ENVIRONMENTAL MANAGEMENT STUDIES ON THE REALIGNED ROAD CONSTRUCTION AT KUALA KUBU BHARU

KAM TUCK WOH

DISSERTATION SUBMITTED TO THE INSTITUTE OF POSTGRADUATE STUDIES UNIVERSITY OF MALAYA IN PARTIAL FULFILLMENT FOR THE DEGREE OF MASTER OF TECHNOLOGY (ENVIRONMENTAL MANAGEMENT)

DECEMBER 2003
ACKNOWLEDGEMENTS

• First of foremost, I would like to express my sincere and deep appreciation to YBhg. Dato’ Ir. Haji Azmi bin Mat Nor, Executive Director of SPLASH, to permit me to carry out this research study at the re-aligned road of FR55 at Kuala Kubu Bahru.

• I would like to express my sincere and deep appreciation to my supervisor, Prof. Dr Abdul Halim Sulaiman and my co-supervisor, Prof. P. Agamuthu who motivated and educated me along the execution of this research by their sincere supervision, guidance and kindness throughout the period of this study.

• I would also like to express my sincerest thanks to my superior, Puan Sharifah Alauyah, Environmental and Coordination Manager of SPLASH, for her useful guidance and valuable suggestions applied in this research works. Thanks to all the Splash’s staff and person involved in SSP3 project.

• I am also very grateful to the most important people in my life, my wife (Lui Lee Yen), my son (Kam Jia Yue), my parent and my parent in law for their kind endurance and other family members for their moral support.
ABSTRACT

This research includes interview, site observation, compliance audit and monitoring programs carried out on the re-aligned road FR55 (KKB – Fraser Hill) at Kuala Kubu Bharu. The project proponent SPLASH, is involved in the construction works of the said re-aligned road. Environmental audit was carried out on-site, as well as through a management review exercise on the overall management of SPLASH. Significant impacts on the environment, which are associated with the construction activities, were identified during the audit. There are degradation of natural resources, deterioration of water quality, siltation, sedimentation, air pollution, noise pollution, ground vibration, soil contamination, life hazard and human health. Nevertheless, the management of SPLASH had recommended and implemented effective and practical mitigation measures to abate the environmental impacts identified, which included mitigation measures on the management of soil erosion, river water quality, hazardous materials, waste, wastewater, air quality, noise and vibration, monitoring programs, transportation and machinery, occupational safety and health. Monitoring programs showed that all the river water quality, air quality, noise & vibration quality complied with the DOE’s requirements except for a few number of silt traps discharge quality. In this study, a preliminary EMS in line with the principles of ISO 14001 was planned and implemented at the project site. The commitment and support from all levels of staffs, environmental training programs, fund allocation for implementation of EMS, and external consultant (to conduct auditing and monitoring) are essential to ensure EMS is smoothly implemented. As a result, the formulation and implementation of a preliminary EMS had the potential to reduce
environmental impacts on road construction and enhanced its management system in order to achieve an environmentally sustainable development manner. Preliminary EMS framework is a suitable pathway for the certification of ISO 14001 in road construction industry.
ABSTRAK

Kajian ini merangkumi temuramah, pemerhatian tapak, audit pematuhan dan program-program pemantauan telah dijalankan ke atas penjajaran jalan FR55 (KKB-Fraser Hill) di Kuala Kubu Bharu. Penaja projek, SPLASH adalah pihak yang terlibat dengan kerja-kerja pembinaan penjajaran jalan tersebut. Audit alam sekitar telah dijalankan di tapak kerja dan juga melalui kajian semula pengurusan terhadap pengurusan SPLASH secara keseluruhan. Impak-impak yang berkesan ke atas alam sekitar akibat daripada aktiviti-aktiviti pembinaan telah dikenal pasti semasa audit dijalankan seperti berkurangnya sumber-sumber semulajadi, penurunan dalam kualiti air, perlonggokan lumpur, pemendapan, pencemaran udara, pencemaran buni, gegaran bumi, pencemaran tanah, bahaya kepada nyawa dan juga kesihatan manusia. Walaubagaimana pun, pihak pengurusan SPLASH telah mencadangkan dan melaksanakan langkah-langkah yang berkesan dan praktikal bagi mengurangkan kesan-kesan terhadap alam sekitar seperti yang telah dibangkitkan termasuk kaedah-kaedah pencegahan melalui pengurusan terhadap hakisan tanah, kualiti air sungai, bahan-bahan merbahaya, bahan buangan, bahan buangan bercecair, kualiti udara, buni dan gegaran, program pemantauan, pengangkutan dan mesin-mesen, keselamatan dan kesihatan. Program pemantauan menunjukkan semua keputusan pemantauan dari segi kualiti air sungai, kualiti udara, kualiti buni & gegaran, adalah mematuhi syarat-syarat JAS kecuali beberapa kualiti pelepasan kolom perangkap. Di dalam kajian ini, EMS permulaan yang selari dengan prinsip-prinsip ISO 14001 telah dirancang dan dijalankan di tapak projek. Komitmen dan sokongan daripada semua peringkat pekerja-pekerja, program-program latihan alam sekitar, peruntukan kewangan bagi melaksanakan EMS dan perunding luar (untuk

V
TABLE OF CONTENTS

ACKNOWLEDGEMENTS II
ABSTRACT III
ABSTRAK V
TABLE OF CONTENTS VII
LIST OF TABLES XIV
LIST OF FIGURES XVI
LIST OF PLATES XVIII
LIST OF APPENDICES XIX
ABBREVIATIONS XX

Chapter 1 INTRODUCTION 1
1.1 General introduction 1
1.2 Background of the project 1
1.2.1 Development Selangor River dam and the associated re-alignement road to Frasers Hill 1
1.2.2 Detail of the re-aligned of FR55 2
1.2.3 The existing environment of the project 5
1.3 Project activities and its environmental impacts 5
1.4 Environmental Management Systems 8
1.5 Environmental requirements 9
1.6 Main objective of study 10

Chapter 2 LITERATURE REVIEW 11
2.1 Introduction 11
2.2 Environmental consideration and requirements of road project in Malaysia 11
2.3 Environmental impact assessment of road project 12
2.4 Environmental impact assessment (EIA) of the study project 13
   a) Land clearing and earthworks 13
   b) Quarrying at borrows areas and quarry sites 14

VII
Chapter 4   RESULTS AND DISCUSSION

4.1 Introduction 64

4.2 Environmental audit results of site 64

4.2.1 Interview (pre-audit) 64

4.2.1.1 Overall project management 65

4.2.1.1a Project background/information 65

4.2.1.1b History of project site 66

4.2.1.1c DOE terms and conditions stipulated for the re-aligned road FR55 66

4.2.1.1d Operation activities of project site 67
  Land clearing and earthworks 67
  Construction of Bridge 67
  Drainage works 68
  Quarrying at borrow areas and quarry sites 68
  Concrete batching plant 69
  Machinery maintenance center 69

4.2.1.1e Manpower 70

4.2.1.1f Management structure 70

4.2.1.1g Environmental policy 71

4.2.1.2 Overall existing operation management 72

4.2.1.2a Existing river water quality management 72
  I Construction of silt trap 73
  II Turfing on the exposed slope 73
  III Temporary cover plastic sheets 74

4.2.1.2b Existing hazardous materials management 74
  I Fuel (diesel) 75
  II Explosive 75
  III Cement 75

4.2.1.2c Existing waste management 76

4.2.1.2d Existing wastewater management 77

4.2.1.2e Existing air quality management 78
4.2.1.2f Existing noise and vibration management
4.2.1.2g Existing transportation and machinery management

4.2.1.3 Existing safety and training management
4.2.1.3a Emergency Response Procedure
4.2.1.3b Staff awareness and training
   I Staff awareness
   II Training
4.2.1.3c Community relations

4.2.2 Site observation (site audit)
4.2.2.1 Cutting and filling slope along the re-aligned road
4.2.2.2 Spoil tip area
4.2.2.3 Construction of berm drain and interceptor drain
4.2.2.4 Construction of bridge
4.2.2.5 Location of silt traps
4.2.2.6 Rock blasting works
4.2.2.7 Other environmental issues related to activities

4.2.3 Compliance audit

4.2.4 Monitoring Results (post audit)
4.2.4.1 EMC Monitoring results
4.2.4.1a River water quality
   a) PH
   b) Dissolved oxygen (DO)
   c) Biological oxygen demand (BOD)
   d) Total suspended solid (TSS)
   e) Ammonia nitrogen (AM)
   f) Total coliform (E.coli)
4.2.4.1b Air quality
4.2.4.1c Noise quality
4.2.4.1d Vibration
4.2.4.1e  Silt traps discharge quality
4.2.4.2  SIE monitoring results
4.2.4.2a  TSS level of river water quality (using calorimeter Model DR 890)
4.2.4.2b  TSS results from silt trap discharge
          (using calorimeter Model DR 890)

4.3  Summary of results

4.4  Discussion and recommended mitigation measures

4.4.1  Environmental aspects and its associated impacts
4.4.2  Recommended mitigation measures based on site environmental
       audit results
4.4.2.1  Recommended mitigation measures for soil erosion in line
         with site clearing and earth activities
4.4.2.1a  Minimization of working area
4.4.2.1b  Cutting and filling slope
4.4.2.1c  Method of handling the spoil tips
4.4.2.1d  Revegetation
4.4.2.1e  Plastic sheeting
4.4.2.1f  Construction of silt traps
4.4.2.2  Mitigation measure for river water quality management
4.4.2.2a  Maintenance of vegetation buffer strips
4.4.2.2b  Temporary culvert crossing
4.4.2.2c  Waste disposal
4.4.2.2d  River water quality monitoring
4.4.2.3  Mitigation measure for hazardous materials management
4.4.2.3a  Fuel (diesel)
4.4.2.3b  Explosive
4.4.2.3c  Cement
4.4.2.4 Mitigation measures for waste management
4.4.2.4a Construction waste
4.4.2.4b Domestic waste
4.4.2.4c Scheduled waste
4.4.2.4d Biomass waste

4.4.2.5 Mitigation measures for wastewater management
4.4.2.6 Mitigation measures for air quality management
4.4.2.6a Emission from vehicles, trucks and machines
4.4.2.6b Movement of vehicles
4.4.2.6c Dust emission from quarry activities
4.4.2.6d Dust emission from concrete batching plant
4.4.2.6e Air quality monitoring
4.4.2.7 Mitigation measures for noise and vibration management
4.4.2.8 Mitigation measures for transportation and machinery management
4.4.2.9 Mitigation measures for occupational safety and health management
4.4.2.9a Environmental and safety procedure
4.4.2.9b Emergency Response Procedures (ERP)

Chapter 5
DEVELOPMENT OF A PRELIMINARY EMS THAT COMPLIED WITH ISO 14001 FOR THE RE-ALIGNED ROAD OF FR55 PROJECT

5.1 Introduction
5.2 Commitment and policy (Principle 1)
  5.2.1 Top management commitment and leadership
  5.2.2 Initial environmental review
  5.2.3 Environmental policy

5.3 Planning (Principle 2)
  5.3.1 Identification of environmental aspects and evaluation of associated environmental impacts
5.3.2 Legal and other requirements
5.3.3 Environmental objective and targets
5.3.4 Environmental management program(s)

5.4 Implementation (Principle 3)
5.4.1 Ensuring Capability
   5.4.1.1 Resources – human, physical and financial
   5.4.1.2 EMS alignment and integration
   5.4.1.3 Accountability and responsibility
   5.4.1.4 Training, awareness and competence

5.4.2 Support action
   5.4.2.1 Communication and reporting
   5.4.2.2 EMS documentation

5.4.3 Operation control
5.4.4 Emergency preparedness and response

5.5 Measurement and evaluation (Principle 4)
5.5.1 Monitoring and measurement
5.5.2 Corrective and preventive action
5.5.3 EMS records and information management
5.5.4 Audits of the environmental management system

5.6 Review and improvement (Principle 5)
5.6.1 Review of the environmental management system
5.6.2 Continual improvement

Chapter 6 CONCLUSIONS
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Environmental impacts and mitigation measures for highway from Pos Selim to Lojing (Pakage 2) located at forest or rural area</td>
<td>18</td>
</tr>
<tr>
<td>2.2</td>
<td>Details on activities, impacts and mitigation measures for Kuala Lumpur Outer Ring Road located within the urban area (1995)</td>
<td>22</td>
</tr>
<tr>
<td>2.3</td>
<td>The Publications of Malaysian Standards MS ISO 14000 series by SIRIM</td>
<td>46</td>
</tr>
<tr>
<td>3.1</td>
<td>Additional terms and conditions of approval stipulated by Department of Environment, Malaysia.</td>
<td>50</td>
</tr>
<tr>
<td>4.1</td>
<td>Summary of the findings of the interview</td>
<td>65</td>
</tr>
<tr>
<td>4.2</td>
<td>The summary of types of waste generated from the project site</td>
<td>76</td>
</tr>
<tr>
<td>4.3</td>
<td>The locations of constructed silt traps at the road project site</td>
<td>86</td>
</tr>
<tr>
<td>4.4</td>
<td>Non-compliance records (NCRs) raised during the first compliance audit on November 2000</td>
<td>88</td>
</tr>
<tr>
<td>4.5</td>
<td>Non-compliance records (NCRs) raised during the second compliance audit on February 2001</td>
<td>90</td>
</tr>
<tr>
<td>4.6</td>
<td>Non-compliance of silt traps (EPA Method 160.2)</td>
<td>103</td>
</tr>
<tr>
<td>4.7</td>
<td>Addition non-compliance of silt traps (Calorimetric Method)</td>
<td>107</td>
</tr>
<tr>
<td>4.8</td>
<td>Environmental aspects and its associated environmental impacts identified at the road construction site</td>
<td>110</td>
</tr>
<tr>
<td>4.9</td>
<td>Details of the turfing criterion and its application at the project site</td>
<td>120</td>
</tr>
<tr>
<td>5.1</td>
<td>Evaluation of significance environmental impacts associated with road construction activities at the project site.</td>
<td>152</td>
</tr>
<tr>
<td>5.2</td>
<td>Limiting values and pre-construction baseline monitoring values for some of the environmental parameters.</td>
<td>159</td>
</tr>
<tr>
<td>5.3</td>
<td>The environmental objectives and their respective targets and performance indicator</td>
<td>162</td>
</tr>
</tbody>
</table>
Table 5.4: The proposed and formulated environmental management programs for achieving the objectives and targets 166
Table 5.5: Environmental responsibilities of the project site 177
Table 5.6: Types of recommended training courses 178
Table 5.7: Monitoring programs implemented at the project site 191
LIST OF FIGURES

Figure 1.1  The location of re-aligned road of Federal Route 55 (Kuala Kubu Bharu – Frasers Hill)  3

Figure 1.2  The locations of activities that associated with road construction within the project site  7

Figure 2.1:  The basic structure of environmental management according to ISO 14001 (Hortensius et al., 1997; Hunt et al., 1995)  36

Figure 3.1  The location of river water, air, noise and vibration quality monitoring stations within the re-aligned road of FR55 project, by EMC  55

Figure 3.2  The locations of silt trap within the re-aligned road project  61

Figure 4.1:  Organization chart of the re-aligned road project  71

Figure 4.2:  The average pH level over the 5 months for each sampling station within the project site  93

Figure 4.3:  The averages DO values over the 5 months period for each sampling station within the project site  94

Figure 4.4:  The averages BOD values over the 5 months period for each sampling station within the project site  95

Figure 4.5:  The averages TSS values over the 5 months for each sampling station within the project site  96

Figure 4.6:  The average Amm-N values over the 5 months for each sampling station within the project site  97

Figure 4.7:  The average E.coli values over the 5 months for each sampling station within the project site  98

Figure 4.8:  The average TSP values over the 5 months for each sampling station within the project site  99

Figure 4.9:  The averages PM10 value over the 5 months for each sampling station within the project site  100

Figure 4.10:  The average noise level over the 5 months period for each sampling station within the project site  101

XVI
Figure 4.11: The averages Vibration level over the 5 months for each sampling station within the project site

Figure 4.12: The average TSS values over the 5 months period for each silt trap within the project site

Figure 4.13: The average TSS values by using colorimeter model DR890 over the 5 months for each sampling station within the project site

Figure 4.14: The average TSS values by using the calorimeter Model DR890 over the 5 months period for each silt trap within the project site

Figure 4.15: The layout plan of river water quality monitoring stations within the re-aligned road project

Figure 4.16: The layout plan of skid tank locations within the re-aligned road project

Figure 5.1: Organization of Environmental Unit at the project site

Figure 5.2: Internal and external communication interaction at the project site

Figure 5.3: Flowchart of communication process to incorporate environmental considerations in the decision making for any new development activities
| Plate 4.1 | Portable Calorimeter HACH Model 890 for river water quality and silt traps discharge quality monitoring (TSS parameter only) | 105 |
| Plate 4.2 | Planting of vetiver grass on steep slope followed its design criteria | 121 |
| Plate 4.3 | Geotextile lined channel was implemented for a small tributary diversion | 125 |
| Plate 4.4 | Diesel was stored in a standard skid tank with concrete bunker, which provided 110% volume of the total capacity of the skid tank | 129 |
| Plate 4.5 | Automatic trigger alarm system was installed inside the bunker which able to trigger if oil spillage from the skid tank occurred | 129 |
| Plate 4.6 | Areas for storage of the containers were designed, constructed and maintained adequately to prevent spillage of leakage of scheduled wastes into the environment | 135 |
| Plate 4.7 | Air Curtain Incinerator (ACI) – control burning of biomass | 136 |
| Plate 4.8 | Spraying water on hauls roads and construction areas that are dusty using mobile water tankers to control dust pollution at the project site | 138 |
| Plate 4.9 | Oil traps at vehicle and machinery maintenance yard | 142 |
LIST OF APPENDIXES

Appendix 1  Site environmental audit - Interview questionnaires
Appendix 2  Site observation checklist – Observation on the slope and activities related along re-aligned road of FR55
Appendix 3  The general design of silt trap which has been approved by the Drainage and Irrigation Department (DID)
Appendix 4  Slope monitoring checklist and slope inventory list
Appendix 5  Watering schedule for turfed areas
Appendix 6  Silt trap maintenance schedule
Appendix 7  Silt trap monitoring checklist and silt trap inventory list
Appendix 8  Example: proper action plans and procedures for silt trap T1
Appendix 9  A general design of silt fence by JKR in year 2002.
Appendix 10 Pollutant checklist – River water quality monitoring and assessment
Appendix 11 Skid tank monitoring checklist and skid tank inventory list
Appendix 12 Required documents for scheduled waste management such as notification of scheduled waste, inventory of scheduled waste and consignment for scheduled waste.
Appendix 13 This zoning system and proper checklist will ensure the mitigation measures are proper implemented at the site
Appendix 14 Environmental policy of SPLASH
Appendix 15 Standard guideline for an environmental effect evaluation and register.
Appendix 16 Internal system auditing documentation and records

XIX
ABBREVIATIONS

AN  Ammoniacal nitrogen
ACI  Air Curtain Incinerator
APHA American Public Health Association
BOD  Biochemical oxygen demand
CEO  Chief executive officer
Ch   Chainage
CIBD Construction Industry Development Board
CLQ  Center Labour Quarters
CM   Construction Manager
COD  Chemical oxygen demand
DESEJV Dunia Epik & Spring Energy – JV
DID  Drainage and Irrigation Department
DO   Dissolved oxygen
DOE  Department of Environment
DOE  Department of Environment
EA & RI Environmental Auditing & Related Environmental Investigations
EIA  Environmental Impacts Assessment
EL   Environmental Labels and Declarations
EMC  Environmental Management Consultant
EMP  Environmental Management Plan
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMS</td>
<td>Environmental Management Systems</td>
</tr>
<tr>
<td>EPE</td>
<td>Environmental Performance Evaluation</td>
</tr>
<tr>
<td>EQA</td>
<td>Environmental Quality Act</td>
</tr>
<tr>
<td>ERP</td>
<td>Emergency Response Procedures</td>
</tr>
<tr>
<td>FR55</td>
<td>Federal Route 55</td>
</tr>
<tr>
<td>GESB</td>
<td>Gamuda Engineering Sdn Bhd</td>
</tr>
<tr>
<td>GKTJV</td>
<td>Gamuda-KDEB-TSWA-JV</td>
</tr>
<tr>
<td>H/Q</td>
<td>Headquarters</td>
</tr>
<tr>
<td>ICC</td>
<td>International Chamber of Commerce</td>
</tr>
<tr>
<td>ICP</td>
<td>Inductively Coupled Plasma</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>JKR</td>
<td>Public Works Department Malaysia</td>
</tr>
<tr>
<td>KDEB</td>
<td>Kumpulan Darul Ehsan Sdn Bhd</td>
</tr>
<tr>
<td>Kg.</td>
<td>Kampung</td>
</tr>
<tr>
<td>KKB</td>
<td>Kuala Kubu Bharu</td>
</tr>
<tr>
<td>LCA</td>
<td>Life Cycle Assessment</td>
</tr>
<tr>
<td>LHS</td>
<td>left hand side</td>
</tr>
<tr>
<td>MSSB</td>
<td>Magah Sewa Sdn Bhd</td>
</tr>
<tr>
<td>NACES</td>
<td>National Committee on Environmental Standards</td>
</tr>
<tr>
<td>NCR</td>
<td>Non-compliance Record</td>
</tr>
<tr>
<td>O&amp;G</td>
<td>Oil and Grease</td>
</tr>
<tr>
<td>POC</td>
<td>Probability of Occurrence</td>
</tr>
<tr>
<td>PPE</td>
<td>Personnel Protection Equipment</td>
</tr>
</tbody>
</table>
PPE 1  "Pematuhan Perlaksaan EIA 1"
RM  Ringgit Malaysia
SAGE  Strategic Advisory Group on Environment
SEO  Senior Environmental Officer
Sg  Sungai
SH  Section Head
SIE  Site Independent Environmentalist
SIRIM  Standards and Industrial Research Institute of Malaysia
SMHB  Syed Muhammad Hooi and Binnie Sdn Bhd
SOC  Severity of Consequences
SPLASH  Syarikat Pengeluar Air Sungai Selangor Sdn Bhd
SPM  Senior Project Manager
T&D  Terms and Definition
TC207  Technical Committee 207
TSS  Total Suspended Solids
TSWA  The Sweet Water Alliance
UN  United Nation
UNCED  United Nations Committee on Environmental and Development
UPM  University Putra Malaysia
US EPA  United States Environmental Protection Agency
WICEM II  World Industry Conference on Environmental Management

XXII