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 SOUND QUALITY CLASSIFICATION OF WOOD USED FOR SARAWAK 

TRADITIONAL MUSICAL INSTRUMENT- SAPE 

ABSTRACT 

Sape, a traditional musical instrument in Malaysia, is meticulously handcrafted 

through a complex process. Each Sape, crafted by various makers, differs in size, 

materials, and design, leading to variations in their quality. Despite individual methods 

employed by Sape makers to assess quality during production, a standardized guideline 

for quality inspection remains absent. This research aims to delineate the primary 

factors influencing Sape quality, employing both qualitative and quantitative 

methodologies. Initial stages involved gathering insights from seasoned Sape makers 

and players through questionnaires and focus group discussions, revealing material as 

the foremost quality determinant in the Sape. Subsequently, the focus shifted to 

investigating common woods used in Sape construction, specifically Adau, Tapang, and 

Merbau, representing light, medium, and heavy hardwood categories, respectively. 

Rectangular wood samples simulating Sape soundboards were created, and sound data 

was recorded through flexural vibration tests. Expert evaluations of the sound quality 

were conducted via listening tests. Utilizing MATLAB's MIRToolbox, 18 acoustic 

properties were extracted from the wood samples. Statistical analyses were employed to 

identify the most reliable quality ratings. To address dataset imbalances, Synthetic 

Minority Oversampling Technique was used, enhancing dataset quality before training 

40 machine learning classification algorithms. Among these, the Gaussian-kernel 

Support Vector Machine stood out, achieving remarkable performance with 88.18% 

validation and 93.37% test accuracies. This model was employed to build a MATLAB-

based Sape sound quality classifier. Utilizing the Shapley Additive Explanations 

interpretation method, the analysis emphasized the importance of selected features in 

predicting wood acoustic quality, highlighting "Spectral Roll-off 85%" as the most 
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crucial predictor of sound quality. Finally, a user-friendly Graphical User Interface was 

developed to aid Sape makers in assessing wood quality objectively, enhancing the 

process of selecting high-quality Sape instruments. 

Keywords: Sape, traditional musical instrument, soundboard, machine learning, 

quality of musical instrument. 
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PENGKLASIFIKASIAN KUALITI BUNYI KAYU YANG DIGUNAKAN 

UNTUK ALAT MUZIK TRADISIONAL SARAWAK - SAPE 

ABSTRAK 

Sape, sebuah alat muzik tradisional dari Malaysia, dihasilkan secara teliti melalui 

proses yang kompleks. Setiap Sape yang dihasilkan oleh pembuat yang berbeza 

mempunyai perbezaan dalam saiz, bahan, dan reka bentuk, yang menyebabkan variasi 

dalam kualitinya. Walaupun setiap pembuat Sape menggunakan kaedah individu untuk 

menilai kualiti semasa pengeluaran, panduan piawai untuk pemeriksaan kualiti masih 

belum ada. Kajian ini bertujuan untuk mengenal pasti faktor-faktor utama yang 

mempengaruhi kualiti Sape, dengan menggunakan kaedah kualitatif dan kuantitatif. 

Fasa awal melibatkan pengumpulan pandangan daripada pembuat dan pemain Sape 

berpengalaman melalui soal selidik dan perbincangan kumpulan fokus, yang 

menunjukkan bahan sebagai penentu kualiti utama dalam Sape. Seterusnya, tumpuan 

bertukar kepada penyelidikan kayu yang biasa digunakan dalam pembinaan Sape, iaitu 

Adau, Tapang, dan Merbau, mewakili kategori kayu keras ringan, sederhana, dan berat 

masing-masing. Sampel kayu segi empat yang mensimulasikan papan bunyi Sape 

dicipta, dan data bunyi direkod melalui ujian getaran lentur. Penilaian pakar terhadap 

kualiti bunyi dijalankan melalui ujian mendengar. Dengan menggunakan MIRToolbox 

MATLAB, 18 sifat akustik diekstrak dari sampel kayu tersebut. Analisis statistik 

digunakan untuk mengenal pasti penilaian kualiti yang paling dipercayai. Bagi 

menangani ketidakteraturan dataset, Synthetic Minority Oversampling Technique 

digunakan untuk meningkatkan kualiti dataset sebelum melatih 40 algoritma pengelasan 

pembelajaran mesin. Antara ini, Gaussian-kernel Support Vector Machine menonjol 

dengan prestasi yang luar biasa dengan ketepatan pengesahan 88.18% dan ketepatan 

ujian 93.37%. Model ini digunakan untuk membina pengelas kualiti bunyi Sape 

berdasarkan MATLAB. Dengan menggunakan kaedah tafsiran Shapley Additive 
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Explanations, analisis menekankan kepentingan ciri-ciri tertentu dalam meramalkan 

kualiti akustik kayu, dengan menonjolkan "Spectral Roll-off 85%" sebagai peramal 

yang paling penting bagi kualiti bunyi. Akhirnya, Graphical User Interface yang mesra 

pengguna dibangunkan untuk membantu pembuat Sape menilai kualiti kayu secara 

objektif, meningkatkan proses memilih instrumen Sape berkualiti tinggi. 

Kata Kunci: Sape, alat muzik tradisional, papan bunyi, pembelajaran mesin, kualiti 

alat muzik. 
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1 

CHAPTER 1: INTRODUCTION 

 

1.1 Background 

Malaysia is a multiracial and multicultural nation which is richly blessed with nature 

diversity and unique heritage. Sarawak, which is a largest state in Malaysia, is 

recognised for having indigenous populations made up of more than 40 sub-ethnic 

groups and a wide variety of cultures. Traditional cultural heritage is what Sarawak is 

famous for and traditional musical instruments are one of them. There are more than 40 

traditional musical instruments in Malaysia which comprises of percussion, string, and 

wind instruments. Among many, Sape is undoubtedly one of the most seen traditional 

musical instruments in Sarawak. The Sape, a traditional lute of the Orang Ulu people, 

sometimes known as the upriver people, of central Borneo. It was formerly only used in 

healing rites held in rumah panjang (longhouses), later evolved into a social instrument 

used for entertainment. 

 

1.1.1 Sape 

Sape or Sambe is one of the most popular traditional plucked lute musical 

instruments among the locals in Sarawak, Malaysia particularly the Orang Ulu (Kayan, 

Kenyah, Kelabit). The Kenyah are the renowned exponents of this instrument. 

Throughout the years, the Kayan, Kelabit, Iban, and Penan have also adopted this 

traditional musical instrument. The word “Sambe” means to ‘brush lightly with the 

fingers’ is the description of the technique used by the Sape players to Sape 

characteristic ornamentation (Chong, 2014). However, the term “Sape” is now widely 

used. Sape is categorised as a chordophone family of the instrument and originated from 

the Long Nawang, Kabupaten Bulungan which is located at the border between 

Sarawak, Malaysia, and Kalimantan, Indonesia.  
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It is believed that the idea of Sape came from a Kenyah man, who was looking for 

medicinal herbs in the forests for his sick wife. While he was resting under a tree, he fell 

asleep, and in his dream, the ancestors told him that he needed to find transportation to 

save his wife from the spirit world. The man, therefore, carved a wooden Adau wood 

into the instrument with the shape of a boat. The instrument is played to pave the way 

for his wife’s return to the human world (Edward, 2018). Initially, the use of Sape was 

restricted to ritual, healing, or death activities. However, today it is also used in 

celebration, self-entertainment, and musical performances (Lim et al., 2020).  

Sape is a short-necked, plucked string-type instrument and has a shape like a guitar. 

It is carved from a single bole of wood, usually the Adau, Meranti, and Merdang 

(Gorlinski, 1989). The elongated body is hollowed out from the back and functions as a 

resonator. The strings were made from sago tree or rattan originally, but now these have 

been replaced by nylon or guitar steel strings. Originally, the Sape is a two-stringed 

instrument as what is described in the past (MacDonald, 1956; Myers, 1914; Roth & 

Low, 1896; Shelford, 1904). One string is used for the melody and the three movable 

frets are placed beneath it. The other one, without the frets, plays the rhythmic accents 

or the drone. The moveable frets will be adjusted according to the repertoire of the 

songs played. The frets are made of bamboo or rattan and are usually glued to the body 

of the Sape using beeswax. 

Today, traditional Sape has evolved into three, four, or five strings. Due to this, Sape 

is now capable of playing a wider note range of up more than three octaves. The fret 

arrangement follows the western major scale. The number of frets used for the melody 

strings has also increased in number compared to the traditional Sape back in the former 

times. More frets are added to the traditional Sape so that the pentatonic scale can be 
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played. However, additional frets could be added to produce a diatonic scale. The 

diatonic scale is often used in contemporary Sape (Lim & Abdul Rahman, 2016).  

The strings are attached to the tuning pegs inserted into the head of the Sape and at 

the other ends, the strings are held in position by the bridge and the pins. At the head, 

the strings run over the piece of wood or rattan which is called zero frets as shown in 

Figure 1.1. Pick-up, volume knob, mono jack socket, and earth grounding are also 

installed in the contemporary Sape. This allows the Sape to amplify the sound played, 

especially during the performances. The body of the Sape is painted with intricate 

decorations upon the completion of the Sape. The decorations are typical for the Orang 

Ulu ethnic group and are based on the maker’s imagination and are usually painted in 

black and red as shown in Figure 1.2 (Pilo, 2018). Some Sape makers will also do some 

decorative carvings on the body including carving the head into a shape like the Borneo 

hornbill.  

 

Figure 1.1: Schematic drawing of Sape 
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Figure 1.2: Traditional musical instrument, Sape 

 

1.1.2 Process of making a Sape 

The process of crafting a Sape musical instrument involves several meticulous steps 

deeply rooted in tradition and craftsmanship. To begin, the selection of wood is a 

critical aspect, often utilizing special wood types like Adau (Elmerrillia mollis dandy), 

Tapang (Koompassia Excelsa), or Merbau (Intsia palembanica). Adau stands out as an 

optimal choice due to its carvability, durability, resilience against cracks, and its 

capacity to produce a resonant humming sound. 

Traditional Sape production necessitates various specialized tools such as beliung, 

bikong, bikong sulok, and asai. The woodcutting phase is pivotal, with no standardized 

size set, as tuning factors and standards differ. Therefore, consistency is maintained by 

sourcing wood from the same tree trunk, cutting it to identical measurements. This 
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wood, harvested from forests, undergoes months of air-drying before the crafting 

commences. 

Upon drying, a 5-foot-tall, 2-foot-diameter wood block is halved and marked for the 

Sape outline. The outer circle guides the carving process, where an axe (asai) is used to 

cut approximately an inch outside the drawn line. Subsequently, the exposed back is 

perforated with bikong, enabling further crafting stages. 

Creating uniformity in shape involves using templates to mark the Sape's design on 

the wood. The body formation spans multiple stages, shaping both sides, hollowing the 

back for a sound hole, and smoothing the front surface. Sound holes are meticulously 

pierced using beliung, influencing the Sape's volume and softness, while side thickness 

also contributes. 

Refinement and smoothing follow shaping, employing long-handled knives and 

modern tools like electric sanders to achieve an even, flawless surface. Drilling precise 

holes for tuning pegs is crucial, dictating string installation and fret placement. 

Traditional tuning pegs, often handcrafted from hard wood, or guitar tuning pegs are 

used, requiring precision in fitting. 

The artistic touch emerges through drawing or carving motifs, typically using 

templates for guidance. Once chosen, the motif is traced or carved, followed by 

painting. String installation precedes pitch fret attachment, with materials evolving from 

traditional rattan and creeper strips to stainless steel or guitar strings for enhanced sound 

quality. 

Fret placement, made from materials like palm wood or bamboo, adheres to fixed 

scales, either pentatonic or diatonic. This intricate process, spanning wood selection, 

carving, drilling, and artistic embellishments, embodies the rich tradition and skilled 
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artistry behind the creation of the captivating Sape musical instrument (Lim et al., 

2020). 

The time taken to make a Sape can vary a lot. It might take from one week to several 

weeks, depending on how much experience the maker has and how much time they can 

spend on it each day. Some makers work on making Sape in their free time after 

finishing their regular jobs. This flexible schedule means that each maker takes their 

own time to finish a Sape. It shows their dedication and passion for crafting these 

instruments. Overall, the process of making a Sape can be quite different for each 

maker, based on their skills and the time they can devote to it, highlighting the personal 

touch and commitment involved in creating these culturally important musical 

instruments.  

1.2 Problem Statement 

Traditionally, the Sape has no standardized measurement or standard tuning. This 

musical instrument is fabricated based on the size of the tree log. Due to the increased 

use and popularity of Sape especially its involvement in the orchestra, band, and others 

ensemble groups, Sape are now usually tuned based on open strings A=440 which is the 

tuning standard for the musical note of A above middle C. This allows the Sape made 

with different materials and sizes to be able to play together with other musical 

instruments (Lim & Abdul Rahman, 2016). 

 However, Sape made by different Sape makers which vary in wood, dimension, 

and design will produce different sound characteristics. For instance, the depth of the 

sound cavity will affect the sound volume and effects of Sape. The thickness of the 

sides also contributes to the sound effects of the Sape (Lim et al., 2016). The sound 

characteristics that differ can be explained by the term “timbre”. According to the 

definition by the oxford university press dictionary, the timbre of the sound refers to 
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“the quality of sound that is produced by a particular voice or musical instrument” 

(Colman, 2015). Sound timbre is independent of pitch and loudness, from which its 

source or manner of production can be inferred. It depends on the relative strengths of 

the components of different frequencies, which are determined by resonance. Therefore, 

different Sape with the same tuning will result in different sound timbre being produced. 

The differences may be subtle for not only the non-musician to notice but even the 

experienced Sape maker and player.   

The diverse crafting approaches for Sape instruments give rise to a significant 

problem—the absence of standardized guidelines for ensuring consistent sound quality. 

With divided opinions among Sape makers and players, a generalized conclusion from 

Sape experts could provide valuable insights. Factors such as Sape specifications and 

preferred materials among experts might shed light on producing the highest quality 

Sape instruments. 

Additionally, the absence of prior research on the acoustic and timbre features of 

high-quality Sape instruments poses a considerable challenge. Specifically, inquiries 

into the sound characteristics valued by Sape makers or players to achieve superior 

quality remain unexplored. Moreover, to ensure the reliability of identified main factors, 

it is essential to investigate the correlation between timbre features and perceived sound 

quality in Sape instruments. The current lack of comprehensive research on this 

correlation creates a significant gap in our understanding. Therefore, addressing this gap 

requires an investigation into the intricate relationship between timbre characteristics 

and the perceived sound quality of Sape instruments. 

Moreover, there is a deficiency in the user-friendly sound quality evaluation system 

for inspecting Sape musical instruments. This gap, affecting both novice and 

experienced Sape makers and players, underscores the necessity of developing a 
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comprehensive system to address these challenges. The reliance on subjective 

assessments by individual Sape makers and players further highlights the need for an 

automated approach. The lack of a standardized and automated system poses 

challenges, leading to variations in evaluations across different instruments. This 

subjectivity, coupled with the lack of systematic guidelines during the crafting process, 

emphasizes the demand for a more objective and automated method of sound quality 

assessment. As the Sape gains prominence in various musical settings, the growing need 

for a reliable method beyond individual perspectives becomes evident, requiring a 

standardized and efficient evaluation process.  

The above problems form the focal points of investigation in this thesis and are 

framed into the research questions in the next subsection. 

1.3 Research Questions 

This study aims to address the complexities surrounding Sape instrument production 

and sound quality evaluation through the exploration of the following research 

questions: 

i) Factors Influencing Sound Quality in Sape Instruments 

- What are the key influential factors that significantly contribute to achieving 

optimal sound quality in Sape instruments, as perceived by experts? 

- Are there specific materials or design specifications that most Sape experts prefer 

for producing superior sound quality? 

ii) Correlation between Timbre Features and Perceived Sound Quality 

- How do variations in dimensions, materials, and designs of Sape instruments 

affect their sound characteristics and timbre? 

- What is the significant relationship between the perceived sound quality of Sape 

instruments and their timbre features? 
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iii) Development of a Sound Quality Evaluation System 

- What are the essential criteria and parameters that should be included in a 

standardized evaluation system for assessing the sound quality of Sape 

instruments? 

- How can a user-friendly and standardized sound quality evaluation method be 

developed to aid Sape makers and players? 

These questions delve into crucial aspects of Sape instrument construction and sound 

quality. The study aims to uncover key factors influencing optimal sound quality, 

explore the relationship between instrument characteristics and timbre, and contribute to 

a standardized evaluation system. The overarching goal is to enhance our understanding 

of Sape instruments and develop improved sound evaluation methods.  

1.4 Research Objectives 

The primary aim of this research is to devise a machine learning-based quality 

classification model capable of effectively categorizing the sound quality generated by 

the Sape musical instrument. To achieve this goal, this work aims to accomplish the 

following objectives: 

i) To identify the key influential factors that affect the sound quality of Sape. 

ii) To determine the significant relationship between the perceived sound quality 

and the timbre features. 

iii) To develop an automated sound quality classification system. 

These objectives collectively aim to lay the foundation for constructing a 

sophisticated machine learning-based classification model that accurately evaluates and 

categorizes Sape sound quality. The comprehensive exploration of influential factors 

and their relationship to sound perception will contribute significantly to the 

development of an automated classification system. 
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1.5 Research Scope 

This research aims to determine the fundamental factors contributing to the sound 

quality of the Sape traditional musical instrument. The primary scope involves 

developing a sound quality classification model for the Sape through a comprehensive 

integration of diverse methodologies, including quantitative and qualitative approaches, 

flexural vibration tests, statistical analyses, and machine learning methods. 

The research comprises six stages: focus group discussions, questionnaires, sound 

quality evaluation, parameter analysis, sound quality classification, and Graphical User 

Interface (GUI) development. Initially, focus group discussions and questionnaires will 

gather perceptions from Sape makers and players regarding potential quality factors of 

the Sape. The most significant factor identified will be further investigated. 

Subsequently, a flexural vibration test will be conducted to capture sound recordings 

from various wood-based soundboard samples. Expert Sape makers will then assess the 

recorded sound quality through listening tests. The sound signals will undergo analysis 

in both time and frequency domains to extract distinctive features from different 

soundboards. Statistical analysis will help select the best sound quality features for 

employment in machine learning classification. Lastly, a GUI will be developed, 

serving as a platform for future Sape makers to analyze soundboard quality during Sape 

fabrication. 

This research is focused on the sound quality production of the Sape musical 

instrument. The sound is generated by plucking the string, the vibration is then 

transferred to the bridge and the body of the Sape. The sound radiation is then amplified 

by the hollowed body of the Sape (Wong et al., 2022). Due to the complexity of this 

sound production, this research is focused only on the most significant factor 

influencing the sound quality of this musical instrument. To determine the significant 
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factors, a quantitative and qualitative study is carried out by collecting the perceptual 

opinions of the Sape players and Sape makers. Most of the participants selected in this 

study are from Sarawak, Malaysia, and have experience in playing and making the 

Sape. 

The results in Chapter 3 showed that the wood type is the most significant factor 

influencing the sound quality of the Sape. Therefore, this research focused only on the 

woods used in making the Sape. There are many types of wood used to make the Sape, 

however, this research selected one type of wood from each of the wood categories 

which are light hardwood, medium hardwood, and heavy hardwood. These selected 

woods are the common woods found and used by the Sape makers in Sarawak.  

For simplicity and convenience of the study, the wood sample used in this research is 

cut into a rectangular soundboard imitating the actual dimension of the Sape body. Even 

though the actual Sape body shape is not the exact rectangular shape as shown in Figure 

1.3, it is believed that the vibration, acoustic, and physical properties of this Sape 

soundboard sample could represent the actual characteristics of the Sape body. It is 

worth noting that the Sape is fully handmade by the Sape maker and therefore, no Sape 

is 100% similar in terms of size, material, performance, etc. The research is therefore 

limited and focused only on the soundboard. The soundboard (top plate) is chosen due 

to its important role in sound generation and radiation, especially in string musical 

instruments (Yoshikawa & Waltham, 2014). This research excludes the contribution of 

other parts of the Sape, such as the side body, neck, and strings. 
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Figure 1.3: The soundboard sample and the actual Sape 

As the focus of this research is on sound quality, the sound produced by the 

soundboard therefore needs to be evaluated by the Sape experts. It is therefore needed to 

get the experienced Sape makers to listen and evaluate the quality of sound produced by 

the soundboard. The rating given by the Sape maker is then used in the machine 

learning classification while the best features of the good sound quality are selected 

based on the statistical analysis. This research explores the potential of employing 

machine learning in the classification of the sound quality of Sape. The outcome 

obtained from this research will shed light on the improvement of the Sape by collecting 

precious opinions from the experienced Sape community, understanding the important 

quality factors, and incorporating the machine learning method in determining and 

evaluating the sound quality production of the Sape. 

The research process depicted in Figure 1.4 provides a visual representation of the 

study's progression. The initial phases encompass comprehensive background study and 

literature review, followed by an exploration of quality factors employing both 

quantitative and qualitative methodologies. Subsequently, the process involves the 

preparation of soundboard samples, data collection, and rating. The utilization of 

machine learning involves feature extraction and selection to train the chosen 

classification model. Post-training, the development of a GUI is undertaken. This visual 

illustrates the overall workflow encapsulating the sequential steps within this research. 
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Figure 1.4: Research flowchart 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Previous Studies on Sape 

The study on Sape musical instruments and Sape music is not new. Chieng (2011) 

studied Sape music and found an unexpected rhythmic feature in the music recording 

played by Tusau Padan. The results of this research on the inequality in time structuring 

in Sape music have significance for playing styles, and the musical traditions of Sape 

musicians. In an effort to preserve the music of Sape, Musib (2015) researched the 

contextual sound preservation of Sape music with the aim of high-quality audio 

archiving. 

A study was also conducted on the performance, practice, and repertoire of Sape 

music to understand the differences in the melody, harmony and rhythm (Sudom, 2016). 

The innovation and the development of Sape from the traditional longhouses to the 

current contemporary style are also explained in the studies by Hashim (2017) and Lim 

and Abdul Rahman (2016). Other than music, the process of making the Sape is 

documented by Karlina et al. (2018). With the documentation, the entire process of Sape 

making and the tools used is recorded.  

Wong et al. (2017) and Wong and Dayou (2019) started the work on Sape from the 

sound and vibration perspective. The study focused on the effects of string tension and 

plucking force on the fundamental frequency of sound and vibration of the Sape. 

Results showed no significant effect of plucking force on the fundamental frequency 

produced. On the other hand, the string tension did show effects on the fundamental 

frequency. The authors continued their work on the effect of the fretting arrangement 

and derived a general correlation equation of the fretting distance to the fundamental 

frequency production (Wong et al., 2022). 
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Although several studies have been conducted on Sape, it is still underexplored. To 

the author’s knowledge, there is no study done on the sound quality of the Sape. As this 

study intended to measure the sound quality production of Sape, the quality of string 

musical instruments is studied for the understanding of the quality measurement 

principle.  

2.2 Sound Quality of Musical Instruments 

According to Campbell (2013), the studies in musical acoustics consist of three general 

categories. It consists of the physics of musical instruments and other sources, the 

transmission of the sound source to the listener and the psychoacoustics of musical 

sound perception. The work in evaluating the quality of musical instruments has been 

done for many years. For example, pianos (Fletcher et al., 1962), violins (Fritz, 

Blackwell, et al., 2012), and brass instruments (Kemp et al., 2010). Early investigations 

on musical instrument quality mostly focused on the frequency spectra of the steady-

state components of the radiated sound. The focus is now shifting towards the 

interaction between the players and the instrument which is termed “playability”. 

Regardless of the study's primary objectives, one common goal is to identify a certain 

instrument's objectively quantifiable characteristics that closely match performers' 

perceptions of timbre or its perceived quality. The term “timbre” is defined as 

“everything that is not loudness, pitch, or spatial perception” by the American National 

Standard Institute (ANSI, 1973). Campbell (2014) described “timbre” as the quality of 

sound that distinguished a note played on a clarinet from a note of the same pitch and 

loudness played on a trumpet. 

 The challenge in studying the quality of the musical instrument is linking 

players’ evaluations to objective scientific measurements. Chaigne and Kergomard 

(2016) and Masullo et al. (2021) explain how a musical instrument is perceived, there 

are two key factors to consider. First, to comprehend the factors, or so-called playability 
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of the instrument, that affect how the player perceives the instrument. The second is to 

determine the factors that affect how listeners perceive sound quality. Since Sape is still 

underexplored, this study intended to determine the factors influencing the sound 

quality of Sape from the perspective of the players and makers.   

2.3 Music Information Retrieval (MIR) 

Two of the various approaches often used in studies on musical instruments are the 

acoustical characterization and sound recognition system. Scientists many years ago 

started to discover the acoustical characteristics of different types of musical 

instruments by using various techniques. The initial techniques used are modal analysis 

and acoustic radiation. Over the years, there are many other new parameters developed 

and introduced from these fundamental techniques. The common acoustical 

characterization parameters are mechanical admittance and impedance, sound radiation 

coefficient, the intensity of the acoustic radiation, and anti-vibrational, and transmission 

parameter to name a few.  

Mechanical admittance is defined as the ratio of the velocity, v to the force, F. This 

characteristic is useful in understanding the body vibration of the musical instrument. 

The study which used admittance on musical instrument vibration measurements can 

refer (Daltrop et al., 2010; Pölkki et al., 2003). Reciprocal to the admittance, driving 

point mechanical impedance on the other hand is defined as the ratio of the applied 

force, F to the velocity, v produced by the instrument body. Measurement is done by 

applying the force to the instrument body and the resulting velocity is measured with the 

accelerometer (Meyer, 2009). 
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Sound radiation characteristics of different musical instruments have been 

extensively studied as well. Sound radiation coefficient which is defined as the ratio of 

the material’s speed of sound, c to its density, ρ describes how much the sound radiation 

of the musical instrument body is damped. It can be measured by the vibrational 

response of the instrument soundboard for a given force (Meyer, 2009). The intensity of 

the Acoustic Radiation (IAR) parameter is introduced by Tronchin in 2005 on the 

kettledrums. It is defined as the product of the space-averaged amplitude of the cross-

spectrum sound pressure, p, and the velocity, v generated from the surface vibration. As 

the name suggests, it is a parameter related to acoustic intensity and acoustic radiation 

(Tronchin, 2005, 2020).  

Studies were also carried out in determining the sound characteristics of the woods 

used in musical instruments. Various kinds of wood are tested and analysed based on 

the anti-vibration and transmission parameters. The anti-vibration parameter is the 

reciprocal of the sound radiation ratio produced by the woods. It is the ratio of the 

longitudinal wave speed, c to the density, ρ of the wood. On the other hand, the 

transmission parameter is the product of the longitudinal wave speed, c, and the quality 

factor, Q. The results are then used in the acoustical classification and comparison of the 

woods used in different categories of musical instruments (Yoshikawa, 2007).  

On the other hand, sound recognition systems started to get more attention due to the 

growth of digital music. Music information retrieval (MIR), which is the subset of the 

broader field of sound recognition, is known to be the field that contributes to the 

solutions of the musically related task. Sound recognition is a multi-disciplinary field 

that includes speech recognition, information retrieval, music information retrieval, 

environmental sound retrieval, etc. Figure 2.1 illustrates the general taxonomy of the 

sound classification scheme introduced by (Gerhard, 2003). Under the field of MIR, 
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there are various tasks. For instance, music genre recognition, song identification, mood 

classification, music annotation, tempo, fingerprinting, etc. One of the tasks is musical 

instrument classification. 

 

Figure 2.1: Taxonomy of sound (Gerhard, 2003) 

The application of MIR can help in the identification of the individual musical 

instrument, its type, and its family. For instance, the Sape, falls under the family of 

string instruments, specifically categorized as plucked strings, and individually 

identified as a lute. MIR is gaining popularity among researchers, musicians, and 

acousticians in the efforts of getting a better understanding of the sound produced by 

musical instruments. As we are currently living in the digital world, where vast amounts 

of musical databases are made available online. The demands are there for the 

development of computational tools for the analysis, summarization, classification, and 

indexing of those musical data (Bhalke et al., 2016). These demands have inspired a 

growing research attempt in the automatic classification of the sound produced by the 

different types of musical instruments.  
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2.4 Sound Recognition System 

As mentioned earlier, MIR is a subtask of the audio recognition system. The task is 

dealing with the automatic audio recognition of music signals which at the end will 

extract the information or characteristics of the music content. Musical instrument class 

is one of the characteristics that could be obtained by the analysis. The application of an 

audio recognition system in musical instrument classification is not a new thing as there 

have been numerous attempts by researchers on it in recent years. Most of the research 

done in musical instrument classification has adopted the technique used in speech 

recognition and speaker identification system. This is because a few features from the 

speech recognition system can be directly applied to solve the musical instrument 

classification problem (Kaminsky & Materka, 1995).  

Generally, the musical instrument classification system consists of three steps, 

preprocessing, feature extraction, and classification as shown in Figure 2.2. Most of the 

research on musical instrument classification emphasized feature extraction which is 

vital in getting the correct characteristics of the sound processed. 

 

Figure 2.2: Process of audio recognition system in musical instrument 
classification 

In the first step, the audio input that is captured by the microphone will go through a 

windowing process by segmenting the audio into shorter signal chunks. A musical audio 

signal is usually long and may contain a large number of samples given that the 

sampling rate is higher than 10 kHz. The audio sample, therefore, couldn’t be analysed 

directly and needed to go through the pre-processing step. This is because the audio 

signal is constantly changing. To simplify it, the audio signal is split into a continuous 
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sequence of finite frames of samples. The frames with short scales are then assumed to 

not change much. This process converts the non-stationary audio signal into a stationary 

signal over a short period (Fu et al., 2010). Typically, the segmented frame length is in 

between 10 to 50 milliseconds and will be overlapping with the adjacent frames for 

about 25 to 50% (Bhalke et al., 2016; Deng et al., 2008). This is to ensure that there are 

no missing signals during the segmentation process. The frame size, however, is related 

to the length of the processed sound signal (Alías et al., 2016). 

In the pre-processing step, some research will remove the noise or silence part of the 

audio input before proceeding to the next step (Marques & Moreno, 1999). It can help 

in reducing the computational complexity of the recognition system. For instance, the 

zero-crossing rate (ZCR) or the energy threshold value is used in the research done to 

eliminate the unwanted silence part of the audio signal. Other than that, they also 

applied the pre-emphasis which serves the purpose of compensating for the suppressed 

high-frequency formants during sound production by the musical instruments (Bhalke et 

al., 2016).  

The next step of sound recognition is the feature extraction of the audio signal. To 

classify the audio input into any musical instrument class, it is very crucial to identify 

the characteristics of the sound produced by each musical instrument. This process is 

also called parameterization which eventually will build the feature vectors that best 

represent the musical sound. The built feature vectors contain the most significant 

characteristics or parameters of the musical sound. This will then be very useful in the 

classification process. There are various methods to extract the characteristics or 

features from the audio inputs, which will be discussed later.  
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The significant parameters of the musical instruments’ sound constructed in the 

feature extraction will be used as a descriptor to represent a similar type of musical 

instrument or to distinguish between different types of musical instruments. This could 

be done through the classification process based on various techniques or machine 

learning algorithms called the classifier. There are many classifiers available currently 

but the choice of the suitable one depends on the goal of the classification system, the 

accuracy of the classifier, and avoiding overfitting. In general, the classification 

algorithm consists of two phases: the training phase and the testing phase. In the 

training phase, the machine learning algorithm under supervised conditions will build 

representative acoustic models that best represent the sound class that the system wants 

to recognize. This is done by taking multiple sound samples of the same musical 

instrument if the musical instrument type is the goal of the machine learning system. 

After the algorithm is trained, it will then be tested in the testing phase. The unknown 

sound samples will be imported into the system for classification. The algorithm will 

classify the incoming sound signal into different classes based on the information 

acquired in the previous phase (Alías et al., 2016).  

The effectiveness of the sound classification system is the main concern of the 

researcher. It is measured by comparing the accuracy of different features or classifiers 

used in the sound classification system. Today, researchers are still trying to get the best 

feature set or classifier that could be used in musical instrument classification. Since 

2014, there has been an annual competition organized by the MIR community called 

Music Information Retrieval Evaluation eXchange (MIREX). This event lets the 

participant test their music classification system in a few categories such as genre, 

musical instrument, music, mood, and artist classification (Fu et al., 2010). Other than 

that, the MIR community has been organizing meetings through the International 

Society of Music Information Retrieval Conference (ISMIR) every year since 2014. 
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2.5 Feature Extraction 

Feature extraction and classifier are important components of the classification 

system. Feature extraction determines the features to be used for the machine learning 

system. The problems of classifying the sound samples into different classes based on 

feature vectors will be addressed. The feature vectors represent the similarities between 

the sound samples. The features extracted may be redundant and irrelevant. This will 

cause a burden on the computation time. Therefore, some of the features will be 

discarded and only a subset of the features will be used at the end. This process is called 

feature selection. Both feature extraction and feature selection are very crucial in 

machine learning. It can ease the computation time by selecting only the useful and 

relevant features particularly when the dataset is too large (Murty & Devi, 2015).  

There are several approaches to categorise the feature extraction of the audio signal 

in the machine learning system. Due to the manifold nature of audio features, there is no 

general taxonomy that could be applied to all fields of research. Hence, it is usually 

designed according to the research field and purpose of the study. Fu et al. (2010) 

unified the taxonomies of audio features by Scaringella et al. (2006) into a single 

hierarchical taxonomy. The taxonomy consists of low-level features and mid-level 

features with the top-level providing information on the human’s perception towards 

music through the semantic labels. The low-level features in this taxonomy are divided 

into timbre and temporal features. As for the mid-level features, it contains information 

on rhythm, pitch, and harmony. The taxonomy is grouped into short-term and long-term 

features.  

Alías et al. (2016) extended the taxonomy introduced by Mitrović et al. (2010) in 

their review of feature extraction techniques on speech, music, and environmentally 

sound. Taxonomy is classified into physically based and perceptually based approaches. 
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These two approaches are then further divided into different parameterization domains 

such as time, frequency, wavelet, image, cepstral, etc. This is different from the 

taxonomy by Mitrović et al. (2010) which listed the parameterization domain on the 

first level of taxonomy and the physically-based and perceptually-based features are put 

under the frequency domain.  

In this section, the taxonomy in Figure 2.3 will be adopted and the features extraction 

techniques in the literature for the classification of musical instruments will be 

reviewed. It is noted that some of the domains may not be relevant in the review of the 

musical instrument classification therefore they will not be covered in this section. Only 

the relevant domains such as time, frequency, cepstral, and wavelet domain are covered.  

 

Figure 2.3: Taxonomy of audio features in musical instrument classification  

2.5.1 Time Domain 

Also called a temporal domain, the time domain is perhaps the most basic domain for 

audio signals. It is not complex and easy to extract audio features from. It can be 

displayed directly from the raw audio signal without further transformation. There are 
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four classes of physical time-domain audio features: zero crossing-based, amplitude-

based, power-based, and rhythm-based features. 

2.5.1.1 Zero-Crossing Rate-Based Features 

The technique used here is based on the analysis of the rate of change of the sound 

signal. It is a simple but effective method commonly used in MIR. 

(a) Zero-Crossing Rate (ZCR) 

Known to be one of the easiest features to get from the audio signal. The zero-

crossing rate is defined as the number of times the audio signal waveform passed the 

zero-amplitude level within one second. This feature is widely used in audio 

classification and machine learning systems. It is measured based on the rate of change 

of the audio signal and is probably the simplest way for feature extraction. Kedem 

(1986) and El-Maleh et al. (2000) mentioned in their papers that the ZCR can provide a 

rough estimation of the dominant frequency and the spectral centroid in the signal. ZCR 

is quite popular in the musical instrument classification field. 

2.5.1.2 Power-Based Features 

Power-based features are extracted based on the audio signal power. A few relevant 

features are described below.  

(a) Energy 

Using the frame-based procedure, the energy feature summarizes the energy 

distribution of each frame over time. Mitrovic et al. used the term short-time energy to 

represent this feature (Mitrović et al., 2010). The researchers used this feature for 

finding the energy distribution in each frame and tried to find the differences between 

the instruments. Bhalke et al. (2016) used time-domain energy as a feature in their 

musical instrument recognition paper. 
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(b) Temporal Centroid 

Temporal centroid gives the time average over the signal envelope in seconds. It 

represents the instant moment in time that contains the largest average energy of the 

signal. The temporal centroid has been used as a time-domain audio feature. It may also 

be classified as a MPEG-7 feature in the musical instrument classification field (Deng et 

al., 2008). 

(c) Log Attack Time (LAT) 

The log attack time characterizes the attack of the sound signal. Musical instruments 

can produce either instant or smooth transitions of musical sounds. It is computed as the 

logarithm of the time taken from the start to the first significant local peak (Deng et al., 

2008). 

(d) Root Mean Square (RMS) 

Also named as the volume is the review by Mitrović et al. (2010), RMS is computed 

by finding the root mean square of the waveform magnitude within the frame (Liu et al., 

1997). The RMS feature is utilized to quantify the energy content of a signal. It is 

calculated by taking the square root of the mean of the squares of the signal values. This 

feature is crucial for capturing the dynamic energy variations within the acoustic 

signals, providing valuable insights into the overall energy distribution and intensity of 

the soundboard vibrations, which are essential indicators of soundboard quality. 

2.5.1.3 Rhythm-Based Features 

Rhythm is a relevant characteristic of musical sound that characterizes the sonic 

events’ structural organization (Alías et al., 2016). Feature derived under this taxonomy 

is discussed here. 
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(a) Periodicity 

Periodicity or tempo is the measure of the rhythmic strength or repetitive structures 

of audio signals (Lu et al., 2001). Periodicity is obtained by applying the autocorrelation 

function to acquire the mean value of the maximum peaks through all the signal frames. 

2.5.1.4 Spectrum Shape-Related Features 

The spectrum shape of the audio signal is another relevant feature that could be 

employed in the task of musical instrument classification. Spectrum shape-related 

features are described in the following paragraphs. 

(a) Attack, Decay, Sustain, and Release (ADSR) Envelope 

The temporal envelope of musical instrument sounds is characterized by attack time, 

decay time, sustain time, and release time as shown in Figure 2.4. Attack time is the 

time taken for the sound signal to rise from zero to the peak. The decay time is the 

subsequent time to run down the signal level from the peak to the sustained level. 

Sustain time is the main sequence where the signal level remained the same and lastly, 

the release time represents the time taken for the signal to decay back to zero levels. 

ADSR combined to form a signal envelope that could be extracted as a feature in vector 

form in the musical instrument classification task (Bhalke et al., 2016). 

 

Figure 2.4: The ADSR envelope  

Univ
ers

iti 
Mala

ya



27 

(b) Amplitude Modulation (AM) 

Amplitude modulation (AM) features are extracted from the audio signal for the 

peaks which correspond to the frequency of amplitude modulation. AM has measured 

over two spectral ranges 4 to 10 Hz and 10 to 40 Hz (Eronen, 2001). 

(c) Autocorrelation Coefficients (AC) 

Autocorrelation coefficients (AC) represent the overall shift of the spectrum (Peeters, 

2004). Brown reported that AC is useful in musical instrument identifications (Brown et 

al., 2001). 

(d) Temporal Kurtosis 

Temporal kurtosis shows the spikiness of the audio envelope. It is used in measuring 

the variation of the transients of the audio signal over successive frames (Klapuri & 

Davy, 2007). 

2.5.2 Physical Frequency Domain 

The frequency domain is also named the spectral domain. According to Mitrović et 

al. (2010), audio features in the spectral domain form the largest set of audio features. 

They are acquired from autoregression analysis or Short-Time Fourier Transform 

(STFT). This paper employed the approach by Mitrović et al. (2010) in further dividing 

the frequency domain into two subsets: physical features and perceptual features. In this 

section, features extracted in the physical frequency domain for the musical instrument 

classification task will be discussed first.  

2.5.2.1  Autoregression-Based 

Autoregression-based features use linear prediction analysis on signal processing. 

The linear predictor captures the spectral predominance of audio signals (Alías et al., 

2016). Commonly used autoregression-based features are discussed below. 
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(a) Linear Prediction Coefficients (LPC) 

Linear prediction coefficients capture the spectral envelope of the audio signal, such 

as formant frequencies that could be found in the vocal tract. It has been used 

extensively in speech recognition applications. The application of LPC in musical 

instrument classification could be found in the works by Marques and Moreno (1999). 

The prediction model used is shown in Figure 2.5. It consists of the input u(n) which is 

the periodical sound produced by the musical instrument, H(z) which represents the 

musical instrument system, and the output o(n) represents the musical instrument class. 

 

Figure 2.5: A linear prediction model for musical instrument sound production 
(Marques & Moreno, 1999)  

 

(b) Line Spectral Frequencies (LSF) 

Line Spectral Frequencies are also called Line Spectral Pairs (LSP). It is obtained by 

finding the root phases of the two polynomials that are decomposed from the LPC 

(Campbell, 1997). LSF is proved to be more robust when compared to LPC as they 

provide statistical properties. 

2.5.2.2 Short-Time Fourier Transform-Based Frequency Features  

Short-Time Fourier Transform or STFT-based audio features are obtained from the 

signal spectrogram that is employed by STFT computation. According to Mitrović et al. 

(2010), there are two ways to yield the STFT features, either from the spectrogram 

envelope or from the STFT phase. The application of STFT-based features in musical 

instrument classification is found to be mostly, if not all, from the spectrogram 

envelope. These features are widely employed by researchers and are discussed below. 
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(a) Spectral Flux 

Spectral flux (SF) is defined as the 2-norm of the frame-to-frame spectral amplitude 

difference vector by Scheirer and Slaney (1997). SF measures the changes in the 

spectrum shape over time. Signals without much variation like noise will show low SF, 

while the high SF indicates sudden changes that are useful in detecting certain 

information like the onset of sound. 

(b) Spectral Peaks 

As defined by Wang (2003), spectral peaks are the constellation maps that display 

the most significant local peaks in the time-frequency signal distortions. The advantage 

of this feature is that it is highly robust to noise since the significant peak frequencies 

are usually free from noise disturbance. This feature is used by Wang (2003) in the 

Shazam search engine. 

(c) Audio Spectrum Envelope 

Audio spectrum envelope (ASE) is defined as the log-spectrum frequency power 

spectrum that produced a reduced spectrogram of the original audio signal. ASE 

consists of coefficients that describe the power spectrum density within a series of 

frequency bands. Categorized as a MPEG-7-based low-level descriptor, it is suitable for 

automatic musical sound recognition (Kim et al., 2004). 

2.5.3 Perceptual Frequency Domain 

Another division of frequency-based features is the perceptual domain. Perceptual 

features have a semantic meaning as the human auditory perception. In this section, 

several perceptual features will be included and discussed.  
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2.5.3.1 Brightness-Related Perceptual Frequency Features 

The brightness of an audio signal characterizes the frequency spectrum distribution, 

indicating how much high-frequency content is present. An audio signal is considered 

bright when it is dominated by high frequencies, typically in the range of 2 kHz to 20 

kHz. Brightness is also defined as the balancing point of the signal energy, reflecting the 

concentration of spectral energy at higher frequencies (Scheirer & Slaney, 1997). 

(a) Spectral Centroid 

Spectral centroid (SC) is one of the commonly used features. It describes the centre 

of gravity (centroid) of spectral energy. It can also be defined as the first moment which 

is the frequency position of the mean value of the spectrum (Tzanetakis & Cook, 2002). 

Deng et al. (2008) in their work on musical instrument classification defined that the SC 

measures the average frequency weighted by the sum of spectrum amplitude within 

each frame.  

(b) Sharpness 

Even though it is often treated to be similar to the spectral centroid, sharpness is 

computed based on the specific loudness instead of the spectrum magnitude. The 

sharpness of a sound increases as the strength of the high frequencies of the spectrum 

increases (Zwicker & Fastl, 2013). 

2.5.3.2 Spectrum Shape-Related Perceptual Frequency Features 

Spectrum shape is considered one of the popular and widely used approaches in 

MIR. The relevant set of spectrum-shape-related features is listed below. 

(a) Bandwidth 

Bandwidth is also called a centroid width. It shows the weighted average of the 

deviations between the spectral components with the spectral centroid (Wold et al., 
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1996). It is the second-order statistic of the spectrum which could distinguish tonal 

sounds and noise-like sounds. Bandwidth can be defined from the logarithmic approach 

or the power spectra (Liu et al., 1997). Alternatively, it could also be computed from the 

entire spectrum or within the spectrum subbands (Ramalingam & Krishnan, 2006). 

According to the MPEG-7 standard, bandwidth is defined as the audio spectrum spread 

(ASS) which is obtained by computing the standard deviation of the signal spectrum. 

(b) Spectral roll-off point 

Spectral roll-off point is defined as the N% percentile of the power spectral 

distribution. N is set at the 95th percentile by (Scheirer & Slaney, 1997). It’s a 

measurement of the skewness of the spectral shape. 

(c) Spectral flatness 

Spectral flatness measures the flatness of the frequency distribution of the power 

spectrum. It is calculated by taking the ratio between the geometric and the arithmetic 

mean of a subband in the power spectrum (Ramalingam & Krishnan, 2006). Spectral 

flatness can differentiate between noise-like sounds and tonal sounds. Noise-like sounds 

and tonal sounds are high and low in ratio, respectively. This is beneficial in the musical 

instrument classification task. 

(d) Spectral crest factor 

This feature is the contrast of spectral flatness. The spectral crest factor measures the 

spikiness of the power spectrum. It can be obtained by finding the ratio of the maximum 

power spectrum and the mean power spectrum of a subband. Opposite to the spectral 

flatness, noise-like sounds will show a low spectral crest factor while tonal sounds give 

a higher spectral crest factor. Eronen and Klapuri applied crest factors in their research 

on musical instrument classification (Eronen & Klapuri, 2000). 
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(e) Entropy 

Another measurement of spectral flatness is entropy. It is used in measuring the 

noisiness of the audio signal. Shannon entropy is usually computed in different 

subbands (Ramalingam & Krishnan, 2006). 

(f) Spectral slope 

Spectral slope is a measurement of the inclination of the spectrum shape by applying 

the linear regression method (Morchen et al., 2005). 

(g) Spectral skewness and kurtosis 

Spectral skewness is defined as the asymmetry of the spectral distribution around the 

spectral centroid. Spectral kurtosis, on the other hand, tells the spikiness of the 

frequency spectrum. The value of spectral kurtosis is high if the spectrum is spikier and 

low if it is flatter (Klapuri & Davy, 2007). 

2.5.3.3 Tonality-Related Perceptual Frequency Features 

The review by Alías et al. (2016) put the features under the tonality category 

differently from the review by Mitrović et al. (2010). According to Alías et al. (2016), 

tonality features are related to the fundamental frequency which is defined as the lowest 

frequency of the stationary harmonic sound signal. Tonality describes the structure of 

the sounds that constitute the fundamental frequency and its partials. Tonality-related 

features that are widely used in musical instrument classification will be listed and 

discussed below. 

(a) Fundamental Frequency 

Denoted as “F nought” or F0, the estimation of fundamental frequency could be done 

with several approaches, such as spectral methods, autocorrelation methods, or cepstral 

methods. In the review by Mitrović et al. (2010) and some other literature, the 
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fundamental frequency is denoted as the pitch of the audio signal. Work by Eronen 

(2001) extracted fundamental frequency as a feature in instrument recognition. 

(b) Harmonicity 

Also called partials, harmonics are the integer multiples frequencies of the 

fundamental frequency. They are often denoted as F1, F2, F3, etc. Harmonicity features 

can distinguish between periodic and non-periodic sound signals and are commonly 

employed in recognizing musical instruments. There are two measurements of 

harmonicity according to the MPEG-7 standard. The first one is the Harmonic ratio 

which measures the proportion of harmonic components in the power spectrum. The 

other one measures the upper limit of harmonicity (ULH) which estimates the frequency 

beyond the spectrum that no longer contains harmonic structure (Zhang & Zbigniew, 

2007). 

(c) Inharmonicity 

Fundamental and its subsequent harmonics may not always show perfect harmonicity 

(integer multiples of F0) in real situations. The actual location of the harmonics may 

deviate away from its ideal location. This is called inharmonicity and is one of the 

features extracted in musical instrument timbre classification (Agostini et al., 2003). 

(d) MPEG-7 Spectral Timbral Descriptors 

Several features are closely related to the harmonic structure of the sound according 

to the MPEG-7 standard. They are found to be suitable for the discrimination of musical 

instrument sounds. The features are harmonic centroid, harmonic deviation, harmonic 

spread, and harmonic variation. The harmonic centroid is the amplitude-weighted 

average of the harmonic frequencies which is related to the sharpness and brightness. 

Harmonic deviation measures the deviation of the harmonic peaks from their 

neighbouring harmonic peaks. The harmonic spread is the power-weighted root-mean-
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square deviation of the harmonic peaks obtained from the harmonic centroid. It is 

related to the bandwidth of the harmonic frequencies. Lastly, harmonic variation 

describes the correlation between the two adjacent harmonic peak amplitudes. It 

represents the harmonic variability of the harmonic structure over time. The application 

of these features could be found in the work by (Deng et al., 2008). 

(e) Jitter 

Jitter determines the deviations of the cycle-to-cycle fundamental frequency. 

Barbedo and Tzanetakis (2010) in their work on the classification of musical 

instruments describe jitter as the measurement of the stability of the partials over time.  

2.5.3.4 Chroma-Related Perceptual Frequency Features 

The chroma-related feature is considered as the perceptual feature by Mitrović et al. 

(2010) and is mainly used in musical information retrieval as it could describe the 

octave invariance of the sound signal. Chroma is normally ranged into 12 pitch classes, 

with each class one note of the twelve-tone equal temperament (Shepard, 1964). Two 

notes with a separation of one or more octaves are said to have the same chroma. The 

same chroma means that the notes will produce the same effect on human auditory 

perception. 

(a) Chromagram 

Chromagram is computed from a logarithmic Short-Time Fourier Transform to the 

spectrogram that represents the energy of the 12 pitch classes. It maps all spectral audio 

information into one octave which results in spectral compression. This could be used in 

describing the harmonic musical sound signals. 
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2.5.3.5 Loudness-Related Perceptual Frequency Features 

Loudness is one of the perceptual features that the human auditory system can sense 

in listening to the sound signal. Loudness-related perceptual features aim to simulate 

human hearing ability in the audio retrieval system. Peeters et al. defined loudness as 

the subjective impression of the sound intensity (Peeters, 2004). 

(a) Loudness 

Loudness is computed from the normalized power spectrum of the input frame which 

subtracts an approximation of the absolute threshold of hearing. It is then filtered by 

gammatone filter banks and the frequencies across are summed to obtain the power of 

each auditory filter. These powers which represent the internal excitations will be 

compressed, scaled, and summed across the filters to extract the loudness estimation 

(McKinney & Breebaart, 2003). 

(b) Specific Loudness Sensation 

Specific loudness sensation is a measurement of loudness in a sone unit. Sone units 

are defined as a perceptual scale for loudness measurement according to Peeters (2004). 

Pampalk et al. (2002) computed this feature by merging the spectral masking effect and 

the Bark-scale frequency analysis. 

2.5.3.6 Roughness-Related Perceptual Frequency Features 

Roughness is a fundamental hearing sensation that measures the sensory dissonance 

of sound signals. According to Daniel and Weber (1997), the amplitude variations 

which change rapidly will cause unpleasantness and reduce the noise quality, hence 

deducing that the sound is rough. The computation of roughness can refer to the work 

by McKinney and Breebaart (2003) and Zwicker and Fastl (2013). The application of 

roughness as a feature in musical instrument classification can see (Barbedo & 

Tzanetakis, 2010). 
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2.5.4 Wavelet Features 

The application of wavelet is based on the division of the continuous-time signal or 

given function into different scale components (Alías et al., 2016). Wavelet transform 

can extract the desired time-frequency components of the musical sound signal. The 

wavelet is decomposed into sub-bands which will be further analysed. The 

characteristics information of the particular musical sound signal can then be obtained. 

According to Mallat (1989), compared to the Fourier transform, the wavelet transform 

has advantages in showing functions consisting of discontinuities and sharp peaks. It is 

also good for constructing and deconstructing finite non-stationary signals. 

2.5.4.1 Daubechies Wavelet coefficient histogram features 

Proposed by Li et al. (2003) in their study on music genre classification, Daubechies 

wavelet coefficient histogram is applied by decomposing the audio signal by 

Daubechies wavelet. Histograms are built from the wavelet coefficients obtained for 

each subband. The histograms estimate the waveform variation of each subband. 

Wavelet features are obtained by computing the first three statistical moments and the 

energy of the coefficients subband. 

2.5.5 Cepstral Features 

Introduced by Bogert (1963) with the concept of “cepstrum”, cepstral features 

represent the smoothed frequency based on the logarithmic magnitude. It was first 

employed in speech analysis by Davis and Mermelstein (1980) and is now widely used 

in various fields of audio information retrieval. 
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2.5.5.1 Perceptual Filter Bank-Based Features 

Perceptual filter banks-based features are computed based on the cepstral domain. 

The sound signal is first Fourier transformed; the magnitude is then converted into the 

logarithmic scale. Discrete Cosine Transform will be performed on the previous result 

to decorrelate the output data. 

(a) Mel-frequency cepstral coefficients (MFCCs) 

Also called MFCC, this feature is very well known in automatic speech recognition 

and audio content classification. The mel scale is a perceptual scale of pitches judged by 

listeners to be equal in distance from one another. To extract MFCC features, the audio 

signal is first framed into short frames, and the periodogram estimate for each frame is 

computed. The power spectra are then mapped onto the mel scale, which approximates 

the human ear's response more closely than the linearly spaced frequency bands used in 

the normal Fourier transform. The mel frequencies emphasize frequencies that are more 

relevant to human perception, particularly in the range where human hearing is most 

sensitive. After mapping to the mel scale, the energy in each filter is summed. The 

filterbank energies are then logarithmized and decorrelated using the Discrete Cosine 

Transform (DCT). Only 8-13 DCT coefficients will be used to represent the spectral 

shape of the audio signal. The first DCT coefficients represent the spectrum’s mean 

power. The second coefficient represents the spectral centroid. Higher-order coefficients 

are related to spectral details like pitch (Mitrović et al., 2010). Figure 2.6 shows the 

MFCCs obtained from the flute musical instrument. 
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Figure 2.6: MFCCs for the flute musical instrument (Mitrović et al., 2010) 

  

2.5.5.2 Autoregression-Based Features 

Autoregression analysis is often used in signal processing. This technique uses linear 

prediction analysis that can predict the value of every signal sample by the linear 

combination of previous values (Tremain, 1982). 

(a) Complex Cepstrum 

According to Oppenheim et al. (1968), complex cepstrum is the inverse Fourier 

transform of the logarithm of the signal’s Fourier transform. Application of the complex 

cepstrum on musical instrument recognition can be read in the work by Brown (1999). 

(b) Linear Prediction Cepstral Coefficients (LPCC) 

Linear prediction cepstral coefficients are the alternative for linear prediction 

coefficients (LPC) discussed earlier above. They are obtained by the inverse Fourier 

transform of the log magnitude frequency response of the linear prediction spectral 

envelope (Wu et al., 1997). In comparison to LPC, LPCC is more robust in representing 

the spectral envelope. 
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2.6 Classification 

After feature extraction and selection, classifiers are used in the machine learning 

system to classify the isolated musical sounds into the instrument and its family. In this 

section, several techniques commonly used in automatic musical instrument 

classification will be discussed. It is worth noting that the accuracy or effectiveness of 

the classifier is affected by many factors (number of samples, combination with 

different features, number of samples used in the testing phase and training phase, etc.). 

Therefore, the classifiers in the following paragraphs will not include the accuracy 

obtained by each piece of literature reviewed in this paper. 

2.6.1 K-Nearest Neighbours 

Also denoted as KNN, this classifier is one of the popular machine learning 

algorithms. In the training phase, it will store the feature vectors from all the training 

samples and then use them in classifying the new test samples. By referring to the set of 

k nearest training samples in the feature set, the new sample will be assigned to the class 

with the most examples in the set. The system uses the Euclidean distance measurement 

method. Details of how the classification process goes can be referred to Figure 2.7 

below. 

 

Figure 2.7: Design of the KNN technique  
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From Figure 2.7, the cross is the target of the classification. If 𝑘 = 3 is selected (the 

inner circle), then the cross would be categorized as class P as the three nearest 

neighbours to that cross are mostly from class P. However, if 𝑘 = 7 is selected (outer 

circle), the cross would now be categorized as class Q with Q being the majority 

neighbour.  

k-Nearest Neighbour is a simple algorithm that is widely used in the automatic 

machine learning system, but some downsides are to be considered when implementing 

this technique. According to Mitchell (1997), this algorithm is lazy and requires storing 

all the training samples in the memory to generate a decision for the new sample. It is 

also highly sensitive to the irrelevant features which could dominate the distance 

metrics. Heavy computational load is another drawback of this algorithm. 

2.6.2 Support Vector Machine 

Another popular classifier used is the support vector machine (SVM). It is based on 

the statistical learning theory developed by Vapnik (1998). The working principle of 

SVM is looking for the optimal linear hyperplane which gives the lowest generalization 

errors when classifying the unknown test sample. The linear hyperplane is mapped so 

that the margin between the different categories is separated as wide as possible. It 

serves as the borderline between the categories. The new test samples could be 

categorized based on which side they fall on when they are mapped into space. The 

hyperplane is a linear line where the features can be separated into 2 dimensions. It will 

become a 2D plane when it is displayed in three-dimensional space.  This approach can 

be used when a linear hyperplane can’t separate the data in 2-dimensional space and 

requires higher dimensional space to do so. This is achieved by applying the so-called 

“kernel trick” as illustrated in Figure 2.8. The kernel trick transforms the low 
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dimensional input space to a higher dimensional space so that the segregation 

(hyperplane) could take place. 

 

Figure 2.8: (a) Inseparable data in 2D space (b) Hyperplane separating the data 
in 3D space with the kernel trick.  

Even though SVM is a popular algorithm used by many in their research, SVM still 

gives some drawbacks. In the multiclassification task, SVM needs to perform a series of 

interconnections between the classes. Computation-wise, it is an intensive process to 

work on. Also, there is a risk of selecting the less optimal kernel function during the 

process. 

2.6.3 Decision Trees 

Decision trees have been pervasively implemented in classification tasks and 

machine learning systems. This technique attempts to focus on the relevant features and 

abandons irrelevant ones in the construction of the tree. A decision tree is built top-

down that begins with the most informative root node as shown in Figure 2.9. Usually, 

two branches will split from the root which represents different descriptor values or 

attributes. Each node in the tree represents the test of the samples’ attributes, and the 

descendant node represents the result of the test.  The complete tree is built by repeating 

the training process recursively with the training samples. After that, pruning work will 
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be carried out to avoid overfitting. The decision tree is commonly used in supervised 

learning methods which produce high accuracy, and stability, and are easy to interpret. 

 

Figure 2.9: Decision tree in classifying 4 classes of musical instruments.  

In the musical instrument classification task, the decision tree can also help in 

identifying the best feature in discriminating instruments. From the literature, the 

common decision tree algorithm used is J48 or also known as C4.5. This algorithm is 

also called a statistical classifier which is developed by Quinlan (2014). 

2.6.4 Naive Bayesian Classifiers 

Naïve Bayesian Classifier (NBC) is the classification technique based on the Bayes’ 

Theorem. This technique uses a conditional probability model in the prediction of 

classes. Naïve Bayes classifier assumes that the classification features are independent, 

hence it is called “naïve”. Like the other classifiers, NBC will be trained by collecting 

enough training samples. The probabilities of different classes and features will be 

obtained by counting the frequencies of their occurrence in the training phase. A new 

sample can then be classified based on conditional probabilities. NBC is one of the easy 

and fast algorithms one can use in the classification task. It requires less training data 

and is not computationally intensive. However, this algorithm is known as a bad 

estimator. It is also too “naïve” by assuming that the features are completely 

independent in real life. Deng et al., in their works on the feature analysis for musical 
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instrument classification, used the NBC technique as one of the classifiers (Deng et al., 

2008). 

2.6.5 Artificial Neural Networks 

Artificial neural networks (ANN) are inspired by biological neural networks. It is 

constructed based on a large collection of interconnected artificial neurons. These 

neurons are arranged into layers in which the transmission of signal happens from the 

input layer to the output layer by the connection called edges. These edges have a 

weight that tells the strength between the connecting layers. The weight may change 

during the learning process. With sufficient training samples, the network becomes 

capable of predicting the outcome from the input. This learning process can be done 

either supervised or unsupervised. The prediction accuracy of ANN gets better when 

more examples are processed. It keeps on learning and refining the weight of every 

sample processed. Implementation of ANN in musical instrument classification can be 

found in (Kaminsky & Materka, 1995). 

2.6.6 Hidden Markov Models 

Abbreviated as HMM, Hidden Markov Model is a statistical Markov model that 

contains two components. The first is a set of hidden variables that is unobservable 

directly from the data while the second is another set of variables that are conditional on 

the first set of hidden variables (Herrera-Boyer et al., 2003). HMM is used in predicting 

a sequence of hidden variables from a set of observed variables. This allows the model 

to generate a random measurement in each state from a variety of distributions. 

2.6.7 Gaussian Mixture Models 

The Gaussian mixture model is a probabilistic model representing the subpopulation 

that is normally distributed within the overall population. Without needing to know 

which data point belongs to, this allows GMM to automatically learn the subpopulation. 
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This model can do the clustering of groups of data mixed. This is done by the 

computation of the three parameters which are the mean, covariance, and the mixing 

probability of the Gaussian mixture. Due to this, GMM is unsupervised learning. This 

classifier has been used in speech recognition, image pattern recognition, and musical 

instrument classification. GMM is one of the popular classifiers used intensively in 

instrument classification. For instance, refer to (Marques & Moreno, 1999). 

2.6.8 Discriminant Analysis 

Discriminant analysis is a technique used in machine learning to find the linear, 

quadratic, or logistic functions of the features that characterize or separate samples into 

two or more predefined classes. Discriminant analysis is related to the multivariate 

analysis of variance (MANOVA) and regression analysis. This technique could 

determine the most discriminative features of each class and the most similar or 

dissimilar classes. Martin and Kim (1998) used linear discriminant analysis in their 

research on musical instrument identification. 

2.6.9 Higher-Order Statistics  

Higher-order statistics (HOS) is the technique that uses the sample function with 

cubic power or higher. Conventional techniques (lower-order statistics) are functions 

with constant, linear, or quadratic functions. Mean and variance are examples of lower-

order statistics. HOS in the analysis of musical signals used skewness and kurtosis as 

the estimation of the shape parameters. 

2.7 Chapter Summary  

This chapter gives an overview of the literature and efforts made by past researchers 

on Sape musical instruments. Most of the works were conducted on exploring and 

understanding the music, repertoire, and culture. In more recent works, the studies 

focused on the sound and vibrations of the Sape. This study aims to measure the sound 
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quality or timbre of the Sape musical instrument, hence the quality of the musical 

instrument and the factors influencing the musical instrument is included in this chapter. 

The works done by previous researchers on the quality of musical instruments often 

involved the perceptual opinions of the instrument’s experts. The studies desire to be 

able to provide proper guidance in practical music making which will benefit the 

instrument players, makers, teachers, as well as engineers and the designer (Campbell, 

2013). The factors considered by the instrument experts are also very important. The 

instrument users are the ones familiar with the instrument and can provide useful input 

for the researchers. Past works of literature showed that there are a few factors to be 

considered which include shape, size, materials, environment, etc.  

The chapter continued with a reviewing of the literature on MIR and sound 

recognition in which the general process of sound recognition is explained. The two 

important steps in the process, which are feature extraction and classification, are 

reviewed. The application of the MIR in classifying musical instruments into different 

families or individual instruments is gaining wide interest from researchers and 

musicians. Different approaches have been used and they harvested different results. 

The effort is to obtain the best feature set which contains either individual or a 

combination of temporal, spectral, cepstral, and other properties of sound in the 

classification task. Choosing a good classifier is also important in that it can better 

identify the subtle characteristics of different instruments or families. Significantly, this 

body of literature lays the foundation for the realization that machine learning can play a 

pivotal role in the classification of sound quality, providing a promising avenue for 

future exploration. 
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From the literature review, it can be observed that various approaches in the features 

and classifiers used in classifying monophonic instrumental sounds were discussed. 

While the review is not exhaustive, it is apparent that there is no specific feature or 

classifier which can be considered the best in the musical instrument classification task. 

Most of the works in the literature review are on the comparison of the accuracy 

obtained by the different combinations of features and classifiers. Different 

combinations display varying accuracies, showcasing both advantages and 

disadvantages. The selection of the appropriate features or classifier is dependent on the 

specific task of classification. For instance, the complexity of the learning phase, 

database size, real-time limitations, etc. However, it can be concluded that fewer 

features used in the sound recognition system will usually achieve better accuracy and 

reduces the computational burden (Yang et al., 2022).  

It can be noticed that certain literature worked on traditional musical instruments. 

These efforts sparked the interest of this study in working towards the classification of 

the sound of the local traditional musical instrument, the Sape. However, in this thesis, 

the research interest is not in the classification of the individual instrument or families. 

To the best of the author’s knowledge, the ability of the sound classification system 

in identifying the sound quality produced by the traditional musical instrument is yet to 

be explored. It is agreeable that “no instruments are 100% alike” and this is true in the 

case of Sape. Hence, the quality of each instrument might differ from one another, and 

this is something worth studying. The subtle differences in sound quality might create 

another tough challenge in the MIR field, but it is worth exploring and this study 

attempts to fill in the gap.  

 

Univ
ers

iti 
Mala

ya



47 

CHAPTER 3: DETERMINATION OF THE QUALITY FACTORS OF SAPE 

THROUGH QUALITATIVE AND QUANTITATIVE APPROACH  

 

3.1 Introduction  

Assessing the sound quality with the expertise of Sape musicians holds paramount 

importance in the crafting process. Nonetheless, a standardized evaluation framework 

tailored for skilled Sape players remains conspicuously absent. This observation finds 

its origins in insightful dialogues conducted with experienced Sape experts. These 

discussions underscore a discernible void within the assessment procedure. Importantly, 

this issue extends beyond the realm of Sape, encompassing musical instruments more 

broadly. The challenge lies in the inherently subjective nature of musical instrument 

evaluation, which can diverge among experts. For instance, in the realm of Chinese 

traditional music, assessing musical instruments involves multiple expert musicians 

quantifying attributes like brightness, smoothness, and harmony, based on national 

benchmarks. However, this approach has become less tenable due to the waning number 

of Chinese music experts (Li et al., 2019).  

The existing body of literature on musical instrument sound quality reveals the 

concerted efforts of researchers, acousticians, and musicians to establish connections 

between the subjective and objective properties of all kinds of musical instruments. 

Such analyses have been applied to various musical instruments, such as piano, 

trombone, French horn, trumpet, flute, cello, oboe, electric guitar, guitar, and violin 

(Fritz & Dubois, 2015). Objective properties are usually related to an instrument's 

physical, mechanical, or acoustic properties (Spycher et al., 2008). On the other hand, 

subjective properties are related to perceptual or psychological input by instrument 

makers and/or players (Fritz & Dubois, 2015; Schmid, 2015). The review by Fritz and 

Dubois (2015) highlighted a state-of-the-art method for correlating instrument sound 
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quality for evaluation by experts. Such studies require a perceptual opinion of reputable 

makers and/or players. Thus, perceptual opinion plays an important part in an evaluation 

as it reflects the subjective properties needed in assessing musical instrument quality. 

Considering the comprehensive literature review presented in Section 3.2, which 

extensively explores the Sape musical instrument and includes key studies by Wong et 

al. (2017), Wong and Dayou (2019), and Wong et al. (2022) focusing on Sape 

instrument quality, there is currently no existing research, to the best of the authors' 

knowledge, that effectively incorporates the insights of Sape experts. While prior 

investigations have predominantly emphasized the objective aspects of Sape sound 

quality, the subjective dimensions have remained underexplored. To address this gap, 

our study's primary objective is to identify the core factors significantly influencing the 

sound quality of the Sape. Diverging from previous approaches, our research actively 

engages Sape experts, employing both qualitative and quantitative methodologies. By 

gathering insights from instrument players and makers through methods such as 

questionnaires and focus group discussions, we aim to provide a comprehensive 

perspective on the Sape's sound quality. Ultimately, our research seeks to capture 

diverse subjective viewpoints, with the overarching goal of advancing the instrument's 

quality and refining its manufacturing processes. 

The remainder of this chapter is organised as follows: Section 3.2 presents a 

background study concerning the Sape, traditional musical instruments and machine 

learning. Section 3.3 explains the methodological approach used in this study to analyse 

and determine the Sape’s significant sound quality factors. Section 3.4 presents and 

discusses the results of the analysis. Finally, Section 3.5 offers the study’s concluding 

remarks. 
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3.2 Background Study 

3.2.1 Previous Studies on Sape, Traditional and String Musical Instruments  

The study of the traditional musical instruments in the Southeast Asia region is not 

new. For instance, Slamet and Kusumaningtyas (2020) and Slamet et al. (2021) studied 

the Indonesian traditional musical instrument, Gamelan. The studies compared the 

effects of forging and post-cast heat treatment, and tin composition on the 

microstructure and mechanical, and acoustic properties of gamelan. Aditanoyo (2018) 

studied another Indonesian traditional musical instrument, Angklung. His research 

focused on the correlation between the acoustic characteristics and mechanical 

vibrations of Angklung, a popular traditional Indonesian bamboo musical instrument, 

using measurements of force, acceleration, and sound pressure to calculate mechanical 

admittance and acoustic sound pressure level, and finding that the tubes have 

inharmonic frequency overtones. Apart from that, a study on the assessment of the 

Kledi musical instrument is done by Ghozali (2018) using qualitative methods and 

concludes that it is made up of natural materials and has a homophone playing 

technique with a distinctive tone and that its enculturation process occurred through 

informal means. 

In Malaysia, several studies were conducted on traditional musical instruments. 

Batahong et al. (2018) examined the anatomy, physical, and acoustical properties of 

Sundatang, a traditional musical instrument of Rungus and Kadazandusun Ethnic 

groups in Sabah, Malaysia, by measuring its dimensions, sound frequencies produced 

from tuned strings, and the effect of fretting on the sound, with the findings providing 

important information for the instrument's advancement study. Siswanto and Syiddiq 

(2018) and Siswanto et al. (2018) studied the Malay traditional musical instrument, 

Kompang. Their research focused on the membrane vibration of Kompang in which 

they investigated the effect of different levels of humidity on the tension and vibration 
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frequency of the goat skin and x-ray film membrane of the traditional musical 

instrument.  

Among the existing studies concerning musical instruments, string instruments, such 

as guitar and violin, have been among the most researched. String musical instruments 

are one of the families under the Western classification system of instruments. In this 

classification system, instruments are divided into the woodwind, string, brass, and 

percussion families. String musical instruments can be excited by either bowing, 

plucking, or hammering (Bucur, 2016). Usually, a string instrument is made with a 

hollow body. The excited string vibration will be transmitted to the instrument body and 

then to the enclosed air volume, radiating the sound more audibly to the audience and 

the player.  

Sape is a traditional string musical instrument from Sarawak. Its shape is similar to a 

guitar. It is carved from a single bole of wood, and the body is hollowed out and 

functions as a resonator. The hollowed sound cavity is at the back of the body as 

opposed to the guitar. Originally the Sape’s strings were made from the sago tree, but 

now these have been replaced by steel strings. The traditional Sape has three or four 

strings as shown in Figure 1.2, while the contemporary Sape has five or six strings. The 

additional strings on the contemporary Sape allow for a wider range of notes and chords 

to be played, making it a more versatile instrument than its traditional counterpart. The 

traditional Sape has an important place in the cultural heritage of Sarawak, the 

contemporary Sape's additional strings and design elements make it a more versatile 

instrument that can be used in a wider variety of musical genres. 

Over the past few years, several studies have been conducted on the Sape, covering a 

diverse range of topics, including an introduction to the instrument (Hartanto et al., 

2021; Lim et al., 2020), an investigation into its evolution and transformation over time 
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(Lim & Abdul Rahman, 2016), and an exploration of melody, harmony, and rhythm in 

Sape repertoires (Lin & Lim, 2021; Sudom & Naili, 2022). 

Additionally, investigations are focusing on the effects of fret setting, string tension, 

and plucking force on the fundamental frequency of the Sape (Wong et al., 2022; Wong 

et al., 2017; Wong & Dayou, 2019). These studies have shed light on the influence of 

fret configuration and string tension on the generated fundamental frequency while 

indicating that plucking force has no impact on this aspect.  

Despite the wealth of research on various aspects of the Sape, the authors have not 

come across studies specifically examining the factors influencing its quality. 

Addressing this knowledge gap, the present research employs qualitative and 

quantitative approaches to identify the significant factors that contribute to the quality of 

the Sape. The study aims to contribute to the broader understanding and preservation of 

the invaluable local cultural heritage of Sarawak, Malaysia. 

3.2.2 Timbre Quality of Musical Instruments 

The timbre quality of musical instruments is a crucial aspect of auditory perception, 

often referred to as "tone colour." It distinguishes instruments playing the same note at 

different volumes, going beyond simple pitch and loudness (ANSI, 1973). The 

harmonics, overtones, and resonances that define the acoustic identity originate from a 

complex combination of intrinsic and exogenous elements. 

The merger of auditory events produces timbre, a complex auditory property. Its 

multidimensional perceptual representation has dimensions related to the spectral, 

temporal, and spectrotemporal characteristics of the audio input. Timbral dimensions 

are also influenced by an understanding of the sound source's mechanical processes, 

including shape and material composition. Another viewpoint is provided by 
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spectromorphology, which includes time-varying frequency, amplitude behaviours, and 

spectrum modulations. The richness of timbre is further enhanced by the relationships it 

has with fundamental frequency, playing effort, pitch, and dynamic level (McAdams, 

2019). 

The exploration of timbre quality carries significance across the realms of music, 

engineering, and craftsmanship. Delving into the interplay between a musical 

instrument's physical attributes and its perceived timbre offers a valuable avenue for 

enhancing design and production. For instance, the evaluation of violin sound quality 

entails comprehensive perceptual assessments by musicians Saitis et al. (2017) and Fritz 

et al. (2012b), alongside the investigation of correlations between timbral attributes, 

acoustic properties, and construction parameters (Fritz et al., 2012a).  

Beyond the violin, the quest to identify quality parameters for various musical 

instruments has been pursued. Instruments like the saxophone and clarinet (Gazengel et 

al., 2010; Gazengel & Petiot, 2013; Pinard et al., 2003), as well as the didgeridoo 

(Smith et al., 2007), have also undergone comprehensive investigations. Moreover, 

innovative approaches have surfaced, such as the introduction of alternative methods in 

wind musical instrument mouthpiece production, accompanied by expert evaluations to 

gauge quality (Bacciaglia et al., 2020). These collective efforts contribute 

synergistically to a deeper understanding of the intricate role timbre plays in shaping the 

quality of musical instruments. 

As inferred from Fritz and Dubois (2015) review of the perceptual evaluation of 

musical instruments, the understanding of how musicians assess instrument quality 

emerges as a pivotal stride towards identifying physical quality parameters. This 

comprehension holds the potential to drive enhancements and novel avenues for 

instrument design and manufacturing. 
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3.2.3 Factors Influencing Sound Quality in String Musical Instruments 

This study’s literature review was focused on string musical instruments, which 

relate to the targeted instrument in this study. A string instrument's sound produced by 

the strings alone is not loud enough to be audible. Hence, the strings must be coupled 

with the instrument’s body, which acts as a resonator to produce an audible sound. A 

connecting bridge will transmit the vibration of the plucked or bowed strings to the 

soundboard. The enclosed air cavity will then amplify the sound produced.  

According to Wegst (2006), an instrument’s body shape and material greatly 

influence the sound quality of a string instrument. For example, the design of the sound 

holes and the shape of a guitar or violin, which is round, make it aesthetically pleasing 

and prevent stress concentrations created by sharp corners. The soundboard, back, and 

side plate thickness are important parameters in string instrument design. The thickness 

of the plate can affect the input impedance and resonance frequency produced, further 

influencing the sound quality of the instrument (Yoshikawa & Waltham, 2014). The 

design and coupling between the string and the bridge component also strongly 

influence the vibration produced, as Jansson (1990) indicated on the violin.  

Material-wise, the woods used for soundboards (spruce and maple) usually have a 

low characteristic impedance. Low impedance is helpful, especially for the sound 

radiation from an instrument to the surrounding air. According to Gore (2011), the 

material properties of wood for guitars, soundboards, braces, backplates, necks, and 

bridges played an important role. The material properties include density, Young's 

modulus, stability with humidity variation, hardness, and heat bendability.  The wood 

selection for different instrument parts is due to different vibration and radiation 

characteristics requirements. Softwoods are usually selected as the material for 
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soundboards. In contrast, hardwoods are used for frame boards or backboards 

(Yoshikawa, 2007; Yoshikawa & Waltham, 2014). 

Other than that, humidity also plays a part in the sound quality of an instrument. 

Researchers have experimentally hypothesised and proved that playing regularly in 

intermediate or high humidity increases stiffness and decreases the loss coefficient  

(Hunt & Balsan, 1996). The result was believed to answer common beliefs that regular 

playing and the wood's age would improve the instrument's quality. Some other 

examples of the factors studied are varnish (Schelleng, 1968), relative densities of early 

and late growth layers in wood (Stoel & Borman, 2008), chemical treatments of the 

wood (Barlow et al., 1988), the role of haptic cue (Saitis et al., 2018), and plate tuning 

methods (Hutchins et al., 1960).  

From the literature above, the objective properties of musical instruments have been 

studied in depth to understand their effect on the instrument’s sound quality. Studies 

were also conducted to discover the correlation between subjective properties (i.e., 

psychological evaluations) and objective properties (including but not limited to 

acoustic properties, mechanical measurements, or physical modelling). Taking acoustic 

properties as an example, timbre, attack behaviour, loudness, and the degree of possible 

timbre variation are noted as the four primary features determining the sound quality of 

an instrument (Bader & Hansen, 2008). Dünnwald (1991) categorised 700 violins into 

"good" and "bad" classes by measuring the level of the first signature mode from the 

sound output. Bissinger (2008) performed vibration and radiation measurements on 17 

violins and ranked them according to the quality ratings that a professional player and 

himself provided. The A0 vibration mode and strong radiation were significantly 

correlated to an instrument's good sound quality. In the studies by Yang et al. (2017a); 

Yang et al. (2017b) the authors tried to find the correlation between the vibroacoustic 
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properties of the wood used in lute and Yueqin musical instruments with experts’ 

subjective evaluations.  

As mentioned by Fritz and Dubois (2015), it is clear that the perceptual evaluation by 

the instrument makers or players is important in the study of a musical instrument’s 

quality. Understanding how they evaluate the quality of an instrument is one necessary 

step in the efforts to understand and improve the design and manufacturing of the 

instrument.  From the literature above, it can be seen that the sound quality of an 

instrument in the perceptual opinions of the experts is not affected by only a single 

factor. However, little of the literature mentioned above has been examined, which is 

the most significant factor among all the factors studied. From the expert's point of 

view, which factor will most significantly affect the quality of the instrument? This 

study presents data that fills this gap. 

3.3 Methodology 

The study's design incorporated both qualitative and quantitative research 

methodologies, specifically integrating focus group discussions (FGDs) and a structured 

questionnaire. These research tools were thoughtfully selected based on their suitability 

for delving into the multifaceted dimensions of the subject under investigation (Kline, 

2013; Krueger & Casey, 2000). 

To elaborate further, the utilization of FGDs deserves an in-depth explanation. FGDs 

constitute a qualitative research approach wherein small groups of individuals sharing 

common characteristics convene to engage in detailed discussions about a specific topic. 

This methodological choice was made due to its inherent capacity for exploring the 

intricate facets of participants' viewpoints, experiences, and insights related to the focal 

area of Sape quality. These discussions provided a platform for participants, who were 
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seasoned Sape makers in this case, to articulate their tacit knowledge and contextual 

factors that influence Sape quality. 

Complementing this qualitative component, a structured questionnaire was 

meticulously designed to procure quantitative data. Questionnaires are recognized for 

their ability to systematically gather standardized responses from a diverse and broader 

sample of participants. The questionnaire was designed with precision, encompassing a 

series of well-crafted questions. This approach enabled the collection of specific, 

quantifiable information of various aspects of Sape quality. By employing this 

quantitative approach, the aim was to quantify participants' opinions, preferences, and 

perceptions, offering a more comprehensive and statistically supported perspective on 

the subject matter. 

It is imperative to underscore that the fusion of both qualitative and quantitative 

methodologies in this research design was a deliberate choice. The acknowledgement is 

that Sape quality is a multifaceted phenomenon shaped by various factors, some deeply 

ingrained in the expertise and experiences of Sape makers. Qualitative methods, such as 

FGDs, were indispensable for exploring these intricate, context-specific elements. 

Concurrently, the quantitative data garnered through questionnaires allowed for the 

generalization of findings to a wider population of Sape enthusiasts, enhancing the 

comprehensiveness of the study. 

In essence, the research design was thoughtfully structured to harness the strengths of 

both qualitative and quantitative approaches. This comprehensive methodology was 

strategically selected to ensure a holistic grasp of the factors impacting Sape quality, 

aligning with the nuanced nature of the research objective. 
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3.3.1 Focus Group Discussion 

According to Thomas et al. (1995), a focus group is a technique involving in-depth 

group interviews in which participants are selected because they are purposive, although 

not necessarily representative, sampling of a specific population. Therefore, focus group 

discussion participants are selected because they know a study area (Burrows & 

Kendall, 1997). In this study, the focus group discussion was conducted to explore, 

comprehend, and discuss the issue thoroughly and comprehensively. This method 

allowed Sape makers to express their thoughts and opinions as it involved an open 

discussion session.  

3.3.1.1 Sample 

According to Krueger and Casey (2000), smaller focus groups hold greater potential 

for gathering insightful data. Therefore, a focus group comprising six to eight 

participants is recommended. For this study, participants who have at least five years of 

experience in Sape-making and are currently active in the industry were targeted. They 

also needed to be well-known within the Sape community. To recruit the participants, a 

total of 15 invitations were distributed via email, text messages, and social media 

platforms. The limited size of the Sape maker community was cited as the reason for the 

low response rate, as just five people responded and agreed to take part. One of the 

reasons given was that some Sape makers lived in rural places, making transportation 

difficult. Other logistical problems were also mentioned. There are only about 15 known 

Sape makers in Sarawak, according to the Sape maker. 

Five male participants, ranging in age from 28 to over 70, participated in the focus 

group, which was held in Kuching, Sarawak, and Kuala Lumpur. All participants 

identified as expert Sape makers, with two having over ten years of experience and the 

remaining three having over five years of experience. All participants work full-time as 
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Sape makers and are highly regarded within the Sape-making community. One of the 

participants in the focus group has been recognized as a national living heritage by the 

Malaysian government, indicating his outstanding knowledge and skills in the 

traditional arts and crafts of the country. In addition, this participant is actively involved 

in teaching Sape classes, which demonstrates his commitment to preserving and 

promoting the cultural heritage of the Sape. As a mentor to some Sape makers, this 

participant has played an important role in passing on the knowledge and techniques of 

Sape making to the next generation. Overall, the expertise and experience of this 

participant have enriched the discussions in the focus group and provided valuable 

insights into the cultural significance and technical aspects of the Sape. The focus group 

aimed to elicit relevant perceptual and physical attributes concerning the sound quality 

of the Sape, which would inform the study's questionnaire. To ensure clear 

communication, the discussions were conducted in English and the national language. 

3.3.1.2 Questions 

The focus group questions were created based on potential factors influencing the 

sound quality of the Sape. Adapting several variables from Barbosa et al. (2015), it 

included: subjective, materials, design, playability, typology of the maker, etc. Several 

questions under each variable were asked. The questions are presented in Table 3.1.  
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Table 3.1: Focus group questions  

Variables Questions 
Subjective What factors may affect the quality of the Sape? 

What is the most significant factor that affects the quality of the Sape? 
What other things are there that may not have been discussed as influencing factors 
of the Sape quality? 

Materials Do you think wood type influences Sape quality? 
What is the best wood for making a Sape? 
Please rate from 1(best) to 4(worst), the best wood for Sape making from the 
category of wood below.  
Softwood 
Light Hardwood 
Medium Hardwood 
Heavy Hardwood 
Do you think that the age of wood influences Sape quality? 
The air-dried wood is better compared to the freshly cut wood in making a Sape. 
What do you think about it? 

String or frets The Sape commonly used steel strings. Therefore, steel-string is better compared to 
nylon string in the quality of sound produced. What do you think?  
Do you think that the material of the frets could affect the sound quality produced? 

Design Do you think the design of the Sape influences Sape quality? 
The dimension or size of the Sape could affect the Sape quality. 

Maker Do you think the quality of the Sape depends on the Sape maker? 
Experience in Sape making is important in determining the quality of the Sape 
produced. What do you think about it? 

Appearance Do you think that a Sape with a pleasing aesthetical appearance looks better in 
quality? 

Environment The playing environment is important as it can make the Sape player plays better. 
What do you think about it? 
Do you think that the temperature and humidity of the environment can affect the 
instrument quality? 

Control The good Sape allows me to control it when I am playing. What do you think about 
it? 

Past experiences Can you recall when is the last time you make Sape? 
Have you been making Sape in the past 12 months? 

Intention & 
Recommendation 

In the future, do you think that you will keep on making Sape? 
In the future, do you think that you will change the way/materials in making Sape? 
Let's say, in the future if there’s a system that could automatically determine the 
sound quality of Sape, will you use it? 
What do you think the government can do to improve the Sape production quality? 
What can you do to improve the current Sape production? 

Maker typology How would you classify yourself as a Sape maker? 
Expert 
Proficient 
Competent 
Advanced Beginner 
Novice  

 

3.3.1.3 Data Analysis 

The analysis of data from FGDs entails a multi-step process that commences with the 

transcription of recordings and data organization. Subsequently, the transcribed data 

undergoes cleaning to eliminate extraneous material. Next, the data is coded by 

assigning labels or codes to data segments, which enables the identification of themes 

and patterns in the data. After coding, meaningful categorization of the codes into 
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themes follows, facilitating structured data analysis. Ultimately, the themes and patterns 

in the data are interpreted to derive findings (Krueger & Casey, 2000).  

In this research, a comprehensive approach was employed to analyze the information 

gleaned from the FGDs, which included anecdotes shared by participants. Four 

analytical tools—word frequency analysis, word cloud analysis, mind map analysis, and 

anecdotal analysis—were utilized to extract insights from the rich dataset. 

The most frequently used words and captivating anecdotes were visualized in a word 

cloud, major themes and sub-themes were identified in a mind map, and patterns and 

trends were discovered through word frequency analysis. These three tools, in 

conjunction with the inclusion of anecdotes, facilitated the identification of prevalent 

themes and topics in the discussion, the understanding of relationships between various 

topics, and the detection of patterns and trends in the data. This comprehensive 

approach enhanced the ability to fully comprehend the outcomes of the discussion, 

enriched by the unique perspectives and experiences shared by the participants. 

3.3.2 Questionnaire 

3.3.2.1 Sample 

In this study, Sape players and makers actively playing, teaching, and making 

musical instruments were invited to participate in the survey. The potential respondents 

were contacted through the Sape community WhatsApp group, Facebook messenger, 

and a mass mailing list. Of 250 invitations, 48 responded by filling out the questionnaire 

online, and one person responded manually due to their limited reading ability. The 

questionnaire response rate was 19.2%. 
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3.3.2.2 Instrumentation 

Sape players and makers were asked to complete the Sape sound quality survey 

questionnaire online. The questionnaire was set via Google Forms with the topic 

"Physical and Perceptual Characteristics Affecting the Sound Quality of the Sape". The 

questionnaire consisted of four sections as shown in Table 3.2. Section A described the 

characteristics of the primary Sape instrument respondents owned and played the most. 

Section B collected Sape-playing experiences from the respondents. Section C asked the 

respondents their opinions concerning the sound quality of the Sape. In this section, 24 

questions were asked, and participants were asked to indicate their level of agreement or 

disagreement. A 4-point Likert scale was employed to elicit stronger viewpoints from 

respondents and minimize ambiguity in the results, while also reducing indecisiveness 

among participants. Finally, section D collected the demographic backgrounds of the 

respondents. The questionnaire was prepared in English and Bahasa Melayu. 

Table 3.2: Sound quality variables  

C## Sound quality variables 
Opinion 

Strongly 
disagree Disagree Agree Strongly 

agree 

C1 The wood type used can affect the sound quality 
of Sape 1 2 3 4 

C2 The nice aesthetic appearance of Sape tends to 
make it looks more quality 1 2 3 4 

C3 The string material used can greatly affect the 
sound quality production of Sape 1 2 3 4 

C4 The number of strings used can affects the 
sound quality of Sape 1 2 3 4 

C5 The weight of the Sape can affect the sound 
quality produced 1 2 3 4 

C6 The dimension/size of the Sape can affect the 
sound quality produced 1 2 3 4 

C7 The quality of the Sape is very much dependent 
on the expertise of the Sape maker 1 2 3 4 

C8 Sape with a higher selling price is better in 
quality 1 2 3 4 

C9 The sound quality produced by Sape is very 
much dependent on the skills of the player 1 2 3 4 

C10 
The temperature and humidity of the playing 
environment will affect the playing quality of 
the Sape 

1 2 3 4 

C11 The Sape sounds better when I am in a good 
mood 1 2 3 4 

Univ
ers

iti 
Mala

ya



62 

Table 3.2: Sound quality variables (continued) 

C## Sound quality variables 
Opinion 

Strongly 
disagree Disagree Agree Strongly 

agree 

C12 The playing environment will affect the sound 
quality of Sape 1 2 3 4 

C13 The bad quality of the Sape will limit my 
playing ability 1 2 3 4 

C14 Good Sape can produce good sound quality even 
with limited playing skills 1 2 3 4 

C15 Hardwood is better than softwood in making the 
Sape as it will produce a better sound quality 1 2 3 4 

C16 Steel strings are better than nylon strings in 
playing a good Sape sound 1 2 3 4 

C17 The number of frets will affect the melody and 
sound quality produced by Sape 1 2 3 4 

C18 Sape produced by different makers will give 
different quality 1 2 3 4 

C19 Contemporary Sape sounds better than the 
traditional Sape 1 2 3 4 

C20 
The installation of pickup, volume knob, mono 
jack socket, and earth grounding on the Sape 
makes it sounds better 

1 2 3 4 

C21 
Sape with diatonic scaling is better than 
pentatonic scaling as it can play with more 
pitches 

1 2 3 4 

C22 The thickness of the Sape body can affect the 
sound quality produced 1 2 3 4 

C23 The materials used for the frets can affects the 
sound quality of Sape 1 2 3 4 

C24 Large Sape sounds better compared to the small 
Sape 1 2 3 4 

 

3.3.2.3 Data Analysis 

Data collected from the online questionnaire were imported into an SPSS (Statistical 

Package for the Social Sciences) database.  In this study, Exploratory Factor Analysis 

(EFA) (Comrey & Lee, 2013a) and Principal Component Analysis (PCA) were 

conducted to scrutinise the manifest variables and find groups of latent variables that 

were highly intercorrelated. Each group represented common underlying factors (Everitt 

& Skrondal, 2010). The EFA resulted in fewer significant factors than variables. Thus, 

the EFA reduced the number of variables to reveal the underlying pattern of the 

variation of variables in the sample concerning the Sape’s sound quality.  
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The extraction of the number of factors followed the Kaiser criterion (Kaiser, 1960). 

Factors were extracted if the variable had a quality score or Eigenvalue greater than 1. 

An orthogonal rotation (varimax) was used when the factors were not correlated. 

However, an oblique rotation (promax) determined the final factor solution if the factors 

were nonorthogonal and correlated. Oblique rotation was more precise than orthogonal 

rotation when performing the EFA, as it showed better flexibility in searching for 

patterns regardless of their correlation (Rummel, 1988).  

In this paper, the factor loading cut-off was set at 0.40, following the suggestion by 

Swisher et al. (2004) that cut-offs between 0.30 and 0.60 should be typically considered. 

The total factors extracted were about one-fifth as many as the variables. They 

accounted for at least 60% of the total variance.  This outcome explained the reliability 

of the number of factors extracted in this study. On the other hand, if a variable had 

more than one substantial factor loading, the variable was retained on the factor with the 

highest loading.  

A reliability test was conducted on the factor sets of the variables to check analytical 

rigour. Ideally, surveys with Cronbach's Alpha values approaching the value of 1 are 

reproducible and consistent (Peter, 1979). The Cronbach's Alpha value obtained should 

show a minimum value of 0.70 for reliability and use in further analysis (Nunnally, 

1978). The Bartlett Test of Sphericity (BTS) and the Kaiser-Meyer-Olkin (KMO) Index 

of Sampling Adequacy were then performed to examine the correlation between the 

variables. A minimum KMO value of 0.5 is required, and it is even better if it is closer 

to 1.0, indicating a strong correlation. The BTS was used to test the null hypothesis that 

the correlation matrix was an identity matrix. A Chi-square signification value less than 

0.05 would reject the null hypothesis. Rejection of the null hypothesis means that the 

variables were related and fit for factor analysis. 
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3.4 Results and Discussion 

3.4.1 Focus Group Discussion 

Due to the small community of Sape makers, the focus group was only conducted 

twice, as explained in Section 3. Five participants were recruited, and they described 

themselves as experts. The participant demographics are shown in Table 3.3 below. 

Table 3.3: Participants demographics  

Participant Age Gender Race Marital Status Employment Experience 
1 71 Male Kenyah Married Retiree > 20 years 
2 71 Male Iban Married Retiree > 10 years 
3 53 Male Iban Married Retiree > 5 years 
4 31 Male Kenyah Married Self-employed > 5 years 
5 28 Male Iban Single Self-employed > 5 years 

 

The focus group discussion was recorded and manually transcribed due to the mix of 

English and Bahasa Melayu spoken. These transcripts underwent thorough manual 

analysis to identify recurring themes and patterns that emerged. Anecdotes, providing a 

personalized perspective from the participants, were thoughtfully incorporated. Through 

these compelling anecdotes, a vivid narrative emerged. The seasoned Sape makers 

collectively echoed a resounding sentiment—wood, the foundational material, reigns 

supreme in shaping Sape quality. 

Across the FGD sessions, participants uniformly emphasized the pivotal role of 

wood in Sape quality. "Adau" was a name that resonated among the participants as the 

wood of choice for crafting exceptional Sape instruments. The collective preference for 

"Adau" was rooted in its characteristics—it strikes a balance between hardness and 

softness, allowing for easy crafting and ensuring that the Sape sustains its distinct 

timbre over time. This consensus on wood selection underlines the reverence that Sape 

makers hold for this specific material.  
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Beyond wood type, participants acknowledged that the age of wood significantly 

influences Sape quality. Older wood, they observed, possesses qualities that enhance the 

Sape's tonal richness and longevity. Furthermore, the participants unanimously agreed 

that dried wood, as opposed to freshly cut wood, is superior in the Sape-making process. 

The anecdotal evidence points to the Sape makers' profound understanding of how 

wood's age and drying process contribute to the overall quality of the instrument.  

When it came to wood hardness, participants provided intriguing insights. Their 

rankings, ranging from light hardwood to heavy hardwood, unveiled their nuanced 

perception of how wood density affects Sape quality. This ranking reflects their 

experiential wisdom—a testament to how Sape makers consider even the subtlest 

variations in wood properties. The narrative woven by the participants in the FGDs 

underscores the Sape makers' role as artisans with unique preferences and 

craftsmanship. They emphasized that each Sape maker brings their distinct touch to the 

instrument, reminding us that Sape quality is shaped not only by the material but also by 

the maker's skill and individuality.  

While wood took centre stage, participants acknowledged the importance of strings, 

dimensions, and frets. Their varied opinions on these aspects indicate that there might 

be room for exploration and variation within the Sape-making tradition. The differences 

in perspectives could stem from individual preferences and regional practices, offering 

insights into the diversity within Sape craftsmanship. The acknowledgement of 

environmental factors, such as temperature, humidity, and moisture, impacting Sape 

quality underscores the holistic approach that Sape makers take. It's a reminder that 

crafting a Sape isn't limited to the workshop; its surroundings and care post-creation 

matter. This aligns with the broader understanding of instrument maintenance and 

preservation. 
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The anecdotes also unveiled both shared perspectives and divergent opinions among 

the participants regarding the factors influencing Sape quality. There was a clear 

consensus among them regarding the significance of wood type, quality, age, and the 

drying process in shaping the Sape's quality. Similarly, the dimensions, size, and fret 

configurations of the Sape were collectively acknowledged as pivotal determinants of 

its quality. However, differences in viewpoints surfaced when it came to aspects like the 

Sape's design, painting, and the materials used for strings and frets. While some 

participants did not consider these elements as decisive factors in assessing Sape 

quality, others argued that they indeed played a role. 

In essence, the anecdotes and insights shared by these Sape experts paint a 

multifaceted picture of Sape quality. They underscore the essential role of wood, 

aligning with established principles of material selection in instrument craftsmanship. 

Simultaneously, they highlight the nuanced considerations, creativity, and individuality 

of Sape makers. The differences in opinions regarding certain factors reveal the richness 

and diversity within Sape craftsmanship. Overall, this discussion deepens our 

understanding of Sape quality and its multifactorial nature. 

To further analyze the data collected from the focus group discussion, a word cloud 

was generated as shown in Figure 3.1. The prominent words that emerged from the 

cloud include "wood," "string," "shape," and "fret." These words provide a summary of 

the key quality factors that were frequently mentioned by the participants and offer an 

understanding of the factors that influence Sape quality. The term "wood" is of 

particular interest, as it was the most prominent word in the cloud. This suggests that the 

participants placed a high value on Sape quality and that it was a central topic of 

discussion during the focus group. The other prominent words, such as "string," 
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"shape," and "fret," are related to the construction and design of the Sape and highlight 

the importance of these factors in determining the overall quality of the instrument. 

 

Figure 3.1: Word cloud generated from the FGD transcribe. 

Mind mapping was performed to summarise the factors influencing the sound quality 

of the Sape using the word cloud output. The mind map is shown in Figure 3.2. Several 

variables emerged: material, design, maker, control, and environment. It was clear from 

the mind mapping that the construction material was the most significant factor 

influencing the sound quality of the Sape. According to the participants' excerpts, 

choosing the correct wood was the most important aspect of making a good quality 

Sape. To receive this information, the moderator asked, "What is the most significant 

factor affecting the quality of the Sape?". The responses received were consistent 

among all the participants who responded that wood was the most significant factor. 

The second most significant factor was found to be the design of the Sape. For instance, 

it is discussed that the Sape’s body was made with a thickness of between 1cm to 2cm 

to get the optimum sound production.  

 

Univ
ers

iti 
Mala

ya



68 

 

 

Figure 3.2: Mind mapping from participants’ excerpt  

3.4.2 Questionnaire  

This survey had several known limitations regarding the instrumentation, sampling, 

and response rate, affecting the study's internal validity. The sampling strategy used in 

the primary data collection was at the convenience of the authors. The survey was 

conducted fully online, so the targeted respondents were contacted using online 

platforms (Facebook Messenger) and text messages (Whatsapp, SMS). The response 

rate limited the sample size to 48, around 19% of the active Whatsapp Sape community 

group. A larger sample would have been better regarding the accuracy of population 

estimates. It is generally recommended that a bare minimum of 10 observations per 

variable are necessary to avoid computational difficulties (Comrey & Lee, 2013b). 

However, due to the small Sape community which is spread across the regions in 

Sarawak without much convenient internet access, the response rate is limited. The 

demographics of the sample population are included in Appendix A. The population 

consisted of more males than females. Most of the population were 31 years old and 
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below; they originated from Kuching and Miri (two major cities in Sarawak) and were 

from the Iban, Orang Ulu, or Bidayuh races (major races in Sarawak). 

The factor analysis with an orthogonal rotation (varimax) with five factors is shown 

in Table 3.4. The first, second, third, fourth, and fifth factors accounted for 19.3%, 

12.4%, 11.8%, 9.6%, and 8.3% of the variance, respectively. These five factors added 

up to a cumulative 62% of the variance. The factor analysis was repeated with an 

oblique rotation (promax), assuming the factors were correlated. However, the factor 

correlation was found to be non-significant. The highest correlation coefficients 

occurred between Factors 2 and 4, with a value of 0.141. The result from the orthogonal 

rotation was therefore retained.   

Table 3.4: Total variance explained for orthogonal rotation statistics.  

Factor Eigenvalue % of variance Cumulative % 
1 3.864 19.321 19.321 
2 2.481 12.407 31.728 
3 2.357 11.785 43.513 
4 1.913 9.567 53.079 
5 1.667 8.335 61.415 

 

Table 3.5 presents each variable's factor loading, attribute, and questionnaire item. 

The factors were interpreted and labelled as Material, Environment, Player/Maker, 

Design, and Size/Weight. The study characterized Factor 1 as having high loadings on 

questions related to the material and design of the Sape instrument. The attributes that 

had significant loadings on this factor included material (C3: 0.787 and C23: 0.541), 

design (C22: 0.746 and C6: 0.713), and the type of strings used (C16: 0.427), which 

suggest that the quality of the materials used, the thickness of the Sape body, and the 

dimension/size of the Sape are critical factors that influence the sound quality produced. 
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Factor 2 was primarily defined by the attributes related to the environment and the 

player/maker factors that influence the quality of the Sape instrument. The essential 

attributes that loaded heavily on this factor were environment (C10: 0.822 and C12: 

0.622) and player/maker (C7: 0.779), indicating that the quality of the playing 

environment, including temperature and humidity, and the expertise of the Sape maker 

are critical factors that influence the sound quality produced. Factor 3 was characterized 

as having high loadings on questions related to the player/maker factor and mood. The 

most important attributes that loaded heavily on this factor were player/maker (C14: 

0.764 and C11: 0.763) and the Sape produced by different makers (C18: 0.730), 

indicating that the skill of the player and the mood of the player are crucial factors that 

influence the sound quality produced, as well as the quality of the Sape produced by 

different makers. 

Table 3.5: Factor loadings for oblique rotation by attribute and questionnaire 
item 

Factor Factor Score Attribute Questionnaire Item 

1 
 

0.787 Material C3: The string material used can greatly 
affect the sound quality production of Sape 

0.746 Size/Weight C22: The thickness of the Sape body can 
affect the sound quality produced 

0.713 Size/Weight C6: The dimension/size of the Sape can 
affect the sound quality produced 

0.575 Player/Maker C13: Bad quality of Sape will limit my 
playing ability 

0.562 Player/Maker C9: Sound quality produced by Sape is very 
much dependent on the skills of the player 

0.541 Material C23: The materials used for the frets can 
affect the sound quality of Sape 

0.427 Material C16: Steel strings are better than nylon 
strings in playing a good Sape sound 

2 
 

0.822 Environment 
C10: The temperature and humidity of the 
playing environment will affect the playing 
quality of the Sape 

0.779 Player/Maker 
C7: The quality of the Sape is very much 
dependent on the expertise of the Sape 
maker 

0.622 Environment C12: The playing environment will affect 
the sound quality of Sape 
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Table 3.5: Factor loadings for oblique rotation by attribute and questionnaire 
item (continued) 

Factor Factor Score Attribute Questionnaire Item 

3 
 

0.764 Player/Maker C14: Good Sape can produce good sound 
quality even with limited playing skills 

0.763 Player/Maker C11: The Sape sounds better when I am in 
a good mood 

0.730 Player/Maker C18: Sape produced by different makers 
will give different quality 

4 
 

0.708 Design 
C17: The number of frets will affect the 
melody and sound quality produced by 
Sape 

0.677 Design C4: The number of strings used can affect 
the sound quality of Sape 

0.575 Design C19: Contemporary Sape sounds better 
than the traditional Sape 

0.449 Design C2: The nice aesthetic appearance of the 
Sape tends to make it looks more quality 

5 
 

0.659 Size/Weight C5: The weight of the Sape can affect the 
sound quality produced 

0.622 Size/Weight C24: Large Sape sounds better compared to 
the small Sape 

0.491 Material C1: The wood type used can affect the 
sound quality of Sape 

 

Factor 4 was identified as having high loadings on questions related to the design of 

the Sape instrument. The most important attributes that loaded heavily on this factor 

were the number of frets (C17: 0.708), strings used (C4: 0.677), and the contemporary 

design of the Sape (C19: 0.575). These attributes suggest that the number of frets and 

strings used are critical factors that influence the melody and sound quality produced, as 

well as the preference for contemporary design over traditional design. Factor 5 was 

identified as having high loadings on questions related to the weight and size of the 

Sape instrument. The most important attributes that loaded heavily on this factor were 

the weight of the Sape (C5: 0.659) and the size of the Sape (C24: 0.622). These 

attributes suggest that the weight and size of the Sape are critical factors that influence 

the quality of the sound produced. 
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The Kaiser-Meyer-Olkin (KMO) measure was found to be 0.51, indicating an 

adequate sample size for factor analysis. Additionally, Bartlett's Test of Sphericity 

(BTS) was significant with a p-value less than 0.05, suggesting that the correlations 

between items were sufficiently large for performing factor analysis. For internal 

consistency reliability, Cronbach's alpha was calculated for each factor. Alpha values of 

0.7 and above are required. However, according to Pallant (2013), for a factor with 

items lower than 10, an alpha value higher than 0.5 is acceptable. As shown in Table 

3.6, factors 1, 2, and 3 exhibited good to acceptable internal consistency reliability, 

indicating that the items comprising these factors are closely associated and measure the 

same underlying construct. In contrast, factor 4, which pertains to Design, displayed a 

slightly lower Cronbach's alpha value of 0.521, yet it remained within the acceptable 

range.  

The Size/Weight factor (factor 5) had the lowest Cronbach's alpha value of 0.386, 

which falls below the acceptable threshold of 0.5. This indicates that the items 

comprising this factor are less consistent and may not be measuring the same underlying 

construct as effectively as the other factors. It is conceivable that some of the items 

within this factor may not be as relevant or may not fit as cohesively with the other 

items, which could contribute to the diminished overall reliability of the factor. Another 

possibility is that the items in factor 5 may not be worded well or may not be relevant to 

the construct being measured. For example, the item "The weight of the Sape can affect 

the sound quality produced" (C5) may be seen as somewhat redundant with the concept 

of size, as heavier instruments tend to be larger. Additionally, the item "Large Sape 

sounds better compared to the small Sape" (C24) may not be relevant to all Sape players 

or enthusiasts and may be influenced by personal preferences or biases. 

 

Univ
ers

iti 
Mala

ya



73 

Table 3.6: Cronbach’s alpha coefficient for the resulting factors  

Factor #Items in 
Scale Factor Name Alpha Standardized Item 

Alpha 
1 7 Material 0.743 0.756 
2 3 Environment 0.697 0.716 
3 3 Player/Maker 0.674 0.704 
4 4 Design 0.514 0.521 
5 3 Size/Weight 0.355 0.386 

 

This finding suggested that the material of the Sape was the main factor in 

determining the sound quality of the Sape. Sape are made from many different types of 

wood; the most popular is Adau wood. It is believed that the very first Sape was made 

from this wood. Due to the wide variety of wood available in Sarawak, other types of 

wood have also been widely used, for example, Merbau, Tapang, Meranti (Shorea spp.), 

Jati (Tectona grandis), etc. It is known that different types of wood can produce 

different acoustic and vibrational properties. Yoshikawa (2007) researched the 

traditional woods best suited for string instruments based on the wood's physical 

properties. The woods most commonly used in Western instruments fall within the same 

regression line of vibrational and anti-vibrational parameters. However, the wood used 

in Western string instruments may not be the same as in the East. In his study, Mulberry 

wood was widely used to make Japanese traditional musical instruments. The Japanese 

Biwa did not fall in the same regression line as Western instruments. It was explained 

that the unique properties of Asian traditional instruments have unique physical 

properties requirements compared to Western instruments. It is noted that the findings 

from both the focus group and questionnaire showed that the material or wood used in 

making the Sape is the most significant factor in determining the quality. This finding is 

worth further research work on the Sape woods’ physical or vibroacoustic properties.  

  

Univ
ers

iti 
Mala

ya



74 

The second most important factor appeared to be environmental effects on the sound 

quality of the Sape. Two environmental items explained that the Sape’s sound quality 

could be influenced by the surrounding conditions, such as temperature and humidity. 

This outcome demonstrated that Sape players perceived that they would play the Sape 

better if the environment were perfect for them. The Sape is usually played as a hobby, 

during traditional events, performances, and free time. Therefore, such an event's 

surroundings seemed to play an important role for players. The humidity of the 

surroundings would also affect the playing quality of the instrument. The feedback from 

one of the respondents of the focus group mentioned that the humidity would change the 

moisture content of the Sape, and it would affect the sound quality of the Sape. An 

environment that is too dry would also dry up the Sape body and it will crack. 

Therefore, the solution of the Sape maker nowadays is to apply a layer of varnish to the 

Sape body as a layer of protection against the change in humidity.  

Player/maker emerged as the third most important factor in the factor analysis. The 

sound quality of the Sape in the eyes of the experts depended on the Sape player's or 

maker's expertise. An experienced Sape maker may produce better instrument sound 

quality due to their vast experience. A good Sape player may produce good playing 

quality from the instrument. This outcome suggests that the effects of the expert's skills 

could be significant in determining product quality. The fourth factor in the factor 

analysis appeared to be the design effects. The items in this attribute refer to the musical 

instrument's design, appearance, etc. It is known that different makers will produce 

different designs of Sape. From the traditional design to contemporary design, three 

strings to six strings, pentatonic to diatonic frets setting, it appeared that the differences 

in terms of the design could produce different quality. The fifth factor was identified 

and named the size/weight factor, as it pertains to the size and weight of the Sape 
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instrument. The findings suggest that the weight and size of the Sape may also have an 

impact on its overall quality.  

The FGD participants and questionnaire results both agreed on the importance of the 

material used to make the Sape, indicating that the type and quality of wood are crucial 

factors in determining its quality. Additionally, both sources agreed that the dimensions 

and size of the Sape have an impact on sound quality and playability and that the setting 

of the frets is also significant in determining the quality of the Sape. However, the FGD 

participants had differing opinions on other factors, such as the influence of design and 

painting on Sape quality, whereas the questionnaire results suggest that design is a 

factor that influences the quality of Sape. Another area of difference between the FGD 

participants and questionnaire results is the use of strings and materials for the frets. 

Some FGD participants suggested using nickel-coated steel strings, while others 

recommended fishing steel strings made in Japan. Additionally, the materials for the 

frets suggested by the FGD participants included bamboo, palm tree, and rotan, which 

was not covered in the questionnaire. 

Overall, the findings of both the FGD and questionnaire suggested that the quality of 

the Sape was influenced by a variety of factors, including the type and quality of wood, 

the dimensions and size of the Sape, the setting of the frets, and potentially the design 

and environment in which the Sape was played. These findings suggested that the Sape 

musical instrument-making industry could have benefited from considering a range of 

factors beyond just the type and quality of wood used in Sape production. 

Manufacturers should have also considered the dimensions and size of the instrument, 

the setting of the frets, and potentially the design and environment in which the Sape 

was played. Further research could have explored the impact of different materials for 

strings and frets on Sape quality and examined how regional and cultural differences 
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influenced Sape production. Ultimately, these findings could have contributed to 

improving the quality and playability of the Sape musical instrument, as well as 

enhancing the overall musical experience for performers and audiences alike. 

3.5 Chapter Summary 

This study was conducted to find the most significant factor affecting the sound 

quality of the Sape musical instrument. An FGD and survey were conducted to achieve 

the objective of this study. The results will be very useful in understanding the factors 

that could affect the sound quality produced by the instrument. Different Sape experts 

may provide different opinions on the research topic. However, it was necessary to 

determine which factor was the most significant from a majority point of view.  

The results from the FGD indicated that the material used in making the Sape played 

the most important role in determining the quality of sound produced by a Sape. The 

analysis of the FGD showed that the wood type used in making the Sape was a highly 

significant factor. The survey extracted four factors from the factor analysis with 

acceptable internal consistency reliability. The material appeared to be the first factor 

with a significant influence on the sound quality of the Sape. The focus group and 

survey showed the same results in which material seemed to be the most important 

factor in the opinions of the Sape players and makers.  

The findings from this study shed light on the quality determination of the Sape 

musical instrument which has not been fully understood. Due to this study's valid and 

reliable perceived attributes, future research should also be conducted to examine these 

factors' usefulness and determine their ability to predict the sound quality of the Sape. 

As a starting point, it is worth further investigating the materials used in making the 

Sape as the woods commonly used by the Sape makers consist of softwood, medium 

hardwood, and heavy hardwood. To understand better, the physical and vibroacoustic 
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properties of the Sape woods will be studied in future studies to find the correlation to 

sound quality production. The findings may also contribute to the effort in looking for 

substitute wood in making Sape as certain woods are facing extinction nowadays.  

However, it is essential to acknowledge the study's limitations. One notable 

limitation is the geographical scope, which focused solely on Sape experts from 

Sarawak, Malaysia, excluding Sape makers and players from Kalimantan, Indonesia. 

This limitation restricts the broader regional context of Sape craftsmanship and playing 

in Borneo.  

In summary, while this study has provided a crucial initial step in unravelling the 

factors that shape Sape sound quality, it represents just the beginning of a more 

comprehensive exploration of this rich musical heritage. The findings presented here 

offer a foundation upon which future research can build to further illuminate the 

nuanced intricacies of Sape craftsmanship and its cultural significance. 
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CHAPTER 4: ASSESSMENT OF WOOD QUALITY FOR SAPE MAKING: 

VIBROACOUSTIC ANALYSIS AND MACHINE LEARNING 

CLASSIFICATION 

 

4.1 Overview 

Chapter 3 of this study extensively investigated the multifaceted factors influencing 

the sound quality of the Sape musical instrument. This comprehensive exploration 

pinpointed wood as the most substantial factor shaping the instrument's sound quality. 

This chapter extends this exploration by employing a detailed scientific approach to 

delve deeper into the influence of wood types on Sape sound production. 

Building upon the findings from Chapter 3, this chapter focuses on an empirical 

evaluation of the quality of three prevalent wood types frequently used in crafting the 

Sape instrument. The primary aim is to conduct a meticulous assessment of these 

woods, utilizing physical, vibroacoustic, and timbre-based analyses of rectangular wood 

samples. 

The methodology involves conducting flexural vibration tests to extract essential 

data on the physical and acoustic properties of the wood samples. Additionally, 

objective sound quality parameters will be derived from the collected sound data to 

determine the most influential features that define wood quality. These features will 

serve as critical inputs in a machine learning framework designed to develop a robust 

method for classifying wood quality. 

This chapter represents a deliberate and structured extension of the preceding 

chapter's findings, aiming to harness scientific methodologies to further understand the 

pivotal role of wood in determining Sape sound quality. The outcomes anticipated from 

this chapter will significantly contribute to the preservation and advancement of Sape 
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craftsmanship, offering valuable insights into maintaining consistent sound quality in 

this revered musical tradition. 

4.2 Introduction 

The Sape, a traditional musical instrument of Sarawakian culture, is renowned for its 

unique and individual character due to its hand-made fabrication process. However, 

ensuring consistent and high-quality sound across different Sape instruments has 

become a significant challenge due to the complexity of this process. This study seeks 

to evaluate the sound quality of Sape instruments to better understand the factors that 

contribute to their perceived quality. Specifically, the research questions guiding this 

study are: What are the physical, vibrational, acoustic, and timbre properties of Sape 

wood that contribute to its sound quality, and can these properties be quantified and 

used to develop a reliable and accurate method for evaluating Sape sound quality? To 

answer these questions, a comprehensive evaluation of different types of wood 

commonly used in Sape instrument construction was conducted. The study measured 

the physical properties, as well as the vibrational, acoustic, and timbre characteristics of 

the woods, and analyzed the relationships between these variables and the perceived 

sound quality of the instruments. The ultimate aim of this research is to provide insights 

and recommendations that can inform the design, manufacture, and preservation of 

high-quality Sape instruments and contribute to the preservation of this important 

cultural tradition. 

The quality evaluation of wood used in string musical instruments is a critical aspect 

that directly impacts the instrument's acoustic properties and overall performance. The 

anatomical grading of wood used in the construction of musical instruments is a well-

established practice, with the final price of the instrument often reflecting the quality of 

the wood (Dinulică et al., 2021). Research has extensively focused on the acoustical 
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properties of wood, particularly in the context of soundboard wood used in string 

instruments, such as European spruce, due to its significance in Western classical music 

(Brémaud, 2012). Additionally, the selection of wood species for making string 

instruments is a global consideration, with hundreds of wood species available for this 

purpose (Wegst, 2006). The assessment of resonance wood quality involves the 

evaluation of physical and histological properties, including density, modulus of 

elasticity, sound velocity, radiation ratio, emission ratio, and loudness index (Spycher et 

al., 2008a). 

Furthermore, studies have explored the acoustic properties of specific wood species, 

such as neem wood, which has shown potential for use in the backs and ribs of stringed 

musical instruments based on its density as a predictor for acoustic properties (Hassan 

& Tippner, 2019). The thermal modification of resonant wood for string instruments has 

been investigated, with specific density, damping decrement, and acoustic constant 

identified as crucial factors for quality evaluation (Danihelová et al., 2022). Moreover, 

the classification of woods for string instruments distinguishes between soundboard 

woods and frame-board woods, emphasizing the importance of wood selection for 

different parts of the instrument (Yoshikawa, 2007). There is also ongoing research into 

the physical-acoustic properties of various wood species for manufacturing musical 

instruments, including string instruments like violins and classical guitars (Fedyukov et 

al., 2019). 

Additionally, the acoustic quality of wood has been linked to its vibrational 

performance, with studies developing classification schemes to discriminate between 

soundboard wood and frame-board wood traditionally used in string instruments (Yang, 

Liu, & Liu, 2017). The properties of tropical hardwoods commonly used for fretboards 

of string instruments have been investigated, highlighting characteristics such as high 
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density, strength, hardness, wear resistance, and dimensional stability (Liu et al., 2020). 

Furthermore, the influence of wood aging on sound quality in the production of musical 

instruments has been emphasized, indicating the significance of wood properties in 

achieving desired sound outcomes (Zoric & Kaljun, 2018). The vibrational and 

viscoelastic properties of wood have also been identified as essential for obtaining high-

quality soundboards in string instruments (Golpayegani et al., 2012). 

As far as the authors are aware, no prior research has been conducted on the quality 

of Sape musical instruments. Consequently, the objective of this study is to address this 

knowledge gap by evaluating the quality of Sape musical instruments from the materials 

perspective. Specifically, the study focuses on the evaluation of three different types of 

wood used in the construction of Sape soundboards. To achieve this objective, free-free 

flexural vibration is applied to rectangular Sape soundboards, and the resulting data is 

analyzed to determine various acoustic, vibration, and timbre features. These features 

serve as objective attributes for the classification of wood types and the grading of 

sound quality. Furthermore, statistical analysis is performed to identify the most 

significant characteristics for the automatic classification of soundboard quality. The 

study also compares the accuracy of different classification models in predicting the 

sound quality of Sape soundboards. Ultimately, it is expected that the findings of this 

study will provide valuable insights into the production of high-quality Sape musical 

instruments, contributing to the preservation and advancement of this traditional art 

form. 
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4.3 Materials and Methods 

4.3.1 Wood Sample Preparation 

In this study, three types of wood commonly used to make Sape, Adau, Tapang, and 

Merbau were selected to represent light hardwood, medium hardwood, and heavy 

hardwood, respectively. The botanical names, physical, and mechanical properties such 

as density and modulus of elasticity (MOE) of the selected woods are listed in Table 

4.1. 

Table 4.1: Botanical information, physical, and mechanical properties of Adau, 
Tapang, and Merbau wood (Lembaga Perindustrian Kayu, 2010) 

Vernacular Name Category Family Botanical Name Density 
(kg mm3) 

MOE 
(N/mm2) 

Adau Light Hardwood Magnoliaceae Elmerrillia mollis dandy 300-705 - 

Tapang Medium Hardwood Leguminosae Koompassia Excelsa 800-865 17800 

Merbau Heavy Hardwood Leguminosae Intsia palembanica 515-1040 15400 

 

 Adau (Elmerrillia mollis), is the vernacular name given by Sarawak natives to the 

Chempaka wood. Chempaka wood is the Standard Malaysian Name for the timber of 

the family of Magnoliaceae. This timber is moderately soft and light to moderately 

heavy with a density of 300 − 705 kg m−3 air dry. Adau is classified as light hardwood 

due to its lightweight and low density. Tapang (Koompassia excelsa) which is from the 

family of Leguminosae is a medium hardwood type. It has the air-dry density ranging 

from 800 − 865 kg m−3 . The Standard Malaysian Name for this wood is called 

Tualang. Its heartwood is red-brown to deep brick-red-brown when fresh and darkens 

with age to a chocolate brown. On the other hand, Merbau (Intsia palembanica) is the 

Standard Malaysian Name for timber under the same family as Tapang (Leguminosae). 
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This wood is a heavy hardwood with a density of 515 − 1040 kg m−3 air dry. It looks 

orange-brown when fresh, darkening to brown or red-brown on exposure (Wong, 2002).  

It is mentioned in the earlier chapter that no Sape is 100% identical as it is fully 

handmade by the Sape makers. The complication in the making process makes it 

impossible for machine production. Therefore, the research on the wood in this study 

started with the soundboard or the top body of the Sape. For simplicity, the soundboard 

wood samples are prepared in a rectangular shape. The length, thickness and width of 

the soundboard followed the common dimensions of Sape that can be seen in the market 

(refer Figure 1.3). The wood samples were planned by Computer Numerical Control 

(CNC) machine to the final dimensions of 16 × 165 × 700 mm3  (radial ×

tangential × longitudinal) . Three samples were prepared for every type of wood 

giving a total of 9 samples. The woods are kept in the laboratory with 60 ± 2% relative 

humidity (RH) and at the 30 ± 1℃ temperature. The wood samples are then labelled 

“A” for Adau wood, “T” for Tapang wood, and “M” for Merbau wood as shown in 

Figure 4.1.  

 

Figure 4.1: Labelled wood samples  
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4.3.2 Methods 

4.3.2.1 Flexural Vibration Test Setup 

The quality of a musical instrument is often linked to the acoustic vibration 

properties of the wood used. In particular, the vibration characteristics are crucial for 

soundboards of string instruments, as they transfer and radiate the vibration of the 

strings and create a unique timbre. The important properties of wood vibration 

characteristics include natural frequencies (𝑓𝑛), density (𝜌), sound propagation speed 

(𝑐), internal friction (tan 𝛿), dynamic elastic modulus and shear modulus ratio (𝐸/𝐺), 

acoustic impedance ( 𝑧 ), acoustic radiation damping coefficient ( 𝑅 ), and specific 

dynamic elastic modulus (𝐸/𝜌) (Brémaud, 2012; Fletcher & Rossing, 2012).  

To assess the vibration properties of the soundboard, a flexural vibration test is 

performed to determine the soundboard quality. A frame made of an aluminium profile, 

measuring 85 cm in length, 35 cm in width, and 25 cm in height, with two elastic 

threads attached, was used to hold the soundboard sample. The sample was placed on 

the two elastic thread supports to allow for free vibration. Table 4.2 presents the nodal 

points pertinent to the fundamental node in the flexural vibration test. Positioned at 

0.224 times the length from both ends of the sample, these locations align with the 

nodal points for the fundamental frequency in the flexural vibration test (Roohnia, 

2019). The schematic diagram of the experimental set-up is shown in Figure 4.2 and 

Figure 4.3.  

Table 4.2: Location of the nodal position in the flexural vibration test (Roohnia, 
2019)  

Mode 
Number 1 2 3 4 

 0.244𝐿 0.132𝐿 0.073𝐿 0.277𝐿 

 0.776𝐿 0.868𝐿 0.927𝐿 0.723𝐿 

𝐿 = length of the specimen 
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To induce vibration, a stainless-steel ball measuring 15mm in diameter and weighing 

13.9g was utilized in this experiment. To ensure repeatability of force excitation, the 

ball is released after being lifted to a 50° angle from its resting position and hits the 

wood sample after being deflected by a fixed horizontal rod, which maintains a 

consistent impact force. The use of a fixed horizontal rod ensures that the ball hits the 

sample in a consistent manner, reducing variability in the results due to differences in 

the force of impact. The sound produced by the impact is recorded by a sound level 

meter positioned 5 cm above the sample. The experimental setup provides a reliable 

method for inducing vibration and measuring the resulting sound, but it may not capture 

all aspects of real-world scenarios. The repeatability of force excitation is established 

through the use of the fixed horizontal rod, which ensures that the ball consistently hits 

the sample during each impact. The experiment is carried out in the lecture hall at a 

mean temperature of 20℃ with a relative humidity of 54%. 

 

Figure 4.2: Schematic diagram of the experimental set-up  
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Figure 4.3: Experiment setup for flexural vibration test  

The experiment employed an 01dB Metravib Solo data logging integrating sound 

level meter equipped with an MCE215 microphone transducer featuring a sensitivity of 

50 mV/Pa. Before commencing the experiment, calibration of the sound level meter was 

carried out using a Cirrus CR:515 calibrator. For data capture, the 01dB SLM was 

linked to a computer via a USB cable, and the dBBATI32 software facilitated the 

process. The SLM, functioning as a signal transducer, transferred real-time sound 

signals to the computer upon selecting the record feature in the acquisition tab. Sound 

data was sampled at 51.2 kHz with 16,384 spectral lines and recorded over a 5-second 

duration. 

Each wood sample underwent 40 repetitions of data collection, leading to a total of 

360 sound recordings. Analysis of the recorded data was performed using MATLAB 

software, employing the fast Fourier transform (FFT) to ascertain resonant frequencies. 

The experiment took place in a lecture hall with an average temperature of 20℃ and 

relative humidity of 54%. The sound data collected during the flexural vibration test 

was stored in WAV format and subsequently analyzed on a computer using MATLAB. 

Notably, each wood sample generated 40 sound data recordings, with natural 

frequencies determined through FFT analysis using MATLAB. 
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Figure 4.4 illustrates the 01dB Metravib Solo data logging integrating sound level 

meter employed in the experiment, utilizing an MCE215 microphone transducer with a 

sensitivity of 50 mV/Pa. The SLM was calibrated using the Cirrus CR:515 calibrator as 

depicted in Figure 4.5, setting the reference value to 94 dB for a frequency of 1000 Hz. 

The 01dB SLM, connected via USB to a computer, operated in real-time as a signal 

transducer when the record feature was activated in the dBBATI32 software. The 

acquisition parameters are detailed in Table 4.3. 

 

 Figure 4.4: 01dB solo octave sound level meter  

 

Figure 4.5: Cirrus CR:515 calibrator  

 

Table 4.3: Flexural vibration acquisition parameters  

Sample Sampling 
frequency (kHz) 

Frequency 
Resolution (Hz) 

Acquisition 
duration (s) 

All 9 wood samples 51.2 0.2 5 
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4.3.2.2 Data Processing 

(a) Signal Processing in MATLAB 

The sound data collected from the flexural vibration test using the sound level meter 

is saved in the wav format. The sound data is then transferred to the computer equipped 

with MATLAB software. From here, the sound file is renamed to the format ‘A1 (1)’ in 

which ‘A’ stands for Adau wood, ‘M’ stands for Merbau wood and ‘T’ stands for 

Tapang wood. The number in the bracket represents the number of tests carried out. 

There is a total of 40 sound data collected from each wood sample. After performing 

FFT using MATLAB software, the natural frequency is obtained. The acoustic vibration 

properties or timbre features extracted in this study followed the literature and are listed 

in Table 4.4.  

Table 4.4: Vibrational, acoustical, and timbre features  

No Features References 
1 Fundamental frequency, 𝑓 (Brémaud, 2012) 
2 Density, 𝜌 (Brémaud, 2012) 
3 Dynamic Elastic Modulus, 𝐸 (Brémaud, 2012) 
4 Acoustic Radiation Damping Coefficient, 𝑅 (Brémaud, 2012; Yang et al., 2017a) 
5 Acoustic Impedance, 𝑧 (Wegst, 2006; Yang et al., 2017a) 
6 Internal Friction, tan 𝛿 (Brémaud, 2012) 
7 Acoustic Conversion Efficiency, ACE (Brémaud, 2012) 
8 Speed of sound, 𝑐 (Wegst, 2006) 
9 Spectral Centroid, SC (Aramaki et al., 2007) 
10 Spectral Bandwidth, SB (Aramaki et al., 2007) 
11 Spectral Flux, SF (Aramaki et al., 2007) 
12 Attack time, AT (Aramaki et al., 2007) 
13 Inharmonicity, I (Aramaki et al., 2007) 

 

i Density, 𝜌 

One of the most crucial factors in classifying wood is the density of the wood 

samples. According to (Lembaga Perindustrian Kayu, 2010), the density of the wood at 

a 15% moisture level is a major factor in determining how it is classified in Malaysia. 

The density range for heavy hardwood typically ranges from 800 to 1120 kg m−3 , 

medium hardwood from 720 to  880 kg m−3 and light hardwood from 400 to 720 
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kg m−3 . According to the interview conducted by Hashim (2017), one of the 

characteristics that Sape makers use to categorize or select the Sape soundboard is based 

on its density. Sape makers will choose a denser wood over a less dense wood because, 

in their opinion, denser wood generally produces better sound quality. Therefore, one of 

the characteristics to identify the wood to build a Sape soundboard is density. 

The density,  𝜌  of the wood sample is calculated by measuring the mass, 𝑚 and 

volume, 𝑉 of each sample as shown in the Equation 1: 

𝝆 =
𝒎

𝑽
       (4.1) 

 

ii Dynamic Modulus of Elasticity, 𝐸 

One of the most crucial measurements to watch the behaviour of the wood when 

applying a force is the dynamic modulus of elasticity, 𝐸 , also known as Young’s 

modulus. By employing formula and calculation, the dynamic modulus of elasticity may 

demonstrate the mechanical and acoustical characteristics of the wood. The mechanical 

characteristics that demonstrate a material's tensile and compressive stiffness are known 

as its modulus of elasticity. Normally, the bending test is used to determine the modulus 

of elasticity; however, Liu et al. (2006) claimed that this method is time-consuming and 

unworkable, and instead suggested using a vibration method based on a Fast Fourier 

Transform analysis of hammered sound to determine the dynamic modulus of elasticity 

of solid wood.  

Calculating the wood's fundamental frequency is a crucial step in determining the 

modulus of elasticity. Higher rigidity correlates with a higher modulus of elasticity, 

which is further correlated with more force being required to generate a given 

deformation (Rosato, 2003). A higher wood elasticity modulus is required when 
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creating a soundboard for a musical instrument (Brémaud, 2012). Because less energy is 

lost when moving through the wood samples' grain, which has a higher modulus of 

elasticity, the material is a good resonator (Buksnowitz et al., 2012). The dynamic 

modulus of elasticity, 𝐸 can be computed as shown in Equation 4.2: 

𝑬 =
𝟒𝟖𝝅𝟐𝑳𝟒𝝆𝒇𝒏

𝟐

𝜷𝒏
𝟒𝒉𝟐      (4.2) 

where 𝐿 denotes the length of the wood sample (m), 𝜌 denotes the density of the wood 

(kg/m3), 𝑓𝑛 denotes the natural frequency (Hz), 𝛽𝑛 denotes the coefficient of vibration, ℎ 

denotes the thickness of the wood sample (m), and 𝑛 denotes the mode number. Since 

only fundamental frequency will be used, according to Yoshikawa (2007), for the 

fundamental mode in which 𝑛 = 1, the coefficient 𝛽1 = 4.73.  

iii Acoustic Radiation Damping Coefficient, 𝑅 

 The acoustic radiation damping coefficient is one of the factors to determine the 

acoustic quality of the wood to create the musical instrument's soundboard (Brémaud, 

2012; Wegst, 2006). The amount of body vibration that is dampened by sound radiation 

is indicated by the acoustic radiation damping coefficient. The ratio of the speed of 

sound, 𝑐, to the material's density, 𝜌, can also be used to define the acoustic radiation 

damping coefficient mathematically. The acoustic radiation damping coefficient, 𝑅, can 

also be determined by obtaining the young modulus, 𝐸 , and density, 𝜌 as shown in 

Equation 4.3: 

𝑹 =
𝒄

𝝆
= √

𝑬

𝝆𝟑     (4.3) 

The value of 𝑅 will simply be the average amplitude or loudness of the wood sample 

when the acoustic radiation damping coefficient is calculated (Brémaud, 2012). A 

soundboard with a greater 𝑅-value will therefore often produce a louder sound. 
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iv Acoustic Impedance, 𝑧 

According to studies by Wegst (2006), Yang et al. (2017a), and Brémaud (2012), one 

of the acoustic factors used to categorise the type of wood used to make soundboards is 

acoustic impedance, 𝑧. The capacity of a substance to transmit vibrations is known as its 

acoustic impedance. Mathematically speaking, the acoustic impedance is also equal to 

the product of the material's density and sound speed. The density, 𝜌, and the young 

modulus, 𝐸, can also be used to compute the acoustic impedance using the Equation 

4.4: 

𝒛 = 𝒄𝝆 = √𝑬𝝆     (4.4) 

The higher the acoustic impedance, the higher the resistance to the propagation of the 

sound waves towards the wood tissue. Each tissue of a distinctive wood type has its 

unique acoustic impedance (Suzuki et al., 2019). Since the speed of sound is constant, 

deciding the acoustic impedance of different wood types depends on thickness. Thus, 

lower-density wood will regularly have a lower acoustic impedance which shows lower 

resistance to the transmission of sound waves towards wood tissue in this way creating 

louder sound. 

v Internal Friction, 𝑡𝑎𝑛 𝛿 

The degree of resistance obstructing the flow of vibration is known as internal 

friction, also known as the damping coefficient or loss factor, tan 𝛿. Internal friction is 

one of the most crucial factors to produce a decent soundboard, claim Ahmed and 

Adamopoulos (2018). The Equation 4.5 below, which is based on Brémaud (2012), can 

be used to calculate internal friction. Internal friction can also be expressed as 𝑄−1,  in 

which the 𝑄 denotes the quality factor (see Figure 4.6). 
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𝐭𝐚𝐧 𝜹 =
∆𝒇

𝒇𝑹
≈ 𝑸−𝟏     (4.5) 

where ∆𝑓 = 𝑓2 − 𝑓1 = the bandwidth of the vibration at half-power (or at -3dB)  

𝑓𝑅 = Fundamental frequency 

 

Figure 4.6: Bandwidth method to obtain bandwidth (Brémaud, 2012)  

In general, lower internal friction is preferable when creating soundboards for 

musical instruments. The purpose of the soundboard is to transmit vibration from one 

end to the other. Less energy will be lost due to resistance due to the low internal 

friction, which allows for more vibration transmission. 

vi Acoustic Conversion Efficiency, ACE 

The ratio of the musical instrument's radiated acoustic energy to the energy provided 

by the string can be used to determine the efficiency of an acoustic system (Sedik et al., 

2010). The ratio of sound radiation coefficient, 𝑅  to the internal friction, tan 𝛿 is a 

mathematical definition of the acoustic conversion efficiency. The Equation 4.6 is 

displayed below. 

𝐀𝐂𝐄 =
𝑹

𝐭𝐚𝐧 𝜹
=

√
𝑬

𝝆𝟑

𝐭𝐚𝐧 𝜹
     (4.6) 
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ACE measures how effectively vibrational energy is converted into sound energy. 

Consequently, better wood has a higher ACE because more vibrational energy is 

transformed into acoustic energy (Ahmed & Adamopoulos, 2018). 

vii Speed of Sound, 𝑐 

The speed of sound within the material is one of the most important acoustical 

properties for material selection for musical instruments. The speed of sound travels 

through a material can be computed as the root of the material’s Young modulus, 𝐸 

divided by the material density, 𝜌 as shown in the Equation 4.7 (Wegst, 2006).  

𝒄 = √
𝑬

𝝆
     (4.7) 

According to Wegst (2006), the speed of sound is independent of wood species. 

However, it varies with the grain direction. The speed of sound also depends on the 

temperature or moisture content in the wood. If the temperature or moisture content 

increases, the speed of sound will decreases (Green, 1999). For string musical 

instrument soundboards, a high speed of sound is preferred as the speed of sound 

facilitates the transmission of vibrational energy (Ahmed & Adamopoulos, 2018).  

viii Attack Time, AT 

The vibration's attack time can provide certain timbral features of the wood. The time 

it took for the signal from the woods to reach its peak is indicated by its temporal 

duration. The time required for the vibration of the wood to reach its peak is calculated 

using the formula mirattacktime as shown in Figure 4.7 (Lartillot, 2021). The outcomes 

can alternatively be characterised as an increase in energy at the sound's start. 
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Figure 4.7: Graph of amplitude over time to calculate the attack time (Lartillot, 
2021) 

ix Spectral Bandwidth, SB 

Spectral bandwidth is used to measure the spread of the spectral components around 

the spectral centroid (Figure 4.8). Using MIRToolbox, mirspread is used to calculate the 

spectral bandwidth. Spectral bandwidth represents the standard deviation of the data.  

 

Figure 4.8: Spectral bandwidth (Lartillot, 2021) 

x Spectral Centroid, SC 

The time average over the signal envelope, measured in seconds, is the temporal 

centroid, also known as the spectral centroid. The outcomes show the period during 

which the produced sound signal has the highest average energy (Mazarakis et al., 

2006). Knowing the precise instant when the sound energy reaches its peak is a crucial 

element for understanding the form of distribution. The centroid is represented by the 

dashed line in Figure 4.8.  
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xi Spectral Flux, SF 

A spectro-temporal descriptor called spectral flux figures out how the spectrum 

changes over time. The distance between the spectrums of each subsequent frame can 

likewise be used to characterise spectral flux as shown in Figure 4.9. The local spectrum 

representation of the signal's modulus is used to determine the mean Pearson correlation 

value, which provides the spectral flux (Aramaki et al., 2007). 

 

Figure 4.9: Spectral flux (Lartillot, 2021) 

xii Inharmonicity, I 

Inharmonicity is a property that is used to assess the number of partials that are not 

multiples of the fundamental frequency, 𝑓0 or the natural frequency as shown in Figure 

4.10. The quantity of energy that is outside the optimum harmonic series range will be 

considered when determining the inharmonicity (Lartillot, 2021). As a result, a low 

inharmonicity rating will likely be preferred when evaluating the wood's quality because 

it will result in a soundboard that produces a more harmonic sound. 

 

Figure 4.10: Fundamental frequency and its partials (Lartillot, 2021) 
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(b) Quality Grading 

To rate the quality of the wood samples in this study, the study conducted by Yang et 

al. (2017a) is referred to. The soundboard is graded objectively by the experts based on 

the acoustic quality which includes the sound loudness, dynamic range, sound length 

and tone. According to Wegst (2006), soundboard woods are the best round radiators of 

all. This is beneficial for the musical instrument to produce sufficient loudness by the 

transmission of sound from the soundboard into the air.  

The methods used by Sape makers to choose high-quality wood can serve as 

additional evidence for the qualities stated. From the focus group discussion conducted, 

the Sape makers' rating of wood is based on hearing, touching, and seeing. Based on the 

volume and length of the wood's vibration, they will examine it. Therefore, loudness 

and period characteristics are chosen as the criteria for grading the wood samples. 

i Loudness 

The subjective concept of loudness is sound pressure, which can be expressed by the 

signal's amplitude. Sape makers frequently select loudness as the characteristic to 

determine the quality of a wood sample (Hashim, 2017). The reason for this is that the 

soundboard serves as a platform for the sound to resonate and magnify to produce a 

loud sound. According to Yang et al. (2017a), one of the crucial characteristics to 

characterise soundboard wood for making Yueqin is loudness. Hence, a Sape 

soundboard with higher loudness typically has higher resonance. A steady force is 

applied to the wood samples to determine their loudness, and the amplitude of the signal 

reflects their loudness. The loudness can be determined by measuring the amplitude of 

the signal. The amplitude is a measure of the strength of the sound signal and is 

commonly expressed in decibels (dB). We used MATLAB to process the sound samples 

and extract the amplitude values, which we then converted to dB values. These dB 
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values represent the loudness of the sound samples, with higher dB values indicating 

louder sounds. 

ii Temporal Duration 

The MIRtoolbox in MATLAB, notably the mirduration function, was used to extract 

the amount of time that passed between the beginning and end of an audio event. 

According to earlier studies (Peeters, 2004), this function determines the attack and 

decay phases of each event and calculates the section of the curve between the onset and 

offset times that exceeds 40% of the maximum amplitude between the attack and decay 

times. 

It should be noted that the duration of an audio event is significantly influenced by its 

damping coefficient, which affects how well different wood samples produce sound. A 

sound that is sustained and more pleasant over a longer duration of time is often a 

hallmark of high-quality wood. Therefore, in previous studies, the use of duration as an 

evaluation metric has been widely accepted because it provides a precise and 

quantitative assessment of sound quality. In conclusion, the MIRtoolbox offers a 

reliable and effective approach for extracting the duration parameter, which provides a 

measure of the calibre of sound produced by wood samples, while also taking into 

account the influence of the damping coefficient. 

(c) Machine Learning 

Machine learning algorithms are a powerful and popular tool in the sound 

recognition system. The application of machine learning in the musical field is not a 

new thing. Aiming to produce new genres of music or new musical interactions, music 

researchers and musicians continually explore the possibilities of new algorithms to 

carry out the learning. By utilising improvements in processing data resources, machine 
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learning enables us to address increasingly complicated musical contexts. (Fiebrink & 

Caramiaux, 2016).  

There are two main types of machine learning which are supervised learning and 

unsupervised learning. In supervised learning, the algorithm builds a model from the 

labelled data while unsupervised learning is dealing with unlabeled data. Other than 

these two, there are also other types of learning available such as semi-supervised 

learning and reinforcement learning. In semi-supervised learning, the training data 

includes labelled and unlabeled data which has the advantage of reducing the time 

consumption in data labelling. On the other hand, reinforcement learning is a complete 

multi-step algorithm with clearly defined rules that allows machine learning to decide 

which steps to take. 

In this study, supervised learning is used as the sound data collected is labelled. The 

features selected to be used are the input while the output is the label of the data. This 

algorithm will learn and diagnose the meaningful relationship between the input data 

and output data and build a model of that relationship. The data will be divided into the 

training set and the testing set. The training set consists of all labelled data used in 

building the model while the testing set is used to test the accuracy of the model as 

shown in Figure 4.11.  

MATLAB software (version R2021a) is used to process and extract the feature from 

the sound data collected from the free-free flexural vibration test. With the aid of the 

add-on available in MATLAB, it allows us to process and analyze sound data easily. 

The signal processing toolbox, classification learner app, MIRToolbox, and 

FilterDesigner are useful add-ons from MATLAB that enable users to carry out 

analyzing data, feature extraction, designing filters, and machine learning. With the use 

of MATLAB and its add-on, the following tasks can be carried out smoothly and easily. 
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 Figure 4.11: Supervised learning training and testing process (Fiebrink & 
Caramiaux, 2016)   

Several tasks, including binary classification, regression modelling, ensembling, and 

multi-class classification, can be accomplished using the supervised machine learning 

method used in this study. Data must be divided into two categories using binary 

classification, between more than two types of classes using multi-class classification, 

between continuous values using regression modelling, and between discrete values 

using ensembling to provide correct predictions. In the MATLAB classification learner 

app, there are eight different classifier types, including decision trees, discriminant 

analysis, logistic regression analysis, naive Bayes classifier, support vector machine, 

closest neighbours classifier, ensemble classifier, and neural network classifier.  

Feature extraction and selection processes were executed utilizing MIRToolbox and 

formula calculations. Subsequently, the classification task was conducted via the 

classification learner app available in MATLAB, providing various classifier options 

such as decision trees, discrimination analysis, logistic regression analysis, naïve Bayes, 

support vector machine, and others.  
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All retrieved features were reviewed and split into two distinct sets, comprising 70% 

as training data and 30% as test data, once the MATLAB code and system were 

successfully developed. Of the total of 360 recorded datasets, 252 sets (70%) were 

employed for model training, while the remaining 108 sets (30%) were reserved for 

testing purposes. Regarding the training data, a portion was utilized in cross-validation, 

employing a five-fold approach. 

The analysis involved processing the collected sound data in WAV format. A system 

was developed in MATLAB to extract features from the sound data, and the 

corresponding programming code was written. Upon initial testing, if the system failed 

to extract characteristics accurately and successfully, the MATLAB code underwent 

scrutiny for refinement. 

4.4 Results and Discussion  

Using fundamental frequency and the density obtained, the dynamic modulus of 

elasticity (𝐸 ), acoustic radiation damping coefficient (𝑅 ), acoustic impedance (𝑧 ), 

internal friction (tan 𝛿), acoustic conversion efficiency (ACE), and speed of sound (𝑐) 

can be computed. It is categorised under physical and vibroacoustic features. Other than 

that, there were 5 timbre features which include attack time (AT), spectral bandwidth 

(SB), spectral centroid, (SC), spectral flux (SF), and inharmonicity, (I), density and 

fundamental frequency were used as the inputs while the three types and grades of the 

wood sample were the outputs. All the data collected is shown in Table 4.5 and Table 

4.6. 
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Table 4.5: Physical and vibroacoustic features  

Sound File 𝒇𝒓 𝝆 𝑬 𝒛 𝑹 𝐭𝐚𝐧 𝜹 ACE 𝒄 

A1 177.80 ± 0.00 468.07 ± 0.00 41322061.54 ± 0.00 139203.24 ± 0.00 0.63 ± 0.00 0.0040 ± 0.0001 160.03 ± 4.19 296.85 ± 0.00 

A2 180.67 ± 0.09 481.49 ± 0.00 42509367.48 ± 0.00 143202.97 ± 0.00 0.62 ± 0.00 0.0038 ± 0.0001 160.86 ± 3.80 296.85 ± 0.00 

A3 178.00 ± 0.00 474.24 ± 0.00 43307862.61 ± 0.00 143434.93 ± 0.00 0.64 ± 0.00 0.0041 ± 0.0001 156.53 ± 2.73 301.93 ± 0.00 

T1 144.80 ± 0.00 1276.68 ± 0.00 1760170998.43 ± 0.00 1378713.65 ± 0.00 1.18 ± 0.00 0.0021 ± 0.0015 813.12 ± 529.79 1276.68 ± 0.00 

T2 149.61 ± 0.04 1279.82 ± 0.00 1672866178.48 ± 0.00 1307108.36 ± 0.00 1.25 ± 0.00 0.0019 ± 0.0015 925.92 ± 439.94 1279.82 ± 0.00 

T3 123.39 ± 0.05 1120.12 ± 0.00 1231178695.79 ± 0.00 1099148.49 ± 0.00 1.14 ± 0.00 0.0018 ± 0.0007 767.68 ± 394.35 1120.12 ± 0.00 

M1 180.81 ± 0.04 926.30 ± 0.00 584381710.54 ± 0.00 736533.81 ± 0.00 0.85 ± 0.00 0.0014 ± 0.0006 771.28 ± 395.97 793.42 ± 0.00 

M2 177.61 ± 0.03 918.40 ± 0.00 559834748.48 ± 0.00 717951.19 ± 0.00 0.85 ± 0.00 0.0013 ± 0.0007 850.10 ± 523.30 779.77 ± 0.00 

M3 173.83 ± 0.07 914.99 ± 0.00 550445740.49 ± 0.00 710607.12 ± 0.00 0.84 ± 0.00 0.0014 ± 0.0007 776.26 ± 404.30 774.61 ± 0.00 

 

Table 4.6: Timbre features  

Sound File AT SB SC SF I 

A1 0.02 ± 0.0003 2523.78 ± 122.00 1823.73 ± 106.92 0.98 ± 0.09 0.43 ± 0.010 

A2 0.02 ± 0.0002 2613.04 ± 123.66 1707.90 ± 68.54 0.97 ± 0.07 0.42 ± 0.006 

A3 0.02 ± 0.0000 2490.36 ± 90.73 1782.65 ± 51.47 0.98 ± 0.05 0.43 ± 0.005 

T1 0.02 ± 0.0003 2356.69 ± 76.11 2492.47 ± 116.35 0.88 ± 0.05 0.46 ± 0.006 

T2 0.02 ± 0.0003 2382.71 ± 47.59 2461.33 ± 108.25 0.90 ± 0.06 0.45 ± 0.003 

T3 0.02 ± 0.0002 2492.12 ± 91.65 2365.12 ± 234.00 0.81 ± 0.07 0.46 ± 0.011 

M1 0.02 ± 0.0003 2552.10 ± 97.31 2444.84 ± 129.37 0.80 ± 0.07 0.43 ± 0.030 

M2 0.02 ± 0.0003 2364.88 ± 60.84 2282.58 ± 90.06 0.89 ± 0.05 0.45 ± 0.004 

M3 0.02 ± 0.0003 2401.37 ± 70.28 2336.47 ± 129.68 0.88 ± 0.06 0.45 ± 0.014 
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In this study, the woods were objectively ranked based on their performance 

measured by the loudness and duration of the sound signals they produced. The 

loudness and duration were averaged across all nine wood samples and presented in 

Table 4.7, while the distribution of the wood samples was illustrated in Figure 4.12. The 

combined score in the table is calculated based on the normalized average duration and 

loudness values, each given a weight of 0.5. This provides a balanced measure of the 

wood samples' sound quality, considering both parameters. Adau wood had the highest 

average combined score of 41.96, indicating the best overall sound quality among the 

tested woods. Merbau wood had a lower average combined score of 36.88, earning the 

second rank. Tapang wood had an average of 36.69, slightly lower than Merbau wood, 

indicating poorer sound quality, and was ranked third. These rankings were determined 

solely based on the objective measures of duration and loudness, which are commonly 

used to assess sound quality in musical instruments. 

Table 4.7: Sound quality evaluation results for different wood samples 

Wood 
Loudness 

(dB) 

Duration 

(s) 

Combined 

Score 
Rank Cluster 

A1 42.25 0.0271 41.47 3 Good 

A2 42.13 0.0282 42.23 1 Good 

A3 42.34 0.0280 42.19 2 Good 

T1 37.82 0.0237 36.70 7 Poor 

T2 40.00 0.0221 36.59 8 Medium 

T3 39.63 0.0226 36.78 6 Medium 

M1 39.72 0.0228 36.98 5 Medium 

M2 40.35 0.0226 37.14 4 Medium 

M3 38.21 0.0232 36.52 9 Poor 
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Figure 4.12: Distribution of wood samples based on loudness and duration 
(A=Adau, T=Tapang, M=Merbau) 

The k-means clustering analysis was performed based on the combined score of 

loudness and duration, to identify groups of wood samples that exhibited similar 

acoustic characteristics. Based on the clustering analysis, the 9 wood samples were 

divided into three clusters as shown in Figure 4.12. The first cluster included Adau 

woods A1, A2, and A3, which can be considered as the "good" cluster as they exhibited 

the highest combined scores among all the samples. The second cluster included Tapang 

woods T2 and T3, and Merbau woods M1 and M2, and can be categorized as the 

"medium" cluster as their combined scores fell in between the good and poor clusters. 

The third cluster included Tapang wood T1 and Merbau wood M3 and can be 

categorized as the "poor" cluster with the lowest combined scores among all the 

samples. 

It is noteworthy that while most of the samples within the same wood type were 

clustered together, some samples exhibited different performances compared to the 

majority of their respective wood types. For instance, Tapang wood and Merbau wood 

were clustered in the medium and poor clusters, respectively, indicating that the 
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acoustic characteristics of a wood sample can vary due to various factors such as 

differences in wood density, moisture content, or even variations in the manufacturing 

process. Overall, these findings provide insights into the acoustic properties of different 

types of wood and suggest that the combined score of loudness and duration can be an 

effective metric for evaluating the quality of sound produced by musical instruments. 

However, further research is needed to validate these findings and explore the 

relationship between wood type and sound quality. 

The results of this study demonstrate that machine learning can be used to cluster the 

sound quality of wood samples based on their acoustic properties. Additionally, the 

clustering of wood types can also potentially be used to classify sound quality. The 

results from k-means clustering and ranking based on the combined score showed that 

all Adau woods are clustered as good, while Tapang and Merbau woods are clustered as 

both medium and poor. This suggests that the use of machine learning in classifying 

wood types can also be used as a classification of sound quality. This study highlights 

the potential of using machine learning to improve the classification of sound quality in 

wood samples.  

To further investigate this, the 13 features selected in this study will be used as the 

input data of the different learning algorithms available in the MATLAB classification 

learner app. Thirty per cent of the data is set aside as a testing data set, while the 

remaining 70% is used as training data. For validation, the training data is divided into 

5-folds cross-validation. No specific algorithm or classifier model is pre-selected in this 

study, but it will all be tested and the accuracy of each will be compared.  

To reduce the chance of overfitting, the Minimum Redundancy Maximum Relevance 

(MRMR) algorithm is used to identify the key features for optimal classification (Peng 

et al., 2005). Each feature can be ranked according to how important it is to the target 
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variable, and the ranking procedure can also take their overlap into account. An 

"excellent" feature achieves the optimal balance between minimal internal redundancy 

and high relevance to the target variable (Cai et al., 2012). The 13 features will be 

selected based on their importance scores. From the MRMR algorithm results shown in 

Table 4.8, the 4 highest features are selected for the classification which consists of 

acoustic radiation damping coefficient, spectral flux, spectral centroid, and 

inharmonicity. The features are applied to all classifiers and the accuracy results is 

displayed in Table 4.9. The highest accuracy model is achieved by fine tree, medium 

tree and bagged tree classifier at 98.1%. It is followed by coarse tree, quadratic SVM, 

medium Gaussian SVM, and wide neural network at 86.1%. 

Table 4.8: Feature importance scores using MRMR algorithm. 

Features Feature Importance Score 
z 0.9939 
I 0.8653 

tan 𝛿 0.8536 
SC 0.7621 
SB 0.6734 
R 0.5637 
SF 0.5481 
AT 0.4927 

ACE 0.4313 
𝑓𝑟 0.3909 
c 0.3190 
 0.3075 
E 0.2911 
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Table 4.9: Training and testing accuracy comparison between all features and 
MRMR top 4 features. 

Classifier 

MRMR 

Top 4 Features 

Training 

Accuracy 

Testing 

Accuracy 

Decision Tree 

Fine Tree 90.5 98.1 

Medium Tree 90.5 98.1 

Coarse Tree 84.5 86.1 

Discriminant Analysis 
Linear Discriminant 79.4 79.6 

Quadratic Discriminant 80.2 79.6 

Naïve Bayes 
Gaussian Naïve Bayes 13.8 76.9 

Kernel Naïve Bayes 77.4 77.8 

Support Vector Machine 

Linear SVM 79.0 79.6 

Quadratic SVM 82.5 86.1 

Cubic SVM 84.5 80.6 

Fine Gaussian SVM 84.1 81.5 

Medium Gaussian SVM 86.5 86.1 

Coarse Gaussian SVM 78.2 79.6 

Nearest Neighbor 

Fine KNN 84.9 82.4 

Medium KNN 82.9 84.3 

Coarse KNN 69.8 71.3 

Cosine KNN 78.2 78.7 

Cubic KNN 82.1 84.3 

Weighted KNN 85.3 84.3 

Ensemble 

Boosted Trees 42.5 33.3 

Bagged Trees 92.1 98.1 

Subspace Discriminant 78.6 79.6 

Subspace KNN 69.8 71.3 

RUSBoosted Trees 42.5 33.3 

Neural Network 

Narrow Neural Network 80.6 85.2 

Medium Neural Network 82.1 85.2 

Wide Neural Network 84.5 86.1 

Bilayered Neural Network 82.5 84.3 

Trilayered Neural Network 79.8 83.3 

Kernel Approximation 
SVM Kernel 71.8 71.3 

Logistic regression Kernel 71.8 63.9 
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The decision tree is found to be good in classifying the wood types in this study with 

a high accuracy of 98.1%. Decision tree classifiers are renowned for providing a more 

comprehensive view of performance results. As decision tree classifiers use enhanced 

tree pruning algorithms and optimised splitting parameters, it is commonly used by 

many data classifiers. In the comparison study done by Charbuty and Abdulazeez 

(2021), the decision tree is applied in many areas such as medical disease analysis, text 

classification, and image classification and showed the best accuracy compared to other 

classifiers. Decision trees underlying efficient collection rule is simple to understand 

which made it preferable. The bagging tree is under ensemble methods which combine 

decision trees to produce a better classification model rather than just one decision tree. 

It combined several weak learners to form a strong learner. Bagging trees is one of the 

techniques of an ensemble in which the goal is to reduce the variance of a decision tree. 

The benefit of a bagging tree is that it can handle data with high dimensionality with 

missing values while maintaining its accuracy of it. 

The results of the classification from the classification learner app from MATLAB 

showed that the decision trees classifiers are best in predicting the wood type or wood 

grade in this study. From the test confusion matrix shown in Figures 4.13(a) and 

4.13(b), the error of classification occurred between Merbau and Tapang wood. For fine 

tree and medium tree, two Merbau wood were misclassified as Tapang wood while two 

Tapang wood were misclassified as Merbau wood in the bagged tree classifier. The 

classification of Adau wood showed no error with all the data being correctly predicted. 

The classification result proves the strong ability of machine learning in predicting the 

wood types or the grade of the Sape soundboard. The results show that the training 

result has poorer accuracy than the testing accuracy. This counterintuitive outcome can 

be attributed to the potential presence of noise or overfitting in the training dataset, 

where the model learns the noise and nuances specific to the training data, resulting in 
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lower accuracy. Additionally, the testing data might better represent the true distribution 

of data, highlighting the model's generalization capability more accurately. 

 

(a) 

 

(b) 

Figure 4.13: (a) Confusion matrix of fine tree and medium tree (b) Confusion 
matrix of bagged tree 
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4.5 Chapter Summary 

Summarizing Chapter 4, this study aimed to assess the quality of commonly used 

woods in Sape instrument production. Rectangular wood samples resembling Sape 

soundboards underwent flexural vibration tests, generating essential sound data. 

Analyses of physical, vibroacoustic, and timbre features, particularly focusing on 

loudness and duration performance, revealed that Adau wood exhibited superior quality, 

followed by Merbau and Tapang wood. The MRMR algorithm identified four key 

features—acoustic radiation damping coefficient, spectral flux, spectral centroid, and 

inharmonicity—used to train diverse classifiers in MATLAB. Impressively, the decision 

tree classifier achieved 98.1% accuracy. The findings highlighted the potential of 

machine learning in objectively classifying Sape wood quality, offering a practical 

model for predicting wood quality in Sape instrument crafting. 

Moving forward, future research endeavors should encompass subjective evaluations 

from Sape makers in the evaluation process. By incorporating the subjective 

assessments of Sape experts, the next chapter aims to delve deeper into the qualitative 

evaluation of Sape instrument quality. This inclusion will provide a more 

comprehensive understanding, considering both objective and subjective perspectives, 

thereby enriching the overall assessment of Sape instrument craftsmanship. 
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CHAPTER 5: ENHANCING SAPE INSTRUMENT QUALITY ASSESSMENT: 

INTEGRATING EXPERT EVALUATIONS  

 

5.1 Overview 

Chapter 5 serves as a direct extension of the preceding research conducted in Chapter 

4, which meticulously evaluated the quality of woods commonly employed in the 

construction of Sape musical instruments. The analysis conducted in the previous 

chapter provided valuable insights into the objective assessment of wood quality, 

employing machine learning techniques and crucial acoustic features. The findings 

illuminated the potential of machine learning models in precisely categorizing wood 

quality for Sape instrument crafting.  

The previous chapter primarily focused on an objective evaluation of wood quality, 

leveraging machine learning techniques and crucial acoustic features. However, this 

evaluation lacked the subjective ratings of sound quality by experienced Sape makers, 

signifying a significant research gap in the assessment process. Consequently, this 

chapter aims to address this void by integrating subjective evaluations from experts in 

the field, further enriching the Sape instrument quality assessment. The objectives in 

this section encompass a detailed analysis of both the collected data and the machine 

learning methodology utilized. Furthermore, the chapter endeavors to delve deeper into 

the qualitative assessment of Sape instrument quality by incorporating the invaluable 

perspectives and evaluations of experts in the field. 

In pursuit of a holistic evaluation of Sape instrument quality, this chapter serves a 

dual purpose: to rigorously analyze acquired data using statistical and machine learning 

methodologies, and to integrate subjective evaluations from seasoned experts in the 

field. By amalgamating objective and subjective assessments, this chapter aims to 
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provide a comprehensive understanding of Sape instrument quality. Subsequent sections 

will delineate the process of data analysis, outline the machine learning techniques 

employed, and showcase insights drawn from subjective evaluations offered by 

experienced Sape experts. 

The overarching goal of this chapter is to establish guidelines for identifying high-

quality soundboard wood in Sape instrument construction, leveraging machine learning 

algorithms and acoustic feature analysis. This involves scrutinizing the relationship 

between acoustic attributes and quality ratings provided by proficient Sape makers, 

thereby establishing stringent criteria for superior soundboard wood in Sape crafting. 

The research is structured into two core segments: the design and training of a classifier 

to predict soundboard wood quality based on sound samples (Part 1), and the 

exploration of the significance of acoustic features in determining Sape soundboard 

wood quality, utilizing insights derived from the trained classifier (Part 2). Through 

bridging this research gap and offering a structured framework for identifying top-tier 

soundboard wood, this study promises significant advancements in refining the material 

selection process within Sape instrument making. 

5.2 Methodology 

5.2.1 Quality Rating 

For consistent and unbiased quality rating evaluations, audio samples collected in the 

previous experiment went through two post-processing steps using Audacity software. 

The first step normalized the volume to standardize loudness, eliminating recording 

environment-related inconsistencies. The second step focused on noise reduction to 

enhance audio clarity by removing any white noise present in the recordings. These 

techniques were used to ensure audio consistency and reduce emotional bias during 

quality rating evaluations. The 360 audio samples were subjected to quality rating 
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evaluations through listening tests conducted by experts in Sape instrument, utilizing a 

5-point Likert scale. The scale ranged from "Very Poor" to "Excellent" to assess the 

perceived quality of the audio samples.  

The candidate pool for the evaluation consisted of five experienced Sape makers 

from Sarawak, each with a minimum of five years of expertise in their craft as shown in 

Table 5.1. Demographic analysis revealed that although 60% of the sample population 

had not received formal music training, it is important to note that Sape, as a Borneo 

traditional instrument, lacks formal musical education and is primarily passed down 

through generations within the tribe. Therefore, the absence of formal training does not 

hinder their professionalism in Sape crafting. The expertise of the candidates for the 

listening test was primarily determined based on their years of experience in crafting 

Sape. 

Table 5.1: Demographic information of candidates 

Candidate A B C D E 
Age 32 28 42 29 71 

Gender M M M M M 

Ethnicity Kenyah Iban French Iban Kenyah 

Formal musical training 1 year None 2 years None None 

Years of experience 9 8 7 7 30+ 

 

To ensure consistency in the perceived audio quality, several control procedures 

were implemented. The initial hardware settings of the listening test were maintained 

consistently throughout the rating process. Flexibility in the time constraint of the 

listening test was provided to minimize the potential impact of psychological stress. 

Additionally, the candidates were not provided with prior information regarding the 

corresponding wood type of each audio sample. 
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One aspect that needs consideration is the subjective nature of the quality rating and 

the approach used to analyze the ratings. The rating measure employed in the evaluation 

is based on a Likert scale, which has an ordinal nature and does not inherently provide 

information about the "distance" between successive categories of the quality attribute. 

Although the scale values are numerical, their interpretation lacks a clear objective basis 

beyond their established order. To address this, qualitative descriptions were provided 

for each rating category, helping to standardize and normalize the data obtained from 

each candidate. 

In terms of the reliability of the rating scores, it is important to consider the niche 

nature of the targeted Sape community, which may introduce potential biases in the 

sampling distribution. However, based on the earlier demographic analysis, all 

candidates are considered experts in the Sape instrument field, capable of representing 

the overall community's perception of Sape sound quality. Due to the substantial 

workload involved in rating 360 sound samples, each candidate conducted the listening 

test only once, which limits the availability of information to validate the reliability of 

an individual's rating score based on classical test theory. Nonetheless, inter-rater 

reliability can be analyzed using non-parametric statistical tests. 

5.2.2 Acoustic Feature Extraction 

In this study, relevant functions from the MATLAB MIRToolbox were selected for 

feature extraction. In the initial phase of feature reduction, the mirfeatures() function 

extracted numerous complete features, resulting in a high number of data points. To 

address this, frame decomposition was used to analyze temporal signals within short-

term windows, reducing the feature count to 148. In the second phase, the dataset was 

further reduced by selecting the statistical descriptor with the most variability for each 

feature. The final dataset comprised 27 acoustic features, and the mean values were 
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chosen as representatives. This reduced the dimensionality to a more manageable level 

for analysis. 

The selected functions aligned with the research objectives and are listed in Table 

5.2. These functions covered different aspects of the Sape sound quality, including 

dynamics, rhythm, timbre, and pitch/tonality. The dynamics dimension focused on the 

root-mean-square (RMS) as a measure of the global energy of the signal. For the rhythm 

category, fluctuation was estimated using spectrogram computation and Fast-Fourier 

Transform (FFT). Parameters such as peak and centroid values characterized the 

behavior of fluctuations. Attack and decay parameters, which examined the time 

elapsed and the slope of the attack or decay, were also considered. 

Table 5.2: Shortlisted functions for feature extraction. 

Dynamics • Dynamic RMS  

Rhythm • Fluctuation peak and centroid 
• Attack time and slope 
• Decay time and slope 

Timbre • Spectral centroid, brightness, spread, skewness, kurtosis, roll-
off, entropy, flatness, roughness, and irregularity 

• Timbral zero-cross, low energy and spectral flux 

Pitch & 
Tonality 

• Tonal chromagram peak and centroid 
• Tonal key strength, mode and HCDF 

 

Timbre analysis concentrated on the statistical description of spectral distribution, 

encompassing parameters such as flux, centroid, spread, skewness, kurtosis, roll-off, 

entropy, flatness, roughness, and irregularity. Timbral zero-cross and low energy were 

indicators of noisiness and focused on evaluating signal characteristics related to 

amplitude changes and energy levels. Pitch and tonality analysis involved the tonal 

chromagram, which described the energy distribution along pitches or pitch classes. 
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Parameters such as peak and centroid were used to characterize the chromagram. Tonal 

key strength and mode provided measures of tonality, and the Harmonic Change 

Detection Function (HCDF) detected fluctuations in tonal centroid measure. These 

selected functions allowed for a comprehensive analysis of the Sape sound quality, 

covering aspects such as energy dynamics, temporal characteristics, spectral properties, 

and tonal characteristics. 

5.2.3 Data Preprocessing 

To ensure the suitability of the dataset for a specific algorithm, pre-processing steps 

were conducted on the quality rating and acoustic feature data frames. These steps 

aimed to address assumptions and constraints associated with linear models, including 

linearity, normality, equal variance, and independence (Kumari & Yadav, 2018). 

Linearity, which refers to the linear relationship between predictor variables and the 

target variables, was assessed using scatter plots. It was considered that the quality 

rating scores are ordinal and may not exhibit perfect linearity. To examine normality 

assumptions, histograms were plotted for each predictor variable, considering the 

expectation that the residuals follow a normal distribution with a mean of zero. 

Although the dataset size was limited to 360 data points, the overall shape of the 

distributions was considered, even if they might not be completely normal. 

Homoscedasticity, which ensures equal variance within the error of the data, was not 

evaluated as the dataset had unity weight across all features. Independence, indicating 

the absence of multicollinearity among predictors, was assessed through a correlation 

analysis among the 27 acoustic features. To address varying magnitudes across different 

features, standardization and normalization techniques were applied. Standardization 

scaled the values to have a mean of zero and a standard deviation of one, while 

normalization scaled the values between zero and one (Bhandari, 2020). 
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A train-test split was then performed with a ratio of 70% for training data and 30% 

for testing data to evaluate the performance of the machine learning algorithm (Vabalas 

et al., 2019). To evaluate the predictive accuracy of the trained ML model on limited 

data samples, a cross-validation scheme called k-Fold Cross Validation with k = 5 was 

employed. This approach minimizes bias and provides a more realistic estimate of 

model performance (Brownlee, 2018). The dataset was shuffled and divided into 5 

folds. For each fold, the current fold served as the validation set while the remaining 4 

folds served as the training set. The model was fitted on the training set and evaluated 

using the validation set. The process was repeated for each unique fold, and the best 

performing model was selected based on the evaluation scores. 

5.2.4 Machine Learning & Model Interpretability via SHAP 

MATLAB Classification Learner application plays a huge part in this stage as it 

provides a complete array of classifiers to be trained and compared in parallel. A total of 

40 classification models are selected to be trained on the quality rating classification 

problem, of which 31 models are simple algorithms with basic hyperparameter 

initialization fixed and the remaining 9 models are optimizable algorithms with varying 

hyperparameters.  

The Bayesian optimization algorithm was chosen to perform hyperparameter 

optimization in the 9 models mentioned above. The core idea is to achieve global 

minima with the acquisition function of expected improvements per second plus within 

100 iterations, without limit on the model training time. Number of iterations of 30, 

1000 and 10,000 are also tested briefly and the model accuracies does not improve 

significantly (1~2%), hence 100 iterations are justified to be sufficient while 

maintaining time efficiency in terms of identifying the best hyperparameter 

combination. 
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Model interpretability refers to the extent to which we understand the inner workings 

of a machine learning (ML) algorithm and its decision-making process (Gilpin et al., 

2018). While most ML models are considered "black box models" due to their 

counterintuitive representations, their interpretability decreases as complexity increases, 

despite their high predictive power (Molnar, 2020). Interpretability is necessary when 

problem formalization is incomplete, as predictions alone may not be sufficient. 

Understanding the rationale behind the model's decisions helps address the problem 

comprehensively and detect biases, leading to greater robustness. In this research, the 

aim is to estimate and understand raters' behaviors in ranking soundboard quality for 

cultural preservation purposes. 

This study employed the SHapley Additive exPlanations (SHAP) approach for model 

interpretability. SHAP utilizes Shapley values, derived from cooperative game theory to 

attribute credit optimally and assess the relative contribution of each predictor in 

making predictions. Lundberg and Lee (2017) introduced additive feature attribution 

methods, including SHAP, which offer accurate estimations of feature importance 

within machine learning models. 

However, the limitations of MATLAB prevent the use of SHAP for global 

interpretability in this study, restricting it to local interpretability. As a result, the 

computation of SHAP values is performed in a Python environment, leveraging the best 

classifier's hyperparameter configuration determined through MATLAB. By 

incorporating SHAP, this research aims to enhance the interpretability of the model, 

providing insights into the significance and impact of individual predictors on the 

predictions made. 
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5.3 Results and Discussion 

5.3.1 Quality Grading 

Five sets of quality rating scores were collected, revealing a conservative tendency in 

assigning the lowest score and suggesting no wood samples were rated as "very poor" 

quality. Median rating scores showed a parabolic trend for hardwoods labeled 2 and 3 

across candidates, while hardwoods labeled 1 exhibited a consistent linear trend with 

one outlier. Candidate 3 consistently provided slightly lower ratings on average, 

indicating varying interpretations of sound quality. Assessing ranked mean scores with 

statistical tests is necessary for meaningful conclusions. 

Since the quality rating scores are ordinal data, as established in the previous section, 

non-parametric statistical tests are necessary to analyze categorical (ordinal) data. The 

conducted tests include the Kruskal-Wallis H Test, Krippendorff's alpha, and Kendall's 

tau-b to compare the relationship between the rating scores. The candidates are denoted 

as A to E, corresponding to numbers 1 to 5. The detailed results of these statistical tests 

can be found in Appendix B. 

The Kruskal-Wallis H test was used to compare rating scores, assuming 

independence and without assuming normality. Color-coded p-values (red for < 0.05, 

green for ≥ 0.05) were used. No consistent significant similarity was found between 

rating score combinations of any two candidates in terms of ranked means. At least 5 

out of 9 wood samples showed significant differences in rating scores among the 

candidates. This suggests that personal preferences contribute to statistically significant 

variations in Sape wood quality ratings. 
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Krippendorff’s 𝛼 is based on the observed disagreement corrected for disagreement 

expected by chance, with 1.0 indicates perfect agreement, 0 indicates no agreement 

beyond chances and negative value indicates inverse agreement. Colors indicate 

agreement (green), random guessing (yellow), and disagreement (red). Consistency 

requires green color in 5 out of 9 wood samples per candidate combination. In pairwise 

comparisons, candidate A's ratings disagree with others, while candidate B's ratings 

disagree with candidate E (except for Adau 1 scores). No strong correlations are found 

in other combinations, suggesting random guessing. Comparing three or more 

candidates shows insignificance due to score variances. However, pairwise comparisons 

consistently exhibit mutual disagreement across all wood samples, consistent with the 

Kruskal-Wallis H test. 

Kendall's tau-b is a non-parametric correlation technique. Red color indicates p-

values ≥0.05, while green color indicates p-values < 0.05. No candidate pairs show 

significant correlation across all wood samples. Most pairs have correlated ratings for 

Tapang 3, indicating low variance. "Nan" appears due to constant rating scores, 

preventing correlation calculation. This suggests Mr. Mathew Ngau's consistency in 

rating similar wood samples, showcasing his expertise in identifying soundboard 

quality. 

In summary, the results of all three non-parametric statistical tests consistently 

revealed statistically significant differences among the sets of rating scores, 

underscoring a notable lack of inter-rater reliability. Given this, the critical task of 

selecting the most reliable set of rating scores comes to the forefront. The ratings given 

by each candidate is summarized and shown in Appendix C. From the summary table, 

Candidate E, Mr. Mathew Ngau, emerges as the preferred source for rating scores, 

substantiated by compelling reasons. Notably, Mr. Mathew Ngau boasts an unparalleled 
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wealth of experience, surpassing 30 years, a considerable margin compared to the other 

four candidates (see Table 5.1 for demographic information). His extensive expertise 

and authority in the realm of Sape playing, coupled with his prestigious position as a 

National Living Heritage, underscore the robustness of his consistent ratings. 

Furthermore, Mr. Mathew Ngau's role as a mentor adds an additional layer of credibility 

to his evaluations. In contrast to the varying degrees of experience exhibited by other 

candidates, his seasoned proficiency positions him as an invaluable source for 

soundboard wood quality classification. 

5.3.2 Acoustic Feature Analysis 

To assess the eligibility of the acoustic feature dataset for linear model analysis, 

several assumptions were tested, including the examination of data distribution through 

histograms and scatter plots, as well as the identification of multicollinearity using 

correlation mapping. The histogram and scatter plot analyses revealed that the 

distribution of acoustic feature data points generally followed a Gaussian distribution, 

although some skewness was observed, meeting the normality assumption (refer 

Appendix D and Appendix E). 

During the correlation mapping analysis, it was observed that certain pairs of 

acoustic features displayed strong correlations, surpassing a threshold of ±0.8. To 

mitigate the issue of multicollinearity, a pruning process was implemented to remove 

highly correlated features. As a result, the number of remaining features was reduced to 

18, as indicated in Table 5.3. The details of the 18 acoustic features can be found in 

Appendix F. 
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Table 5.3: Selected 18 acoustic features. 

Acoustic Feature / Descriptor 

Attack Time Spectral Irregularity 
Fluctuation Peak Position Timbre Zero-cross 
Fluctuation Peak Magnitude Timbre Low Energy 
Fluctuation Centroid Timbre Spectral Flux 
Dynamic RMS Tonal Chromagram Peak Position 
Decay Time Tonal Chromagram Centroid 
Spectral Roll-off 85% Tonal Key Clarity 
Spectral Flatness Tonal Mode 
Spectral Roughness Tonal HCDF 

 

5.3.3 Machine Learning Model Training 

After performing normalization, the dataset was then combined with the rating scores 

provided by Mr. Mathew. All the data consisted of numeric variables, except for the 

rating scores, which were treated as categorical variables. The datasets were used to 

train selected models with the following setup: the train-test portion was 252/107 

observations, Bayesian optimization with 100 iterations was used as the optimizer, and 

5-fold cross-validation was employed for validation. 

Table 5.4 presents the ranking of trained models based on their validation accuracies, 

with a minimum threshold of 70%. KNN, Ensemble, and SVM continue to be among 

the top-performing models, demonstrating that the acoustic feature dataset is well-suited 

for non-linear models. However, Neural Network has been outperformed by other 

models. This suggests that the selected acoustic features exhibit non-linear relationships 

with the rating scores, which adds complexity to estimating the scores. The discrepancy 

between validation and test accuracies varies across models, with some experiencing a 

significant gap of approximately 5%. This suggests potential overfitting, where the 

models lack flexibility to accurately predict new observations. However, the remaining 

models still exhibit satisfactory accuracies ranging from 70% to 76%. 
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Table 5.4: Accuracies of trained models 

Model Type Category 
Validation Test 

Accuracy 
% Total Cost Accuracy 

% Total Cost 

Gaussian Kernel SVM 76.19 60 71.96 30 
Subspace KNN Ensemble 76.19 60 71.03 31 

Optimizable ver. KNN 75.79 61 72.90 29 
Quadratic SVM SVM 75.79 61 72.90 29 
Optimizable ver. Ensemble 73.81 66 76.64 25 
Optimizable ver. Kernel 73.81 66 70.09 32 

SVM Kernel Kernel 73.41 67 69.16 33 
Boosted Trees Ensemble 72.62 69 70.09 32 

Wide Neural Network NN 72.22 70 67.29 35 
Cubic SVM SVM 71.43 72 71.03 31 

Bagged Trees Ensemble 71.03 73 71.03 31 
Optimizable ver. Tree 70.63 74 65.42 37 
Optimizable ver. NN 70.63 74 72.90 29 

… … … … … … 
 

5.3.4 SMOTE Technique to Tackle Imbalanced Classification 

While accuracy is one of the key performance indicators of a trained classification 

algorithm, it is also important to check the confusion matrix and evaluate whether the 

model’s decision is biased or not. The frequency plot of rating scores by Mr. Mathew in 

Figure 5.1 reveals that scores of 3 and 4 are the most common, while scores of 2 and 5 

are less frequent, indicating a significant gap between the majority and minority 

categories. This imbalanced dataset is common in the field of social sciences, which the 

data generated is highly dependent on inherent biasness and can exhibit skewed 

distribution. 

The distribution raised a concern that the model can possibly manipulate the 

performance accuracies by simply guessing randomly among majority category, 

achieving high accuracy without truly learning the underlying patterns and making 

meaningful predictions. Hence, normalized confusion matrices of the best models are 

analysed. Figure 5.2 shows that the True-Positive Rate (TPR) and False-Negative Rate 

(FNR) for each class sum up to 100%. The models performed well in predicting class 3, 
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4, and 5, but struggled with class 2. Within class 2, the TPR and FNR were relatively 

evenly distributed, indicating that the models often misclassified observations that 

should belong to class 2 as class 3 instead. This suggests a potential bias in classifying 

class 2 observations. 

 

Figure 5.1: Frequency plot of rating scores dataset (360 observations) 

To address the issue of class imbalance, resampling techniques were employed. This 

approach helps mitigate bias that may arise from the imbalanced representation of 

classes in the dataset, improving the performance and accuracy of the classification 

models. In this study, the Synthetic Minority Oversampling Technique (SMOTE) was 

used as the resampling technique. SMOTE generated synthetic samples for class 2, 3, 

and 5 to match the observation count of class 4. By identifying positive instances within 

the minority class and creating new observations using an interpolation technique, 

SMOTE increased the dataset to 604 observations. This data augmentation approach 

expanded the dataset without introducing exact duplicates, mitigating the risk of 

overfitting associated with random oversampling techniques. 
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Figure 5.2: Normalized confusion matrix of optimized SVM model against 
dataset. 

Table 5.5 ranks the trained models based on their validation accuracies, with a 

threshold of 80%. SVM and Ensemble models outperformed other models, indicating 

that the acoustic feature dataset is well-suited for non-linear models. The drawback of 

information loss was compensated for by the positive impact of data augmentation using 

the SMOTE technique. 

The confusion matrix of the best model is analyzed for potential bias in formulating 

decision process. It is observed that SVM is well balanced with TPR overwhelmed FNR 

as shown in Figure 5.3. The highest FNR across all classes is around 24% on class 4 

misclassification and the major contributor is from misclassification of class 3. It is also 

observed that class 3 has similar FNR against class 4 as well, suggesting that the models 

are slightly weaker in distinguishing between class 3 and class 4, though the overall 

performance is still commendable. Note that while the data pool increases in volume, 

class 3 and 4 practically received less non-synthetic observations post-SMOTE, yet the 

misclassification FNR dropped as compared to that of pre-SMOTE data pool. This 
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suggests that the models’ predictive power against majority class improved regardless, 

and this improvement is favorable. 

Table 5.5: Accuracies of trained models with SMOTE-modified dataset 

Model Type Category 
Validation Test 

Accuracy % Total 
Cost Accuracy % Total 

Cost 
Gaussian Kernel SVM 88.18 50 93.37 12 
Optimizable ver. Ensemble 86.99 55 86.74 24 
Quadratic SVM SVM 86.29 58 87.85 22 

Cubic SVM SVM 86.05 59 92.27 14 
Subspace KNN Ensemble 85.34 62 90.06 18 

SVM Kernel Kernel 85.34 62 88.95 20 
Med Gaussian SVM SVM 84.63 65 88.95 20 

Optimizable ver. KNN 84.40 66 89.50 19 
Wide NN NN 84.16 67 90.61 17 

Optimizable ver. Kernel 84.16 67 87.85 22 
Optimizable ver. NN 83.92 68 87.85 22 

Fine KNN KNN 83.69 69 87.85 22 
Boosted Trees Ensemble 83.69 69 80.11 36 
Medium NN NN 83.22 71 86.19 25 

… … … … … … 
 

 

Figure 5.3: Normalized confusion matrix of Gaussian Kernel SVM model 
against SMOTE-modified dataset. 

Univ
ers

iti 
Mala

ya



126 

It is observed that both best performing models are of Gaussian-kernel based SVM 

which justify the effectiveness of implementing Gaussian-kernel SVM to tackle the 

classification problem of Sape soundboard wood acoustic quality. The mechanism of 

both SVMs is based on radial basis kernel which transforms input of n-dimensional to a 

higher m-dimensional plane such that the dot product of vectors can be computed 

efficiently. Equation 5.1 describes radial basis function kernel where 𝑥  and 𝑥’  are 

vectors in any fixed dimensional space:  

𝑲(𝒙, 𝒙′) = 𝒆𝒙𝒑 (−
||𝒙−𝒙′||

𝟐

𝟐𝝈𝟐 )    (5.1) 

where 𝜎 is the kernel width and  ||𝑥 − 𝑥′|| is the Euclidean distance between two points 𝑥 

and  𝑥′. 

If the exponential is expanded, both 𝑥 and 𝑥’ will be raised to infinite power, as 𝑒𝑥  is 

an infinite series and the polynomial terms within keep expanding to calculate an exact 

solution. Hence, radial basis function (RBF) splits the datapoints to hyperplane of 

infinite dimensions, which provides a strong radial-fitted curve to better distinguish 

between classes.  

Note that for any two points 𝑥 and 𝑥’, ||𝑥 − 𝑥′||2 is the Euclidean distance between 

both points. The distance metric describes dissimilarity between 2 data points such that 

the further apart, the more dissimilarity between them. The RBF kernel reaches its 

maximum value of 1 when the Euclidean distance between points is 0, indicating 

identical points. In this case, there is no distance, signifying a high degree of similarity. 

Conversely, when points are distant, the kernel value diminishes toward 0, suggesting 

dissimilarity as the points become more separated. Determining the appropriate kernel 

width, σ, is crucial in defining the threshold for considering points as similar, and its 

selection depends on the specific characteristics of each dataset. Finding the optimal σ is 
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vital and can be achieved through hyperparameter tuning methods such as Grid Search 

Cross Validation and Random Search Cross Validation. This mechanism suggests that 

RBF kernel is similar to KNN algorithm in terms of identifying boundaries between 

classes, but RBF overcomes the complexity problem. 

5.3.5 Feature Importance by SHAP Interpretation 

As indicated previously, MATLAB's built-in functionalities primarily support local 

interpretability, where SHAP (Shapley Additive Explanations) values are computed for 

individual observations. Figure 5.4 illustrates the local interpretation of two distinct 

query points. It's notable that each observation results in a unique hierarchy of feature 

significance for predicting the quality score. Every observation possesses its own 

combination of SHAP values contributing to the final prediction. To gain insights into 

the model's underlying behavior, aggregating SHAP value computations across the 

entire dataset becomes necessary. This collective computation offers an overarching 

view of the weight distribution across each feature, elucidating the Gaussian-kernel 

SVM's estimated feature importance in determining quality score predictions. 

 

Figure 5.4: Local interpretation by MATLAB built-in SHAP method 
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Figure 5.5: Summary plot of collective SHAP computation by Python scikit-
learn. 

Figure 5.5 presents an ordered representation of feature importance, showcasing a 

color-coded visual guide where red represents higher variable values and blue indicates 

lower values for specific observations. This color scheme helps in interpreting the 

correlation between feature values and the associated quality rating. For instance, the 

feature "roll-off 85%" exhibits a prominent negative correlation with the quality rating, 

where higher values (depicted in red) are clustered on the left side of the plot, indicating 

a negative impact. Conversely, lower values (depicted in blue) are clustered on the right 

side, suggesting a positive impact. This visual representation offers a clear 

understanding of how specific features contribute to the overall quality assessment. 

Within this ordered arrangement, "roll-off 85%" emerges as the most critical feature 

for quality prediction, followed by "chromagram centroid," "tonal mode," "spectral 

roughness," and others, signifying their hierarchical importance. Furthermore, the 

SHAP result plot highlights that features related to timbre, pitch, and tonality hold more 
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weight in predicting sound quality compared to features associated with dynamics and 

rhythm.  

The prominence of timbre, pitch, and tonality in Asian traditional musical 

instruments is deeply rooted in the emphasis on these elements, a notion consistent with 

the findings in this study on Sape instruments. Traditional Chinese music, for instance, 

is characterized by a harmonious blend of music elements and voice timbres, 

emphasizing the preservation of high-pitched voices and traditional Chinese music 

elements (Hu, 2022). This resonance aligns with the Sape's specific attention to timbre, 

pitch, and tonality, as indicated in the feature importance list. The similarity between the 

feature importance list of Sape and the emphasis on timbre, pitch, and tonality in other 

Asian traditional instruments underscores the shared significance of these elements. 

Additionally, the importance placed on tonality and pitch in Asian traditional musical 

instruments is evident in the preservation of traditional music elements and the focused 

consideration of sound properties like pitch and timbre in musical listening experiences 

(Clarke, 2001). This mirrors Sape’s emphasis on these aspects, as found in this study.   

To supplement this analysis, further statistical examinations were performed utilizing 

the built-in tool in MATLAB, accessible through the Classification Learner app. These 

analyses aid in discerning the importance of features in predicting the classification 

output. The outcomes are detailed in Table 5.6, offering a comprehensive summary of 

feature importance rankings derived from various statistical methods. 
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Table 5.6: Top 4 features importance across different statistical analyses 

SHAP MRMR Chi2 ReliefF ANOVA Kruskal 
Wallis 

Spectral Roll-
off 85 

Spectral Roll-
off 85 

Spectral Roll-
off 85 Tonal Mode Spectral Roll-

off 85 
Spectral Roll-

off 85 
Tonal 

Chromagram 
Centroid 

Tonal Mode Tonal HCDF Spectral Roll-
off 85 Dynamic RMS Spectral 

Flatness 

Tonal Mode Tonal HCDF Spectral 
Irregularity 

Spectral 
Roughness 

Timbre 
Spectral Flux 

Timbre 
Spectral Flux 

Spectral 
Roughness 

Fluctuation 
Centroid Dynamic RMS 

Tonal 
Chromagram 

Peak 

Spectral 
Flatness Dynamic RMS 

 

Based on the outcomes, "roll-off 85%" stands out as the most crucial feature for 

predicting quality, a consistent observation across various statistical analyses, including 

SHAP, MRMR, Chi2, ANOVA, and Kruskal Wallis. The recurrent identification of 

"roll-off 85%" as a pivotal factor in the feature importance rankings from diverse 

statistical methods and SHAP analysis highlights its pivotal role in determining the 

sound quality classification of Sape soundboards. The rapid decline of high-frequency 

spectral content, specifically in "roll-off 85%," seems to be a critical factor in discerning 

different levels of sound quality in Sape instruments. This discovery holds implications 

for future research, instrument crafting, and quality assessment methodologies 

concerning Sape soundboards. 

5.4 Chapter Summary 

In conclusion, this research effectively achieved its objectives by meticulously 

examining the acoustic features of Sape soundboard wood samples, gathering quality 

rating scores via listening tests, and establishing a significant relationship between these 

scores and individual perceptions. Leveraging Mr. Mathew's ratings for predictions, the 

research diligently trained and optimized machine learning models, addressing dataset 

imbalances through SMOTE techniques. The study unveiled a notable non-linear 

correlation between acoustic features and quality ratings, highlighting the Gaussian-
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kernel SVM as the most effective model, boasting a validation accuracy of 88.18% and 

a testing accuracy of 93.37%.  

In the assessment of feature importance, the computation of SHAP values reveals 

that "roll-off 85%" holds the utmost significance in predicting quality, with 

"chromagram" and "tonal mode" following closely. These results resonate with the 

overarching trends observed in Asian traditional musical instruments, underscoring the 

fundamental importance of tonality, timbre, and pitch in the evaluation of sound quality. 

These insights offer valuable guidance for refining quality assessment methodologies in 

the Sape manufacturing industry, potentially influencing critical decision-making 

processes. 

Looking ahead to Chapter 6, the research will extend its scope by utilizing the well-

suited trained model within MATLAB to develop a GUI. This GUI will serve as a user-

friendly tool for future Sape makers, seamlessly incorporating the trained machine 

learning model. The upcoming work in Chapter 6 aims to provide an accessible and 

efficient platform that integrates advanced technology with traditional craftsmanship, 

furthering the evolution and enhancement of Sape instrument production.  
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CHAPTER 6: ADVANCEMENT IN GUI FOR AUTOMATED QUALITY 

CLASSIFICATION OF SAPE SOUNDBOARD  

 

6.1 Overview 

Chapter 6 serves as an extension of the comprehensive research undertaken in earlier 

chapters, aimed at bridging the existing gap within Sape instrument craftsmanship. The 

previous chapters have successfully dissected acoustic features, collected quality ratings 

through listening tests, and integrated machine learning models to predict Sape 

soundboard wood quality. However, a notable void persists within the domain of user-

friendly tools for Sape makers to evaluate soundboard quality during the fabrication 

process. 

In response to this gap, Chapter 6 embarks on the development of a GUI tailored 

explicitly for Sape instrument makers. The primary objective of this chapter is to 

provide an accessible and intuitive platform that amalgamates the evaluative insights of 

both expert Sape makers, and the machine learning model trained in prior research. The 

GUI seeks to streamline the evaluation process by seamlessly incorporating the 

expertise of Sape instrument makers with the predictive capabilities of the machine 

learning model. 

This chapter's pivotal goal is to equip Sape instrument craftsmen with a tool that 

amalgamates traditional expertise with contemporary technological advancements. By 

amalgamating the qualitative evaluation of soundboard wood by experts with the data-

driven predictions of the trained machine learning model, the GUI aspires to offer a 

robust and user-friendly solution. The envisioned GUI promises to revolutionize the 

Sape manufacturing landscape by providing an efficient and effective means of 

evaluating soundboard wood quality during the intricate fabrication process. 
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6.2 Methodology 

The dataset comprising 360 sound samples underwent initial preprocessing steps, 

including volume normalization and noise reduction. Experienced Sape makers assessed 

these samples using a 5-point Likert scale. Subsequently, seven crucial acoustic features 

were extracted using MIRToolbox. A correlation mapping analysis was conducted to 

detect potential multicollinearity among these features, confirming their minimal 

correlation and ensuring independence for subsequent analyses. 

Upon combining the dataset with Mr. Mathew's rating scores, classification using 

SVM commenced. It's important to note that while accuracy is significant, examining 

the confusion matrix is equally vital to identify biases in the model's decisions. Notably, 

Mr. Mathew's ratings exhibited a prevalence of scores 3 and 4, raising concerns about 

potential imbalances in class representation. 

To mitigate class imbalance issues, the Synthetic Minority Oversampling Technique 

(SMOTE) was employed. SMOTE helped address unequal class representation by 

generating synthetic samples for less represented classes (2, 3, and 5), aligning their 

observations with the more common class 4. This technique expanded the dataset to 604 

observations, effectively enhancing its diversity and reducing the risk of model bias 

associated with imbalanced datasets. 

6.2.1 Support Vector Machine in Machine Learning  

SVM stands as a widely recognized classifier rooted in the statistical learning theory 

pioneered by Vapnik (1998). Its fundamental principle revolves around identifying an 

optimal linear hyperplane that minimizes generalization errors when classifying 

unknown test samples. This hyperplane, serving as the boundary between distinct 

categories, is strategically placed to maximize the margin, ensuring a clear separation 

between various classes of data. However, in instances where a linear hyperplane 
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struggles to effectively segregate data in two-dimensional space, SVM leverages a 

higher-dimensional space through a technique known as the 'kernel trick.' 

In this chapter, the utilization of SVM, particularly the Gaussian kernel variant, 

emerges as a key strategy for classifying the quality of Sape audio samples based on 

evaluations by seasoned Sape makers. The Gaussian kernel SVM model specifically 

finds relevance due to the promising results unveiled in Chapter 5, where it exhibited 

the highest accuracy in classifying the quality of produced sound. 

Given SVM's reliance on distance metrics for classification, ensuring uniformity in 

the data's scale becomes crucial. In this study, the input data's 18 features will be 

normalized between the values of 0 to 1 before the classification process. Data 

normalization involves scaling all features to a uniform range, thereby preventing 

individual features from disproportionately influencing distance calculations. This 

standardization is particularly essential as SVM considers the Euclidean distance 

between data points for classification (Koo et al., 2021). By scaling features to a 

consistent range, normalization mitigates the risk of bias that might arise due to varying 

feature scales and ensures fair treatment of each feature's contribution during the 

classification process. 

The Gaussian kernel, as applied in this context, assesses the similarity between data 

points without explicitly mapping them into higher dimensions. It operates by 

evaluating similarity based on the Euclidean distance between points, with a parameter, 

σ, representing the kernel's width. Moreover, to mitigate overfitting, a box constraint 

value of one was carefully chosen within the SVM model. This parameter plays a 

crucial role in optimizing the classifier's performance by balancing the goal of 

maximizing the margin while minimizing classification errors. 
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The chapter's SVM-based quality classification process was executed in MATLAB 

2022b. Following methodology by Vabalas et al. (2019), a standard 70/30 train-test split 

was applied to the dataset to assess the model's predictive capabilities. Additionally, to 

ensure robustness and evaluate the model's generalizability with limited data, a k-Fold 

Cross Validation approach was employed with 𝑘 = 5 , aligning with the 

recommendations outlined by Brownlee (2018). 

6.2.2 Graphical User Interface (GUI) 

The research methodology adopted in this study combines various computational 

techniques and machine learning methodologies to evaluate and classify soundboard 

quality in Sape instruments. Central to this methodology was the development and 

implementation of a GUI using MATLAB app designer. The GUI, carefully crafted 

within the MATLAB environment, served as the primary tool for feature extraction and 

classification of soundboard quality. Leveraging MATLAB's extensive signal 

processing capabilities, the GUI facilitated the extraction of seven fundamental acoustic 

features crucial for soundboard quality assessment.  

Furthermore, the GUI seamlessly integrated a previously trained SVM model. This 

SVM model, trained on a diverse and comprehensive dataset encompassing various 

soundboard qualities, utilized the extracted acoustic features as inputs for classification. 

The model underwent meticulous optimization to discern and categorize soundboard 

qualities based on the uploaded sound files. Upon uploading sound files representative 

of Sape soundboard samples, the GUI executed a series of algorithms designed to 

systematically extract the essential acoustic features. These algorithms were tailored to 

capture intricate nuances and characteristic elements relevant to Sape soundboard 

quality assessment. 
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The user-friendly interface of the GUI ensures a simple and intuitive process for 

users to upload sound files. To maintain consistency and accuracy in soundboard quality 

assessment, it is advised that users adhere to the recording guidelines depicted in Figure 

4.2 and Figure 4.3. These guidelines are essential to ensure that the recorded sound 

aligns with the predetermined settings, promoting a standardized and reliable input for 

the classification process. Once the sound file is uploaded and processed, the GUI 

provides immediate classification results, indicating the predicted quality of the Sape 

soundboard. This seamless interaction streamlines the assessment process, allowing for 

efficient and precise evaluation of soundboard quality based on the extracted acoustic 

features. 

6.3 Results and Discussion 

6.3.1 Support Vector Machine in Machine Learning  

The classification results from the Gaussian Kernel SVM model using the 

normalized dataset are presented in Table 6.1. The model demonstrated notable 

performance in evaluating the quality of Sape audio samples. During validation, the 

model displayed an accuracy of 90.3%, indicating its ability to effectively categorize 

samples based on evaluations provided by experienced Sape makers. When tested on 

unseen data, the model sustained a strong accuracy of 87.8%, highlighting its capacity 

to generalize well to new samples. These results signify the model's proficiency in 

accurately assessing the quality of Sape audio, suggesting its potential for practical 

application. 

Table 6.1: Accuracies of Gaussian Kernel SVM model. 

Model Type Category 
Validation Test 

Accuracy 
% Total Cost Accuracy 

% Total Cost 

Gaussian Kernel SVM 90.3 41 87.8 22 
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Assessing misclassifications or errors made by the model, referred to as the 'Total 

Cost', revealed promising outcomes. The reduction in total cost from the validation 

phase (41) to the testing phase (22) following the optimization of the Gaussian kernel 

SVM is indicative of an improved model performance on unseen data. Through careful 

fine-tuning of key parameters, the model demonstrated enhanced generalization, 

effectively capturing underlying patterns in Sape audio samples. This optimization 

process, which focused on the box constraint level and kernel scale, contributed to a 

more balanced trade-off between maximizing the margin and minimizing 

misclassifications. 

The adjusted box constraint level (445.7698) played a crucial role in achieving this 

balance, influencing the model's ability to accurately classify Sape audio samples. By 

finding an optimal point, the model reduced both false positives and false negatives, 

thereby lowering the overall total cost. Simultaneously, the optimization of the kernel 

scale parameter (0.6360) contributed to the creation of an optimized decision boundary. 

This boundary, influenced by the width of the Gaussian kernel, became more effective 

in separating different classes within the Sape audio samples. 

Furthermore, the optimization process addressed concerns related to overfitting, 

ensuring that the model's complexity was well-suited to the characteristics of the Sape 

audio data. This preventive measure helped the model avoid memorizing the training 

data while enabling it to learn intricate patterns that generalize effectively to new, 

unseen data. The specific parameter values chosen through optimization reflected a 

configuration tailored to the nuances of the Sape audio samples, enhancing the model's 

accuracy and reducing misclassifications during the testing phase. In summary, the 

reduction in total cost underscores the effectiveness of the optimized Gaussian kernel 
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SVM in accurately classifying Sape audio sample quality, demonstrating improved 

generalization and robustness on previously unseen data. 

Figure 6.1 displays the confusion matrix of the SVM model, revealing effective 

predictions for classes 2 and 5 but encountering challenges with classes 3 and 4. The 

satisfactory accuracy demonstrated by the Gaussian Kernel SVM model after training 

reflects its capability to predict the soundboard quality of the Sape instrument. With its 

validated performance, this model holds promise as a reliable tool for evaluating and 

predicting soundboard quality within the realm of Sape instrument crafting. The model's 

proficiency in distinguishing and classifying various soundboard qualities reinforces its 

potential utility in this specialized domain. This suggests that the model's learned 

patterns and decision-making capabilities make it a suitable candidate for assessing and 

predicting the Sape's soundboard quality, thereby contributing to the enhancement of 

traditional instrument craftsmanship. 

 

Figure 6.1: Confusion matrix of Gaussian Kernel SVM model. 
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6.3.2 Limitation in Feature Extraction for GUI Development 

During the implementation of the SVM model in MATLAB for integration into the 

GUI, a notable constraint arose in the direct extraction of features required for sound 

prediction. It was observed that, out of the 18 features initially utilized, only a subset of 

features could be directly extracted. The features accessible for direct extraction were 

dynamic rms, dynamic attack time, decay time, spectral flatness, spectral roughness, 

timbre low energy, and timbre spectral flux. This limitation stemmed from the inherent 

constraints within MATLAB's feature extraction capabilities for certain feature types. 

The decision to incorporate 7 out of the 18 features into the GUI development was 

driven by this limitation. Attempting to extract the complete set of features directly in 

MATLAB proved to be impractical due to the associated technical challenges. The 

alternative approach involving MIR feature extraction and manual data transfer was 

considered cumbersome and time-consuming. 

While this limitation led to a reduced feature set for direct extraction, it is essential to 

acknowledge that the selected features maintain significance and relevance to the 

overall predictive accuracy of the SVM model. This limitation, therefore, underscores 

the need for further advancements in feature extraction methodologies within MATLAB 

or alternative tools for seamless integration of comprehensive feature sets in future 

research endeavors. 

6.3.3 Graphical User Interface  

The GUI, developed using MATLAB's App Designer, prominently features the 

utilization of the trained Gaussian Kernel SVM model as the core classification tool. 

This model serves as the underlying engine for soundboard quality prediction within the 

Sape instrument manufacturing process. The GUI is thoughtfully designed to offer a 

seamless experience to potential users, providing an intuitive platform to upload their 
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unique sound files as shown in Figure 6.2. Empowered by an 'Upload Sound File' 

button, users can effortlessly upload their sound files directly onto the interface. Upon 

selection, the GUI promptly displays essential details such as the file location and name, 

ensuring transparency and easy reference throughout the process. 

Integral to the interface is a 'Prediction' button that, when activated, triggers the 

Gaussian Kernel SVM model to perform real-time quality classification of the uploaded 

sound file. Subsequently, the predicted result is swiftly exhibited in a dedicated box 

within the interface, providing immediate feedback on the soundboard quality. This 

functionality empowers users involved in Sape instrument manufacturing by enabling 

swift and informed decision-making based on the model's predictions. 

 

Figure 6.2: GUI for soundboard quality classification by MATLAB App 
Designer. 

Furthermore, GUI is enriched with comprehensive quality guidelines, serving as a 

reference point for users. This guideline encompasses crucial criteria and information 

utilized by the Gaussian Kernel SVM model during the classification process. By 

integrating the trained model and user-friendly functionalities, this GUI streamlines the 
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soundboard quality assessment during the Sape manufacturing process, offering an 

accessible and efficient tool for manufacturers and craftsmen. 

6.4 Chapter Summary 

In summary, this study combined acoustic analysis and machine learning techniques 

to devise a robust tool for assessing soundboard quality in Sape instrument crafting. 

Beginning with the extraction and analysis of essential acoustic features, bolstered by 

Mr. Mathew's expert ratings, the research addressed issues of bias and class imbalance 

through adept resampling techniques like SMOTE. Leveraging a developed Gaussian 

Kernel SVM model, a user-friendly GUI was meticulously crafted, enabling users to 

swiftly predict soundboard quality by uploading their own sound files. This integrated 

approach, bridging traditional craftsmanship with advanced technology, presents a 

pioneering solution poised to revolutionize Sape instrument manufacturing, offering 

craftsmen an efficient means to evaluate and predict soundboard quality, thus preserving 

and advancing the heritage of the Sape instrument. 
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CHAPTER 7: CONCLUSION AND RECOMMENDATIONS 

 

7.1 Conclusion 

This research presents a platform for Sape makers in evaluating the sound quality of 

soundboard by developing a GUI incorporating machine learning trained with the 

acoustic features of the sound produced by the soundboard of Sape. This research was 

driven by the motivation to comprehensively understand and evaluate the factors 

influencing the sound quality in Sape musical instruments. Numerous factors, including 

wood type, dimensions, and string material, can influence the quality of musical 

instruments. Despite their potential impact, there has been a lack of studies 

comprehensively examining these factors. With this goal in mind, this research first 

conducted a quantitative and qualitative study to determine the most prominent factors 

influencing the quality of Sape soundboard. From the survey, data were collected from 

the online questionnaire where the respondents are the Sape players and makers that are 

still actively playing, teaching, and making the Sape.  The response rate was close to 

20%. The data collected were then analyzed using Exploratory Factor Analysis (EFA) 

and Principal Component Analysis (PCA). The results of EFA and PCA extracted 5 

factors with the material being the most prominent factor, followed by the environment, 

player/maker, design, and size/weight.  

On the other hand, the exploration of sound quality factors in Sape instruments 

involves qualitative investigations. The study into Sape instrument quality, specifically 

through focus group discussions with experienced Sape makers, showcased a 

unanimous focus on wood as the core factor shaping Sape quality. The participants 

highly regarded "Adau" wood due to its balanced properties, emphasizing its significant 

role in crafting exceptional Sape instruments. Age and the drying process of wood 

emerged as crucial factors for enhancing the sound quality and longevity of Sape 
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instruments. Moreover, the makers' detailed classification of wood hardness revealed 

their deep understanding of subtle differences in wood properties that impact Sape 

quality. Beyond wood, discussions covered various elements like dimensions, strings, 

frets, and environmental factors. Differing opinions on these aspects hinted at possible 

room for exploration within Sape-making practices. While certain elements received 

unanimous acknowledgment for their importance, such as wood and specific structural 

features, varying viewpoints emerged regarding design elements, painting, and materials 

used for strings and frets. The insights shared by Sape experts highlighted the 

complexity of determining Sape quality. While there was a consensus on the influence 

of wood type, quality, age, and drying processes, differences in perspectives showcased 

the diversity in Sape craftsmanship. These discussions provided a broader 

understanding of the diverse considerations, creativity, and regional variations inherent 

in Sape instrument making. Visual representations like word clouds and mind mapping 

offered a clear summary of the discussions, emphasizing the significance of wood 

selection and design while acknowledging the multiple factors affecting Sape quality. 

With both the qualitative and quantitative approaches showing that the material used in 

Sape making is the most significant factor, the research proceeds with the study on the 

material used in Sape-wood.  

Chapter 4 involved the creation of nine rectangular samples resembling Sape 

soundboards, crafted from three distinct wood types, utilizing a CNC machine. 

Rectangular wood samples were fashioned and tested for physical, vibroacoustic, and 

timbre characteristics using a flexural vibration test. The objective was to identify the 

most prominent features influencing the sound quality and develop a reliable method for 

classifying wood quality. Results showed that Adau wood had the highest quality, 

followed by Merbau and Tapang wood. Four key features, including acoustic radiation 

damping coefficient, spectral flux, spectral centroid, and inharmonicity, were selected 
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by the Minimum Redundancy Maximum Relevance (MRMR) algorithm and used to 

train and test various classifiers in MATLAB. The decision tree classifier achieved 

98.1% accuracy in predicting wood quality. This study demonstrates the potential of 

using machine learning to classify Sape wood quality and provides a useful guide for 

Sape production. However, this chapter exclusively focused on objective measures. To 

further enhance and expand the findings, Chapter 5 addresses the research gap by 

integrating the subjective evaluation of sound quality, assessed by expert Sape makers. 

This inclusion of subjective evaluations aims to provide a more comprehensive 

understanding and classification of Sape wood quality beyond solely objective 

measurements. 

In chapter 5, the research expanded the evaluation of the sound data to the subjective 

measurements. It is done by the evaluation of the experienced Sape makers. Several 

non-parametric statistical tests were conducted to analyze the quality rating including 

Kruskal-Wallis H test, Krippendorff's alpha, and Kendall's tau-b to compare the 

relationship between the rating scores. Collectively, these three non-parametric 

statistical tests consistently pointed to the sets of rating scores being statistically 

different from each other, underscoring the lack of inter-rater reliability in the 

evaluations. Consequently, candidate E emerged as the reliable source for sound quality 

classification. In this chapter, 18 acoustic features were extracted from the sound data 

after eliminating the features that are highly correlated. To enhance the accuracy and 

robustness of the machine learning training, the SMOTE resampling technique is 

implemented to address class imbalances and mitigate associated biases. The ML results 

revealed that the Gaussian-kernel SVM emerged as the top-performing model with a 

validation accuracy of 88.18% and a testing accuracy of 93.37%. These findings offer 

valuable insights for quality assessment in Sape manufacturing, potentially informing 

decision-making processes within the industry.  
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In Chapter 6, the research continues with the development of GUI with the help of 

the MATLAB app designer. Utilizing a sophisticated Gaussian Kernel SVM model, a 

user-friendly GUI was intricately designed, facilitating users to promptly assess 

soundboard quality by uploading their sound files. This innovative integration, merging 

conventional craftsmanship with cutting-edge technology, introduces a pioneering 

solution set to transform Sape instrument production. It provides makers with an 

effective tool to appraise and anticipate soundboard quality, thereby conserving and 

elevating the Sape instrument's heritage. 

This study successfully achieved three main goals. Firstly, it found and studied the 

key factors that affect Sape quality. Secondly, it used machine learning to evaluate 

wood quality objectively and subjectively. Lastly, a user-friendly GUI has been 

developed to provide an automated sound quality classification system. By 

accomplishing these aims, the research combined Sape makers' knowledge with 

machine learning, creating a thorough way to judge and predict Sape soundboard 

quality. This approach helps maintain set traditions and sets a strong base for future 

studies in this field. 

Lastly, it is important to acknowledge that the tools developed in this study, such as 

the classification model and GUI, aim to assist Sape makers rather than impose strict 

guidelines. These tools are intended to support the expertise of Sape artisans, enhancing 

their abilities rather than prescribing standardized methods. Each Sape maker has their 

unique style and approach, and these technological aids should complement and support 

their individual expertise. The goal of this study is to provide opportunities for 

improvement while respecting and preserving the artisanal skill and creativity of Sape 

makers, thereby maintaining the traditional craft while embracing technological 

advancements. 
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7.2 Contributions of Current Research 

Some of the contributions made by this research are outlined below: 

• This research provides an overview of studies focusing on the classification of 

musical instruments using machine learning systems. It delves into the two primary 

stages involved in the automatic classification process: feature extraction and 

categorization. The classification of musical instruments aligns with the Hornbostel-

Sachs system. Within feature extraction, it enumerates pertinent features frequently 

employed in research and arranges them into a taxonomy based on computational 

domains. Additionally, it discusses and evaluates various classification 

methodologies commonly utilized in these studies. This review is presented in 

Chapter 2.  

 

• Additionally, this research identified the significant factors influencing the sound 

quality of Sape based on the qualitative and quantitative approaches. The results 

from both the focus group discussion and questionnaires indicated that the quality of 

the Sape instrument was affected by several elements. These comprised the type and 

quality of wood, the dimensions and size of the Sape, the arrangement of frets, and 

possibly, the instrument's design and the environment in which it was played. These 

findings imply that the Sape instrument manufacturing sector could enhance its 

practices by considering a wider array of factors beyond solely the type and quality 

of wood employed in Sape production. This work is presented in Chapter 3.  
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• Chapter 4 lays out the initial steps taken in utilizing machine learning for sound 

quality classification, specifically concerning the Sape instrument. This segment 

introduces the application of machine learning techniques in categorizing Sape 

sound quality by integrating physical, vibroacoustic, and timbre features.  

 

• Finally, this research outlines a methodology for integrating sound acoustic features 

into machine learning, as discussed in Chapter 5. Additionally, Chapter 6 focuses on 

creating a GUI that integrates the trained Gaussian Kernel SVM model. This 

advancement has the potential to aid Sape makers in their instrument-making 

process, potentially reducing both times spent, and errors encountered during 

production. 

 

7.3 Recommendations for Future Works 

This study laid the groundwork for determining the quality of the Sape musical 

instrument. Yet, it encountered some limitations that need addressing in future research. 

In upcoming research, it would be beneficial to expand the range of wood samples 

beyond the three types examined in this study. By incorporating a wider variety of wood 

commonly used in Sape construction, a more comprehensive understanding of how 

different woods influence sound quality could be obtained. Moreover, extending the 

assessment beyond the soundboard to include other parts of the Sape instrument, such as 

the body or neck, could reveal additional factors affecting overall quality. This broader 

evaluation could offer insights into aspects beyond sound production, providing a more 

comprehensive view of Sape construction. 

Furthermore, as the current GUI involves pre-recorded sound with a similar 

experimental setup, a potential future direction could focus on enhancing the usability 
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of the app to enable on-the-spot recording. This improvement aims to facilitate real-time 

assessment, potentially capturing nuances that may be lost in pre-recorded files. The 

advantage of such a real-time assessment feature is the ability to evaluate Sape sound 

quality without the need for an extensive and time-consuming experimental setup. This 

enhancement could streamline the assessment process, making it more accessible and 

efficient for both Sape makers and players, ultimately contributing to the advancement 

of the field. 

Another area for improvement lies in the accuracy of sound quality classification, 

particularly in addressing the low accuracy observed in certain categories (below 80% 

training or testing accuracy). Specifically, the classifier's inability to identify Class 1 

(very poor sound samples) due to a lack of training data needs to be addressed. Future 

work should consider including the ratings of Class 1 quality by experts to bolster the 

training data for this category. By doing so, the classifier could achieve a more accurate 

and comprehensive identification across all quality classes. This enhancement would 

significantly improve the reliability and utility of the ML model in assessing the sound 

quality of the Sape instrument. 
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