the model to

generate synthetic transitions by augmenting the experience replay buffer. Some

common model-based algorithms used for DRL include Deep Q-Network (DQN),

Double DQN (DDQN), Dueling DQN, A3C, DDPG, TD3, and SAC. Table 16 provides

a brief description of the algorithms.

Univ
ers

iti
Mala

ya

83

DRL is promising for software engineering. One of the main reasons for its

applicability in software engineering is that the field is constantly changing. New

features are added to applications all the time, and it is difficult to predict how these will

interact with one another. Recent works demonstrate the ability of DRL techniques to

learn complex tasks in software engineering as reported in Table 15. These results

demonstrate the great potential of DRL for improving software engineering tasks.

However, as DRL is non-linear, several challenges need to be tackled for reaching its

full potential. First, the design of the DRL environment for the problem simulation is

needed to be adjusted properly. Then, a reward policy is required to be tuned for

problem specifics. Lastly, hyperparameters for deep learning network need to be

optimized according to given features. Thus, more research is needed before DRL

techniques are ready to be widely adopted. To exploit the full potential of DRL for

software engineering, future research needs to focus on:

i. Developing new architectures and learning algorithms specifically tailored for

software engineering tasks.

ii. Investigating how best to represent program data and code structures to

enable effective learning.

iii. Studying how different problem domains such as defects prediction, code

optimization, and peer review prioritization provide benefits from DRL

techniques.

iv. Evaluating the effectiveness of different DRL techniques on large real-world

datasets.

In the context of modeling for the prediction, prior machine learning approaches for

JIT-SDP are generally based on batch learning (supervised, unsupervised and semi-

supervised model) context. Batch learning provides data learning on the entire training

Univ
ers

iti
Mala

ya

84

datasets at once to learn the pattern of the introduction of defective changes. However,

the reliability of SDP models is not yet sufficiently studied especially in the context of

sequential learning. Sequential learning updates the training set incrementally to take

advantage of the feedback from each run. In other words, it is an updatable

classification. This is appropriate for JIT-SDP since it mimics how code reviews are

done in practice. Therefore, it is useful to investigate aspects of sequential learning for

improving the performance of the JIT-SDP model. Reinforcement learning is a type of

learning which capable of iteratively learning optimal control from sequential data and

is still unexplored. This provides an ideal opportunity to explore an alternative approach

for the JIT-SDP model.

Table 15: DRL approaches in software engineering

Related works DRL algorithm Application

(Kim et al., 2018) DQN Generate test input for software under test

(Harries et al., 2020) DQN Functional software testing

(Hu et al., 2020) DQN Automated penetration testing framework

(Eskonen et al., 2020) DQN Automated and adaptive GUI testing

Table 16: Examples of model-based methods

Algorithm Learning

methods

Actions

preference

Advantage

DQN Value function Discrete Good in sparse rewards in highly
dimensional input spaces

Double
DQN Value function Discrete

Reduce overestimation of DQN

Dueling
DQN

Value function Discrete
Learn which states are advantage according
to actions

A3C Actor-critic Continuous Increase the convergence speed

DDPG Actor-critic Continuous Direct policy learning

TD3 Actor-critic Continuous Reducing the overestimation bias of DDPG

SAC Actor-critic Continuous
Accelerate learning by preventing the policy
from a bad local optimum

Univ
ers

iti
Mala

ya

85

Table 17: Summary of previous effort-awareness JIT-SDP models

Related studies Priority factor Classifier technique Effort awareness

evaluation

Software project datasets

(Kamei et al., 2013) Defect density EALR Popt = 61 and ACC = 35 Public: Buz, Col, JDT, Pla, Moz, and

Pos

Private: 5 java projects

(Jiang et al., 2013) Defect density LR, NB, and ADTree ACC = 41 Public: Linux, Pos, Xorg, Eclipse, Luc

and Jackrabbit

(Yang et al., 2015) Defect density LR ACC = 51.04 Public: Buz, Col, JDT, Pla, Moz, and

Pos

(Xia et al., 2016) Defect density ADTree ACC = 59 and effort-AUC Public: Pla, JDT, Jackrabbit, Linux,

Luc, Pos, and Xorg

(Yang et al., 2016) Risk of defect Unsupervised Models Popt = 76.2 and ACC =

49.7

Public: Buz, Col, JDT, Pla, Moz, and

Pos

(Liu et al., 2017) Size of changes CCUM (code churn

unsupervised model)

Popt = 89.3 and ACC =

73.6

Public: Buz, Col, JDT, Pla, Moz, and

Pos

(Yang et al., 2017) Defect density TLEL (Two-layer Ensemble

of Random Forest)

ACC = 70.53 Public: Buz, Col, JDT, Pla, Moz, and

Pos

(Wang et al., 2018) Defect density LR and DBN + ADTree ACC = 21.9 Public: Linux, Pos, Xorg, JDT, Luc,

and Jackrabbit, Buck, Hhvm, Guava,

Skia

Univ
ers

iti
Mala

ya

86

(Chen et al., 2018) Pareto front between defective

probability and effort for

defective changes

MULTI (LR + NSGA-II) Popt = 88.9 and ACC = 73 Public: Buz, Col, JDT, Pla, Moz, and

Pos

(Huang et al., 2019) Size of changes CBT+ (Logistic regression) ACC: 35 Public: Buz, Col, JDT, Pla, Moz, and

Pos

(Qiao & Wang, 2019) Benefit-cost ratio (defective

probability divided by sum of

code churn)

Regression based Neural

Network

Popt = 85.3 and ACC=

69.6

Public: Buz, Col, JDT, Pla, Moz, and

Pos

 Univ
ers

iti
Mala

ya

87

2.10 Open Issues in Prediction of Software Defects

Several open issues related to the frameworks of the JIT-SDP model are identified

as illustrated in Figure 23. These issues include cross-prediction on heterogeneous

metrics, effort-aware prediction, optimization of the model, and latencies in data

evolution.

2.10.1 Prediction of heterogeneous metrics

In practice, new start-up software projects often lack historical defect data.

Therefore, researchers have utilized historical defect datasets from other projects to

predict defects in a project that lacks historical data. This problem is called cross-project

software defect prediction (CPSDP) which is also considered a part of the transfer

learning problem. The present works on CPSDP mainly assume the same set of

software metrics (i.e. homogeneous metrics) are used to measure the characteristics of a

code change for both the source project and target project. Nevertheless, some metrics

Figure 23: Open issues of JIT-SDP

Open
issues

Heterogenous
metrics

Parameters
optimization

Data evolution

Imbalaced data

Univ
ers

iti
Mala

ya

88

especially object-oriented metrics are designed for specific programming languages and

some features (e.g. features extracted from the commercial tool) are unavailable for

other software projects. To address these problems, researchers have proposed many

CPSDP approaches by employing heterogeneous metrics (Chen et al., 2021). The focus

of CPDP has shifted into heterogeneous data sources recently. Thus, transfer learning

techniques especially for data manipulation components become the main interest and

important in CPDP settings (Hosseini et al., 2019). Researchers have overcome this

problem by proposing various approaches such as distribution characteristics (Nam et

al., 2015), metrics selection (Xing et al., 2015), and metrics representation (Jing et al.,

2015). In general, CPDP-based heterogeneous data involves three main steps as shown

in Figure 24: 1) selection of relevant features by using appropriate features selection

methods 2) finding of matching metrics according to the distribution of every possible

combination of metrics from the source dataset and the target datasets 3) Training of

model using the matched metrics and predict the defect outcome from the target project.

Figure 24: CPDP-based heterogeneous data workflow

The main challenge in the modelling of heterogeneous-based CPDP is that it

required an appropriate metrics matching method to operate for different combination

metrics across software projects. It is interesting to examine the application of deep

learning in finding the informative features for metric matching between source project

and target project. However, it is difficult to obtain accurate results due to the inability

of conventional metrics often unable to distinguish data with different semantics (Wang

et al. 2018). The emergence of approaches (Xia et al., 2016; Wang et al., 2018; Hoang

et al., 2019) in textual semantic features which are automatically learned by deep

Selection of features
Mapping of features

across datasets
Model training

Univ
ers

iti
Mala

ya

89

learning provide beneficial semantics to tackle this problem. Thus, the combination of

metrics representation learning and semantic features is believed to be complimentary

for heterogeneous-based CPSDP and requires more investigation.

2.10.2 Model Optimization

Harman (2010) suggested that search-based optimization techniques are potentially

useful to optimize the performance of the SDP model with multiple objectives. In

particular, he suggested that the predictive model is capable to be built across multiple

objectives such as predictive quality, cost-benefit, privacy, readability, coverage, and

weighting aspect. Multi-objective in SDP is a relatively new application area. Canfora

et al. (2013) presented an approach to building a logistic regression model with

consideration of a compromise between defect-proneness and inspection cost using a

genetic algorithm. Shukla et al. (2018) proposed a multi-objective optimization

approach for the SDP model with consideration on minimize misclassification costs and

minimizing inspection costs on defect-prone files. In the context of JIT-SDP, Chen et

al. (2019) proposed a multi-objective optimization-based supervised approach that

designed to maximize the number of identified defective changes and minimize SQA

effort (i.e. code churn). However, much of the potential of the multi-objective approach

is still unexplored in this context. Previous studies utilize only Genetic Algorithm (i.e.

NSGA-II) in finding Pareto fronts across multiple objectives. In the future, the works on

multi-objectives in SDP must be extended by considering other multi-objective Pareto-

based optimization algorithms. In addition, considering different objective functions

such as selection of software metrics, cost of imbalance learning, classification cost, and

selection of data samples potentially also be exploited in future multi-objective based

defect prediction.

Univ
ers

iti
Mala

ya

90

Current development of SDP models commonly utilizes machine learning

classification techniques. These techniques such as Naïve Bayes, Neural Network,

KNN, and Logistic regression have hyperparameter settings that control the behaviors

of the generated models. Hyperparameters are a set of parameters that need to be tuned

before the training process began. For example, parameter settings in classification

algorithms used during model training. Since the optimal parameter settings are

unknown ahead of time, researchers often employ the default values for those settings

(Tantithamthavorn et al., 2019). Default hyperparameter settings are known to be

suboptimal configurations (Jiang et al., 2013). Thus, the prediction models are likely to

underperform in case of these models are trained under suboptimal configuration. It is

impractical to achieve the optimal configuration of hyperparameters by exploring all the

possible configurations of a classification algorithm. Therefore, the use of any

automated hyperparameters optimization technique is beneficial to achieving near-

optimal configuration for an optimized defect prediction model. Automated

hyperparameters optimization requires a large impact for improving the performance of

classification techniques such as neural networks, decision trees, and Naïve Bayes that

are parameter sensitive (Tantithamthavorn et al., 2019). For future works, more

investigation of automated hyperparameters optimization on the performance

improvement, performance stability, model interpretation, and ranking of defect

prediction models must be done.

2.10.3 Latency of Data Evolution

JIT-SDP generally assumes that past defects resulting from changes are always

similar to those that occur in the future (Tan et al., 2015). It is imperative to note,

however, that the characteristics of defect-inducing changes are evolving throughout the

life cycle of the project. According to Mcintosh and Kamei (2018), code change

Univ
ers

iti
Mala

ya

91

properties fluctuated over time. Defect classifiers suffer from poor prediction when data

drift occurs within the properties of code changes. Improvements needed to be made

regarding the handling of data drift. It is advisable to explore specific aspects of

handling data drift in the future, including continuous model refinement (online

classification learning), dividing the data by period, 91odelling the evolution of defect-

inducing change patterns.

In addition to dealing with the problem of data drift, it is also important to address

the problem of new software changes that are produced over time and appear during

training. For example, sequential learning for JIT-SDP. Verification latency is also

critical to prevent overly optimistic predictions for the JIT-SDP model (Tan et al.,

2015). Training instances are typically 91odellin after several changes have occurred.

There is a delay before defect-causing changes are detected as defective changes, and it

takes some time for non-defective changes to gain confidence and be viewed as clean

changes. In this instance, it takes time to determine the actual label of each change.

According to Cabral et al. (2019), a delay between the time a true label is received and

the time it takes for the defect to be corrected is typically one to 11 years. By

establishing a longer waiting period, more positive examples are identified for training.

However, the risk of concept drift is directly proportional to the duration of waiting

(McIntosh and Kamei, 2018). It is paramount to determine a reasonable compromise

between waiting times and concept drift to obtain realistic results in the future.

2.10.4 High False Alarm in Imbalanced Dataset

Presence of false positives in class imbalance datasets during the learning process

of machine learning is inevitable. The class imbalance causes false alarm results in the

defect prediction process, which reduces the reliability of the model. If a false alarm is

made, the cost of validating the defect in the software life cycle is increased. The cost of

Univ
ers

iti
Mala

ya

92

defects is influenced by various factors such as the project’s context, size, and location

of the defect. Besides, the cost of validating software defects is also related to the

application field of software engineering. During the software development process, it is

usually a manual process to confirm the results of the defects discovered. Therefore, the

false alarm increases the workload of testing and development, which ultimately

consumes unnecessary costs.

To reduce disastrous results from the false alarm in imbalanced data of SDP,

resampling technique mainly is considered by researchers (Li et al., 2018).

Oversampling provides class rebalancing of the instances by increasing the percentage

of positive instances in the dataset to obtain the class balance. The resampling technique

mainly focuses on the size differences between majority and minority classes without

focusing on independent instances. In this case, if the dataset is closely measured by

software metrics, the performance of the classification model is closely affected by the

near class boundary instances. Moreover, the interaction between the choice of

oversampling techniques and the choice of classifiers is not well understood in the

context of false alarm results. Similarly with the choice of dataset and input software

metric types. Therefore, current techniques are still not ideal in practice.

2.11 Summary

This chapter presented a comprehensive review of JIT-SDP by elaborating on the

fundamentals of the domain, including the different software metrics utilized to model

the prediction of software defects, resampling strategies, and machine learning

approaches. The review also highlighted the main issues faced in the domain over the

years to uncover the evolution of approaches for JIT-SDP.

Univ
ers

iti
Mala

ya

93

A clear understanding of the trends is essential to understanding the current state-

of-the-art. Therefore, to fully understand the state-of-the-art, this chapter divided the

components of modelling JIT-SDP into three different aspects: software metrics,

resampling strategies, and machine learning. Each of the components is presented in a

discussion including related works and current limitations. For depth discussion on

software metrics, this chapter also laid down three main issues on factors affecting the

accuracy of software metrics in representing the features in the context of JIT-SDP

models. Following the discussion, resampling of imbalance class distribution in

modelling of JIT-SDP which focusing more on oversampling process of defect data.

Next, an in-depth discussion of JIT-SDP modelling in the context of machine learning is

provided to provide current technologies toward effort aware JIT-SDP models. The

potential of deep reinforcement learning for JIT-SDP in the software engineering

domain is then presented, lighting up the opportunities for developing new deep

reinforcement learning in JIT-SDP modelling based on effort awareness. In the last

section, four open issues in the prediction of software defects are explained for a better

understanding of the trends and limitations which hinder the progress of JIT-SDP

research.

The findings of this review chapter demonstrate that the underlying research

problems of imbalance class distribution and false alarm results need to be examined for

further understanding the problem of inaccurate prediction. Review of imbalance class

distribution shows that oversampling methods do indeed influence the performance of

the JIT-SDP model. Additionally, the results of reviewing existing classifiers reveal that

the selection of classifiers is highly correlated with the prediction results of software

defects. Accordingly, the following chapter presents a comparative analysis of baseline

approaches to the identified problems.

Univ
ers

iti
Mala

ya

94

CHAPTER 3: EXPERIMENTAL ANALYSIS ON OVERSAMPLING AND

EFFORT AWARENESS IN JIT-SDP

To establish problem statements of ineffective oversampling in imbalance class and

high false positives in effort awareness, two experimental analyses are conducted. First,

analysis of oversampling techniques in imbalance class datasets provides the

observation of factors that affect the performance of oversampling. The analysis

consists of two observation factors such as data distribution levels and choice of

oversampling techniques. In the second analysis, a comparative experiment is conducted

to revisit how the JIT-SDP model generates more false positives in effort awareness

evaluation. This analysis helps in providing evidence of low prediction accuracy for

current effort-aware JIT-SDP.

3.1 Oversampling for Imbalance Class Distribution

The experiment aims to determine whether oversampling techniques provide

different prediction performances when dealing with overlapping class distributions that

vary with data characteristics. To achieve the aim of the experiment, two objectives are

conducted. Table 18 shows the mapping of research objectives with specific research

questions. A comparative experiment is conducted to analyze oversampling techniques

via different experimental settings. The experiment compares oversampling techniques

including SMOTE, SMOTE-Borderline, ADASYN, GAZZAH, MWMOTE, ROSE, and

MAHAKIL. For ease of explanation, seven techniques are divided into lightweight and

heavy-weight techniques. The categories are based mainly on the complexity of the

technique used in the oversampling techniques, especially the clustering algorithm

which resides in the oversampling techniques. SMOTE, SMOTE-Borderline,

ADASYN, GAZZAH, and ROSE are lightweight techniques. They are easy and fast to

Univ
ers

iti
Mala

ya

95

implement for imbalanced datasets. MWMOTE and MAHAKIL are heavyweight

techniques as they take longer to complete the oversampling process.

Table 18: Mapping of experimental objectives with research questions

Experimental objectives Research questions
Research

variable

To analyze the performance of

oversampling techniques in

different imbalanced data settings

RQ1: How does the oversampling

performance depend on the

characteristics of the datasets?

Imbalanced data

characteristics

To evaluate and compare the

feasibility of oversampling

techniques in JIT-SDP

RQ2: Which oversampling

techniques give the best

performance in general?

Oversampling

techniques

3.1.1 Experimental Setup

RQ1: How does the oversampling performance depend on the characteristics of the

datasets?

Motivation: Comparison of oversampling performance is needed to observe

different results in varying characteristics of software project datasets. Noted that the

minority class (defect) instances used to generate synthetic instances are different at

each running of oversampling for a certain dataset. This led to a high variance in the

performance of prediction models. As a result, the prediction model producing high

variance in predictions.

Approach: To examine the performance of oversampling techniques according to

different levels of measurement for each feature, Gaussian noises are applied to the

original dataset. In this setup, variance and overlapped spatial distribution in the training

dataset are increased and this is a form of data augmentation. Furthermore, the

Univ
ers

iti
Mala

ya

96

application of noise increases the randomness of training data, which means that the

model is hard to learn from training samples. This is done to test the robustness and

performance of an oversampling technique in the presence of known amounts of noise.

Thus, modifying existing samples in the training samples to increase overlapped spatial

distribution. The datasets used for oversampling vary in terms of the imbalance ratio

and sample size. The datasets with an imbalance ratio of less than 15% are defined as

highly imbalanced datasets and the remaining ones as mild imbalanced datasets.

Severely imbalanced datasets imply that more artificial data instances are generated

compared to the low imbalanced data when the application of oversampling techniques

is conducted.

RQ2: Which oversampling techniques give the best performance in general?

Motivation: Little attention is paid to evaluating the stability of oversampling

techniques especially in JIT-SDP. Oversampling in defect prediction is considered

unstable, so we cannot be confident in the datasets oversampled by existing

oversampling techniques. Thus, an analysis of oversampling performance for JIT-SDP

model is conducted to analyse the stability of oversampling under different datasets

conditions.

Approach: Oversampling techniques are utilized only for the training datasets. The

experiments are conducted on each dataset after resampling with each oversampling

technique. The oversampling procedure stops when it reaches 50% of the defect data in

the training set. It assumes that a balanced dataset is achieved and that oversampling

defect data to 50% of training data will achieve better results. (Fernandez et al., 2018).

For the prediction performance, JIT-SDP is built based on Logistic Regression

algorithm to evaluate the performance of each oversampling technique. Logistic

regression is a widely used classifier in JIT-SDP similar to several studies (Kamei et al.,

Univ
ers

iti
Mala

ya

97

2013; Taba et al., 2013; Yang et al., 2016; He et al., 2018). The training data for

Logistic Regression classifier are randomly selected using 2/3 of the sample size and the

remaining 1/3 as the testing data for each dataset. The process of splitting the dataset is

repeated 10 times to reduce the effect of bias throughout the experiments. The division

is done using stratification such that the proportion of imbalanced class distribution is

maintained. Figure 25 shows the steps followed for the empirical evaluation of the data

oversampling techniques for each dataset. To evaluate the effectiveness of oversampling

techniques, F-score is used which a commonly used metric for evaluating the accuracy

of classification performance. F-score combine Precision and Recall that are derived

from a confusion matrix. The confusion matrix consists of four possible prediction

outcomes. If an instance predicted correctly as ‘defective’, it is considered as a true

positive (TP); if an instance is misclassified as ‘defective’, it is a false positive (FP); if

an instance is correctly classified as ‘clean’, it is a true negative (TN); if an instance is

misclassified as ‘clean’, it is a false negative (FN). Using four numbers of confusion

matrix, Recall, Precision and F-score are calculated. Recall is the ratio of the number of

correctly predicted ‘defective’ instance to the number of actual ‘defectIve’ instance

(Recall = TP/(TP+FN)). Precision is the ratio of correctly predicted ‘defective’

instances to all instances predicted as ‘defective’ (Precision = TP/(TP+FP)). Then, F-

score is a hormonic mean of Recall and Precision (F-score = (2*Recall*Precision)/

(Recall + Precision)). The higher F-score value indicates better overall performance for

the classification results by JIT-SDP model.

Univ
ers

iti
Mala

ya

98

Figure 25: Procedure of comparison for oversampling techniques

3.1.2 Data Distribution

Distribution of imbalanced dataset in JIT-SDP consists of wide variability in the

percent of defects that existed across software project datasets. Such different means

that the geometry of the hyperspace boundary between different datasets varies in term

of the overlapped class distribution. To illustrate this overlapped distribution, the

imbalance datasets are transformed into two principle components (2D) representation

by using Principal Component Analysis (PCA). Figure 26 illustrates the distribution of

imbalanced datasets resulting in various overlapped spatial distributions.

The consistency of oversampling in different scenarios is examined by adding three

Gaussian noise levels (25, 50, and 75%). Higher levels of noise increase the likelihood

that class distributions overlap. In addition, this increases the diversity within the

original datasets. Adding Gaussian noise allows for a variety of different datasets to be

derived from original datasets, thereby allowing the evaluation of oversampling

techniques in various class overlapping scenarios. With the addition of Gaussian noise,

Univ
ers

iti
Mala

ya

99

the robustness and performance of oversampling techniques when exposed to known

amounts of noise can now be tested. Here are some examples of the measurement of

original software project datasets before and following the addition of noise, as shown

Figures 27 to 32.

Figure 26 : Data distribution after transformation Univ
ers

iti
Mala

ya

100

Figure 27: Addition of noise in Bugzilla dataset

Figure 28: Addition of noise in Columba dataset Univ
ers

iti
Mala

ya

101

Figure 29: Addition of noise in Postgres dataset

Figure 30: Addition of noise in JDT dataset

Univ
ers

iti
Mala

ya

102

Figure 31 Addition of noise in Eclipse-Platform dataset

Figure 32: Addition of noise in Mozilla dataset

3.1.3 Baseline Techniques

SMOTE (Chawla et al., 2002) is a synthetic minority oversampling technique to

overcome the problem of overfitting in which generated samples are exact replicates of

observed samples. Using this technique, new samples are produced by linearly

Univ
ers

iti
Mala

ya

103

interpolating an inferior sample with its k-Nearest Neighbors. In this approach, new

samples are generated without considering the majority sample, which in turn lead to

overlapping between majority and minority samples, thereby causing over-

generalization as well as amplification of noise. Despite these drawbacks, SMOTE is

widely adopted by researchers because of its simplicity.

ADASYN (He et al., 2008) adaptively generates minority data samples according

to their distributions: more synthetic data is generated for minority class samples that

are harder to learn compared to those minority samples that are easier to learn.

Dynamically adjusts sample weight to reduce the bias in the imbalanced dataset by

considering the characteristics of the distribution of the data. For each minority class

sample, ADASYN incorporates a density distribution to determine the number of

synthetic samples required. In this optimization process, it is induced to focus on the

hard-to-learn (classify) examples within the minority class samples. As a result, the

samples generated are not equal across all samples.

GAZZAH (Gazzah et al., 2015) is a hybrid approach that consists in oversampling

the minority class using SMOTE star topology, and under-sampling the majority class.

The under-sampling approach is based on selecting some feature vectors according to a

distribution criterion. over-sampling a minority class by adding only a few synthetic

instances and under-sampling the majority class by removing examples that are not

relevant enough

MWMOTE algorithm (Barua et al., 2014) categorizes and identifies safety data,

boundary data, and potential noise data from minority samples. It adaptively assigns the

weights to the selected samples according to their importance in learning. The samples

closer to the decision boundary are given higher weights than others. Similarly, the

samples of the small-sized clusters are given higher weights for reducing within-class

Univ
ers

iti
Mala

ya

104

imbalance. The synthetic sample generation technique of MWMOTE uses a clustering

approach to partition datasets and uses the Euclidean distance similarity measure to find

very close class samples and synthetically generate samples based on the weights

assigned to the minority class samples.

Borderline-SMOTE (Han et al., 2005) is a modification of the SMOTE technique

with a focus on cases of minority class data instances that are difficult to classify,

otherwise known as borderline data instances. Before finding minority class instances,

the algorithm finds minority class instances that have more majority class instances as

closest neighbors than minority class instances

ROSE algorithm (Lunardon et al., 2014) reproduces already existing minority class

instances at random, thereby increasing the number of minority instances. It is

considered a smoothed bootstrap-based technique. Moreover, it is a simple and easy-to-

implement method. The technique helps to generate synthetic data based on sampling

methods and smoothed bootstrap approach.

MAHAKIL oversampling algorithm (Bennin et al., 2018) introduces the crossover

operator of genetic algorithms to synthesize samples. The oversampling algorithm is

based on the theory of inheritance and the Mahalanobis distance. The algorithm enables

the data diversity within the minority class to increase by uniquely creating new

synthetic minority instances based on having a small diversity measure distance value.

Table 19: Overview of oversampling techniques

Technique Advantage Limitation

SMOTE Simplicity Overgeneralized

ADASYN
Generating more data for harder

to learn examples

Ignore minority samples close to the

decision boundary

ROSE Simplicity
Potential of leading to over-fitting

toward near-duplicated instances

Univ
ers

iti
Mala

ya

105

MAHAKIL
Increase the diversity of the

synthetic samples

Potential of invading the majority of

sample’' space

MWMOTE
Generating more data for harder-

to-learn examples
Increase in complexity of the model

Borderline-

SMOTE

Generating more samples near

class boundaries
A less diverse sample generated

GAZZAH
Avoid irrelevant instances for

generating a new instance
Inconsistence due to balancing policy

3.1.4 Result and Discussion

RQ1: How does the performance depend on the characteristics of the datasets?

1) Data without additional Gaussian noise

Figure 33 and Table 20 present F1 scores for different resampling techniques. For

mildly imbalanced datasets of Columba, Bugzilla, and Postgres in the context of

without additional noises, oversampling techniques are observed to insignificant

improvements of F1-score except in the case of Bugzilla. Compared to other projects,

Bugzilla is the least class imbalance ratio. In addition, Bugzilla distribution is also

considered less diverse data since the number of data instances is among the lowest. As

a result, sampling of data for machine learning becomes easier. However, the hybrid

Gazzah technique results in the lowest performance when considered in terms of

consistency and accuracy. As this technique entails under-sampling, some crucial

information necessary to build an effective predictive model is lost during sample

removal. In contrast, MAHAKIL achieves the highest median F1-score of 0.58 for this

dataset, as a result of its focus on improving the diversity of data. This is one of the

reasons why MAHAKIL's F1-score is more stable and more accurate.

For the high imbalanced dataset of JDT, Platform, and Mozilla, the consistency and

prediction accuracy of models developed through oversampling data across techniques

Univ
ers

iti
Mala

ya

106

is almost similar. This occurs because the dispersion in the data measurements already

diverse before oversampling is conducted. Regarding this situation, as compared to mild

imbalanced datasets, the size of the data within these datasets is larger and limited in

terms of defects. With a large amount of data, more unique measurement instances are

apparent in the distribution of data which indicates a diverse state. As a result, it is

difficult for these oversampling techniques to improve the quality of the data when only

limited empty spaces are available for the defect class without introducing new data into

the region of the clean class. This phenomenon results in data resampling into

overlapping spatial distributions.

2) Data with additional Gaussian noise

Figure 34 illustrates the prediction results obtained using baseline techniques in the

presence of noise. The addition of noises to original data reduces the prediction model

accuracy by all techniques. With an increase in the level of noise, the performance of

oversampling techniques generally is downgraded. The addition of 25% noise is still a

tolerable level of noise for most of the techniques as the accuracy of the model

developed using these techniques is slightly reduced when compared to without

additional noise. On the other hand, the addition of 50% and 75% noises shows the

prediction accuracy is almost the same accuracy performance across the compared

oversampling techniques. The observation indicates that the classifier built using

logistic regression faces difficulty to learn from the training data. This is due to the

effect of noises which affected the diversity of data and became denser in the data

distribution. Consequently, more overlapped spatial distribution resides in the data

regions with the dense distribution datasets.

Univ
ers

iti
Mala

ya

107

RQ2: Which techniques give the best performance in general?

Generally, heavyweight techniques such as MAHAKIL and MWMOTE are more

accurate and consistent in mildly imbalanced datasets. The justification for this

observation is that these techniques enable the identification and exploitation of empty

spaces within a scarcity of data by employing partitioning techniques. MAHAKIL

utilized rule-based partitioning by dividing the ordered instances into two bins based on

the midpoint of the distance matrix. While MWMOTE uses a clustering algorithm to

partition data into clusters closer to the class boundary lines. The strengths of these

techniques are not fully utilized when high imbalance and noisy data are present, as they

are unable to oversample effectively in the low-density distribution of data. It is

believed that this limitation is a consequence of the fact that oversampling in

multivariate data requires a proper handling of the multi-dimensionality of the software

metrics already included in JIT-SDP datasets. In particular, these two techniques rely

upon distance-based measurements (i.e. Euclidean distance for MWMOTE and

Mahalanobis distance for MAHAKIL) for diversity analysis, which is ineffective in

dealing with multidimensional data. Concerning diversity analysis, distance-based

measures have several limitations when dealing with multivariate data, such as the

inability to recognize duplicate data, ineffectiveness in detecting outliers, and

inefficiency in detecting covariance among data samples. Therefore, the multivariate

aspect of the imbalanced data is improperly handled. This situation contributes to the

challenging task of oversampling multivariate data in respect to address the spatial

distribution problem effectively.

In contrast, lightweight techniques such as SMOTE, ROSE, Borderline, and

ADASYN are approximately similar in terms of consistency for the accuracy of

predictions. This similarity in performance is attributed to the focus of oversampling, in

Univ
ers

iti
Mala

ya

108

which the main attribute of these techniques tried to exploit data near the boundaries of

classes. The assumption in this context is that the data within these regions are harder to

learn for the purposes of classification, and therefore the samples required to be selected

for interpolation. Despite this assumption, the situation of data richness is rarely favored

when dealing with the high imbalance and noisy data that result in a highly overlapped

spatial distribution problem. A notable characteristic of JIT-SDP is that it lacks a

scarcity of measurement in software metrics. Consequently, oversampling techniques

are unable to identify feasible regions for the selection of hard-to-learn samples and

result in ineffective performance. The partitioning of data is one possible way to

identify feasible methods for oversampling that significantly decrease the effect of

overlapped spatial distributions.

Table 20: Median of F1-scores after 10-folds stratified cross validation

Datasets/Technique SMOTE ROSE ADASYN Borderline MWMOTE GAZZAH MAHAKIL

Columba 0.56 0.57 0.55 0.56 0.57 0.46 0.51

Bugzilla 0.46 0.46 0.48 0.49 0.46 0.46 0.58

Postgres 0.54 0.56 0.54 0.54 0.54 0.54 0.56

JDT 0.33 0.33 0.33 0.33 0.34 0.28 0.33

Platform 0.32 0.32 0.32 0.33 0.32 0.32 0.32

Mozilla 0.19 0.19 0.17 0.20 0.20 0.14 0.20

Figure 33: Without additional noise

Univ
ers

iti
Mala

ya

109

Figure 34: Performance of prediction with the addition of noise data

Univ
ers

iti
Mala

ya

110

3.1.5 Threat to Validity

The first threat for this analysis is the unknown effect of the selection of classifier.

This analysis used only logistic regression as the base classifier of JIT-SDP. The choice

of logistic regression as the classifier technique is due to it being widely used in the

previous JIT-SDP model. Nevertheless, the effectiveness of other classifiers remains

unverified and needs to be studied in the future. Besides, six long-lived and widely used

open-source software projects considered in this experiment are large enough to allow

drawing statistically meaningful conclusions. The reported results may not be

generalizable to other projects that have features different from the studied datasets.

However, it is necessary to consider a wide variety of projects to replicate the analysis

in the future to mitigate this threat. Removal of outliers in the original data is a potential

threat to these experimental results. These outliers introduce additional noises to the

distribution of original datasets. Nevertheless, some of the oversampling techniques

especially for MAHAKIL and MWMOTE capable to handle outliers during data

partition. Thus, to make fair comparison removal of outlier is excluded in the

experiment. The software metrics considered for this analysis are a potential threat to

the experimental results. By using a single set or type of metrics, generalization to other

types of software metrics is unable to be concluded with the reported results.

Nonetheless, code and process metrics are known to perform very well and are

effectively used in several empirical studies on JIT-SDP. The reason is due to both

types of metrics are easy to collect from any software once the code change transaction

in VCS is available.

3.1.6 Conclusion

The class imbalance problem is a major challenge in JIT-SDP. The experiment

examined which oversampling techniques perform best under different imbalanced class

Univ
ers

iti
Mala

ya

111

settings based on six frequently used projects datasets. MAHAKIL performs better and

is more stable in dense datasets. MAHAKIL is designed to enhance the diversity of data

in small datasets. Therefore, MAHAKIL outperformed other baseline techniques,

particularly in the Bugzilla dataset. However, all baseline techniques are unable to

distinguish their performance in high imbalanced datasets and result in similar accuracy

results. A factor that contributed to this observation is the limited number of empty

spaces available for oversampling within the minority class (defect). After resampling

the data, defects data are generated into clean class data spaces, reflecting the problem

of overlapping class spatial distributions. To avoid interpolating defect class data into

occupied spaces of clean class data, it is recommended that the diversity measurements

be taken into account before oversampling in future work to overcome the problem of

overlapping class distributions.

In terms of overall performance, heavyweight techniques are capable of producing

better oversampled data for the JIT-SDP model, which results in improved prediction

accuracy. Heavyweight techniques include a data partitioning component that assists in

identifying suitable empty spaces for interpolating defect data. However, heavyweight

techniques have difficulty handling data covariance, indicating their inability to perform

effectively with data that is less diverse or with highly imbalanced class distributions.

Thus, oversampling should allow for a better analysis of data diversity before

identifying an area where data interpolation is feasible. Future works should consider

alternative methods of measuring diversity in oversampling. In order to handle less

diverse data, the application of similarities measurement is preferable to distance based

measurements.

Univ
ers

iti
Mala

ya

112

3.2 False Positives Prediction in Effort Awareness Evaluation

In the JIT-SDP model, machine learning is the main methodology for developing

defect classifiers. Thus, this experiment aims to provide comparative analysis of

baseline classifiers in JIT-SDP regarding false positives results in effort awareness

evaluation. The experiment is incorporate with two main objectives which further

investigate two research questions as given in Table 21. Effort awareness of the JIT-

SDP model needs to consistently reflect the prediction accuracy. Accordingly, to

address the effectiveness of using machine learning methodology concerning base

classifier accuracy performance, the false positive rate is considered in the evaluation of

effort-aware model.

Table 21: Mapping of research objectives and research questions

Analysis Objectives Research Questions

To analyze the classification result of JIT-

SDP for baseline classifier techniques

RQ1. Do different classifiers perform

different classification results for JIT-SDP?

To evaluate the performance of effort-aware

model

RQ2. Does any classifiers consistently fulfill

the performance criteria of low rate of false

positives

3.2.1 Experimental Setup

RQ1: Do different classifiers perform different classification results for JIT-SDP?

Motivation: The classifier used to classify defective changes represents a factor that

strongly influences the classification results for the JIT-SDP model. In particular,

Ghotra et al. (2015) discovered that the accuracy of a defect prediction model can

increase or decrease by up to 30% depending on the type of classification used.

Moreover, Panichella et al. (2014) demonstrated that despite similar prediction

accuracy, the predictions of different classifiers differ in defect count.

Univ
ers

iti
Mala

ya

113

Approach: For the requirement of the model building, training datasets need to undergo

a class rebalancing process as recommended by Kamei et al. (2013). The training data is

imbalanced because most of the changes are clean class whereas only a small percent of

changes contain defects. The class imbalanced problem reduces the accuracy of the

prediction. For this reason, the number of defects changes need to equal the number of

clean changes in the training data. This experiment employs SMOTE (Chawla et al.,

2002) to ensure the equality of the numbers of samples balanced for both classes.

SMOTE generates new synthetic instances by combining certain defect class samples

with previously defined k defect class nearest neighbor instances. The experiments ran 7

base learners of logistic regression (LR), support vector machine (SVM), decision tree

(DT), Adaboost, Gaussian naïve Bayes (NB), artificial neural network (ANN), and k-

nearest neighbor (KNN). All base learners are applied within stratified ten-cross

validation settings. This setting divides the dataset into ten equal portions and uses each

chunk once as the test set to evaluate the developed model using the remaining nine

portions. The rationale behind using 7 classifiers is that each classifier consists of

limitations and advantages. These 7 classifiers are mostly used in the literature for

classification purposes. During the experiment, the prediction models are built by

mapping the given software metrics to an output whose values are binary: clean and

defect changes. The training data for all baseline classifiers are randomly selected using

2/3 of the sample size and the remaining 1/3 as the prediction data for each dataset.

Then, the training dataset undergoes 10-fold stratified within project validation. The

datasets are divided randomly into 10-folds, 9-folds serve as training data, and the

remaining fold serves as test data. In cross-validation, each fold is used as a testing

dataset only once. Additionally, the data are folded so that every fold consists of the

same proportions as the original dataset. The highest prediction model among these

folds is selected for the final prediction. The selected model is used to predict the

Univ
ers

iti
Mala

ya

114

unseen data which is the prediction dataset. The final prediction result is recorded to

show the credibility of the experiment results.

RQ2: Does any classifiers consistently fulfill the performance criteria of low rate of
false positives?

Motivation: In an ideal scenario, a prediction model must have a high capacity for

predicting defect proneness and a low false alarm rate. However, ideal cases are

extremely rare. As highlighted by this condition, it is necessary to investigate the

consistency of baseline classifiers' performance in dealing with false positives based on

effort evaluation.

Approach: As the JIT-SDP model is to determine whether a code commit instance is

defective change or clean change, some indicators for the binary classification task are

used to evaluate the effectiveness of the base classifiers for comparison. In this analysis,

a total of three indicators are used, including F-score, ACC, and false-positive rate

(FPR). The details of these indicators are described as follows. The first indicator is F-

score, which is the weighted harmonic average of Precision and Recall. F-score is

intended to capture the prediction performance in imbalanced class distribution existing

in the datasets. Furthermore, F-score provides a harmonic mean of precision and recall

which gives a better measure of incorrectly classified cases than the accuracy metric.

For evaluating the predictive effectiveness of a JIT-SDP model, the effort required to

inspect those changes predicted as defect-prone is considered to find whether they are

defective changes. Consistent with Kamei et al. (2013), the code churn which describes

the total number of lines added and deleted by a change is used as a proxy for the effort

required to inspect the change. Similar to Kamei et al. (2013) works, ACC is used to

evaluate the effort-aware performance of the JIT-SDP models. ACC denotes the recall

of defect-inducing changes when using 20% of the entire effort required to inspect all

changes is implemented. Furthermore, this analysis also considered the rate of false

Univ
ers

iti
Mala

ya

115

positives in 20% of inspection efforts (FPR@20%). Concerning the rate of false

positives, a lower value is better. In contrast to ACC a higher value is better.

3.2.2 Result and Discussion

RQ1: Do different classifiers perform different classification results for JIT-SDP?

The results achieved running the baseline classifiers over all the considered

software projects are reported in Table 22. As reported in the results, no single classifier

is a clear winner in defects prediction. Indeed, the difference in terms of F-score

achieved by the classifiers is quite small except for NB which is the lowest performance

across six datasets. Despite this observation, the average F-score achieved by ANN is

higher with respect to other classifiers: LR = +3%, SVM = +3%, DT = +7%, NB= 10%,

kNN= +6%. In contrast, ANN and AdaBoost have an almost similar average of F-scores

of 45.2% and 45.42% respectively. The results demonstrate how deep learning

classifiers such as AdaBoost and ANN are superior classifiers compared to the baseline

supervised classifiers. Such superiority is statistically significant when considering the

differences between the performances of both AdaBoost and ANN with the ones

achieved by other supervised classifiers on large-sized software projects such as JDT,

Platform, and Mozilla. Here in these datasets, all classifiers achieve a poor F-score of

less than 40%. The classifiers are trained using resampled data by SMOTE which still

leads to the overgeneralization of the defect class because it only selects the nearest

neighbor instances. For this reason, it is important to fine-tune the hyperparameters for

both resampling and classifier algorithms according to the training datasets.

Univ
ers

iti
Mala

ya

116

RQ2: Does any classifiers consistently fulfill the performance criteria of low rate of

false positives?

Despite several studies (Kamei et al., 2013; Taba et al., 2013; Yang et al., 2015;

Chen et al., 2018; Kondo et al., 2020) utilized LR as a suitable classifier in the context

of effort-aware model in JIT-SDP. According to effort awareness in ACC given in

Figure 35, findings however, LR is not significantly different with SVM and kNN with

a magnitude of difference are less than 1% of ACC. In fact, ANN, DT, and AdaBoost

perform equally or better than LR in all datasets. Nevertheless, based on the statistics

shown in Figure 35, all classifiers are unable to produce good results in terms of false-

positive rate within ACC score. The results show that none of the classifiers reduce FPR

by less than 41%. In other words, none of these classifiers are capable of producing

reliable effort awareness results when considering only 20% of efforts. Note that based

on such experimental results, the choice between current classifiers provides no

significant effect on reducing false positives in effort awareness. Therefore, due to such

unreliable results for effort-aware of JIT-SDP, a good defect classifier algorithm is

needed to compromise between reducing false positives and having reliable effort

awareness in defect prediction.

3.2.3 Threat to Validity

The quality of the experimental results depends on the dataset used. Therefore, this

analysis decides to use the dataset commonly used in JIT-SDP studies. Hence, the

datasets are suitable for developing and validating models for identifying defects in

code change transactions. Nevertheless, the experiments carried out in this analysis can

also be performed with a different dataset. In addition, only six classifiers are adopted

throughout this experiment and the parameters are set to the defaults. For the training

datasets, only SMOTE with default parameters is considered in the data resampling

Univ
ers

iti
Mala

ya

117

process. The performance of the prediction model with other classifiers, resampling

techniques, or different parameters is not validated here. In the future, more

oversampling techniques and more different machine learners are required to explore

for the performance comparison.

A total of three indicators are used, including F-score, ACC, and FPR performance

measures are used to evaluate the effort awareness of the JIT-SDP models. These three

selected performance measures are common in JIT-SDP. However, in case of other

performance measures are adopted, different results are obtained. To reach a more

general conclusion, more performance measures in future works are needed.

3.2.4 Conclusion

In the experimental analysis conducted on seven baseline classifiers for developing

JIT-SDP model, we investigated which of the baseline classifiers is the feasible

classifier for effort aware context. The results showed that the deep learning classifiers

have edge advantage in predicting defect accurately. In addition, through evaluating

different classifiers in effort awareness evaluation, no significant performance is

achievable for the baseline classifiers except for deep learning classifiers (AdaBoost and

ANN). Despite the fact that these deep learning classifiers predict more defects than

other basic classifiers, the rate of false positives is still high and have not improved

significantly in comparison to other classifiers. Current baseline classifiers are incapable

of producing dependable results for effort-aware JIT-SDP. To improve the results of

high false positives in defect prediction, an alternative advanced classifier capable of

achieving a balance between reducing false positives and producing accurate predictions

is urgently required.

Univ
ers

iti
Mala

ya

118

Table 22: Accuracy performance of base learners

Datasets/

Technique
Columba Bugzilla Postgres JDT Platform Mozilla

 Fscore ACC FPR Fscore ACC FPR Fscore ACC FPR Fscore ACC FPR Fscore ACC FPR Fscore ACC FPR

LR 52.1 52.4 53.1 59.6 61.8 47.5 54.3 49.6 54.4 34.7 51.7 75.4 34.4 63.3 77.4 20.7 47.3 90.2

SVM 51.9 53.1 53.9 59.3 61.2 47.7 53.7 49.5 55.5 34.1 52.4 76.7 33.9 63.1 77.6 19.2 45.4 91.3

DT 49.1 69.4 63.2 53.8 72.9 58.9 44.8 59.2 69 29.6 61.5 84.1 30.7 64.2 84.7 21 57.9 95.6

AdaBoost 54.7 58.3 53.5 60.1 75.9 58.4 56.1 48.5 53 37.5 58.9 78.1 38.1 70.1 81.8 24.8 61 94.7

NB 25 9 45.1 56 40 46 49.4 47.1 58.8 29.6 41.5 74.4 26.6 20.5 65.7 21.2 22.1 81.4

ANN 56.3 54.2 48 62 63.8 49.7 55.1 51.7 58.5 38 60.6 76.9 38.2 56.3 72.6 22.9 49.5 89.6

kNN 50.2 53.5 57.9 55.2 55.6 51.2 47.6 47.8 66.3 31.8 47.1 76.9 34 46.9 74 19.7 39.4 88.3

 Univ
ers

iti
Mala

ya

119

Univ
ers

iti
Mala

ya

120

CHAPTER 4: DEVELOPMENT OF JUST-IN-TIME SOFTWARE DEFECT

PREDICTION

To solve the identified research issue, this chapter provides details on the development

of JIT-SDP. To begin, the proposed framework of JIT-SDP is provided to illustrate the

detailed process of this development overview. The section explains data extraction,

data pre-processing, and model training. In the following section, the development of

the proposed oversampling technique is given in detail to address the class imbalance

issue in SDP datasets. Next, the development of Deep Q-Network (DQN) algorithm in

the JIT-SDP problem is explained in the following section.

4.1 Development Phases

JIT-SDP mainly comprised of three main phases: 1) data extraction, 2) data pre-

processing, and 3) model training and prediction. Figure 36 depicts the overall process

that is involved in the proposed JIT-SDP. The developed model using the proposed

framework capable to achieve high accuracy and generalizability even for unseen data.

The proposed framework helps to facilitate the modelling of JIT-SDP model according

to robust accuracy and effort awareness performances.

4.1.1 Data Extraction

To conduct an analysis of the proposed framework, the research focused on open-

source software projects. A total of six software project datasets were analyzed in this

study which are used originally by Kamei et al. (2013). The datasets are extracted based

on an analysis of code change characteristics that are represented as software metrics.

The software metrics considered here are considered as change-level software metrics.

The metrics comprise five dimensions. The diffusion dimension describes the

distribution of a change. The assumption is that highly distributed changes are likely to

Univ
ers

iti
Mala

ya

121

introduce defects. The size dimension refers to the size of a change. It is assumed that a

complex change is expected in most cases, which introduces defects. In terms of the

purpose dimension, a change intended to fix a defect led to the introduction of new

defects. According to the history dimension, changes to the touched files or code are

likely to introduce a defect if the files are modified by more developers. The experience

dimension assumes that experienced developers are less likely to introduce defects

when modifying source code. The metrics also are derived using the CommitGuru tool

(Rosen et al., 2015), which automatically extracts the measurement for each of these

metrics. Based on the five dimensions of metrics, the tool analyses code repositories by

detecting changes within code change transactions. The process of identifying code

changes is described as follows: first, code changes are extracted from the code

repositories of the version control system (VCS) and issue tracking system (ITS). The

data are analyzed based on the code changes characteristic as described in the preceding

paragraph. To identify defective changes from clean ones, SZZ algorithm (Śliwerski et

al., 2005) is applied to distinguish the defect-causing and non-defective changes. SZZ

algorithm is an automated tool for identifying defects causing changes. Thus, the

extracted changes are categorized into defects and clean changes classes. Across

different projects, the proportion of defects and clean changes is different. During this

data labeling, notably that all the datasets have imbalances. Mozilla is the largest

imbalanced dataset of six datasets with defect rates containing only 5% defects whereas

the Bugzilla dataset with the most balanced datasets with defects contains 36%. To

generate good quality data, additional data preprocessing is required to ensure balanced

class distributions and to eliminate any noise from the extracted data.

Univ
ers

iti
Mala

ya

122

Figure 36: Conceptual framework of developing JIT-SDP model

4.1.2 Data Preprocessing

1) Logarithm and normalization

To ensure high quality data, four pre-processing operations are conducted on the

training dataset. Firstly, skewed distribution datasets require log transformation. In

defect pattern learning, the distribution in the dataset is extremely significant. Figure 37

Univ
ers

iti
Mala

ya

123

illustrates the distribution of outliers present in the current dataset, which creates

bottlenecks during the learning process. To make the distribution of the data more

uniform, outliers need to be correctly dealt with or removed. According to the

distribution, many outliers are present in the distribution, which makes it difficult to

recognize data patterns. Thus, in this framework, the outliers must be properly handled

by utilizing log transformation and normalization.

A natural logarithm of each change metric is applied to make patterns more visible

and reduce variability. Due to the binary nature of FIX, the transformation does not

apply to the metric. The natural logarithm is calculated as follows:

𝑥′ = ln 𝑥 (4.1)

A data normalization process is then performed to limit the range of changing data

values. The range of change metrics in this data set is not uniform. NS, NM, NF,

NDEV, PD, RXP, REXP, and SXP are raw data with a range of values, whereas other

metrics are normalized to [0, 1]. For unified data formats, these raw data are normalized

using the Min-Max normalization method. This study used the Min-max normalization

dataset because it has a high accuracy, low complexity and high learning speed.

Normalizing features has several advantages including reducing prediction error,

decreasing the likelihood of finding stuck upon local optimal solutions during training,

and reducing the computational cost of training. (Qiao and Wang, 2019). In this

scenario, Min-Max normalization is employed to linearly transform the original data.

The formula for Min-Max normalization is as follows:

𝑁𝑜𝑟𝑚(𝑥) =
𝑥𝑖 − min(𝑥)

max(𝑥) − min(𝑥)
 (4.2)

Univ
ers

iti
Mala

ya

124

Here, min (𝑥) and max(𝑥) represent minimum and maximum value of a change

metric x. Min-max normalization maps a value xi to Norm(x) in the range [0, 1]. By

performing such a normalization, the relationship between raw data values is preserved.

However, data normalization does not affect how the data is distributed.

Figure 37: Skewness of data measurement across software metrics dimension

2) Features selection

The highly correlated metrics need to be removed, as suggested by Kamei et al

(2013). In order to remove highly correlated measures, this study excludes NM and

REXP metrics, as NF and NM, REXP and EXP are correlated. The exclusion of metrics

is based on a manual selection of which collinearity features are eliminated to ensure

only the unique features in the model are kept. Figure 38 shows the correlation analysis

of software metrics. The analysis indicates a single feature could consist of one or more

Univ
ers

iti
Mala

ya

125

features that are correlated. Incorporating highly correlated features decreases classifier

accuracy (Shivaji et al., 2013). Highly correlated features lead to serious

multicollinearity problems. As part of this process, the metrics LA and LD are removed

from consideration because both are used when evaluating efforts awareness later.

Figure 38: Correlation analysis of software metrics

3) Splitting training/testing data

To examine the proposed solutions for obtaining an adequate and realistic

assessment, three prediction settings are conducted as shown in Figure 39. These

validations are comprised of within-project prediction, cross-project prediction, and

timewise prediction. The validations are performed using a ratio of training (80%) and

testing (20%) data.

Within-project prediction is performed within the same software project data. In

this validation, StratifiedKFold is used to ensure the class distribution in the datasets is

Univ
ers

iti
Mala

ya

126

preserved in the training and test splits. The datasets are divided randomly into 10-folds,

8-folds serve as training data, and the remaining fold serves as test data. In cross-

validation, each fold is used as a testing dataset only once. Additionally, the data is

folded so that every fold has the same proportions as the original dataset. Using

StratifiedKFold, the average result is recorded to improve the credibility of the

experiment results.

Timewise-prediction is performed within the same software project, which

considers changes in chronological order. Based on commit dates, the chronological

order of changes data for each software project is ranked. Then, all the changes made

within the same month period are grouped. Assume that the changes in a software

project are grouped into n different parts. A prediction model m is built using a

combination of fold i until fold i + 1 as training data to predict testing data for parts i+4

and i+5. According to this example, the datasets (1 ≤ i ≤ n - 5) for training data and

testing data consist of changes committed over a period of two consecutive months.

Several factors account for this configuration. First, the release cycle of most projects is

typically six to eight weeks. Second, it ensures that each training and test set receives a

two-month interval between them. Thirdly, two consecutive months ensure that each

training set has enough samples for supervised models, which is very significant. Lastly,

it allows for enough training data for each project. Based on changes occurring over n

months, the outcome of this method is n - 5 prediction effectiveness values for each

model

Cross-project prediction is performed across different software projects. The

training data set on one project is used to predict defect-proneness in another project as

the testing data set. For a set of n projects, this method produces n * (n - 1) prediction

effectiveness values (Zhu et al., 2020). For this study, six projects are used as the

Univ
ers

iti
Mala

ya

127

subject projects. Accordingly, each prediction models produces 6 × (6 - 1) = 30

prediction effectiveness values.

Figure 39: Scenarios of cross-validation

4) Oversampling in imbalanced datasets (RO2)

JIT-SDP datasets are relatively imbalanced, and defective changes represent only a

small portion of overall changes. In the absence of adequate handling, this imbalance

results in degradation of the predictive models' performance. Despite different

researchers proposing various techniques to solve the class imbalance problem, no

single method outperformed the others in all studies (Arora et al., 2015). Conventional

oversampling strategies do not consider overlapping data within the sample. In order to

overcome the problem of overlapping data, this research proposes an oversampling

algorithm based on kernel analysis and spectral clustering. In particular, the proposed

Univ
ers

iti
Mala

ya

128

solution intends to address the following aspects as summarized in Table 23. Section 4.2

provides details regarding the implementation of the proposed oversampling.

Table 23: Mapping of proposed oversampling

Aims Problem Solution Contribute

To reduce near-

overlapping data

Complex boundary line led

to a small distance between

new and old data

(Bellinger et al., 2016)

KPCA for measuring

similarity between original

samples. (Details in Section

4.2.1)

Capable to handle non-

linear data distribution

To reduce the

effect of high

dimensional data

Presence of covariance

among data samples

(Rodríguez et al., 2022)

KCPA representing

multidimensional data.

(Details in Section 4.2.1)

Linearly represent

multivariate data into

lower dimension data

while maximum

variation is retained

To reduce the

randomness

introduced in

oversampling

procedure

Assume each minority

instances are equally

important

(Sharma et al., 2022)

Spectral clustering with

KPCA to select data

template using ranking-based

selection (Details in Section

4.2.2)

Capable to identified

feasible spaces for

interpolation

To avoid local

optimal

distribution in the

overall dataset

Interpolation favor on using

local information rather than

overall data distribution

(Han et al., 2023)

Cross-over interpolation by

pairing different inheritance

– a different level of parents.

(Details in Section 4.2.3)

Diverse data

distribution generated

Univ
ers

iti
Mala

ya

129

4.1.3 Model Training and Prediction

1) Model training

In this research, binary classification is adopted to develop the JIT-SDP model. The

classification produces the output values of the prediction function with {0,..,1}. Thus,

if the value of the prediction function 𝑓(𝑥) is greater than or equal to 0.5, the change is

classified as a defect, otherwise, the change is predicted as clean. The prediction

function is defined as follows:

𝑓(𝑥) = {
0, 𝑖𝑓 𝑌(𝑥) < 0.5

1, 𝑖𝑓 𝑌(𝑥) ≥ 0.5
 (4.3)

Where x is the given code change and 𝑓(𝑥) is the possibility for x to contain defects. As

introduced in the data extraction section, a code change, x is represented as a set of

metrics in this formulation.

𝑥0
𝑛 = {𝑁𝑆, 𝑁𝐹, 𝐸𝑛𝑡𝑟𝑜𝑝𝑦, 𝐿𝑇, 𝐹𝐼𝑋, 𝑁𝐷𝐸𝑉, 𝐴𝐺𝐸, 𝑁𝑈𝐶, 𝐸𝑋𝑃, 𝑆𝐸𝑋𝑃} (4.4)

Thus, the model of JIT-SDP is represented as:

𝑌(𝑥) = 𝑔(𝑥(𝑛)) (4.5)

The mapping of g refers to a machine learning function. Existing frameworks

employ machine learning techniques to search g that gives the best fit labeled for a

given data in software metrics 𝑥(𝑛). In this research, Deep Q-Network (DQN)

algorithm is used to map the given data. The details of the implementation of DQN are

given in Section 4.3.

Univ
ers

iti
Mala

ya

130

2) Prediction

Predictive effectiveness of the JIT-SDP model is evaluated according to the

prediction accuracy and effort aware measures. For prediction accuracy of the software

defects, the performance measures are based on precision, recall, and F-score. All these

measures are calculated using a confusion matrix as shown in Table 24.

Table 24: Confusion matrix

 Predicted defect Predicted clean

True defect True Positive (TP) False Negative (FN)

True clean False Negative (FN) True Negative (TN)

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4.6)

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4.7)

F0.5 =
1.25 × Recall × Precision

(0.25 × Precision + Recall)
 (4.8)

For effort-aware measures, two widely adopted effort-aware performance of

prediction models are considered, which are ACC and POPT. ACC indicates the recall

of predicting defective changes when 20 percent of the effort is required to inspect all

changes according to top-ranked changes. Popt is the normalized version of the efforts-

aware performance indicator introduced by Mende and Koschke (2010). This measure is

based on the concept of the code churn-based Alberg diagram. Figure 40 shows the

relationship in the Alberg diagram between Recall achieved by a prediction model and

the amount of inspected code. In Equation 4.9, 𝑃𝑜𝑝𝑡 is equal to 1 − ∆𝑜𝑝𝑡 , where is the

area between the optimal model and the prediction model.

Univ
ers

iti
Mala

ya

131

𝑁𝑜𝑟𝑚(𝑃𝑜𝑝𝑡) =
𝑃𝑜𝑝𝑡 − 𝑤𝑜𝑟𝑠𝑡(𝑃𝑜𝑝𝑡)

𝑜𝑝𝑡𝑖𝑚𝑎𝑙(𝑃𝑜𝑝𝑡) − 𝑤𝑜𝑟𝑠𝑡(𝑃𝑜𝑝𝑡)
 (4.9)

Figure 40: Alberg diagram based on Popt

4.2 Kernel Analysis and Crossover Oversampling Algorithm

Previous oversampling techniques cause generated minority samples to invade

majority sample spaces, resulting in a lower recognition rate for minority samples.

Using kernel analysis with spectral clustering and crossover interpolation as a method

of oversampling, this study recommends Kernel Crossover Oversampling (KCO). The

proposed algorithm attempts to generate new minority samples which combine features

from two distinct data samples while at the same time being uniquely different. A basic

intuition is that two instances, which are not necessarily close in distance, produce a

new instance that is similar to both samples. The theory is derived from the

chromosomal theory of inheritance, which considers the relevant features (software

metrics) of defective changes as chromosomes. KCO attempts to produce a balanced

class dataset with an increase in data diversity. The development of KCO is according

to three fundamental phases as illustrated in more detail in Figure 41.

Univ
ers

iti
Mala

ya

132

Algorithm 1 gives full procedure of KCO in producing the balanced class datasets.

The first phase adopts KPCA to segregate the measurements for the minority samples as

given in steps 1 to 6. In this process, KPCA transforms the original dataset into a

simpler dimension dataset to analyze the occupied space in the data distribution. In the

second phase which comprise of steps 7 to 11, spectral clustering divides the

transformed data into several clusters. We then evaluate the fitness of each cluster based

on the overlapped spatial distribution. By using the crossover operator of as in genetic

algorithms, new samples are continuously synthesized to complete the oversampling of

defect instances in the last phase as shown in steps 12 to 22. The newly generated

samples combine with the initial data to produce a balanced dataset for training the JIT-

SDP model. The following sections describe each phase in more detail.

Algorithm 1 Pseudo Code of Kernel clustering oversampling (KCO)
Input: Dataset of majority and minority class samples N; desired balanced proportion Pfp
Output: Balanced dataset at a set Pfp value
Procedure Begin

1) Split dataset N into majority class Nmaj and minority class Nmin
2) Compute the number of additional minority class to be generated T to attain Pfp
3) Xnew: array for generated samples, initialized to 0
4) Xnewchk: keeps count of the number of synthetic samples generated
5) Compute Kernel function of PCA for dataset N, KPCA = KernelPCA(n_components=2,

kernel='rbf') where n_components = dimension of data and RBF = radial basis function
6) Transform dataset N into KPCA, Xtranformed
7) Create partitions of dataset Xtranformed using Spectral clustering technique, cluster =

{i…10}
8) For each clusteri , sequentially compute spatial distribution fitness F(clusteri) = Nmaj /(

Nmaj + Nmin)
9) End for
10) Rank clusters according to spatial distribution fitness in increasing order
11) Clusterbest : Select top three clusters
12) While length of Xnewchk ≤ size of Nmin
13) Select samples parenta, parentb from Clusterbest, where parenta and parentb are

not equal
14) Generate a minority class synthetic sample Xi where Xi = average(parenta,

parentb)
15) Add Xi to Xnew and increase Xnewchk (i): Xnewchk = Xnewchk (i) + 1
16) End while
17) While length Xnewchk ≤ T
18) Select samples parenta, parentb from Clusterbest and Xnew respectively, where

parenta and parentb are not equal
19) Generate a minority class synthetic sample, where Xi = 𝝀 (𝒑𝒂𝒓𝒆𝒏𝒕𝒂) + (𝟏 −

 𝝀)𝒑𝒂𝒓𝒆𝒏𝒕𝒃
20) Add Xi to Xnew and increase Xnewchk (i) : Xnewchk = Xnewchk (i) + 1

Univ
ers

iti
Mala

ya

133

21) End while
22) Add Xnew to dataset N
23) Return N

Figure 41: Overview of proposed oversampling technique

4.2.1 Phase 1: Diversity Measurement

Euclidean distance fails to be effective in nonlinear distributions (Xia et al., 2015)

as presented in JIT-SDP datasets. JIT-SDP data typically exhibit a nonlinear distribution

as a result of the uncorrelated relationship between software metrics. Several factors

may affect the distribution, including clusters, non-convex shapes, or overlapping

regions that are not accurately represented using a linear distance measure. The

relationship between data points is unable to be well-represented by a straight line

Univ
ers

iti
Mala

ya

134

calculated by Euclidian distance (Chen et al., 2022). Therefore, the measure does not

accurately reflect the diversity of data points. Moreover, the JIT-SDP datasets

duplicates as a result of the collection process for the metrics (Chen et al., 2016).

Accordingly, the Euclidean distance measure unable to identify highly correlated or

duplicated data samples within nonlinear distribution which failed to provide

meaningful during information classifier training. As an alternative to handle highly

correlated data, one may utilize feature engineering techniques such as Principal

Component Analysis (PCA) (Lorena et al., 2019). PCA learns the original feature

combinations linearly in new dimensional spaces. Nevertheless, PCA assumes that the

learning data follow a linear separable Gaussian distribution. For real world data,

particularly code changesets, linearly separated data is impractical due to the nonlinear

structures of software metrics.

Prior studies have indicated that KPCA perform better than PCA for software

engineering tasks (Zhao et al., 2021). Researchers have investigated the use of KPCA in

software defect prediction, especially for the selection of features. Xu et al. (2019)

found that basic classifiers including KCPA as a feature selection method achieve

promising performance when compared to 41 baseline methods. Experimental results

indicate that the framework outperforms PROMISE and NASA datasets, particularly in

terms of F-measure, MCC, and AUC. Ho et al. (2022) utilized KPCA to reduce the

dimensions of defect feature spaces from software metrics in order to extract essential

information. A deep neural network (DNN) is then built to emphasize the semantic

relations between software metrics so that defect data are distinguished from non-defect

data using newly generated features from KPCA. Azzeh et al. (2023) examine the

performance of nonlinear kernel functions and linear kernel functions in the context of

different experimental parameters such as the granularity of the data, the imbalance

ratio of the dataset, and feature subsets. According to their findings, RBF is the only

Univ
ers

iti
Mala

ya

135

kernel function that exceeds linear and other nonlinear kernel functions. Nonetheless,

reducing the dimensionality of a dataset did not often improve the accuracy of software

defects prediction (Rosen et al., 2015; Śliwerski et al., 2005). Therefore, the KPCA

should not be limited to measuring the similarity between features in software metrics.

In other aspects of JIT-SDP, KCPA presents a promising alternative. As a result of

KCPA, patterns in the data are identified that are not apparent by traditional methods of

data representation, including handling high-dimensional datasets and capturing non-

linear relationships among features. Therefore, the analysis of data distribution can be

particularly important for data resampling.

This study employs KPCA to map multivariate of software metrics into a linear

projection using a nonlinear kernel function. The process of data projection involves

transforming the original data into lower dimension data. Data transformation process

converts multivariate data into a new set of uncorrelated variables. Enabling efficient

multidimensional scaling of JIT-SDP datasets with varying software metrics. In this

way, the diversity analysis of JIT-SDP datasets by KPCA is independent of the data

dimensions and becomes a scale-independent measurement. Therefore, the complex

structure becomes easier to manage and allows the representation of features to be

projected in a linear manner. Using a Radial Basis Function (RBF) kernel, KPCA

provides a linear representation of the data while preserving the relative distances

between pairs of data points that are close to the original space.

4.2.2 Phase 2: Data Partitioning

KCO makes use of spectral clustering that offers the advantages of simplicity while

reducing complex multidimensional nonlinear datasets into clusters of data with similar

characteristics in lower dimensions. Spectral clustering treats the data clustering

problem as a graph partitioning problem without making any assumptions about the

Univ
ers

iti
Mala

ya

136

shape of the clusters. Figure 42 shows the example of spectral clustering data

distribution into several clusters.

The basic premise of spectral clustering in defect datasets is as follows: For a

dataset with n samples D = {x1, x2, …, xn} and each sample has variables xi =

{v1,v2,..,vm} , where m is the number of software metrics. The clustering is based on

dividing each sample into k clusters C = {C1, C2, .., Ck}. As a result, the samples in the

clusters have a variance that is:

𝑎𝑟𝑔𝑚𝑖𝑛𝑠 ∑ ∑ ‖𝑥 − 𝜇𝑖‖

𝑥∈𝐶𝑖

𝑘

𝑖=1

(4.10)

Where, 𝜇𝑖is the mean value of the samples in 𝐶𝑖.

For each cluster, the fitness is determined by calculating the number of samples for

both the majority and minority classes. The intuition behind fitness evaluation for

clusters is that regions with lower proportions of majority samples indicate lower

overlapped spatial distribution. The following formula is used to calculate the fitness

weight of each cluster:

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝐶𝑖) =
𝐿𝑒𝑛𝑔𝑡ℎ (𝑋𝑚𝑎𝑗)

𝐿𝑒𝑛𝑔𝑡ℎ (𝑋𝑚𝑎𝑗 + 𝑋𝑚𝑖𝑛)
(4.11)

Each cluster is evaluated in terms of its fitness, and the three best clusters are

selected. In the selected clusters, more empty spaces are available, indicating areas that

are suitable for interpolation. According to selected clusters, a pool of the most suitable

templates for oversampling is identified.

Univ
ers

iti
Mala

ya

137

Figure 42: Spectral clustering within KPCA transformed data

4.2.3 Phase 3: Synthetic Data Generation

Interpolation in oversampling generates synthetic samples from existing minority

class samples. One of the earliest methods for oversampling was the SMOTE,

introduced by Chawla et al. (2002). SMOTE uses interpolation to generate synthetic

samples from existing minority class samples. Even so, the use of SMOTE to develop

prediction models still result in overgeneralization as it relies solely on the selection of

nearest neighbour instances. Due to the limitations of SMOTE, a variety of

modifications have been proposed, including Borderline-SMOTE (Han et al. 2005) and

MWMOTE (Barua et al., 2014). Nevertheless, prior techniques unable to provide a

diverse and balanced set of synthetic samples from datasets with high-dimensional input

features. Cross-over interpolation provides an alternative way to generate synthetic

samples by combining or "crossing over" the features of two existing minority class

samples. Consequently, the generation new samples exhibit more representative and

diverse to better reflect minority class distributions. In SDP, Bennin et al. (2018) first to

propose crossover interpolation into oversampling process which named as MAHAKIL.

Univ
ers

iti
Mala

ya

138

Mahalanobis distance is used to rank and divide instances into two groups. During the

generation of new instances, two corresponding instances are chosen from each group.

Synthetic instances tend to be more diverse when pairs of selected instances do not have

a close distance between them. In comparison to SMOTE-based oversampling

techniques, MAHAKIL offers superior performance and greater stability. Nevertheless,

MAHAKIL fails to calculate the Mahalanobis distance when the number of instances of

the minority class is smaller than the dimensionality of the sample. Thus, MAHAKIL

does not function optimally when the number of minority class instances is lower than

the number of metrics. Zhang et al. (2021) extended the work of Bennin et al. by adding

K-means clustering to MAHAKIL to improve the recognition rate of positive samples.

K-means is used to divide positive samples into clusters and then perform crossover

interpolation to generate synthetic data. Nonetheless, K-means fails to generate an

appropriate spherical partition of data in nonlinear datasets. Thus, an effective data

partitioning such as that given by spectral clustering is needed to ensure the

effectiveness of crossover interpolation. Spectral clustering produces clusters by

partitioning the data based on the similarity of the data points and is useful for finding

clusters in nonlinear datasets. Additionally, spectral clustering produces clusters with

different shapes and sizes, which is advantageous in the context of crossover

interpolation.

This study uses the crossover operator to generate new samples in the same manner

as genetic algorithm. In this process, chromosome information contributes by two

parents to generate a child. Chromosome information defined in this study as software

metrics for JIT-SDP modeling purposes. In order to generate new samples, crossover

operators combine the characteristics of two samples. Given two samples of 𝑆𝑎
𝑔 = [a1, . .

Univ
ers

iti
Mala

ya

139

., al] and 𝑆𝑏
𝑔 = [b1, . . ., bl] are two chromosomes crossed in gth generation and l is the

length of chromosome or features, the child sample of g + 1 th generation is:

𝑆𝑐
𝑔+1

= 𝜆𝑆𝑎
𝑔

+ (1 − 𝜆)𝑆𝑏
𝑔 (4.12)

Where 𝜆 is a random variable between a range of [0,1].

During the experiment, λ is set to 0.5 for generating the child samples. It means that

the child samples inherit 50 percent of their characteristics from each of their parent

samples. Figure 43 demonstrates an example of crossover operation during the

generation of a new sample. In this context, the generation of new samples consists of a

few steps.

Figure 43: Example of multi-point crossover

Figure 44 illustrates the generation of new synthetic samples based on the level of

inheritance. First, based on diversity measurements obtained from KPCA, the

grandparent samples are identified, G0. The samples from G0 are then used to generate

the G1 set of new synthetic samples. To prevent new samples from entering the region

of the majority class, the first parent node or grandparent act as a boundary such that all

children produced in the future reside within the range of the parents. In the second

generation G2, samples from grandparent and samples from G1 are selected as template

Univ
ers

iti
Mala

ya

140

to generate new samples. In case of the interpolation at current generation is still not

meet with the maximum samples, the process continues to crossover interpolate the

samples within the previous generation until maximum number reach. The process of

pairing the child nodes with older generations is repeated until the generated samples

are sufficient (greater than or equal to the required number of samples). The pairing

process is carried out using the sequential information inherited from the immediate

parents of the instances beginning at G1.

Figure 44: Crossover process across generations

In overall, the generation of new samples assumes that two samples that are not

identical similar, as in being neighbors, and orderly merges two distinctive samples by

considering them as parent samples. Child samples that are generated are distinctly

unique but related to the original parent samples across generations. Thus, the newly

generated samples are well distributed to occupied possible minority samples within

selected data clusters. Ultimately, providing more information to the defect classifier.

Additionally, by strictly working within the boundary of the minority class, crossover

Univ
ers

iti
Mala

ya

141

operation helps in the prevention of data samples generated outside the decision

boundary of the minority class. As a result, samples are derived from well-segregated

parents that differ in the KPCA similarity measure, preventing duplicates.

4.2.4 Summary

Studies often rebalance samples by oversampling positive (defect) samples (Nam,

2014). However, Zhang et al. (2021) take the spatial distribution characteristics of

samples into consideration. Overlapping data in spatial distribution will cause the

boundaries between different types of samples to become blurred. As an extension of

the above work, this work improves ability to cope with overlapped distribution based

on KCPA, spectral clustering and cross interpolation. KCO is an alternative solution to

improve classification performance when dealing with imbalanced data. KCO is

incorporated in data pre-processing to enhance classification performance. Defect

classifiers are expected to benefit from KCO by achieving better classifications. Further,

KCO avoids generating erroneous or duplicate data instances that lead to high false

positives by avoiding generating less diverse data points within the minority class.

4.3 Deep Q-Network in Just-in-Time Software Defect Prediction

To classify whether a change is a defective or clean change, existing classifiers

employed supervised, unsupervised, and semi-supervised learning techniques. These

techniques convert the JIT-SDP model into batch learning. Batch learning is learning on

the entire training datasets at once to learn the pattern of the introduction of defective

changes. However, the performance of these techniques is heavily affected in case of

data drifting occurred in the software project datasets. Data drift is a change in the input

data generation process, affecting the underlying probabilities of the data. Therefore, the

Univ
ers

iti
Mala

ya

142

classifier technique is based on an alternative to batch learning approaches, by

converting JIT-SDP into a sequential learning approach.

Reinforcement learning (RL) is a suitable technique to formulate sequential

learning to learn the optimal prediction accuracy for agents interacting directly with an

environment. To date, existing studies of JIT-SDP do not consider the RL technique to

learn the pattern or behavior of defective changes in software projects since JIT-SDP is

a recent emergent topic. Adopting RL into JIT-SDP is a challenging task due to the

limited and imbalanced datasets in the software projects. Therefore, our work attempt to

adopt Deep Reinforcement Learning (DRL) which enable the learning of software

defect pattern through a combination of Q-learning framework and artificial neural

network approach (DQN) by complex decision-making tasks throughout benefit and

punishment policy. The mechanism of DQN is a learning process throughout trial-and-

error, solely from rewards or punishments to produce the greatest reward.

4.3.1 Problem Definition

Given a defect dataset 𝐷 = {(𝑆1, 𝑦1), (𝑆2, 𝑦2), (𝑆3, 𝑦3), … , (𝑆𝑛, 𝑦𝑛)}, where 𝑆𝑖 is the

feature vector for the 𝑖 code change in the dataset and 𝑦𝑖 represents the corresponding

labels. Defect prediction forms the positive class in the datasets in case of 𝑦 = 1 for

further inspecting a defective code change and y = 0 for the accepted code change. The

data is sorted with respect to time, preserving the sequential aspect and formulating the

SDP problem as a sequential decision-making problem. The agent is given a series of

code changes records, S𝑡 at timestep t, and the agent takes an action of either approving

the code change (𝑎𝑡 = 0) or inspecting the code change (𝑎𝑡 = 1). In return, the

environment provides the agent with a reward based on the current classification

performance and the next code change S𝑡+1. The agent is designed to minimize false-

positive rates while maintaining a balance between prediction accuracy and false-

Univ
ers

iti
Mala

ya

143

positive rate during classifying code changes. This is done using the reward function of

R. Figure 45 illustrate the overall process of how the learning process works. Using a

Markov Decision Process (MDP), the environment is represented as S, a, R, T with the

following definitions:

States S: State S𝑡 is the state of tth change record where is called features vector xt in the

dataset.

Action a: The action space for this MDP is discrete given A = {0,1}. Where code

reviewer during code review approves the code change as to be inspected (𝑎 = 1) or

reject the code change for further inspection (a = 0).

Reward R: A reward rt is a scalar which measures the fitness of the action at taken by

the agent in the state st. Usually, the reward is positive value in case the agent chooses a

preferable action and a negative value for the opposite action. In the context of this

research, approving a defective change for further review process is preferred. Thus, the

agent is rewarded positively by the environment. The reward mechanism for the MDP is

explained in detail in the next subsection.

Transition probability T: The agent takes an action in the current state and

environment gives back a new state. The transition from St to St+1 is deterministic

transition.

Episode E: An episode refers to an iteration of the agent interacting with the

environment. This comprises of getting S, a, R, T until reaches a terminal state. During

an episode, the agent making decision on each code change transaction one by one until

reaches a terminal state (L = 2000). In this case, the agent takes action on

𝑆1, 𝑆2, 𝑆3 … , 𝑆𝐿 in the first episode and 𝑆𝐿+1, 𝑆𝐿+2, 𝑆𝐿+3 … , 𝑆2𝐿 in the second episode and

continue the process until final episode (E = 50).

Univ
ers

iti
Mala

ya

144

Figure 45: Conceptual diagram of deep reinforcement learning

4.3.2 Agent

In this research, Deep Q-Network (DQN) is chosen as the DRL algorithm. The

DQN algorithm integrates Q-learning and neural networks. DQN aims to guide the

choice of action given a state by predicting the expected Q-values of all possible

actions. DQN training consists of determining the Q-value of a pair of state-action pairs.

During neural network training, target actions are determined by the labels of data.

During training iterations, the DQN agent is responsible for learning how to decide

based on the given batch of data.

Univ
ers

iti
Mala

ya

145

DQN agents seek to maximize the cumulative reward at a given time t. Cumulative

rewards formally are follows:

𝑅𝑡 = ∑ 𝑦𝑘𝑟𝑡+𝑘

∞

𝑘=0

Where k is the memory pool of the agent where its memory is stored, kt = (St, at, Rt, St+1)

at timestep t, and the discount factor is denoted as y.

To decide the action taken by Q-network, Q-values of a deep neural network with

parameters θ, 𝑄(𝑠, 𝑎, θ) are computed. Q-values describe the possibility [0,1] of the

given state, St to take each of the actions available. The problem definition is either

approve or disapprove the code change for further code inspection. The neural network

in DQN (Q-network) learns the parameters θ by performing Q-learning updates

iteratively. At iteration i, the loss function is given:

𝐿𝑖(𝜃𝑖) = 𝐸(𝑆,𝑎,𝑟,𝑆′) [(𝑟 + 𝑦(𝑚𝑎𝑥𝑎′𝑄(𝑆′, 𝑎′; θ𝑖
−)) − 𝑄(𝑆, 𝑎; θ 𝑖))]

Where θ 𝑖 is the parameters of the Q-network at ith iteration and θ𝑖
− is the

parameters of the target network model which is used to calculate target labels. The

target model parameters are not trained, but they are periodically synchronized with the

parameters of the main Q-network. The idea is that using the target network Q-values to

train the main Q-network improves the stability of the training. The target model is

updated, and the parameters are set equal to the main Q-network after K steps or mini-

batch (K=64). Figure 46 illustrates the iterative updates of network models. Q-network

updates take place based on random mini-batches from the memory pool. This process

is considered a replay buffer process. The training process begins with e = 1 and uses a

decay rate of 0.995 until minimum e =0.01.

Univ
ers

iti
Mala

ya

146

Figure 46: Updates of network models

The agent policy π to approximate the Q-values of the actions for the deep neural

network is defined by epsilon-greedy policy. In this policy, the selection of actions can

either be randomly selected or using the Q-value of the neural network. The usage of

epsilon greedy action enables the agent to take advantage of prior knowledge and

exploration to look for new options. Pseudocode of Algorithm 2 describes the process

of action selection in π.

Algorithm 2 Pseudo Code of Epsilon-Greedy Action Selection

Input: Q-values generated by neural network, 𝑸𝒕(𝒂) ; Current state, S; epsilon, e
Output: Selected action, a
Procedure Begin

1) Select random number, n between [0,1]
2) If n < e, then
3) a = random action from the action space
4) Else
5) a = 𝐚𝐫𝐠𝐦𝐚𝐱 𝑸𝒕(𝒂)
6) Return a

Univ
ers

iti
Mala

ya

147

4.3.3 Reward

The agent is rewarded with a reward 𝑟𝑡 after it takes action 𝑎𝑡 in state S𝑡 which

guides the agent to maximize the true labels of predicted defect data, y with in mind

minimizing the false result. The reward function is defined as:

𝑟(𝑠𝑡, 𝑎𝑡, 𝑦𝑡) = {

−1, if 𝑎 = 1 and 𝑦 = 0

+1, if 𝑎 = 1 and 𝑦 = 1

+1, if 𝑎 = 0 and 𝑦 = 0

−1, if 𝑎 = 0 and 𝑦 = 1

The reward function is inspired by the process of code review, where the

developers do the peer code inspection. Figure 47 illustrates the peer code review

process. Developers tend to inspect the actual defect in a code change during code

review. Falsely defective predicted cause frustration and waste of effort to the

developers. In contrast, truly predicted defects within a code change ease the process of

code inspection. Thus, the aim is to guide the agent in making a decision according to

this reward policy, where positive or negative reward are given for the action taken in

predicting the label for a code change.

Univ
ers

iti
Mala

ya

148

Figure 47: Code review with JIT-SDP model

4.3.4 Q-Network

Deep Q-Network involve combination of Q-learning and deep neural network to

acts as nonlinear approximator for actions to be taken by the prediction model. In this

scheme, neural networks known as Q-network are used to approximate the Q-function.

Prior to training process of DQN, turning hyperparameters for the network model is

essential to ensure the DQN able to produce better initial prediction results possible. For

turning search, several hyperparameters are considered, which are discussed in the

following section. After adjusting the hyperparameters, the DQN agent is now ready to

begin training within the allocate episodes

Training of agent in DQN is summarized as shown in Algorithm 3. The training

stops when the agent completely took action on the code change transaction in the

training until the end of episodes. In this case, the number of episodes for the training is

N = 50 episodes. For each episode, a random code change is chosen as the initial step,

Univ
ers

iti
Mala

ya

149

to avoid overfitting toward a specific sequence of data. The agent is given the budget of

2000 changes, L to take action for each of the episodes. An episode ends when the agent

covers target conditions, or it runs out of the budget as given in steps 25 to 26. In this

case, two target conditions are defined (i.e., condition in steps 22 to 23). First, if an

episode exceeds 200 false results, the episode is done. Second, in case of cumulative

efforts for the current step exceed a threshold of 20 percent of the total effort of the

training dataset, the episode is terminated. The conditions allow the agent to train under

a constraint regime that ensures training is based on reducing false results and

predicting defects with minimal amounts of effort. Additionally, these conditions ensure

that the training process ends when the agent does not perform satisfactorily or when it

exerts excessive effort, preventing the training process from being prolonged or

ineffective. At the end of an episode, the target value is solely determined by the

immediate reward (steps 14 to 15). In the event that the episode is incomplete, the target

value is calculated based on the Q-learning update rule by considering the potential

rewards that might be attainable in the next state (steps 16 to 17). By estimating the

expected cumulative reward associated with different state-action pairs, the agent learns

and guides its learning process.

During the training process, updates of weights for the network model involve the

usage of the replay buffer concept. All the actions and observation states by the agent

are stored in the buffer memory. Then a batch of samples is randomly selected from the

memory for updating weights of the network model. This ensures that the batch is

shuffled and contains sufficient diversity from older and newer samples. The idea

behind buffer replay is to store the experience by the deque method and use a random

subset of these experiences to update the network model instead of using only the most

recent experience. This enables breaking potential harmful correlations within the

training dataset.

Univ
ers

iti
Mala

ya

150

Algorithm 3 Pseudo Code of Training DQN with Experience Replay
Input: Labelled training data, D = (𝒙𝟏, 𝒚𝟏), (𝒙𝟐, 𝒚𝟐), (𝒙𝟑, 𝒚𝟑), … , (𝒙𝒏, 𝒚𝒏)
Output: Target network parameters, 𝛉−
1) Initialize replay memory, M
2) Initialize size of mini-batch, batch = 32
3) Initialize current network with random parameters, 𝛉
4) For episode e = 1 until N do
5) Shuffle the training data D
6) Initialize first state 𝑺𝟏 = 𝒙𝟏
7) For t = 1 until L do
8) 𝒂𝒕 = 𝛑𝛉(𝑺𝒕)
9) 𝒓𝒕 , 𝒅𝒐𝒏𝒆𝒕 = 𝑬𝒗𝒊𝒓𝒐𝒎𝒆𝒏𝒕_𝒔𝒕𝒆𝒑(𝒂𝒕)
10) Set 𝑺𝒕+𝟏= 𝒙𝒕+𝟏
11) Store (𝑺𝒕, 𝒂𝒕, 𝒓𝒕, 𝑺𝒕+𝟏, 𝒅𝒐𝒏𝒆𝒕) into memory M
12) If every current step reach size of mini-batch do
13) Randomly sample mini-batch (𝑺𝒋, 𝒂𝒋, 𝒓𝒋, 𝑺𝒋+𝟏, 𝒅𝒐𝒏𝒆𝒋) from memory
14) If 𝒅𝒐𝒏𝒆𝒋 = 𝑻𝒓𝒖𝒆 do
15) Set 𝒇(𝒒)𝒋 = 𝒓𝒋
16) Else
17) Set 𝒇(𝒒)𝒋 = 𝒓 + 𝜸(𝒎𝒂𝒙𝒂′𝑸(𝑺′, 𝒂′; 𝛉𝒊

−)) − 𝑸(𝑺, 𝒂; 𝛉 𝒊)
18) End
19) Perform gradient descent on loss function, 𝑳𝒊(𝜽𝒊)
20) Set target network parameters 𝛉− = 𝜽𝒊
21) End
22) If cumulative reward < 200 or cumulative effort > 20% of effort in D
23) 𝒅𝒐𝒏𝒆𝒕 = 𝑻𝒓𝒖𝒆
24) End
25) If 𝒅𝒐𝒏𝒆𝒕 = 𝑻𝒓𝒖𝒆 then
26) Break
27) End
28) End
29) End

4.3.5 Summary

Software defect prediction is formulated as a classification problem with a focus on

improving the discovery of software defects. For this reason, many machine learning

and data mining approaches are used to detect and predict defect inducing changes.

However, whether deep reinforcement learning could be used to improve the

performance of JIT-SDP is still unexplored. To bridge this gap, a framework of DQN is

designed to address the problem of data drifting occurred in the software project

Univ
ers

iti
Mala

ya

151

datasets. In this work, the focus is to use the DQN for the JIT-SDP in achieving results

with good accuracy and the lowest numbers of false predictions. Technically, defect

prediction problem is formulated as DQN formulation, and a reward function is

proposed that aims to maximize the prediction accuracy and keeping a check on the rate

of false alarm predictions. Agent of DQN is trained to predict the defect in code changes

while under consideration of maintaining a balance between accuracy and false alarm

rate. The training of JIT-SDP model using DQN is suitable for sequential or mini

batches data which capable to adapt to data drift in a better way. By this solution, the

issue of re-training JIT-SDP models is well handled in sequential learning approach

which is an inherent problem with most classifiers. DQN for JIT-SDP is expected to

help in improving the performance of classification for defects with lower in false

positives prediction.

Univ
ers

iti
Mala

ya

152

CHAPTER 5: EVALUATION OF IMPROVED JUST-IN-TIME SOFTWARE

DEFECT PREDICTION FRAMEWORK

Evaluating prediction accuracy and effort awareness by the proposed framework is the

goal of this chapter. In general, two main evaluations are carried out which reflect the

comparison of two proposed solutions with the standard existing techniques. For the

first section, the proposed solution of oversampling technique, namely Kernel

Crossover Oversampling (KCO) is compared with several state-of-art resampling

techniques to evaluate the performance when dealing with imbalanced datasets. In the

second section, an evaluation of the proposed approach by using the DQN algorithm

and KCO technique for JIT-SDP is given. The evaluation involves a comparison of

performance with other well-known frameworks in the modeling of JIT-SDP classifier.

5.1 Predictions performance of Kernel Cross-oversampling

Imbalanced class distribution in JIT-SDP datasets is a problem for some

conventional learning methods. In addition, spatial class overlap increases the difficulty

for the predictors to learn the defective class accurately. The main objective of this

experiment is to compare and evaluate the performance of KCO with baseline

techniques in resampling data for modelling of JIT-SDP. In the experiment, six

imbalanced datasets are selected from a public software repository which consists of

overlap between classes residing in the datasets. The performance of the proposed

resampling KCO is assessed by comparing it with other baseline techniques. For the

comparison, several baseline techniques are considered which are ADASYN (He et al.,

2008), SMOTE (Chawla et al., 2002), Borderline-SMOTE (Han et al., 2005),

MWMOTE (Barua et al., 2014) and MAHAKIL (Bennin et al., 2018). The choice of the

baseline techniques is due to these techniques not requiring any specific classifier to

Univ
ers

iti
Mala

ya

153

work effectively. Thus, more advanced techniques in prior studies (Cabral et al., 2019;

Tan et al., 2015; Zhu et al., 2020) are excluded in this analysis. Statistical analysis

shows that the prediction model constructed using KCO provides more reasonable

defect prediction results and performs best in terms of accuracy and F-score among all

tested models.

5.1.1 Baseline Techniques

In verifying the stability of the KCO algorithm, several techniques such as ADASYN

(He et al., 2008), SMOTE (Chawla et al., 2002), Borderline-SMOTE(Han et al., 2005),

MWMOTE (Barua et al., 2014) and MAHAKIL (Bennin et al., 2018) are considered in

the performance comparison. As some studies (Kamei et al., 2013; Li et al., 2020; Yang

et al., 2017) considered random under-sampling (RUS) as the most efficient resampling

technique for JIT-SDP, RUS also is included in the comparison.

ADASYN: ADASYN is proposed by He et al. (2008) and it assigns weights to the

minority classes and dynamically adjusts the weights in a bid to reduce the bias in the

imbalanced dataset by considering the characteristics of the data distribution. ADASYN

algorithm incorporates a density distribution in automatically deciding the number of

synthetic samples needed for each minority class sample. The learning algorithm is

induced to focus on the hard-to-learn or classify examples within the minority class

samples. Therefore, the samples generated are not equal for all samples.

SMOTE: Proposed by Chawla et al. (2002), this technique over-samples the minority

class in a dataset by creating synthetic samples. SMOTE oversamples the minority class

in a bid to make the dataset as balanced as possible based on the configuration

parameter values. To generate these synthetic samples, each minority class sample is

Univ
ers

iti
Mala

ya

154

considered, and the new samples are introduced along with the line segments that join

any of the k minority class nearest neighbors.

Borderline-SMOTE: It is a modification of the SMOTE technique but with the main

focus on harder-to-classify minority class data instances, which are referred to as

borderline data instances. The algorithm first finds minority class instances that have

more majority class instances as nearest neighbors than minority class instances and

applies the SMOTE technique to such instances. This approach has the advantage of

strengthening the borderline between the majority and minority class data instances.

MWMOTE: It is an oversampling technique proposed by Barua et al. (2014),

MWMOTE divides positive samples into safety data, boundary data, and potential noise

data, and then adopts different sampling strategies for different types of samples. It

adaptively assigns the weights to the selected samples according to their importance in

learning. The samples closer to the decision boundary are given higher weights than

others. Similarly, the samples of the small-sized clusters are given higher weights for

reducing within-class imbalance. The synthetic sample generation technique of

MWMOTE uses a clustering approach to partition datasets and uses the Euclidean

distance similarity measure to find very close class samples and synthetically generate

samples based on the weights assigned to the minority class samples.

MAHAKIL: Bennin et al. (2018) introduced a synthetic oversampling approach

based on the chromosomal theory of inheritance. Each sample of data is regarded as a

chromosome. First, positive samples are divided into two initial populations according

to the size of Mahalanobis distance, and then new offspring samples are synthesized by

using the samples in the initial population to cross continuously. The offspring samples

inherit part of the characteristics from the two parent samples, which ensures that the

Univ
ers

iti
Mala

ya

155

offspring samples and the parent samples have certain similarities and some new

characteristics.

5.1.2 Datasets

A total of six imbalanced datasets are evaluated which comprise Bugzilla, Columba,

Eclipse.JDT (JDT), Eclipse.Platform (Platform), Mozilla, and PostgreSQL (Postgres).

Note that all the datasets are imbalanced. The most imbalanced dataset, Mozilla,

contains only 5% defects, while the most balanced dataset, Bugzilla, contains 36%

defects. To ease the analysis of prediction results, these datasets are classified into two

severity groups as shown in Table 25. Mild imbalance class is considered as datasets

that comprise 25% and above for the percentage of software defects. For the high

imbalance class, it is based on datasets that have less than 25% of the defects. The

severity of the imbalance class represents the difficulty for data resampling in the

imbalance distribution.

Table 25: Imbalanced class datasets

Project Time # Instances Defect % Severity

Columba 08/1998–12/2006 4455 31 Mild imbalance class

Bugzilla 11/2002–07/2006 4620 36 Mild imbalance class

Postgres 11/2002–07/2006 20431 25 Mild imbalance class

JDT 05/2001–12/2007 35386 14 High imbalance class

Platform 07/1996–05/2010 64250 14 High imbalance class

Mozilla 08/1998–12/2006 98275 5 High imbalance class

Univ
ers

iti
Mala

ya

156

5.1.3 Experiment Settings

Artificial neural network algorithm is chosen as the classifier algorithm of the JIT-

SDP model in this comparison. The classifier for the prediction is built using the

resampled data generated by the resampling techniques. For the convenience of

comparison, default hyperparameters are used for all compared techniques. In the

experiment, three model performance prediction scenarios are considered. These

scenarios are within project prediction, cross-project prediction, and timewise

prediction. In particular:

a) Within project validation

The evaluation is conducted based on 10-folds stratified within project validation.

Figure 48 presents the F-score values of KCO as compared to those of the baseline

techniques respectively. The validation started with the splitting of data into 8:2 ratio,

for both training and prediction datasets. Then, the training dataset undergoes 10-fold

stratified within project validation. The datasets are divided randomly into 8-folds, 2-

folds serve as training data, and the remaining fold serves as test data. In cross-

validation, each fold is used as a testing dataset only once. Additionally, the data are

folded so that every fold consists of the same proportions as the original dataset. The

highest prediction model among these folds is selected for the final prediction. The

selected model is used to predict the unseen data which is the prediction dataset. The

final prediction result is recorded to show the credibility of the experiment results.

b) Cross project validation

For cross-project validation, the prediction of software defects is evaluated across

different software projects. In specific, the models are constructed by one source of

Univ
ers

iti
Mala

ya

157

software project and use these models to predict software defects on another target

software project.

c) Timewise validation

Within the same project datasets, JIT-SDP takes into account the chronological order of

changes in accordance with the commit date. Based on the assumption that the changes are

divided into n parts, we first construct the models based upon the changes in part i and i + 1.

The models will then be employed in predicting the changes in part i + 4 and part i + 5.

5.1.4 Performance Indicators

The evaluation measure is important to reveal the performance of the classifier,

especially for imbalanced datasets. Some conventional measures lead to a wrong

conclusion owing to the skewness of the class distribution (Li et al., 2018). For

example, consider an extremely imbalanced dataset: 99 % of instances are of the

majority class, and the remaining 1 % samples belong to the minority class. In case of

using the accuracy measure which indicates how many test samples are correctly

classified as the evaluation criterion, even if the classifier ignores all of the minority

classes, it still reach a very high accuracy rate of 99 %. Therefore, this experiment also

considered F1-score, which is a commonly used measure to evaluate classification

performance. It combines Precision and Recall which is derived from a confusion

matrix. The confusion matrix lists all four possible prediction results. If an instance is

correctly classified as a defect, it is a true positive (TP); if an instance is misclassified as

a defect, it is a false positive (FP). Similarly, for false negatives (FN) and true negatives

(TN). Based on the four numbers, Precision, Recall, and F1-score are calculated.

Precision is the ratio of correctly predicted defect instances to all instances predicted as

defects (Precision = TP/(TP + FP). Recall is the ratio of the number of correctly

Univ
ers

iti
Mala

ya

158

predicted defect instances to the actual number of defect instances (Recall = TP/(TP +

FN). Finally, F1-score is a harmonic mean of Precision and Recall, Fscore =

1.25×Recall ×Precision

(0.25 ×Precision+Recall)
 . In measuring the diversity of data for resampled datasets (d),

sparsity formulation is utilized. 𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 = 1 −
𝑛𝑜𝑛_𝑧𝑒𝑟𝑜 (𝑑)

𝑠𝑖𝑧𝑒(𝑑)
 .

5.1.5 Experimental Results

This section presents the experimental results. The results focus on the performance

of JIT-SDP model using different resampling techniques. The details are given in the

following four subsections:

a) Analysis of Data Distribution

This section is about analysing the distribution of data after applying a set of baseline

resampling techniques on six datasets. Sparsity of data distribution is an important

consideration for many machine learning applications especially for high dimensional

data. The larger sparsity data contain less information across data classes. Therefore,

with a larger sparsity data, accurate predictions more difficult to acquire. Oversampling

in training datasets reduces the impact of noise and improve sparsity of data distribution

toward dense data. Dense data yields more informative data, which results in more

accurate predictions due to more data available for model training.

Table 26 provides data distribution in the different types of resampling techniques.

The result indicates KCO achieves the lowest sparsity values across all datasets.

Considering the difference in sparsity values, only KCO able to provide significant

difference value by 8% to 10% for data sparsity before resampling (original). The only

exception is that data sparsity generated by KCO, MWMOTE, and MAHAKIL are

similar for Mozilla.

Univ
ers

iti
Mala

ya

159

Resampling low sparsity datasets becomes more difficult due to less significant

variation among data points within the dataset, making them dense datasets. Among the

datasets, Bugzilla exhibits the most dense distribution. As a result, baseline resampling

techniques, including SMOTE, Borderline, RUS, ADASYN and MWMOTE fail to

significantly improve data sparsity. Indeed, resampling in a dense dataset presents

difficulties in generating more data samples in limited empty spaces. On the contrary,

KCO provides better data distribution than baseline techniques with more robust

performance in identifying empty spaces by using kernel function.

Overall, KCO produces more sparse data than SMOTE, Borderline, RUS, and

ADASYN. KCO compares favourably with data generated by MAHAKIL and

MWMOTE utilizing Mozilla, Bugzilla, and JDT. Considering that KCO generates more

diverse data than other baseline techniques, contributing to data distribution diversity.

Table 26: Sparsity of data distribution

Techniques

/Datasets

Columba Bugzilla Postgres JDT Platform Mozilla

Original 34% 26% 28% 33% 34% 28%

KCO 23% 18% 20% 22% 22% 18%

Borderline 32% 26% 26% 29% 29% 21%

RUS 32% 25% 25% 31% 29% 20%

ADASYN 33% 26% 26% 31% 30% 23%

SMOTE 32% 25% 25% 30% 29% 22%

MWMOTE 30% 24% 22% 26% 26% 18%

MAHAKIL 28% 20% 22% 24% 25% 18%

Note: Lower sparsity data indicates more suitable training data for machine learning

Univ
ers

iti
Mala

ya

160

b) Analysis for Within Project-Prediction

Table 27 shows the performance measures of KCO and baseline techniques based

on accuracy and F-score. Before starting with the analysis, several forms of the result

are adopted, and the corresponding meaning are as follows:

• The results with bold font represent the best one among the group of contrastive

experimentation.

• The results with a red background indicate that the corresponding baseline model is

the highest value among the comparison frameworks

• The results with a green background indicate that the proposed approach is the

highest value compared to other frameworks model

According to results shown in Table 27, KCO, MAHAKIL, and MWMOTE in

general are the top performance techniques which outperformed other baseline

techniques in terms of F-score measure for almost all datasets. Surprisingly KCO

achieved the best performance among them, especially in the severely imbalanced

dataset as in Platform and Mozilla. On average, KCO manages to achieve 52.6%, 32%,

35.2%, and 20.7% of the highest average F-score in Columba, JDT, Platform, and

Mozilla respectively. Despite a slight improvement of KCO on F-scores compared to

MAHAKIL and MWMOTE, the average accuracy across datasets indicates a consistent

value between 71% to 80%. Nonetheless, even though RUS is considered the most

widely applied in the context of resampling imbalanced datasets, the consistency of its

F-score is almost similar to performance with other oversampling techniques such as

ADASYN, SMOTE, and Borderline.

Univ
ers

iti
Mala

ya

161

Figure 48: F-score of six datasets for within project validation

Columba Bugzilla

Postgres JDT

Platform Mozilla

Univ
ers

iti
Mala

ya

162

Table 27: Prediction performance in F-score by resampling techniques

Techniques

/Datasets
ADASYN BORDERLINE MAHAKIL MWMOTE RUS SMOTE KCO

Columba 49.2 48.6 47.9 48.5 49.1 51.2 52.6

Bugzilla 58.9 58.6 61.1 63.4 62.9 62.7 62.5

Postgres 49.5 49.6 53.5 54.6 51.8 52.2 50.4

JDT 27.6 28.8 27.8 29.7 29.8 29.2 32.0

Platform 30.0 31.2 32.0 34.1 30.6 31.2 35.2

Mozilla 16.1 18.6 19.4 19.5 15.7 16.8 20.7

Average 38.6 39.2 40.3 41.6 40.0 40.6 42.2

Univ
ers

iti
Mala

ya

163

c) Analysis for cross project-prediction

The analysis further compares proposed KCO to the baseline techniques for cross

project prediction as given in Table 28, Table 29, and Figure 49. For example, in Table

29, the case of “COL – BUG” means that Columba datasets is used as training project to

construct the prediction model. Then the model predicts the changes in target project

Bugzilla. From the result, KCO achieves approximately in range of 33% to 46% across

projects prediction for mean of F-score as given in Table 28. KCO outperforms or

obtains similar performance to other baselines in almost all datasets, as achieves in the

highest average score for JDT, Platform and Mozilla cross prediction. In contrast to

other baseline techniques, no single technique attains the highest average of F-score. In

exception for ADASYN and Borderline achieving draws in Columba, Bugzilla, and

Postgres. Furthermore, MWMOTE, MAHAKIL and RUS unable to produce

substantially average in F1-score under cross project prediction setting.

Table 28: Average of F-score for cross project prediction
Techniques

/Datasets
ADASYN BORDERLINE MAHAKIL MWMOTE RUS SMOTE KCO

Columba 33 33 31 31 25 30 33

Bugzilla 27 27 22 24 22 26 26

Postgres 28 28 26 26 27 27 28

JDT 40 39 26 25 26 38 41

Platform 40 39 40 25 26 38 41

Mozilla 44 43 40 34 33 41 46

W/D/L 0/3/3 0/3/3 0/0/6 0/0/6 0/0/6 0/0/6 3/2/1

Univ
ers

iti
Mala

ya

164

Table 29: F-score of JIT-SDP models for cross project prediction

Source -Target
Baseline Techniques

Proposed

Solution

ADASYN BORDERLINE MAHAKIL MWMOTE RUS SMOTE KCO

COL – BUG 39 46 28 27 42 33 38
COL – POS 53 50 53 52 29 50 52
COL – JDT 24 25 24 25 27 26 27

COL – PLA 27 26 29 29 21 26 27
COL – MOZ 22 16 20 21 7 15 21
BUG – COL 32 32 35 30 33 37 32
BUG – POS 40 40 31 33 36 39 39
BUG – JDT 23 21 17 20 17 18 23
BUG – PLA 26 26 18 24 18 27 26
BUG – MOZ 15 14 7 13 8 12 11
POS – COL 36 35 36 36 35 35 36
POS – BUG 56 56 43 45 51 53 56
POS – JDT 17 17 17 18 17 17 17
POS – PLA 18 18 18 18 17 18 18
POS – MOZ 13 12 14 16 13 13 15
JDT – COL 46 45 36 46 36 50 50
JDT – BUG 55 55 42 5 42 48 55
JDT – POS 50 51 29 33 29 48 51
JDT – PLA 33 30 18 23 18 32 33
JDT – MOZ 16 15 6 17 6 14 18
PLA – COL 46 45 52 46 36 50 50
PLA – BUG 55 55 49 5 42 48 55
PLA – POS 50 51 49 33 29 48 51
PLA – JDT 33 30 30 23 18 32 33
PLA – MOZ 16 15 20 17 6 14 18
MOZ – COL 51 50 52 33 35 45 54
MOZ – BUG 51 45 49 26 49 51 53
MOZ – POS 52 54 49 53 43 50 54
MOZ – JDT 34 33 30 23 17 24 34
MOZ – PLA 33 35 20 35 18 33 34 Univ

ers
iti

Mala
ya

165

Figure 49: Resampling performance in cross project prediction Univ
ers

iti
Mala

ya

166

d) Analysis for timewise-prediction

Result of prediction performance in timewise validation scenario is further evaluated

over the six project datasets shown in Figure 50 and Table 30. The result is evident that

proposed technique KCO obtained highest average of F-score only for JDT dataset.

MAHAKIL on the other hand surprisingly achieved better performance for Postgres,

Platform and Mozilla. That is, MAHAKIL outperformed KCO and other techniques

based on timewise prediction. Except for JDT datasets, KCO unable to resampling

better performance for JIT-SDP model when compared to other baseline techniques.

The result is inconsistence with previous within project predictions, where KCO is

found to performs significantly better than all the baseline methods when considering F-

score metric.

Table 30: Average of F-score in timewise predictions

Techniques/

Datasets
ADASYN Borderline RUS SMOTE MAHAKIL MWMOTE KCO

Columba 42 37 41 38 39 45 42

Bugzilla 52 53 53 55 52 53 51

Postgres 72 71 74 73 75 73 74

JDT 25 26 26 26 23 23 27

Platform 27 29 30 30 35 33 30

Mozilla 18 21 18 18 24 23 17

 Univ
ers

iti
Mala

ya

167

Figure 50: F-score of six datasets 10-fold timewise predictionsUniv
ers

iti
Mala

ya

168

5.1.6 Discussion

1) Stability of resampling techniques

For stability, it mainly depends on the robustness of the techniques in facing severely

imbalanced datasets. Severity of the imbalanced ratio heavily indeed affects the stability

of resampling techniques. Due to this factor, it is observed that the resampling

techniques have difficulty to achieve consistency of F-scores when dealing with large

datasets as presented in Platform and Mozilla. Oversampling techniques with data

partition embedded algorithms such as MAHAKIL, MWMOTE, and KCO exception

are competent to attain a better F-score for these datasets, especially KCO which

achieves the highest average score for all severely imbalanced datasets. To conclude,

the result indicates that the stability of simple techniques such as RUS, SMOTE, and

ADASYN is not good enough for imbalanced datasets in JIT-SDP. Contrary to KCO,

the results show the most effective resampling technique when dealing with highly

imbalanced data. KCO provides a more diverse distribution of data especially for

severely imbalance datasets. Specifically, the generation of new synthetic data through

multiple levels of inheritance from the original data, improving the diversity of the

overall data distribution (Section 4.2.3). The prediction model can learn more

discriminative patterns and make better-informed decisions, resulting in improved

prediction performance. In contrast to mild imbalanced datasets, KCO fails to provide a

reliable result because defect class have dense distributions. Consequently, KCO faces a

challenge in conducting diversity analysis through KPCA. For other baseline

techniques, mild imbalance datasets prove easier to resample the class distribution

considered dense. The main factor is that through diversity measures (Euclidian distance

and Mahalobis distance) by baseline techniques can provide meaningful attributes that

effectively distinguish classes.

Univ
ers

iti
Mala

ya

169

In cross project prediction, KCO demonstrates excellent performance in cross project

prediction due to the consideration of the size of the data as an additional attribute for

data resampling. Cross project prediction provides more information on the pattern of

the defect class, resulting in a more diverse distribution. KCO takes advantage of the

large size of defect instances and utilizes similarity analysis provided by KPCA to

identify feasible regions for generating new samples (Section 4.2.1). Resulting in a

more accurate performance in cross project prediction, even when dealing with varying

class distribution imbalance ratios in the original datasets. In essence, KCO leverages

the benefits of a larger dataset size and the insights gained from the similarity analysis,

which contribute to its superior performance in cross project predictions.

2) Inconsistency in timewise prediction

Despite the fact that KCO underperformed in timewise predictions, this only reflects

the specificity rather than the generality of the technique performance. In terms of

timewise prediction, KCO is unable to achieve optimal results and actually performed

worse than most of baseline techniques. One reason for this is that in KCO, the strength

of data partitioning depends on the size of training data, since each training fold consists

of various sizes that are not all equal. Identifying suitable regions for interpolation faced

difficulty in smaller data sets due to a lack of similarity among data samples. This

suggests that KCO is not suitable to resample the smaller data sets. Note that proper

hyperparameters for data partitioning in KCO are useful to avoid this shortfall in

smaller data sets.

5.1.7 Threat of Validity

A known validity of empirical experiments involves the quality of the data, which is

often difficult to obtain and verify. Nevertheless, noise and outliers inherent within

Univ
ers

iti
Mala

ya

170

datasets extracted from most open-source projects are likely to have significant effects

on the prediction performance (Gray et al., 2012). Therefore, applications of data

cleansing techniques for noise detection and elimination remain open for future

investigations

The effectiveness of the proposed KCO is dependent on the ability to assess the

diversity of data using the KCPA. It is important to note that despite KPCA's benefits,

its use entails a high cost. In cases of large data records, it is often difficult to compute

the covariance matrix accurately, especially in cases of many features are presence.

Thus, it is a requirement to allocate a greater amount of time and memory since these

resources increase quadratically rather than linearly with the number of features.

However, the issue is not be of significance when a few features are required. The

challenge also applies to the approaches based on Euclidean distances. Concerning

handling the computation of covariance matrices for large dimensional features, it is

advisable necessary to employ a more advanced and time-efficient approach in dealing

with covariance aspect of training datasets.

5.1.8 Conclusion

In this section, an experiment is conducted to compare eight resampling techniques

for developing JIT-SDP models derived from six state-of-the-art software projects. This

study presented an experimental setup aiming at mitigating the likely conclusion

instability. Eight resampling techniques is compared for developing JIT-SDP models

derived from six state-of-the-art software project. Despite of oversampling helps to

improve classification on average, more uneven distribution of data points across

different classes or clusters possible generated in case of having extreme dense data

distribution. This situation produces a negative impact on the performance of

downstream resampling algorithms that rely on accurate predicts of data classes or

Univ
ers

iti
Mala

ya

171

cluster membership. Here techniques such as MAHAKIL and MWMOTE which

comprise of data partitioning architecture are affected by this drawback. In light of this

issue, KCO provides diverse data distribution by using a measure of similarity between

data points to avoid the influence of dimension between different attributes of samples.

By measure of similarity provided by KPCA, KCO linearly represent multivariate data

into lower dimension while retaining its maximum variation. Therefore, covariance

among data samples in imbalance distribution is exploited to find feasible spaces for

interpolation which in turn reduce the effect of high multivariate data. Furthermore, in

reducing near duplicated data after oversampling, KCO ensures nonlinear data

distribution in the datasets are handled by cross interpolation approach. Through this

approach, the generated data samples are produced by multiple level of pairing

inheritance from the original data samples. As a result, KCO produces a more diverse

set of data without compromising the origin information of the data distribution. Our

work evaluates the performance of KCO on three different prediction settings.

Experimental results show KCO consistently achieves higher F-score results for within-

project and cross-project predictions. KCO achieves better overall classification

performance, proving the feasibility of the approach in this study. Therefore, when

dealing with an imbalanced class distribution task, KCO should be used for

oversampling to improve JIT-SDP model classification performance. In future work, we

plan to explore the impact of the different kernel functions in KPCA and the different

activation functions in KCO on the performance of JIT-SDP models..

Univ
ers

iti
Mala

ya

172

5.2 Effort Aware Performance of Deep Q-Network and Kernel Cross-

Oversampling in Reducing False Positives

Effort awareness is required for an effective framework to produce a reliable JIT-

SDP model. The effectiveness of the model is highly dependent on the quality of

training data and the mechanism of the classifier in modelling defect patterns.

Therefore, to achieve good performance, it is important to have a clear understanding of

what factors affect the classification of software defects in code changes. In this

experiment, the efficiency of the proposed framework with a combination of DQN and

KCO as main modelling components for effort awareness is promising. The

experimental results demonstrate that the proposed framework outperforms the state-of-

the-art baseline on two different evaluation criteria: 1) accuracy in F-score for the

prediction of defect with minimization of false positives and 2) achieving a low density

of false positives for effort-aware evaluation.

5.2.1 Baseline Frameworks

The experiments are conducted by comparing JIT-SDP models based on proposed

approach and state-of-the-art frameworks. Each framework shares the same data pre-

processing in data extraction, features selection and normalization. The choice of

resampling techniques and classification algorithm for training JIT-SDP models differs

between these frameworks. For each framework, the properties within the framework

are given in the following paragraphs.

EALR: Kamei et al. (2013) propose the EALR model which uses of logistic

regression (LR) classifier and rebalances imbalanced class data with random under-

sampling (RUS). EALR is used to predict the risk score of new changes in the testing

datasets. For each change in the prediction, they would predict the value of defect

Univ
ers

iti
Mala

ya

173

density by 𝐷(𝑐) =
𝑌(𝑐)

𝐸𝑓𝑓𝑜𝑟𝑡 (𝑐)
 and sort these changes in descending order by the risk

scores. Here Y(c) is 1 if change c is defect and 0 otherwise, and Effort(c) is the amount

code inspection for the change. Thus, it provides the changes that need to be inspected

first according to the testing dataset.

LR + KCO: To provide more options in the comparison, a combination of LR

classifier with KCO for oversampling technique is given. The framework is inspired by

EALR. Instead of resampling class imbalance data by RUS, we used KCO as the

technique for handling the imbalance problem. For the effort awareness, it used a

similar approach as EALR in the ranking of effort.

LT: Yang et al. (2016) utilized the same metrics as in Kamei et al. (2013) works to

build a simple unsupervised model. The model uses only one metric among all the

available metrics and sorts the changes in descending order according to the given

measure. Among all candidate metrics, LT metric is chosen as the unsupervised model

due to it is the best performance in most cases. The model predicts a risk score of

changes by R(c) = 1/LT(c). Sorting of effort based on LT based on more defect prone

need to be inspected first.

CBS: Huang et al. (2019) proposed a JIT-SDP approach by the concept of Classify

Before Sorting (CBS). The framework in a similar supervised model to EALR using

RUS to deal with data imbalance. CBS leverages the advantages of both supervised and

unsupervised approaches by combining classification and sorting. For classification,

logistic regression is used as the defect classifier. As for sorting, linear regression is

based on a scoring list of changes in descending order by the ratio between each defect

prone and its size. The intuition is that the smaller changes with high defect proneness

must be inspected first.

Univ
ers

iti
Mala

ya

174

NN + RUS: The approach uses the basis of EALR by changing its classifier into

neural network algorithm. Implementation of the neural network instead of logistic

regression in this framework to ensure that the model is more flexible and susceptible to

overfitting. The network model also is fed by using the training dataset from the RUS

technique. As for the ranking of effort, it follows the intuition of changes with high risk

need to be inspected first.

 NN + KCO: A combination of the supervised model of neural network algorithm

with resampled data from the KCO technique. The framework provides the analysis of

how the KCO affects the advanced classifier such in the deep learning approach. The

framework also works by sorting the predicted changes based on the ranking of risk of

defect prone.

DQN + RUS: A framework of combination DQN as a classifier with RUS as the

resampling technique. The choice of DQN as a classifier for code change in the

prediction model ensures that less false positive instances are predicted. For effort

awareness, DQN with RUS also utilized the idea of changes with high defect proneness

must be highly ranked for further code review.

5.2.2 Datasets

To verify the effectiveness of the proposed framework, experiments of effort

awareness for JIT-SDP on six large open-source projects are conducted. The datasets

include Bugzilla (BUG), Columba (COL), Eclipse JDT (JDT), Eclipse Platform (PLA),

Mozilla (MOZ), and PostgreSQL (POS). The baseline six projects are large long-lived

projects that cover a wide range of domains and sizes. Each instance corresponds to a

change committed when the code is submitted to the version control system. Table 31

summarizes the statistics of the studied projects, including the time period of each

Univ
ers

iti
Mala

ya

175

project, the total number of changes, and the percentage of defective changes. All

datasets in this experiment are imbalanced with the percentage of defects ranging from

5 to 36%. Thus, the training datasets need to perform resampling class imbalance first.

Table 31: Statistics of datasets

Project Time # Instances Defect %

Average of

 effort per change

Columba 08/1998–12/2006 4455 31 149

Bugzilla 11/2002–07/2006 4620 36 38

Postgres 11/2002–07/2006 20431 25 1001

JDT 05/2001–12/2007 35386 14 74

Platform 07/1996–05/2010 64250 14 72

Mozilla 08/1998–12/2006 98275 5 107

5.2.3 Performance Indicators

For prediction of software defect performance, accuracy and F-score are used as the

measurement indicators for the comparison. Accuracy metric is important for measuring

the results in which true positives and true negatives are more important. In this respect,

the accuracy metric provides the performance in terms of code change classification

whether the predicted changes are true defects or true clean. As for F-score, it is

intended to capture the prediction performance in imbalanced class distribution as per

existed in the prediction datasets. Furthermore, F-score provides a harmonic mean of

precision and recall which gives a better measure of incorrectly classified cases than the

accuracy metric.

Univ
ers

iti
Mala

ya

176

For evaluating the predictive effectiveness of a JIT-SDP model, the effort required to

inspect those changes predicted as defect-prone is considered to find whether they are

defective changes. Consistent with Kamei et al. (2013), the code churn which describes

the total number of lines added and deleted by a change is used as a proxy for the effort

required to inspect the change. Similar to Mendes et al. (2010) works, ACC and Popt

are used to evaluate the effort-aware performance of the JIT-SDP models. ACC denotes

the recall of defect-inducing changes when using 20% of the entire effort required to

inspect all changes. However, the ACC metric is unreliable if too many false positives

are predicted, as this can mislead the nature of the prediction with limited effort.

Therefore, in this experiment, we improvised the ACC metric so that we only consider

recall of true positives under 20% of the total effort, which we refer to as Benefit. Popt

is the normalized version of the effort-aware performance indicator originally

introduced by Mende and Koschke (2010). Note that both Benefit and Popt with a

higher value are preferable.

5.2.4 Prediction Settings

In this experiment, the involved prediction settings include within project prediction,

cross-project prediction and timewise prediction.

• Within project prediction is performed within same project. In this setting, the

dataset is divided into ten folds, nine of which are used as training datasets and

one as testing datasets. Cross validation implies that each fold is only used as a

testing dataset once. Futhermore, each fold consist of the same class proportion as

the original dataset.

• Timewise prediction follow a certain time order which based on timesensitive

validation strategy. For each project datasets, the changes are grouped into the

same month in chronological order according to the commit date. For training

Univ
ers

iti
Mala

ya

177

datasets, 24 months commits are grouped as training instances. The testing

datasets is not immediately following the training datasets, but there is a gap of 2

months between training and testing datasets.

• Cross project predictions are performed across different project. In this setting,

one project serves as a training dataset and another project acts as testing dataset.

This experiment evaluate six subject project, therefore a total of 30 prediction

value are produced (n × (n-1)).

5.2.5 Hyperparameter Tuning

Choosing the right configuration of hyperparameters for neural network model

within DQN is essential before the actual training process. Estimations for learning

rates, epochs, the number of hidden layers and the size of hidden units in each hidden

layer used to train a neural network vary according to software project datasets. In this

respect, Neural network architecture in DQN is based on four layers which comprises of

an input layer, two hidden layers and an output layer. Input layer consists of 12 nodes

with reflected the number of software metrics considered by the JIT-SDP datasets. For

each of hidden layer, the number of nodes is tuned with different values. The number of

neurons must be tuned to the solution complexity. Lastly, the output layer contains two

nodes for Q-values that are responsible for DQN's actions. The summary of the

architecture of network model in DQN are given in Figure 51.

Aside from the number of nodes in each hidden layer, the learning rate of the

network model and the number of epochs are also tuned for optimal network updates.

For each of hyperparameter combinations, a Hyperband tuner (Li et al., 2018) is used to

search for the optimal combination configuration given these hyperparameters. Table 32

and Table 33 contain a list of hyperparameters tuned to the current optimal

configuration for the datasets used in this framework.

Univ
ers

iti
Mala

ya

178

Figure 52 provides accuracy results from hyperparameter tuning for each trial in

software project datasets. Each row represents a trial, and the percentage values indicate

the accuracy achieved by the tuned neural network configurations for the corresponding

trial and dataset. Results indicate that accuracy improves over time, suggesting that the

Hyperband algorithm effectively explores and refines the hyperparameter space to lead

to improved model accuracy. The accuracy for each dataset shows an irregular rise from

trial to trial, indicating the stochastic nature of the optimization process. Accuracy

values exhibit variability across trials for all datasets. This observation proves the

importance of conducting multiple trials to mitigate randomness during hyperparameter

tuning. Mozilla exhibits the fastest improvement in accuracy across trials, followed

closely by JDT and Platform datasets, while Columba, Bugzilla, and Postgres datasets

demonstrate a slower convergence rate. The observed trends and analysis provide

valuable insights into the effectiveness of tuning processes to optimize neural network

configurations in DQN framework.

Figure 51: Architecture of Network model in DQN

Univ
ers

iti
Mala

ya

179

Table 32: Hyperparameters considered in Q-network of DQN

Hyperparameters Description Rational
Range (min-

max)

Hidden layer 1
Number of neurons in

the hidden layer 1

Assist the neural network in

selecting the best

combination of features

based on predefined hidden

nodes

[32 -256]

Hidden layer 2
Number of neurons in

the hidden layer 2

Assist the neural network in

selecting the best

combination of features

based on predefined hidden

nodes

[64-512]

Learning rate

Determine how fast

the model learns and

generalizes from data

to reach its desired

accuracy level quickly

A high learning rate speeds

up training but also lead to

overfitting if set too low

[0.001-0.1]

Epoch

Epochs are the

repetition of learning

process until the

network system

calculates an optimal

solution based on the

given data inputs

As the number of epochs

increases, the weights in the

neural network are changed

more frequently, and the

curve shifts from

underfitting to optimal to

overfitting.

[0-50]

Univ
ers

iti
Mala

ya

180

Table 33: Configuration of optimized hyperparameters in network model of DQN

Hyperparameters

/Datasets

Nodes in

hidden

layer 1

Nodes in

hidden

layer 2
Learning rate Epoch

Columba 512 16 0.01 50

Bugzilla 64 128 0.001 50

Postgres 64 128 0.01 50

JDT 320 16 0.01 50

Platform 160 80 0.001 50

Mozilla 480 240 0.01 50

Figure 52: Accuracy of network model for each tuning trial

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

Columba Bugzilla Postgres JDT Platform Mozilla

Univ
ers

iti
Mala

ya

181

5.2.6 Experimental Results

In this section, the experimental results of DQN in JIT-SDP when compared to

baseline frameworks. The results given are based on the average performance for each

prediction settings. Several forms of the result are presented in Table 35 until Table 43.

The results in bold font represent the best values among the group of contrastive

experimentation. A red background value indicates the corresponding baseline

framework, which is better than the proposed framework and other frameworks. In

contrast to a green background, it represents the result of the proposed framework better

than other frameworks.

1) Within project prediction

Table 34 Table 35 and Table 36 respectively, summarize the proposed frameworks

and baseline models with the results of F-score, Benefit, and Popt over the six projects.

From Table 34, following results are recorded. First, the proposed framework of

DQNKCO outperformed baseline frameworks in three datasets of Postgres, JDT and

Mozilla with highest F-score of 58%, 33%, and 22% respectively. Secondly, in the

remaining datasets, NNKCO and CBS produce better F-score in Columba, Bugzilla and

Platform datasets. The resulting F-score is consistent with the initial expectation. KCO

assists both NN and DQN classifiers in providing reasonable training sets, which results

in better performance than those without KCO frameworks. According to Table 35,

effort awareness based on Benefit demonstrates CBS, NNRUS, and DQNRUS perform

better than DQNKCO in Bugzilla, Platform, and Mozilla, respectively. Despite that,

DQNKCO still remains the best framework for the JIT-SDP model, outperforming all

other frameworks by achieving the highest Benefit with 27%, 23%, and 14% of defect

predicted in Columba, Postgres and JDT respectively. In term of Popt metric as shown

in Table 36, DQNKCO achieves the best performance in two out of the six projects,

Univ
ers

iti
Mala

ya

182

which is comparable to LT’s performance. From the result, JIT-SDP model by

DQNKCO is unable to produce an optimal model performance based on Popt when

considering the current datasets. On average, the prediction models by DQNKCO only

achieve around 60% for highest area under curve of Popt.

Table 34: Prediction accuracy in within project prediction

Datasets/

Frameworks
Columba Bugzilla Postgres JDT Platform Mozilla

EALR 51.4 57.8 51.9 28.7 27.6 14.2

LR + KCO 53.7 55.9 49.6 28.6 32.3 13.9

LT 34.7 40.6 30 17.2 19.6 7

CBS 54.6 60.2 55.6 30 28.2 14.4

NN + RUS 52.1 55.7 52.3 29.2 33.9 15.5

NN + KCO 58.3 56.9 51 32.1 38.2 15.4

DQN + RUS 56.9 52.6 56.2 29.6 36 18

DQN + KCO 52.8 55.6 58.2 32.8 36.8 21.8

Table 35 : Benefit of effort awareness in within project prediction

Frameworks/

Datasets Columba Bugzilla Postgres JDT Platform Mozilla Wins

EALR 23.9 32.8 22.2 12.8 14.3 4.6 0
LR + KCO 24.0 21.3 19.3 10.3 13.9 4.6 0

LT 16.6 19.2 12.9 8.4 9.7 2.2 0
CBS 24.3 33.7 17.7 9.1 7.1 5.5 1

NN + RUS 25.3 30.5 22.3 13.9 15.2 5.3 1
NN + KCO 25.2 21.6 20.1 12.1 14.4 5.1 0

DQN + RUS 23.4 22.7 23.1 12.1 14.7 7.8 1
DQN + KCO 26.6 30.6 23.2 14.3 14.7 6.5 3

Univ
ers

iti
Mala

ya

183

Table 36 : Popt performance in within project prediction

Frameworks/

Datasets
Columba Bugzilla Postgres JDT Platform Mozilla Wins

EALR 40.5 61.1 46.6 50.6 51.0 46.0 1

LR + KCO 35.7 47.4 36.7 40.0 45.8 44.3 0

LT 48.1 48.6 55.3 50.2 48.0 52.3 2

CBS 45.4 53.3 49.0 49.3 47.5 52.7 0

NN + RUS 42.0 61.6 45.1 48.6 48.0 49.3 0

NN + KCO 30.0 50.2 35.5 50.6 42.3 46.3 0

DQN + RUS 28.3 50.2 34.2 54.7 45.2 54.2 1

DQN + KCO 40.0 62.6 43.5 50.8 42.3 55.1 2

2) Cross project prediction

Further comparison of proposed framework of DQNKCO with baseline frameworks

for cross predictions are shown in Table 37, Table 38 and Table 39 for F-score, Benefit

and Popt respectively. For F-score based on average value in Table 37, DQNKCO

significantly perform better than all baseline frameworks in majority of datasets by three

out of six projects. The average F-score of DQNKCO ranges from 26% to 45%.

DQNRUS is also able to achieve the highest F-scores in Postgres and Platform thanks to

the efficacy of DQN in classifying code change in reducing false alarm results. Even

though DQNRUS and DQNKCO perform better in almost all projects, under across

prediction, EALR did better for the Bugzilla project. According to Benefit in Table 38,

DQNKCO followed by DQNRUS and EALR outperform other baseline frameworks.

Overall, the observation indicates DQNKCO provides best performance, identifying

12% to 24% defects based on a 20% effort to inspect all changes. Moreover, effort

Univ
ers

iti
Mala

ya

184

awareness under Popt in Table 39 shows that DQNKCO unable to perform better than

other baseline frameworks except for JDT project. Simple unsupervised model by LT

on the other hand, dominates the highest Popt metric for three out six projects.

Surprisingly, the prediction model under the current baseline frameworks and proposed

framework are incapable to generate near optimal solutions with only less than 60% of

Popt.

Table 37: F-scores in cross prediction of baseline frameworks

Datasets/

Frameworks
Columba Bugzilla Postgres JDT Platform Mozilla

EALR 28 29 28 35 33 39

LR + KCO 27 28 28 34 31 38

LT 23 22 24 26 26 28

CBS 27 28 28 34 32 37

NN + RUS 31 27 28 31 37 42

NN + KCO 30 26 27 38 35 41

DQN + RUS 30 22 31 33 40 38

DQN +

KCO
38 26 27 41 35 45

Table 38: Benefit of effort awareness in cross project prediction

Datasets/

Frameworks
Columba Bugzilla Postgres JDT Platform Mozilla Wins

EALR 8 8 14 11 14 15 1

LR + KCO 7 9 13 12 14 15 0

LT 11 10 12 13 12 14 0

CBS 7 8 13 11 14 14 0

NN + RUS 9 8 13 14 16 18 0

NN + KCO 7 11 13 14 14 17 0

DQN + RUS 7 12 13 15 18 20 1

DQN + KCO 12 22 13 18 13 24 4

Univ
ers

iti
Mala

ya

185

Table 39: Popt performance in cross project prediction

Frameworks/

Datasets
Columba Bugzilla Postgres JDT Platform Mozilla Wins

EALR 35 45 52 42 47 39 0

LR + KCO 33 46 51 43 41 38 0

LT 53 51 50 49 50 50 3

CBS 37 45 51 46 46 40 0

NN + RUS 36 51 55 43 46 38 1

NN + KCO 33 56 47 44 42 39 1

DQN + RUS 35 53 47 40 47 46 0

DQN + KCO 35 52 47 55 39 41 1

3) Timewise prediction

The empirical results presented in Table 40 demonstrate that compared to the

baseline framework with random undersampling (RUS), the classification performance

of DQNKCO is superior. Additionally, CBS, NNRUS, and EALR frameworks are

comparable based on a "win/draw/loss" analysis. These frameworks achieve comparable

or drawn in F-score performance for Postgres and JDT datasets. In conclusion, the

experimental result in timewise prediction indicates that DQNKCO is superior to other

baseline frameworks in achieving a good F-score by achieving two wins. Results for

effort awareness for each timewise prediction are given in Table 41 and Table 42. For

Benefit metric, based on average value, DQNKCO predicts the highest scores with 20%, 15%,

and 6% of defects when using 20% effort for Postgres, Platform and Mozilla. Nonetheless, the

performance of DQNKCO and NNRUS in the Mozilla project is comparable. Meanwhile, Popt

for DQNKCO performs worse than baseline frameworks, particularly in lower imbalance ratio

datasets. Overall, DQNKCO's performance for Popt is unable to outperform other frameworks

Univ
ers

iti
Mala

ya

186

in terms of producing superior results. DQNKCO generates an average score of between 34%

and 51% for achieving the best models for effort awareness.

Table 40: F-scores in timewise prediction of baseline frameworks

Datasets/

Frameworks
Columba Bugzilla Postgres JDT Platform Mozilla Win/Draw/Loss

EALR 39 52 51 25 28 16 1/1/4

LR + KCO 38 51 50 25 27 15 0/0/6

LT 28 42 30 16 20 8 0/0/6

CBS 38 51 51 26 28 16 0/2/4

NN + RUS 40 51 51 26 30 17 0/2/4

NN + KCO 40 50 50 25 30 15 0/0/6

DQN + RUS 41 50 50 26 29 15 1/1/4

DQN +KCO 37 49 48 23 32 18 2/0/3

Table 41: Benefit of effort awareness in timewise prediction

Frameworks

/Datasets
Columba Bugzilla Postgres JDT Platform Mozilla

Win/Draw

/Loss

EALR 12 25 19 10 14 5 1/1/4

LR + KCO 13 24 19 9 13 5 0/0/6

LT 11 21 12 6 10 3 0/0/6

CBS 12 24 19 10 13 5 0/1/5

NN + RUS 13 23 19 10 14 6 0/2/4

NN + KCO 12 23 19 9 14 5 0/0/6

DQN + RUS 14 21 18 9 14 5 1/0/5

DQN + KCO 10 23 20 8 15 6 2/1/3

Univ
ers

iti
Mala

ya

187

Table 42: Popt performance in timewise prediction

Frameworks/

Datasets
Columba Bugzilla Postgres JDT Platform Mozilla Win/Draw/Loss

EALR 31 55 41 51 48 54 1/2/3

LR + KCO 28 54 42 50 47 49 0/0/6

LT 39 53 47 49 49 50 2/1/3

CBS 37 55 40 51 49 53 0/3/3

NN + RUS 32 52 41 49 48 51 0/0/6

NN + KCO 38 53 44 48 46 49 0/0/6

DQN + RUS 31 55 42 50 48 52 0/1/5

DQN + KCO 34 51 45 48 49 51 0/1/5

5.2.7 Discussion

1) Performance comparisons under different prediction scenarios

Recently, many studies used various prediction scenarios to perform JIT defect

prediction (Zhao et al., 2023). To compare with these works, this experiment analyses

different prediction settings for the baseline frameworks and the proposed framework.

Table 34, Table 37, and Table 40 present the performance of DQNKCO and other

baseline frameworks in term of F-scores. According to these results, DQNKCO

consistently outperforms baseline frameworks for the majority of project datasets.

DQNKCO generates good classification results, particularly in within and cross project

predictions, because the training datasets provided by KCO are sufficient and diverse to

construct a good prediction model. As with timewise predictions, each training fold has

a unique imbalance distribution that reflects the proportion of defect data collected

during software development. Since the data is split, most training folds have a limited

amount of data. This may negatively affect the model's performance. The model may

Univ
ers

iti
Mala

ya

188

not be able to learn complex patterns and generalize well to unseen data due to the

limited number of instances available for training during certain periods. Considering

the different imbalance proportions, DQNKCO is unable to consistently make better

timewise predictions in most projects. In order for DQNKCO to function effectively, it

requires a diverse defect data to be included in the model training process.

When the effort awareness of the prediction model constructed by the baseline and

proposed framework is evaluated, DQNKCO obtains the best cases, particularly for

Benefit, with 11/18 when making predictions across three prediction settings. However,

when the Popt metric is considered, unsupervised learning by LT achieves the highest

average score. This observation suggests that while LT provides more near optimal

models across test cases, it performs less effectively in predicting true defects within

20% effort when the Benefit is considered. DQNKCO, on the other hand, by utilising

supervised reinforcement learning, more defects are predicted within limited effort and

still have competitive performance to the baseline framework for Popt. Even though

different predictions are involved, the above observation demonstrate the proposed

framework capable to predicting more defects in limited inspection effort despite not

reaching near-optimal models (i,e. referring to Popt) for effort aware JIT-SDP.

2) The impact of different combination of resampling and classifiers approaches

For prediction accuracy observation, the proposed framework is remarkable to

produce a better prediction model with F-score on average when compared to the

baseline frameworks such as EALR, LT, and CBS. The results are not significantly

improved by the proposed framework. The reason is due to the capability of KCO only

benefits from high-class imbalanced datasets as presented in JDT, Platform and Mozilla.

The implementation of KCO in resampling produce better training sets for DQN to

perform better in those datasets but poor in other datasets with smaller imbalanced

Univ
ers

iti
Mala

ya

189

datasets. Furthermore, the performance of the model constructed through KCO

oversampling is observed to be superior to that of the RUS technique. Oversampling via

KCO provides diverse training sets for NN and DQN, allowing them to perform

significantly better in F-score predictions. With the assistance of KCO in rebalancing

the class distribution of project datasets, NN and DQN capable to effectively deal with

highly imbalanced data, particularly for within and across project predictions.

Ghotra et al. (2015) pointed out that the choice of different classification techniques

produces a significant impact on the performance of defect prediction models. Thus, the

combination of resampling techniques and strong classifiers such as DQN and NN

typically outperforms simpler classifiers in this case LR, SVM and NB. In particular,

DQNKCO and DQNRUS outperform in terms of consistently improving F-score

performance across multiple prediction cases. Meanwhile, baseline frameworks such as

NNKCO and NNRUS outperform those frameworks that use a simpler classifier, such

as EALR and CBS, which both use a logistic regression classifier. This implies that it is

vital to train the prediction model using strong classifiers such as DQN and NN to

ensure consistency and reliability of prediction results. The above observations indicate

that different base classifiers usually help the frameworks to obtain preferable

performance for JIT-SDP model. Particularly for DQN, we can observe that the

improvement of DQN in reducing false positives by achieving reliable performances in

Benefit compared to the baseline classifiers. The main reason is DQN capable to avoid

of producing high number of false positives with help of reward policy during the

model training (Section 4.3.3). The reward policy enables the model to learnt based on

reward and punishment mechanism which in turn help in minimizing the false defects

and maximize the true defects predicted. Another important factor that affects

performance is the buffer memory of agent in DQN that helps to supply the model with

sufficient training data in replay batch despite of having small defect data. Software

Univ
ers

iti
Mala

ya

190

project datasets in this experiment have different imbalance class properties. In respect

to this observation, the limited defect data is handled by the capability of replay

memory in DQN to provides more diverse training data for the trained neural network.

In overall, above analysis indicates that the proposed framework DQNKCO capable to

obtain stable and promising performance no matter weather predicting defective

changes for within project, cross project or timewise predictions.

5.2.8 Threat of validity

How is the performance of the proposed framework under different settings?

The widely used open-source software projects considered by the proposed

framework are large enough to allow drawing statistically meaningful conclusions. The

proposed framework uses the same datasets that are used in previous effort-aware JIT-

SDP studies (Kamei et al., 2013; Kondo et al., 2019; Li et al., 2020; Pascarella et al.,

2019). The results are not generalizable to other software projects that have features

different from those of the studied datasets. The defect-inducing changes are discovered

by the commonly used SZZ algorithm and incomplete. Furthermore, the measure of the

effort required to review a change is considered as the total number of lines modified by

that change, which reflect inconsistent with that in the real world. However, the threats

represent problems inherent to most studies and need to be further explored by further

research.

How generic is the proposed framework DQNKCO?

The proposed framework has capability of producing a good trade-off of accuracy

and lower false positives prediction. With this capability, the proposed framework is

applicable to other research domains that related to the problem of high false positives

prediction in imbalanced class datasets. However, the effect of classifier selection for

Univ
ers

iti
Mala

ya

191

the framework is still unknown. Here, the proposed framework considered ANN as a

base classifier within DQN modelling. The effectiveness of other deep learning

classifiers remains unverified and needs to be studied in the future. Furthermore, the

independent variables used by the proposed framework are commonly used change

metrics (Kamei et al., 2013). The degree to which the metrics accurately measure the

concepts that intend to measure is already investigated. The distribution of effort value

is not the same as that reported in prior results, which results in reaching conclusions

different by this framework. Nonetheless, the construct validity of the independent

variable is considered acceptable in this research

5.2.9 Conclusion

The feasibility of the proposed framework, as well as baseline frameworks, is

investigated in this experiment. To demonstrate the effectiveness of DQNKCO, an

extensive comparison experiment is carried out. The results of six software projects

show that DQNKCO produces a considerable advantage over the baseline frameworks.

DQNKCO, on the one hand, improves the ability to predict defective changes within

imbalanced datasets while ensuring high prediction performance with the goal of

reducing false positives. In the prediction scenarios, it outperforms almost all compared

frameworks. DQNKCO, on the other hand, retains the advantage of deep reinforcement

learning models to emphasise predicting more defects with limited effort while taking

into account of producing small false positives. Despite DQNKCO is very effective in

effort aware JIT-SDP, it is overlooked in existing studies. With high prediction

effectiveness and potential of reaching near-optimal models, it is a good choice for

practitioners to implement DQNKCO in practice.

Univ
ers

iti
Mala

ya

192

CHAPTER 6: CONCLUSION

This chapter summarizes the study by elaborating on the achievements throughout the

research. It highlights the most critical findings over the course of this research and the

limitations that accompany them. Finally, the chapter wraps up with suggestions for

future works in the domain to enhance the proposed framework in the future.

6.1 Contributions

The research started by exploring the software defect prediction domain in general.

The research dug deeper into the domain and proposed an updated classification

taxonomy of JIT-SDP with respect to inaccurate prediction issue besides critically

reviewing the latest works and other issues related to the domain. Based on the review,

this research proposed the improved approach of JIT-SDP as an alternative solution to

address the gaps in rebalancing imbalance class distribution and reducing false positives

prediction. The proposed framework utilized deep reinforcement learning with

improved oversampling strategy and demonstrated significant performance in predicting

software defect at code change level prediction. The study also evaluated the proposed

framework using several prediction settings, including within project prediction, cross

project prediction and timewise prediction to provide reliable validation and

performance benchmarks. Throughout the process of developing the entire framework,

the study successfully produced several achievements as follows.

1. An updated classification taxonomy for accurate prediction in JIT-SDP.

Throughout the review, this research discovered the lack of a standard

classification taxonomy in the domain of JIT-SDP. Specifically, Chapter 2

reviewed the existing approaches in data pre-processing and modelling of JIT-

SDP regarding machine learning aspects. Thus, a new updated taxonomy of JIT-

Univ
ers

iti
Mala

ya

193

SDP is presented, emphasizing the machine learning and data pre-processing

factors contributed toward achieving an accurate JIT-SDP model.

2. A reliable enhanced oversampling technique for imbalance datasets. Most of

existing studies utilized random based under-sampling technique for addressing

imbalance datasets. However, this research proposing a new oversampling

technique based on kernel analysis and spectral clustering to provides a better-

balanced class dataset. During identification of feasible spaces for interpolate,

KPCA is utilized to select top candidate for data template. With selected

candidate data for interpolate, cross interpolation across multiple generations is

then conducted to achieve the desired class distributions. The outcome of this

oversampling, rebalancing of class imbalance data in modelling of JIT-SDP

became more reliable and quality of training datasets.

3. A robust deep reinforcement learning architecture for effort aware defect

prediction. Previous classifiers for JIT-SDP adopted supervised, unsupervised

and semi-supervised learning approaches to building the prediction model. This

study however utilized deep reinforcement learning which exploiting the

usefulness of Deep Q-Network to reinforce the learning process under a

restricted policy. The policy is inspired by acts during code review process. For

every correct predicted result, the model is given reward and vise verse for

falsely predicted results. The reward policy learning encourages the prediction

model to minimise the possibility of producing false positives while maximising

prediction results. The training of the JIT-SDP model with DQN is appropriate

for sequential or mini batches data, allowing it to adapt to data drift more

effectively. The issue of re-training JIT-SDP models is well handled in the

sequential learning approach by this solution, which is an inherent problem with

most classifiers.

Univ
ers

iti
Mala

ya

194

4. A framework for modelling JIT-SDP. The study develops a framework for

developing a comprehensive JIT-SDP that reduces the possibility of false alarms

as well as predicting defects. This framework identifies potential risky changes

before they are incorporated into the codebase, thereby mitigating their risk. A

novel oversampling and classifier are also proposed in this framework, which

considers the most influential factors (rebalancing data and choice of classifier)

that influence the prediction of software defects. This framework produces better

classification results for code changes during software development as a result.

6.2 Research limitations

Despite of having all significant achievements in previous section, several

limitations faced during throughout this research. The identified limitations provide

room for improvements and future research opportunities.

1. Input of software metrics. The JIT-SDP model is affected by the uncertainty of

input data. In different releases, metrics are distributed differently. As a result,

the training and testing data sets do not have similar distributions, i.e., the

training data no longer matches the current project data. Concept drift is not

fully addressed by the current proposed approach in the context of online

learning.

2. Software project datasets. The datasets used in this study are from an open-

source repository (GitHub). Data from private/commercial company repositories

is not included in this study. It is possible that the results are biased towards

open-source systems due to defects reported on them. Depending on the design

of a program, results are not applicable to industry context yet.

3. Optimization of hyperparameters coverage. JIT-SDP models encode the

regularities in a set of model parameters. An important concern is whether we

Univ
ers

iti
Mala

ya

195

can uniquely determine the model parameters from the input data, either

theoretically or numerically. This is called the parameter optimization problem.

In this study however, parameters optimization only limited to hyperparameters

for neural network within DQN. Due to limited resources and time constraint,

several other hyperparameters for DQN such as choice of reward policy, epsilon

value and decay rate are based on default settings. The performance of DQN in

different hyperparameters settings is unknown and untestable.

4. The usability of the proposed approach. The proposed of JIT-SDP consist of

three development phases. However, for each phase, specific processes

unsuitable or generalized well with other OSS project other than those tested in

this research. For example, the proposed KCO is not ideal to be implemented in

small datasets and overly diverse distribution data due to orthogonal

transformation unable to be done effectively. Besides, DQN proposed here will

not perform well in case of noisy training data sets is not well treated because

more duplicated instances lead to overfitting model. DQN underperform toward

overfitted model when the training data have more duplicated instances which

hindered from learning the whole data pattern.

6.3 Future Works

Apart from the current works discussed in previous sections, several interesting and

emerging topics still relevant in JIT-SDP study including data privacy, software metrics

and defect severity priority.

Data privacy. Data privacy requires publicly available defect datasets to accelerate

cross-project defect prediction studies. Due to sensitive attribute values, software

companies are reluctant to share their defect datasets. Consequently, cross-project defect

prediction studies typically involve open-source software or only a few proprietary

Univ
ers

iti
Mala

ya

196

systems. Cross-project validation revealed significant performance degradation for most

of the datasets studied for JIT-SDP approaches in this research. In this case, JIT-SDP

could modify instances at a random distance while maintaining the class boundary. So,

JIT-SDP could preserve original datasets and still achieve superior prediction

performance as in models trained from original defect datasets. Investigating privacy

issues in cross-project JIT-SDP is required because evaluation of prediction models will

stronger if we have more available private datasets. Simply increasing the size of the

training data does not improve the prediction accuracy of the investigated approaches.

Given the wealth of data available from code repositories, we believe that a finer-

grained JIT is possible.

Software metrics. Software metrics are the most prevalent type of measurement in

software artefacts. As demonstrated in the preceding chapter, the potential of current

software metrics has nearly been realised, as there is no significant improvement in

prediction performance regardless of the classifiers chosen. Thus, future attempts will

necessitate a wider adoption of other measures, particularly by utilization of ITS-based

data. In ITS, developers describe and discuss change requests, provide feedback on the

code for code review, and suggest future improvements. Although uncommon, ITS data

such as issue reports, discussions, and change requests could be useful to JIT-SDP,

especially for predicting future changes to address reported issues. By using this data in

addition to software change metrics will perform better than those using only software

change metrics. These data sets will facilitate a wider adoption and further investigation

of the ITS data in JIT-SDP. New metrics and models must be continuously investigated.

As a result, it is necessary to continue investigating project context factors and software

metrics, as well as their relationship with defect prediction results, given that a variety

of software metrics derived from a variety of data sources aid in enhancing defect

predictive performance. With the ability of the proposed approach DQN and KCO to

Univ
ers

iti
Mala

ya

197

deal with large combinations of metrics (multidimensional data), the use of ITS data

with current metrics is required in the future improve prediction performance.

Defect severity. In effort-aware JIT-SDP, the current quality assurance effort is

measured by the reviewed lines of code. Future JIT-SDP implementations utilising the

proposed framework need to consider alternative quality assurance effort measures,

such as differentiating the efforts to address various types of failure. In fact, software

defects produce result in a variety of failure types and occurrences at various stages of

software development. Consequently, the severity of software defects in various

locations varies. The potential further works for JIT-SDP exist for predicting and

prioritizing defect severity as a multiclass classification problem, with the defect

severity classes serving as the dependent variable. Moreover, incorporating the

proposed JIT-SDP approach with static defect localisation is beneficial for defect

management. Using semantic abstractions of the source code, localisation defects are

detected. Consequently, combining JIT-SDP and defect localisation could be mutually

compensatory, as they can detect various types of defects (severity). Moreover, defect

localisation with a warning system prioritised by JIT-SDP could result in superior

performance compared to native defect localisation.

6.4 Research Impact

The proposed framework driven toward automated code review, which is the

process of reviewing source code automatically using a predefined set of rules to

identify inefficient code or defects. Automated code review is essential for standardising

and scaling software development efforts within an organisation. Since the review

process handles the majority of common source code defects, human reviewers can

concentrate on higher level code issues. It is a cost-effective strategy because it

automates portions of a code review that are not susceptible to human error, avoid

Univ
ers

iti
Mala

ya

198

incorporate personal bias, and quickly identify defects. Thus, a robust review process

allows developer teams to spend less time and money on bad code. Consequently,

organization can achieve a valuable and sustainable competitive advantage.

The pandemic heightened the need to reduce software development costs, and many

organisations made this a top priority. The development phase is a natural starting point

for cost reductions. According to Gartner analyst Robert Snow (2021), new application

development accounts for 17% of total IT expenditures, making it a fruitful area to

search for opportunities to reduce costs, optimise expenditures, or increase value.

Through JIT-SDP of the proposed framework, agile application design and development

teams employ tactics that combine short-term savings via static analysis of JIT-SDP

with strategic long-term savings via software testing. As Malaysian organisations

accelerate their transformation plans, it is imperative that they incorporate more

advanced static analysis technology, such given by the proposed JIT-SDP into their

software development strategies.

Encourage the application and use of artificial intelligence (AI) and software

innovation as a locally made service to empower future technology in alignment with

the Twelfth Malaysia Plan (12MP) under the Malaysia Digital Economy Blueprint. This

will help create more highly skilled and experienced talents. It is an initiative towards

the achievement of ICT excellence in supporting the development of digital

government, with the advancement of the proposed JIT-SDP being accomplished

through automated code review. The initiative conducts quality assurance checks on

various software and information technology (IT) projects carried out by the

government. In addition, the possibility of software delays and security breaches is

reduced so as to maximise the likelihood of producing high-quality software.

Univ
ers

iti
Mala

ya

199

REFERENCE

Akmel, F., Birihanu, E., & Siraj, B. (2018). A Literature Review Study of Software
Defect Prediction using Machine Learning Techniques. International Journal of
Emerging Research in Management and Technology, 6(6), 300.
https://doi.org/10.23956/ijermt.v6i6.286

Al Mamun, M. A., Berger, C., & Hansson, J. (2017). Correlations of software code
metrics: An empirical study. ACM International Conference Proceeding Series,
Part F1319(May), 255–266. https://doi.org/10.1145/3143434.3143445

Alami, A. (2016). Why Do Information Technology Projects Fail? Procedia Computer
Science, 100, 62–71. https://doi.org/10.1016/j.procs.2016.09.124

Albahli, S. (2019). A Deep Ensemble Learning Method for Effort-Aware Just-In-Time
Defect Prediction. Future Internet, 11(12), 246. https://doi.org/10.3390/fi11120246

Amasaki, S., Aman, H., & Yokogawa, T. (2021). A Preliminary Evaluation of CPDP
Approaches on Just-in-Time Software Defect Prediction. 2021 47th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA), 279–
286. https://doi.org/10.1109/SEAA53835.2021.00042

Arisholm, E., Briand, L. C., & Johannessen, E. B. (2010). A systematic and
comprehensive investigation of methods to build and evaluate fault prediction
models. Journal of Systems and Software, 83(1), 2–17.
https://doi.org/10.1016/j.jss.2009.06.055

Azzeh, M., Elsheikh, Y., Nassif, A. B., & Angelis, L. (2023). Examining the
performance of kernel methods for software defect prediction based on support
vector machine. Science of Computer Programming, 226, 102916.
https://doi.org/10.1016/j.scico.2022.102916

Barua, S., Islam, M. M., Yao, X., & Murase, K. (2014). MWMOTE - Majority weighted
minority oversampling technique for imbalanced data set learning. IEEE
Transactions on Knowledge and Data Engineering, 26(2), 405–425.
https://doi.org/10.1109/TKDE.2012.232

Baum, T., & Schneider, K. (2016). On the Need for a New Generation of Code Review
Tools. In Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 10027 LNCS (pp.
301–308). https://doi.org/10.1007/978-3-319-49094-6_19

Beller, M., Bacchelli, A., Zaidman, A., & Juergens, E. (2014). Modern code reviews in
open-source projects: Which problems do they fix?. Proceedings - 11th Working
Conference on Mining Software Repositories, MSR 2014, 202–211.
https://doi.org/10.1145/2597073.2597082

Bellinger, C., Drummond, C., & Japkowicz, N. (2016). Beyond the Boundaries of
SMOTE (pp. 248–263) . In: Frasconi, P., Landwehr, N., Manco, G., Vreeken, J.
(eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD
2016. Lecture Notes in Computer Science(), vol 9851. Springer, Cham..

Univ
ers

iti
Mala

ya

200

https://doi.org/10.1007/978-3-319-46128-1_16

Bennin, K. E., Keung, J., Phannachitta, P., Monden, A., & Mensah, S. (2018).
MAHAKIL: Diversity Based Oversampling Approach to Alleviate the Class
Imbalance Issue in Software Defect Prediction. IEEE Transactions on Software
Engineering, 44(6), 534–550. https://doi.org/10.1109/TSE.2017.2731766

Bird, C., Bachmann, A., Aune, E., Duffy, J., Bernstein, A., Filkov, V., & Devanbu, P.
(2009). Fair and balanced? Bias in bug-fix datasets. ESEC-FSE’09 - Proceedings
of the Joint 12th European Software Engineering Conference and 17th ACM
SIGSOFT Symposium on the Foundations of Software Engineering, June 2014,
121–130. https://doi.org/10.1145/1595696.1595716

Bowes, D., Hall, T., & Petrić, J. (2018). Software defect prediction: do different
classifiers find the same defects? Software Quality Journal, 26(2), 525–552.
https://doi.org/10.1007/s11219-016-9353-3

Branco, P., Torgo, L., & Ribeiro, R. P. (2016). A Survey of Predictive Modeling on
Imbalanced Domains. ACM Computing Surveys, 49(2), 1–50.
https://doi.org/10.1145/2907070

Cabral, G. G., Minku, L. L., Shihab, E., & Mujahid, S. (2019). Class Imbalance
Evolution and Verification Latency in Just-in-Time Software Defect Prediction.
2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE),
666–676. https://doi.org/10.1109/ICSE.2019.00076

Çarka, J., Esposito, M., & Falessi, D. (2022). On effort-aware metrics for defect
prediction. Empirical Software Engineering, 27(6). https://doi.org/10.1007/s10664-
022-10186-7

Chawla, N. v., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE:
Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence
Research, 16, 321–357. https://doi.org/10.1613/jair.953

Chen, L., Fang, B., Shang, Z., & Tang, Y. (2016). Tackling class overlap and imbalance
problems in software defect prediction. Software Quality Journal.
https://doi.org/10.1007/s11219-016-9342-6

Chen, X., Mu, Y., Liu, K., Cui, Z., & Ni, C. (2021). Revisiting heterogeneous defect
prediction methods: How far are we? Information and Software Technology,
130(September 2020), 106441. https://doi.org/10.1016/j.infsof.2020.106441

Chen, X., Zhao, Y., Wang, Q., & Yuan, Z. (2018). MULTI: Multi-objective effort-
aware just-in-time software defect prediction. Information and Software
Technology, 93, 1–13. https://doi.org/10.1016/j.infsof.2017.08.004

Chen, Y., Qian, H., Wang, X., Wang, D., & Han, L. (2022). A GloVe Model for Urban
Functional Area Identification Considering Nonlinear Spatial Relationships
between Points of Interest. ISPRS International Journal of Geo-Information,
11(10), 498. https://doi.org/10.3390/ijgi11100498

Univ
ers

iti
Mala

ya

201

Choirunnisa, S., Meidyani, B., & Rochimah, S. (2018). Software Defect Prediction
using Oversampling Algorithm: A-SUWO. 2018 Electrical Power, Electronics,
Communications, Controls and Informatics Seminar (EECCIS), 337–341.
https://doi.org/10.1109/EECCIS.2018.8692874

Ebert, C. (2007). The impacts of software product management. Journal of Systems and
Software, 80(6), 850–861. https://doi.org/10.1016/j.jss.2006.09.017

Eskonen, J., Kahles, J., & Reijonen, J. (2020). Automating GUI Testing with Image-
Based Deep Reinforcement Learning. 2020 IEEE International Conference on
Autonomic Computing and Self-Organizing Systems (ACSOS), 160–167.
https://doi.org/10.1109/ACSOS49614.2020.00038

Fan, Y., Xia, X., Alencar da Costa, D., Lo, D., Hassan, A. E., & Li, S. (2019). The
Impact of Changes Mislabeled by SZZ on Just-in-Time Defect Prediction. IEEE
Transactions on Software Engineering, PP(c), 1.
https://doi.org/10.1109/TSE.2019.2929761

Fan, Y., Xia, X., da Costa, D. A., Lo, D., Hassan, A. E., & Li, S. (2021). The Impact of
Mislabeled Changes by SZZ on Just-in-Time Defect Prediction. IEEE
Transactions on Software Engineering, 47(8), 1559–1586.
https://doi.org/10.1109/TSE.2019.2929761

Feng, S., Keung, J., Yu, X., Xiao, Y., Bennin, K. E., Kabir, M. A., & Zhang, M. (2021).
COSTE: Complexity-based OverSampling TEchnique to alleviate the class
imbalance problem in software defect prediction. Information and Software
Technology, 129, 106432. https://doi.org/10.1016/j.infsof.2020.106432

Fu, W., Menzies, T., & Shen, X. (2016). Tuning for software analytics: Is it really
necessary? Information and Software Technology, 76, 135–146.
https://doi.org/10.1016/j.infsof.2016.04.017

Fernandez, A., Garcia, S., Herrera, F., & Chawla, N. V. (2018). SMOTE for Learning
from Imbalanced Data: Progress and Challenges. Journal of Artificial Intelligence
Research, 61, 863–905. https://www.jair.org/index.php/jair/article/view/11192

Gazzah, S., Hechkel, A., & Ben Amara, N. E. (2015). A hybrid sampling method for
imbalanced data. 12th International Multi-Conference on Systems, Signals and
Devices, SSD 2015, 1–6. https://doi.org/10.1109/SSD.2015.7348093

Ghotra, B., McIntosh, S., & Hassan, A. E. (2015). Revisiting the impact of classification
techniques on the performance of defect prediction models. Proceedings -
International Conference on Software Engineering, 1, 789–800.
https://doi.org/10.1109/ICSE.2015.91

Gong, L., Jiang, S., & Jiang, L. (2019). Tackling Class Imbalance Problem in Software
Defect Prediction Through Cluster-Based Over-Sampling With Filtering. IEEE
Access, 7, 145725–145737. https://doi.org/10.1109/ACCESS.2019.2945858

Gray, D., Bowes, D., Davey, N., Sun, Y., & Christianson, B. (2011). The misuse of the
NASA Metrics Data Program data sets for automated software defect prediction.
IET Seminar Digest, 2011(1), 96–103. https://doi.org/10.1049/ic.2011.0012

Univ
ers

iti
Mala

ya

202

Han, H., Wang, WY., Mao, BH. (2005). Borderline-SMOTE: A New Over-Sampling
Method in Imbalanced Data Sets Learning. In: Huang, DS., Zhang, XP., Huang,
GB. (eds) Advances in Intelligent Computing. ICIC 2005. Lecture Notes in
Computer Science, vol 3644. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/11538059_91

Han, M., Guo, H., Li, J., & Wang, W. (2023). Global-local information based
oversampling for multi-class imbalanced data. International Journal of Machine
Learning and Cybernetics, 14(6), 2071–2086. https://doi.org/10.1007/s13042-022-
01746-w

Harries, L., Clarke, R. S., Chapman, T., Nallamalli, S. V. P. L. N., Ozgur, L., Jain, S.,
Leung, A., Lim, S., Dietrich, A., Hernández-Lobato, J. M., Ellis, T., Zhang, C., &
Ciosek, K. (2020). DRIFT: Deep Reinforcement Learning for Functional Software
Testing. NeurIPS.

Hawkins, D. M. (2004). The Problem of Overfitting. Journal of Chemical Information
and Computer Sciences, 44(1), 1–12. https://doi.org/10.1021/ci0342472

He, H., Bai, Y., Garcia, E. A., & Li, S. (2008). ADASYN: Adaptive synthetic sampling
approach for imbalanced learning. In 2008 IEEE International Joint Conference on
Neural Networks (IEEE World Congress on Computational Intelligence) (pp.
1322–1328). https://doi.org/10.1109/IJCNN.2008.4633969

Hedberg, H. (2004). Introducing the Next Generation of Software Inspection Tools.
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 3009(May), V.
https://doi.org/10.1007/978-3-540-24659-6

Herzig, K., Just, S., & Zeller, A. (2013). It’s not a bug, it’s a feature: How
misclassification impacts bug prediction. Proceedings - International Conference
on Software Engineering, 392–401. https://doi.org/10.1109/ICSE.2013.6606585

Herzig, K., Just, S., & Zeller, A. (2016). The impact of tangled code changes on defect
prediction models. Empirical Software Engineering, 21(2), 303–336.
https://doi.org/10.1007/s10664-015-9376-6

Ho, A., Nhat Hai, N., & Thi-Mai-Anh, B. (2022). Combining Deep Learning and
Kernel PCA for Software Defect Prediction. ACM International Conference
Proceeding Series, 360–367. https://doi.org/10.1145/3568562.3568587

Hosseini, S., Turhan, B., & Mäntylä, M. (2018). A benchmark study on the
effectiveness of search-based data selection and feature selection for cross project
defect prediction. Information and Software Technology, 95, 296–312.
https://doi.org/10.1016/j.infsof.2017.06.004

Hu, Z., Beuran, R., & Tan, Y. (2020). Automated Penetration Testing Using Deep
Reinforcement Learning. In 2020 IEEE European Symposium on Security and
Privacy Workshops (EuroS&PW) (pp. 2-10). Genoa, Italy.
https://doi.org/10.1109/EuroSPW51379.2020.00010.

Huang, Q., Xia, X., & Lo, D. (2019). Revisiting supervised and unsupervised models

Univ
ers

iti
Mala

ya

203

for effort-aware just-in-time defect prediction. Empirical Software Engineering,
24(5), 2823–2862. https://doi.org/10.1007/s10664-018-9661-2

Huda, S., Alyahya, S., Mohsin Ali, M., Ahmad, S., Abawajy, J., Al-Dossari, H., &
Yearwood, J. (2017). A Framework for Software Defect Prediction and Metric
Selection. IEEE Access, 6, 2844–2858.
https://doi.org/10.1109/ACCESS.2017.2785445

Huda, S., Liu, K., Abdelrazek, M., Ibrahim, A., Alyahya, S., Al-Dossari, H., & Ahmad,
S. (2018). An Ensemble Oversampling Model for Class Imbalance Problem in
Software Defect Prediction. IEEE Access, 6(c), 24184–24195.
https://doi.org/10.1109/ACCESS.2018.2817572

Jahanshahi, H., Jothimani, D., Başar, A., & Cevik, M. (2019). Does chronology matter
in JIT defect prediction? Proceedings of the Fifteenth International Conference on
Predictive Models and Data Analytics in Software Engineering, 90–99.
https://doi.org/10.1145/3345629.3351449

Jiang, T., Tan, L., & Kim, S. (2013). Personalized defect prediction. Proceedings -
2013 28th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2013, 279–289. https://doi.org/10.1109/ASE.2013.6693087

Jiarpakdee, J., Tantithamthavorn, C., & Hassan, A. E. (2021). The Impact of Correlated
Metrics on the Interpretation of Defect Models. IEEE Transactions on Software
Engineering, 47(2), 320-331. https://doi.org/10.1109/TSE.2019.2891758.

Jiarpakdee, J., Tantithamthavorn, C., & Treude, C. (2018). Autospearman:
Automatically mitigating correlated software metrics for interpreting defect
models. Proceedings - 2018 IEEE International Conference on Software
Maintenance and Evolution, ICSME 2018, 92–103.
https://doi.org/10.1109/ICSME.2018.00018

Jing, X. Y., Wu, F., Dong, X., & Xu, B. (2017). An Improved SDA Based Defect
Prediction Framework for Both Within-Project and Cross-Project Class-Imbalance
Problems. IEEE Transactions on Software Engineering, 43(4), 321–339.
https://doi.org/10.1109/TSE.2016.2597849

Kamei, Y., Shihab, E., Adams, B., Hassan, A. E., Mockus, A., Sinha, A., & Ubayashi,
N. (2013). A large-scale empirical study of just-in-time quality assurance. IEEE
Transactions on Software Engineering, 39(6), 757–773.
https://doi.org/10.1109/TSE.2012.70

Kim, J., Kwon, M., & Yoo, S. (2018). Generating test input with deep reinforcement
learning. Proceedings - International Conference on Software Engineering, 51–58.
https://doi.org/10.1145/3194718.3194720

Kim, S., Zhang, H., Wu, R., & Gong, L. (2011). Dealing with noise in defect prediction.
Proceedings - International Conference on Software Engineering, 481–490.
https://doi.org/10.1145/1985793.1985859

Kondo, M., German, D. M., Mizuno, O., & Choi, E. H. (2019). The impact of context
metrics on just-in-time defect prediction. Empirical Software Engineering.

Univ
ers

iti
Mala

ya

204

https://doi.org/10.1007/s10664-019-09736-3

Kononenko, O., Baysal, O., & Godfrey, M. W. (2016). Code review quality: How
developers see it. Proceedings - International Conference on Software
Engineering, 14-22-May-, 1028–1038. https://doi.org/10.1145/2884781.2884840

Laradji, I. H., Alshayeb, M., & Ghouti, L. (2014). Software defect prediction using
ensemble learning on selected features. Information and Software Technology.
https://doi.org/10.1016/j.infsof.2014.07.005

Lewis, C., Lin, Z., Sadowski, C., Zhu, X., Ou, R., & Whitehead, E. J. (2013). Does bug
prediction support human developers? Findings from a Google case study.
Proceedings - International Conference on Software Engineering, 372–381.
https://doi.org/10.1109/ICSE.2013.6606583

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., & Talwalkar, A. (2018).
Hyperband: A novel bandit-based approach to hyperparameter optimization.
Journal of Machine Learning Research, 18, 1–52.

Li, W., Zhang, W., Jia, X., & Huang, Z. (2020). Effort-Aware semi-Supervised just-in-
Time defect prediction. Information and Software Technology, 126(April), 106364.
https://doi.org/10.1016/j.infsof.2020.106364

Li, Z., Jing, X. Y., & Zhu, X. (2018). Progress on approaches to software defect
prediction. IET Software, 12(3), 161–175. https://doi.org/10.1049/iet-
sen.2017.0148

Li, Z., Zhang, X., Guo, J., & Shang, Y. (2019). Class Imbalance Data-Generation for
Software Defect Prediction. 2019 26th Asia-Pacific Software Engineering
Conference (APSEC), 276–283. https://doi.org/10.1109/APSEC48747.2019.00045

Liu, M., Miao, L., & Zhang, D. (2014). Two-stage cost-sensitive learning for software
defect prediction. IEEE Transactions on Reliability, 63(2), 676–686.
https://doi.org/10.1109/TR.2014.2316951

Liu, X. Y., Wu, J., & Zhou, Z. H. (2008). Exploratory under-sampling for class-
imbalance learning. Proceedings - IEEE International Conference on Data Mining,
ICDM, 965–969. https://doi.org/10.1109/TSMCB.2008.2007853

Liu, Y., Han, W., Wang, X., & Li, Q. (2020). Oversampling Algorithm Based on
Spatial Distribution of Data Sets for Imbalance Learning. 2020 5th International
Conference on Computer and Communication Systems (ICCCS), 45–49.
https://doi.org/10.1109/ICCCS49078.2020.9118573

Lorena, A. C., Garcia, L. P. F., Lehmann, J., Souto, M. C. P., & Ho, T. K. (2020). How
Complex Is Your Classification Problem? ACM Computing Surveys, 52(5), 1–34.
https://doi.org/10.1145/3347711

Lunardon, N., Menardi, G., & Torelli, N. (2014). ROSE: a Package for Binary
Imbalanced Learning. The R Journal, 6(1), 79. https://doi.org/10.32614/RJ-2014-
008

Univ
ers

iti
Mala

ya

205

Mahmood, Z., Bowes, D., Hall, T., Lane, P. C. R., & Petrić, J. (2018). Reproducibility
and replicability of software defect prediction studies. Information and Software
Technology, 99, 148–163. https://doi.org/10.1016/j.infsof.2018.02.003

Malhotra, R., & Khan, K. (2020). A Study on Software Defect Prediction using Feature
Extraction Techniques. ICRITO 2020 - IEEE 8th International Conference on
Reliability, Infocom Technologies and Optimization (Trends and Future
Directions), 1139–1144. https://doi.org/10.1109/ICRITO48877.2020.9197999

Mantyla, M. V., & Lassenius, C. (2009). What Types of Defects Are Really Discovered
in Code Reviews? IEEE Transactions on Software Engineering, 35(3), 430–448.
https://doi.org/10.1109/TSE.2008.71

Meiliana, Karim, S., Warnars, H. L. H. S., Gaol, F. L., Abdurachman, E., & Soewito, B.
(2017). Software metrics for fault prediction using machine learning approaches: A
literature review with PROMISE repository dataset. 2017 IEEE International
Conference on Cybernetics and Computational Intelligence (CyberneticsCom),
2(6), 19–23. https://doi.org/10.1109/CYBERNETICSCOM.2017.8311708

Mende, T., & Koschke, R. (2010). Effort-aware defect prediction models. Proceedings
of the European Conference on Software Maintenance and Reengineering, CSMR,
107–116. https://doi.org/10.1109/CSMR.2010.18

Menzies, T., Dekhtyar, A., Distefano, J., & Greenwald, J. (2007). Problems with
Precision: A Response to “Comments on ‘Data Mining Static Code Attributes to
Learn Defect Predictors.’” IEEE Transactions on Software Engineering, 33(9),
637–640. https://doi.org/10.1109/TSE.2007.70721

Menzies, T., Turhan, B., Bener, A., Gay, G., Cukic, B., & Jiang, Y. (2008). Implications
of ceiling effects in defect predictors. Proceedings of the 4th International
Workshop on Predictor Models in Software Engineering - PROMISE ’08, 47.
https://doi.org/10.1145/1370788.1370801

Misirli, A. T., Shihab, E., & Kamei, Y. (2016). Studying high impact fix-inducing
changes. Empirical Software Engineering, 21(2), 605–641.
https://doi.org/10.1007/s10664-015-9370-z

Mockus, A. (2016). Operational data are missing, incorrect, and decontextualized. In
Perspectives on Data Science for Software Engineering. Elsevier Inc.
https://doi.org/10.1016/b978-0-12-804206-9.00057-x

Mockus, A., & Weiss, D. M. (2002). Predicting risk of software changes. Bell Labs
Technical Journal, 5(2), 169–180. https://doi.org/10.1002/bltj.2229

Nagappan, N., Zeller, A., Zimmermann, T., Herzig, K., & Murphy, B. (2010). Change
bursts as defect predictors. Proceedings - International Symposium on Software
Reliability Engineering, ISSRE, 309–318. https://doi.org/10.1109/ISSRE.2010.25

Nayrolles, M., & Hamou-Lhadj, A. (2018). CLEVER: Combining code metrics with
clone detection for just-in-time fault prevention and resolution in large industrial
projects. Proceedings - International Conference on Software Engineering, 153–
164. https://doi.org/10.1145/3196398.3196438

Univ
ers

iti
Mala

ya

206

Pandey, S. K., Mishra, R. B., & Tripathi, A. K. (2021). Machine learning based
methods for software fault prediction: A survey. Expert Systems with Applications,
172, 114595. https://doi.org/10.1016/j.eswa.2021.114595

Pascarella, L., Palomba, F., & Bacchelli, A. (2019). Fine-grained just-in-time defect
prediction. Journal of Systems and Software, 150, 22–36.
https://doi.org/10.1016/j.jss.2018.12.001

Piotrowski, P., & Madeyski, L. (2020). Software Defect Prediction Using Bad Code
Smells: A Systematic Literature Review. In Data-Centric Business and
Applications. Lecture Notes on Data Engineering and Communications
Technologies (pp. 77–99). Springer. https://doi.org/10.1007/978-3-030-34706-2_5

Punitha, K., & Chitra, S. (2013). Software defect prediction using software metrics - A
survey. 2013 International Conference on Information Communication and
Embedded Systems, ICICES 2013, 555–558.
https://doi.org/10.1109/ICICES.2013.6508369

Qiao, L., & Wang, Y. (2019). Effort-aware and just-in-time defect prediction with
neural network. PLoS ONE, 14(2), 1–19.
https://doi.org/10.1371/journal.pone.0211359

Quach, S., Lamothe, M., Adams, B., Kamei, Y., & Shang, W. (2021). Evaluating the
impact of falsely detected performance bug-inducing changes in JIT models.
Empirical Software Engineering, 26(5). https://doi.org/10.1007/s10664-021-
10004-6

Radjenović, D., Heričko, M., Torkar, R., & Živkovič, A. (2013). Software fault
prediction metrics: A systematic literature review. Information and Software
Technology, 55(8), 1397–1418. https://doi.org/10.1016/j.infsof.2013.02.009

Rahman, F., & Devanbu, P. (2013). How, and why, process metrics are better.
Proceedings - International Conference on Software Engineering, 432–441.
https://doi.org/10.1109/ICSE.2013.6606589

Ramler, R., Buchgeher, G., Klammer, C., Pfeiffer, M., Salomon, C., Thaller, H., &
Linsbauer, L. (2019). Software Quality: The Complexity and Challenges of
Software Engineering and Software Quality in the Cloud (D. Winkler, S. Biffl, &
J. Bergsmann (eds.); Vol. 338). Springer International Publishing.
https://doi.org/10.1007/978-3-030-05767-1

Rodríguez-Torres, F., Martínez-Trinidad, J. F., & Carrasco-Ochoa, J. A. (2022). An
Oversampling Method for Class Imbalance Problems on Large Datasets. Applied
Sciences, 12(7), 3424. https://doi.org/10.3390/app12073424

Rosen, C., Grawi, B., & Shihab, E. (2015). Commit guru: Analytics and risk prediction
of software commits. Proceedings - 2015 10th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, ESEC/FSE 2015 , 966–969.
https://doi.org/10.1145/2786805.2803183

Univ
ers

iti
Mala

ya

207

Ryu, D., Choi, O., & Baik, J. (2016). Value-cognitive boosting with a support vector
machine for cross-project defect prediction. Empirical Software Engineering,
21(1), 43–71. https://doi.org/10.1007/s10664-014-9346-4

Sadowski, C., Lewis, C., Lin, Z., Zhu, X., & Whitehead, E. J. (2011). An empirical
analysis of the FixCache algorithm. Proceeding of the 8th Working Conference on
Mining Software Repositories - MSR ’11, 219.
https://doi.org/10.1145/1985441.1985475

Sharma, S., Gosain, A., & Jain, S. (2022). A Review of the Oversampling Techniques in
Class Imbalance Problem (pp. 459–472). https://doi.org/10.1007/978-981-16-
2594-7_38

Shihab, E., Hassan, A. E., Adams, B., & Jiang, Z. M. (2012). An industrial study on the
risk of software changes. Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, FSE 2012, 1–11.
https://doi.org/10.1145/2393596.2393670

Shivaji, S., James Whitehead, E., Akella, R., & Kim, S. (2013). Reducing features to
improve code change-based bug prediction. IEEE Transactions on Software
Engineering, 39(4), 552–569. https://doi.org/10.1109/TSE.2012.43

Siers, M. J., & Islam, M. Z. (2015). Software defect prediction using a cost sensitive
decision forest and voting, and a potential solution to the class imbalance problem.
Information Systems, 51, 62–71. https://doi.org/10.1016/j.is.2015.02.006

Sikic, L., Afric, P., Kurdija, A. S., & Silic, M. (2021). Improving Software Defect
Prediction by Aggregated Change Metrics. IEEE Access, 9, 19391–19411.
https://doi.org/10.1109/ACCESS.2021.3054948

Singh, A., Bhatia, R., & Singhrova, A. (2018). Taxonomy of machine learning
algorithms in software fault prediction using object oriented metrics. Procedia
Computer Science, 132, 993–1001. https://doi.org/10.1016/j.procs.2018.05.115

Singh, D., Sekar, V. R., Stolee, K. T., & Johnson, B. (2017). Evaluating how static
analysis tools can reduce code review effort. Proceedings of IEEE Symposium on
Visual Languages and Human-Centric Computing, VL/HCC, 2017-Octob, 101–
105. https://doi.org/10.1109/VLHCC.2017.8103456

Singh, V. B., & Chaturvedi, K. K. (2013). Improving the quality of software by
quantifying the code change metric and predicting the bugs. Lecture Notes in
Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 7972 LNCS(PART 2), 408–426.
https://doi.org/10.1007/978-3-642-39643-4_30

Śliwerski, J., Zimmermann, T., & Zeller, A. (2005). When do changes induce fixes?
ACM SIGSOFT Software Engineering Notes, 30(4), 1.
https://doi.org/10.1145/1082983.1083147

Son, L., Pritam, N., Khari, M., Kumar, R., Phuong, P., & Thong, P. (2019). Empirical
Study of Software Defect Prediction: A Systematic Mapping. Symmetry, 11(2),
212. https://doi.org/10.3390/sym11020212

Univ
ers

iti
Mala

ya

208

Song, Q., Guo, Y., & Shepperd, M. (2018). A Comprehensive Investigation of the Role
of Imbalanced Learning for Software Defect Prediction. IEEE Transactions on
Software Engineering, 5589(APRIL). https://doi.org/10.1109/TSE.2018.2836442

Taba, S. E. S., Khomh, F., Zou, Y., Hassan, A. E., & Nagappan, M. (2013). Predicting
bugs using antipatterns. IEEE International Conference on Software Maintenance,
ICSM, 270–279. https://doi.org/10.1109/ICSM.2013.38

Tabassum, S., Minku, L. L., & Feng, D. (2023). Cross-Project Online Just-In-Time
Software Defect Prediction. IEEE Transactions on Software Engineering, 49(1),
268–287. https://doi.org/10.1109/TSE.2022.3150153

Tan, M., Tan, L., Dara, S., & Mayeux, C. (2015). Online Defect Prediction for
Imbalanced Data. Proceedings - International Conference on Software
Engineering, 2, 99–108. https://doi.org/10.1109/ICSE.2015.139

Tang, W., & Khoshgoftaar, T. M. (2004). Noise identification with the k-means
algorithm. Proceedings - International Conference on Tools with Artificial
Intelligence, ICTAI, 373–378. https://doi.org/10.1109/ictai.2004.93

Tantithamthavorn, C., McIntosh, S., Hassan, A. E., & Matsumoto, K. (2019). The
Impact of Automated Parameter Optimization on Defect Prediction Models. IEEE
Transactions on Software Engineering, 45(7), 683–711.
https://doi.org/10.1109/TSE.2018.2794977

Tosun, A., Bener, A., Turhan, B., & Menzies, T. (2010). Practical considerations in
deploying statistical methods for defect prediction: A case study within the Turkish
telecommunications industry. Information and Software Technology, 52(11),
1242–1257. https://doi.org/10.1016/j.infsof.2010.06.006

Trautsch, A., Herbold, S., & Grabowski, J. (2020). Static source code metrics and static
analysis warnings for fine-grained just-in-time defect prediction. Proceedings -
2020 IEEE International Conference on Software Maintenance and Evolution,
ICSME 2020, 127–138. https://doi.org/10.1109/ICSME46990.2020.00022

Xia, S., Xiong, Z., Luo, Y., WeiXu, & Zhang, G. (2015). Effectiveness of the Euclidean
Wan, Z., Xia, X., Hassan, A. E., Lo, D., Yin, J., & Yang, X. (2018). Perceptions,
Expectations, and Challenges in Defect Prediction. IEEE Transactions on Software
Engineering, 5589(c). https://doi.org/10.1109/TSE.2018.2877678

Wang, S., Liu, T., Nam, J., & Tan, L. (2018). Deep Semantic Feature Learning for
Software Defect Prediction. IEEE Transactions on Software Engineering, 5589(c),
1–26. https://doi.org/10.1109/TSE.2018.2877612

Wang, T., Zhang, Z., Jing, X., & Zhang, L. (2016). Multiple kernel ensemble learning
for software defect prediction. Automated Software Engineering, 23(4), 569–590.
https://doi.org/10.1007/s10515-015-0179-1

Wu, F., Jing, X. Y., Dong, X., Cao, J., Xu, B., & Ying, S. (2016). Cost-sensitive local
collaborative representation for software defect prediction. Proceedings - 2016
International Conference on Software Analysis, Testing and Evolution, SATE
2016, Cddl, 102–107. https://doi.org/10.1109/SATE.2016.24

Univ
ers

iti
Mala

ya

209

Xia, Y., Yan, G., & Zhang, H. (2014). Analyzing the significance of process metrics for
TT&C software defect prediction. Proceedings of the IEEE International
Conference on Software Engineering and Service Sciences, ICSESS, 77–81.
https://doi.org/10.1109/ICSESS.2014.6933517

distance in high dimensional spaces. Optik, 126(24), 5614–5619.
https://doi.org/10.1016/j.ijleo.2015.09.093

Xu, Z., Liu, J., Luo, X., Yang, Z., Zhang, Y., Yuan, P., Tang, Y., & Zhang, T. (2019).
Software defect prediction based on kernel PCA and weighted extreme learning
machine. Information and Software Technology, 106, 182–200.
https://doi.org/10.1016/j.infsof.2018.10.004

Yan, M., Xia, X., Fan, Y., Lo, D., Hassan, A. E., & Zhang, X. (2020). Effort-aware just-
in-time defect identification in practice: a case study at Alibaba. In Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE 2020) (pp.
1308-1319). https://doi.org/10.1145/3368089.3417048

Yang, L., Li, X., & Yu, Y. (2017). VulDigger: A Just-in-Time and Cost-Aware Tool for
Digging Vulnerability-Contributing Changes. GLOBECOM 2017 - 2017 IEEE
Global Communications Conference, 1–7.
https://doi.org/10.1109/GLOCOM.2017.8254428

Yang, X., Lo, D., Xia, X., & Sun, J. (2017). TLEL: A two-layer ensemble learning
approach for just-in-time defect prediction. Information and Software Technology,
87, 206–220. https://doi.org/10.1016/j.infsof.2017.03.007

Yang, X., Lo, D., Xia, X., Zhang, Y., & Sun, J. (2015). Deep Learning for Just-in-Time
Defect Prediction. Proceedings - 2015 IEEE International Conference on Software
Quality, Reliability and Security, QRS 2015, 1, 17–26.
https://doi.org/10.1109/QRS.2015.14

Yang, Y., Zhou, Y., Liu, J., Zhao, Y., Lu, H., Xu, L., Xu, B., & Leung, H. (2016).
Effort-Aware just-in-Time defect prediction: Simple unsupervised models could be
better than supervised models. Proceedings of the ACM SIGSOFT Symposium on
the Foundations of Software Engineering, 13-18-Nove, 157–168.
https://doi.org/10.1145/2950290.295035

Zha, Q., Yan, X., & Zhou, Y. (2018). Adaptive Centre-Weighted Oversampling for
Class Imbalance in Software Defect Prediction. 2018 IEEE Intl Conf on Parallel &
Distributed Processing with Applications, Ubiquitous Computing &
Communications, Big Data & Cloud Computing, Social Computing & Networking,
Sustainable Computing & Communications
(ISPA/IUCC/BDCloud/SocialCom/SustainCom), 223–230.
https://doi.org/10.1109/BDCloud.2018.00044

Zhang, Y., Yan, X., & Khan, A. A. (2020). A Kernel Density Estimation-Based
Variation Sampling for Class Imbalance in Defect Prediction. 2020 IEEE Intl Conf
on Parallel & Distributed Processing with Applications, Big Data & Cloud
Computing, Sustainable Computing & Communications, Social Computing &
Networking (ISPA/BDCloud/SocialCom/SustainCom), 1058–1065.

Univ
ers

iti
Mala

ya

210

https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.2020.00159

Zhang, Y., Zuo, T., Fang, L., Li, J., & Xing, Z. (2021). An Improved MAHAKIL
Oversampling Method for Imbalanced Dataset Classification. IEEE Access, 9,
16030–16040. https://doi.org/10.1109/ACCESS.2020.3047741

Zhao, K., Xu, Z., Zhang, T. Z., Tang, Y., & Yan, M. (2021). Simplified deep forest
model based just-in-time defect prediction for android mobile apps. IEEE
Transactions on Reliability, 70(2), 848–859.
https://doi.org/10.1109/TR.2021.3060937

Zhao, Y., Damevski, K., & Chen, H. (2023). A Systematic Survey of Just-in-Time
Software Defect Prediction. ACM Computing Surveys, 55(10), 1–35.
https://doi.org/10.1145/3567550

Zheng, W., Shen, T., & Chen, X. (2021). Just-in-Time Defect Prediction Technology
based on Interpretability Technology. Proceedings - 2021 8th International
Conference on Dependable Systems and Their Applications, DSA 2021, 78–89.
https://doi.org/10.1109/DSA52907.2021.00017

Zimmermann, T., & Nagappan, N. (2008). Predicting defects using network analysis on
dependency graphs. Proceedings - International Conference on Software
Engineering, 531–540. https://doi.org/10.1145/1368088.1368161

Zhu, K., Zhang, N., Ying, S., & Zhu, D. (2020). Within-project and cross-project just-
in-time defect prediction based on denoising autoencoder and convolutional neural
network. IET Software, 14(3), 185–195. https://doi.org/10.1049/iet-sen.2019.0278

Univ
ers

iti
Mala

ya

