
DEEP Q-NETWORK FOR JUST-IN-TIME SOFTWARE 
DEFECT PREDICTION 

 

 

 

 

AHMAD MUHAIMIN BIN ISMAIL 

 

 

 

 

 

FACULTY OF COMPUTER SCIENCE & INFORMATION 
TECHNOLOGY 

UNIVERSITI MALAYA 
KUALA LUMPUR 

 
  
 2023 

  

Univ
ers

iti 
Mala

ya



 

DEEP Q-NETWORK FOR JUST-IN-TIME SOFTWARE 

DEFECT PREDICTION 

 

 

 

 

 

AHMAD MUHAIMIN BIN ISMAIL 

 

 

THESIS SUBMITTED IN FULFILMENT OF THE 

REQUIREMENTS FOR THE DEGREE OF DOCTOR OF 

PHILOSOPY 

 

FACULTY OF COMPUTER SCIENCE AND 

INFORMATION TECHNOLOGY 
UNIVERSITY OF MALAYA 

KUALA LUMPUR 
 

 

2023 Univ
ers

iti 
Mala

ya



iii 

UNIVERSITI MALAYA 

ORIGINAL LITERARY WORK DECLARATION 

Name of Candidate: Ahmad Muhaimin Bin Ismail 

Matric No: 17202117/1 /WVA190005 

Name of Degree: Doctor of Philosophy 

Title: Deep Q-Network for Just-in-Time Software Defect Prediction 

Field of Study: Software Quality 

    I do solemnly and sincerely declare that: 

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair
dealing and for permitted purposes and any excerpt or extract from, or
reference to or reproduction of any copyright work has been disclosed
expressly and sufficiently and the title of the Work and its authorship have
been acknowledged in this Work;
(4) I do not have any actual knowledge nor do I ought reasonably to know
that the making of this work constitutes an infringement of any copyright
work;
(5) I hereby assign all and every rights in the copyright to this Work to the
University of Malaya (“UM”), who henceforth shall be owner of the
copyright in this Work and that any reproduction or use in any form or by any
means whatsoever is prohibited without the written consent of UM having
been first had and obtained;
(6) I am fully aware that if in the course of making this Work I have
infringed any copyright whether intentionally or otherwise, I may be subject
to legal action or any other action as may be determined by UM.

Candidate’s Signature Date: 

Subscribed and solemnly declared before, 

Witness’s Signature Date: 

Name: 

Designation: 

Univ
ers

iti 
Mala

ya



 

iv 

DEEP Q-NETWORK FOR JUST-IN-TIME SOFTWARE DEFECT 

PREDICTION 

ABSTRACT 

Mitigating software defects at code level at early stages allows for long-term 

maintenance of software quality. According to IBM's report, the cost of fixing an error 

rises exponentially as software moves forward in software development lifecycle. The 

cost to fix defects after software release is up to 15 times more than the fixing cost for 

defects uncovered during the initial software development phase. Quality assurance 

relies on code reviews to identify and fix software defects. Apart from code 

optimization and formal inspection, software defect prediction makes use of limited 

resources as part of the code review process to identify the most cost-effective way to 

discover defects. A software defect prediction approach is conducted at three levels of 

granularity: modules, files, and changes. Change level prediction, also referred to as 

Just-in-Time software defect prediction, assists in reducing the amount of code coverage 

without inspecting the entire file or package. Nevertheless, an inaccurate model of Just-

in-Time software defect prediction impedes both prevention and recovery of defects. 

The accuracy of prediction is mainly adversely affected by imbalanced class 

distributions and rate of false results. Accordingly, the focus of this study is on the 

problems of ineffective oversampling in imbalanced class distributions and high false-

positive rates in effort-aware software defect prediction. This study proposes a reliable 

framework for Just-in-Time software defect prediction to accurately predict software 

defects during the code change process using Deep Q-Network (DQN). The proposed 

framework consists of two modified parts: 1) rebalancing class distribution within 

training datasets by kernel-based cross oversampling, and 2) using DQN as a defect 

classifier for accurate prediction. The proposed framework is further validated by 
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checking the constructed prediction model for efficiency in effort cost and prediction 

accuracy in open-source software projects. Validation of the prediction model is 

performed through within-project prediction, cross-project prediction, and timewise 

prediction to ensure model reliability. The quality assurance team can improve software 

defect localization by prioritizing testing based on Just-in-Time software defect 

prediction. 

Keywords: Software quality, code review, just-in-time software defect prediction 

framework 
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Q-RANGKAIAN MENDALAM UNTUK RAMALAN KECACATAN PERISIAN 

SECARA TEPAT MASANYA 

ABSTRAK 

Mengurangkan cela perisian pada tahap kod di peringkat awal membolehkan 

pemeliharaan jangka panjang terhadap kualiti perisian. Menurut laporan IBM, kos untuk 

memperbaiki suatu cela perisian meningkat secara eksponen seiring dengan peredaran 

perisian dalam kitaran pembangunan perisian. Kos untuk memperbetulkan cela perisian 

selepas perisian dikeluarkan adalah sehingga 15 kali lebih tinggi daripada kos 

memperbaiki cela perisian yang ditemui semasa fasa pembangunan perisian awal. 

Jaminan kualiti bergantung kepada semakan kod untuk mengenal pasti dan 

memperbaiki cela perisian. Selain daripada pengoptimuman kod dan pemeriksaan 

formal, ramalan cela perisian menggunakan sumber terhad sebagai sebahagian daripada 

proses semakan kod untuk mengenal pasti cara yang paling berkesan dari segi kos untuk 

mengesan cela perisian. Pendekatan ramalan cela perisian dijalankan pada tiga tahap 

granulariti: modul, fail, dan perubahan. Ramalan peringkat perubahan, juga dikenali 

sebagai ramalan cela perisian "Just-in-Time," membantu mengurangkan jumlah liputan 

kod tanpa menyemak keseluruhan fail atau pakej. Walaubagaimanpun, model ramalan 

cela perisian "Just-in-Time" yang tidak tepat menghalang pencegahan dan pemulihan 

cela perisian. Prestasi ramalan terjejas oleh taburan kelas yang tidak seimbang dan 

kadar keputusan yang palsu. Oleh itu, tumpuan kajian ini adalah pada masalah 

memperbanyak sampel yang tidak berkesan dalam taburan kelas yang tidak seimbang 

dan kadar positif palsu yang tinggi dalam ramalan cela perisian yang peka terhadap 

usaha. Kajian ini mencadangkan satu kerangka yang berkesan bagi ramalan cela 

perisian "Just-in-Time" untuk meramalkan cela perisian secara tepat semasa perubahan 

kod menggunakan Deep Q-Network (DQN). Kerangka yang dicadangkan terdiri 
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daripada dua bahagian yang telah diubahsuai: 1) mengimbangi taburan kelas dalam 

dataset latihan melalui memperbanyakan sample secara silang berasaskan kernel, dan 2) 

menggunakan DQN sebagai pengklasifikasi cela perisian untuk ramalan yang tepat. 

Kerangka yang dicadangkan ini kemudian disahkan melalui pemeriksaan model 

ramalan yang dibina untuk kecekapan dalam kos usaha dan ketepatan ramalan dalam 

projek perisian sumber terbuka. Pengesahan model ramalan dilakukan melalui 

peramalan dalam projek, peramalan secara silang projek, dan peramalan berdasarkan 

perubahan masa untuk memastikan kebolehpercayaan model. Pasukan jaminan kualiti 

boleh meningkatkan penyetempatan cela perisian dengan mengutamakan pengujian 

berdasarkan ramalan cela perisian "Just-in-Time". 

Kata kunci: Qualiti perisian, semakan kod, rangka kerja ramalan cela perisian secara 

tepat masanya 
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CHAPTER 1: INTRODUCTION  

COVID-19 pandemic affected many businesses, small to large enterprises are forced to 

quickly reorganize working processes and accelerate IT priorities and technology 

roadmaps. In a recent report by Accelerated Strategies Group, 63.3% of business 

respondents noted that they accelerated digital transformation as a priority for their 

companies (Gartner, 2021). Their primary focus is based on contactless services, cloud 

migration, and DevOps activities. Since digital products determine the creation of 

sustainable and adaptable businesses, the development of software systems plays a 

critical role in building a better post-pandemic world.   

1.1 Research Background 

Software systems are becoming increasingly complex and are used in everything 

from mobile devices to space shuttles. The increasing importance and complexity of 

software systems in our daily lives make software quality a critical, yet extremely 

difficult issue to address. A well-developed software system increases the organization's 

reputation, promotes customer trust in software products, improves workflow 

efficiency, and provides a real competitive advantage (Ramler et al., 2019). Therefore, 

it is imperative to ensure that the software being built is reliable and fulfills its quality 

objectives. The quality and reliability of the software depend on the software defects 

that existed in the system. The higher number of defects decreases the reliability of the 

software, and a lot of effort is required to maintain the software quality. Gartner's 2012 

report states that 20% - 28% of failure potentially happen to software projects ranging 

from small to large size because of the complexity and low quality of the requirements 

blueprint (Alami, 2016), which requires 60% - 80% correct effort (Ebert, 2007). 
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Software Quality Assurance (SQA) provides a set of activities that ensure software 

meets a specific quality level and takes up a large amount of the maintenance effort. In 

SQA, the code review process helps developers to find and fix mistakes overlooked in 

the initial development phase, improving both the overall quality of software and the 

developers' skills (Beller et al., 2014). The code review process intends to 

systematically inspect source code for improvement and defects. Nevertheless, code 

review often involves repetitive and tedious tasks that increase the mental burden on 

reviewers and hamper their effectiveness (Singh et al., 2017).  Code review is a widely 

used approach to support software quality (Kononenko et al., 2016). In a code review, 

large teams of authors and reviewers take turns creating and reviewing source code, 

sharing knowledge, proposing advice, fixing bugs, and promoting excellence. One of 

the most challenging aspects of code review is the ability to predict defects in the code. 

The researchers propose alternative techniques to improve the code review process, 

specifically by examining how to support developers and reduce the required cognitive 

effort. One solution aims to support code review with artificial intelligence aimed at 

maximizing reviewers' efficiency without increasing the cost of their review. Promising 

practice in this sense is predictive analysis, which aims to automatically predict the 

areas of source code that are most likely to be problematic, thus drawing the reviewer's 

attention. 

Software defect prediction (SDP) allows for more efficient code review by predicting 

the defects prone to a software project in a cost-effective manner. SDP enables software 

defects to be predicted before they are observed by looking at the underlying properties 

of project artifacts. A software project in the context of SDP is a collection of 

procedures for the development of an intended software product with software versions 

by the related software artifacts. The software version contains an abundance of historic 

software project development information stored in software repositories. Two ways in 
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which the development information is stored: 1) within-project and 2) cross-project. 

Within-project version consists of the historical software development information 

extracted from prior software project releases. The cross-project version consists of the 

software development information extracted from version releases of other similar 

software projects. The historic software project development information consists of 

three sets of information: 1) a set of software metrics, 2) defects information, and 3) 

meta-information about the software project. This information is critical to project 

managers in improving their software development practices, especially in tracking and 

fixing defects in software releases (Tosun et al., 2010).  

Current fast advancement technologies place project managers constantly to respond 

faster to technological changes and new requirements by releasing new software 

versions in a limited amount of time and budgets. To handle such situations, other than 

static code analysis and software defect localization, SDP is a solution that enables the 

identification of future defects in an optimized and cost-effective way for the software 

project at early stage. It is also capable to provide feedback on software defects which 

only detected in future software releases. To date, the extensive research on SDP has 

driven the involvement of more industries to participate in bringing more additional 

resources toward open-source software projects (Li et al., 2018). For that reason, the 

research on the SDP approach is expected to be growing more in upcoming years due to 

the availability of more public access software projects. The SDP approach is available 

to be deployed at several levels in open-access software projects. The SDP approach is 

performed at three granularity levels: 1) module, 2) file, and 3) changes level. Module-

level SDP involves the prediction of the defect-prone modules before the testing phase. 

File-level SDP is conducted before a software release to act as a quality control step for 

software releases. Change-level of SDP is a continuous activity of quality control for 

each submission of code changes. 

Univ
ers

iti 
Mala

ya



 

4 

Changes level of SDP were first proposed by Mockus and Weiss (2002) 

recommending which code changes to software projects need to be inspected first based 

on the risk of introducing defects. Information within code changes is critical to be 

understood by the developers to carry out tasks on features addition, defects fixing, 

performance improvement, troubleshooting, and code maintenance (Misirli et al., 

2016). To date, code changes level prediction is also known as Just-in-Time SDP (JIT-

SDP) (Kamei et al., 2013). JIT-SDP enables the prediction process to be done once 

source code changes are committed in the version control system. The prediction 

process helps increase our understanding of software defect patterns in the early 

development phase which is exploited further for the quality control scheme. 

Accordingly, this research proposes an approach to improve the performance of JIT-

SDP in more effective ways. JIT-SDP offers two advantages over module and file 

prediction levels. First, it reduces the amount of code coverage without having to 

examine whole files or packages during code review. Secondly, code change level 

prediction also is used to identify whether a certain change causes a defect at check-in 

code transaction. Thus, the developers are able to allocate the limited test resources in a 

more efficient way for practical application.  

1.2 Motivation 

As with any research work, several factors motivate the purpose of producing the 

research. Similarly, the following three significant factors motivated this research.  

(a) Difficulty in software defect management. Managing the number of defects is an 

important aspect. Finding and fixing the defects cost lots of money. The data from 

the Gartner report in 2018, American companies spent around 42% money spend 

on software defects in IT products. Usually, software developers find and detect 

software defects through the process of testing. However, this is an expensive 
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process that takes a long time and unworthy the cost before release. Ultimately, 

most of the testing only happens at a later stage of software development. During 

testing, if the defect rate is higher than the acceptable level, the software 

development team is faced with a dilemma: to postpone the software release to fix 

these defects or to release the software products containing defects.  

(b) Cost-effective process. The interests of software engineering in quality assurance 

are activities such as testing, verification and validation, defect tolerance, and 

software defect prediction. Software defect prediction effectively reduces the 

testing effort by identifying early signs of the potential of defect-inducing source 

code. Therefore, the identified defect source code can easily be fixed by developers, 

which reduces testing effort. 

(c) Automated code review tools. Software defect prediction attracted the attention of 

large companies, which began experimenting with augmented code review tools 

(Gray et al., 2011; Tosun et al., 2010; Yan et al., 2020). For example, Google 

developers evaluated FixCache (Sadowski et al., 2011) which is a well-known tool 

for the defect prediction model. The evaluation of SDP is conducted in a typical 

working environment as a code review tool for the company (Lewis et al., 2013). 

FixCache uses a newly developed concept of defect locality which provides 

excellent results within controlled environments with minimal interactions with 

external factors. The developers of Google found, however, that the defects result 

generated are too imprecise to work in practice as code review recommendations. It 

is imperative that more research is conducted to improve the prediction results. In 

the context of this research, deep reinforcement learning with a quality-balanced 

training dataset provides an effective prediction of software defects based on the 

characteristics of code change metrics provided. 
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Despite many research attempts, all the factors mentioned above remained relevant 

and strongly motivated the production of this research toward the advancement of the 

software defect prediction domain.    

1.3 Statements of Problem 

The primary focus of this research is the issue of inaccurate prediction. Accurate 

prediction of software defects is important to ensure the quality of software during the 

software development process before software failure occurs. It helps developers to 

check and locate defects immediately at the time they are introduced. However, an 

inaccurate defect prediction causes the generation of false positives on non-defective 

instances that are predicted as defective labels and false negatives on defective instances 

that are predicted as non-defective labels. Getting false alarms wastes resources during 

the code review process. Particularly, the developer's effort and time to review the false 

result thus, cause frustration to the developers (Lewis et al., 2013). Primarily two 

problems that severely impact the prediction accuracy are identified, 1) ineffective 

oversampling in imbalance class distribution and 2) high false-positive rate in effort 

awareness evaluation. 

1.3.1 Ineffective Oversampling in Imbalance Class Distribution  

Software project datasets tend to have highly skewed class distributions (Song et al., 

2018). In a skewed data distribution, the majority of data is in the clean class and a 

small portion of data is in the defect class. A skewed distribution is also called 

imbalanced data. To balance the number of instances in the minority class of the defect 

class, oversampling generates more synthetic instances. However, the defect data 

generated by oversampling are often duplicated or overlapped within the spatial 

distribution (Li et al., 2018). A key characteristic of SDP imbalance datasets is the lack 
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of variation and the lack of information about the distribution of data (Bird et al., 2009; 

Chen et al., 2018). Figure 1 illustrates an example of spatial distribution with many 

overlapped data points. The problem of overlapped data instances negatively impacts 

prediction models that utilize oversampled data. Figure 2 illustrates the performance of 

the Logistic Regression classifier in JIT-SDP using oversampled data from 

oversampling techniques (Barua et al., 2014; Chawla et al., 2002; Haibo He et al., 

2008; Han et al., 2005; Lunardon et al., 2014). All baseline techniques, however, fail to 

distinguish their accuracy performance in imbalanced datasets which result in similar 

performance. This observation is influenced by the limited number of empty spaces 

available within the minority class (defect). A complex boundary line resulted in a small 

distance between the new and old data (Bellinger et al., 2016; Han et al., 2023). 

Accordingly, defects data are generated into clean class data spaces, which accounts for 

the problem of overlapping class spatial distributions. 

 

Figure 1: High overlap data instances in imbalance distribution of Eclipse-JDT 
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Figure 2: Accuracy of JIT-SDP model across 10-folds of oversampled datasets 

1.3.2 High False Positive Rate in Effort Awareness Evaluation 

For the prediction model to be cost-effective, the costs associated with quality 

assurance (QA) efforts such as code inspection and defect fixing must always be 

measured (Arisholm et al., 2010). Without QA efforts, the cost-effectiveness of the JIT-

SDP model is uncertain. QA teams are particularly interested in determining how much 

time and effort it will take to fix a specific software defect (Feng et al., 2021). For 

instance, cost-benefit analyses are used to determine whether code inspections are worth 

the effort of fixing a defect. Accordingly, the accuracy of the prediction should be 

reflected in the effort awareness of the JIT-SDP model. A high rate of false predicted 

defects is associated with the performance of the effort-aware JIT-SDP model (Huang et 

al., 2019) . In Figure 3, more than 50% of false positives were generated by different 

effort-aware JIT-SDP models. A high false positive rate indicates that the effort 

awareness in JIT-SDP is still insufficient to ensure cost-effectiveness. The current 

effort-aware metric (ACC) may identify a wrong best JIT-SDP model that does not 

benefit the user to the maximum extent (Çarka et al., 2022). Thus, the high false 

positive rate of the effort aware JIT-SDP model hinders the practical adoption of 

prediction models in the industry.  
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Figure 3: Accuracy of JIT-SDP models based on 20% of inspection effort 

1.4 Scope of Research 

This research is focused on utilizing Deep Q-Network (DQN) to address inaccurate 

software defect prediction. Based on the modern code review perspective, the research 

focuses on the prediction of software defects. The prediction of software defects is 

performed during the code transaction phase (JIT level). Data from three sources is 

utilized in this study in order to predict software defects, which include within-project, 

cross-project, and timewise datasets. Within-project data provides information regarding 

historical software development as gathered from previous software project releases. In 

cross-project data, software development information is extracted from the versions of 

other similar projects that have been released. A time-based data set is compiled based 

on the development timeframe of software. It is important to note that the primary 

concern in this prediction is the issue of inaccurate defect prediction. In Figure 4, the 

highlighted boxes illustrate the overall focus of this research project. 
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Figure 4: Scope of this research work 

1.5 Research Objectives 

This research aims to develop a Just-in-Time software defect prediction framework 

that enhances the accuracy performance with an increase of effort-aware prediction. To 

achieve this aim, this research aligns with the following set of objectives: 

1. To determine the similarities and limitations of the existing Just-in-Time software 

defect prediction frameworks.  

2. To design balanced datasets using an oversampling technique based on kernel 

analysis and cross-over interpolation. 

3. To develop a model for Just-in-Time software defect prediction using Deep Q-

Network. 
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4. To evaluate the prediction performance of the proposed framework using the 

proposed oversampling and Deep Q-network for within-project validation, cross-

project validation, and time-sensitive validation.  

1.6 Research Methodology 

This research is conducted according to four phases corresponding to the four 

research objectives as shown in Table 1. Figure 5 shows the mapping of research 

objectives, methodology, questions, and outcomes using SMART method. The phases 

of the research methodology are outlined as follows. 

Table 1: Mapping of research objectives, methodology, and outcome 

PHASE RESEARCH OBJECTIVES METHODOLOGY OUTCOME 

Phase 
1 

To determine the similarities 

and limitations of the 

existing Just-in-Time 

software defect prediction 

framework (RO1) 

• Comprehensive literature 

review 

(Sections 2.2 to 2.8) 

• Experimental setup 

(Sections 3.1.1 and 

3.2.1) 

1.Review of existing 

framework (Chapter 2): 

• Taxonomy of the literature 

in JIT-SDP frameworks 

•  Limitation of existing JIT-

SDP frameworks. 

2.Comparison of experimental 

results for existing frameworks 

(Chapter 3) 

Phase 
2 

To design balanced datasets 

using an oversampling 

algorithm based on kernel 

analysis and cross-over 

interpolation (RO2)  

• Data collection  

(Section 4.1.1) 

• Experiment setup  

(Section 5.1.3) 

• Statistical analysis  

(Section 5.1.5) 

• Kernel crossover 

oversampling algorithm 

(KCO) (Section 4.2)  

• Balanced class dataset 

generation with an increase 

in data diversity 

(Section 5.1) 

Phase 
3 

To develop a model for Just-

in-Time software defect 

prediction using Deep Q-

Network (RO3) 

• Model design (Section 

4.3) 

• Experiment setup  

(Section 5.2)  

• A JIT-SDP model for higher 

prediction accuracy and 

effort-awareness contexts 

(Section 5.2.6) 

• Framework of DQN with 

KCO (Section 5.2) 
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Phase 
4 

To evaluate the prediction 

performance of the proposed 

framework using within-

project validation, cross-

project validation, and time-

sensitive validation (RO4) 

• Comparative evaluation 

(Section 5.2.4) 

• Model reliability 

(Sections 5.2.4 and 

5.2.5) 

• Results of performance 

comparison with existing 

approaches and validation 

with software projects 

(Sections 5.2.6 and 5.2.7) 

 

 

Figure 5: SMART method 

1.6.1 Phase 1  

The first phase of the research methodology according to the research question 

(RO1). Specifically, the research seeks to identify and investigate the research gap 

affecting inaccurate SDP predictions; with a focus on JIT-SDP. A comprehensive 
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literature review is conducted using popular database engines, including IEEE, 

Springer, ScienceDirect, ACM, and Google Scholar. In this review, the state-of-the-art 

techniques within existing frameworks of JIT-SDP are examined from 2013 to 2023, 

since JIT-SDP was first introduced by Kamei in 2013. Figure 6 depicts JIT-SDP trends 

over the last few years. An analysis of research issues and trends is presented in the 

review. Figure 7 illustrates an overview of the review during this phase. 

According to the extensive literature review, two research problems contribute to 

inaccurate software defect predictions. The identified problems are based on imbalances 

in class distribution and effort awareness context. Further analysis of the identified 

problem by comparing the performance of baselines JIT-SDP in two separate 

experiments. The first experiment addresses the problem of ineffective oversampling in 

imbalance classes. This experiment examined which oversampling techniques perform 

better under different imbalanced class settings. This experiment aims to determine 

whether oversampling techniques deliver different predictions when dealing with 

overlapping class distributions that vary in characteristics depending on data 

characteristics. Various oversampling techniques are compared, including SMOTE, 

SMOTE-Borderline, ADASYN, GAZZAH, MWMOTE, ROSE, and MAHAKIL. The 

second experiment compares baseline classifiers in JIT-SDP against false positive 

results associated with effort awareness evaluations. Effort awareness of the JIT-SDP 

model needs to be consistently reflected in the quality of predictions. Therefore, the 

false positive rate is considered in the evaluation of the effort-aware model to assess the 

efficacy of using machine learning methodology concerning classifier accuracy 

performance. 
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Figure 6: Progress of new approaches in JIT-SDP works 

 

Figure 7: Overview of literature review 
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1.6.2 Phase 2 

The second phase (RO2) of the research methodology focuses on the development 

of a new oversampling technique for balancing the class distribution of target datasets. 

Oversampling presents a challenge since existing techniques generally introduces 

duplicate or overlapped instances into the distribution of the existing data (Zhao et al., 

2023) . Zhang et al. (2021) considering spatial distribution of samples in oversampling. 

Spatial distribution causes the boundaries between different types of samples to become 

blurred. Several important aspects to consider when analyzing the spatial distribution of 

samples, including class imbalance severity, clustering, overlap class and distribution 

shape (Lorena et al., 2020). For imbalance severity, a highly imbalanced dataset where 

the majority class significantly outnumbers the minority class produces class imbalance 

bias. As a result, minority class predictions are less accurate as the model tends to 

predict the majority class more frequently. Second, grouping or clustering instances 

belonging to the same class impacts the performance of a machine learning model. In 

densely grouped classes, the model has difficulty separating instances from those of 

other classes. In class overlap, the extent to which instances of different classes overlap 

or intermingle with each other. If instances are tightly clustered and overlap heavily, the 

model may have difficulty distinguishing between classes. Lastly, the distribution shape 

of the spatial distribution of instances across classes can also impact the performance of 

a machine learning model. For example, a dataset with instances spread evenly across a 

region may perform better than a dataset with instances tightly clustered in a few areas. 

Motivating from spatial distribution, this study improves the ability to coop with 

the characteristic of spatial distribution by proposing Kernel Cross-oversampling 

(KCO). During this phase, several processes are conducted to ensure that the training 

datasets have the desired quality. The first step involves extracting the code change data 
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into software metrics. The extracted metrics are then used to analyze the distribution of 

classes. To determine the most effective experimental settings, the model parameter 

parameters are tuned based on an analysis of the data distribution for each of the 

software project datasets. Next, synthetic data of the defect class are generated using the 

proposed oversampling technique. The proposed technique includes three components: 

kernel-based principal component analysis (KPCA), spectral clustering, and crossover 

interpolation. As part of the proposed oversampling process, the first part is devoted to 

representing multidimensional features into two-dimensional features by employing 

KPCA. In this way, correlations between data instances are distinguished with 

visualization of data distribution. The second component of the proposed oversampling 

consists of deploying spectral clustering to explore the distribution of data for the 

plotted data distribution of the first component. The spectral clustering method allows 

for the separation of data distribution sources into several data clusters. Each of these 

clusters is measured based on the proportion of clean class data within the cluster. A 

candidate region for the generation of synthetic defect data is chosen from three clusters 

with the lowest number of clean class data. The selection is based on the premise that 

clusters with a low percentage of majority classes yield good neighborhoods and low-

occupied space for the generation of synthetic data.  The generation of new defect data 

by cross-interpolating according to template parents within the selected data clusters. 

Interpolating for new data continues to iterate until a balanced distribution of data 

classes is achieved. Figure 8 provides the overall work in balancing the class 

distribution of the training data. The balanced training data are now ready for 

deployment into the machine learning algorithm. 
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Figure 8: Process of balancing imbalance class distribution 

1.6.3 Phase 3 

The third phase of the research methodology (RO3) focuses on developing a 

prediction model utilizing DQN to enhance the accuracy of the defect classifier by 

taking effort into account when classifying software changes.  Defect classifiers suffer 

from poor prediction when data drift occurs within the properties of code changes 

(Tabassum et al., 2023). One of the main challenges associated with JIT-SDP is the 

high rate of false positive predictions (Quach et al., 2021). Improvements needed to be 

made regarding the handling of data drift which source of false positives prediction. It is 

advisable to explore specific aspects of handling data drift, including continuous model 

refinement (online classification learning), dividing the data by period, and measuring 

the evolution of defect-inducing change patterns (Tabassum et al., 2023; Tan et al., 

2015). Therefore, JIT-SDP will need an effective classifier that can reduce the effect of 

false positives prediction, such offered by DQN. For this phase, the pre-processed 

training data generated in Phase 2 is used to construct a DQN framework for JIT-SDP. 

DQN framework consists of two parts, namely environment, and agent. In the 

environment, code reviewing is formulated as a virtual environment in which DQN can 
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interact and earn rewards based on actions taken during the learning process. As part of 

training the model, the environment stores training samples and rewards or punishes 

correct and incorrect predictions.  

The second component, namely the agent, is composed of two subcomponents: the 

deep learning model and action memory. In the agent of DQN, Q-network model is fed 

with training data from action-memory using a mini-batch learning mechanism. Q-

network is based on a neural network algorithm. Q-network consists of many 

hyperparameters and finding the best combination of parameters is treated as a search 

problem. The values of hyperparameters cannot be determined from a regular learning 

process. Consequently, hyperparameters must be tuned before DQN training begins. 

This study adopts hyperband tuner strategy (Li et al., 2018) for hyperparameter tuning. 

For the action-memory mechanism is based on the decayed epsilon policy. The final 

output of this phase is a deep learning model for JIT-SDP. The constructed deep 

learning model is now ready for evaluation with other techniques to achieve a better 

balance between accuracy and effort awareness. Figure 9 shows the overview of 

training of DQN as JIT-SDP model. 
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Figure 9: Mapping of agent and environment of DQN 

1.6.4 Phase 4 

The last phase of this methodology (RO4) focuses on the evaluation and 

comparison of the proposed framework with baseline frameworks. In this respect, Phase 

4 evaluates the classifiers in JIT-SDP based on two performances such as prediction 

accuracy in F-scores and effort awareness. To test the model reliability, the proposed 

framework is implemented in software projects such as Columba, Bugzilla, Postgres, 

Mozilla, Eclipse.Platform and Eclipse.JDT. The phase further compares the 

performance of the proposed framework and baseline frameworks in three prediction 

scenarios namely within-project prediction, cross-project prediction, and time-wise 

prediction. Within project-prediction is performed within the same software project 

data. In this context, StratifiedKFold is used in this scenario to ensure that the class 

distribution in the datasets is kept in the training and test splits. The datasets are 

randomly divided into ten folds, with eight folds serving as training data and the 
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remaining fold serving as test data. Each fold is only used as a testing dataset once in 

cross-validation. Furthermore, the data need to be folded in such a way that each fold 

consists of the same proportions as the original dataset. The average result is recorded 

using StratifiedKFold to strengthen the reliability of the experiment outcomes.  

Timewise-validation is also performed within the same project, which takes into 

account changes in chronological sequence. The chronological order of the changes data 

for each software project is ordered based on the commit date The changes made during 

the same month period are then aggregated. Assume that the modifications in a project 

are divided into n components. For example, the datasets (1 ≤ i ≤ n - 5) for training data 

and testing data consist of changes committed for two consecutive months. To predict 

testing data for parts i+4 and i+5, a prediction model m is developed using a 

combination of part i till part i+1 as training data. Cross-project prediction provides the 

predictive performance according to prediction across different software projects. The 

training data set on one project is used to predict defect-proneness in another project as 

the testing data set. For a set of n projects, this method produces n * (n - 1) prediction 

effectiveness values (Zhu et al., 2020). For this research, six projects are used as the 

subject projects. Accordingly, each prediction models produces 6 × (6 - 1) = 30 

prediction effectiveness values. 

1.7 Research Significance 

The research provides efficient effort-awareness and higher accuracy in the 

prediction of software defects based on given code changes. This research believes that 

with appropriate solutions, an accurate and effective JIT-SDP model is achieved. 

Throughout this research, the importance of considering the advancement of classifier 

techniques, and the impact of having a set of quality defect datasets are given. The 

proposed framework reduces the efforts during code review by helping to uncover more 
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risky changes in the software project that not be reachable by the regular testing 

process. The proposed framework provides better results compared to other state-of-the-

art frameworks in JIT-SDP overall performance. 

This research provides valuable findings for both researchers and practitioners. For 

researchers, this research provides a new baseline model that need to be used in future 

JIT-SDP studies for evaluation of accuracy and effort-aware performance. For 

practitioners, this research provides an accurate prediction model for effort-aware JIT-

SDP. The prediction model developed by the proposed framework is benefiting QA 

teams to help prioritize test cases and enhance static defect localization. Moreover, the 

solution provided by this research potentially be utilized in different research domains. 

For instance, the proposed oversampling technique is possible to apply for imbalance 

learning in other research domains such as static code analysis, development effort 

prediction, and code vulnerability prediction. Especially, the studies that utilize software 

metrics as the features or independent variables of the research problem.  In addition, 

further application of the proposed deep reinforcement learning technique for JIT-SDP 

provides more depth analysis available for defect localization and production cost 

analysis studies.  

1.8 Thesis Structure 

Chapter 2 introduces the JIT-SDP frameworks for identifying the similarities and 

limitations of existing works following Phase 1 of research methodology. The review 

provides detailed background on JIT-SDP to allow a better understanding of the current 

research landscape. It also goes into detail on the progress in JIT-SDP approaches, 

starting from the software metrics until the most recent modelling of the prediction 

model by machine learning-based classification. The discussion maps the technique to a 

clear chronology to uncover the advantages and limitations of prior techniques. Finally, 
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the chapter also presents open issues in the prediction of software defects relevant to the 

current state-of-the-art in the domain. The output of this chapter enables investigation of 

the available classification taxonomies of current approaches and highlights their 

limitations.  

Chapter 3 discusses Phase 1 of the research methodology by analyzing the 

limitations of existing work in the context of the identified problem statements. In the 

first section, the factors that contributed to the research problem of ineffective 

oversampling in imbalanced class distribution are analysed. The analysis provides 

classification results for the prediction of software defects based on balanced datasets 

provided by state-of-the-art oversampling techniques. The results of the analysis 

provide a deeper understanding of how the distribution of data in imbalance class 

datasets affected the performance of oversampling techniques. In the second section, the 

problem of predicting false positives in effort awareness evaluation is analysed and 

discussed in order to comprehend the current state of classifier selection. The analysis 

reveals how the selection of classifiers plays a crucial role in minimising false alarm 

results. Several baseline classifiers in JIT-SDP are evaluated and compared throughout 

the analysis to provide an overview of the performance of effort-aware models based on 

these classifiers. 

Chapter 4 presents the development of the proposed JIT-SDP framework, aligned 

with Phases 2 and 3 of the research methodology. The chapter is organized into three 

sections reflecting the stages in the development of the proposed framework. The first 

section provides an overview of the process involved in developing the JIT-SDP model. 

JIT-SDP model development is divided into three phases: data extraction, data pre-

processing, and training and prediction of the model. Following the second section, 

which corresponds to Phase 2, a new oversampling technique is developed to handle the 
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problem of overlapping spatial distribution within imbalanced datasets during data pre-

processing. The technique relies on kernel analysis and spectral clustering to facilitate 

crossover interpolation for new samples of data. A key benefit of this technique is the 

improvement of the quality of training data for modelling the JIT-SDP model. The third 

section, which is part of the training and prediction process, is concerned with the 

development of DQN algorithm in order to generate a prediction model with a focus on 

reducing false positive predictions which corresponds to Phase 3. Application of DQN 

algorithm as JIT-SDP classifier provides more depth learning for capturing the pattern 

of software defects during code changes. The framework utilizes incremental learning 

with help from DQN and improvises on the existing classifier chain approach to achieve 

the objectives 

Chapter 5, which is align with Phase 4 of the methodology, presents the results and 

discussion of the proposed solution in two sections. For the first section, evaluations of 

the proposed oversampling technique along with baseline techniques are done in the 

interests of both compare and showcase the robustness of the proposed solution. In the 

second section, experimental results from the application of DQN into JIT-SDP are 

discussed. The experimental evaluation compares the existing frameworks and the 

proposed framework with DQN embedded as a classifier. 

Chapter 6 presents the conclusion to the research. This chapter revisits the 

contributions and maps them to the initial objectives of this study. Furthermore, it 

highlights the limitations of this study and makes valuable suggestions for future 

research. The chapter concludes by briefly discussing future directions and efforts to 

expand the research boundaries in software defect prediction. 
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CHAPTER 2: OVERVIEW OF SOFTWARE DEFECT PREDICTION 

Software defects are more likely to be introduced over time. The domain has 

experienced significant evolution over the years due to various solutions that create a 

heterogeneous landscape. To understand the domain, this chapter discusses the literature 

on Software Defect Prediction (SDP). The literature review pays special attention to 

Just-in-Time Software Defect Prediction (JIT-SDP) context central to this research. 

Initially, this chapter presents some details regarding the introduction to the code 

review, which prompted the development of JIT-SDP. The second section provides 

background information about JIT-SDP and explains it in detail. The next section 

provides further information regarding the change level of software metrics. The section 

that follows discusses factors that influence the effectiveness of software metrics. 

Following is a discussion of existing oversampling techniques for imbalanced defect 

datasets. Following are further details regarding machine learning approaches and 

effort-aware models in JIT-SDP. In the preceding section, the need for advanced 

classifier and predictor approaches is discussed, along with the possibility of applying 

deep reinforcement learning to software engineering. Lastly, several issues have been 

identified to the extent that these issues require further discussion. 

2.1 Automated code review 

An important step in making a high-quality, secure software application is to 

implement automated code review. Developers tend to make mistakes during software 

development, thus by using best practices for a systematic code review is an effective 

way to improve the quality of software. Despite a manual review using the knowledge 

and skills of the code review team, security threats in source code that are meant to hide 

from users still at risk. Manual code review adds fresh perspectives from experts to 

identify logic errors, confirm the code works, and hold the developer accountable. 
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Having a team of experts check newly written code for source code purpose and logic is 

invaluable during manual code review. However, manual code review focuses more on 

the logic and intent of source code. Automated code review supplemented with manual 

review results in a safer and more efficient application much faster than manual review 

alone. Automated code review provides faster speed, higher accuracy, and better defect 

detection during the software development process.      

During an automated code review, the source code is compared to a standard set of 

rules for common mistakes or security risks. Figure 10 illustrates the code review 

process, which consists of four primary steps: 

1. Upload code changes by developers. Code authors or developers submit and upload 

code changes into code review tool for code inspection. Developers then invite the 

reviewer to perform the code review.  

2. Examine and review the changes by reviewers. Reviewers evaluate the technical 

parts of the proposed change and provide feedbacks to the developers. Reviewers 

also give a score to show whether approve (positive value) or disapprove (negative 

value) for the proposed changes. 

3. Revise the proposed changes. The developers make changes to the proposed 

changes based on the comments and then upload a new version to the code review 

tool. 

4. Integrate the approved changes. Steps 2 and 3 are repeated until reviewers 

determine that the quality of the code change is sufficient for integration. The 

proposed changes then automatically upload and integrate into the code base.  
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Figure 10: Overview of code review  

The code review process often results in false alarms, but it still provides resistance 

to the software and improves its overall performance (Kononenko et al., 2016). 

Removing false alarms from automated code reviews is an effective method of 

increasing both the quality and security of source code. A major challenge in the code 

review process is the effort of reviewers to conduct code inspections. To communicate 

an issue, a code reviewer needs to examine hundreds of lines of code and make 

comments regarding any possible defects. Tools such as Gerrit 

(https://www.gerritcodereview.com), Collaborator 

(https://smartbear.com/product/collaborator), and diff-styles (https://git-

scm.com/docs/git-diff) have proven effective at detecting design flaws and coding 

violations. By integrating static analysis processes into code review, particularly JIT-

SDP, the code reviewer reduces the amount of time and effort that they must devote to 

reviewing the code. Static analysis assists in automatically detecting coding standards 

violations and style violations. Consequently, reviewers concentrate more on important 

tasks, such as identifying logical flaws and optimizing code. However, code reviewers 

are still expected to go over the analysis results and identify relevant issues that were 
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not picked up by the analysis, as well as comment on any issues that the analysis 

missed. 

Code review tools are generally divided into generations. According to Hedberg 

(2004), the current (5th) generation is expected to offer increased flexibility in terms of 

supporting documents and processes. The current generation of tools however has 

several limitations, which are described as follows. 

1. Developer experience plays a significant role in variation in defect detection in 

code reviews, as it depends heavily on the experience of the reviewers for the 

artifacts (code changes) under review. According to several studies (Kononenko et 

al., 2016; Lewis et al., 2013; Mockus, 2016; Sikic et al., 2021), the number of 

defects discovered during the review process correlates with the level of expertise 

of reviewers. Nevertheless, recommending and manually selecting appropriate 

reviewers is difficult for large developer teams. 

2. Understanding the code under review is required. Effectiveness of the review 

process affects the ability of the reviewer to comprehend proposed changes 

(Mantyla & Lassenius, 2009). Without a detailed code analysis, reviewers are 

unable to comprehend proposed changes, resulting in greater variation and 

ineffective defect detection. 

3. Manual selection of relevant change subsets for large change sets or code 

fragments within code changes is challenging. When dealing with large changes, 

code review often resorts to reviewing a large number of small changes (Baum & 

Schneider, 2016). Reviewing only small changes generates high overhead and 

duplicate effort. It is important that the change under review meet certain quality 

requirements rather than the size of the change. 
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Towards higher review effectiveness, cognitive support code review tools, which are 

called sixth generation tools, need to provide more flexibility with better cognitive 

support (Baum & Schneider, 2016). Thus, implementing JIT-SDP model within code 

review will provide a better understanding of defect-proneness and software quality. A 

mapping of current limitations on code review with JIT-SDP opportunities is shown in 

Figure 11.  

 

Figure 11: Limitations and recommendation of current code review 

2.2 Just-in-Time Software Defect Prediction 

In SDP, software defect proneness is predicted without executing software parts 

using the underlying characteristics of a software project in order to predict the 

likelihood of defects. In software engineering, SDP has been a major research area for 

the past four decades (Wan et al., 2018). Akiyama (1971) conducted the first study on 

SDP in 1971 in order to estimate the number of software defects by assuming complex 

source code was prone to introducing software defects. A simple prediction model for 

software complexity was proposed based on lines of code as an indicator of complexity. 

Nevertheless, simply relying on this metric is insufficient to represent software 

complexity. In turn, modern SDP approaches used a variety of software metrics to 

represent the complexity of software projects (Meiliana et al., 2017; Piotrowski & 

Madeyski, 2020; Punitha & Chitra, 2013; Radjenović et al., 2013; A. Singh et al., 

2018).  

Current limitation factors

• Developer experience 
• Depth understanding
• Large changes

Possibilities via JIT-SDP

• Reviewer recomendation
• Defect proneness
• Prioritizing effort aware changes
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The previous SDP approaches are impractical for large-scale software development 

since module granularity is often set as a file or method. Consequently, the JIT-SDP 

approach is introduced to handle the prediction process on code changes that are more 

detailed. Due to its ability to yield practical results during check-in time (Kamei et al., 

2013), JIT-SDP is argued to be superior to other SDP (module and class level). 

Companies such as Avaya, BlackBerry, Cisco, Ubisoft, and Google (Lewis et al., 2013; 

Mockus & Weiss, 2002; Nayrolles & Hamou-Lhadj, 2018; Shihab et al., 2012; Tan et 

al., 2015) have implemented JIT-SDP frameworks to improve their software project 

reliability. In the course of software development and maintenance, developers may 

submit code changes for various reasons, including fixing defects, extending 

functionality, refactoring codes, and improving system performance. In JIT-SDP, these 

changes are classified into two groups: defective changes and clean changes. A 

defective change is a change that is prone to introducing one or more defects, while a 

clean change is a change that is not likely to introduce any defects. In general, these 

changes are quantified in the form of software metrics. 

2.2.1 Software Metrics 

Software projects require measurements for quality assurance, performance, 

debugging, management, and cost estimation. Measurements are also crucial to 

discovering defects in software components. Software metrics are the most commonly 

used type of measurement. Software metrics are used to predict software defects. A 

prediction model is constructed on the basis of software metrics which is intended to 

predict the maximum number of software defects. Generally, software repositories such 

as version control systems and issue tracking systems provide software metrics based on 

data gathered from software development. Figure 12 summarizes the process of 

extracting software metrics from these repositories.   
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Software metrics are broadly divided into two types: code metrics and process 

metrics. A code metric reflects the complexity of the source code. Based on the 

hypothesis that source code with higher complexity is more likely to contain defects. In 

contrast, process metrics provide insight into many aspects of the software development 

process, including changes in source code, ownership of source code files, developer 

interactions, dependency analysis, and project team organization (Li et al., 2018). 

Process metrics are more useful than code metrics in building a prediction model due to 

the stagnation of code metrics (Rahman & Devanbu, 2013). A study showed that 

various process metrics have been utilized in recent years to model JIT-SDP, 

particularly those involving code change levels (Son et al., 2019). The discussion of 

change level software metrics continues in Section 2.3. 

 

Figure 12: Extraction process of software metrics 

2.2.2 Software Defect Dataset 

Software defects are classified into two types: functional defects and maintainability 

defects. Functional defects are defects discovered in functional requirements that result 

in direct software failure. Maintainability defects, on the other hand, are found in design 

specification, implementation, and maintenance. However, since maintainability defects 

 

Report defectID  

Locate defect 

Issue tracking system 

Software metrics Extract features 

Version control 
system 
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are generally less expensive to fix than requirement defects, JIT-SDP more focusing on 

design defects. 

Application of software metrics, in general, is a robust predictor to train a JIT-SDP 

model from software defect datasets. JIT-SDP employs both public and private datasets. 

Public datasets are usually open-source data extracted from primary and secondary 

sources of code repositories.  Primary source data typically are mined from VCS (e.g. 

GIT) integration code repositories such as GitHub, Bitbucket, Gitlab, Jenkins, and 

Codebase. These data are extracted from software projects such as Mozilla, AgroUML, 

Eclipse.platform, EclipseJDT, Columba, PostgreSQL, Linux kernel, Bugzilla (Buz), 

Lucene (Luc), Jackrabbit, Xorg, ArgoUML, GWT, Jaxen, JRuby, Xstream, SWT, QT, 

OPENSTACK, Hadoop, Camel, Gerrit, Osmand, Bitcoin and Gimp. Practically, the 

primary source data first needs to be pre-processed which involves the metrics data 

extraction and data labeling, before being ready to be used as a set of training data for 

the prediction models.  

Data from a secondary source is directly used as a training dataset due to software 

metrics that are already calculated or already available from its software artifact. Private 

datasets are those that are created for industrial applications that are not made public. 

Most companies/organizations are concerned about the privacy preservation aspect of 

their software projects, therefore extracting these datasets is often difficult. Private 

datasets are therefore mainly accessible via restricted or closed-access repositories for 

internal research.  

Interestingly, prior studies (Gray et al., 2011; Jiarpakdee & Hassan, 2011; Mockus & 

Weiss, 2002) criticized the poor quality of existing defect dataset that is often used to 

train defect prediction models which leads to biased prediction performance. Since the 

classification algorithms used to train the prediction model are insignificantly impacted 
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the performance of the prediction result (Ghotra et al., 2015), various data 

preprocessing is beneficial to detect and mitigate biases in the defect datasets. The 

biases that existed are attributed to the complexity of a classification problem, 

especially in JIT-SDP.  The complexity of a classification problem (Lorena et al., 2019) 

is mainly based on three main factors. These are, 1) the ambiguity of the classes, 2) the 

sparsity and dimensionality of the data, and 3) the complexity of the boundary 

separating the classes.  

For ambiguity of class boundaries, it occurs when the characteristics of data classes 

in a dataset are improperly represented. As a result, overlapping and unbalanced data 

instances are introduced (Chen et al., 2016). To enhance the JIT-SDP model's 

classification accuracy, it is critical to consider how change information is represented 

as model features within datasets. In the absence of improper data representation, 

defective change examples are likely to be hidden by non-defective examples due to the 

complex distribution of data. There is a curse of dimensionality associated with sparsity 

and dimensionality data, which results in overfitting that is caused by having too many 

features for the datasets (Shivaji et al., 2013). Instead of selecting the entire set of 

features, which is indeed costly in terms of classification costs, it is imperative to select 

only meaningful subsets of features to represent datasets. In the context of complexity 

boundaries, the area surrounding class boundaries where defects and non-defect classes 

often overlap is considered the complexity boundary. Nevertheless, whether this 

information should be considered noise or as informative remains worth of 

investigation. Noise instances are presumably reduced when class decision boundaries 

are enhanced 

In previous experiments on JIT-SDP, experiments only examined the risk of code 

changes in commercial or open-source projects. Usually, the experiments evaluated 
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code changes data from public repositories. The datasets are associated with six 

software projects: Columba, Bugzilla, Postgres, JDT, Platform, and Mozilla. Table 2 

shows a summary of the selected datasets. Columba is a Java-based email client with a 

user graphical interface, wizards, and internalization support. Bugzilla is a web-based 

bug tracking system and testing tool. PostgreSQL is a powerful, open-source object-

relational database system. Eclipse-JDT (JDT) is an IDE supporting the development of 

any Java application which includes features like syntax highlighting, content 

assistance, refactoring support, and debugging tools. Eclipse-Platform (Platform) is an 

open-source integrated development environment for programming and supports 

plugins that allow developers to extend its functionality. Datasets used in this 

experiment are derived from the extractor of code changes by SZZ algorithm. The 

features are based on change metrics by Kamei et al. (2013) that are associated with 

code and process metrics. Table 3 provides the features detail according to change 

metrics. 

Table 2: Description of software project datasets 

Project Language Description No of 

changes 

Period Defect % 

Bugzilla 

(BUG) 

Java Web-based bug tracking 

system 

4620 08/1998–

12/2006 

37 

Columba 

(COL) 

PERL Email client written in Java  4455 11/2002–

07/2006 

31 

Eclipse JDT 

(JDT) 

C++ Java development tool 35,386 05/2001–

12/2007 

14 

Eclipse 

platform 

(PLA) 

Java Integrated development 

environment for 

programming language  

64,250 07/1996–

05/2010 

15 

Mozilla 

(MOZ) 

Java Web browser application 98,275 08/1998–

12/2006 

5 

PostgresSQL 

(POS) 

C++ Object-relational database 

system 

20,431 11/2002–

07/2006 

25 
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Table 3: Dimensions of change metrics 

Dimension Name Definition Description 

D
if

fu
si

o
n

 

NS Number of modified 

subsystems 

Change modifying many subsystems are more 

likely to be defect-prone 

NM Number of modified 

directories 

Many directories in a change are more likely to 

be defect-prone 

NF Number of modified files Change touching many files is more likely to be 

defect-prone 

Entropy Distribution of modified 

code across each file  

Changes with high entropy are more likely to be 

defect-prone due to developers' need to recall 

changes across files 

S
iz

e 

LA Line of code added  More lines of code added are likely to introduce 

defects 

LD Line of code deleted More lines of code deleted are likely to introduce 

defects 

LT Line of code in a file 

before the change 

The larger the file, the more likely a change 

introducing defects 

P
u

rp
o

se
 FIX Whether or not the 

change is a defect fix  

Fixing a defect indicates that an area where errors 

are more likely to occur  

H
is

to
ry

 

NDEV Number of developers 

involved in the changes 

The larger number of developers is more likely to 

introduce defects because files revised gave many 

different designs thought and coding styles 

AGE The average time interval 

between the last and 

current change 

The lower AGE tends to introduce defect 

NUC Number of unique 

changes to modified files 

The larger spread of modified files, the higher 

complexity  

E
x

p
er

ie
n

ce
 

EXP Developer experience  More experience developers are less likely to 

introduce defects 

REXP Recent developer 

experience  

A developer modified the files recently is less 

likely to introduce defects 

SEXP Developer experience on 

a subsystem  

Developers are familiar with subsystems 

modified are less likely introduce defects 
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2.2.3 Machine Learning  

JIT-SDP adopts two primary approaches to machine learning: 1) Data pre-

processing, and 2) Modelling of defect classifiers. It is considered optional to use 

machine learning for data pre-processing in the JIT-SDP framework. It is a method for 

preparing data to increase the reliability and consistency of raw software defect datasets. 

Contrary to machine learning for software defect classifiers, it is an iterative process of 

fitting the available data into machine learning algorithms to construct the model. 

Figure 13 illustrates the workflow of the machine learning approaches in modeling 

defect prediction.  

 

Figure 13: Workflow of machine learning in software defect prediction 

For JIT-SDP, data preprocessing is as important as machine learning. In fact, most of 

the work required to create an effective machine learning model for software defect 

prediction consists of preparing and managing the data used to train the model (Bowes 

et al., 2018).  Software defect datasets are known to be incomplete, class imbalanced, 

and redundant (Kim et al., 2011; Meiliana et al., 2017; Pandey et al., 2021). This means 
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that data extracted from the software under development produce inconsistent and 

unsatisfactory training datasets for JIT-SDP modeling. Data preprocessing becomes 

increasingly important in software defect prediction, many researchers start developing 

machine learning techniques for preprocessing software defect datasets (Akmel et al., 

2018). Some of the most popular machine learning techniques for data preprocessing in 

software defect prediction include feature extraction (Fan et al., 2021; Malhotra & 

Khan, 2020; Rosen et al., 2015), data cleaning (Gray et al., 2011; Mockus, 2016),  and 

feature selection(Hosseini et al., 2018a; Huda et al., 2017; Laradji et al., 2014; Shivaji 

et al., 2013).  

The most popular methodology for modeling the JIT-SDP classifiers involves 

machine learning. In the literature on JIT-SDP, four categories of machine learning are 

found: supervised, unsupervised, semi-supervised, and ensemble classifiers. Supervised 

learning refers to the utilization of all labeled training data when developing the 

prediction model. A semi-supervised learning method uses a limited number of labeled 

training data and a large number of unlabelled data in order to construct the JIT-SDP 

models. In unsupervised learning, unlabelled data are used in modeling the prediction 

model without the need for labeled training data. Ensemble learning involves combining 

the predictions from two or more models. Detailed discussion is provided in Section 

2.7.  

Machine learning is indeed widely used for software defect prediction; however, 

the preprocessing of data and the training of the classifier need for improvement to 

handle inaccurate issues. In a review of various studies, we found that many have 

focused primarily on data preprocessing as part of their experimental design. A limited 

amount of attention is paid to the generalized perspective of the proposed 

models. Although various advanced classification methods are proposed for the JIT-
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SDP, the true potential of classification methods is not yet fully explored. The reason is 

that the preprocessing aspect of training data is still inadequate. For this reason, the 

classifier of the prediction model produces results biased toward noisy data. To this end, 

it is necessary to conduct a proper preprocessing of the raw data with the aid of 

algorithms. In addition, it is necessary to use advanced machine learning algorithms as 

the model classifier for achieving unbiased results.  

2.3 Change Level Software Metrics 

Software metrics from various factors are available as model features for JIT-SDP 

to assist in predicting whether a code change will introduce future defects. Figure 14 

illustrates how prior studies utilized code and process metrics. In terms of code metrics, 

these metrics indicate the complexity of the source code, whereas process metrics define 

the complexity of the development process. Code metrics are generally categorized as 

measures of size, complexity, and object-oriented features. Both size and complexity 

metrics are based on file-level measurements, whereas object-oriented measurements 

are based on class-level measurements. Source code analysis tools are capable of 

calculating these code metrics automatically to allow for the automatic calculation of 

these code metrics. However, a common threat associated with analysis tools is that the 

same metrics calculated by different tools often produce different values for the same 

source code files. The use of code metrics alone as a prediction feature is not sufficient 

to represent the actual characteristics of source code during a code change. As a result, 

improvement in prediction performance is mostly driven by a combination of both code 

and process metrics. 

Several JIT-SDP works have combined code metrics with process metrics to 

represent features of code changes, including dependency network metrics (Herzig et 

al., 2016; Zimmermann & Nagappan, 2008), change burst metrics (He et al., 2016; 
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Nagappan et al., 2010), change metrics (Kamei et al., 2013; Yang et al., 2016; Yang et 

al., 2017;Chen et al, 2018, Qiao and Wang, 2019; Huang et al., 2019), complexity 

entropy metrics (Singh & Chaturvedi, 2013), antipattern metrics (Taba et al., 2013), 

periodic experience metrics (Ozcan and Tosun, 2018), and context metrics (Kondo et 

al., 2019). Table 4 provides a brief description of each of these metrics. 

• Dependency network metrics: Zimmerman and Nagappan (2008) proposed 

information flow between code entities modeled by code dependency graphs. The 

metrics allow the identification of source files that are more prone to introducing 

defects. They showed that interactions between files resulting strong defect 

prediction capabilities. A set of network metrics comprises of three groups of 

dependency graphs. The first are the ego metrics, which calculate the properties of 

complexity neighborhoods within the local network within the dependency graph. 

The second group of metrics in the dependency graph relates to structural metrics 

which measure the size of the sub-networks that are connected to each of the data 

nodes in the graph. Lastly, centrality metrics describe how many nodes are 

dependent on each other. A node with a large number of dependencies is more 

prone to defects. On the basis of semantic interaction features within a code change, 

the metrics proposed by them enable the prediction of defects. 

• Change burst metrics: Nagappan et al. (2010) introduce the concept of change 

bursts and extract them from a series of changes. A change burst is a sequence of 

consecutive changes. It is defined by two parameters, namely the gap size and the 

burst size. Burst size is the minimum number of changes in a burst. Increasing the 

gap size yields longer bursts and increasing burst size eliminates shorter bursts. The 

metrics include four main group metrics: change metrics (measured by the size and 

extent of the changes), temporal metrics (measured by when change bursts 

occurred), developer metrics (measured by the properties of developers involved 
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during the changes), and code churn metrics (measured by the number of lines 

added, deleted, or modified during the changes). The proposed metrics allowed the 

prediction of defects to be performed despite the lack of information regarding the 

software requirements (i.e., relying only on the change history). A change with a 

higher amount of change burst indicates the source code is likely to produce more 

defects.  

• Change metrics: Kamei et al. (2013) proposed software metrics for change 

measures to predict whether a change introduces a future defect or not by 

considering fourteen factors grouped into five dimensions (i.e. diffusion, size, 

purpose, history and experience). Diffusion refers to the number of files a change 

involves where a highly distributed change is more complex and harder to 

understand. Size indicates the size of LOC within code churn operation. Purpose 

gives the number of defect-fixing changes. History provides the number of previous 

changes and defect fixes. Experience describes experience information about 

developers. These five dimensions are the metrics combination of code metrics (i.e. 

LOC and code complexity) and process metrics (i.e. code churn, code ownership, 

and context of change). Recently, the measurement of these change metrics able to 

be generated by using a web application called CommitGuru which (Rosen et al., 

2015) provide publicly. Change metrics enable the prediction on the risk of code 

changes by predict defect proneness at the time of submitting commits.  

• Periodic developer metrics: Ozcan and Tosun (2018) proposed the measurements 

of periodic developer experience considering the contextual knowledge of 

developers on files and directories during commit time. Three aggregation methods 

(minimum, maximum and average) are used to measure characteristics of files of 

the related commit for developer experience. The proposed metrics aiming to 

capture experience of developers (previous knowledge) on files, commits and 
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activities. Different developers have different/similar knowledge at the end of code 

development. Thus, measuring their experience periodically give more generalized 

characteristics developers-based defect prediction model.  The periodic developer 

experience is found to be more effective capturing the defect proneness compared 

to activity-based metrics (code churn activity). 

• Context metrics: Kondo et al. (2019) proposed context metrics which involves 

counting keywords and word in the context of a change. The intuition of counting 

words due to a context with more words is likely to be more complex than a context 

that has less words. As for ‘keyword’, it refers to the keyword defined in the 

programming language of the source code. The number of keywords in the context 

gives indication of the nested degree of a change. A change with a larger number of 

keywords is likely to more complex than a change that has fewer keywords around 

it. Higher complexity of the change indicates the more likelihood that the change is 

a defective change.  

• Aggregated change metrics: Šikić et al. (2021) describe the chronological order of 

the changes by aggregating the data of all changes made to the software between 

two versions. The proposed metrics aggregated previous existing change metrics by 

representing a chronology of commits. The metrics comprises of fourteen different 

aggregated change metrics which are extended from change metrics by Kamei et al. 

(2013)). Aggregated change metrics consider sequential and chronological order of 

all changes to capture more generalized defective change characteristics during the 

development process.   

Vast majority of researchers in JIT-SDP works tended to focus on utilizing software 

metrics by Kamei et al. (2013). Over the past five years, only a few applications of 

other software metrics as the features of the prediction model: Dependency metrics, 

Change burst metrics, Periodic developer metrics, Context metrics, and Aggregated 
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metrics. One of the increasing concerns on the current software metrics is that existing 

metrics for JIT-SDP have reached a performance limit. Moreover, the emergence of 

various object-oriented approaches during software development required more aspects 

of consideration for change-based metrics. Thus, the development of new metrics is 

required 

The effectiveness of available software metrics varies across different software 

project datasets. This is largely because software metrics selection is influenced by 

software projects in the existing study (Xia et al., 2014).  Therefore, it is imperative to 

choose software metrics since they aid in improving prediction performance. Summary 

of the related work in JIT-SDP involving usage change level software metrics is 

presented in Table 5 

 

Figure 14: Existing software metrics  
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Table 4: Software metrics for JIT-SDP 

Software Metrics  
Change 

Attribute 
Description Metric Name Limitations 

Dependency network 

metrics 

(Herzig et al., 2016; 

Zimmermann & Nagappan, 

2008) 

Dependency Information flow between code 

entities in code dependency graph 

Size, Ties, Pairs, Density, 

WeakComp, nWeakComp, 

TwoStepReach, 

ReachEfficency, Brokerage, 

nBrokerage, EgoBetween, 

nEgoBetween, EffSize, 

Efficiency, Constraint, 

Hierarchy 

Developer factors are 

neglected in the network 

metrics, but humans are the 

ones who introduce defects 

Change burst metrics  

(He et al., 2016; Nagappan 

et al., 2010) 

Sequence Sequence of changes factor by 

extracting series of consecutive 

changes information. 

NOC, NOCC,NOCB, TBS, 

MaxCB, NOCE , NOCL, 

TFB, TLB, TMB, NDEV, 

CT, TCB, MCB 

The gap between sequence of 

changes needed to be fine 

adjusted to obtain a good 

prediction result. 

Distribution of defects across 

sequence of changes is ignored 

Complexity Entropy metrics 

(Singh & Chaturvedi, 2013)  
Complexity   

Entropy of the complexity of code 

changes over a period of time 
HCPF, HCM 

The value of entropy 

parameters for decay function 

needs to be adjusted properly 

to obtain best results  
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Antipattern metrics  

(Taba et al., 2013) 
Antipattern Antipattern properties in a file NAP, ANA, ACM, ARL 

Performance of metrics is 

highly dependent on the 

number of antipatterns 

computed with DÉCOR tool.  

Change metrics 

(Chen et al., 2018; Huang et 

al., 2019; Kamei et al., 

2013; Yang et al., 2015, 

2017)  

Diffusion 

Distribution of a change as a highly 

distributed change have more 

complex and harder to understand 

NS, ND, NF, Entropy 

Correlation analyses are 

required because the problem 

of multicollinearity 

(redundant) often is found on 

these metrics 

Size Size of a change LA, LD,LT 

Purpose Number of changes to fix defect FIX 

History History of previous changes and 

defect fixes 

NDEV, AGE, NUC 

Experience Experience information about 

developers 

EXP, REXP, SEXP 

Periodic experience metrics 

(Ozcan and Tosun, 2018) 

Periodic Developer’s prior knowledge on files, 

commits and activities periodically 

calculated 

ExpLocAvg,ExpDirectoryLo

cAvg, ExpComAvg, 

ExpDirectoryComAvg, 

EditFreqAvg, 

ExpBuggyComAvg 

ExpImprovComAvg, 

ExpNewFeatureAvg, 

ETotalLocAvg, 

NumOfDeveloperAvg 

Insignificant in case of 

software project that only have 

few source code revisions 

(limited incremental developer 

information) 
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Context metrics 

(Kondo et al., 2019) 

Context Information in the lines that surround 

the changed lines of a commit (i.e. 

code churn based on keywords) 

NCW, NCKW The metrics assumption is that 

the number of keywords 

(context) in changed regions 

indicate the nested change 

which contribute to defect-

proneness. As time goes on, 

source code eventually achieve 

maturity and nested changes 

are unlikely to occur frequently 

 

Table 5: Change level software metrics 

Related Works Software metrics Classifier algorithm Project datasets Size of data Types of prediction 

(Singh & 

Chaturvedi, 2013) 

Complexity entropy 

metrics 

LR and SVR Public: Moz  Total:17992 

*All defective changes  

Within project 

(Taba et al., 2013) Antipattern metrics LR Public: AgroUML and 

Eclipse 

Total:168881 

(Defect:56078) 

Cross and within 

project  

(Kamei et al., 2013) Change metrics LR Public: Buz, Col, JDT, 

Pla, Moz, and Pos  

Private: 5 java projects 

Total:260519 

(Defect:27015) 

*Only available for 

public dataset  
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(Yang et al., 2015) Change metrics DBN Public: Buz, Col, JDT, 

Pla, Moz, and Pos 

Total:227417 

(Defect:27015) 

Within project 

(Herzig et al., 2016) Dependency network 

metrics 

LR,knn, RP, and SVM   Public: ArgoUML 

GWT, Jaxen, JRuby 

and Xstream 

Total:36050 

(Defect:7202) 

Within project 

(He et al., 2016) Change burst metrics RF Public: Eclipse, JDT, 

and SWT 

Total:18251 

(Defect:11269) 

Within project 

(Yang et al., 2017) Change metrics  RF Public: Buz, Col, JDT, 

Pla, Moz, and Pos 

Total:227417 

(Defect:27015) 

Cross and within 

project 

(Chen et al., 2018) Change metrics LR Public: Buz, Col, JDT, 

Pla, Moz, and Pos 

Total:227417 

(Defect:27015) 

Cross and within 

project 

(Ozcan and Tosun, 

2018) 

Periodic developer metrics LR, NB, kNN, J48, and 

RF 

Public: Luc and 

Jackrabbit 

Total:5422 

(Defect:2234) 

Within project  

(Huang et al., 2019) Change metrics  LR, RF, SMO, kNN, 

J48, and NB 

Public: Buz, Col, JDT, 

Pla, Moz, and Pos 

Total:227417 

(Defect:27015) 

Cross and within 

project  

(Kondo et al., 2019) Context metrics LR and RF Public: Hadoop, Camel, 

Gerrit, Osmand, Bitcoin 

and Gimp  

Total:137062 

(Defect:27317) 

Within project 
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2.4 Inaccurate Factors Affecting Software Metrics 

Same metrics may perform well in one organization while failing miserably in 

another organization (Chen et al., 2021). Performance issues with software metrics are 

also compounded by data preprocessing issues. Figure 15 shows the factors contributing 

to the inaccuracy of JIT-SDP performance related to software metrics as model features. 

 

Figure 15: Issues of change level metrics 

2.4.1 Multicollinearity Features 

The relationship between metrics of code changes and the defect prediction output is 

very complex (Qiao & Wang, 2019). In addition, software metrics often show 

multicollinearity between features, making it imperative to eliminate highly correlated 

features. As a result, multicollinearity reduces the number of features available for 

prediction models, resulting in a lack of coverage of code change properties. In 

consequence, the accuracy of the prediction models suffers. Classification of 

multicollinearity among features in prior studies can be attributed as Figure 16  

Multicollinearity

•High dimensionality 
features  

•Less generalized features

Semantic infomation

•Lack of abstract information 

•Heterogenous metrics 

Noisy data

•Outliers 

•Mislabeled/Duplicated data

•Imbalance class distribution
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Figure 16: Taxonomy of handling multicollinearity features 

1) Dimensionality Reduction 

High dimensionality features contributed to high correlation among software metrics 

which often occur in SDP. It is a condition that negatively impacts the generalizability 

of the prediction model (Mamun et al., 2017; Jiarpakdee & Hassan, 2011). Curse of 

high dimensionality is mainly attributed to irrelevant or correlated features that existed 

within JIT-SDP datasets. In these datasets, two forms of correlation among metrics are 

commonly existed: collinearity and multicollinearity. For collinearity, one metric is 

linearly predicted by another metric. In contrast to multicollinearity, it is a condition in 

which one metric is linearly predicted by a combination of two or more metrics. 

Dimensionality reduction identifies and removes correlated/irrelevant features to ensure 

that only discriminant features are selected as the training datasets for the classification 

models. The reduction of features in the context of JIT-SDP is based on two criteria: 

high correlation filter and rank of information gain. 

• High correlation filter is a process of reducing the relevance of features by their 

correlation with dependent variables. Filter-based approaches provide faster 

features selection due to not requiring training of the models. It reduces the 

complexity of a model which makes it easier to interpret. Thus, the removal of 

highly correlated features increases the speed of learning algorithms, decreases 

bias measures, and higher interpretability of model or simpler model.  

Multicollinearity 
features

Dimensionality 
reduction

High correlation
filter

Rank of information 
gain

Metrics 
representation

Sequence of file 
versions 

Reconstruction errors
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• Rank of information gain is a process of sorting features regarding the amount of 

information gained through the selected feature whether the change data is 

defective or clean. The lower-ranked features are selected as irrelevant features 

that needed to be removed. 

For high correlation features, the reduction is based on the analysis of correlation 

among individual software metrics. Two variants of correlation analyses are found in 

JIT-SDP works, which are described as follows: 

• Spearman correlation analyses measure the correlation between two metrics. The 

pair of metrics with correlation coefficients above the specified threshold level is 

considered highly correlated features. The aim is to find the best subset of metrics 

that have the highest correlation with the classification outcome while having a 

low correlation between themselves. Spearman correlation test is known to be 

resilient toward abnormal distributions as commonly present in defect datasets 

• Variance inflation factor (VIF) helps to find the multicollinearity among metrics 

by constructing a regression model to predict metrics based on a combination of 

other metrics. The measurement of VIF scores is calculated through the model 

fitting error between a regression model constructed by other metrics with metrics 

under examination. A metric is considered multicollinearity with other metrics in 

case of VIF score reaches a specified threshold value.  

For high rank of information gain, prior works focus on using information gain 

algorithm (Quinlan, 1986), which enables the measurement of gain provided by each 

metric toward defects prediction. The algorithm quantifies the entropy value of the 

prediction model in case of excluding the individual metrics as the subset of selected 

features. Each metric is sorted according to its contribution to the decision of the model.  

The highest expected reduction of information gained is ranked at the top of the list. 
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The output of this algorithm provides a subset of features that are capable of positively 

influencing the relationship between selections of certain metrics with defect-proneness 

changes. 

The correlation between software metrics makes it difficult to identify precisely 

which features are responsible for the predictive power of the SDP model. In addition, 

these highly correlated features increase model training time, reduction in model 

accuracy and performance due to overfitting toward correlated features (Hawkins, 

2004). Therefore, the first step in SDP is to identify and remove correlated/irrelevant 

software metrics which ensuring that only discriminant features are selected as the 

training datasets for the classification models. According to Lorena et al. (2019) and 

Shivaji et al. (2013), the accuracy of prediction remains unaffected using a small 

number of features, and even the performance is improved in some cases.  

For JIT-SDP, filter-based selection techniques are widely used to reduce the 

dimensionality of features in training datasets. Most studies utilized a high correlation 

filter (i.e. spearman test) to remove redundant/irrelevant metrics for their training data 

as illustrated in Table 6. In contrast to Pascarella et al. (2019) works, they utilized 

information gain algorithm to eliminate the less informative metrics and only selected 

the higher informative gain metrics for their prediction model. Nevertheless, the 

selection of the best subset metrics according to a filter criterion produce differently for 

the other filter criteria. (Jiarpakdee et al., 2018) argued that low consistency among 

filters-based techniques is the result of different evaluation criteria producing different 

subsets of metrics. Moreover, better performance not always achievable via metrics 

reduction. Occasionally, the previously removed metrics become important in future 

revisions causing lower prediction quality. 
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Table 6: Dimensionality reduction in JIT-SDP works 

Related Works Software Metrics Dimensionality Reduction 

Yang et al. (2016) 

Change metrics  

(Kamei et al., 2013) 

High correlation filter 

Yang et al. (2017) 

Cho et al. (2018) 

Huang et al. (2018) 

Chen et al. (2018) 

Yang et al. (2019) 

Cabral et al. (2019) 

Li et al. (2020) 

Zheng et al. (2021) 

Pascarella et al. (2019) Rank of information gain 

Ozcan & Tosun (2018) 
Periodic developer metrics 

(Ozcan & Tosun, 2018) 
High correlation filter 

Sikic et al. (2021) 
Aggregated metrics 

(Sikic et al., 2021) 
High correlation filter 

 

2) Metrics Representation  

For metrics representation, the features are provided with mapping data (set of 

features) to learn the representation of itself. Representative learners are mainly based 

on deep learning approaches of finding a representation of the basic features into 

abstract deep semantic features by the integration functions. Figure 17 describes the 

detailed workflow of the metrics presentation process. Different integration functions 

are available in the literature. In particular, functions such as the sequence of file 

versions (Liu et al., 2018), and minimizing reconstruction errors (Zhu et al., 2020) are 

reported in related studies of JIT-SDP. In summary, each of these criteria is as follows: 

Univ
ers

iti 
Mala

ya



 

51 

• Sequence of file versions provides information regarding the historical changes 

of source files across version sequences. It describes how source files/code 

change over project evolution. The information is useful for representing 

traditional software metrics in continuous software versions as defect predictor 

features.  

• Reconstruction errors measure the difference cost between input software 

metrics and the consequence of reconstruction of compressed features by 

network algorithm. The minimized reconstruction errors are regarded as a 

compressed representation of software metrics. The pre-processed metrics by 

this criterion have robust features representation and more generalized 

capability. 

 

Figure 17: Metrics representation process 

 

Instead of removing the correlated metrics, the prior works (Liu et al., 2018; Zhu et 

al., 2020) employ metrics representative approaches to provide a better selection of 

metrics for building a defect classifier. They enhanced the robustness of software 

metrics, thereby the represented metrics provide greater generalization ability and are 

more robust in constructing the prediction model. The usage of metrics representation 

approaches enables the construction of basic code change features into deep abstract 
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semantic features. The main drawback of these techniques, however, producing a higher 

risk of overfitting than filter techniques and are computationally expensive (Li et al., 

2018; Wu et al., 2016). These techniques apply only to datasets of reasonable features 

dimensionality. In case of data dimensionality is very high, the number of weights in the 

network overly larger to find a near-optimal setting of the network 

Autoencoders are used for representation learning by utilizing neural networks. It 

comprises of multilayer (input layer, hidden layers, and output layers) feed-forward 

neural network. The design is based on neural network architecture such that a 

compressed knowledge representation of the original input is produced by integration 

functions. It extracts deep representations from the traditional software metrics. 

Autoencoders usually have a high number of features connections. Therefore, it 

converges slowly and is likely to get stuck in local minima. Autoencoder-generated 

features are often used to replace the original features in deep learning to produce better 

results. To the best of our knowledge, the application of autoencoders is very limited in 

the field of SDP.   

Historical Version Sequence of Metrics (HVSM) helps to highlight the trend of 

code changes throughout version sequence information of files (Liu et al., 2018). It 

provides a representation of changing information by joining code and process metrics 

in a specific number of continuous historical versions. In contrast, existing process 

metrics only consider the change information between two adjacent versions. Therefore, 

the discovery of sequence historical information of whole revisions is unavailable for 

extraction. HVSM requires an efficient neural network classifier in handling the 

sequential data, which is capable of training in data with different lengths of input. Even 

though with consideration of only code metrics, the metrics representation of this 

approach is claimed to outperform baseline classifiers trained with both code and 

process metrics.   
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2.4.2 Semantic Information 

Existing software metrics are unable to distinguish programs with different 

semantics because of the inability to capture abstract information within source code 

during the code change process. Figure 18 shows the types of semantic features 

extracted from the source code. The details of each feature are presented in Table 7.  

 

Figure 18:Types of semantic features 

To bridge the gap between semantic information and SDP, it is necessary to use 

source code semantic representations. The semantics features are collected by applying 

a deep learning algorithm to a representation of source code in the form of an Abstract 

Syntax Tree (AST) or Control Flow Graph (CFG). The construction of semantic 

features is based on three main steps: 1) Parsing source code/commit message for 

changes into token vectors in form of AST or CFG, 2) Mapping and normalizing each 

type of vector in numerical vectors and 3) training the deep learning algorithm with the 

input vectors to generate features. 

Table 8 provides a brief description of previous JIT-SDP studies utilizing semantic 

features. Semantic-based features allow for different contextual information of the same 

source code characteristics to be distinguished. The extraction of these features heavily 

relies on the choice of deep learning architecture used to learn the semantic 

representation of the source code. To analyze ASTs of source code during code 

Types of Semantic 
Information

Code snippet

Bag of words

Code churn

Code metadata

Keyword in 
commit message

Code authorship
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changes, different deep learning approaches adopted different architectures and learning 

processes (Wang et al., 2018). Thus, it prevents the extracted semantic features from 

having the same properties value. The biggest advantage of deep learning based 

semantic features is its resistance to nonlinear combination relationships between 

features compared to conventional software metrics.   

Prior studies of JIT-SDP have often ignored the semantic information within code 

changes. The explanation for this condition is that semantic information is usually 

buried deep within the source code. Simple deep learning approaches such as DBN, 

CNN, and RF are commonly used to learn the context of code changes. Nevertheless, 

the advancement of various modern pre-processing data techniques such as noise 

reduction, data tagging algorithm, and untangling change algorithm in these recent years 

has made it possible to produce more reliable data input for deep learning process. 

These techniques help to provide more opportunities for more complex machine 

learning approaches to be applied in capturing more information in the context of code 

changes. More advanced machine learning requires higher data amount and quality 

compared to other conventional approaches. Besides, JIT-SDP studies primarily 

concentrate on predicting functional defects. However, in code review practice, 

developers find more reliability defects rather than functional defects (Mantyla & 

Lassenius, 2009).  The context of code changes in a different type of defect remains 

unexplored. Further studies on the context of various classes of defects during code 

changes are significant in the modeling of JIT-SDP. 
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Table 7: Context of source code information during code changes 

Semantic 

features 

Description Intuition Limitation 

Changed code snippets 

Vector of words Information occurrence 

of each individual word 

in ASTs 

Defect cause by calling 

wrong words (class, 

function, and variable) and 

LOC with more words is 

likely to be more complex 

 

Number of words in LOC 

became less informative 

due to refactoring code and 

code optimization process 

often occurred as software 

development reached 

maturity across time  

Code churn  Information regarding 

the context of code churn 

in LOC  

Syntax information is often 

incomplete in code snippets 

and changes also have 

different locations for 

added and deleted lines. 

Code churn snippets are 

project specific features 

which are rarely or never 

appear in changes from 

different project. 

Therefore, it is unsuited 

for cross project defect 

prediction. 

Commit metadata 

Keywords in 

commit message 

Number of keywords 

occurrence in a commit 

message  

Occasionally, developers 

write defect identifier in a 

commit message and more 

keywords indicate more 

complex changes 

Number of keywords are 

limited in case of having a 

short message and defect 

identifiers not always 

written on commit logs 

Authorship  Developer information 

regarding history commit 

activities 

Developer’s unique 

defective change patterns 

possibly to be captured  

Insignificant for software 

development with limited 

developer collaboration 

 

Table 8: Previous studies of JIT-SDP using semantic-based features 

Context/Research  
Jiang et 

al. (2013) 

Xia et al. 

(2016) 

Wang et 

al. (2018) 

Hoang et al. 

(2019) 

Pornprasit & 

Tantithamthavorn 

(2021) 

Code 

snippets 

Bag of 

words 
✔  

   

Code 

churn  
✔ ✔ 

✔ ✔  
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Commit 

metadata 

Commit 

message 
✔  

✔ ✔ ✔ 

Authorship ✔  ✔  ✔ 

 

2.4.3 Noisy Data 

To determine whether a file or change is defective or clean, many researchers 

examine the defect database and version archives for open-source systems (Wahono, 

2015). However, recent studies (Bird et al., 2009; Hosseini et al., 2018b)  have 

demonstrated that data gathered from mining software repositories contain a high level 

of noise. The presence of noise in the data adversely affects the accuracy of defect 

prediction. Defect dataset noises indirectly influence prediction performance in a 

significant manner. In fact that the prediction performance decreases significantly when 

the dataset contains more than 35% of both false positives and false negatives (Kim et 

al., 2011), especially for machine learning algorithms that lack robust noise resistance. 

In order to mitigate noise in input data, researchers have employed noise handling 

approaches for several sources of noise. We have categorized noise handling methods 

into three categories, as shown in Figure 19, as follows: 1) removing outliers, 2) 

reducing mislabelled data, and 3) resampling imbalanced class data. 

 

Figure 19: Categories of noise handling approach 
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1) Removal of Outliers  

In a defect dataset, outliers are the instances that significantly deviated from the 

general observations of the dataset. The outliers are considered as noisy instances that 

seriously downgraded the performance of a defect classifier algorithm. Nevertheless, the 

removal of instances by considering them as outliers negatively leads to biased learning 

due to significant loss of defect information carried by those instances (Tang and 

Khoshgoftaar, 2004). Therefore, careful detection and removal of outliers are 

particularly important in the SDP since it is an uncertainty line between the outlier 

instances and normal instances. The detection of outliers is mainly done based on two 

criteria in the existing studies, which are the percentage of likelihood of instances to be 

outliers and data dispersion from the centroid of data distribution. Details of these two 

criteria are as follows:  

• Percentage of likelihood measures the possibility of an instance becoming an 

outlier by evaluating the likelihood measurement such as Euclidean distance 

between the test instances with neighboring opposite class instances. The test 

instances are tagged as outliers when the percentage values reach a specific 

threshold.  

• Centroid of data guides the selection of outliers according to the distance between 

the test instance and the centroid of its closest large cluster generated by a 

clustering algorithm. The top-ranked instances in each class are tagged as 

potential outliers. 

To remove outliers in defect datasets, (Tang & Khoshgoftaar, 2004) provided 

Clustering-based Noise Detection (CBND) that utilized the centroid of data distribution 

to find the outliers.  The outliers are identified according to the distance between test 

instances and the centroid of the nearest cluster which is generated from K-means 
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algorithm. The algorithm consists of two hyperparameters which are the noise factor or 

threshold value and the number of clusters within data classes. This algorithm selected 

the top-ranked samples for each cluster as the potential outlier instances. The selected 

samples are according to large difference in distance from the centroid.  

In addition, Kim et al. (2011) proposed Closest List Noise Identification (CLNI). It is 

capable to detect outlier instances and it is possible to eliminate them for cleaner defect 

datasets. CNLI algorithm measures the likelihood of instances in the datasets to be the 

opposite label. The percentage of likelihood is based on the distance of all instances that 

are close to the examined instance. The distance ratio between the neighboring instances 

and the examined instance is calculated. The examined instance is considered as a noise 

(outliers) instance in case of the percentage of likelihood exceed a specified threshold 

value. Thus, CLNI is capable to remove the outliers and excluding them from 

consideration for training data. 

Chen et al. (2016) proposed neighbor cleaning learning (NCL) to eliminate outliers 

from the majority class of defect datasets by identifying class overlap instances. The 

main idea is to identify the potential overlapped instances from majority class by locate 

the nearest neighbor of opposite labeled instances. The overlapped instances are easily 

identified especially in the case of the larger number of neighbor instances and the 

opposite instances are loosely clustered. It also utilized Euclidean distance to evaluate 

the difference between the test instances with neighboring instances. The removal of 

overlapped instances that consider the outlier instances has a greater impact on 

imbalanced datasets.   

In the context of JIT-SDP, the effect of outliers is increasing concern due to 

potentially generating more false alarm results, especially in the case of adopting 

oversampling approaches. Surprisingly, it is found that only recent works by Wang et 
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al. (2018) utilized an outlier removal technique by employing CLNI. One of the 

possible explanations for this lack of application is the outlier tolerant capabilities of 

advanced classifier algorithms such as ensemble learning and deep learning approaches. 

Nevertheless, outlier detection and removal techniques still are relevant to reduce the 

potential impact of false alarm instances in training data. 

2) Mislabelled data reduction  

Identifying defect-inducing changes from historical changes in a software project is a 

key task for JIT-SDP.  It is inefficient to manually identify defect-inducing changes in 

the projects with a large number of historical changes. Thus, automated labeling 

approaches especially SZZ algorithms are preferable to identify defect-inducing 

changes. Prior studies observed that conventional automated labeling is affected by a 

large amount of noise (e.g., changes that only modify code comments or blank lines), 

which results in mislabeled changes (Fan et al., 2019; Herzig et al., 2013). The 

mislabeled changes include false positives and false negatives. In this context, false 

positives refer to changes that do not introduce any defects but are labeled as defective 

changes, and false negatives refer to the changes that are labeled as clean instead of 

defective changes. The mislabeled changes contributed to the wasted of the developer’s 

effort to inspect false-positive changes. Mislabeling data severely impacts the defects 

count and overall performance of the prediction models (Li et al., 2018). It is 

challenging to obtain defect datasets in JIT-SDP with the absence of mislabeled changes 

that truly clean datasets without noise. Many prior studies (Herzig et al., 2016; 

Pascarella et al., 2019; Trautsch et al., 2020) utilized different mislabeled data reduction 

by considering two contexts: which are data partition and awareness in automated 

labeling. Table 9 provides some brief information on the context of mislabeled 

treatment.  
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With respect to JIT-SDP, data partitioning during data pre-processing is associated 

with tangled code changes which frequently occur during the submission of code 

changes to revision control systems. The tangled changes contribute significantly to the 

difficulty of identifying lines of code based on the defect identifier in the issue report. In 

addition, tangled changes are found to increase the number of files associated with 

defects. Since the number of files is affected by the number of defects, ignoring tangled 

changes in the defect datasets generates an amount of noise that substantially impacts 

the estimated defects. Accordingly, Herzig et al. (2016) suggested dividing code change 

sets into smaller pieces to untangle the code changes. Each partition contains code 

changes with closely related instances. Data dependencies between code changes are 

considered when determining whether they are related or not. With the use of 

untangling algorithms, it is possible to simplify the process of untangling changes 

automatically, which reduces the significance of noise generated by tangled changes. 

Prior JIT-SDP studies utilized SZZ algorithm (Śliwerski et al., 2005) to 

automatically generate the label for defect datasets. The standard version of the SZZ 

algorithm comprises the following steps: 1) Identify defect-fixing changes, 2) Identify 

buggy lines, 3) Trace potential defect-inducing changes, and 4) Filter incorrect defect-

introducing changes. Due to the foundational role of the SZZ algorithm, researchers 

have raised concerns about the quality of SZZ-generated data (Fan et al., 2019). SZZ 

algorithm is known to be affected by a large amount of noises, which results in false 

labeled data. Noises in the automated data labeling process are generated due to 

modifications such as in code format, refactoring, comment lines, and meta-changes. 

The variants of the SZZ algorithm in handling these noises are explained as given in 

Table 10. 
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Over the past recent years, there is little attention to the reduction of mislabeled 

data approaches. Although most of the studies have utilized automated labeling 

techniques by SZZ algorithm, a few studies (Herzig et al., 2016; Pascarella et al., 2019; 

Zhu et al., 2020) utilized mislabeled treatment approaches in cleaning false labeled 

instances in the generated datasets. In fact, the impact of mislabeling insignificantly 

affected the overall precision of the constructed defect prediction model 

(Tantithamthavorn et al., 2019). Nonetheless, ignoring these mislabeled data lead to 

additional waste of inspection effort, and the interpretation of the model is also 

negatively affected (Fan et al., 2019).  

Table 9: Factors of mislabelled data treatment 

Factors Context Consideration 

Data partition 

Developers often submit a single commit 
with multiple context/task changes at once. 
Consequently, overlapped files or code are 
found for each of these tangling changes. 
Thus, making the confusion about the actual 
label of these changes     

Converting tangled changes 
into smaller partitions of 
data based on the context of 
changes (e.g. data 
dependency, operations and 
commit keywords) reduces 
the complexity of changes.  

Automated 
labeling 

Non-
informative 
line  

Format/indentation modifications and 
comment lines can cause automatic labeling 
to misidentify these lines as part of the 
defective lines.    

Format/indentation 
modifications must be 
ignored as the behaviors of 
the code are unaffected by 
these lines. Thus, reducing 
the false positives instances 

Meta-
changes  

Meta-changes are branch change (e.g. 
copying code in a branch to a new branch), 
properties changes (e.g. file properties 
modification such as permission), and 
branch merge (e.g. from one branch to 
another).  The source code in this 
modification is unchanged. Thereby, meta-
changes are mistakenly regarded as 
defective lines in automated labeling 

Ignoring meta-changes 
reduces the possibility of 
false positives. 

Refactoring  in case of defective changes are identified 
incorrectly as a part of defects due to the 
impact of refactoring modification (e.g. 
changes in function/file name). Refactoring 
modification is unlikely to involve defects 
fixing changes. 

Refactoring lines should be 
ignored to avoid 
mislabelling defect-
inducing lines  
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Table 10: Variant of SZZ algorithm 

Variants of 

SZZ 

Biases 

factors 

Identification of buggy 

lines 

Identification of defective 

changes 

Standard 

SZZ 

(Śliwerski et 

al., 2005) 

N/A Lines of code related to 

defect-fixing changes are 

considered buggy lines 

The latest code changes that 

involve modifications before 

defect-fixing changes are 

considered defective 

changes 

AG-SZZ 

(Kim et al., 

2006)  

Non-

informative 

line 

Non-informative lines 

related to defect-fixing 

changes are excluded from 

the identification of buggy 

lines 

An annotation graph is used 

to record modification series 

of lines of code. A depth-

first search algorithm is used 

to identify the defective 

changes from the annotation 

graph. 

MA-SZZ 

(Da Costa et 

al., 2017) 

Meta-

changes 

Non-informative lines and 

those lines involving 

refactoring modification 

related to defect-fixing 

changes are excluded from 

the identification of buggy 

lines 

Improve the AG-SZZ 

version by considering the 

meta-changes associated 

with buggy lines 

RA-SZZ 

(Neto et al., 

2018) 

Refactoring 

modification 

Non-informative lines and 

those lines involving 

refactoring modification 

related to defect-fixing 

changes are excluded from 

the identification of buggy 

lines 

Improve the MA-SZZ 

version by considering the 

refactoring modification 

associated with buggy lines  

 

3) Imbalance learning from class distribution  

In general, JIT-SDP datasets consist of one big problem which is a large amount of 

training data needed to train the model. Unfortunately, the required data is unavailable 
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in the initial phase of software development. For this reason, the available datasets are 

known to have a highly skewed distribution (Chen et al., 2016). In this situation, the 

clean class is dominant in the data set as compared to data of defect class data. The 

imbalance in the class distribution of data leads to biases in the learning of the 

prediction model toward the data of the clean class. Consequently, the prediction model 

yield misclassification results.  

The dataset usually is prepared from the number of clean and defective classes of a 

software project. In prior studies, researchers used a lot of balanced and imbalanced 

datasets to predict the defect. The performance of the defect prediction model by using 

balanced and imbalanced datasets makes a big impact on software testing. The class 

imbalance problem is well-recognized as one of the major causes of the poor 

performance of software defect prediction models (Song et al., 2018). In summary, 

Figure 20 shows the imbalance learning can be classified into resampling techniques, 

classification learning, and ensemble learning.  

 

Figure 20: Classification of imbalance learning in SDP 
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Although several class-imbalance learning methods are presented in software defect 

prediction, there still exists room for improvement. Specifically, the resampling 

technique techniques usually need to remove or append lots of samples to achieve the 

class-balanced state, which leads to addition of noise due to insignificant synthetic 

instances. For cost-sensitive learning methods, how to set the cost value is a problem 

not yet being effectively solved. In ensemble learning techniques, how to effectively 

guarantee and utilize the diversity of individual classifiers is not addressed carefully. 

Majority of the imbalance learning adopted by previous JIT-SDP frameworks are 

resampling methods. (Chen et al., 2018; Huang et al., 2019; Kamei et al., 2013; Kondo 

et al., 2019; Qiao & Wang, 2019; Wang et al., 2018; Yang et al., 2015, 2017; Yang et 

al., 2016). However, their works limit to the weakness as shown in Table 11. 

Alternatively, Cabral et al. (2019) utilized ensemble-based imbalance learning focusing 

on data drift problems which are also known as class imbalance evolution. Data drift is 

a change in the input data generation process, affecting the underlying probabilities of 

the data. These previous studies showed the effectiveness of the proposed oversampling 

technique for imbalanced data. Existing imbalance learning, however, do not consider 

overlapping data within class distributions. This results in ineffective performance as 

data overlapping prevents the identification of suitable regions for selecting hard-to-

learn samples. 

 

Table 11: Imbalance learning strategies in SDP 

RELATED 

WORKS 
STRATEGY FOCUS PROBLEM STRENGTH WEAKNESS 

(Cabral et al., 

2019) 

Ensemble-based 

learning – bagging 

oversampling 

technique 

Data drifting - 

data imbalance 

evolution due to 

the evolution or 

Consider class 

imbalance 

evolution  

Suitable for JIT-

Base machine 

learner choices 

highly influence 

the sampling 
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maturing process 

in software project 

SDP results 

(Huda et al., 

2018) 

Ensemble-based 

learning – three 

bases 

oversampling 

technique 

incorporate with 

random forest 

algorithm 

Bias of 

conventional 

sampling 

approaches 

Reduce false-

negative rate in 

imbalance data 

and improve 

cost-sensitive 

classification 

performance 

Base machine 

learner choices 

highly influence 

the results 

(Bennin et al., 

2018) 

Resampling – 

MAHAKIL 

(oversampling)  

High false 

positives and less 

diverse data in 

oversampling   

Generate new 

samples that 

have the 

characteristics of 

previous 

instances 

 

Diversity within 

the data 

distribution  

Risk of 

duplicated data 

sampling 

instances with 

the same output 

value 

(Jing et al., 

2017) 

Ensemble-based 

and cost-sensitive 

learning - ISDA 

Solve normal 

imbalance 

problem  

Suitable for both 

within and cross-

version 

imbalanced data  

Ignore the 

diversity of data 

distribution 

(Ryu et al., 

2016) 

Cost-sensitive 

learning - multi-

objective  

multi-objective 

cost in imbalance 

learning 

Maximize defect 

detection and 

minimize false 

alarm probability 

Optimization 

algorithm 

choices highly 

influence the 

results 

 

(Chen et al., 

2016) 

Ensemble-based 

learning – 

boosting with 

under-sampling 

(AdaBoost)  

Solve normal 

imbalance 

problem   

Improve random 

under-sampling 

results 

Inconsistence 

results due to 

random 

sampling 

(Wu et al., 

2016) 

Cost sensitive 

learning - cost-

Solve imbalance 

problem in 

Maximize type II 

misclassification 

Suitable only for 

module level 
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sensitive local 

collaborative 

representation 

collaborative 

representation 

classifier-based 

SDP 

defect prediction 

(Siers & 

Islam, 2015) 

Ensemble-based 

learning – 

SMOTE 

incorporates with 

decision forest 

algorithm 

(oversampling) 

Balancing 

majority and 

minority class 

instances for 

lower 

classification cost 

Minimize 

classification 

cost 

Inconsistence 

results due to 

random 

sampling 

(Liu et al., 

2014) 

Cost-sensitive 

learning - Two 

stage cost learning 

(classification and 

features selection 

stages) 

Solve normal 

imbalance 

problem   

Improve the 

efficiency of 

both 

classification 

and features 

selection cost  

Ignore the 

diversity of data 

distribution 

 

 

2.5 Resampling in Imbalance Class Distribution  

The performance of the defect prediction model by using balanced and imbalanced 

data sets makes a big impact on the discovery of future defects. The class imbalance 

problem is well-recognized as one of the major causes of the poor performance of the 

prediction models. Many preprocessing approaches are proposed to solve the class-

imbalance problem, particularly by resampling approaches (Song et al., 2018), which 

are classified into under-sampling and oversampling approaches as illustrated in Figure 

21. The under-sampling selects only a subset of majority class instances to ensure the 

equality of the instances for the majority and minority classes in model training. 

Oversampling generates more synthetic/duplicated instances for the minority class to 

balance with the number of instances in the majority class. In the literature, resampling 

data class distribution is conducted which involves several sampling factors as 

summarized in Table 12.  
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Figure 21: Resampling imbalance dataset into balanced datasets 

 

Table 12: Factors of consideration on resampling imbalanced datasets 

Factors Description Justification 

Dynamic 

imbalance rate  

Change in resampling rate 

throughout time 

Imbalance ratios are found to be dynamic 

rather than a fixed rate for a whole dataset.  

Randomness Selection of random instances 

from a large population of 

defect/clean class  

Equal chances for each instance to be 

selected for resampling and unlikely to be 

biased representation 

Sequential-based 

evaluation 

Selection of instances based 

on sequential evaluation 

Exploring the significant level of each 

individual instance helps produce more 

quality samples.   

Interpolation Constructing new instances 

within the range of a discrete 

set of a few instances  

New generated instances within a 

neighborhood of existing instances 

improve the generalization capacity of 

classification 

 

Random under-sampling is the simplest and most common approach for resampling 

in imbalance defect datasets (Chen et al., 2016; Kamei et al., 2013). This approach 

ensures the majority class instances (non-defective changes) are randomly removed 

until the number of instances for the majority and minority classes is at the same level. 

It is known that the under-sampling approach provide a compact balanced set of training 
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data with reduction in cost for learning process. Conversely, random oversampling 

adopts the strategy of simply duplicating instances to increase the number of defective 

change instances until reaching the number of non-defective change instances. Applying 

random over-sampling, however, results in a higher risk of overlapped/duplicated labels 

for defect datasets. Despite the limitations of these random based resampling, the 

application in preprocessing imbalance defect datasets is easier and computationally 

inexpensive compared to other approaches such as cost-sensitive learning and hybrid 

techniques. 

Synthetic minority over-sampling technique (SMOTE) is an improved technique of 

standard random oversampling (Chawla et al., 2002). It is a process of interpolation that 

synthesize new instances for the minority class. The new instances are created using 

random interpolation between several instances within a defined neighborhood. Thus, 

the generated instance is based on features value and their relationship instead of only 

considering the data distribution. SMOTE is considered as a foundation approach for 

the research community in class imbalance classification. For this reason, many 

extensions and alternatives are suggested since its release to increase its success in 

various scenarios (Fernandez et al., 2018).   

Liu et al. (2008) introduced an under-sampling approach based on the iteration 

process by considering sequential evaluation to guide the sampling process for 

subsequent classifiers. The proposed approach sampling multiple subsets of majority 

class instances and training each of these subsets based on the ensemble classifier 

approach. For each iteration, the majority of class instances that are correctly classified 

by the current iteration are removed from consideration for the next iteration. Since 

several subset samples provide more details than a single subset, this approach provides 

better use of the majority class than traditional random under-sampling. Thus, an 
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efficient process of downsizing the majority class instance is achieved due to the fact it 

requires a shorter training time. 

Cabral et al. (2019) recently proposed oversampling rate boosting (ORB) to cope 

with class imbalance evolution. They proposed adjusting the resampling rate over time 

rather than always using 1:1 ratio of the balanced defect dataset for resampling. Since 

the resampling rate does evolve throughout time, the proposed oversampling approach 

automatically readjusts the resampling rate according to the ratio of current instances 

class distribution. For example, in case of the prediction is considered biased toward the 

non-defective class, the resampling rate of the defect class need to be adjusted 

accordingly. The proposed approach is specifically useful in resampling defect datasets 

for online learning-based machine learning framework.   

Some existing works adopted more advanced resampling approaches, such as 

under-sampling incremental-based evaluation (Chen et al., 2016), ORB (Cabral et al., 

2019), and SMOTE (Chawla et al., 2002; Zhu et al., 2020). Despite the fact that greater 

predictive impact for resampling on the minority class than on the majority class, most 

of the recent works pre-processed the imbalance dataset by an under-sampling 

approach. The reason is attributed to the fact of under-sampling requires shorter training 

time and a simpler process compared to oversampling (Liu et al., 2008). Consequently, 

prior JIT-SDP research typically used under-sampling rather than oversampling (Zhao 

et al., 2022). 

2.6 Oversampling for Imbalanced Datasets 

Oversampling is an efficient and common technique for resampling imbalanced 

data. The purpose of oversampling is to make sure that the distribution of classes is 

balanced by increasing the number of samples of the minority class. The most common 
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method for predicting software defects is to oversample the minority (defective) 

samples. In practice, oversampling is useful for improving classification performance 

on datasets with an imbalance distribution. In this review, we summarize the 

components of oversampling techniques for SDP as shown in Figure 22. To achieve the 

desired distribution of data within SDP datasets, oversampling is composed of several 

components. The components are as follows: 

i. Factors: consideration factors for oversampling focuses on data distribution  

ii. Distribution analysis: analysis of individual instances according to 

measurements of the relationship between them.  

iii. Intra-clustering: partitioning approaches within data distribution based on data 

classes  

iv. Parent selection: selection of data template or guidance for interpolation of new 

synthetic data 

v. Interpolate: interpolation techniques for the generation of new synthetic data  

 

Figure 22: Taxonomy of oversampling in SDP 
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The fact that imbalanced class distributions adversely affect machine learning based 

models is well-established. Although deep learning proved to be a powerful tool in 

SDP, class imbalance distributions negatively affect the performance of machine 

learning algorithms since most classifiers are trained by overfitting on majority classes. 

In JIT-SDP, various oversampling techniques are designed to improve the performance 

of minority classes. Table 13 summarizes recent work related to oversampling. 

Reviewing the oversampling of SDP as illustrated in Table 13, it is evident that 

most of the prior techniques attempt to create new data near the boundaries of the 

distribution. They assert that instances near the decision boundaries are likely to be 

more informative. For this reason, the empty spaces in the data distribution are less 

covered. On the contrary, several studies (Bennin et al. 2018; Li et al., 2019; Gong et 

al., 2019; Zhang et al., 2021) focus on increasing the occupied spaces in data 

distribution by increasing the diversity of data. The diversity of data within the 

distribution needs to be diverse concerning to minimize intraclass imbalance, especially 

for distributions with weak generalizability. Nevertheless, it is still true that diverse data 

widen the decision boundaries with respect to distribution. For this reason, some 

oversampling attempts to consider more than one factor such as spatial distribution and 

multidimensionality in the generation of new data (Liu et al., 2020; Feng et al., 2021; 

Zhang et al., 2021). For spatial distribution, samples within dense distributions are 

assumed to be difficult to learn, thus introducing duplicates into the original datasets. In 

the case of oversampling that is specifically associated with spatial distribution, the 

process highly dependent on the data partitioning algorithm and narrowing of boundary 

boundaries. For multidimensionality, potential downsides are the tendency to ignore the 

high informative instances and the bias toward high correlated features. Therefore, 

consideration of contributing factors remains a challenge for oversampling, especially 

for SDP data. 
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Table 13: Oversampling techniques in defect prediction 

Technique Focus Distribution 

analysis 

Intra partition Data selection Interpolation 

SMOTE 

(Chawla et al., 2002) 

Decision boundary Euclidian 

distance 

None Random  KNN – nearest interpolate 

Borderline-SMOTE 

(Han et al., 2005) 

Decision boundary Euclidian 

distance 

None  Random - select instances 

close to borderline 

KNN – nearest interpolate 

ADASYN 

(He et al., 2008) 

Decision boundary Euclidian 

distance 

None  Random - select instances 

hard to learn  

KNN – nearest interpolate 

MWMOTE 

(Barua et al., 2014) 

Decision boundary Euclidian 

distance 

KNN Random – select instance 

within cluster close to 

borderline 

KNN – nearest interpolate 

ROSE 

(Lunardon et al., 2014) 

Decision boundary Kernel density 

estimation 

None Random Smoothed bootstrapping  

MAHAKIL 

(Bennin et al., 2018) 

Data diversity Mahalanobis 

distance 

Rule based Pairing – inheritance at 

different level of parent 

Cross-over interpolate – 

genetic algorithm 

A-SUWO 

(Choirunnisa et al., 2018) 

Decision boundary 

Spatial distribution 

Linear 

discriminant 

analysis 

KNN Random - select instances 

within clusters that have 

minimum overlapped labels 

KNN – nearest interpolate 

ACWO 

(Zha et al., 2018) 

Decision boundary Euclidian 

distance 

K-means Adaptive - selection on 

centroid points of large 

KNN – nearest interpolate Univ
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clusters 

K-means based 

oversampling 

(Li et al., 2019) 

Data diversity Euclidian 

distance 

K-means Random – select within 

clusters 

KNN – nearest interpolate 

KMFOS 

(Gong et al., 2019) 

Data diversity Euclidian 

distance 

K-means Pairing – select two instances 

from different clusters 

Cross-over interpolate – 

genetic algorithm 

SDSMOTE 

(Liu et al., 2020) 

Spatial distribution 

Data diversity 

Euclidian 

distance 

None Ranking – select high 

difficulty instances 

KNN – nearest interpolate 

DVS 

(Zhang et al., 2020) 

Data diversity  

High 

dimensionality 

Kernel density 

estimation 

None Random – select according to 

eigenvalue of variance density 

Cross-over interpolate – 

genetic algorithm 

COSTE 

(Feng et al., 2021) 

Data diversity 

High 

dimensionality 

Multivariate 

correlation 

None Ranking – select instances 

with low complexity 

KNN – nearest interpolate 

K-means MAHAKIL 

(Zhang et al., 2021) 

Spatial distribution 

Data diversity 

Mahalanobis 

distance 

Rule based  

K-means 

Pairing – inheritance pairing  Cross-over interpolate – 

genetic algorithm 
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2.6.1 Impact of Oversampling 

Simple oversampling adds duplicated samples from the original dataset, resulting to 

overfitting and numerical stability problem. In order to rebalance the class distribution 

of imbalanced data, advanced oversampling is required to avoid duplicating samples. 

The impact of advanced oversampling techniques depends on experimental settings, 

comprises of evaluation metrics, modeling classifiers and imbalanced ratio.  

Evaluation metrics are critical in assessing classification performance by 

oversampling and guiding classifier modelling of defect prediction in imbalanced class 

data. For instance, the accuracy metric for an imbalanced classification problem is 

dangerously deceptive with respect to bias classification. This is because the accuracy 

metric is insensitive to datasets with a skewed distribution such in JIT-SDP datasets. 

Furthermore, as pointed by Tantithamthavorn et al. (2018) defect prediction models 

through oversampled datasets produce better Recall improvement but low in AUC 

performance. The issue arises due to the evaluation preference bias performance 

towards cases that are inadequately represented in the available data samples (Branco et 

al., 2016). Consequently, diverse evaluation metrics are necessary when working with 

an imbalanced classification. 

In addition, the performance of oversampling techniques is contingent on the 

selection of modelling classifiers for JIT-SDP, which are based on supervised, 

unsupervised, and semi-supervised machine learning. Without transformation by 

oversampling in imbalanced data, machine learning algorithms learn more on the traits 

in the clean class data at the expense of learning the traits in the defect class data.  Due 

to the fact that oversampling adds duplicate or similar data samples to the original, 

training datasets for the classifier eventually contain multiple overlapped samples. 

Later, resulting in overfitting for machine learning. Thus, oversampling especially in 
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within-project defect prediction models perform better than cross-project models. 

Classifier techniques like logistic regression, k-nearest neighbor and support vector 

machine are sensitive to oversampling techniques which affect the interpretation of 

defect prediction models. In other hand, random forest, and neural networks tend to be 

less sensitive (Tantithamthavorn et al., 2018). To conclude, the influence of 

oversampling on the interpretation of defect prediction models is highly dependent on 

the classifier techniques employed, indicating that oversampling techniques must be 

avoided when deriving knowledge or defect patterns from defect prediction models. 

Highly imbalanced ratio is prominent in defect prediction datasets. 

Tantithamthavorn et al. (2018) found that 8% of the defect datasets consist of a 

defective ratio between 45%-55%.  Indicating that only a small portion of defect dataset 

is based on small imbalanced ratio. In a dataset with highly imbalanced classes, if the 

classifier always predicts the majority class without any feature analysis. The results 

will still have a high rate of accuracy, which is obviously deceptive. In respect to 

oversampling in highly imbalanced datasets, techniques such as SMOTE, random 

oversampling and ROSE work well with different problems to a certain extent. Highly 

imbalanced datasets correlated with high false alarm rate during modelling (Menzies et 

al., 2007). Generating as much diverse synthetic data as possible restricted within the 

region of the defect class provides high recall and low false alarm rate (Bennin et al., 

2018). When the oversampling technique generates synthetic samples that are widely 

dispersed but appropriately located within the decision boundary or region of the 

minority class, the false rate is reduced without compromising overall performance. In 

conclusion, the performance of oversampling varies greatly depending on the 

imbalanced ratio dataset. 
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2.7 Modeling Approaches for Defect Classifier 

A variety of machine learning approaches for JIT-SDP studies is found in the 

literature. As reported by Catal et al. (2011), machine learning is proved as the most 

successful approach compared to statistical approaches. Machine learning approaches in 

modelling JIT-SDP exist based on either prediction of defect proneness of code changes 

(classification) or effort-aware prediction (regression). For prediction of defect 

proneness, JIT-SDP classifies the given code changes into defective or clean classes. On 

the other hand, the prediction based on regression refers to the prediction of a certain 

number of defects found in the given code changes information. This type of prediction 

model assigns an estimated number of defects for each of the code changes instead of 

classifying them into defective or clean change classes.  

Modelling of JIT-SDP involves of formulating prediction of defect proneness or 

defect inducing at the granularity of code changes. Prior JIT-SDP typically utilised 

machine learning with batch learning to formulate such a model. Training instances are 

not required to be arranged sequentially in batch learning. Consequently, some studies 

(Cabral et al., 2019; Tan et al., 2015) contend that batch learning is unrealistic and that 

an alternative is to model online learning settings. Online learning necessitates the 

arrangement of training and testing instances in accordance with the arrival date of data 

in version control systems. Modelling of JIT-SDP consists primarily of two types of 

prediction projects: within-project prediction and cross-project prediction.  

In general, machine learning algorithms are divided into three categories: 

supervised, semi-supervised, and unsupervised techniques. Supervised learning 

leverages the usefulness of defective or clean label information as the training datasets 

to build the prediction model. The techniques operate with supervision provided using 

the outcome of each training instance. In contrast, unsupervised learning enables the 
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development of the JIT-SDP model in the absence of defect data. Unsupervised learning 

ensures the modelling of JIT-SDP is done without requiring any labelling of code 

change information. Semi-supervised learning is the combination of supervised and 

unsupervised learning. The learning process only uses small amounts of defect data 

while utilizing a greater number of unlabelled code changes information. This technique 

is usually used when the prediction is related to the new software projects that have few 

version releases or less defect information. Table 14 summarize some of the works in 

JIT-SDP based on these categories.   

Most commonly choices of modelling in JIT-SDP are by using supervised learning 

as tabulated in Table 14. Nevertheless, gathering enough data is a challenging process 

for new projects or projects with limited development history. Data collection is one of 

the known challenges in the supervised SDP model. Existing works (Yang et al., 2016; 

Liu et al., 2017) reported that unsupervised models produce a prediction performance 

superior to most supervised models. Unfortunately, the limitation of the unsupervised 

model is that it produces many false alarm results and poor prediction performance, 

especially in terms of F1-score (Huang et al., 2019). Thus, semi-supervised learning is 

explored for JIT-SDP due to its capability to produce substantial improvement in 

learning accuracy with a small amount of labelled data. Interestingly, three studies (He 

et al., 2016; Liu et al., 2017; Li et al., 2020) concerning the semi-supervised model in 

the context of JIT-SDP. 
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JIT-SDP looks at a wide range of classifier techniques, from standalone learners to 

ensemble-based learners, to find the best models. Commonly used standalone classifier 

includes Logistic Regression (Chen et al., 2018; Kamei et al., 2013; Taba et al., 2013), 

Naïve bayes (Jahanshahi et al., 2019), Support Vector Machine (Amasaki et al., 2021), 

Decision Tree(Yang et al., 2017), and Neural Network (Qiao & Wang, 2019). Whereas 

for ensemble-based learners range from single ensemble learner such as Random Forest 

(Sikic et al., 2021) to multi-layer ensembles (Wang et al., 2016; Yang et al., 2017).  

Table 14: Machine learning in the JIT-SDP model 

Types of 

classifiers  
Reference  Types of learning 

Algorithm 

Standalone 

model 

(Kamei et al., 2013) Supervised learning LR 

(Singh and 

Chaturvedi, 2013) 

Supervised learning LR and SVR 

(Taba et al., 2013) Supervised learning LR 

(Yang et al., 2015) Supervised learning  LR 

(Yang et al., 2016) Unsupervised 

learning 

- 

(Liu et al., 2017) Unsupervised 

learning 

- 

(Chen et al., 2018) Supervised learning  LR 

Ensemble 

model 

(Jiang et al., 2013) Supervised learning LR, NB and ADTree 

(Herzig et al., 2016) Supervised learning kNN, LR, RP, and 

SVM 

(He et al., 2016) Semi-supervised 

learning 

RF 

(Xia et al., 2016) Supervised learning ADTree 

(Yang et al., 2017) Supervised learning RF 

(Ozcan and Tosun, 

2018) 

Supervised learning  IBK, J48, LR, NB, 

and RF 

(Wang et al., 2018) Supervised learning  NB and LR 

(Qiao and Wang, 

2019) 

Supervised learning  NN 

(Kondo et al., 2019) Supervised learning LR and RF 
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(Hoang et al., 2019) Supervised learning  CNN 

(Huang et al., 2019) Supervised learning CBT+ 

(Li et al., 2020)  Semi-supervised 

learning  

Ti-training   

(Zhu et al., 2021) Supervised learning DEA-CNN 

(Zheng et al., 2021) Supervised learning  RF 

 

2.7.1 Impact of Classifier Techniques 

It is evident that different machine learning methods used in building the prediction 

model resulted in differences in the changes predicted as defective. As each classifier 

identifies distinct subsets of defects, certain features should be examined to determine if 

certain features are compatible with specific classifiers. Classifiers perform significantly 

better when combined with particular sets of features, such as reduced features or 

uncorrelated features (Bowes et al., 2018). Through the selection of the data features 

most relevant to the classification problem, it is possible to reduce the amount of noise 

in the data. The result makes it easier for the classifier to learn from the data. The 

selection of the most relevant features ensures that a model is less likely to overfit 

training samples, and more generalizable to new data. Furthermore, the selection of 

features impacts the effectiveness of classifiers by simplifying models. In addition to 

faster training and improved interpretation capability, the selection of features is also an 

optimization problem. Regardless of the selection approaches chosen, it is important to 

note that feature selection is an optimization problem. The result implies no guarantee 

that an optimal subset of features has been identified. A robust subset of features that 

performs well on the training data, however, requires careful tuning in order to achieve 

optimal subsets. 
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Effective prediction models require fine-tuning of the classifier. The purpose of 

parameter tuning is to find the optimal parameter values necessary to obtain the most 

optimal configuration of a classifier. The tuning process involves trying different 

combinations of parameters to determine the combination that achieves the highest level 

of accuracy for training data. Mahmood et al. (2018) observed that, despite tuning the 

parameters of the prediction models to improve performance, previous studies of JIT-

SDP have generally failed to account for the tuning process. Nonetheless, tuning 

classifiers improves the overall performance of the prediction model significantly (Fu et 

al., 2016; Menzies et al., 2008). Classifiers with many parameters have an adverse 

effect on classification performance, which necessitates a more cautious selection of 

parameter values. In instances where there are a large number of datasets at scale, 

automatic tuning of classifiers is preferable to manual tuning. As a result of the 

classifier tuning analyses, it is indicated that attention should be focused on enriching 

the classifier optimization process to reach a more accurate JIT-SDP model.  

2.8 Effort-Aware Model  

Through the JIT-SDP model, the developers are capable of easily assigning the 

available test resources to defective parts to enhance the quality of software in the early 

stages of the development life cycle. For instance, if only 20% of the testing resources 

are available, the developers concentrate these testing resources on inspecting and fixing 

software parts that are more vulnerable to defects. Therefore, this provides an 

opportunity to deploy high-quality, low-cost, and maintainable software in a given time, 

resource, and budget. For this reason, it became a popular research topic in the software 

engineering field. 

In the context of JIT-SDP studies, the effort-aware model refers to ranking the 

predicted software defect proneness according to a certain allocation of QA efforts. The 
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effectiveness of an effort-aware model of JIT-SDP is important to help the developers 

find more defects with less effort. As a result, the developers allocate limited testing or 

inspection resources to the most defect-prone code changes with the help of the effort-

aware JIT-SDP model. To simplify, effort-aware models are considered as a direct 

extension of JIT-SDP. From the view of practice, it is more realistic and useful to apply 

effort-aware JIT-SDP models in the actual software development. Subsequently, 

improves production efficiency and quality, and reduces the development cost and 

software risk (Li et al., 2018).  

Over the last decade, a few numbers of JIT-SDP studies mainly focus on improving 

the efficiency of effort awareness. Table 17 shows the related works on the effort-aware 

model of JIT-SDP. Since effort-awareness in JIT-SDP started in the year 2013, the 

application of the approaches is limited to a few open-source projects and not 

generalized well with other software projects. They used ACC and Popt for performance 

measurement. These metrics consider the inspection effort uniform for every LOC. In 

practice, however, one change in the LOC of a complex file requires more inspection 

effort compared to those changes that happen during initial code development. 

Therefore, the indication of these two metrics insufficient to show actual reflection of 

the performance of effort awareness for the JIT-SDP model. In addition, the previous 

effort-aware model has only a few prediction ranking factors such as defect density, risk 

of defect, size of changes, and the ratio between benefit and cost. These factors are used 

to prioritize which changes must be inspected first while considering limited resources. 

The choice of prediction ranking factors used for the effort-aware model resulting 

different effort awareness performances. To improve the effort awareness performance 

in the JIT-SDP model, previous works have employed a multi-objective approach (Chen 

et al., 2018) and an ensemble-based model (Albahli, 2019; Li et al., 2020). Despite 

these solutions improving effort awareness performance, the trained models only 
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generalize well with the trained datasets and have no guarantee of finding the optimal 

balance between prediction accuracy and effort awareness performance.  It is a conflict 

between prediction accuracy and effort awareness performances during the model 

construction phase of an effort-aware model (Chen et al., 2018). More defects are found 

when more resources are spent on code inspection efforts.  

2.9 Potential of Deep Reinforcement Learning in Software Engineering 

Deep reinforcement learning (DRL) techniques are composed of two parts: a deep 

neural network that learns the state representation of the environment, and a policy 

network that selects actions. The deep neural network is used to approximate the value 

function, which is the expected long-term return from taking any action in any state. 

The policy network or network model uses this approximation along with feedback 

received after each action taken to learn what sequence of actions will result in 

maximum rewards.  

Algorithms for solving the DRL problems that use models and planning are called 

model-based algorithms, as opposed to simpler model-free algorithms that are based on 

trial-and-error learners. Model-based algorithms use the deep neural network to 

approximate both the reward function and the transition distributions. The learned 

model is then employed in a variety of ways, including detection and prediction. Two 

main approaches are used to describe the policy as a planner or to utilize the model to 

generate synthetic transitions by augmenting the experience replay buffer. Some 

common model-based algorithms used for DRL include Deep Q-Network (DQN), 

Double DQN (DDQN), Dueling DQN, A3C, DDPG, TD3, and SAC. Table 16 provides 

a brief description of the algorithms. 
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DRL is promising for software engineering. One of the main reasons for its 

applicability in software engineering is that the field is constantly changing. New 

features are added to applications all the time, and it is difficult to predict how these will 

interact with one another. Recent works demonstrate the ability of DRL techniques to 

learn complex tasks in software engineering as reported in Table 15. These results 

demonstrate the great potential of DRL for improving software engineering tasks. 

However, as DRL is non-linear, several challenges need to be tackled for reaching its 

full potential. First, the design of the DRL environment for the problem simulation is 

needed to be adjusted properly. Then, a reward policy is required to be tuned for 

problem specifics. Lastly, hyperparameters for deep learning network need to be 

optimized according to given features. Thus, more research is needed before DRL 

techniques are ready to be widely adopted. To exploit the full potential of DRL for 

software engineering, future research needs to focus on: 

i. Developing new architectures and learning algorithms specifically tailored for 

software engineering tasks. 

ii. Investigating how best to represent program data and code structures to 

enable effective learning.  

iii. Studying how different problem domains such as defects prediction, code 

optimization, and peer review prioritization provide benefits from DRL 

techniques.  

iv. Evaluating the effectiveness of different DRL techniques on large real-world 

datasets. 

In the context of modeling for the prediction, prior machine learning approaches for 

JIT-SDP are generally based on batch learning (supervised, unsupervised and semi-

supervised model) context. Batch learning provides data learning on the entire training 
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datasets at once to learn the pattern of the introduction of defective changes. However, 

the reliability of SDP models is not yet sufficiently studied especially in the context of 

sequential learning. Sequential learning updates the training set incrementally to take 

advantage of the feedback from each run. In other words, it is an updatable 

classification. This is appropriate for JIT-SDP since it mimics how code reviews are 

done in practice. Therefore, it is useful to investigate aspects of sequential learning for 

improving the performance of the JIT-SDP model. Reinforcement learning is a type of 

learning which capable of iteratively learning optimal control from sequential data and 

is still unexplored. This provides an ideal opportunity to explore an alternative approach 

for the JIT-SDP model. 

Table 15: DRL approaches in software engineering  

Related works DRL algorithm Application 

(Kim et al., 2018) DQN Generate test input for software under test  

(Harries et al., 2020) DQN Functional software testing 

(Hu et al., 2020) DQN Automated penetration testing framework 

(Eskonen et al., 2020) DQN Automated and adaptive GUI testing 

 

Table 16: Examples of model-based methods 

Algorithm Learning 

methods 

Actions 

preference 

Advantage 

DQN Value function Discrete Good in sparse rewards in highly 
dimensional input spaces 

Double 
DQN Value function Discrete 

Reduce overestimation of DQN 

Dueling 
DQN 

Value function Discrete 
Learn which states are advantage according 
to actions 

A3C Actor-critic Continuous Increase the convergence speed 

DDPG Actor-critic Continuous Direct policy learning  

TD3 Actor-critic Continuous Reducing the overestimation bias of DDPG 

SAC Actor-critic Continuous 
Accelerate learning by preventing the policy 
from a bad local optimum 
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Table 17: Summary of previous effort-awareness JIT-SDP models 

Related studies  Priority factor Classifier technique  Effort awareness 

evaluation 

Software project datasets 

(Kamei et al., 2013) Defect density EALR Popt = 61 and ACC = 35 Public: Buz, Col, JDT, Pla, Moz, and 

Pos  

Private: 5 java projects 

(Jiang et al., 2013) Defect density  LR, NB, and ADTree ACC = 41 Public: Linux, Pos, Xorg, Eclipse, Luc 

and Jackrabbit 

(Yang et al., 2015) Defect density  LR ACC = 51.04 Public: Buz, Col, JDT, Pla, Moz, and 

Pos 

(Xia et al., 2016) Defect density ADTree ACC = 59 and effort-AUC Public: Pla, JDT, Jackrabbit, Linux, 

Luc, Pos, and Xorg 

(Yang et al., 2016) Risk of defect Unsupervised Models Popt = 76.2 and ACC = 

49.7 

Public: Buz, Col, JDT, Pla, Moz, and 

Pos 

(Liu et al., 2017) Size of changes CCUM (code churn 

unsupervised model) 

Popt = 89.3 and ACC = 

73.6 

Public: Buz, Col, JDT, Pla, Moz, and 

Pos 

(Yang et al., 2017) Defect density TLEL (Two-layer Ensemble 

of Random Forest) 

ACC = 70.53 Public: Buz, Col, JDT, Pla, Moz, and 

Pos 

(Wang et al., 2018) Defect density LR and DBN + ADTree ACC = 21.9 Public: Linux, Pos, Xorg, JDT, Luc, 

and Jackrabbit, Buck, Hhvm, Guava, 

Skia 
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(Chen et al., 2018) Pareto front between defective 

probability and effort for 

defective changes 

MULTI (LR + NSGA-II) Popt = 88.9 and ACC = 73 Public: Buz, Col, JDT, Pla, Moz, and 

Pos 

(Huang et al., 2019) Size of changes CBT+ (Logistic regression) ACC: 35 Public: Buz, Col, JDT, Pla, Moz, and 

Pos 

(Qiao & Wang, 2019) Benefit-cost ratio (defective 

probability divided by sum of 

code churn) 

Regression based Neural 

Network 

Popt = 85.3 and ACC= 

69.6 

Public: Buz, Col, JDT, Pla, Moz, and 

Pos 
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2.10 Open Issues in Prediction of Software Defects 

Several open issues related to the frameworks of the JIT-SDP model are identified 

as illustrated in Figure 23. These issues include cross-prediction on heterogeneous 

metrics, effort-aware prediction, optimization of the model, and latencies in data 

evolution. 

 

2.10.1 Prediction of heterogeneous metrics  

In practice, new start-up software projects often lack historical defect data. 

Therefore, researchers have utilized historical defect datasets from other projects to 

predict defects in a project that lacks historical data. This problem is called cross-project 

software defect prediction (CPSDP) which is also considered a part of the transfer 

learning problem. The present works on CPSDP mainly assume the same set of 

software metrics (i.e. homogeneous metrics) are used to measure the characteristics of a 

code change for both the source project and target project. Nevertheless, some metrics 

Figure 23: Open issues of JIT-SDP 

Open 
issues

Heterogenous 
metrics 

Parameters 
optimization

Data evolution

Imbalaced data
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especially object-oriented metrics are designed for specific programming languages and 

some features (e.g. features extracted from the commercial tool) are unavailable for 

other software projects. To address these problems, researchers have proposed many 

CPSDP approaches by employing heterogeneous metrics (Chen et al., 2021). The focus 

of CPDP has shifted into heterogeneous data sources recently. Thus, transfer learning 

techniques especially for data manipulation components become the main interest and 

important in CPDP settings (Hosseini et al., 2019). Researchers have overcome this 

problem by proposing various approaches such as distribution characteristics (Nam et 

al., 2015), metrics selection (Xing et al., 2015), and metrics representation (Jing et al., 

2015). In general, CPDP-based heterogeneous data involves three main steps as shown 

in Figure 24: 1) selection of relevant features by using appropriate features selection 

methods 2) finding of matching metrics according to the distribution of every possible 

combination of metrics from the source dataset and the target datasets 3) Training of 

model using the matched metrics and predict the defect outcome from the target project.  

 

Figure 24: CPDP-based heterogeneous data workflow 

The main challenge in the modelling of heterogeneous-based CPDP is that it 

required an appropriate metrics matching method to operate for different combination 

metrics across software projects. It is interesting to examine the application of deep 

learning in finding the informative features for metric matching between source project 

and target project. However, it is difficult to obtain accurate results due to the inability 

of conventional metrics often unable to distinguish data with different semantics (Wang 

et al. 2018). The emergence of approaches (Xia et al., 2016; Wang et al., 2018; Hoang 

et al., 2019) in textual semantic features which are automatically learned by deep 

Selection of features 
Mapping of features 

across datasets
Model training 
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learning provide beneficial semantics to tackle this problem. Thus, the combination of 

metrics representation learning and semantic features is believed to be complimentary 

for heterogeneous-based CPSDP and requires more investigation.  

2.10.2 Model Optimization 

Harman (2010) suggested that search-based optimization techniques are potentially 

useful to optimize the performance of the SDP model with multiple objectives. In 

particular, he suggested that the predictive model is capable to be built across multiple 

objectives such as predictive quality, cost-benefit, privacy, readability, coverage, and 

weighting aspect. Multi-objective in SDP is a relatively new application area. Canfora 

et al. (2013) presented an approach to building a logistic regression model with 

consideration of a compromise between defect-proneness and inspection cost using a 

genetic algorithm. Shukla et al. (2018) proposed a multi-objective optimization 

approach for the SDP model with consideration on minimize misclassification costs and 

minimizing inspection costs on defect-prone files. In the context of JIT-SDP, Chen et 

al. (2019) proposed a multi-objective optimization-based supervised approach that 

designed to maximize the number of identified defective changes and minimize SQA 

effort (i.e. code churn). However, much of the potential of the multi-objective approach 

is still unexplored in this context. Previous studies utilize only Genetic Algorithm (i.e. 

NSGA-II) in finding Pareto fronts across multiple objectives. In the future, the works on 

multi-objectives in SDP must be extended by considering other multi-objective Pareto-

based optimization algorithms. In addition, considering different objective functions 

such as selection of software metrics, cost of imbalance learning, classification cost, and 

selection of data samples potentially also be exploited in future multi-objective based 

defect prediction. 
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Current development of SDP models commonly utilizes machine learning 

classification techniques. These techniques such as Naïve Bayes, Neural Network, 

KNN, and Logistic regression have hyperparameter settings that control the behaviors 

of the generated models. Hyperparameters are a set of parameters that need to be tuned 

before the training process began. For example, parameter settings in classification 

algorithms used during model training. Since the optimal parameter settings are 

unknown ahead of time, researchers often employ the default values for those settings 

(Tantithamthavorn et al., 2019). Default hyperparameter settings are known to be 

suboptimal configurations (Jiang et al., 2013). Thus, the prediction models are likely to 

underperform in case of these models are trained under suboptimal configuration. It is 

impractical to achieve the optimal configuration of hyperparameters by exploring all the 

possible configurations of a classification algorithm. Therefore, the use of any 

automated hyperparameters optimization technique is beneficial to achieving near-

optimal configuration for an optimized defect prediction model. Automated 

hyperparameters optimization requires a large impact for improving the performance of 

classification techniques such as neural networks, decision trees, and Naïve Bayes that 

are parameter sensitive (Tantithamthavorn et al., 2019). For future works, more 

investigation of automated hyperparameters optimization on the performance 

improvement, performance stability, model interpretation, and ranking of defect 

prediction models must be done. 

2.10.3 Latency of Data Evolution 

JIT-SDP generally assumes that past defects resulting from changes are always 

similar to those that occur in the future (Tan et al., 2015). It is imperative to note, 

however, that the characteristics of defect-inducing changes are evolving throughout the 

life cycle of the project. According to Mcintosh and Kamei (2018), code change 
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properties fluctuated over time. Defect classifiers suffer from poor prediction when data 

drift occurs within the properties of code changes. Improvements needed to be made 

regarding the handling of data drift. It is advisable to explore specific aspects of 

handling data drift in the future, including continuous model refinement (online 

classification learning), dividing the data by period, 91odelling the evolution of defect-

inducing change patterns. 

In addition to dealing with the problem of data drift, it is also important to address 

the problem of new software changes that are produced over time and appear during 

training. For example, sequential learning for JIT-SDP. Verification latency is also 

critical to prevent overly optimistic predictions for the JIT-SDP model (Tan et al., 

2015). Training instances are typically 91odellin after several changes have occurred. 

There is a delay before defect-causing changes are detected as defective changes, and it 

takes some time for non-defective changes to gain confidence and be viewed as clean 

changes. In this instance, it takes time to determine the actual label of each change. 

According to Cabral et al. (2019), a delay between the time a true label is received and 

the time it takes for the defect to be corrected is typically one to 11 years. By 

establishing a longer waiting period, more positive examples are identified for training. 

However, the risk of concept drift is directly proportional to the duration of waiting 

(McIntosh and Kamei, 2018). It is paramount to determine a reasonable compromise 

between waiting times and concept drift to obtain realistic results in the future. 

2.10.4 High False Alarm in Imbalanced Dataset 

Presence of false positives in class imbalance datasets during the learning process 

of machine learning is inevitable. The class imbalance causes false alarm results in the 

defect prediction process, which reduces the reliability of the model. If a false alarm is 

made, the cost of validating the defect in the software life cycle is increased. The cost of 
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defects is influenced by various factors such as the project’s context, size, and location 

of the defect. Besides, the cost of validating software defects is also related to the 

application field of software engineering. During the software development process, it is 

usually a manual process to confirm the results of the defects discovered. Therefore, the 

false alarm increases the workload of testing and development, which ultimately 

consumes unnecessary costs.  

To reduce disastrous results from the false alarm in imbalanced data of SDP, 

resampling technique mainly is considered by researchers (Li et al., 2018). 

Oversampling provides class rebalancing of the instances by increasing the percentage 

of positive instances in the dataset to obtain the class balance. The resampling technique 

mainly focuses on the size differences between majority and minority classes without 

focusing on independent instances. In this case, if the dataset is closely measured by 

software metrics, the performance of the classification model is closely affected by the 

near class boundary instances. Moreover, the interaction between the choice of 

oversampling techniques and the choice of classifiers is not well understood in the 

context of false alarm results. Similarly with the choice of dataset and input software 

metric types. Therefore, current techniques are still not ideal in practice.  

2.11 Summary 

This chapter presented a comprehensive review of JIT-SDP by elaborating on the 

fundamentals of the domain, including the different software metrics utilized to model 

the prediction of software defects, resampling strategies, and machine learning 

approaches. The review also highlighted the main issues faced in the domain over the 

years to uncover the evolution of approaches for JIT-SDP.  
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A clear understanding of the trends is essential to understanding the current state-

of-the-art. Therefore, to fully understand the state-of-the-art, this chapter divided the 

components of modelling JIT-SDP into three different aspects: software metrics, 

resampling strategies, and machine learning. Each of the components is presented in a 

discussion including related works and current limitations. For depth discussion on 

software metrics, this chapter also laid down three main issues on factors affecting the 

accuracy of software metrics in representing the features in the context of JIT-SDP 

models. Following the discussion, resampling of imbalance class distribution in 

modelling of JIT-SDP which focusing more on oversampling process of defect data. 

Next, an in-depth discussion of JIT-SDP modelling in the context of machine learning is 

provided to provide current technologies toward effort aware JIT-SDP models. The 

potential of deep reinforcement learning for JIT-SDP in the software engineering 

domain is then presented, lighting up the opportunities for developing new deep 

reinforcement learning in JIT-SDP modelling based on effort awareness. In the last 

section, four open issues in the prediction of software defects are explained for a better 

understanding of the trends and limitations which hinder the progress of JIT-SDP 

research.  

The findings of this review chapter demonstrate that the underlying research 

problems of imbalance class distribution and false alarm results need to be examined for 

further understanding the problem of inaccurate prediction. Review of imbalance class 

distribution shows that oversampling methods do indeed influence the performance of 

the JIT-SDP model. Additionally, the results of reviewing existing classifiers reveal that 

the selection of classifiers is highly correlated with the prediction results of software 

defects. Accordingly, the following chapter presents a comparative analysis of baseline 

approaches to the identified problems. 
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CHAPTER 3: EXPERIMENTAL ANALYSIS ON OVERSAMPLING AND 

EFFORT AWARENESS IN JIT-SDP 

To establish problem statements of ineffective oversampling in imbalance class and 

high false positives in effort awareness, two experimental analyses are conducted. First, 

analysis of oversampling techniques in imbalance class datasets provides the 

observation of factors that affect the performance of oversampling. The analysis 

consists of two observation factors such as data distribution levels and choice of 

oversampling techniques. In the second analysis, a comparative experiment is conducted 

to revisit how the JIT-SDP model generates more false positives in effort awareness 

evaluation. This analysis helps in providing evidence of low prediction accuracy for 

current effort-aware JIT-SDP. 

3.1 Oversampling for Imbalance Class Distribution  

The experiment aims to determine whether oversampling techniques provide 

different prediction performances when dealing with overlapping class distributions that 

vary with data characteristics. To achieve the aim of the experiment, two objectives are 

conducted. Table 18 shows the mapping of research objectives with specific research 

questions. A comparative experiment is conducted to analyze oversampling techniques 

via different experimental settings. The experiment compares oversampling techniques 

including SMOTE, SMOTE-Borderline, ADASYN, GAZZAH, MWMOTE, ROSE, and 

MAHAKIL. For ease of explanation, seven techniques are divided into lightweight and 

heavy-weight techniques. The categories are based mainly on the complexity of the 

technique used in the oversampling techniques, especially the clustering algorithm 

which resides in the oversampling techniques. SMOTE, SMOTE-Borderline, 

ADASYN, GAZZAH, and ROSE are lightweight techniques. They are easy and fast to 
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implement for imbalanced datasets. MWMOTE and MAHAKIL are heavyweight 

techniques as they take longer to complete the oversampling process.  

Table 18: Mapping of experimental objectives with research questions 

Experimental objectives Research questions 
Research 

variable 

To analyze the performance of 

oversampling techniques in 

different imbalanced data settings  

RQ1: How does the oversampling 

performance depend on the 

characteristics of the datasets? 

Imbalanced data 

characteristics  

To evaluate and compare the 

feasibility of oversampling 

techniques in JIT-SDP 

RQ2: Which oversampling 

techniques give the best 

performance in general? 

Oversampling 

techniques 

 

3.1.1 Experimental Setup  

RQ1: How does the oversampling performance depend on the characteristics of the 

datasets? 

Motivation: Comparison of oversampling performance is needed to observe 

different results in varying characteristics of software project datasets. Noted that the 

minority class (defect) instances used to generate synthetic instances are different at 

each running of oversampling for a certain dataset. This led to a high variance in the 

performance of prediction models. As a result, the prediction model producing high 

variance in predictions.  

Approach: To examine the performance of oversampling techniques according to 

different levels of measurement for each feature, Gaussian noises are applied to the 

original dataset. In this setup, variance and overlapped spatial distribution in the training 

dataset are increased and this is a form of data augmentation. Furthermore, the 
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application of noise increases the randomness of training data, which means that the 

model is hard to learn from training samples. This is done to test the robustness and 

performance of an oversampling technique in the presence of known amounts of noise. 

Thus, modifying existing samples in the training samples to increase overlapped spatial 

distribution. The datasets used for oversampling vary in terms of the imbalance ratio 

and sample size. The datasets with an imbalance ratio of less than 15% are defined as 

highly imbalanced datasets and the remaining ones as mild imbalanced datasets. 

Severely imbalanced datasets imply that more artificial data instances are generated 

compared to the low imbalanced data when the application of oversampling techniques 

is conducted. 

RQ2: Which oversampling techniques give the best performance in general? 

Motivation: Little attention is paid to evaluating the stability of oversampling 

techniques especially in JIT-SDP. Oversampling in defect prediction is considered 

unstable, so we cannot be confident in the datasets oversampled by existing 

oversampling techniques. Thus, an analysis of oversampling performance for JIT-SDP 

model is conducted to analyse the stability of oversampling under different datasets 

conditions.      

Approach: Oversampling techniques are utilized only for the training datasets. The 

experiments are conducted on each dataset after resampling with each oversampling 

technique. The oversampling procedure stops when it reaches 50% of the defect data in 

the training set. It assumes that a balanced dataset is achieved and that oversampling 

defect data to 50% of training data will achieve better results. (Fernandez et al., 2018). 

For the prediction performance, JIT-SDP is built based on Logistic Regression 

algorithm to evaluate the performance of each oversampling technique. Logistic 

regression is a widely used classifier in JIT-SDP similar to several studies (Kamei et al., 
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2013; Taba et al., 2013; Yang et al., 2016; He et al., 2018). The training data for 

Logistic Regression classifier are randomly selected using 2/3 of the sample size and the 

remaining 1/3 as the testing data for each dataset. The process of splitting the dataset is 

repeated 10 times to reduce the effect of bias throughout the experiments. The division 

is done using stratification such that the proportion of imbalanced class distribution is 

maintained. Figure 25 shows the steps followed for the empirical evaluation of the data 

oversampling techniques for each dataset. To evaluate the effectiveness of oversampling 

techniques, F-score is used which a commonly used metric for evaluating the accuracy 

of classification performance.  F-score combine Precision and Recall that are derived 

from a confusion matrix. The confusion matrix consists of four possible prediction 

outcomes. If an instance predicted correctly as ‘defective’, it is considered as a true 

positive (TP); if an instance is misclassified as ‘defective’, it is a false positive (FP); if 

an instance is correctly classified as ‘clean’, it is a true negative (TN); if an instance is 

misclassified as ‘clean’, it is a false negative (FN). Using four numbers of confusion 

matrix, Recall, Precision and F-score are calculated. Recall is the ratio of the number of 

correctly predicted ‘defective’ instance to the number of actual ‘defectIve’ instance 

(Recall = TP/(TP+FN)). Precision is the ratio of correctly predicted ‘defective’ 

instances to all instances predicted as ‘defective’ (Precision = TP/(TP+FP)). Then, F-

score is a hormonic mean of Recall and Precision (F-score = (2*Recall*Precision)/ 

(Recall + Precision)). The higher F-score value indicates better overall performance for 

the classification results by JIT-SDP model.  
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Figure 25: Procedure of comparison for oversampling techniques 

3.1.2 Data Distribution 

Distribution of imbalanced dataset in JIT-SDP consists of wide variability in the 

percent of defects that existed across software project datasets. Such different means 

that the geometry of the hyperspace boundary between different datasets varies in term 

of the overlapped class distribution. To illustrate this overlapped distribution, the 

imbalance datasets are transformed into two principle components (2D) representation 

by using Principal Component Analysis (PCA). Figure 26 illustrates the distribution of 

imbalanced datasets resulting in various overlapped spatial distributions.  

The consistency of oversampling in different scenarios is examined by adding three 

Gaussian noise levels (25, 50, and 75%). Higher levels of noise increase the likelihood 

that class distributions overlap. In addition, this increases the diversity within the 

original datasets. Adding Gaussian noise allows for a variety of different datasets to be 

derived from original datasets, thereby allowing the evaluation of oversampling 

techniques in various class overlapping scenarios.  With the addition of Gaussian noise, 
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the robustness and performance of oversampling techniques when exposed to known 

amounts of noise can now be tested. Here are some examples of the measurement of 

original software project datasets before and following the addition of noise, as shown 

Figures 27 to 32. 

 

Figure 26 : Data distribution after transformation Univ
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Figure 27: Addition of noise in Bugzilla dataset 

 

Figure 28: Addition of noise in Columba dataset Univ
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Figure 29: Addition of noise in Postgres dataset 

 

 

Figure 30: Addition of noise in JDT dataset 
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Figure 31 Addition of noise in Eclipse-Platform dataset 

 

Figure 32: Addition of noise in Mozilla dataset 

3.1.3 Baseline Techniques  

SMOTE (Chawla et al., 2002) is a synthetic minority oversampling technique to 

overcome the problem of overfitting in which generated samples are exact replicates of 

observed samples. Using this technique, new samples are produced by linearly 
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interpolating an inferior sample with its k-Nearest Neighbors. In this approach, new 

samples are generated without considering the majority sample, which in turn lead to 

overlapping between majority and minority samples, thereby causing over-

generalization as well as amplification of noise. Despite these drawbacks, SMOTE is 

widely adopted by researchers because of its simplicity. 

ADASYN (He et al., 2008) adaptively generates minority data samples according 

to their distributions: more synthetic data is generated for minority class samples that 

are harder to learn compared to those minority samples that are easier to learn. 

Dynamically adjusts sample weight to reduce the bias in the imbalanced dataset by 

considering the characteristics of the distribution of the data. For each minority class 

sample, ADASYN incorporates a density distribution to determine the number of 

synthetic samples required. In this optimization process, it is induced to focus on the 

hard-to-learn (classify) examples within the minority class samples. As a result, the 

samples generated are not equal across all samples. 

GAZZAH (Gazzah et al., 2015) is a hybrid approach that consists in oversampling 

the minority class using SMOTE star topology, and under-sampling the majority class. 

The under-sampling approach is based on selecting some feature vectors according to a 

distribution criterion. over-sampling a minority class by adding only a few synthetic 

instances and under-sampling the majority class by removing examples that are not 

relevant enough 

MWMOTE algorithm (Barua et al., 2014) categorizes and identifies safety data, 

boundary data, and potential noise data from minority samples. It adaptively assigns the 

weights to the selected samples according to their importance in learning. The samples 

closer to the decision boundary are given higher weights than others. Similarly, the 

samples of the small-sized clusters are given higher weights for reducing within-class 
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imbalance. The synthetic sample generation technique of MWMOTE uses a clustering 

approach to partition datasets and uses the Euclidean distance similarity measure to find 

very close class samples and synthetically generate samples based on the weights 

assigned to the minority class samples. 

Borderline-SMOTE (Han et al., 2005) is a modification of the SMOTE technique 

with a focus on cases of minority class data instances that are difficult to classify, 

otherwise known as borderline data instances. Before finding minority class instances, 

the algorithm finds minority class instances that have more majority class instances as 

closest neighbors than minority class instances  

ROSE algorithm (Lunardon et al., 2014) reproduces already existing minority class 

instances at random, thereby increasing the number of minority instances. It is 

considered a smoothed bootstrap-based technique. Moreover, it is a simple and easy-to-

implement method. The technique helps to generate synthetic data based on sampling 

methods and smoothed bootstrap approach. 

MAHAKIL oversampling algorithm (Bennin et al., 2018) introduces the crossover 

operator of genetic algorithms to synthesize samples. The oversampling algorithm is 

based on the theory of inheritance and the Mahalanobis distance. The algorithm enables 

the data diversity within the minority class to increase by uniquely creating new 

synthetic minority instances based on having a small diversity measure distance value.  

Table 19: Overview of oversampling techniques 

Technique Advantage Limitation 

SMOTE Simplicity Overgeneralized 

ADASYN 
Generating more data for harder 

to learn examples 

Ignore minority samples close to the 

decision boundary 

ROSE Simplicity 
Potential of leading to over-fitting 

toward near-duplicated instances 
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MAHAKIL 
Increase the diversity of the 

synthetic samples 

Potential of invading the majority of 

sample’' space 

MWMOTE 
Generating more data for harder-

to-learn examples 
Increase in complexity of the model 

Borderline-

SMOTE 

Generating more samples near 

class boundaries 
A less diverse sample generated 

GAZZAH 
Avoid irrelevant instances for 

generating a new instance 
Inconsistence due to balancing policy 

 

3.1.4 Result and Discussion 

RQ1: How does the performance depend on the characteristics of the datasets?  

1) Data without additional Gaussian noise 

Figure 33 and Table 20 present F1 scores for different resampling techniques. For 

mildly imbalanced datasets of Columba, Bugzilla, and Postgres in the context of 

without additional noises, oversampling techniques are observed to insignificant 

improvements of F1-score except in the case of Bugzilla. Compared to other projects, 

Bugzilla is the least class imbalance ratio. In addition, Bugzilla distribution is also 

considered less diverse data since the number of data instances is among the lowest. As 

a result, sampling of data for machine learning becomes easier. However, the hybrid 

Gazzah technique results in the lowest performance when considered in terms of 

consistency and accuracy. As this technique entails under-sampling, some crucial 

information necessary to build an effective predictive model is lost during sample 

removal. In contrast, MAHAKIL achieves the highest median F1-score of 0.58 for this 

dataset, as a result of its focus on improving the diversity of data. This is one of the 

reasons why MAHAKIL's F1-score is more stable and more accurate.   

For the high imbalanced dataset of JDT, Platform, and Mozilla, the consistency and 

prediction accuracy of models developed through oversampling data across techniques 

Univ
ers

iti 
Mala

ya



 

106 

is almost similar. This occurs because the dispersion in the data measurements already 

diverse before oversampling is conducted. Regarding this situation, as compared to mild 

imbalanced datasets, the size of the data within these datasets is larger and limited in 

terms of defects. With a large amount of data, more unique measurement instances are 

apparent in the distribution of data which indicates a diverse state. As a result, it is 

difficult for these oversampling techniques to improve the quality of the data when only 

limited empty spaces are available for the defect class without introducing new data into 

the region of the clean class. This phenomenon results in data resampling into 

overlapping spatial distributions. 

2) Data with additional Gaussian noise 

Figure 34 illustrates the prediction results obtained using baseline techniques in the 

presence of noise. The addition of noises to original data reduces the prediction model 

accuracy by all techniques. With an increase in the level of noise, the performance of 

oversampling techniques generally is downgraded. The addition of 25% noise is still a 

tolerable level of noise for most of the techniques as the accuracy of the model 

developed using these techniques is slightly reduced when compared to without 

additional noise. On the other hand, the addition of 50% and 75% noises shows the 

prediction accuracy is almost the same accuracy performance across the compared 

oversampling techniques. The observation indicates that the classifier built using 

logistic regression faces difficulty to learn from the training data. This is due to the 

effect of noises which affected the diversity of data and became denser in the data 

distribution. Consequently, more overlapped spatial distribution resides in the data 

regions with the dense distribution datasets. 
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RQ2: Which techniques give the best performance in general? 

Generally, heavyweight techniques such as MAHAKIL and MWMOTE are more 

accurate and consistent in mildly imbalanced datasets. The justification for this 

observation is that these techniques enable the identification and exploitation of empty 

spaces within a scarcity of data by employing partitioning techniques. MAHAKIL 

utilized rule-based partitioning by dividing the ordered instances into two bins based on 

the midpoint of the distance matrix. While MWMOTE uses a clustering algorithm to 

partition data into clusters closer to the class boundary lines. The strengths of these 

techniques are not fully utilized when high imbalance and noisy data are present, as they 

are unable to oversample effectively in the low-density distribution of data. It is 

believed that this limitation is a consequence of the fact that oversampling in 

multivariate data requires a proper handling of the multi-dimensionality of the software 

metrics already included in JIT-SDP datasets. In particular, these two techniques rely 

upon distance-based measurements (i.e. Euclidean distance for MWMOTE and 

Mahalanobis distance for MAHAKIL) for diversity analysis, which is ineffective in 

dealing with multidimensional data. Concerning diversity analysis, distance-based 

measures have several limitations when dealing with multivariate data, such as the 

inability to recognize duplicate data, ineffectiveness in detecting outliers, and 

inefficiency in detecting covariance among data samples. Therefore, the multivariate 

aspect of the imbalanced data is improperly handled. This situation contributes to the 

challenging task of oversampling multivariate data in respect to address the spatial 

distribution problem effectively. 

In contrast, lightweight techniques such as SMOTE, ROSE, Borderline, and 

ADASYN are approximately similar in terms of consistency for the accuracy of 

predictions. This similarity in performance is attributed to the focus of oversampling, in 
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which the main attribute of these techniques tried to exploit data near the boundaries of 

classes. The assumption in this context is that the data within these regions are harder to 

learn for the purposes of classification, and therefore the samples required to be selected 

for interpolation. Despite this assumption, the situation of data richness is rarely favored 

when dealing with the high imbalance and noisy data that result in a highly overlapped 

spatial distribution problem. A notable characteristic of JIT-SDP is that it lacks a 

scarcity of measurement in software metrics. Consequently, oversampling techniques 

are unable to identify feasible regions for the selection of hard-to-learn samples and 

result in ineffective performance. The partitioning of data is one possible way to 

identify feasible methods for oversampling that significantly decrease the effect of 

overlapped spatial distributions.  

Table 20: Median of F1-scores after 10-folds stratified cross validation 

Datasets/Technique SMOTE ROSE ADASYN Borderline MWMOTE GAZZAH MAHAKIL 

Columba  0.56 0.57 0.55 0.56 0.57 0.46 0.51 

Bugzilla 0.46 0.46 0.48 0.49 0.46 0.46 0.58 

Postgres 0.54 0.56 0.54 0.54 0.54 0.54 0.56 

JDT 0.33 0.33 0.33 0.33 0.34 0.28 0.33 

Platform 0.32 0.32 0.32 0.33 0.32 0.32 0.32 

Mozilla 0.19 0.19 0.17 0.20 0.20 0.14 0.20 

Figure 33: Without additional noise 
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Figure 34: Performance of prediction with the addition of noise data 

Univ
ers

iti 
Mala

ya



 

110 

3.1.5 Threat to Validity 

The first threat for this analysis is the unknown effect of the selection of classifier. 

This analysis used only logistic regression as the base classifier of JIT-SDP. The choice 

of logistic regression as the classifier technique is due to it being widely used in the 

previous JIT-SDP model. Nevertheless, the effectiveness of other classifiers remains 

unverified and needs to be studied in the future. Besides, six long-lived and widely used 

open-source software projects considered in this experiment are large enough to allow 

drawing statistically meaningful conclusions. The reported results may not be 

generalizable to other projects that have features different from the studied datasets. 

However, it is necessary to consider a wide variety of projects to replicate the analysis 

in the future to mitigate this threat. Removal of outliers in the original data is a potential 

threat to these experimental results. These outliers introduce additional noises to the 

distribution of original datasets. Nevertheless, some of the oversampling techniques 

especially for MAHAKIL and MWMOTE capable to handle outliers during data 

partition. Thus, to make fair comparison removal of outlier is excluded in the 

experiment.  The software metrics considered for this analysis are a potential threat to 

the experimental results. By using a single set or type of metrics, generalization to other 

types of software metrics is unable to be concluded with the reported results. 

Nonetheless, code and process metrics are known to perform very well and are 

effectively used in several empirical studies on JIT-SDP. The reason is due to both 

types of metrics are easy to collect from any software once the code change transaction 

in VCS is available. 

3.1.6 Conclusion 

The class imbalance problem is a major challenge in JIT-SDP. The experiment 

examined which oversampling techniques perform best under different imbalanced class 
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settings based on six frequently used projects datasets. MAHAKIL performs better and 

is more stable in dense datasets. MAHAKIL is designed to enhance the diversity of data 

in small datasets. Therefore, MAHAKIL outperformed other baseline techniques, 

particularly in the Bugzilla dataset. However, all baseline techniques are unable to 

distinguish their performance in high imbalanced datasets and result in similar accuracy 

results. A factor that contributed to this observation is the limited number of empty 

spaces available for oversampling within the minority class (defect). After resampling 

the data, defects data are generated into clean class data spaces, reflecting the problem 

of overlapping class spatial distributions. To avoid interpolating defect class data into 

occupied spaces of clean class data, it is recommended that the diversity measurements 

be taken into account before oversampling in future work to overcome the problem of 

overlapping class distributions. 

In terms of overall performance, heavyweight techniques are capable of producing 

better oversampled data for the JIT-SDP model, which results in improved prediction 

accuracy. Heavyweight techniques include a data partitioning component that assists in 

identifying suitable empty spaces for interpolating defect data. However, heavyweight 

techniques have difficulty handling data covariance, indicating their inability to perform 

effectively with data that is less diverse or with highly imbalanced class distributions. 

Thus, oversampling should allow for a better analysis of data diversity before 

identifying an area where data interpolation is feasible. Future works should consider 

alternative methods of measuring diversity in oversampling. In order to handle less 

diverse data, the application of similarities measurement is preferable to distance based 

measurements. 
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3.2 False Positives Prediction in Effort Awareness Evaluation 

In the JIT-SDP model, machine learning is the main methodology for developing 

defect classifiers. Thus, this experiment aims to provide comparative analysis of 

baseline classifiers in JIT-SDP regarding false positives results in effort awareness 

evaluation. The experiment is incorporate with two main objectives which further 

investigate two research questions as given in Table 21. Effort awareness of the JIT-

SDP model needs to consistently reflect the prediction accuracy. Accordingly, to 

address the effectiveness of using machine learning methodology concerning base 

classifier accuracy performance, the false positive rate is considered in the evaluation of 

effort-aware model. 

Table 21: Mapping of research objectives and research questions 

Analysis Objectives Research Questions 

To analyze the classification result of JIT-

SDP for baseline classifier techniques 

RQ1. Do different classifiers perform 

different classification results for JIT-SDP? 

To evaluate the performance of effort-aware 

model 

RQ2. Does any classifiers consistently fulfill 

the performance criteria of low rate of false 

positives 

3.2.1 Experimental Setup 

RQ1: Do different classifiers perform different classification results for JIT-SDP? 

Motivation:  The classifier used to classify defective changes represents a factor that 

strongly influences the classification results for the JIT-SDP model. In particular, 

Ghotra et al. (2015) discovered that the accuracy of a defect prediction model can 

increase or decrease by up to 30% depending on the type of classification used. 

Moreover, Panichella et al. (2014) demonstrated that despite similar prediction 

accuracy, the predictions of different classifiers differ in defect count. 
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Approach: For the requirement of the model building, training datasets need to undergo 

a class rebalancing process as recommended by Kamei et al. (2013). The training data is 

imbalanced because most of the changes are clean class whereas only a small percent of 

changes contain defects. The class imbalanced problem reduces the accuracy of the 

prediction. For this reason, the number of defects changes need to equal the number of 

clean changes in the training data. This experiment employs SMOTE (Chawla et al., 

2002) to ensure the equality of the numbers of samples balanced for both classes. 

SMOTE generates new synthetic instances by combining certain defect class samples 

with previously defined k defect class nearest neighbor instances. The experiments ran 7 

base learners of logistic regression (LR), support vector machine (SVM), decision tree 

(DT), Adaboost, Gaussian naïve Bayes (NB), artificial neural network (ANN), and k-

nearest neighbor (KNN). All base learners are applied within stratified ten-cross 

validation settings. This setting divides the dataset into ten equal portions and uses each 

chunk once as the test set to evaluate the developed model using the remaining nine 

portions. The rationale behind using 7 classifiers is that each classifier consists of 

limitations and advantages. These 7 classifiers are mostly used in the literature for 

classification purposes. During the experiment, the prediction models are built by 

mapping the given software metrics to an output whose values are binary: clean and 

defect changes. The training data for all baseline classifiers are randomly selected using 

2/3 of the sample size and the remaining 1/3 as the prediction data for each dataset. 

Then, the training dataset undergoes 10-fold stratified within project validation. The 

datasets are divided randomly into 10-folds, 9-folds serve as training data, and the 

remaining fold serves as test data. In cross-validation, each fold is used as a testing 

dataset only once. Additionally, the data are folded so that every fold consists of the 

same proportions as the original dataset. The highest prediction model among these 

folds is selected for the final prediction. The selected model is used to predict the 
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unseen data which is the prediction dataset. The final prediction result is recorded to 

show the credibility of the experiment results. 

RQ2: Does any classifiers consistently fulfill the performance criteria of low rate of 
false positives?  

Motivation:  In an ideal scenario, a prediction model must have a high capacity for 

predicting defect proneness and a low false alarm rate. However, ideal cases are 

extremely rare. As highlighted by this condition, it is necessary to investigate the 

consistency of baseline classifiers' performance in dealing with false positives based on 

effort evaluation.   

Approach: As the JIT-SDP model is to determine whether a code commit instance is 

defective change or clean change, some indicators for the binary classification task are 

used to evaluate the effectiveness of the base classifiers for comparison. In this analysis, 

a total of three indicators are used, including F-score, ACC, and false-positive rate 

(FPR). The details of these indicators are described as follows. The first indicator is F-

score, which is the weighted harmonic average of Precision and Recall. F-score is 

intended to capture the prediction performance in imbalanced class distribution existing 

in the datasets. Furthermore, F-score provides a harmonic mean of precision and recall 

which gives a better measure of incorrectly classified cases than the accuracy metric. 

For evaluating the predictive effectiveness of a JIT-SDP model, the effort required to 

inspect those changes predicted as defect-prone is considered to find whether they are 

defective changes. Consistent with Kamei et al. (2013), the code churn which describes 

the total number of lines added and deleted by a change is used as a proxy for the effort 

required to inspect the change. Similar to Kamei et al. (2013) works, ACC is used to 

evaluate the effort-aware performance of the JIT-SDP models. ACC denotes the recall 

of defect-inducing changes when using 20% of the entire effort required to inspect all 

changes is implemented. Furthermore, this analysis also considered the rate of false 
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positives in 20% of inspection efforts (FPR@20%). Concerning the rate of false 

positives, a lower value is better. In contrast to ACC a higher value is better. 

3.2.2 Result and Discussion 

RQ1: Do different classifiers perform different classification results for JIT-SDP? 

The results achieved running the baseline classifiers over all the considered 

software projects are reported in Table 22. As reported in the results, no single classifier 

is a clear winner in defects prediction. Indeed, the difference in terms of F-score 

achieved by the classifiers is quite small except for NB which is the lowest performance 

across six datasets. Despite this observation, the average F-score achieved by ANN is 

higher with respect to other classifiers: LR = +3%, SVM = +3%, DT = +7%, NB= 10%, 

kNN= +6%. In contrast, ANN and AdaBoost have an almost similar average of F-scores 

of 45.2% and 45.42% respectively. The results demonstrate how deep learning 

classifiers such as AdaBoost and ANN are superior classifiers compared to the baseline 

supervised classifiers. Such superiority is statistically significant when considering the 

differences between the performances of both AdaBoost and ANN with the ones 

achieved by other supervised classifiers on large-sized software projects such as JDT, 

Platform, and Mozilla. Here in these datasets, all classifiers achieve a poor F-score of 

less than 40%. The classifiers are trained using resampled data by SMOTE which still 

leads to the overgeneralization of the defect class because it only selects the nearest 

neighbor instances. For this reason, it is important to fine-tune the hyperparameters for 

both resampling and classifier algorithms according to the training datasets.  
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RQ2: Does any classifiers consistently fulfill the performance criteria of low rate of 

false positives? 

Despite several studies (Kamei et al., 2013; Taba et al., 2013; Yang et al., 2015; 

Chen et al., 2018; Kondo et al., 2020) utilized LR as a suitable classifier in the context 

of effort-aware model in JIT-SDP. According to effort awareness in ACC given in 

Figure 35, findings however, LR is not significantly different with SVM and kNN with 

a magnitude of difference are less than 1% of ACC. In fact, ANN, DT, and AdaBoost 

perform equally or better than LR in all datasets. Nevertheless, based on the statistics 

shown in Figure 35, all classifiers are unable to produce good results in terms of false-

positive rate within ACC score. The results show that none of the classifiers reduce FPR 

by less than 41%. In other words, none of these classifiers are capable of producing 

reliable effort awareness results when considering only 20% of efforts. Note that based 

on such experimental results, the choice between current classifiers provides no 

significant effect on reducing false positives in effort awareness. Therefore, due to such 

unreliable results for effort-aware of JIT-SDP, a good defect classifier algorithm is 

needed to compromise between reducing false positives and having reliable effort 

awareness in defect prediction.      

3.2.3 Threat to Validity 

The quality of the experimental results depends on the dataset used. Therefore, this 

analysis decides to use the dataset commonly used in JIT-SDP studies. Hence, the 

datasets are suitable for developing and validating models for identifying defects in 

code change transactions. Nevertheless, the experiments carried out in this analysis can 

also be performed with a different dataset. In addition, only six classifiers are adopted 

throughout this experiment and the parameters are set to the defaults. For the training 

datasets, only SMOTE with default parameters is considered in the data resampling 
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process. The performance of the prediction model with other classifiers, resampling 

techniques, or different parameters is not validated here. In the future, more 

oversampling techniques and more different machine learners are required to explore 

for the performance comparison.  

A total of three indicators are used, including F-score, ACC, and FPR performance 

measures are used to evaluate the effort awareness of the JIT-SDP models. These three 

selected performance measures are common in JIT-SDP. However, in case of other 

performance measures are adopted, different results are obtained. To reach a more 

general conclusion, more performance measures in future works are needed. 

3.2.4 Conclusion 

In the experimental analysis conducted on seven baseline classifiers for developing 

JIT-SDP model, we investigated which of the baseline classifiers is the feasible 

classifier for effort aware context. The results showed that the deep learning classifiers 

have edge advantage in predicting defect accurately. In addition, through evaluating 

different classifiers in effort awareness evaluation, no significant performance is 

achievable for the baseline classifiers except for deep learning classifiers (AdaBoost and 

ANN). Despite the fact that these deep learning classifiers predict more defects than 

other basic classifiers, the rate of false positives is still high and have not improved 

significantly in comparison to other classifiers. Current baseline classifiers are incapable 

of producing dependable results for effort-aware JIT-SDP. To improve the results of 

high false positives in defect prediction, an alternative advanced classifier capable of 

achieving a balance between reducing false positives and producing accurate predictions 

is urgently required.  
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Table 22: Accuracy performance of base learners  

Datasets/ 

Technique 
Columba Bugzilla Postgres JDT Platform Mozilla 

 Fscore ACC FPR Fscore ACC FPR Fscore ACC FPR Fscore ACC FPR Fscore ACC FPR Fscore ACC FPR 

LR 52.1 52.4 53.1 59.6 61.8 47.5 54.3 49.6 54.4 34.7 51.7 75.4 34.4 63.3 77.4 20.7 47.3 90.2 

SVM 51.9 53.1 53.9 59.3 61.2 47.7 53.7 49.5 55.5 34.1 52.4 76.7 33.9 63.1 77.6 19.2 45.4 91.3 

DT 49.1 69.4 63.2 53.8 72.9 58.9 44.8 59.2 69 29.6 61.5 84.1 30.7 64.2 84.7 21 57.9 95.6 

AdaBoost 54.7 58.3 53.5 60.1 75.9 58.4 56.1 48.5 53 37.5 58.9 78.1 38.1 70.1 81.8 24.8 61 94.7 

NB 25 9 45.1 56 40 46 49.4 47.1 58.8 29.6 41.5 74.4 26.6 20.5 65.7 21.2 22.1 81.4 

ANN 56.3 54.2 48 62 63.8 49.7 55.1 51.7 58.5 38 60.6 76.9 38.2 56.3 72.6 22.9 49.5 89.6 

kNN 50.2 53.5 57.9 55.2 55.6 51.2 47.6 47.8 66.3 31.8 47.1 76.9 34 46.9 74 19.7 39.4 88.3 
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CHAPTER 4: DEVELOPMENT OF JUST-IN-TIME SOFTWARE DEFECT 

PREDICTION 

To solve the identified research issue, this chapter provides details on the development 

of JIT-SDP. To begin, the proposed framework of JIT-SDP is provided to illustrate the 

detailed process of this development overview. The section explains data extraction, 

data pre-processing, and model training. In the following section, the development of 

the proposed oversampling technique is given in detail to address the class imbalance 

issue in SDP datasets. Next, the development of Deep Q-Network (DQN) algorithm in 

the JIT-SDP problem is explained in the following section.   

4.1 Development Phases 

JIT-SDP mainly comprised of three main phases: 1) data extraction, 2) data pre-

processing, and 3) model training and prediction. Figure 36 depicts the overall process 

that is involved in the proposed JIT-SDP. The developed model using the proposed 

framework capable to achieve high accuracy and generalizability even for unseen data. 

The proposed framework helps to facilitate the modelling of JIT-SDP model according 

to robust accuracy and effort awareness performances. 

4.1.1 Data Extraction 

To conduct an analysis of the proposed framework, the research focused on open-

source software projects. A total of six software project datasets were analyzed in this 

study which are used originally by Kamei et al. (2013). The datasets are extracted based 

on an analysis of code change characteristics that are represented as software metrics. 

The software metrics considered here are considered as change-level software metrics. 

The metrics comprise five dimensions. The diffusion dimension describes the 

distribution of a change. The assumption is that highly distributed changes are likely to 
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introduce defects. The size dimension refers to the size of a change. It is assumed that a 

complex change is expected in most cases, which introduces defects. In terms of the 

purpose dimension, a change intended to fix a defect led to the introduction of new 

defects. According to the history dimension, changes to the touched files or code are 

likely to introduce a defect if the files are modified by more developers. The experience 

dimension assumes that experienced developers are less likely to introduce defects 

when modifying source code. The metrics also are derived using the CommitGuru tool 

(Rosen et al., 2015), which automatically extracts the measurement for each of these 

metrics. Based on the five dimensions of metrics, the tool analyses code repositories by 

detecting changes within code change transactions. The process of identifying code 

changes is described as follows: first, code changes are extracted from the code 

repositories of the version control system (VCS) and issue tracking system (ITS). The 

data are analyzed based on the code changes characteristic as described in the preceding 

paragraph. To identify defective changes from clean ones, SZZ algorithm (Śliwerski et 

al., 2005) is applied to distinguish the defect-causing and non-defective changes. SZZ 

algorithm is an automated tool for identifying defects causing changes. Thus, the 

extracted changes are categorized into defects and clean changes classes. Across 

different projects, the proportion of defects and clean changes is different. During this 

data labeling, notably that all the datasets have imbalances. Mozilla is the largest 

imbalanced dataset of six datasets with defect rates containing only 5% defects whereas 

the Bugzilla dataset with the most balanced datasets with defects contains 36%. To 

generate good quality data, additional data preprocessing is required to ensure balanced 

class distributions and to eliminate any noise from the extracted data. 
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Figure 36: Conceptual framework of developing JIT-SDP model  

4.1.2 Data Preprocessing  

1) Logarithm and normalization 

To ensure high quality data, four pre-processing operations are conducted on the 

training dataset. Firstly, skewed distribution datasets require log transformation. In 

defect pattern learning, the distribution in the dataset is extremely significant. Figure 37 
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illustrates the distribution of outliers present in the current dataset, which creates 

bottlenecks during the learning process. To make the distribution of the data more 

uniform, outliers need to be correctly dealt with or removed. According to the 

distribution, many outliers are present in the distribution, which makes it difficult to 

recognize data patterns. Thus, in this framework, the outliers must be properly handled 

by utilizing log transformation and normalization. 

A natural logarithm of each change metric is applied to make patterns more visible 

and reduce variability. Due to the binary nature of FIX, the transformation does not 

apply to the metric. The natural logarithm is calculated as follows: 

𝑥′ = ln 𝑥  (4.1) 

A data normalization process is then performed to limit the range of changing data 

values. The range of change metrics in this data set is not uniform. NS, NM, NF, 

NDEV, PD, RXP, REXP, and SXP are raw data with a range of values, whereas other 

metrics are normalized to [0, 1]. For unified data formats, these raw data are normalized 

using the Min-Max normalization method. This study used the Min-max normalization 

dataset because it has a high accuracy, low complexity and high learning speed. 

Normalizing features has several advantages including reducing prediction error, 

decreasing the likelihood of finding stuck upon local optimal solutions during training, 

and reducing the computational cost of training. (Qiao and Wang, 2019). In this 

scenario, Min-Max normalization is employed to linearly transform the original data. 

The formula for Min-Max normalization is as follows: 

𝑁𝑜𝑟𝑚(𝑥) =  
𝑥𝑖 − min(𝑥)

max(𝑥) − min(𝑥)
 (4.2) 
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Here, min (𝑥) and max(𝑥) represent minimum and maximum value of a change 

metric x. Min-max normalization maps a value xi to Norm(x) in the range [0, 1]. By 

performing such a normalization, the relationship between raw data values is preserved. 

However, data normalization does not affect how the data is distributed. 

 

Figure 37: Skewness of data measurement across software metrics dimension 

2) Features selection  

The highly correlated metrics need to be removed, as suggested by Kamei et al 

(2013). In order to remove highly correlated measures, this study excludes NM and 

REXP metrics, as NF and NM, REXP and EXP are correlated. The exclusion of metrics 

is based on a manual selection of which collinearity features are eliminated to ensure 

only the unique features in the model are kept. Figure 38 shows the correlation analysis 

of software metrics. The analysis indicates a single feature could consist of one or more 
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features that are correlated. Incorporating highly correlated features decreases classifier 

accuracy (Shivaji et al., 2013). Highly correlated features lead to serious 

multicollinearity problems. As part of this process, the metrics LA and LD are removed 

from consideration because both are used when evaluating efforts awareness later.   

 

Figure 38: Correlation analysis of software metrics 

3) Splitting training/testing data 

To examine the proposed solutions for obtaining an adequate and realistic 

assessment, three prediction settings are conducted as shown in Figure 39. These 

validations are comprised of within-project prediction, cross-project prediction, and 

timewise prediction. The validations are performed using a ratio of training (80%) and 

testing (20%) data.  

Within-project prediction is performed within the same software project data. In 

this validation, StratifiedKFold is used to ensure the class distribution in the datasets is 

Univ
ers

iti 
Mala

ya



 

126 

preserved in the training and test splits. The datasets are divided randomly into 10-folds, 

8-folds serve as training data, and the remaining fold serves as test data. In cross-

validation, each fold is used as a testing dataset only once. Additionally, the data is 

folded so that every fold has the same proportions as the original dataset. Using 

StratifiedKFold, the average result is recorded to improve the credibility of the 

experiment results.  

Timewise-prediction is performed within the same software project, which 

considers changes in chronological order. Based on commit dates, the chronological 

order of changes data for each software project is ranked. Then, all the changes made 

within the same month period are grouped. Assume that the changes in a software 

project are grouped into n different parts. A prediction model m is built using a 

combination of fold i until fold i + 1 as training data to predict testing data for parts i+4 

and i+5. According to this example, the datasets (1 ≤ i ≤ n - 5) for training data and 

testing data consist of changes committed over a period of two consecutive months. 

Several factors account for this configuration. First, the release cycle of most projects is 

typically six to eight weeks. Second, it ensures that each training and test set receives a 

two-month interval between them. Thirdly, two consecutive months ensure that each 

training set has enough samples for supervised models, which is very significant. Lastly, 

it allows for enough training data for each project. Based on changes occurring over n 

months, the outcome of this method is n - 5 prediction effectiveness values for each 

model 

Cross-project prediction is performed across different software projects. The 

training data set on one project is used to predict defect-proneness in another project as 

the testing data set. For a set of n projects, this method produces n * (n - 1) prediction 

effectiveness values (Zhu et al., 2020). For this study, six projects are used as the 
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subject projects. Accordingly, each prediction models produces 6 × (6 - 1) = 30 

prediction effectiveness values. 

 

Figure 39: Scenarios of cross-validation 

 

4) Oversampling in imbalanced datasets (RO2) 

JIT-SDP datasets are relatively imbalanced, and defective changes represent only a 

small portion of overall changes. In the absence of adequate handling, this imbalance 

results in degradation of the predictive models' performance. Despite different 

researchers proposing various techniques to solve the class imbalance problem, no 

single method outperformed the others in all studies (Arora et al., 2015). Conventional 

oversampling strategies do not consider overlapping data within the sample. In order to 

overcome the problem of overlapping data, this research proposes an oversampling 

algorithm based on kernel analysis and spectral clustering. In particular, the proposed 
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solution intends to address the following aspects as summarized in Table 23. Section 4.2 

provides details regarding the implementation of the proposed oversampling.  

Table 23: Mapping of proposed oversampling 

Aims Problem  Solution Contribute 

To reduce near-

overlapping data 

Complex boundary line led 

to a small distance between 

new and old data  

(Bellinger et al., 2016) 

KPCA for measuring 

similarity between original 

samples. (Details in Section 

4.2.1) 

Capable to handle non-

linear data distribution  

To reduce the 

effect of high 

dimensional data 

Presence of covariance 

among data samples  

(Rodríguez et al., 2022) 

KCPA representing 

multidimensional data. 

(Details in Section 4.2.1) 

Linearly represent 

multivariate data into 

lower dimension data 

while maximum 

variation is retained 

To reduce the 

randomness 

introduced in 

oversampling 

procedure 

Assume each minority 

instances are equally 

important 

(Sharma et al., 2022) 

Spectral clustering with 

KPCA to select data 

template using ranking-based 

selection (Details in Section 

4.2.2) 

Capable to identified 

feasible spaces for 

interpolation 

To avoid local 

optimal 

distribution in the 

overall dataset 

Interpolation favor on using 

local information rather than 

overall data distribution 

(Han et al., 2023) 

Cross-over interpolation by 

pairing different inheritance 

– a different level of parents. 

(Details in Section 4.2.3)  

Diverse data 

distribution generated 
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4.1.3 Model Training and Prediction 

1) Model training  

In this research, binary classification is adopted to develop the JIT-SDP model. The 

classification produces the output values of the prediction function with {0,..,1}. Thus, 

if the value of the prediction function 𝑓(𝑥) is greater than or equal to 0.5, the change is 

classified as a defect, otherwise, the change is predicted as clean. The prediction 

function is defined as follows: 

𝑓(𝑥) = {
0, 𝑖𝑓 𝑌(𝑥) < 0.5

1, 𝑖𝑓 𝑌(𝑥) ≥ 0.5
 (4.3) 

Where x is the given code change and 𝑓(𝑥) is the possibility for x to contain defects. As 

introduced in the data extraction section, a code change, x is represented as a set of 

metrics in this formulation.  

𝑥0
𝑛 = {𝑁𝑆, 𝑁𝐹, 𝐸𝑛𝑡𝑟𝑜𝑝𝑦, 𝐿𝑇, 𝐹𝐼𝑋, 𝑁𝐷𝐸𝑉, 𝐴𝐺𝐸, 𝑁𝑈𝐶, 𝐸𝑋𝑃, 𝑆𝐸𝑋𝑃}  (4.4) 

Thus, the model of JIT-SDP is represented as: 

𝑌(𝑥) = 𝑔(𝑥(𝑛))  (4.5) 

 

The mapping of g refers to a machine learning function. Existing frameworks 

employ machine learning techniques to search g that gives the best fit labeled for a 

given data in software metrics 𝑥(𝑛). In this research, Deep Q-Network (DQN) 

algorithm is used to map the given data. The details of the implementation of DQN are 

given in Section 4.3. 
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2) Prediction  

Predictive effectiveness of the JIT-SDP model is evaluated according to the 

prediction accuracy and effort aware measures. For prediction accuracy of the software 

defects, the performance measures are based on precision, recall, and F-score. All these 

measures are calculated using a confusion matrix as shown in Table 24. 

Table 24: Confusion matrix 

 Predicted defect Predicted clean 

True defect  True Positive (TP) False Negative (FN) 

True clean False Negative (FN) True Negative (TN) 

 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4.6) 

Recall =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4.7)  

F0.5 =  
1.25 × Recall × Precision

(0.25 × Precision + Recall)
 (4.8) 

For effort-aware measures, two widely adopted effort-aware performance of 

prediction models are considered, which are ACC and POPT. ACC indicates the recall 

of predicting defective changes when 20 percent of the effort is required to inspect all 

changes according to top-ranked changes. Popt is the normalized version of the efforts-

aware performance indicator introduced by Mende and Koschke (2010). This measure is 

based on the concept of the code churn-based Alberg diagram. Figure 40 shows the 

relationship in the Alberg diagram between Recall achieved by a prediction model and 

the amount of inspected code. In Equation 4.9, 𝑃𝑜𝑝𝑡 is equal to 1 − ∆𝑜𝑝𝑡 , where is the 

area between the optimal model and the prediction model.   
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𝑁𝑜𝑟𝑚(𝑃𝑜𝑝𝑡) =
𝑃𝑜𝑝𝑡 − 𝑤𝑜𝑟𝑠𝑡(𝑃𝑜𝑝𝑡)

𝑜𝑝𝑡𝑖𝑚𝑎𝑙(𝑃𝑜𝑝𝑡) − 𝑤𝑜𝑟𝑠𝑡(𝑃𝑜𝑝𝑡)
 (4.9)  

 

Figure 40: Alberg diagram based on Popt 

4.2 Kernel Analysis and Crossover Oversampling Algorithm  

Previous oversampling techniques cause generated minority samples to invade 

majority sample spaces, resulting in a lower recognition rate for minority samples. 

Using kernel analysis with spectral clustering and crossover interpolation as a method 

of oversampling, this study recommends Kernel Crossover Oversampling (KCO). The 

proposed algorithm attempts to generate new minority samples which combine features 

from two distinct data samples while at the same time being uniquely different. A basic 

intuition is that two instances, which are not necessarily close in distance, produce a 

new instance that is similar to both samples. The theory is derived from the 

chromosomal theory of inheritance, which considers the relevant features (software 

metrics) of defective changes as chromosomes. KCO attempts to produce a balanced 

class dataset with an increase in data diversity. The development of KCO is according 

to three fundamental phases as illustrated in more detail in Figure 41. 
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Algorithm 1 gives full procedure of KCO in producing the balanced class datasets. 

The first phase adopts KPCA to segregate the measurements for the minority samples as 

given in steps 1 to 6. In this process, KPCA transforms the original dataset into a 

simpler dimension dataset to analyze the occupied space in the data distribution. In the 

second phase which comprise of steps 7 to 11, spectral clustering divides the 

transformed data into several clusters. We then evaluate the fitness of each cluster based 

on the overlapped spatial distribution. By using the crossover operator of as in genetic 

algorithms, new samples are continuously synthesized to complete the oversampling of 

defect instances in the last phase as shown in steps 12 to 22. The newly generated 

samples combine with the initial data to produce a balanced dataset for training the JIT-

SDP model. The following sections describe each phase in more detail. 

Algorithm 1 Pseudo Code of Kernel clustering oversampling (KCO) 
Input: Dataset of majority and minority class samples N; desired balanced proportion Pfp  
Output: Balanced dataset at a set Pfp value 
Procedure Begin 

1) Split dataset N into majority class Nmaj and minority class Nmin 
2) Compute the number of additional minority class to be generated T to attain Pfp 
3) Xnew: array for generated samples, initialized to 0 
4) Xnewchk: keeps count of the number of synthetic samples generated 
5) Compute Kernel function of PCA for dataset N, KPCA = KernelPCA(n_components=2, 

kernel='rbf') where n_components = dimension of data and RBF = radial basis function 
6) Transform dataset N into KPCA, Xtranformed  
7) Create partitions of dataset Xtranformed using Spectral clustering technique, cluster = 

{i…10}   
8) For each clusteri , sequentially compute spatial distribution fitness F(clusteri) = Nmaj /( 

Nmaj + Nmin) 
9) End for   
10) Rank clusters according to spatial distribution fitness in increasing order 
11) Clusterbest : Select top three clusters 
12) While length of Xnewchk ≤ size of Nmin 
13) Select samples parenta, parentb from Clusterbest, where parenta and  parentb are 

not equal 
14) Generate a minority class synthetic sample Xi where Xi = average(parenta, 

parentb) 
15) Add Xi to Xnew and increase Xnewchk (i): Xnewchk  = Xnewchk (i) + 1 
16) End while  
17) While length Xnewchk ≤ T 
18) Select samples parenta, parentb from Clusterbest  and Xnew respectively, where 

parenta and  parentb are not equal 
19) Generate a minority class synthetic sample, where Xi = 𝝀 (𝒑𝒂𝒓𝒆𝒏𝒕𝒂) + (𝟏 −

 𝝀)𝒑𝒂𝒓𝒆𝒏𝒕𝒃 
20) Add Xi to Xnew and increase Xnewchk (i) : Xnewchk  = Xnewchk (i) + 1 
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21) End while  
22) Add Xnew to dataset N 
23) Return N 

  

 

Figure 41: Overview of proposed oversampling technique 

4.2.1 Phase 1: Diversity Measurement 

Euclidean distance fails to be effective in nonlinear distributions (Xia et al., 2015) 

as presented in JIT-SDP datasets. JIT-SDP data typically exhibit a nonlinear distribution 

as a result of the uncorrelated relationship between software metrics. Several factors 

may affect the distribution, including clusters, non-convex shapes, or overlapping 

regions that are not accurately represented using a linear distance measure. The 

relationship between data points is unable to be well-represented by a straight line 
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calculated by Euclidian distance (Chen et al., 2022). Therefore, the measure does not 

accurately reflect the diversity of data points. Moreover, the JIT-SDP datasets 

duplicates as a result of the collection process for the metrics (Chen et al., 2016). 

Accordingly, the Euclidean distance measure unable to identify highly correlated or 

duplicated data samples within nonlinear distribution which failed to provide 

meaningful during information classifier training. As an alternative to handle highly 

correlated data, one may utilize feature engineering techniques such as Principal 

Component Analysis (PCA) (Lorena et al., 2019). PCA learns the original feature 

combinations linearly in new dimensional spaces. Nevertheless, PCA assumes that the 

learning data follow a linear separable Gaussian distribution. For real world data, 

particularly code changesets, linearly separated data is impractical due to the nonlinear 

structures of software metrics. 

Prior studies have indicated that KPCA perform better than PCA for software 

engineering tasks (Zhao et al., 2021). Researchers have investigated the use of KPCA in 

software defect prediction, especially for the selection of features. Xu et al. (2019) 

found that basic classifiers including KCPA as a feature selection method achieve 

promising performance when compared to 41 baseline methods. Experimental results 

indicate that the framework outperforms PROMISE and NASA datasets, particularly in 

terms of F-measure, MCC, and AUC. Ho et al. (2022) utilized KPCA to reduce the 

dimensions of defect feature spaces from software metrics in order to extract essential 

information. A deep neural network (DNN) is then built to emphasize the semantic 

relations between software metrics so that defect data are distinguished from non-defect 

data using newly generated features from KPCA. Azzeh et al. (2023) examine the 

performance of nonlinear kernel functions and linear kernel functions in the context of 

different experimental parameters such as the granularity of the data, the imbalance 

ratio of the dataset, and feature subsets. According to their findings, RBF is the only 
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kernel function that exceeds linear and other nonlinear kernel functions. Nonetheless, 

reducing the dimensionality of a dataset did not often improve the accuracy of software 

defects prediction (Rosen et al., 2015; Śliwerski et al., 2005). Therefore, the KPCA 

should not be limited to measuring the similarity between features in software metrics. 

In other aspects of JIT-SDP, KCPA presents a promising alternative. As a result of 

KCPA, patterns in the data are identified that are not apparent by traditional methods of 

data representation, including handling high-dimensional datasets and capturing non-

linear relationships among features. Therefore, the analysis of data distribution can be 

particularly important for data resampling. 

This study employs KPCA to map multivariate of software metrics into a linear 

projection using a nonlinear kernel function. The process of data projection involves 

transforming the original data into lower dimension data. Data transformation process 

converts multivariate data into a new set of uncorrelated variables. Enabling efficient 

multidimensional scaling of JIT-SDP datasets with varying software metrics. In this 

way, the diversity analysis of JIT-SDP datasets by KPCA is independent of the data 

dimensions and becomes a scale-independent measurement. Therefore, the complex 

structure becomes easier to manage and allows the representation of features to be 

projected in a linear manner. Using a Radial Basis Function (RBF) kernel, KPCA 

provides a linear representation of the data while preserving the relative distances 

between pairs of data points that are close to the original space. 

4.2.2 Phase 2: Data Partitioning  

KCO makes use of spectral clustering that offers the advantages of simplicity while 

reducing complex multidimensional nonlinear datasets into clusters of data with similar 

characteristics in lower dimensions. Spectral clustering treats the data clustering 

problem as a graph partitioning problem without making any assumptions about the 
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shape of the clusters. Figure 42 shows the example of spectral clustering data 

distribution into several clusters. 

The basic premise of spectral clustering in defect datasets is as follows: For a 

dataset with n samples D = {x1, x2, …, xn} and each sample has variables xi = 

{v1,v2,..,vm} , where m is the number of software metrics. The clustering is based on 

dividing each sample into k clusters C = {C1, C2, .., Ck}. As a result, the samples in the 

clusters have a variance that is:  

𝑎𝑟𝑔𝑚𝑖𝑛𝑠 ∑ ∑ ‖𝑥 − 𝜇𝑖‖

𝑥∈𝐶𝑖

𝑘

𝑖=1

(4.10) 

Where, 𝜇𝑖is the mean value of the samples in 𝐶𝑖. 

For each cluster, the fitness is determined by calculating the number of samples for 

both the majority and minority classes. The intuition behind fitness evaluation for 

clusters is that regions with lower proportions of majority samples indicate lower 

overlapped spatial distribution. The following formula is used to calculate the fitness 

weight of each cluster:  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝐶𝑖) =
𝐿𝑒𝑛𝑔𝑡ℎ (𝑋𝑚𝑎𝑗)

𝐿𝑒𝑛𝑔𝑡ℎ (𝑋𝑚𝑎𝑗 +  𝑋𝑚𝑖𝑛)
(4.11) 

Each cluster is evaluated in terms of its fitness, and the three best clusters are 

selected. In the selected clusters, more empty spaces are available, indicating areas that 

are suitable for interpolation. According to selected clusters, a pool of the most suitable 

templates for oversampling is identified. 
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Figure 42: Spectral clustering within KPCA transformed data 

4.2.3 Phase 3: Synthetic Data Generation   

Interpolation in oversampling generates synthetic samples from existing minority 

class samples. One of the earliest methods for oversampling was the SMOTE, 

introduced by Chawla et al. (2002). SMOTE uses interpolation to generate synthetic 

samples from existing minority class samples. Even so, the use of SMOTE to develop 

prediction models still result in overgeneralization as it relies solely on the selection of 

nearest neighbour instances. Due to the limitations of SMOTE, a variety of 

modifications have been proposed, including Borderline-SMOTE (Han et al. 2005) and 

MWMOTE (Barua et al., 2014). Nevertheless, prior techniques unable to provide a 

diverse and balanced set of synthetic samples from datasets with high-dimensional input 

features. Cross-over interpolation provides an alternative way to generate synthetic 

samples by combining or "crossing over" the features of two existing minority class 

samples. Consequently, the generation new samples exhibit more representative and 

diverse to better reflect minority class distributions. In SDP, Bennin et al. (2018) first to 

propose crossover interpolation into oversampling process which named as MAHAKIL. 
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Mahalanobis distance is used to rank and divide instances into two groups. During the 

generation of new instances, two corresponding instances are chosen from each group. 

Synthetic instances tend to be more diverse when pairs of selected instances do not have 

a close distance between them. In comparison to SMOTE-based oversampling 

techniques, MAHAKIL offers superior performance and greater stability. Nevertheless, 

MAHAKIL fails to calculate the Mahalanobis distance when the number of instances of 

the minority class is smaller than the dimensionality of the sample. Thus, MAHAKIL 

does not function optimally when the number of minority class instances is lower than 

the number of metrics. Zhang et al. (2021) extended the work of Bennin et al. by adding 

K-means clustering to MAHAKIL to improve the recognition rate of positive samples. 

K-means is used to divide positive samples into clusters and then perform crossover 

interpolation to generate synthetic data. Nonetheless, K-means fails to generate an 

appropriate spherical partition of data in nonlinear datasets. Thus, an effective data 

partitioning such as that given by spectral clustering is needed to ensure the 

effectiveness of crossover interpolation. Spectral clustering produces clusters by 

partitioning the data based on the similarity of the data points and is useful for finding 

clusters in nonlinear datasets. Additionally, spectral clustering produces clusters with 

different shapes and sizes, which is advantageous in the context of crossover 

interpolation. 

This study uses the crossover operator to generate new samples in the same manner 

as genetic algorithm. In this process, chromosome information contributes by two 

parents to generate a child. Chromosome information defined in this study as software 

metrics for JIT-SDP modeling purposes. In order to generate new samples, crossover 

operators combine the characteristics of two samples. Given two samples of 𝑆𝑎
𝑔 = [a1, . . 
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., al] and 𝑆𝑏
𝑔 = [b1, . . ., bl] are two chromosomes crossed in gth generation and l is the 

length of chromosome or features, the child sample of g + 1 th generation is: 

𝑆𝑐
𝑔+1

=  𝜆𝑆𝑎
𝑔

+ (1 −  𝜆)𝑆𝑏
𝑔 (4.12) 

Where 𝜆 is a random variable between a range of [0,1].  

During the experiment, λ is set to 0.5 for generating the child samples. It means that 

the child samples inherit 50 percent of their characteristics from each of their parent 

samples. Figure 43 demonstrates an example of crossover operation during the 

generation of a new sample. In this context, the generation of new samples consists of a 

few steps. 

 

Figure 43: Example of multi-point crossover 

Figure 44 illustrates the generation of new synthetic samples based on the level of 

inheritance. First, based on diversity measurements obtained from KPCA, the 

grandparent samples are identified, G0. The samples from G0 are then used to generate 

the G1 set of new synthetic samples. To prevent new samples from entering the region 

of the majority class, the first parent node or grandparent act as a boundary such that all 

children produced in the future reside within the range of the parents. In the second 

generation G2, samples from grandparent and samples from G1 are selected as template 
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to generate new samples. In case of the interpolation at current generation is still not 

meet with the maximum samples, the process continues to crossover interpolate the 

samples within the previous generation until maximum number reach.  The process of 

pairing the child nodes with older generations is repeated until the generated samples 

are sufficient (greater than or equal to the required number of samples). The pairing 

process is carried out using the sequential information inherited from the immediate 

parents of the instances beginning at G1.  

 

Figure 44: Crossover process across generations 

In overall, the generation of new samples assumes that two samples that are not 

identical similar, as in being neighbors, and orderly merges two distinctive samples by 

considering them as parent samples. Child samples that are generated are distinctly 

unique but related to the original parent samples across generations. Thus, the newly 

generated samples are well distributed to occupied possible minority samples within 

selected data clusters. Ultimately, providing more information to the defect classifier. 

Additionally, by strictly working within the boundary of the minority class, crossover 
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operation helps in the prevention of data samples generated outside the decision 

boundary of the minority class. As a result, samples are derived from well-segregated 

parents that differ in the KPCA similarity measure, preventing duplicates.  

4.2.4 Summary  

Studies often rebalance samples by oversampling positive (defect) samples (Nam, 

2014). However, Zhang et al. (2021) take the spatial distribution characteristics of 

samples into consideration. Overlapping data in spatial distribution will cause the 

boundaries between different types of samples to become blurred. As an extension of 

the above work, this work improves ability to cope with overlapped distribution based 

on KCPA, spectral clustering and cross interpolation. KCO is an alternative solution to 

improve classification performance when dealing with imbalanced data. KCO is 

incorporated in data pre-processing to enhance classification performance. Defect 

classifiers are expected to benefit from KCO by achieving better classifications. Further, 

KCO avoids generating erroneous or duplicate data instances that lead to high false 

positives by avoiding generating less diverse data points within the minority class. 

4.3 Deep Q-Network in Just-in-Time Software Defect Prediction 

To classify whether a change is a defective or clean change, existing classifiers 

employed supervised, unsupervised, and semi-supervised learning techniques. These 

techniques convert the JIT-SDP model into batch learning. Batch learning is learning on 

the entire training datasets at once to learn the pattern of the introduction of defective 

changes. However, the performance of these techniques is heavily affected in case of 

data drifting occurred in the software project datasets. Data drift is a change in the input 

data generation process, affecting the underlying probabilities of the data. Therefore, the 
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classifier technique is based on an alternative to batch learning approaches, by 

converting JIT-SDP into a sequential learning approach.  

Reinforcement learning (RL) is a suitable technique to formulate sequential 

learning to learn the optimal prediction accuracy for agents interacting directly with an 

environment. To date, existing studies of JIT-SDP do not consider the RL technique to 

learn the pattern or behavior of defective changes in software projects since JIT-SDP is 

a recent emergent topic. Adopting RL into JIT-SDP is a challenging task due to the 

limited and imbalanced datasets in the software projects. Therefore, our work attempt to 

adopt Deep Reinforcement Learning (DRL) which enable the learning of software 

defect pattern through a combination of Q-learning framework and artificial neural 

network approach (DQN) by complex decision-making tasks throughout benefit and 

punishment policy. The mechanism of DQN is a learning process throughout trial-and-

error, solely from rewards or punishments to produce the greatest reward.  

4.3.1 Problem Definition  

Given a defect dataset 𝐷 = {(𝑆1, 𝑦1), (𝑆2, 𝑦2), (𝑆3, 𝑦3), … , (𝑆𝑛, 𝑦𝑛)}, where 𝑆𝑖 is the 

feature vector for the 𝑖 code change in the dataset and 𝑦𝑖 represents the corresponding 

labels. Defect prediction forms the positive class in the datasets in case of 𝑦 = 1 for 

further inspecting a defective code change and y = 0 for the accepted code change. The 

data is sorted with respect to time, preserving the sequential aspect and formulating the 

SDP problem as a sequential decision-making problem. The agent is given a series of 

code changes records, S𝑡 at timestep t, and the agent takes an action of either approving 

the code change (𝑎𝑡 = 0) or inspecting the code change (𝑎𝑡 = 1). In return, the 

environment provides the agent with a reward based on the current classification 

performance and the next code change S𝑡+1. The agent is designed to minimize false-

positive rates while maintaining a balance between prediction accuracy and false-
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positive rate during classifying code changes. This is done using the reward function of 

R. Figure 45 illustrate the overall process of how the learning process works. Using a 

Markov Decision Process (MDP), the environment is represented as S, a, R, T with the 

following definitions: 

States S: State S𝑡 is the state of tth change record where is called features vector xt in the 

dataset. 

Action a: The action space for this MDP is discrete given A = {0,1}. Where code 

reviewer during code review approves the code change as to be inspected (𝑎 = 1) or 

reject the code change for further inspection (a = 0). 

Reward R: A reward rt is a scalar which measures the fitness of the action at taken by 

the agent in the state st. Usually, the reward is positive value in case the agent chooses a 

preferable action and a negative value for the opposite action. In the context of this 

research, approving a defective change for further review process is preferred. Thus, the 

agent is rewarded positively by the environment. The reward mechanism for the MDP is 

explained in detail in the next subsection. 

Transition probability T: The agent takes an action in the current state and 

environment gives back a new state. The transition from St to St+1 is deterministic 

transition. 

Episode E: An episode refers to an iteration of the agent interacting with the 

environment. This comprises of getting S, a, R, T until reaches a terminal state. During 

an episode, the agent making decision on each code change transaction one by one until 

reaches a terminal state (L = 2000). In this case, the agent takes action on 

𝑆1, 𝑆2, 𝑆3 … , 𝑆𝐿 in the first episode and 𝑆𝐿+1, 𝑆𝐿+2, 𝑆𝐿+3 … , 𝑆2𝐿 in the second episode and 

continue the process until final episode (E = 50). 
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Figure 45: Conceptual diagram of deep reinforcement learning 

4.3.2 Agent  

In this research, Deep Q-Network (DQN) is chosen as the DRL algorithm. The 

DQN algorithm integrates Q-learning and neural networks. DQN aims to guide the 

choice of action given a state by predicting the expected Q-values of all possible 

actions. DQN training consists of determining the Q-value of a pair of state-action pairs. 

During neural network training, target actions are determined by the labels of data. 

During training iterations, the DQN agent is responsible for learning how to decide 

based on the given batch of data.  
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DQN agents seek to maximize the cumulative reward at a given time t. Cumulative 

rewards formally are follows: 

𝑅𝑡 = ∑ 𝑦𝑘𝑟𝑡+𝑘

∞

𝑘=0

 

Where k is the memory pool of the agent where its memory is stored, kt = (St, at, Rt, St+1) 

at timestep t, and the discount factor is denoted as y. 

To decide the action taken by Q-network, Q-values of a deep neural network with 

parameters θ, 𝑄(𝑠, 𝑎, θ) are computed. Q-values describe the possibility [0,1] of the 

given state, St to take each of the actions available. The problem definition is either 

approve or disapprove the code change for further code inspection. The neural network 

in DQN (Q-network) learns the parameters θ by performing Q-learning updates 

iteratively. At iteration i, the loss function is given: 

𝐿𝑖(𝜃𝑖) = 𝐸(𝑆,𝑎,𝑟,𝑆′) [(𝑟 + 𝑦(𝑚𝑎𝑥𝑎′𝑄(𝑆′, 𝑎′; θ𝑖
− )) − 𝑄(𝑆, 𝑎; θ 𝑖))]  

Where θ 𝑖 is the parameters of the Q-network at ith iteration and θ𝑖
− is the 

parameters of the target network model which is used to calculate target labels. The 

target model parameters are not trained, but they are periodically synchronized with the 

parameters of the main Q-network. The idea is that using the target network Q-values to 

train the main Q-network improves the stability of the training. The target model is 

updated, and the parameters are set equal to the main Q-network after K steps or mini-

batch (K=64). Figure 46 illustrates the iterative updates of network models. Q-network 

updates take place based on random mini-batches from the memory pool. This process 

is considered a replay buffer process. The training process begins with e = 1 and uses a 

decay rate of 0.995 until minimum e =0.01. 
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Figure 46: Updates of network models 

The agent policy π to approximate the Q-values of the actions for the deep neural 

network is defined by epsilon-greedy policy. In this policy, the selection of actions can 

either be randomly selected or using the Q-value of the neural network. The usage of 

epsilon greedy action enables the agent to take advantage of prior knowledge and 

exploration to look for new options. Pseudocode of Algorithm 2 describes the process 

of action selection in π. 

Algorithm 2 Pseudo Code of Epsilon-Greedy Action Selection 

Input: Q-values generated by neural network, 𝑸𝒕(𝒂) ; Current state, S; epsilon, e  
Output: Selected action, a 
Procedure Begin 

1) Select random number, n between [0,1] 
2) If n < e, then 
3)  a = random action from the action space  
4) Else  
5) a = 𝐚𝐫𝐠𝐦𝐚𝐱 𝑸𝒕(𝒂) 
6) Return a 
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4.3.3 Reward  

The agent is rewarded with a reward 𝑟𝑡 after it takes action 𝑎𝑡 in state S𝑡 which 

guides the agent to maximize the true labels of predicted defect data, y with in mind 

minimizing the false result. The reward function is defined as: 

𝑟(𝑠𝑡, 𝑎𝑡, 𝑦𝑡) = {

−1, if 𝑎 = 1 and 𝑦 = 0

+1, if 𝑎 = 1 and 𝑦 = 1

+1, if 𝑎 = 0 and 𝑦 = 0

−1, if 𝑎 = 0 and 𝑦 = 1

 

 

The reward function is inspired by the process of code review, where the 

developers do the peer code inspection. Figure 47 illustrates the peer code review 

process. Developers tend to inspect the actual defect in a code change during code 

review. Falsely defective predicted cause frustration and waste of effort to the 

developers. In contrast, truly predicted defects within a code change ease the process of 

code inspection. Thus, the aim is to guide the agent in making a decision according to 

this reward policy, where positive or negative reward are given for the action taken in 

predicting the label for a code change.   
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Figure 47: Code review with JIT-SDP model 

4.3.4 Q-Network 

Deep Q-Network involve combination of Q-learning and deep neural network to 

acts as nonlinear approximator for actions to be taken by the prediction model. In this 

scheme, neural networks known as Q-network are used to approximate the Q-function. 

Prior to training process of DQN, turning hyperparameters for the network model is 

essential to ensure the DQN able to produce better initial prediction results possible. For 

turning search, several hyperparameters are considered, which are discussed in the 

following section. After adjusting the hyperparameters, the DQN agent is now ready to 

begin training within the allocate episodes 

Training of agent in DQN is summarized as shown in Algorithm 3. The training 

stops when the agent completely took action on the code change transaction in the 

training until the end of episodes. In this case, the number of episodes for the training is 

N = 50 episodes. For each episode, a random code change is chosen as the initial step, 
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to avoid overfitting toward a specific sequence of data. The agent is given the budget of 

2000 changes, L to take action for each of the episodes. An episode ends when the agent 

covers target conditions, or it runs out of the budget as given in steps 25 to 26. In this 

case, two target conditions are defined (i.e., condition in steps 22 to 23). First, if an 

episode exceeds 200 false results, the episode is done. Second, in case of cumulative 

efforts for the current step exceed a threshold of 20 percent of the total effort of the 

training dataset, the episode is terminated. The conditions allow the agent to train under 

a constraint regime that ensures training is based on reducing false results and 

predicting defects with minimal amounts of effort. Additionally, these conditions ensure 

that the training process ends when the agent does not perform satisfactorily or when it 

exerts excessive effort, preventing the training process from being prolonged or 

ineffective. At the end of an episode, the target value is solely determined by the 

immediate reward (steps 14 to 15). In the event that the episode is incomplete, the target 

value is calculated based on the Q-learning update rule by considering the potential 

rewards that might be attainable in the next state (steps 16 to 17). By estimating the 

expected cumulative reward associated with different state-action pairs, the agent learns 

and guides its learning process.  

During the training process, updates of weights for the network model involve the 

usage of the replay buffer concept. All the actions and observation states by the agent 

are stored in the buffer memory. Then a batch of samples is randomly selected from the 

memory for updating weights of the network model. This ensures that the batch is 

shuffled and contains sufficient diversity from older and newer samples.  The idea 

behind buffer replay is to store the experience by the deque method and use a random 

subset of these experiences to update the network model instead of using only the most 

recent experience. This enables breaking potential harmful correlations within the 

training dataset.  
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Algorithm 3 Pseudo Code of Training DQN with Experience Replay 
Input: Labelled training data, D =  (𝒙𝟏, 𝒚𝟏), (𝒙𝟐, 𝒚𝟐), (𝒙𝟑, 𝒚𝟑), … , (𝒙𝒏, 𝒚𝒏) 
Output: Target network parameters, 𝛉− 
1) Initialize replay memory, M 
2) Initialize size of mini-batch, batch = 32  
3) Initialize current network with random parameters, 𝛉  
4) For episode e = 1 until N do 
5) Shuffle the training data D 
6) Initialize first state 𝑺𝟏 = 𝒙𝟏 
7) For t = 1 until L do 
8) 𝒂𝒕 = 𝛑𝛉(𝑺𝒕) 
9) 𝒓𝒕 , 𝒅𝒐𝒏𝒆𝒕 = 𝑬𝒗𝒊𝒓𝒐𝒎𝒆𝒏𝒕_𝒔𝒕𝒆𝒑(𝒂𝒕) 
10) Set 𝑺𝒕+𝟏= 𝒙𝒕+𝟏 
11) Store (𝑺𝒕, 𝒂𝒕, 𝒓𝒕, 𝑺𝒕+𝟏, 𝒅𝒐𝒏𝒆𝒕) into memory M 
12) If every current step reach size of mini-batch do  
13) Randomly sample mini-batch (𝑺𝒋, 𝒂𝒋, 𝒓𝒋, 𝑺𝒋+𝟏, 𝒅𝒐𝒏𝒆𝒋) from memory 
14) If 𝒅𝒐𝒏𝒆𝒋 = 𝑻𝒓𝒖𝒆 do 
15) Set 𝒇(𝒒)𝒋 =  𝒓𝒋 
16) Else 
17) Set 𝒇(𝒒)𝒋 = 𝒓 + 𝜸(𝒎𝒂𝒙𝒂′𝑸(𝑺′, 𝒂′; 𝛉𝒊

− )) − 𝑸(𝑺, 𝒂; 𝛉 𝒊) 
18) End 
19) Perform gradient descent on loss function, 𝑳𝒊(𝜽𝒊) 
20) Set target network parameters 𝛉− =  𝜽𝒊 
21) End 
22) If cumulative reward < 200 or cumulative effort > 20% of effort in D 
23) 𝒅𝒐𝒏𝒆𝒕 = 𝑻𝒓𝒖𝒆 
24) End 
25) If 𝒅𝒐𝒏𝒆𝒕 = 𝑻𝒓𝒖𝒆 then 
26) Break 
27) End 
28) End 
29) End 

 

4.3.5 Summary  

Software defect prediction is formulated as a classification problem with a focus on 

improving the discovery of software defects. For this reason, many machine learning 

and data mining approaches are used to detect and predict defect inducing changes. 

However, whether deep reinforcement learning could be used to improve the 

performance of JIT-SDP is still unexplored. To bridge this gap, a framework of DQN is 

designed to address the problem of data drifting occurred in the software project 
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datasets. In this work, the focus is to use the DQN for the JIT-SDP in achieving results 

with good accuracy and the lowest numbers of false predictions. Technically, defect 

prediction problem is formulated as DQN formulation, and a reward function is 

proposed that aims to maximize the prediction accuracy and keeping a check on the rate 

of false alarm predictions. Agent of DQN is trained to predict the defect in code changes 

while under consideration of maintaining a balance between accuracy and false alarm 

rate. The training of JIT-SDP model using DQN is suitable for sequential or mini 

batches data which capable to adapt to data drift in a better way. By this solution, the 

issue of re-training JIT-SDP models is well handled in sequential learning approach 

which is an inherent problem with most classifiers. DQN for JIT-SDP is expected to 

help in improving the performance of classification for defects with lower in false 

positives prediction.   
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CHAPTER 5: EVALUATION OF IMPROVED JUST-IN-TIME SOFTWARE 

DEFECT PREDICTION FRAMEWORK 

Evaluating prediction accuracy and effort awareness by the proposed framework is the 

goal of this chapter. In general, two main evaluations are carried out which reflect the 

comparison of two proposed solutions with the standard existing techniques. For the 

first section, the proposed solution of oversampling technique, namely Kernel 

Crossover Oversampling (KCO) is compared with several state-of-art resampling 

techniques to evaluate the performance when dealing with imbalanced datasets. In the 

second section, an evaluation of the proposed approach by using the DQN algorithm 

and KCO technique for JIT-SDP is given. The evaluation involves a comparison of 

performance with other well-known frameworks in the modeling of JIT-SDP classifier.    

5.1 Predictions performance of Kernel Cross-oversampling  

Imbalanced class distribution in JIT-SDP datasets is a problem for some 

conventional learning methods. In addition, spatial class overlap increases the difficulty 

for the predictors to learn the defective class accurately. The main objective of this 

experiment is to compare and evaluate the performance of KCO with baseline 

techniques in resampling data for modelling of JIT-SDP. In the experiment, six 

imbalanced datasets are selected from a public software repository which consists of 

overlap between classes residing in the datasets. The performance of the proposed 

resampling KCO is assessed by comparing it with other baseline techniques. For the 

comparison, several baseline techniques are considered which are ADASYN (He et al., 

2008), SMOTE (Chawla et al., 2002), Borderline-SMOTE (Han et al., 2005), 

MWMOTE (Barua et al., 2014) and MAHAKIL (Bennin et al., 2018). The choice of the 

baseline techniques is due to these techniques not requiring any specific classifier to 
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work effectively. Thus, more advanced techniques in prior studies (Cabral et al., 2019; 

Tan et al., 2015; Zhu et al., 2020) are excluded in this analysis. Statistical analysis 

shows that the prediction model constructed using KCO provides more reasonable 

defect prediction results and performs best in terms of accuracy and F-score among all 

tested models. 

5.1.1 Baseline Techniques  

In verifying the stability of the KCO algorithm, several techniques such as ADASYN 

(He et al., 2008), SMOTE (Chawla et al., 2002), Borderline-SMOTE(Han et al., 2005), 

MWMOTE (Barua et al., 2014) and MAHAKIL (Bennin et al., 2018) are considered in 

the performance comparison. As some studies (Kamei et al., 2013; Li et al., 2020; Yang 

et al., 2017) considered random under-sampling (RUS) as the most efficient resampling 

technique for JIT-SDP, RUS also is included in the comparison.  

ADASYN: ADASYN is proposed by He et al. (2008) and it assigns weights to the 

minority classes and dynamically adjusts the weights in a bid to reduce the bias in the 

imbalanced dataset by considering the characteristics of the data distribution. ADASYN 

algorithm incorporates a density distribution in automatically deciding the number of 

synthetic samples needed for each minority class sample. The learning algorithm is 

induced to focus on the hard-to-learn or classify examples within the minority class 

samples. Therefore, the samples generated are not equal for all samples. 

SMOTE: Proposed by Chawla et al. (2002), this technique over-samples the minority 

class in a dataset by creating synthetic samples. SMOTE oversamples the minority class 

in a bid to make the dataset as balanced as possible based on the configuration 

parameter values. To generate these synthetic samples, each minority class sample is 
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considered, and the new samples are introduced along with the line segments that join 

any of the k minority class nearest neighbors. 

Borderline-SMOTE: It is a modification of the SMOTE technique but with the main 

focus on harder-to-classify minority class data instances, which are referred to as 

borderline data instances. The algorithm first finds minority class instances that have 

more majority class instances as nearest neighbors than minority class instances and 

applies the SMOTE technique to such instances. This approach has the advantage of 

strengthening the borderline between the majority and minority class data instances. 

MWMOTE: It is an oversampling technique proposed by Barua et al. (2014), 

MWMOTE divides positive samples into safety data, boundary data, and potential noise 

data, and then adopts different sampling strategies for different types of samples. It 

adaptively assigns the weights to the selected samples according to their importance in 

learning. The samples closer to the decision boundary are given higher weights than 

others. Similarly, the samples of the small-sized clusters are given higher weights for 

reducing within-class imbalance. The synthetic sample generation technique of 

MWMOTE uses a clustering approach to partition datasets and uses the Euclidean 

distance similarity measure to find very close class samples and synthetically generate 

samples based on the weights assigned to the minority class samples. 

MAHAKIL: Bennin et al. (2018) introduced a synthetic oversampling approach 

based on the chromosomal theory of inheritance. Each sample of data is regarded as a 

chromosome. First, positive samples are divided into two initial populations according 

to the size of Mahalanobis distance, and then new offspring samples are synthesized by 

using the samples in the initial population to cross continuously. The offspring samples 

inherit part of the characteristics from the two parent samples, which ensures that the 

Univ
ers

iti 
Mala

ya



 

155 

offspring samples and the parent samples have certain similarities and some new 

characteristics. 

5.1.2 Datasets  

A total of six imbalanced datasets are evaluated which comprise Bugzilla, Columba, 

Eclipse.JDT (JDT), Eclipse.Platform (Platform), Mozilla, and PostgreSQL (Postgres). 

Note that all the datasets are imbalanced. The most imbalanced dataset, Mozilla, 

contains only 5% defects, while the most balanced dataset, Bugzilla, contains 36% 

defects. To ease the analysis of prediction results, these datasets are classified into two 

severity groups as shown in Table 25. Mild imbalance class is considered as datasets 

that comprise 25% and above for the percentage of software defects. For the high 

imbalance class, it is based on datasets that have less than 25% of the defects. The 

severity of the imbalance class represents the difficulty for data resampling in the 

imbalance distribution.   

Table 25: Imbalanced class datasets 

Project Time # Instances Defect % Severity 

Columba  08/1998–12/2006 4455 31 Mild imbalance class 

Bugzilla 11/2002–07/2006 4620 36 Mild imbalance class 

Postgres 11/2002–07/2006 20431 25 Mild imbalance class 

JDT 05/2001–12/2007 35386 14 High imbalance class 

Platform 07/1996–05/2010 64250 14 High imbalance class 

Mozilla 08/1998–12/2006 98275 5 High imbalance class 
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5.1.3 Experiment Settings   

Artificial neural network algorithm is chosen as the classifier algorithm of the JIT-

SDP model in this comparison. The classifier for the prediction is built using the 

resampled data generated by the resampling techniques. For the convenience of 

comparison, default hyperparameters are used for all compared techniques. In the 

experiment, three model performance prediction scenarios are considered. These 

scenarios are within project prediction, cross-project prediction, and timewise 

prediction. In particular: 

a) Within project validation 

The evaluation is conducted based on 10-folds stratified within project validation. 

Figure 48 presents the F-score values of KCO as compared to those of the baseline 

techniques respectively. The validation started with the splitting of data into 8:2 ratio, 

for both training and prediction datasets. Then, the training dataset undergoes 10-fold 

stratified within project validation. The datasets are divided randomly into 8-folds, 2-

folds serve as training data, and the remaining fold serves as test data. In cross-

validation, each fold is used as a testing dataset only once. Additionally, the data are 

folded so that every fold consists of the same proportions as the original dataset. The 

highest prediction model among these folds is selected for the final prediction. The 

selected model is used to predict the unseen data which is the prediction dataset. The 

final prediction result is recorded to show the credibility of the experiment results. 

b) Cross project validation 

For cross-project validation, the prediction of software defects is evaluated across 

different software projects. In specific, the models are constructed by one source of 

Univ
ers

iti 
Mala

ya



 

157 

software project and use these models to predict software defects on another target 

software project.  

c) Timewise validation 

Within the same project datasets, JIT-SDP takes into account the chronological order of 

changes in accordance with the commit date. Based on the assumption that the changes are 

divided into n parts, we first construct the models based upon the changes in part i and i + 1. 

The models will then be employed in predicting the changes in part i + 4 and part i + 5. 

5.1.4 Performance Indicators  

The evaluation measure is important to reveal the performance of the classifier, 

especially for imbalanced datasets. Some conventional measures lead to a wrong 

conclusion owing to the skewness of the class distribution (Li et al., 2018). For 

example, consider an extremely imbalanced dataset: 99 % of instances are of the 

majority class, and the remaining 1 % samples belong to the minority class. In case of 

using the accuracy measure which indicates how many test samples are correctly 

classified as the evaluation criterion, even if the classifier ignores all of the minority 

classes, it still reach a very high accuracy rate of 99 %. Therefore, this experiment also 

considered F1-score, which is a commonly used measure to evaluate classification 

performance. It combines Precision and Recall which is derived from a confusion 

matrix. The confusion matrix lists all four possible prediction results. If an instance is 

correctly classified as a defect, it is a true positive (TP); if an instance is misclassified as 

a defect, it is a false positive (FP). Similarly, for false negatives (FN) and true negatives 

(TN). Based on the four numbers, Precision, Recall, and F1-score are calculated. 

Precision is the ratio of correctly predicted defect instances to all instances predicted as 

defects (Precision = TP/(TP + FP). Recall is the ratio of the number of correctly 
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predicted defect instances to the actual number of defect instances (Recall = TP/(TP +

FN). Finally, F1-score is a harmonic mean of Precision and Recall, Fscore =

 
1.25×Recall ×Precision

(0.25 ×Precision+Recall)
 . In measuring the diversity of data for resampled datasets (d), 

sparsity formulation is utilized. 𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 = 1 −  
𝑛𝑜𝑛_𝑧𝑒𝑟𝑜 (𝑑)

𝑠𝑖𝑧𝑒(𝑑)
 .  

5.1.5 Experimental Results 

This section presents the experimental results. The results focus on the performance 

of JIT-SDP model using different resampling techniques. The details are given in the 

following four subsections: 

a) Analysis of Data Distribution 

This section is about analysing the distribution of data after applying a set of baseline 

resampling techniques on six datasets. Sparsity of data distribution is an important 

consideration for many machine learning applications especially for high dimensional 

data. The larger sparsity data contain less information across data classes. Therefore, 

with a larger sparsity data, accurate predictions more difficult to acquire. Oversampling 

in training datasets reduces the impact of noise and improve sparsity of data distribution 

toward dense data. Dense data yields more informative data, which results in more 

accurate predictions due to more data available for model training.  

Table 26 provides data distribution in the different types of resampling techniques. 

The result indicates KCO achieves the lowest sparsity values across all datasets. 

Considering the difference in sparsity values, only KCO able to provide significant 

difference value by 8% to 10% for data sparsity before resampling (original). The only 

exception is that data sparsity generated by KCO, MWMOTE, and MAHAKIL are 

similar for Mozilla. 
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Resampling low sparsity datasets becomes more difficult due to less significant 

variation among data points within the dataset, making them dense datasets. Among the 

datasets, Bugzilla exhibits the most dense distribution. As a result, baseline resampling 

techniques, including SMOTE, Borderline, RUS, ADASYN and MWMOTE fail to 

significantly improve data sparsity. Indeed, resampling in a dense dataset presents 

difficulties in generating more data samples in limited empty spaces. On the contrary, 

KCO provides better data distribution than baseline techniques with more robust 

performance in identifying empty spaces by using kernel function.  

Overall, KCO produces more sparse data than SMOTE, Borderline, RUS, and 

ADASYN. KCO compares favourably with data generated by MAHAKIL and 

MWMOTE utilizing Mozilla, Bugzilla, and JDT. Considering that KCO generates more 

diverse data than other baseline techniques, contributing to data distribution diversity. 

Table 26: Sparsity of data distribution  

Techniques 

/Datasets 

Columba Bugzilla Postgres JDT Platform Mozilla 

Original 34% 26% 28% 33% 34% 28% 

KCO 23% 18% 20% 22% 22% 18% 

Borderline 32% 26% 26% 29% 29% 21% 

RUS 32% 25% 25% 31% 29% 20% 

ADASYN 33% 26% 26% 31% 30% 23% 

SMOTE 32% 25% 25% 30% 29% 22% 

MWMOTE 30% 24% 22% 26% 26% 18% 

MAHAKIL 28% 20% 22% 24% 25% 18% 

Note: Lower sparsity data indicates more suitable training data for machine learning 
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b) Analysis for Within Project-Prediction 

Table 27 shows the performance measures of KCO and baseline techniques based 

on accuracy and F-score. Before starting with the analysis, several forms of the result 

are adopted, and the corresponding meaning are as follows: 

• The results with bold font represent the best one among the group of contrastive 

experimentation. 

• The results with a red background indicate that the corresponding baseline model is 

the highest value among the comparison frameworks  

• The results with a green background indicate that the proposed approach is the 

highest value compared to other frameworks model  

According to results shown in Table 27, KCO, MAHAKIL, and MWMOTE in 

general are the top performance techniques which outperformed other baseline 

techniques in terms of F-score measure for almost all datasets. Surprisingly KCO 

achieved the best performance among them, especially in the severely imbalanced 

dataset as in Platform and Mozilla. On average, KCO manages to achieve 52.6%, 32%, 

35.2%, and 20.7% of the highest average F-score in Columba, JDT, Platform, and 

Mozilla respectively. Despite a slight improvement of KCO on F-scores compared to 

MAHAKIL and MWMOTE, the average accuracy across datasets indicates a consistent 

value between 71% to 80%. Nonetheless, even though RUS is considered the most 

widely applied in the context of resampling imbalanced datasets, the consistency of its 

F-score is almost similar to performance with other oversampling techniques such as 

ADASYN, SMOTE, and Borderline. 
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Figure 48: F-score of six datasets for within project validation 

Columba Bugzilla 

Postgres JDT 

Platform Mozilla 
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Table 27: Prediction performance in F-score by resampling techniques 

Techniques 

/Datasets 
ADASYN BORDERLINE MAHAKIL MWMOTE RUS SMOTE KCO 

Columba 49.2 48.6 47.9 48.5 49.1 51.2 52.6 

Bugzilla 58.9 58.6 61.1 63.4 62.9 62.7 62.5 

Postgres 49.5 49.6 53.5 54.6 51.8 52.2 50.4 

JDT 27.6 28.8 27.8 29.7 29.8 29.2 32.0 

Platform 30.0 31.2 32.0 34.1 30.6 31.2 35.2 

Mozilla 16.1 18.6 19.4 19.5 15.7 16.8 20.7 

Average 38.6 39.2 40.3 41.6 40.0 40.6 42.2 
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c) Analysis for cross project-prediction 

The analysis further compares proposed KCO to the baseline techniques for cross 

project prediction as given in Table 28, Table 29, and Figure 49. For example, in Table 

29, the case of “COL – BUG” means that Columba datasets is used as training project to 

construct the prediction model. Then the model predicts the changes in target project 

Bugzilla. From the result, KCO achieves approximately in range of 33% to 46% across 

projects prediction for mean of F-score as given in Table 28. KCO outperforms or 

obtains similar performance to other baselines in almost all datasets, as achieves in the 

highest average score for JDT, Platform and Mozilla cross prediction. In contrast to 

other baseline techniques, no single technique attains the highest average of F-score. In 

exception for ADASYN and Borderline achieving draws in Columba, Bugzilla, and 

Postgres. Furthermore, MWMOTE, MAHAKIL and RUS unable to produce 

substantially average in F1-score under cross project prediction setting.  

Table 28: Average of F-score for cross project prediction 
Techniques 

/Datasets 
ADASYN BORDERLINE MAHAKIL MWMOTE RUS SMOTE KCO 

Columba 33 33 31 31 25 30 33 

Bugzilla 27 27 22 24 22 26 26 

Postgres 28 28 26 26 27 27 28 

JDT 40 39 26 25 26 38 41 

Platform 40 39 40 25 26 38 41 

Mozilla 44 43 40 34 33 41 46 

W/D/L 0/3/3 0/3/3 0/0/6 0/0/6 0/0/6 0/0/6 3/2/1 
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Table 29: F-score of JIT-SDP models for cross project prediction 

Source -Target 
Baseline Techniques 

Proposed 

Solution 

ADASYN BORDERLINE MAHAKIL MWMOTE RUS SMOTE KCO 

COL – BUG 39 46 28 27 42 33 38 
COL – POS 53 50 53 52 29 50 52 
COL – JDT 24 25 24 25 27 26 27 

COL – PLA 27 26 29 29 21 26 27 
COL – MOZ 22 16 20 21 7 15 21 
BUG – COL 32 32 35 30 33 37 32 
BUG – POS 40 40 31 33 36 39 39 
BUG – JDT 23 21 17 20 17 18 23 
BUG – PLA 26 26 18 24 18 27 26 
BUG – MOZ 15 14 7 13 8 12 11 
POS – COL 36 35 36 36 35 35 36 
POS – BUG 56 56 43 45 51 53 56 
POS – JDT 17 17 17 18 17 17 17 
POS – PLA 18 18 18 18 17 18 18 
POS – MOZ 13 12 14 16 13 13 15 
JDT – COL 46 45 36 46 36 50 50 
JDT – BUG 55 55 42 5 42 48 55 
JDT – POS 50 51 29 33 29 48 51 
JDT – PLA 33 30 18 23 18 32 33 
JDT – MOZ 16 15 6 17 6 14 18 
PLA – COL 46 45 52 46 36 50 50 
PLA – BUG 55 55 49 5 42 48 55 
PLA – POS 50 51 49 33 29 48 51 
PLA – JDT 33 30 30 23 18 32 33 
PLA – MOZ 16 15 20 17 6 14 18 
MOZ – COL 51 50 52 33 35 45 54 
MOZ – BUG 51 45 49 26 49 51 53 
MOZ – POS 52 54 49 53 43 50 54 
MOZ – JDT 34 33 30 23 17 24 34 
MOZ – PLA 33 35 20 35 18 33 34 Univ
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Figure 49: Resampling performance in cross project prediction Univ
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d) Analysis for timewise-prediction 

Result of prediction performance in timewise validation scenario is further evaluated 

over the six project datasets shown in Figure 50 and Table 30. The result is evident that 

proposed technique KCO obtained highest average of F-score only for JDT dataset. 

MAHAKIL on the other hand surprisingly achieved better performance for Postgres, 

Platform and Mozilla. That is, MAHAKIL outperformed KCO and other techniques 

based on timewise prediction. Except for JDT datasets, KCO unable to resampling 

better performance for JIT-SDP model when compared to other baseline techniques. 

The result is inconsistence with previous within project predictions, where KCO is 

found to performs significantly better than all the baseline methods when considering F-

score metric.  

Table 30: Average of F-score in timewise predictions  

Techniques/ 

Datasets 
ADASYN Borderline RUS SMOTE MAHAKIL MWMOTE KCO 

Columba 42 37 41 38 39 45 42 

Bugzilla 52 53 53 55 52 53 51 

Postgres 72 71 74 73 75 73 74 

JDT 25 26 26 26 23 23 27 

Platform 27 29 30 30 35 33 30 

Mozilla 18 21 18 18 24 23 17 
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Figure 50: F-score of six datasets 10-fold timewise predictionsUniv
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5.1.6 Discussion 

1) Stability of resampling techniques  

For stability, it mainly depends on the robustness of the techniques in facing severely 

imbalanced datasets. Severity of the imbalanced ratio heavily indeed affects the stability 

of resampling techniques. Due to this factor, it is observed that the resampling 

techniques have difficulty to achieve consistency of F-scores when dealing with large 

datasets as presented in Platform and Mozilla. Oversampling techniques with data 

partition embedded algorithms such as MAHAKIL, MWMOTE, and KCO exception 

are competent to attain a better F-score for these datasets, especially KCO which 

achieves the highest average score for all severely imbalanced datasets. To conclude, 

the result indicates that the stability of simple techniques such as RUS, SMOTE, and 

ADASYN is not good enough for imbalanced datasets in JIT-SDP. Contrary to KCO, 

the results show the most effective resampling technique when dealing with highly 

imbalanced data. KCO provides a more diverse distribution of data especially for 

severely imbalance datasets. Specifically, the generation of new synthetic data through 

multiple levels of inheritance from the original data, improving the diversity of the 

overall data distribution (Section 4.2.3). The prediction model can learn more 

discriminative patterns and make better-informed decisions, resulting in improved 

prediction performance. In contrast to mild imbalanced datasets, KCO fails to provide a 

reliable result because defect class have dense distributions. Consequently, KCO faces a 

challenge in conducting diversity analysis through KPCA. For other baseline 

techniques, mild imbalance datasets prove easier to resample the class distribution 

considered dense. The main factor is that through diversity measures (Euclidian distance 

and Mahalobis distance) by baseline techniques can provide meaningful attributes that 

effectively distinguish classes.   
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In cross project prediction, KCO demonstrates excellent performance in cross project 

prediction due to the consideration of the size of the data as an additional attribute for 

data resampling. Cross project prediction provides more information on the pattern of 

the defect class, resulting in a more diverse distribution. KCO takes advantage of the 

large size of defect instances and utilizes similarity analysis provided by KPCA to 

identify feasible regions for generating new samples (Section 4.2.1). Resulting in a 

more accurate performance in cross project prediction, even when dealing with varying 

class distribution imbalance ratios in the original datasets. In essence, KCO leverages 

the benefits of a larger dataset size and the insights gained from the similarity analysis, 

which contribute to its superior performance in cross project predictions. 

2) Inconsistency in timewise prediction 

Despite the fact that KCO underperformed in timewise predictions, this only reflects 

the specificity rather than the generality of the technique performance. In terms of 

timewise prediction, KCO is unable to achieve optimal results and actually performed 

worse than most of baseline techniques. One reason for this is that in KCO, the strength 

of data partitioning depends on the size of training data, since each training fold consists 

of various sizes that are not all equal. Identifying suitable regions for interpolation faced 

difficulty in smaller data sets due to a lack of similarity among data samples.  This 

suggests that KCO is not suitable to resample the smaller data sets. Note that proper 

hyperparameters for data partitioning in KCO are useful to avoid this shortfall in 

smaller data sets. 

5.1.7 Threat of Validity 

A known validity of empirical experiments involves the quality of the data, which is 

often difficult to obtain and verify. Nevertheless, noise and outliers inherent within 
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datasets extracted from most open-source projects are likely to have significant effects 

on the prediction performance (Gray et al., 2012). Therefore, applications of data 

cleansing techniques for noise detection and elimination remain open for future 

investigations 

The effectiveness of the proposed KCO is dependent on the ability to assess the 

diversity of data using the KCPA. It is important to note that despite KPCA's benefits, 

its use entails a high cost. In cases of large data records, it is often difficult to compute 

the covariance matrix accurately, especially in cases of many features are presence. 

Thus, it is a requirement to allocate a greater amount of time and memory since these 

resources increase quadratically rather than linearly with the number of features. 

However, the issue is not be of significance when a few features are required. The 

challenge also applies to the approaches based on Euclidean distances. Concerning 

handling the computation of covariance matrices for large dimensional features, it is 

advisable necessary to employ a more advanced and time-efficient approach in dealing 

with covariance aspect of training datasets. 

5.1.8 Conclusion 

In this section, an experiment is conducted to compare eight resampling techniques 

for developing JIT-SDP models derived from six state-of-the-art software projects. This 

study presented an experimental setup aiming at mitigating the likely conclusion 

instability. Eight resampling techniques is compared for developing JIT-SDP models 

derived from six state-of-the-art software project. Despite of oversampling helps to 

improve classification on average, more uneven distribution of data points across 

different classes or clusters possible generated in case of having extreme dense data 

distribution. This situation produces a negative impact on the performance of 

downstream resampling algorithms that rely on accurate predicts of data classes or 
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cluster membership. Here techniques such as MAHAKIL and MWMOTE which 

comprise of data partitioning architecture are affected by this drawback. In light of this 

issue, KCO provides diverse data distribution by using a measure of similarity between 

data points to avoid the influence of dimension between different attributes of samples. 

By measure of similarity provided by KPCA, KCO linearly represent multivariate data 

into lower dimension while retaining its maximum variation. Therefore, covariance 

among data samples in imbalance distribution is exploited to find feasible spaces for 

interpolation which in turn reduce the effect of high multivariate data. Furthermore, in 

reducing near duplicated data after oversampling, KCO ensures nonlinear data 

distribution in the datasets are handled by cross interpolation approach. Through this 

approach, the generated data samples are produced by multiple level of pairing 

inheritance from the original data samples. As a result, KCO produces a more diverse 

set of data without compromising the origin information of the data distribution. Our 

work evaluates the performance of KCO on three different prediction settings. 

Experimental results show KCO consistently achieves higher F-score results for within-

project and cross-project predictions. KCO achieves better overall classification 

performance, proving the feasibility of the approach in this study. Therefore, when 

dealing with an imbalanced class distribution task, KCO should be used for 

oversampling to improve JIT-SDP model classification performance. In future work, we 

plan to explore the impact of the different kernel functions in KPCA and the different 

activation functions in KCO on the performance of JIT-SDP models..  
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5.2 Effort Aware Performance of Deep Q-Network and Kernel Cross-

Oversampling in Reducing False Positives 

Effort awareness is required for an effective framework to produce a reliable JIT-

SDP model. The effectiveness of the model is highly dependent on the quality of 

training data and the mechanism of the classifier in modelling defect patterns. 

Therefore, to achieve good performance, it is important to have a clear understanding of 

what factors affect the classification of software defects in code changes. In this 

experiment, the efficiency of the proposed framework with a combination of DQN and 

KCO as main modelling components for effort awareness is promising. The 

experimental results demonstrate that the proposed framework outperforms the state-of-

the-art baseline on two different evaluation criteria: 1) accuracy in F-score for the 

prediction of defect with minimization of false positives and 2) achieving a low density 

of false positives for effort-aware evaluation.   

5.2.1 Baseline Frameworks 

The experiments are conducted by comparing JIT-SDP models based on proposed 

approach and state-of-the-art frameworks. Each framework shares the same data pre-

processing in data extraction, features selection and normalization. The choice of 

resampling techniques and classification algorithm for training JIT-SDP models differs 

between these frameworks. For each framework, the properties within the framework 

are given in the following paragraphs.   

EALR: Kamei et al. (2013) propose the EALR model which uses of logistic 

regression (LR) classifier and rebalances imbalanced class data with random under-

sampling (RUS).  EALR is used to predict the risk score of new changes in the testing 

datasets. For each change in the prediction, they would predict the value of defect 
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density by 𝐷(𝑐) =
𝑌(𝑐)

𝐸𝑓𝑓𝑜𝑟𝑡 (𝑐)
 and sort these changes in descending order by the risk 

scores. Here Y(c) is 1 if change c is defect and 0 otherwise, and Effort(c) is the amount 

code inspection for the change. Thus, it provides the changes that need to be inspected 

first according to the testing dataset. 

LR + KCO: To provide more options in the comparison, a combination of LR 

classifier with KCO for oversampling technique is given. The framework is inspired by 

EALR. Instead of resampling class imbalance data by RUS, we used KCO as the 

technique for handling the imbalance problem. For the effort awareness, it used a 

similar approach as EALR in the ranking of effort. 

LT: Yang et al. (2016) utilized the same metrics as in Kamei et al. (2013) works to 

build a simple unsupervised model. The model uses only one metric among all the 

available metrics and sorts the changes in descending order according to the given 

measure. Among all candidate metrics, LT metric is chosen as the unsupervised model 

due to it is the best performance in most cases. The model predicts a risk score of 

changes by R(c) = 1/LT(c). Sorting of effort based on LT based on more defect prone 

need to be inspected first.    

CBS: Huang et al. (2019) proposed a JIT-SDP approach by the concept of Classify 

Before Sorting (CBS). The framework in a similar supervised model to EALR using 

RUS to deal with data imbalance. CBS leverages the advantages of both supervised and 

unsupervised approaches by combining classification and sorting. For classification, 

logistic regression is used as the defect classifier. As for sorting, linear regression is 

based on a scoring list of changes in descending order by the ratio between each defect 

prone and its size. The intuition is that the smaller changes with high defect proneness 

must be inspected first.    
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NN + RUS: The approach uses the basis of EALR by changing its classifier into 

neural network algorithm. Implementation of the neural network instead of logistic 

regression in this framework to ensure that the model is more flexible and susceptible to 

overfitting. The network model also is fed by using the training dataset from the RUS 

technique. As for the ranking of effort, it follows the intuition of changes with high risk 

need to be inspected first. 

 NN + KCO:  A combination of the supervised model of neural network algorithm 

with resampled data from the KCO technique. The framework provides the analysis of 

how the KCO affects the advanced classifier such in the deep learning approach. The 

framework also works by sorting the predicted changes based on the ranking of risk of 

defect prone.    

DQN + RUS: A framework of combination DQN as a classifier with RUS as the 

resampling technique. The choice of DQN as a classifier for code change in the 

prediction model ensures that less false positive instances are predicted. For effort 

awareness, DQN with RUS also utilized the idea of changes with high defect proneness 

must be highly ranked for further code review.  

5.2.2 Datasets 

To verify the effectiveness of the proposed framework, experiments of effort 

awareness for JIT-SDP on six large open-source projects are conducted. The datasets 

include Bugzilla (BUG), Columba (COL), Eclipse JDT (JDT), Eclipse Platform (PLA), 

Mozilla (MOZ), and PostgreSQL (POS). The baseline six projects are large long-lived 

projects that cover a wide range of domains and sizes. Each instance corresponds to a 

change committed when the code is submitted to the version control system. Table 31 

summarizes the statistics of the studied projects, including the time period of each 
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project, the total number of changes, and the percentage of defective changes. All 

datasets in this experiment are imbalanced with the percentage of defects ranging from 

5 to 36%. Thus, the training datasets need to perform resampling class imbalance first.  

Table 31: Statistics of datasets 

Project Time # Instances Defect % 

Average of 

 effort per change 

Columba 08/1998–12/2006 4455 31 149 

Bugzilla 11/2002–07/2006 4620 36 38 

Postgres 11/2002–07/2006 20431 25 1001 

JDT 05/2001–12/2007 35386 14 74 

Platform 07/1996–05/2010 64250 14 72 

Mozilla 08/1998–12/2006 98275 5 107 

 

5.2.3 Performance Indicators 

For prediction of software defect performance, accuracy and F-score are used as the 

measurement indicators for the comparison. Accuracy metric is important for measuring 

the results in which true positives and true negatives are more important. In this respect, 

the accuracy metric provides the performance in terms of code change classification 

whether the predicted changes are true defects or true clean. As for F-score, it is 

intended to capture the prediction performance in imbalanced class distribution as per 

existed in the prediction datasets. Furthermore, F-score provides a harmonic mean of 

precision and recall which gives a better measure of incorrectly classified cases than the 

accuracy metric.    
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For evaluating the predictive effectiveness of a JIT-SDP model, the effort required to 

inspect those changes predicted as defect-prone is considered to find whether they are 

defective changes. Consistent with Kamei et al. (2013), the code churn which describes 

the total number of lines added and deleted by a change is used as a proxy for the effort 

required to inspect the change. Similar to Mendes et al. (2010) works, ACC and Popt 

are used to evaluate the effort-aware performance of the JIT-SDP models. ACC denotes 

the recall of defect-inducing changes when using 20% of the entire effort required to 

inspect all changes. However, the ACC metric is unreliable if too many false positives 

are predicted, as this can mislead the nature of the prediction with limited effort. 

Therefore, in this experiment, we improvised the ACC metric so that we only consider 

recall of true positives under 20% of the total effort, which we refer to as Benefit.  Popt 

is the normalized version of the effort-aware performance indicator originally 

introduced by Mende and Koschke (2010). Note that both Benefit and Popt with a 

higher value are preferable. 

5.2.4 Prediction Settings 

In this experiment, the involved prediction settings include within project prediction, 

cross-project prediction and timewise prediction.  

• Within project prediction is performed within same project. In this setting, the 

dataset is divided into ten folds, nine of which are used as training datasets and 

one as testing datasets. Cross validation implies that each fold is only used as a 

testing dataset once. Futhermore, each fold consist of the same class proportion as 

the original dataset. 

• Timewise prediction follow a certain time order which based on timesensitive 

validation strategy. For each project datasets, the changes are grouped into the 

same month in chronological order according to the commit date. For training 
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datasets, 24 months commits are grouped as training instances. The testing 

datasets is not immediately following the training datasets, but there is a gap of 2 

months between training and testing datasets.  

• Cross project predictions are performed across different project. In this setting, 

one project serves as a training dataset and another project acts as testing dataset. 

This experiment evaluate six subject project, therefore a total of  30 prediction 

value  are produced (n × (n-1)).  

5.2.5 Hyperparameter Tuning 

Choosing the right configuration of hyperparameters for neural network model 

within DQN is essential before the actual training process. Estimations for learning 

rates, epochs, the number of hidden layers and the size of hidden units in each hidden 

layer used to train a neural network vary according to software project datasets. In this 

respect, Neural network architecture in DQN is based on four layers which comprises of 

an input layer, two hidden layers and an output layer. Input layer consists of 12 nodes 

with reflected the number of software metrics considered by the JIT-SDP datasets. For 

each of hidden layer, the number of nodes is tuned with different values. The number of 

neurons must be tuned to the solution complexity. Lastly, the output layer contains two 

nodes for Q-values that are responsible for DQN's actions. The summary of the 

architecture of network model in DQN are given in Figure 51. 

Aside from the number of nodes in each hidden layer, the learning rate of the 

network model and the number of epochs are also tuned for optimal network updates. 

For each of hyperparameter combinations, a Hyperband tuner (Li et al., 2018) is used to 

search for the optimal combination configuration given these hyperparameters. Table 32 

and Table 33 contain a list of hyperparameters tuned to the current optimal 

configuration for the datasets used in this framework.  
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Figure 52 provides accuracy results from hyperparameter tuning for each trial in 

software project datasets. Each row represents a trial, and the percentage values indicate 

the accuracy achieved by the tuned neural network configurations for the corresponding 

trial and dataset. Results indicate that accuracy improves over time, suggesting that the 

Hyperband algorithm effectively explores and refines the hyperparameter space to lead 

to improved model accuracy. The accuracy for each dataset shows an irregular rise from 

trial to trial, indicating the stochastic nature of the optimization process. Accuracy 

values exhibit variability across trials for all datasets. This observation proves the 

importance of conducting multiple trials to mitigate randomness during hyperparameter 

tuning. Mozilla exhibits the fastest improvement in accuracy across trials, followed 

closely by JDT and Platform datasets, while Columba, Bugzilla, and Postgres datasets 

demonstrate a slower convergence rate. The observed trends and analysis provide 

valuable insights into the effectiveness of tuning processes to optimize neural network 

configurations in DQN framework. 

 

 

Figure 51: Architecture of Network model in DQN 
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Table 32: Hyperparameters considered in Q-network of DQN 

Hyperparameters Description Rational 
Range (min-

max) 

Hidden layer 1 
Number of neurons in 

the hidden layer 1 

Assist the neural network in 

selecting the best 

combination of features 

based on predefined hidden 

nodes 

[32 -256] 

Hidden layer 2 
Number of neurons in 

the hidden layer 2 

Assist the neural network in 

selecting the best 

combination of features 

based on predefined hidden 

nodes 

[64-512] 

Learning rate 

Determine how fast 

the model learns and 

generalizes from data 

to reach its desired 

accuracy level quickly 

A high learning rate speeds 

up training but also lead to 

overfitting if set too low 

[0.001-0.1] 

Epoch 

Epochs are the 

repetition of learning 

process until the 

network system 

calculates an optimal 

solution based on the 

given data inputs 

As the number of epochs 

increases, the weights in the 

neural network are changed 

more frequently, and the 

curve shifts from 

underfitting to optimal to 

overfitting. 

[0-50] 
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Table 33: Configuration of optimized hyperparameters in network model of DQN 

Hyperparameters 

/Datasets 

Nodes in 

hidden 

layer 1 

Nodes in 

hidden 

layer 2 
Learning rate Epoch 

Columba 512 16 0.01 50 

Bugzilla 64 128 0.001 50 

Postgres 64 128 0.01 50 

JDT 320 16 0.01 50 

Platform 160 80 0.001 50 

Mozilla 480 240 0.01 50 

 

 

Figure 52: Accuracy of network model for each tuning trial 
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5.2.6 Experimental Results 

In this section, the experimental results of DQN in JIT-SDP when compared to 

baseline frameworks. The results given are based on the average performance for each 

prediction settings. Several forms of the result are presented in Table 35 until Table 43. 

The results in bold font represent the best values among the group of contrastive 

experimentation. A red background value indicates the corresponding baseline 

framework, which is better than the proposed framework and other frameworks. In 

contrast to a green background, it represents the result of the proposed framework better 

than other frameworks. 

1) Within project prediction  

Table 34 Table 35 and Table 36 respectively, summarize the proposed frameworks 

and baseline models with the results of F-score, Benefit, and Popt over the six projects. 

From Table 34, following results are recorded. First, the proposed framework of 

DQNKCO outperformed baseline frameworks in three datasets of Postgres, JDT and 

Mozilla with highest F-score of 58%, 33%, and 22% respectively. Secondly, in the 

remaining datasets, NNKCO and CBS produce better F-score in Columba, Bugzilla and 

Platform datasets. The resulting F-score is consistent with the initial expectation. KCO 

assists both NN and DQN classifiers in providing reasonable training sets, which results 

in better performance than those without KCO frameworks. According to Table 35, 

effort awareness based on Benefit demonstrates CBS, NNRUS, and DQNRUS perform 

better than DQNKCO in Bugzilla, Platform, and Mozilla, respectively. Despite that, 

DQNKCO still remains the best framework for the JIT-SDP model, outperforming all 

other frameworks by achieving the highest Benefit with 27%, 23%, and 14% of defect 

predicted in Columba, Postgres and JDT respectively. In term of Popt metric as shown 

in Table 36, DQNKCO achieves the best performance in two out of the six projects, 
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which is comparable to LT’s performance. From the result, JIT-SDP model by 

DQNKCO is unable to produce an optimal model performance based on Popt when 

considering the current datasets. On average, the prediction models by DQNKCO only 

achieve around 60% for highest area under curve of Popt.  

Table 34: Prediction accuracy in within project prediction 

Datasets/ 

Frameworks 
Columba Bugzilla Postgres JDT Platform Mozilla 

EALR 51.4 57.8 51.9 28.7 27.6 14.2 

LR + KCO 53.7 55.9 49.6 28.6 32.3 13.9 

LT 34.7 40.6 30 17.2 19.6 7 

CBS 54.6 60.2 55.6 30 28.2 14.4 

NN + RUS 52.1 55.7 52.3 29.2 33.9 15.5 

NN + KCO 58.3 56.9 51 32.1 38.2 15.4 

DQN + RUS 56.9 52.6 56.2 29.6 36 18 

DQN + KCO 52.8 55.6 58.2 32.8 36.8 21.8 

 

Table 35 : Benefit of effort awareness in within project prediction 

Frameworks/ 

Datasets Columba Bugzilla Postgres JDT Platform Mozilla Wins 

EALR 23.9 32.8 22.2 12.8 14.3 4.6 0 
LR + KCO 24.0 21.3 19.3 10.3 13.9 4.6 0 

LT 16.6 19.2 12.9 8.4 9.7 2.2 0 
CBS 24.3 33.7 17.7 9.1 7.1 5.5 1 

NN + RUS 25.3 30.5 22.3 13.9 15.2 5.3 1 
NN + KCO 25.2 21.6 20.1 12.1 14.4 5.1 0 

DQN + RUS 23.4 22.7 23.1 12.1 14.7 7.8 1 
DQN + KCO 26.6 30.6 23.2 14.3 14.7 6.5 3 
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Table 36 : Popt performance in within project prediction 

Frameworks/ 

Datasets 
Columba Bugzilla Postgres JDT Platform Mozilla Wins 

EALR 40.5 61.1 46.6 50.6 51.0 46.0 1 

LR + KCO 35.7 47.4 36.7 40.0 45.8 44.3 0 

LT 48.1 48.6 55.3 50.2 48.0 52.3 2 

CBS 45.4 53.3 49.0 49.3 47.5 52.7 0 

NN + RUS 42.0 61.6 45.1 48.6 48.0 49.3 0 

NN + KCO 30.0 50.2 35.5 50.6 42.3 46.3 0 

DQN + RUS 28.3 50.2 34.2 54.7 45.2 54.2 1 

DQN + KCO 40.0 62.6 43.5 50.8 42.3 55.1 2 

 

2) Cross project prediction 

Further comparison of proposed framework of DQNKCO with baseline frameworks 

for cross predictions are shown in Table 37, Table 38 and Table 39 for F-score, Benefit 

and Popt respectively. For F-score based on average value in Table 37, DQNKCO 

significantly perform better than all baseline frameworks in majority of datasets by three 

out of six projects. The average F-score of DQNKCO ranges from 26% to 45%. 

DQNRUS is also able to achieve the highest F-scores in Postgres and Platform thanks to 

the efficacy of DQN in classifying code change in reducing false alarm results. Even 

though DQNRUS and DQNKCO perform better in almost all projects, under across 

prediction, EALR did better for the Bugzilla project. According to Benefit in Table 38, 

DQNKCO followed by DQNRUS and EALR outperform other baseline frameworks. 

Overall, the observation indicates DQNKCO provides best performance, identifying 

12% to 24% defects based on a 20% effort to inspect all changes. Moreover, effort 
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awareness under Popt in Table 39 shows that DQNKCO unable to perform better than 

other baseline frameworks except for JDT project. Simple unsupervised model by LT 

on the other hand, dominates the highest Popt metric for three out six projects. 

Surprisingly, the prediction model under the current baseline frameworks and proposed 

framework are incapable to generate near optimal solutions with only less than 60% of 

Popt. 

Table 37: F-scores in cross prediction of baseline frameworks 

Datasets/ 

Frameworks 
Columba Bugzilla Postgres JDT Platform Mozilla 

EALR 28 29 28 35 33 39 

LR + KCO 27 28 28 34 31 38 

LT 23 22 24 26 26 28 

CBS 27 28 28 34 32 37 

NN + RUS 31 27 28 31 37 42 

NN + KCO 30 26 27 38 35 41 

DQN + RUS 30 22 31 33 40 38 

DQN + 

KCO 
38 26 27 41 35 45 

 

Table 38: Benefit of effort awareness in cross project prediction  

Datasets/ 

Frameworks 
Columba Bugzilla Postgres JDT Platform Mozilla Wins 

EALR 8 8 14 11 14 15 1 

LR + KCO 7 9 13 12 14 15 0 

LT 11 10 12 13 12 14 0 

CBS 7 8 13 11 14 14 0 

NN + RUS 9 8 13 14 16 18 0 

NN + KCO 7 11 13 14 14 17 0 

DQN + RUS 7 12 13 15 18 20 1 

DQN + KCO 12 22 13 18 13 24 4 
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Table 39: Popt performance in cross project prediction 

Frameworks/ 

Datasets 
Columba Bugzilla Postgres JDT Platform Mozilla Wins 

EALR 35 45 52 42 47 39 0 

LR + KCO 33 46 51 43 41 38 0 

LT 53 51 50 49 50 50 3 

CBS 37 45 51 46 46 40 0 

NN + RUS 36 51 55 43 46 38 1 

NN + KCO 33 56 47 44 42 39 1 

DQN + RUS 35 53 47 40 47 46 0 

DQN + KCO 35 52 47 55 39 41 1 

 

3) Timewise prediction 

The empirical results presented in Table 40 demonstrate that compared to the 

baseline framework with random undersampling (RUS), the classification performance 

of DQNKCO is superior. Additionally, CBS, NNRUS, and EALR frameworks are 

comparable based on a "win/draw/loss" analysis. These frameworks achieve comparable 

or drawn in F-score performance for Postgres and JDT datasets. In conclusion, the 

experimental result in timewise prediction indicates that DQNKCO is superior to other 

baseline frameworks in achieving a good F-score by achieving two wins. Results for 

effort awareness for each timewise prediction are given in Table 41 and Table 42. For 

Benefit metric, based on average value, DQNKCO predicts the highest scores with 20%, 15%, 

and 6% of defects when using 20% effort for Postgres, Platform and Mozilla. Nonetheless, the 

performance of DQNKCO and NNRUS in the Mozilla project is comparable. Meanwhile, Popt 

for DQNKCO performs worse than baseline frameworks, particularly in lower imbalance ratio 

datasets. Overall, DQNKCO's performance for Popt is unable to outperform other frameworks 
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in terms of producing superior results. DQNKCO generates an average score of between 34% 

and 51% for achieving the best models for effort awareness. 

Table 40: F-scores in timewise prediction of baseline frameworks 

Datasets/ 

Frameworks 
Columba Bugzilla Postgres JDT Platform Mozilla Win/Draw/Loss 

EALR 39 52 51 25 28 16 1/1/4 

LR + KCO 38 51 50 25 27 15 0/0/6 

LT 28 42 30 16 20 8 0/0/6 

CBS 38 51 51 26 28 16 0/2/4 

NN + RUS 40 51 51 26 30 17 0/2/4 

NN + KCO 40 50 50 25 30 15 0/0/6 

DQN + RUS 41 50 50 26 29 15 1/1/4 

DQN +KCO 37 49 48 23 32 18 2/0/3 

 

Table 41: Benefit of effort awareness in timewise prediction  

Frameworks

/Datasets 
Columba Bugzilla Postgres JDT Platform Mozilla 

Win/Draw

/Loss 

EALR 12 25 19 10 14 5 1/1/4 

LR + KCO 13 24 19 9 13 5 0/0/6 

LT 11 21 12 6 10 3 0/0/6 

CBS 12 24 19 10 13 5 0/1/5 

NN + RUS 13 23 19 10 14 6 0/2/4 

NN + KCO 12 23 19 9 14 5 0/0/6 

DQN + RUS 14 21 18 9 14 5 1/0/5 

DQN + KCO 10 23 20 8 15 6 2/1/3 
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Table 42: Popt performance in timewise prediction 

Frameworks/ 

Datasets 
Columba Bugzilla Postgres JDT Platform Mozilla Win/Draw/Loss 

EALR 31 55 41 51 48 54 1/2/3 

LR + KCO 28 54 42 50 47 49 0/0/6 

LT 39 53 47 49 49 50 2/1/3 

CBS 37 55 40 51 49 53 0/3/3 

NN + RUS 32 52 41 49 48 51 0/0/6 

NN + KCO 38 53 44 48 46 49 0/0/6 

DQN + RUS 31 55 42 50 48 52 0/1/5 

DQN + KCO 34 51 45 48 49 51 0/1/5 

 

5.2.7 Discussion  

1) Performance comparisons under different prediction scenarios 

Recently, many studies used various prediction scenarios to perform JIT defect 

prediction (Zhao et al., 2023). To compare with these works, this experiment analyses 

different prediction settings for the baseline frameworks and the proposed framework. 

Table 34, Table 37, and Table 40 present the performance of DQNKCO and other 

baseline frameworks in term of F-scores. According to these results, DQNKCO 

consistently outperforms baseline frameworks for the majority of project datasets. 

DQNKCO generates good classification results, particularly in within and cross project 

predictions, because the training datasets provided by KCO are sufficient and diverse to 

construct a good prediction model. As with timewise predictions, each training fold has 

a unique imbalance distribution that reflects the proportion of defect data collected 

during software development. Since the data is split, most training folds have a limited 

amount of data. This may negatively affect the model's performance. The model may 
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not be able to learn complex patterns and generalize well to unseen data due to the 

limited number of instances available for training during certain periods. Considering 

the different imbalance proportions, DQNKCO is unable to consistently make better 

timewise predictions in most projects. In order for DQNKCO to function effectively, it 

requires a diverse defect data to be included in the model training process.   

When the effort awareness of the prediction model constructed by the baseline and 

proposed framework is evaluated, DQNKCO obtains the best cases, particularly for 

Benefit, with 11/18 when making predictions across three prediction settings. However, 

when the Popt metric is considered, unsupervised learning by LT achieves the highest 

average score. This observation suggests that while LT provides more near optimal 

models across test cases, it performs less effectively in predicting true defects within 

20% effort when the Benefit is considered. DQNKCO, on the other hand, by utilising 

supervised reinforcement learning, more defects are predicted within limited effort and 

still have competitive performance to the baseline framework for Popt. Even though 

different predictions are involved, the above observation demonstrate the proposed 

framework capable to predicting more defects in limited inspection effort despite not 

reaching near-optimal models (i,e. referring to Popt) for effort aware JIT-SDP.  

2) The impact of different combination of resampling and classifiers approaches  

For prediction accuracy observation, the proposed framework is remarkable to 

produce a better prediction model with F-score on average when compared to the 

baseline frameworks such as EALR, LT, and CBS. The results are not significantly 

improved by the proposed framework. The reason is due to the capability of KCO only 

benefits from high-class imbalanced datasets as presented in JDT, Platform and Mozilla. 

The implementation of KCO in resampling produce better training sets for DQN to 

perform better in those datasets but poor in other datasets with smaller imbalanced 
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datasets.  Furthermore, the performance of the model constructed through KCO 

oversampling is observed to be superior to that of the RUS technique. Oversampling via 

KCO provides diverse training sets for NN and DQN, allowing them to perform 

significantly better in F-score predictions. With the assistance of KCO in rebalancing 

the class distribution of project datasets, NN and DQN capable to effectively deal with 

highly imbalanced data, particularly for within and across project predictions.  

Ghotra et al. (2015) pointed out that the choice of different classification techniques 

produces a significant impact on the performance of defect prediction models. Thus, the 

combination of resampling techniques and strong classifiers such as DQN and NN 

typically outperforms simpler classifiers in this case LR, SVM and NB. In particular, 

DQNKCO and DQNRUS outperform in terms of consistently improving F-score 

performance across multiple prediction cases. Meanwhile, baseline frameworks such as 

NNKCO and NNRUS outperform those frameworks that use a simpler classifier, such 

as EALR and CBS, which both use a logistic regression classifier. This implies that it is 

vital to train the prediction model using strong classifiers such as DQN and NN to 

ensure consistency and reliability of prediction results. The above observations indicate 

that different base classifiers usually help the frameworks to obtain preferable 

performance for JIT-SDP model. Particularly for DQN, we can observe that the 

improvement of DQN in reducing false positives by achieving reliable performances in 

Benefit compared to the baseline classifiers. The main reason is DQN capable to avoid 

of producing high number of false positives with help of reward policy during the 

model training (Section 4.3.3). The reward policy enables the model to learnt based on 

reward and punishment mechanism which in turn help in minimizing the false defects 

and maximize the true defects predicted. Another important factor that affects 

performance is the buffer memory of agent in DQN that helps to supply the model with 

sufficient training data in replay batch despite of having small defect data. Software 
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project datasets in this experiment have different imbalance class properties. In respect 

to this observation, the limited defect data is handled by the capability of replay 

memory in DQN to provides more diverse training data for the trained neural network. 

In overall, above analysis indicates that the proposed framework DQNKCO capable to 

obtain stable and promising performance no matter weather predicting defective 

changes for within project, cross project or timewise predictions.  

5.2.8 Threat of validity  

How is the performance of the proposed framework under different settings? 

The widely used open-source software projects considered by the proposed 

framework are large enough to allow drawing statistically meaningful conclusions. The 

proposed framework uses the same datasets that are used in previous effort-aware JIT-

SDP studies (Kamei et al., 2013; Kondo et al., 2019; Li et al., 2020; Pascarella et al., 

2019). The results are not generalizable to other software projects that have features 

different from those of the studied datasets. The defect-inducing changes are discovered 

by the commonly used SZZ algorithm and incomplete. Furthermore, the measure of the 

effort required to review a change is considered as the total number of lines modified by 

that change, which reflect inconsistent with that in the real world. However, the threats 

represent problems inherent to most studies and need to be further explored by further 

research.  

How generic is the proposed framework DQNKCO? 

The proposed framework has capability of producing a good trade-off of accuracy 

and lower false positives prediction. With this capability, the proposed framework is 

applicable to other research domains that related to the problem of high false positives 

prediction in imbalanced class datasets. However, the effect of classifier selection for 
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the framework is still unknown. Here, the proposed framework considered ANN as a 

base classifier within DQN modelling. The effectiveness of other deep learning 

classifiers remains unverified and needs to be studied in the future. Furthermore, the 

independent variables used by the proposed framework are commonly used change 

metrics (Kamei et al., 2013). The degree to which the metrics accurately measure the 

concepts that intend to measure is already investigated. The distribution of effort value 

is not the same as that reported in prior results, which results in reaching conclusions 

different by this framework. Nonetheless, the construct validity of the independent 

variable is considered acceptable in this research 

5.2.9 Conclusion 

The feasibility of the proposed framework, as well as baseline frameworks, is 

investigated in this experiment. To demonstrate the effectiveness of DQNKCO, an 

extensive comparison experiment is carried out. The results of six software projects 

show that DQNKCO produces a considerable advantage over the baseline frameworks. 

DQNKCO, on the one hand, improves the ability to predict defective changes within 

imbalanced datasets while ensuring high prediction performance with the goal of 

reducing false positives. In the prediction scenarios, it outperforms almost all compared 

frameworks. DQNKCO, on the other hand, retains the advantage of deep reinforcement 

learning models to emphasise predicting more defects with limited effort while taking 

into account of producing small false positives. Despite DQNKCO is very effective in 

effort aware JIT-SDP, it is overlooked in existing studies. With high prediction 

effectiveness and potential of reaching near-optimal models, it is a good choice for 

practitioners to implement DQNKCO in practice.  
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CHAPTER 6: CONCLUSION 

This chapter summarizes the study by elaborating on the achievements throughout the 

research. It highlights the most critical findings over the course of this research and the 

limitations that accompany them. Finally, the chapter wraps up with suggestions for 

future works in the domain to enhance the proposed framework in the future. 

6.1 Contributions 

The research started by exploring the software defect prediction domain in general. 

The research dug deeper into the domain and proposed an updated classification 

taxonomy of JIT-SDP with respect to inaccurate prediction issue besides critically 

reviewing the latest works and other issues related to the domain. Based on the review, 

this research proposed the improved approach of JIT-SDP as an alternative solution to 

address the gaps in rebalancing imbalance class distribution and reducing false positives 

prediction. The proposed framework utilized deep reinforcement learning with 

improved oversampling strategy and demonstrated significant performance in predicting 

software defect at code change level prediction. The study also evaluated the proposed 

framework using several prediction settings, including within project prediction, cross 

project prediction and timewise prediction to provide reliable validation and 

performance benchmarks. Throughout the process of developing the entire framework, 

the study successfully produced several achievements as follows. 

1. An updated classification taxonomy for accurate prediction in JIT-SDP. 

Throughout the review, this research discovered the lack of a standard 

classification taxonomy in the domain of JIT-SDP. Specifically, Chapter 2 

reviewed the existing approaches in data pre-processing and modelling of JIT-

SDP regarding machine learning aspects. Thus, a new updated taxonomy of JIT-
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SDP is presented, emphasizing the machine learning and data pre-processing 

factors contributed toward achieving an accurate JIT-SDP model. 

2. A reliable enhanced oversampling technique for imbalance datasets. Most of 

existing studies utilized random based under-sampling technique for addressing 

imbalance datasets. However, this research proposing a new oversampling 

technique based on kernel analysis and spectral clustering to provides a better-

balanced class dataset. During identification of feasible spaces for interpolate, 

KPCA is utilized to select top candidate for data template. With selected 

candidate data for interpolate, cross interpolation across multiple generations is 

then conducted to achieve the desired class distributions. The outcome of this 

oversampling, rebalancing of class imbalance data in modelling of JIT-SDP 

became more reliable and quality of training datasets.  

3. A robust deep reinforcement learning architecture for effort aware defect 

prediction. Previous classifiers for JIT-SDP adopted supervised, unsupervised 

and semi-supervised learning approaches to building the prediction model. This 

study however utilized deep reinforcement learning which exploiting the 

usefulness of Deep Q-Network to reinforce the learning process under a 

restricted policy. The policy is inspired by acts during code review process. For 

every correct predicted result, the model is given reward and vise verse for 

falsely predicted results. The reward policy learning encourages the prediction 

model to minimise the possibility of producing false positives while maximising 

prediction results. The training of the JIT-SDP model with DQN is appropriate 

for sequential or mini batches data, allowing it to adapt to data drift more 

effectively. The issue of re-training JIT-SDP models is well handled in the 

sequential learning approach by this solution, which is an inherent problem with 

most classifiers. 
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4. A framework for modelling JIT-SDP. The study develops a framework for 

developing a comprehensive JIT-SDP that reduces the possibility of false alarms 

as well as predicting defects. This framework identifies potential risky changes 

before they are incorporated into the codebase, thereby mitigating their risk. A 

novel oversampling and classifier are also proposed in this framework, which 

considers the most influential factors (rebalancing data and choice of classifier) 

that influence the prediction of software defects. This framework produces better 

classification results for code changes during software development as a result. 

6.2 Research limitations 

Despite of having all significant achievements in previous section, several 

limitations faced during throughout this research. The identified limitations provide 

room for improvements and future research opportunities.  

1. Input of software metrics. The JIT-SDP model is affected by the uncertainty of 

input data. In different releases, metrics are distributed differently. As a result, 

the training and testing data sets do not have similar distributions, i.e., the 

training data no longer matches the current project data. Concept drift is not 

fully addressed by the current proposed approach in the context of online 

learning.  

2. Software project datasets. The datasets used in this study are from an open-

source repository (GitHub). Data from private/commercial company repositories 

is not included in this study. It is possible that the results are biased towards 

open-source systems due to defects reported on them. Depending on the design 

of a program, results are not applicable to industry context yet.   

3. Optimization of hyperparameters coverage. JIT-SDP models encode the 

regularities in a set of model parameters. An important concern is whether we 
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can uniquely determine the model parameters from the input data, either 

theoretically or numerically. This is called the parameter optimization problem. 

In this study however, parameters optimization only limited to hyperparameters 

for neural network within DQN. Due to limited resources and time constraint, 

several other hyperparameters for DQN such as choice of reward policy, epsilon 

value and decay rate are based on default settings. The performance of DQN in 

different hyperparameters settings is unknown and untestable. 

4. The usability of the proposed approach. The proposed of JIT-SDP consist of 

three development phases. However, for each phase, specific processes 

unsuitable or generalized well with other OSS project other than those tested in 

this research. For example, the proposed KCO is not ideal to be implemented in 

small datasets and overly diverse distribution data due to orthogonal 

transformation unable to be done effectively. Besides, DQN proposed here will 

not perform well in case of noisy training data sets is not well treated because 

more duplicated instances lead to overfitting model. DQN underperform toward 

overfitted model when the training data have more duplicated instances which 

hindered from learning the whole data pattern. 

6.3 Future Works 

Apart from the current works discussed in previous sections, several interesting and 

emerging topics still relevant in JIT-SDP study including data privacy, software metrics 

and defect severity priority.   

Data privacy. Data privacy requires publicly available defect datasets to accelerate 

cross-project defect prediction studies. Due to sensitive attribute values, software 

companies are reluctant to share their defect datasets. Consequently, cross-project defect 

prediction studies typically involve open-source software or only a few proprietary 
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systems. Cross-project validation revealed significant performance degradation for most 

of the datasets studied for JIT-SDP approaches in this research. In this case, JIT-SDP 

could modify instances at a random distance while maintaining the class boundary. So, 

JIT-SDP could preserve original datasets and still achieve superior prediction 

performance as in models trained from original defect datasets. Investigating privacy 

issues in cross-project JIT-SDP is required because evaluation of prediction models will 

stronger if we have more available private datasets. Simply increasing the size of the 

training data does not improve the prediction accuracy of the investigated approaches. 

Given the wealth of data available from code repositories, we believe that a finer-

grained JIT is possible. 

Software metrics. Software metrics are the most prevalent type of measurement in 

software artefacts. As demonstrated in the preceding chapter, the potential of current 

software metrics has nearly been realised, as there is no significant improvement in 

prediction performance regardless of the classifiers chosen. Thus, future attempts will 

necessitate a wider adoption of other measures, particularly by utilization of ITS-based 

data. In ITS, developers describe and discuss change requests, provide feedback on the 

code for code review, and suggest future improvements. Although uncommon, ITS data 

such as issue reports, discussions, and change requests could be useful to JIT-SDP, 

especially for predicting future changes to address reported issues. By using this data in 

addition to software change metrics will perform better than those using only software 

change metrics. These data sets will facilitate a wider adoption and further investigation 

of the ITS data in JIT-SDP. New metrics and models must be continuously investigated. 

As a result, it is necessary to continue investigating project context factors and software 

metrics, as well as their relationship with defect prediction results, given that a variety 

of software metrics derived from a variety of data sources aid in enhancing defect 

predictive performance. With the ability of the proposed approach DQN and KCO to 
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deal with large combinations of metrics (multidimensional data), the use of ITS data 

with current metrics is required in the future improve prediction performance. 

Defect severity. In effort-aware JIT-SDP, the current quality assurance effort is 

measured by the reviewed lines of code. Future JIT-SDP implementations utilising the 

proposed framework need to consider alternative quality assurance effort measures, 

such as differentiating the efforts to address various types of failure. In fact, software 

defects produce result in a variety of failure types and occurrences at various stages of 

software development. Consequently, the severity of software defects in various 

locations varies. The potential further works for JIT-SDP exist for predicting and 

prioritizing defect severity as a multiclass classification problem, with the defect 

severity classes serving as the dependent variable. Moreover, incorporating the 

proposed JIT-SDP approach with static defect localisation is beneficial for defect 

management. Using semantic abstractions of the source code, localisation defects are 

detected. Consequently, combining JIT-SDP and defect localisation could be mutually 

compensatory, as they can detect various types of defects (severity). Moreover, defect 

localisation with a warning system prioritised by JIT-SDP could result in superior 

performance compared to native defect localisation. 

6.4 Research Impact 

The proposed framework driven toward automated code review, which is the 

process of reviewing source code automatically using a predefined set of rules to 

identify inefficient code or defects. Automated code review is essential for standardising 

and scaling software development efforts within an organisation. Since the review 

process handles the majority of common source code defects, human reviewers can 

concentrate on higher level code issues. It is a cost-effective strategy because it 

automates portions of a code review that are not susceptible to human error, avoid 
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incorporate personal bias, and quickly identify defects. Thus, a robust review process 

allows developer teams to spend less time and money on bad code. Consequently, 

organization can achieve a valuable and sustainable competitive advantage. 

The pandemic heightened the need to reduce software development costs, and many 

organisations made this a top priority. The development phase is a natural starting point 

for cost reductions. According to Gartner analyst Robert Snow (2021), new application 

development accounts for 17% of total IT expenditures, making it a fruitful area to 

search for opportunities to reduce costs, optimise expenditures, or increase value. 

Through JIT-SDP of the proposed framework, agile application design and development 

teams employ tactics that combine short-term savings via static analysis of JIT-SDP 

with strategic long-term savings via software testing. As Malaysian organisations 

accelerate their transformation plans, it is imperative that they incorporate more 

advanced static analysis technology, such given by the proposed JIT-SDP into their 

software development strategies. 

Encourage the application and use of artificial intelligence (AI) and software 

innovation as a locally made service to empower future technology in alignment with 

the Twelfth Malaysia Plan (12MP) under the Malaysia Digital Economy Blueprint. This 

will help create more highly skilled and experienced talents. It is an initiative towards 

the achievement of ICT excellence in supporting the development of digital 

government, with the advancement of the proposed JIT-SDP being accomplished 

through automated code review. The initiative conducts quality assurance checks on 

various software and information technology (IT) projects carried out by the 

government. In addition, the possibility of software delays and security breaches is 

reduced so as to maximise the likelihood of producing high-quality software. 
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