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THREE-DIMENSIONAL CRANIOMETRICS IDENTIFICATION MODEL AND 

CEPHALIC INDEX CLASSIFICATION OF MALAYSIAN SUB-ADULTS: A 

MULTI-SLICE COMPUTED TOMOGRAPHY STUDY 

ABSTRACT 

Human identification is the main goal in anthropological and forensic investigations such 

as examination of ancient skeletons, investigations at criminal related scenes, or due to 

mass disasters. The primary focus is to determine the biological profile of unknown 

individuals by estimating their sex and ethnicity. Sex and ethnicity estimation methods 

utilised in adult are less effective in sub-adults due to varied cranium patterns during 

growth. Therefore, this study aimed to develop three-dimensional (3D) craniometric 

models in Malaysian sub-adults for sex and ethnicity estimation, and to establish a 

cephalic index (CI) classification for Malaysian sub-adults. A total of 521 cranial multi-

slice computed tomography (MSCT) dataset of sub-adult Malaysians aged 0 to 20 with 

Malay, Chinese, and Indian ethnicities were obtained. MIMICS software version 21.0 

(Materialise, Leuven, Belgium) was used to construct 3D models and plane-to-plane 

(PTP) protocol was utilised to measure 14 selected craniometric parameters. Discriminant 

function analysis (DFA), binary logistic regression (BLR), and several machine learning 

(ML) algorithms (random forest (RF), support vector machines (SVM), and linear 

discriminant analysis (LDA)) were used to statistically analyse the data. Additionally, CI 

was calculated according to the following equation: cephalic width/cephalic length×100. 

This present study demonstrated a minimal degree of sexual dimorphism in the cranium 

of individuals below the age of six, and the level was then increased with age. All the age 

groups, except for 0–2 years and 3–6 years, exhibited reliable sex estimation with a high 

accuracy percentage (≥75%) when tested using DFA and BLR. As for the ethnicity 

estimation models, a high similarity of craniometric measurements between Chinese and 

Malays (as compared to Indians and Malays, and Chinese and Indians) was demonstrated. 
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This resulted in the highest classification accuracy obtained by Indians, followed by 

Chinese and Malays in the age groups of 10–12 years and 16–20 years. Moreover, ML 

methods obtained slightly higher accuracy rates than classical methods for sex (RF: 73% 

vs BLR: 66.9% and DFA: 61.6%) and ethnicity estimation (LDA: 58% vs DFA: 57.5%) 

using sub-adults’ crania. In addition, the modified CI of Malaysian sub-adults were found 

to be as follows: dolichocephalic, 78.8 or less; mesocephalic, 78.9–89.0; brachycephalic, 

89.1–94.0; and hyperbrachycephalic, 94.1 or higher. Hence, the proposed CI index 

indicated that the dominating type of head for Malaysian sub-adults was mesocephalic 

(66.4%), followed by dolichocephalic (18.4%), brachycephalic (12.3%), and 

hyperbrachycephalic (2.9%). The present study has demonstrated that sex and ethnicity 

estimation of sub-adults can be effectively performed by assessing the cranium via 3D 

virtual anthropometry. To the best of our knowledge, this was the preliminary study that 

described craniometric variations of multi-ethnic groups in Malaysian sub-adult 

population using MSCT data. Ultimately, this present study has bridged the gap of 

population-specific cranial data in Malaysian sub-adults.  

Keywords: Cranium, sub-adults, sex and ethnicity estimation, multi-slice computed 

tomography, cephalic index. 
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MODEL PENGENALAN KRANIOMETRIK TIGA DIMENSI DAN 

PENGELASAN INDEKS SEFALON SUB-DEWASA: KAJIAN TOMOGRAFI 

KOMPUTER BERBILANG HIRISAN 

ABSTRAK 

Pengenalpastian manusia ialah matlamat utama dalam penyiasatan antropologi dan 

forensik seperti pemeriksaan rangka purba, penyiasatan di tempat kejadian jenayah, atau 

akibat berlakunya bencana alam berskala besar. Fokus utama ialah untuk menentukan 

profil biologi individu-individu yang tidak dikenali dengan menganggarkan jantina dan 

kumpulan etnik. Corak kranium yang berbeza-beza semasa pertumbuhan menandakan 

bahawa pendekatan anggaran jantina dan kumpulan etnik yang lazim diguna pakai bagi 

orang dewasa adalah kurang berkesan bagi golongan sub-dewasa. Oleh itu, kajian ini 

bermatlamat untuk mengembangkan model kraniometrik tiga dimensi (3D) bagi 

golongan sub-dewasa Malaysia bagi tujuan anggaran jantina dan kumpulan etnik, serta 

membina pengelasan indeks sefalon (cephalic index, CI) bagi golongan sub-dewasa 

Malaysia. Sejumlah 521 dataset imbasan tomografi komputer berbilang hirisan (multi-

slice computed tomography, MSCT) bagi sub-dewasa Malaysia berumur 0 hingga 20 

tahun, daripada kumpulan etnik Melayu, Cina, dan India telah diperoleh. Perisian 

MIMICS versi 21.0 telah digunakan untuk membina model tiga dimensi sementara 

protokol satah-ke-satah telah digunakan untuk mengukur 14 parameter kraniometrik yang 

terpilih. Analisis fungsi diskriminan (discriminant function analysis, DFA), regresi 

logistik binari (binary logistic regression, BLR), dan beberapa algoritma pembelajaran 

mesin (machine learning, ML) iaitu random forest (RF), mesin sokongan vektor (support 

vector machines, SVM) dan analisis diskriminan linear (linear discriminant analysis, 

LDA) telah digunakan untuk menganalisis data secara statistik. Tambahan lagi, CI telah 

dihitung berdasarkan persamaan berikut: kelebaran sefalon/panjang sefalon x 100. Kajian 

ini mempamerkan takat minimum dimorfisme jantina dalam kranium individu bawah 
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umur 6 tahun, dan takat ini bertambah dengan peningkatan usia. Apabila sampel 

dibahagikan kepada kumpulan umur yang berbeza-beza, semua kumpulan umur, kecuali 

0-2 tahun dan 3-6 tahun, mempamerkan anggaran jantina dengan peratusan ketepatan 

yang tinggi (≥75%) apabila diuji dengan menggunakan DFA dan BLR. Bagi model 

anggaran kumpulan etnik pula, terdapat persamaan ukuran kraniometrik yang tinggi telah 

dipamerkan antara Cina dan Melayu (berbanding antara India dan Melayu, dan antara 

Cina dan India). Ini menghasilkan ketepatan klasifikasi tertinggi yang diperoleh oleh 

orang India, diikuti dengan orang Cina dan orang Melayu dalam kumpulan umur 10-12 

tahun dan 16-20 tahun. Tambahan pula, kaedah ML memperoleh kadar ketepatan yang 

lebih tinggi sedikit berbanding dengan kaedah klasik bagi jantina (RF: 73% vs BLR: 

66.9% dan DFA: 61.6%) dan anggaran etnik (LDA: 58% vs DFA: 57.5%) menggunakan 

kranium sub-dewasa. Sementara itu, CI sub-dewasa Malaysia yang diubah suai adalah 

didapati seperti berikut: dolikosefalik, 78.8 atau kurang; mesosefalik, 78.9–89.0; 

brakhisefalik, 89.1–94.0; dan hiperbrakhisefalik, 94.1 atau lebih tinggi. Maka, index CI 

yang dicadangkan menandakan bahawa jenis kepala yang mendominasi bagi sub-dewasa 

orang Malaysia adalah mesosefalik (66.4%), diikuti dengan dolikosefalik (18.4%), 

brakhisefalik (12.3%), dan hiperbrakhisefalik (2.9%). Kajian ini telah menunjukkan 

bahawa anggaran jantina dan etnik sub-dewasa boleh dilakukan secara berkesan, dengan 

membuat penilaian terhadap kranium melalui antropometri secara maya. Setakat 

pengetahuan terbaik kami, ini kajian awal yang menerangkan variasi kraniometrik 

kumpulan multi-etnik dalam populasi sub-dewasa orang Malaysia menggunakan data 

MSCT. Pada dasarnya, kajian ini telah dapat merapatkan jurang data kranial khusus bagi 

populasi sub-dewasa di Malaysia. 

 

Kata kunci: Kranium, sub-dewasa, anggaran jantina dan kumpulan etnik, tomografi 

komputer berbilang hirisan, indeks sefalon. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Human identification is the main goal in anthropological and forensic investigations 

such as ancient skeletal examination, investigation at criminal-related scenes, or due to 

mass disasters (Gill et al., 1988; Klepinger, 2006; Ousley et al., 2009; Rhine, 1990). The 

primary focus of identification is to determine the biological profile of unknown 

individuals by estimating their age, sex, ethnicity, and stature (Kanchan et al., 2013). 

Various skeletal components have been used to identify these biological profiles in 

adults (Ekizoglu et al., 2017; Kranioti et al., 2018; Ramamoorthy et al., 2016; Singh & 

Pathak, 2013; Spradley 2021). However, methods to identify sub-adults are lacking. The 

complex biological profile of sub-adults may contribute to this observation. Furthermore, 

evidence of sex and ethnicity of a sub-adult skeleton is obscured by skeletal growth 

indicators, as the growth of sub-adults is an ongoing process (McDowell et al., 2012). 

This has resulted in the lack of established sex and ethnicity estimation methods for sub-

adults. 

The accuracy of the biological profile largely depends on the availability of the skeletal 

components and their state of preservation, such as the cranium and postcranial skeleton 

(Scheuer & Black, 2000). Cranium is universally recognised as the best bone structure 

for estimating ethnicity and the second-best for estimating sex (Byers, 2016; Krogman & 

Iscan, 1962; Pickering & Bachman, 2009). This is because the cranium is highly durable 

even in extreme environmental conditions, resulting in better-preserved morphological 

features (Gonzalez et al., 2011; Naikmasur et al., 2010; Sangvichien et al., 2007). 

Traditionally, sex and ethnicity estimation using cranium is conducted using a 

nonmetric method through visual assessments and statistical analyses (Birkby et al., 2008; 

Hefner, 2009; Ousley & Jantz, 2005; Ousley et al., 2009; Rhine, 1990). However, this 

method is subjective and observer-dependent. To overcome these drawbacks, metric 
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methods have been widely used since they are less dependant on the observer’s 

judgement, rely on standardised measurements of the cranium, and the results can be 

statistically analysed (Gillet et al., 2020; Pretorius et al., 2006; Sierp & Henneberg, 2015; 

Tunis et al., 2017). Previous studies on sex and ethnicity estimation have been more 

geared towards craniometric data because of its methodical nature and ability to be 

performed under methods of statistical analysis such as discriminant function analysis 

(DFA) or binary logistic regression (BLR; Gonzalez, 2012; Hsiao et al., 2010; Noble et 

al., 2019; O’Donnell et al., 2017; Sierp & Henneberg, 2015; Teodoru-Raghina et al., 

2017; Zaafrane et al., 2018). DFA and BLR provide relatively simple, objective, and 

accurate means to estimate sex and ethnicity. Variability in skeletal measurements 

enables mathematical analysis and statistical processing of the collected data (Santos et 

al., 2014). However, BLR is limited to sex estimation, while DFA can be utilised for 

estimating both sex and ethnicity (Nikita & Nikitas, 2020). 

In recent times, artificial intelligence (AI) and machine learning (ML) techniques have 

been applied in diverse fields such as bioarcheology and forensic anthropology (Muzzall, 

2021). In forensic anthropology, these techniques have been used to estimate the sex and 

ethnicity of adult individuals (Hefner et al., 2015; Imaizumi et al., 2020; Pozzi et al., 

2020; Toneva et al., 2021). ML works by utilising computer-aided cranial measurements 

based on three-dimensional (3D) models and making predictions without being explicitly 

programmed to do so. Multiple ML techniques such as linear discriminant analysis 

(LDA), support vector machine (SVM), logistic regression (LR), artificial neural 

networks (ANN), decision trees (DT), and random forest (RF) have been used for 

estimating sex and ethnicity (Hefner et al., 2015; Imaizumi et al., 2020; Pozzi et al., 2020; 

Toneva et al., 2021; Toy et al., 2022). However, the comparison of classification accuracy 

between these ML techniques in sub-adults has been less explored (Ortega et al., 2021). 
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The cephalic index (CI) is an important index in assessing the head shape of 

individuals. The CI and head shape are greatly affected by factors of age, sex, and 

ethnicity (Khanduri et al., 2021). Furthermore, they are also reported to be influenced by 

geographical variation (Hanihara et al., 1982). There have been several reports measuring 

CI in children with normal development (Koizumi et al., 2010; Likus et al., 2014; Nam 

et al., 2021; Waitzman et al., 1992). However, studies have been conducted mostly in 

Caucasians (Likus et al., 2014; Waitzman et al., 1992). In the Asian population, CI studies 

have been conducted on Japanese and Korean children (Koizumi et al., 2010; Nam et al., 

2021). With the understanding that CI varies between different populations, hence, 

applying CI of other populations to the Malaysian population would not be sensible given 

that Malaysia consists of three major ethnic groups, namely Malay, Chinese, and Indian. 

Therefore, it is necessary to develop the CI classification for the current Malaysian sub-

adult population. 

 
 

1.2 Problem statement 

Determining sex and ethnicity is crucial for establishing skeletal profiles of 

unidentified individuals in forensic investigations (Pretorius et al., 2006). Sex and ethnic 

variances specific to the cranium have been widely studied in various populations around 

the world. However, the standard model for such estimations based on cranium has not 

been set for global populations. In addition, existing methods for sex determination using 

sub-adult cranium are less reliable and have yielded variable degrees of accuracy (Hsiao 

et al., 2010; Noble et al., 2019; O’Donnell et al., 2017; Teodoru-Raghina et al., 2017). 

Furthermore, skeletal samples of sub-adults used by anthropologists are often derived 

from antiquated and/or foreign skeletal collections that were amassed in the late 19th to 

early 20th century (Cardoso, 2008; Galdames et al., 2008). These collections 

predominantly comprise skeletons of European or African descent and primarily reflect 
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the demographics of pre-1950s America, leaving Asians as a significantly understudied 

group (Hunt & Albanese, 2005; Komar & Buikstra, 2008; Komar & Grivas, 2008). Given 

the wide range of global secular change, human, temporal, and geographical variations 

that have occurred since, these samples may not be reliably applied to all human groups 

(Algee‐Hewitt, 2016; Wescott & Jantz, 2005). 

Temporal or secular changes are physical changes that may take place within a 

population as a result of abrupt shifts in lifestyle or exposure to a different environment. 

These changes may be due to an improvement or a decline in environmental conditions, 

mostly nutrition (Spradley, 2006). In addition, distinct genetic and physical 

characteristics between the modern and the old (>100 years) populations have been 

reported in various populations such as the Native American tribe (Sutphin et al., 2014), 

African and White (Moore-Jansen, 1989), Japanese (Hossain et al., 2005; Nagaoka et al., 

2012), Mexican (Little et al., 2006), Croatian (Buretić‐Tomljanović et al., 2006), and 

Indian (Saini, 2014). In a study by Nagaoka et al. (2012), significant variations were 

reported in several cranial measurements, including maximum cranial length, maximum 

cranial breadth, and upper facial height, when compared to data from populations of 

different time periods. Moreover, a shift toward brachy cephalisation or increased cranial 

breadth was reported in the contemporary Indian population after India achieved 

independence in 1947. This has resulted in varying accuracies of sex estimation models 

between two successive populations of the same geographical region (Saini, 2014). 

Therefore, these findings indicated the importance of updating local forensic 

anthropology database. 

Sex and ethnicity estimation models are known to be population-specific (Franklin et 

al., 2013b). The accuracy rates of estimation models have been found to be low when 

applied to different populations (Kim, 2009; Toneva et al., 2020; Yang et al., 2020). In 

addition, low accuracy rates of sex and ethnicity estimation are influenced by inter-
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population disparities in sexual dimorphism expression, as some communities have 

robust characteristics while others have gracile characteristics of both sexes (Green & 

Curnoe, 2009). The need for population-specificity for sex estimation was demonstrated 

by Franklin et al. (2013a), where models developed for a South African population (İşcan 

& Steyn, 1999) were applied to a Western Australian sample. The findings reported a 

high sex bias in which misclassification of males occurred more than in females (>30%). 

Therefore, a population-specific model should be developed to accommodate the large 

variance of craniometric measurements across the globe.  

Conventional radiographs have been widely used in sub-adult studies (Gonzalez, 2012; 

Hsiao et al., 2010; O’Donnell et al., 2017; Sprowl, 2013), but it comes with limitations 

such as superimposition of anatomical structures and inconsistent orientation. 

Additionally, plain film radiographs exhibit distortion due to parallax and magnification 

errors, which hinders accurate metric data collection (Bontrager & Lampignano, 2001; 

Mantini & Ripani, 2009; Schroeder et al., 1997). To address these limitations, computed 

tomography (CT) scans have emerged as a valuable alternative. CT scans allow 

researchers to access high-resolution skeletal data from diverse populations without the 

need for physical skeletal materials. Unlike plain film radiographs, CT scans provide 

unambiguous images of the anatomical region of interest without distortion, 

magnification errors, or superimposition of structures (Hildebolt et al., 1990). Moreover, 

CT scan data contain embedded technical information, such as slice thickness, voxel size, 

and user-selectable parameters, which can aid in the analysis. Retrospective data 

acquisition from clinical settings, where CT scans are routinely performed, offers an ideal 

opportunity for advancing forensic anthropological research, especially concerning the 

analysis of sub-adult skeletal remains (Lottering et al., 2014).  

The variation across populations poses a significant challenge in establishing a 

standard CI for accurate anthropological assessment. The lack of a standardised CI can 

Univ
ers

iti 
Mala

ya



6 

be associated with several factors such as genetic diversity, geographical location, 

historical migration patterns, and cultural practices. Therefore, developing a population-

specific CI will facilitate and improve anthropological studies, medical practices, and a 

more inclusive understanding of human diversity. In view of the aforementioned gaps, 

the aim of this study is to fill a longstanding void in sub-adult sex and ethnicity estimation 

and CI classification by utilising a substantial sample of MSCT scans. 

 

1.3 Research questions 

To date, a significant research gap exists in the development of sex and ethnicity 

estimation models specifically for sub-adults using MSCT scans, with no emphasis on 

the Malaysian sub-adult population. Given the population-specific nature of sex and 

ethnicity estimation, it is imperative to establish more reliable and precise estimation 

methods for the growing sub-adult population. Therefore, the aim of this study was to 

address the following key research questions: 

1) What are the craniometric models used for sex and ethnicity estimation in 

Malaysian sub-adults? 

2) What are the differences between the accuracy of discriminant function analysis 

(DFA) and binary logistic regression (BLR) models for sex estimation in 

Malaysian sub-adults? 

3) What is the accuracy of DFA models for ethnicity estimation in Malaysian sub-

adults? 

4) What are the differences between the validity of machine learning (ML) 

algorithms and classical statistical methods (DFA and BLR) for sex and 

ethnicity estimation models in Malaysian sub-adults? 

5) What is the normal range of CI classification for Malaysian sub-adults? 
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1.4 Aims and objectives 

The main aims of this multi-slice computed tomography (MSCT) study were two-fold: 

1) To develop three-dimensional (3D) craniometric models for sex and ethnicity 

estimation in Malaysian sub-adults; and 

2) To establish a cephalic index (CI) classification for Malaysian sub-adults. 

This study was set out with the following objectives in view: 

1) To compare the accuracy of discriminant function analysis (DFA) and binary 

logistic regression (BLR) models for sex estimation in Malaysian sub-adults. 

2) To assess the accuracy of DFA models for ethnicity estimation in Malaysian 

sub-adults. 

3) To compare the validity of sex and ethnicity estimation models between 

machine learning (ML) algorithms and classical statistical methods (DFA and 

BLR) in Malaysian sub-adults. 

4) To determine the normative range of CI classification for Malaysian sub-

adults. 

 

 
1.5 Hypothesis 

The following hypotheses were tested in this study to achieve the aims and objectives 

set out above: 

1) Sexually dimorphic differences in the cranium are predictable for each age 

group when utilising statistical analyses. 

2) Ethnic differences in the cranium are predictable across all age groups and 

between males and females when utilising DFA. 
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1.6 Significance of the study  

The identification of an unknown individual is important in forensic investigations. 

Numerous methods have been introduced to improve the accuracy of sex and ethnicity 

estimation from an unknown cranium. However, these estimations lack population 

inclusivity, as most cranial studies are specific to international samples that do not reflect 

the biological variety and growth patterns of Malaysian sub-adults. Therefore, the 

significance of the present study is to develop reliable and population-inclusive sex and 

ethnicity estimation models for Malaysian sub-adults using craniometrics. These cranium 

estimation models will significantly assist in various medico-legal investigations, 

including identifying individuals with unknown identities, determining refugee status, 

investigating cases of human trafficking, and facilitating the identification of disaster 

victims. 

This research will enhance and update the availability of normative reference data and 

growth changes in the cranium for the Malaysian sub-adult population. Such data should 

be of value for clinicians as they can use the 3D data and models to facilitate diagnosis, 

carry out treatment planning pertaining to different cranial abnormalities, and perform 

post-operative cranial surgery follow-ups. In addition, this age-specific normative data 

can provide important information during surgery and demonstrate morphologic variation 

that may be encountered by the clinicians. This will enrich their knowledge and skills in 

managing diverse cases. In addition, the data can be used to develop a protective headgear 

for children. Interestingly, this data can also contribute to the knowledge of human 

evolution, variation, and developmental biology.  

The lack of recent documented sub-adult skeletal data has impeded new research in 

sex and ethnicity estimation. Therefore, the rapid evolution of technology such as MSCT 

scans has revolutionised forensic and medical investigations. Having emerged as one of 

the most widely used imaging methods today, MSCT has the capability to overcome the 
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limitations associated with conventional radiographic databases, such as superimposition 

and image distortion. It utilises 3D multi-planar and volume-rendered reconstructions 

which act as virtual models of skeletal components. Most importantly, it should be 

recommended that the data obtained from this study be saved in a data bank so that it will 

be accessible for future use. 

 

1.7 Definitions of postnatal life stages used in this study 

Substantial differences in the terminologies used to define the stages of postnatal life 

is common between countries. Universally, the term ‘sub-adult’ refers to any stage of life 

that is not yet truly an adult, which overlaps with the achievement of final adult stature 

(females:16-18 years, males: 18-21 years). Additionally, this signifies the completion of 

the permanent molars’ eruption and the closure of the spheno-occipital synchondrosis.  

The term ‘perinate’ denotes the newborn stage, typically referring to the time 

immediately after birth. Infancy refers to the first three years of life which is characterised 

by rapid growth and development in various aspects such as motor skills, cognitive 

abilities, and language acquisition (Bogin, 2020; Scheuer & Black, 2000). The childhood 

stage generally refers to the period of human development between infancy and juvenile. 

It encompasses a wide range of ages, typically from three to seven years. During this 

stage, children experience significant physical, cognitive, and social development (Black 

& Maat, 2010).  

The juvenile stage signifies the completion of brain growth and the eruption of 

permanent dentition. Females reach this stage between seven and 10 years of age, while 

males reach it at around 12 years of age (Black & Maat, 2010). Adolescence is the 

transitional period between childhood and adulthood. It is characterised by significant 

physical, psychological, and social changes, including the onset of puberty. Females 

Univ
ers

iti 
Mala

ya



10 

experience puberty and the adolescent growth spurt between 10 and 16 years of age, while 

males go through these changes between 12 and 18 years of age (Sinclair, 1973). 

 

1.8 Organisation of chapters 

This dissertation has been organised into six chapters: 

Chapter One of this thesis includes the background of study, research problem, aims 

and objectives, hypothesis, and significance of the study. Chapter Two provides a 

literature review on various topics related to the research study. It covers the methods 

used for sex and ethnicity estimation, applications of MSCT scanning, AI technology in 

forensic casework, methods for developing population-specific standards for different 

global populations, and CI classification. The purpose of this chapter is to provide a 

comprehensive overview of existing knowledge and research relevant to the present 

study. 

Chapter Three outlines the materials studied and the methods used to analyse the data 

collected in this study. Chapter Four presents the results from the analysis performed on 

the data. It includes the findings and statistical analyses derived from the research study. 

The results will be presented in the form of tables and graphs to facilitate understanding 

and interpretation.  

Chapter Five will then discuss the results presented in Chapter Four in further detail. 

It provides interpretation, analysis, and contextualisation of the results within the broader 

context of the research objectives and relevant literature. This chapter highlights patterns, 

trends, and significant findings, as well as discussing their implications and potential 

applications. It also addresses the study’s limitations and recommends areas of 

improvement for future research. Chapter Six summarises the entire research project, 

including a recap of the research objectives, methodology, and findings. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Growth and development of the cranium 

Human growth is a revolutionised process of size and morphology during the 

development stage of an individual. The presence of variation in growth between males 

and females, as well as within population groups, has been documented (Bulygina et al., 

2006). Thus, understanding the human skeletal anatomy is fundamental for forensic 

anthropologists when performing sex or ethnicity estimation. The following sections 

outline a description of the human skull to provide a better insight into its anatomy, 

growth, and developmental process.  

 
2.1.1 Skull anatomy  

The human skull is formed by two major components, namely the neurocranium and 

the viscerocranium. Neurocranium includes calvarium, which creates cranial vault, and 

basicranium, which develops the skull base (Soames, 1995). Viscerocranium is the 

structure that supports the facial skeleton, consisting of face, palate, pharyngeal, temporal, 

and auditory bones. However, the anatomy of viscerocranium will not be discussed as 

facial skeleton has not been included in this research. 

 

2.1.2 Growth of neurocranium 

Neurocranium, or the braincase, consists of calvarium and basicranium. Neurocranium 

constitutes most of the protective components of the brain (Scheuer, 2000). 

 
2.1.2.1 Calvarium 

Calvarium, or cranial vault, is primarily composed of flat bones: parietal bones and 

paired frontal, interparietal occipital, and squamous temporal bone segments. These bone 
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plates are connected by fibrous connective tissue bands known as calvarial sutures. 

Sutures of the calvarium include the coronal, metopic, lambdoid, and sagittal sutures 

(Beederman et al., 2014). 

Calvarial sutures inhibit early bone fusion and allow the expansion of the skull 

throughout the prenatal and newborn stages of development. Additionally, it enables the 

bones to move throughout the birth process, preventing the skull from distorting during 

delivery and functioning as shock absorbers to external pressures. Hence, suture patency 

is unquestionably necessary for appropriate craniofacial growth (Twigg & Wilkie, 2015). 

Sutures normally remain unossified well into adolescence. If any of the sutures close too 

early, growth in that area may be prevented, forcing the growth to occur in another 

direction. This will alter the shape of the skull and result in an abnormal head shape (Dias 

et al., 2020). 

Fontanelles, or soft spots, are the gaps between bones that stay open in newborns. It is 

one of the most noticeable anatomical aspects of the infant’s skull. These structures are 

the remnants of ectomeninx, the neural crest-derived tissue from which the calvarial 

bones emerge (Jiang et al., 2002). After birth, the apposition of bones along the borders 

of the fontanelles rapidly closes these open areas. The bones will remain separated for 

many years and finally merge in adulthood. 

Calvarium grows fastest during the first two years after birth. When the temporal and 

parietal lobes of the brain expand, the calvarium elongates, and the cranial base descends 

(Cunningham et al., 2016). Calvarium is typically 25% of its adult size at birth, 50% at 

six months, 65% at one year, and 90% at seven years, with continuous growth until late 

childhood (Kamdar et al., 2009). The brain and calvarium reach adulthood at around the 

same time, which is at around 10 years (Lieberman, 2011).  
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2.1.2.2 Basicranium  

Basicranium, or the cranial base, is the most complex substructure within the skull. It 

connects the vault above with the face below and serves as a major integration center of 

the skull (Lieberman et al., 2000). Basicranium begins as cartilage and changes into bone 

by replacing hyaline cartilage at their suture lines. Cartilage acts as a template for new 

bone to be entirely replaced. These cartilaginous sutures are called synchondroses. 

Spheno-occipital synchondrosis is the most important and active contributor to the growth 

of the cranial base. It remains active until mid-adolescence, with ossification completed 

at 20 years of age (Enlow, 1990). 

Basicranium develops rapidly until five to seven years of age (Lieberman et al., 2000). 

Its development slows after seven years of age until it reaches around 95% of its adult 

size, which corresponds to the size of the brain at 12 years of age. Basicranium does not 

stop growing through adolescence and mid-pubescence; it continues to expand from the 

internal to exterior structures at a much slower rate (Bastir et al., 2006). It reaches its 

mature size and form at about 11 to 12 years of age when brain development ends 

(Neubauer et al., 2009). 

Human growth variation is influenced by several factors, such as ethnic group, secular 

change, socioeconomic status, health, and diet. In addition, variation occurs between 

individuals, even within the same population. The present study focused on developing 

population-specific models, particularly for the cranium of Malaysian sub-adults. 

 
2.2 Methods for sex and ethnicity estimation 

In the past, forensic anthropologists relied on rudimentary traditional inter-landmark 

distances measured with calipers or subjective assessments, based on the expertise of 

evaluators to estimate the biological profile of human remains. However, the emergence 

of 3D technology and advanced image processing algorithms has revolutionised the field, 
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enabling virtual measurements and comprehensive analysis of the entire skull. Despite 

these advancements, determining sex and ethnicity in sub-adult samples remains 

challenging due to the ongoing growth and development of the craniofacial complex. 

Consequently, methods that exhibit high accuracy in adults may not yield the same level 

of precision when applied to sub-adults. Three methods are commonly utilised for sex 

and ethnicity estimation, namely nonmetric analysis, metric analysis, and molecular 

biology. Each approach has its own benefits and drawbacks. A general comparison of 

these methods will be discussed in the next section. 

 
2.2.1 Nonmetric analysis  

Nonmetric analysis is the simplest and longest-practiced method for sex and ethnicity 

estimation. This method utilises a visual assessment to identify the shape or trait of bones. 

The assessment is based on visual images and a scoring system for dimorphic cranial 

traits. However, it tends to be subjective as it requires a highly experienced observer, 

resulting in various interpretations by different observers (Roberts & Connell, 2004). This 

method is advantageous since it is cost-efficient, simple, and can be performed quickly. 

However, it requires sufficient years of experience in observing skeletal variation, which 

could lead to poor inter-observer agreement and a lack of statistics to analyse the data. 

 
2.2.2 Metric analysis  

The metric analysis is objective since it involves measuring the distance between 

specific features and landmarks on a skull. The metric method employs special 

instruments such as sliding calipers, spreading calipers, radiometers, or imaging 

technologies such as magnetic resonance imaging (MRI) and computed tomography (CT) 

modalities. These tools are utilised to collect information on the morphological features 

of a skull. 
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Advanced technologies of 3D visualisations and mathematical works allow the 

establishment of statistical equations to estimate the sex and ethnicity of an individual. 

Examples of statistical approaches are DFA, LR, ANN, RF, SVM, and MLP (İşcan & 

Steyn, 2013). Accuracy depends on the reliability of the evaluator, precise skeletal 

measurements, and correct statistical analysis. However, this method is usually 

population-specific and commonly affected by several factors such as secular trends, 

geographic location, and nutrition (Kotěrová et al., 2017).  

Metric analysis is essential to develop estimation programmes such as FORDISC, 

CRANID, AncesTrees, and 3D-ID. These programmes allow the researcher to enter their 

measurements into a database that will classify the sex or ethnicity of an unknown 

individual (DiGangi & Hefner, 2013). The programmes and database can facilitate the 

measurement of skeletons by inexperienced forensic anthropologists. These analytic 

programmes will be discussed further in the next section. 

 
 

2.2.3 Molecular biology 

Molecular biology is the most accurate approach for sex and ethnicity estimation. It 

can provide critical information to enable identification in several ways. It may be used 

to determine a person’s sexual orientation and ethnic origin, probable association with 

cancer genes, and comparison of the DNA to those of family members in missing person 

cases (Lundy, 1998). Sex estimation is accomplished by analysing the X and Y sex 

chromosomes. The Y chromosome is often employed since it includes single male-

specific genes (İşcan & Steyn, 2013). 

However, the benefits are often obscured by the inevitable. These techniques need 

complex equipment that is both costly and time-consuming (Bašić et al., 2017; Mannucci 

et al., 1994; Tierney & Bird, 2015). Furthermore, there are certain limitations to obtaining 

DNA from a cadaver. Gonzalez (2012) noted the difficulty in obtaining a usable DNA 
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sample because it degrades through decomposition and samples are easily contaminated 

(Gonzalez, 2012).  

Even though genetic profiling seems effective in the identification of sex and ethnicity 

of sub-adult remains, the concerns mentioned above require the development of 

methodologies focusing on the skeletal profiling of sub-adults. If DNA samples are 

available, skeletal profiling techniques of sub-adult remains can validate the results. 

However, if DNA samples are unavailable, skeletal assessments serve as the only 

biological source of identification. 

Sex and ethnicity can be estimated using the three anthropological methods mentioned 

above. However, forensic anthropologists favour metric and morphological analyses. 

These methods have been tested on dry bone, MSCT scans of living humans, and MSCT 

scans of dry bone. Several studies have compared craniometric measurements obtained 

on dry crania to those obtained on MSCT scans (Franklin et al., 2013a; Robinson & 

Terhune, 2017). The results reported that the observer errors are generally not significant. 

Therefore, craniometric measurements obtained from MSCT scans can be utilised for the 

purpose of identification of sub-adult remains. 

 

2.2.4 Computed tomography (CT) scanning technology 

The introduction of 3D computerised CT has revolutionised the field of craniofacial 

imaging, enabling comprehensive visualisation and precise analysis of the entire 

craniofacial complex. The principle of CT originated from the work of an Austrian 

mathematician named Radon. In 1917, Radon demonstrated that it was possible to 

reconstruct the image of a 3D object using an infinite number of two-dimensional 

projections of that object (Hendee, 1989). This fundamental insight laid the foundation 

for the development of CT as we know it today. The first CT scanning technology was 

developed by Hounsfield and Cormack in the early 1970s (Cormack, 1980; Hounsfield, 
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1980). CT is commonly utilised in medical practice and forensic cases including cancer, 

neurological disorders, heart disease, and autopsy. It has allowed imaging of the complete 

craniofacial skeleton. This reconstruction of CT slices using 3D technology allows the 

investigation to be performed using real-life information of the skull. Furthermore, 

digitally rendered images provide visual data of bone in a format that is easily transported 

and distributed. This can provide worldwide accessibility, especially when it is 

impossible to work hands-on with skeletons due to the fragility of the remains or when 

the skeletons are not present to reconstruct estimation models. Thus, clinicians and 

anthropologists can access CT databases to obtain appropriate and accurate data (Stull et 

al., 2014b). 

 
2.2.5 MSCT validation studies 

The use of MSCT scans has been proven to be an alternative method for traditional 

data collection of the skull, which is done mainly using dry bone (Decker et al., 2011; 

Richard et al., 2014; Ross, 2004; Stull et al., 2014b). Thus, MSCT scan has been used to 

construct identification methods without removing the soft tissue (Stull et al., 2014b). 

This advancement has allowed researchers to conduct investigations beyond in-person 

observation (Decker et al., 2011). 

A recent study has shown that MSCT demonstrates better results as a non-invasive 

method that offers detailed anatomical description of bony structures (Franklin et al., 

2013a). In a study by Lottering et al. (2014), virtual reconstructions of 10 sub-adult crania 

were utilised to assess observer errors using two cranial measurements: maximum cranial 

length and maximum cranial breadth. Low values of technical error of measurement 

(TEM) between 0.01 mm and 0.35 mm for intra-observer error and 0.01 mm and 1.14 

mm for inter-observer error were observed. Additionally, the relative TEMs (rTEM) were 

below 0.4%, confirming the high reliability of MSCT. 

Univ
ers

iti 
Mala

ya



18 

Barbeito-Andrés et al. (2012) utilised 15 3D crania of individuals ranging in age from 

birth to 31 years. Two sets of wireframes traced were compared using 51 landmarks and 

17 semi-landmarks. Low mean errors were found, and standard deviations (SD) of 

landmark coordinates were noted to be similar between observers (Barbeito-Andrés et al., 

2012). Meanwhile, McIntosh et al. (2020) reported low intra- and inter-observer errors 

with TEM values below 0.80 mm and rTEM values below 1.80%. The study was 

conducted on 15 craniometric measurements obtained from 3D crania of 30 individuals 

from birth to 18 months old. Another recent study on 3D cranial reconstructions of 12 

individuals ranging in age from birth to 20 years demonstrated low TEM value (0.05 mm) 

and rTEM percentage (0.073%) for all tested craniometric parameters (Corron et al., 

2022). Thus, all these studies have confirmed that high reliability can be achieved when 

obtaining cranial measurements on 3D virtual renderings of sub-adult’s cranium. 

 
2.2.6 Machine learning (ML) algorithm 

In recent years, there have been numerous studies exploring the application of ML in 

the field of forensic sciences (Bidmos et al., 2023; Imaizumi et al., 2020; Nikita & Nikitas, 

2020; Toneva et al., 2020, 2021; Toy et al., 2022). These studies have presented new 

challenges and shed light on the potential advantages and disadvantages of utilising ML 

methodologies to address well-known forensic problems. One particular aspect where 

ML technology has shown promise is in overcoming the inherent subjective biases 

associated with traditional approaches in forensic anthropology, specifically in sex 

prediction and age estimation (Bidmos et al., 2023; du Jardin et al., 2009; Li et al., 2019; 

Navega et al., 2015b; Santos et al., 2014).  

ML depends on the ability of a computer-controlled robot to perform tasks associated 

with human intelligence. Thus, ML performance mimics human cognitive capabilities 

that are trained by human brainpower (Leonardi et al., 2021). ML is driven by the idea of 
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enabling machines to learn and improve from experience without being explicitly 

programmed (Valdes et al., 2017). This is accomplished through the utilisation of 

algorithms that can automatically analyse and interpret data, uncovering hidden patterns 

and making predictions based on the insights gained. The process begins with training 

data, namely a representative sample that serves as a foundation for the ML model to 

learn and develop mathematical representations of the underlying patterns. These 

representations form the basis for predicting outcomes when presented with new and 

unseen data (Zhou et al., 2017). 

ML encompasses various techniques and algorithms, each suited to different types of 

problems and data. Numerous ML methods, both supervised and unsupervised, have been 

developed for forensic investigations. DT, RF, SVM, and ANN are examples of 

supervised methods for sex and ethnicity estimation studies using bone measurements (du 

Jardin et al., 2009; Klales et al., 2020; Mahfouz et al., 2007; Musilová et al., 2016; Santos 

et al., 2014; Yang et al., 2020). These algorithms employ statistical methods, optimisation 

techniques, and mathematical models to generalise patterns from the training data, 

enabling them to make accurate predictions or classifications when presented with new 

input. In contrast, unsupervised ML does not rely on labeled data for training. Instead, 

these algorithms aim to uncover patterns, relationships, and structures within the data 

without any predefined class labels. Clustering, anomaly detection, dimensionality 

reduction, and association rule mining are examples of unsupervised ML techniques that 

have found applications in the field (Sarker, 2021). One popular clustering algorithm is 

the fuzzy c-means clustering algorithm that has been used for the sex estimation of a skull 

(Gao et al., 2018). In conclusion, ML is a powerful subset of AI that enables machines to 

forecast outcomes by leveraging mathematical tools generated from training data. Its 

application extends across diverse fields to enhance decision-making processes. 
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2.2.7 Analytic programmes 

In recent years, the development of computer programmes has significantly enhanced 

the accuracy and efficiency of sex and ethnicity estimation. Forensic anthropologists now 

have access to sophisticated programmes that utilise advanced algorithms and statistical 

models to generate customised measurements for sex and ethnicity estimation. These 

types of programmes will be discussed further in the next section.  

 
2.2.7.1 FORDISC 

FORDISC, developed by Stephen Ousley and Richard Jantz in 1993, is an interactive 

computer programme for identifying humans by sex and ethnicity using any combination 

of conventional cranial measurements. It classifies skulls of unknown origin into up to 13 

ethnicities and sex-specific reference groups using discriminant or canonical variates 

analyses (Ousley & Jantz, 1993). FORDISC uses Howells’ dataset with additional 

samples from Terry and Hamann-Todd Collection and American Forensic Data. 

Although it has been utilised worldwide, the application of FORDISC is heavily based 

on American data. Thus, it has been recommended for population-specific data to be 

developed for accurate estimations to be obtained (Elliott & Collard, 2009).         

The accuracy of FORDISC application in forensic studies has produced different 

results in various populations. Guyomarc’h and Bruzek (2011) used FORDISC 3.0 to test 

the accuracy of sex and ethnicity estimation using French and Thai samples. Low 

classification accuracy was observed for the sex and ethnicity estimation of the Thai 

samples. Although the French samples had better accuracy rates than the Thai samples, 

neither were significantly accurate. Dudzik and Jantz (2016) found poor classification 

rates of Hispanic individuals as Japanese when using FORDISC. In addition, Hispanics 

were often misclassified as White or Native Americans. The common evolutionary 

histories between Hispanic and Japanese, White, and Native American populations were 
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the reason for the poor classification rates. Another study by Elliott and Collard (2009) 

tested FORDISC classification for ethnicity estimation of unidentified human remains. 

The authors used 200 specimens of known ethnicities, with and without defining the sex. 

Only 1% of the samples were classified correctly. Hence, the FORDISC programme is 

evidently imprecise even though it is automatic and straightforward.  

 

2.2.7.2 CRANID 

Richard Wright developed CRANID in 1992 to determine the ethnicity of unknown 

adult human remains (Wright, 1992). The programme compares cranial measurements to 

a global craniometric database using DFA. It is based on Howell’s 1973 cranial database 

and supplemented with samples from Italy, the United Kingdom, West Asia, Denmark, 

India, Patagonia, and Australia, totalling 3163 crania samples from 39 populations 

(Hughes et al., 2005). Given that the reference crania from Australia and Europe are more 

prominent, CRANID is more valid in those countries. Wright obtained an accuracy of 

68.2% for the LDA classification of the 74 sex-differentiated reference samples in 

CRANID (Wright, 2010). In comparison, low percentages of accuracy were obtained 

(39% for local groups and less than 48% for regional groups) when samples from the 

University of Melbourne’s Berry collection were used (Kallenberger & Pilbrow, 2012). 

In conclusion, if the cranium comes from mixed ethnicities or belongs to modern 

populations, CRANID may not be able to accurately estimate its geographic origin. 

 

2.2.7.3 AncesTrees 

AncesTrees was developed in 2015 by Navega and colleagues in Portugal to determine 

ethnicities using 23 cranial measurements (Navega et al., 2015a). This programme 

classifies human skulls using the ML algorithm technique known as RF. RF is a non-
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linear, non-parametric, ensemble-based classification approach that employs hundreds to 

thousands of classification decision trees as base models. The programme has a database 

of around 3,000 adults from six major ethnic groups: Sub-Saharan African, Australo-

Melanesian, East Asian, European, Native American, and Polynesian. 

In a study by Skalic in 2018, the author reported a relatively low accuracy rate ranging 

from 37% to 40% when predicting the ethnicities of Portuguese and American samples 

that did not align with any of the predefined ethnic groupings in the database (Skalic, 

2018). Similarly, in a validation study on Brazilian samples, it was found that the absence 

of Brazilian samples resulted in relatively low accuracy rates, ranging from 50% to 67.4% 

(Fernandes et al., 2021). However, in another validation study by Sieber and García-

Donas (2023), the programme demonstrated high accuracy by correctly classifying the 

Spanish sample as Southwestern European or European, with accuracy rates ranging 

between 82.61% and 100%. Thus, the AncesTrees programme may not be suitable for 

estimating ethnicities in underrepresented groups in the database. 

 

2.2.7.4 3D-ID  

3D-ID is a programme developed by Dr. Dennis Slice and Ann Ross to estimate sex 

and ethnicity based on skulls of unknown individuals (Slice & Ross, 2009). It has a 

database from worldwide collections containing 2,300 modern sample crania of known 

sex and ethnicities. The programme assigns the unknown skull to the available 

populations in the database by supplying the Mahalanobis squared distance (D²) and 

craniometric measurements with respect to each available reference group (Humphries et 

al., 2015; Slice & Ross, 2009). 3D-ID uses geometric morphometric techniques, 

generalised Procrustes analysis, and discrimination classification methods. Although 3D-

ID relies on a smaller database compared to other programmes, according to King (2015), 

the use of geometric morphometrics provides a valuable alternative to traditional one-
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dimensional measurement methods. Geometric morphometrics can account for curves 

and differences between points, which are limitations of traditional approaches (King, 

2015). Hence, the value of the mathematics used in 3D-ID demonstrates its magnitude 

for forensic identification.  

In a study conducted by Urbanová et al. (2014), the accuracy of 3D-ID in sex and 

ethnicity estimation was tested using Brazilian samples. The results reported that in terms 

of ethnicity estimation, 55% of the Brazilian crania were correctly assigned to their 

respective groups. The highest accuracy of 87% was achieved for the European group. 

However, a significant proportion of admixed individuals were assigned to reference 

groups of European descent (66%), although some were also assigned to groups of 

Mesoamerican and South American origin. For sex estimation, the accuracy ranged from 

60.3% to 77.9% in correctly classifying individuals (Urbanová et al., 2014). These 

findings indicated that while 3D-ID reported some success in ethnicity estimation, there 

were challenges in accurately classifying individuals from mixed backgrounds. 

Additionally, the reliability of sex estimation varied across different programmes utilised 

in this study. 

 

2.2.7.5 (hu)MANid  

The Human Mandible Identification (hu)MANid programme was developed by Berg 

and Kenyhercz in 2017. The programme has a global sample of mandibular morphology 

and metric data that allow the end user to classify the sex and ethnicity of an individual. 

The sample consists of 1750 individuals from 15 main populations. The skeletal 

collections were obtained from various institutions such as the University of Tennessee 

Forensic collection, William W. Bass Donated (WBD) collection, Central Identification 

Laboratory, Pima Country Office of the Medical Examiner (PCOME), Guatemalan 

Foundation of Anthropology (FAFG), and the Hawaii (CILHI) collection.  
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The (hu)MANid programme successfully predicted the sex and ethnicity of an 

unknown adult’s mandible (Berg & Kenyhercz, 2017; Sieber & García-Donas, 2023). In 

a study conducted by Sieber and García-Donas, the programme correctly estimated the 

ethnicity of the Spanish sample as being of white origin with accuracies ranging from 

70.59% to 80%, while for sex estimation, accuracy ranged between 62.75% and 80% 

(Sieber & García-Donas, 2023). However, several studies had reported low accuracy rates 

when the programme was validated in a pediatric population (Farhi et al., 2023; Tomás, 

2020). In a study conducted by Tomás (2020), it was reported that the accuracy rate for 

sex and ethnicity estimation of older children and adolescents was relatively low. 

Specifically, when predicting ethnicity, the study reported adequate accuracy when 

estimating individuals of White ethnicity. However, the accuracy significantly decreased 

when predicting the ethnicity for individuals of Hispanic and Black descent. In addition, 

the programme was inclined to predict White females in the sample (Tomás, 2020). In 

another study by Farhi et al. (2023), the author aimed to predict sex and ethnicity using 

samples from adults (aged 20-45) and adolescents (aged 15-17) from the United States of 

America. The results reported that the programme achieved a sex prediction accuracy of 

75.52% in the adult sample. However, the accuracy for ethnicity estimation was less 

favourable, ranging from 19.3% to 50%. For the adolescent sample, the author reported 

an accuracy of 45% for sex estimation and 47.5% for ethnicity estimation (Farhi et al., 

2023). These findings suggest that the programme may not be as useful in accurately 

identifying the sex and ethnicity of a younger individual.  

In conclusion, numerous populations around the globe cannot be classified using the 

identification programmes mentioned above. These systems lack global demographic 

reference data, resulting in poor accuracy for individuals from geographical locations 

which are not completely represented in the programme databases (Cunha & Ubelaker, 

2020; Kallenberger & Pilbrow, 2012). Malaysian communities with multi-ethnic 
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diversity were not included in the database. Additionally, many programmes focus only 

on the adult population, leaving the sub-adult population underrepresented.  

Furthermore, the skulls utilised to generate the database for these programmes were 

from a relatively distant era, as these museum collections include skeletal remains which 

had accumulated between 50 and 100 years ago. Numerous academics queried the 

usefulness of these old collections in a medicolegal context for determining the biological 

profile of the present population. Scheuer and Black (2000) mentioned two reports (in 

1920 and 1985) that highlighted the observance of a large discrepancy in the recorded 

ages of individuals in the Terry and Hamann-Todd collection. Therefore, misinformation 

regarding age groups and the recorded demographic data can create inaccurate results in 

statistical analyses.  

The utilisation of regularly collected radiographic images permits the development of 

new techniques, the validation of previous research, and the use of larger sample sizes. In 

contrast to previous studies on historical remains, the present study incorporates data from 

modern sub-adults that can be used in forensic analyses. Thus, Malaysia needs its own 

automated programme to be able to classify sex and ethnicity of sub-adult remains.  

 

2.3 Sex estimation 

 Sex estimation is one of the first steps in establishing the biological profile of human 

remains (Spradley & Jantz, 2011). Sex estimation is an essential component because it 

serves as the foundation on which other identifications are developed. Furthermore, it 

helps to narrow the search on missing-person databases by approximately 50% (Spradley 

& Jantz, 2016). 
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2.3.1 Sexual dimorphism 

 Sex estimation is possible due to the existence of sexual dimorphism, which presents 

discernible morphological differences between sexes. A more specific definition of 

sexual dimorphism is the average difference in body size between male and female 

individuals (Charisi et al., 2011). These differences are due to several factors including 

hormonal fluctuation and production involved in puberty, which ultimately results in 

variation between males and females (Scheuer & Black, 2000). 

 
 
2.3.2 Endocrine basis for sexual dimorphism 

 Hormones are crucial in controlling various aspects of the body's growth, 

development, reproduction, and metabolism. The gonads (ovaries in females and testes 

in males) are responsible for synthesising steroid sex hormones, namely estrogen and 

testosterone. Although these hormones are present in both sexes, they may act differently 

due to their varying levels (Lewis, 2018). These hormones are important for the 

development of both female and male reproductive organs, bone growth, and sexual 

identity. 

 Sex characteristics are classified into two phases, primary and secondary traits (Norris 

& Carr, 2020). The primary sex characteristics are the foundational traits that begin to 

develop during prenatal stages. These traits involve the formation of specific organs that 

define the male and female sexes. In females, the primary sex characteristics include the 

development of ovaries, which are responsible for producing eggs and releasing 

hormones such as estrogen. In males, the primary sex characteristics involve the 

development of testes, which produce sperm and secrete hormones, particularly 

testosterone. These primary sex characteristics form the fundamental components of the 

reproductive system and are crucial for fertility and sexual development.  
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 There are notable differences in the hormonal patterns between males and females 

during early development. Females experience a longer duration of high estrogen 

production, which spans approximately 12 months. Estrogen plays a pivotal role in the 

development of female sexual characteristics, such as breast development, regulation of 

the menstrual cycle, and the maturation of reproductive organs. On the other hand, males 

have a shorter period of high testosterone production, lasting for around six months. 

Testosterone is primarily responsible for the development of male sexual characteristics, 

including the growth of facial hair, the deepening of the voice, and the maturation of the 

reproductive system. Following the initial hormonal surge during prenatal development, 

testosterone levels remain relatively low until around the age of six to eight years. It is 

during this time that testosterone levels begin to rise again, signaling the onset of puberty 

and the development of secondary sexual characteristics in males (Norris & Carr, 2020). 

 Puberty is defined by a skeletal growth spurt, the development of gonads, secondary 

sex characteristics, and changes in body composition (Garnett et al., 2004). Differences 

in sex hormone levels result in females achieving puberty earlier than males by about one 

to two years (Lewis & Flavel, 2006). However, males stay in puberty longer, namely for 

around five years compared to three and half years for females (Faulkner & Tanner, 

1986). As a result, the development of males is slow but consistent until the start of 

puberty, and then it accelerates. Secondary sexual characteristics in females and males 

undergo distinct changes during puberty. Estrogen influences the development of 

secondary sexual characteristics in females, including breast growth, changes in body fat 

distribution, and the onset of the menstrual cycle. However, its bone turnover rate 

decreases, resulting in less growth in stature (Lieberman, 1982). Testosterone drives the 

development of secondary sexual characteristics in males, such as the growth of facial 

and body hair, the deepening of the voice, and increased muscle mass. Increased 

testosterone levels promote bone apposition and mass accumulation. Hence, increased 
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size and muscle attachments in males result in a more prominent shape of glabella, 

supraorbital ridges, frontal sinus, and mastoid processes (Sprowl, 2013).  

Understanding the development of sexual dimorphism can provide insights into the 

regulatory processes and the mechanisms determining it. One potential mechanism is that 

sexual dimorphism is a product of the differential actions of sex hormones on growth 

regulation between the sexes. Hence, these differences are usually assumed to emerge at 

puberty when differences in hormone levels are most pronounced. Nevertheless, several 

studies suggest that sexual dimorphism is evident in some skeletal components from an 

early age (Bulygina et al., 2006; Matthews et al., 2016; Sprowl, 2013). However, it is 

often not believed to reach levels sufficient for accurate sex estimation until after puberty 

(Cunningham et al., 2016). While there are challenges in determining the sex of sub-adult 

remains, several articles have investigated sexual dimorphism in skull features at different 

ages, both before and after puberty (Hsiao et al., 2010; Noble et al., 2019; O’Donnell et 

al., 2017; Sprowl, 2013; Teodoru-Raghina et al., 2017). These articles are further 

discussed in the next section. 

 
 

2.3.3 Pre-pubertal sexual dimorphism  

 Sexual dimorphism in craniofacial shape has been reported to be present as early as 

when an individual is one year old (Baughan & Demirjian, 1978; Bulygina et al., 2006; 

Matthews et al., 2016). At birth, the growth rate is slightly slower in females; then, it 

equalises with males at seven months of age. The growth rate becomes faster in females 

until the age of four years. From this point, males and females grow at a similar rate until 

the stage of adolescent growth spurt (Rogol et al., 2000). By six to eight years, females 

are two to three months more advanced, and by adolescence, they can be as much as two 

years more advanced (Tanner, 1990). The slower growth rate in females at birth results 

in the greater neurocranial size of male infants and foetuses. Additionally, males have 
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larger head circumference, head size, and greater body lengths compared to females 

(Bulygina et al., 2006; Joffe et al., 2005).  

Several measurements in the craniofacial structure (neurocranial length and width, 

total facial height, facial depth and width, width of the nasal base, outer canthal width and 

palpebral fissure length, and philtrum length) were observed to be greater in males aged 

three to six years compared to females of the same age (Yusof, 2007). Similarly, males’ 

cranial vault measurements were found to be significantly higher during infancy (Yusof, 

2007). This may be the result of testosterone, which is higher in males during the first 

few months of the postnatal period and stabilises until puberty (Lieberman, 1982). 

Matthews et al. (2016) reported that measurements such as maximum cranial width and 

length, and cranial base width, showed evidence of sexual dimorphism as early as three 

years. In addition, a study conducted by Sprowl (2013) demonstrated that sexual 

dimorphism exists in sub-adults as early as six years. Furthermore, craniofacial sex 

differences were observed to increase with age, and significantly increase after puberty 

(Gaži-Čoklica et al., 1997; Kesterke et al., 2016; Sforza et al., 2010, 2011). Therefore, 

sexual dimorphism is present as early as the prenatal stage, reflecting brain growth until 

puberty (Gonzalez, 2012).  

 
 

2.3.4 Post-pubertal sexual dimorphism  

 Several studies have reported that sexual dimorphism appears after puberty (Hsiao et 

al., 2010; Noble et al., 2019; Ramamoorthy et al., 2016). In Taiwanese children, sexual 

dimorphism becomes evident after puberty at between 12 and 17 years (Hsiao et al., 

2010). Similarly, sexual dimorphism was observed after nine years in the Australian 

population (Noble et al., 2019). Furthermore, the mean levels of a few pre-pubertal sexual 

dimorphism parameters (maximum frontal breadth, anterior and posterior intraoccipital 

condylar distances, foramen magnum breadth) were found to be insignificant as they 
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attain adult size after puberty (Humphrey, 1998). Additionally, due to differences in 

growth rate, sexual differences are not apparent until after the growth spurt occurring 

between six and eight years (Lejarraga, 2002). 

 
 
2.3.5 Population-specific in sex estimation 

 Sexual dimorphism in the skull has been extensively studied in different populations 

and has been found to vary across populations (Franklin et al., 2013b; Gonzalez, 2012; 

Noble et al., 2019; O’Donnell et al., 2017; Ramamoorthy et al., 2016; Teodoru-Raghina 

et al., 2017). As a result, no standards have been set for global populations (Dillon, 2014). 

This could be due to sex estimation being population-specific. Therefore, standards 

developed in one population cannot be applied to another. 

 Genetics, nutrition, and other environmental factors contribute to the expression of 

sexual dimorphism (Charisi et al., 2011; Kimmerle et al., 2008). In the context of 

Malaysia’s population, individuals of various ethnicities exist. Therefore, it is critical to 

take ethnicity into account when estimating sex. Sex estimation takes on a new dimension 

due to the country’s various ethnic groupings: Malays, Chinese, and Indians in West 

Malaysia and other smaller ethnic groups in East Malaysia. This necessitates determining 

whether a universal norm applies to the population in Malaysia. 

 Worldwide variance highlights the critical need for local databases in forensic 

anthropology. Reduced accuracy has been observed when standards built for a specific 

population were applied to different populations (Kim, 2009; Toneva et al., 2020; Yang 

et al., 2020). Furthermore, inaccurate sex estimation can occur due to inter-population 

differences in sexual dimorphism expression. Some communities have robust traits of 

both sexes, while others have gracile traits of both sexes (Green & Curnoe, 2009). 

Therefore, this demonstrates the importance of creating specific standards for certain 

populations. 
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2.3.6 Binary logistic regression (BLR) vs. discriminant function analysis (DFA)  

 There are two main methods to develop sex estimation models, which are DFA and 

BLR. Both have been shown to be suitable for sex estimation using the skeleton (Ahmed 

et al., 2021; Ekizoglu et al., 2017; Macaluso Jr., 2010; Singh & Pathak, 2013). Previous 

research on sex estimation provides insights into the best types of analysis based on the 

constraints of the research project at hand. It is important to look back on this research 

and their methods when conducting new studies to make the best decision regarding 

which method to use for a project that utilises metric data for sex estimation.  

When utilising DFA, each parameter must fulfil the assumption of normality and equal 

variance-covariance matrices. However, BLR is not restricted to a normal distribution of 

data nor does it assume equality of the variance-covariance matrices. Also, BLR is less 

sensitive to high correlations and outliers among the parameters, which is particularly 

important when conducting craniometric measurements. Hence, in cases where the 

dataset requires a less restrictive statistical analysis, BLR is preferred over DFA.  

Several studies have been conducted to compare DFA and BLR in developing a sex 

estimation method (Ekizoglu et al., 2017; Macaluso Jr., 2010; Singh & Pathak, 2013). 

Macaluso Jr. (2010) developed metric sex estimation equations using sternal 

measurements for the South African population. The BLR models yielded slightly better 

accuracy compared to DFA in overall classification rates, with an increase of 

approximately 1.5% for most of the derived equations. However, these slightly enhanced 

classification rates were related to much higher sex bias rates, ranging between 4.7% and 

24.3% (Macaluso Jr., 2010).  

Singh and Pathak (2013) aimed to estimate sex in the Indian population using sternum 

measurements by employing two statistical methods (BLR and DFA). The study found 

that BLR produced better results compared to DFA in terms of overall accuracy rates. 

However, higher sex bias rates were observed in BLR compared to DFA. Therefore, the 
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DFA method has been reported to be a more reliable sex-discriminating method as it 

enables the development of sex estimation models that have both high classification 

accuracies and low sex bias rates (Singh & Pathak, 2013). 

Another study proved that BLR is a viable option for sex estimation (Ekizoglu et al., 

2017). Ekizoglu et al. (2017) developed a sex estimation method for the Turkish 

population based on MSCT scans of the calcaneus bone. The study utilised both statistical 

methods, namely DFA and BLR. When comparing the two statistical methods, BLR 

models yielded higher accuracies and the lowest sex bias in overall cases for the original 

sample and in three of the five equations for the validation sample (Ekizoglu et al., 2017). 

Based on the results of previous studies, it is recommended to use both statistical methods 

to develop sex estimation models.  

 
 
2.3.7 Methods for sex estimation using sub-adult crania 

 Methods for sex estimation using sub-adult crania have been developed since the late 

19th century (Bulygina et al., 2006; Hsiao et al., 2010; Matthews et al., 2016; Noble et 

al., 2019; Sprowl, 2013). Early studies had reported sex differences in the crania of young 

children (Bulygina et al., 2006; Matthews et al., 2016; Sprowl, 2013), while others 

emphasised that estimating sex for sub-adults is impossible until after puberty (Hsiao et 

al., 2010; Noble et al., 2019). This section summarises prior studies on sex estimation 

using sub-adult crania. Data were gathered using many approaches, including the 

measurement of dry bone specimens, two-dimensional radiography data, and virtual 

reconstruction measures. Despite the difficulties associated with attributing sex to sub-

adult remains, several publications have examined sexual dimorphism in certain skeletal 

characteristics at various ages (Amin & Othman, 2014; Divakar et al., 2016; Gonzalez, 

2012; Hsiao et al., 2010; Noble et al., 2019; O’Donnell et al., 2017; Sprowl, 2013; 
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Teodoru-Raghina et al., 2017; Veroni et al., 2010). A summary of previous studies in 

estimating the sex of sub-adults is tabulated in Table 2.1. 

 

Table 2.1: Previous studies of sex estimation in sub-adults 

M=male, F=female, T=total; CT=computed tomography, DFA=discriminant function analysis. 
 

2.3.7.1 Veroni et al. (2010) 

 Veroni et al. (2010) examined Holland’s (1986) results using sub-adult skeletal 

samples of determined sex and age from Portugal’s Bocage Museum. Individuals of 

European ethnicity born between 1805 and 1972 had been selected for the museum from 

Lisbon cemeteries. A total of 17 females and 19 males were included in the study, aged 

between eight and 18 years. The length and breadth of the foramen magnum, length and 

breadth of the occipital condyle, and breadth of the occipital bicondylar were determined. 

Males were found to have greater breadth and length of the foramen magnum, whereas 

females had the greatest dimorphism in the breadth of the left occipital condyle. The 

accuracy rate of sex estimation obtained from this study was 75.8%. However, the poor 

accuracy rate was due to demographic variability rather than age (Veroni et al., 2010).  

Authors Population M F T     Age 
   (years) 

Method Analysis Accuracy 
(%) 

Amin and 
Othman 
(2014) 

Jordanian 47 99 146 13-27 Cephalo- 
      metric 

DFA 87 

Divakar et al. 
(2016) 

Indian 380 236 616 6.5-18 Cephalo- 
     metric 

DFA 100 

Gonzalez 
(2012) 

European 250 248 498 5-16 Cephalo- 
    metric 

DFA 71-90 

Hsiao et al. 
(2010) 

Taiwanese  50 50 100 12-18 Cephalo- 
     metric 

DFA 92-95 

Noble et al. 
(2019)  

Australian  83 69 152 0-19 CT DFA 50-90 

O’Donnell et 
al. (2017) 

New Mexican 688 930 1618 <18 Cephalo-
metric 

DFA 57.8-100 

Sprowl 
(2013) 

Latino 118 185 303 6-18 Cephalo-
metric 

DFA 71.7-100 

Teodoru-
Raghina et al. 

(2017) 

Romanian  334 266 600 5-18  CT DFA 68-84 

Veroni et al. 
(2010) 

 

Portuguese 19 17 36 8-18 Dry skull DFA 75.8 
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2.3.7.2 Hsiao et al. (2010) 

 Hsiao et al. (2010) applied the same procedures used on adults to study 100 Taiwanese 

children and adolescents aged 12 to 17 years. Lateral cephalograms at Kaohsiung Medical 

University Orthodontic Department were obtained between January 2005 and June 2009. 

Throughout the radiograph, 22 cephalometric measurements and a cervical vertebral 

maturation stage were measured and analysed. The mean differences were statistically 

significant (p<0.05) for all measurements, demonstrating the presence of sexual 

dimorphism in the skull. Males had greater values than females for all linear 

measurements, whereas females had greater values than males for angular measurements. 

High accuracy rates of 92%-95% were achieved when four to seven parameters [Glabella-

metopion to basion-nasion (GM–BaN), basi-bregmatic height (Ba-Br), mastoid height 

from cranial base (MaHt), foramen magnum length (Ba–O), glabella projection index 

(GPI), inion-opisthocranion to basion-nasion (IOP–BaN), and frontal sinus width on inner 

bregma to nasion line (FSWd)] were selected in a stepwise discriminant function. 

However, when two (GM– BaN and Ba–Br) or three parameters (GM–BaN, Ba–Br, and 

MaHt) were examined, the accuracy rates were between 84% and 90%, respectively. The 

glabella-metopion to basion-nasion alone estimated sex with 73% accuracy. Cross-

validation resulted in nearly identical accuracy with a decrease from 1% to 4%. Although 

this study was quite effective in finding sexual dimorphism, the average age of the 

participants was determined after the commencement of puberty, thus it did not represent 

the pre-pubertal age range (Hsiao et al., 2010).  

 

2.3.7.3 Gonzalez (2012) 

 Gonzalez (2012) retested Giles and Elliot’s 1963 methodology on sub-adults using 

lateral cephalometric radiographs at the University of Michigan School of Dentistry. 

Sexual dimorphism was assessed in 83 hand-traced lateral cephalograms of European 
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sub-adult individuals aged five to 16 years. Eight landmarks were chosen: basion, sella, 

bregma, nasion, glabella, posterior nasal spine, prosthion, and opisthocranion. Canonical 

discriminant analysis was used to generate linear combinations of the parameters based 

on 20 measurements from these landmarks. Approximately three of the 20 functions 

generated were found to be statistically significant, accounting for 87.3% of the overall 

variance. The first canonical discriminant function, representing the facial growth 

changes, achieved 71.9% of the overall variance. The second canonical discriminant 

function, which accounts for the developmental trajectories between the sexes, achieved 

10.6% of the overall variance. The third canonical discriminant function represents the 

presence of sex differences in the neurocranium, accounting for 4.8% of the overall 

variation. Apparent differences were noted between the sexes, with males having greater 

third canonical discriminant function dimensions than females. This resulted in males 

having longer and taller crania. Sexual dimorphism may occur at the age of six, prior to 

the completion of craniofacial development. These traits continue to develop as a result 

of craniofacial characteristics that are unique to each sex. The overall accuracy rate for 

sex estimation was 87.3%, implying that sexual dimorphism after puberty enhances the 

accuracy rate (Gonzalez, 2012). 

 

2.3.7.4 Sprowl (2013) 

 The study analysed 303 lateral cephalograms of pre- and post-adolescent Latinos aged 

six to 18 years, divided into several age groups. Radiographs were obtained from the 

digital database at the University of Nevada, Las Vegas. A linear discriminant function 

and canonical correlation analyses were developed for the total samples and each age 

group. Sex estimation was achieved with a 74.6% accuracy rate, with 89% of females and 

51.7% of males correctly classified using the stepwise function. For all the samples, all 

the parameters, i.e., distance between glabella and supraglabellare to nasion line (GSgN), 
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distance between mastoidale and SN line (MaSN), glabella projection index (GPI), and 

ratio of total chin thickness to upper lip thickness (ULTc) contributed significantly 

(p<0.05) to sex estimation. The analyses revealed an accuracy of 100% for the age group 

of 6.5-8.5 years, 83.3% for the age group of 8.6-10.5 years, 71.7% for the age group of 

10.6-12.5 years, 78.3% for the age group of 12.6-14.5 years, and 94.7% for the age group 

of 14.6-17.9 years. This study indicated that sexual dimorphism exists in sub-adults as 

early as six years (Sprowl, 2013). 

 
 
2.3.7.5 Amin and Othman (2014) 

 This study randomly selected 146 digital lateral cephalometric radiographs of 47 males 

and 99 females aged 13 to 27 years. The DFA was performed, and an 85.6% cross-

validated accuracy was obtained. The accuracy was increased to 87.0% when the stepwise 

technique was used. Males were found to have greater mean values of 3% to 41% than 

females for all metrics, except for frontal sinus width and mandibular body length. 

Mastoid height was the most accurate single parameter for sex estimation, with an 

accuracy rate of 82.2%. The stepwise procedure increased the classification accuracy to 

87.7% by utilising four measurements: cranial base length, mastoid height, mastoid 

breadth, and glabella to supraglabellare-nasion distance (Amin & Othman, 2014). 

 
 
2.3.7.6 Divakar et al. (2016) 

 This study in India utilised lateral cephalometric radiography and DFA to determine 

sex. A total of 616 lateral cephalograms of 380 males and 236 girls aged six years and six 

months to 18 years were included. Males had substantially greater mean angular and 

linear cephalometric measures than females (p<0.05) based on 24 cephalometric 

measurements. Additionally, significant differences (p<0.05) in all parameters were 

identified according to age group. The ratio of total chin thickness to upper lip thickness 
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(ULTc) parameter successfully predicted sex among the 24 parameters. DFA revealed 

100% sex discrimination, with 100% females and 100% males accurately estimated. This 

study reported the existence of sexual dimorphism in the cranium as early as six years 

and six months of age, owing to the indigenous groups' distinct genetic and environmental 

composition. (Divakar et al., 2016). 

 
 
2.3.7.7 O’Donnell et al. (2017) 

 This study estimated sex from samples of 688 males and 930 females in individuals 

ranging in age between six and 18 years. The samples were collected from various 

communities in New Mexico. When DFA was applied to all the samples, only 58.5% of 

males and 57.8% of females were accurately estimated. However, when the samples were 

divided by ethnicity, high accuracy rates were obtained in the African, Asian, and Native 

American groups. African American males achieved a higher rate of classification 

(85.71%) than females (66.7%). When the groups were divided by age, classification 

accuracies ranged from 50% to 80% were reported. The highest accuracy of 73% was 

obtained in the age range between 15 and 18 years. DFA demonstrated the greatest 

discriminating strength when age classes and ethnic groups were combined, with higher 

accuracy obtained in the age range between 15 and 18 years and in the Native Americans, 

Hispanics, and Asian Americans groups. This study indicated that dividing the samples 

by age and ethnicity enhances accuracy rates for older groups, and for Native Americans, 

and Asian Americans. Meanwhile, when age and ethnic groups were unknown, 

cephalometric measurements were ineffective in determining the sex of unidentified 

individuals (O’Donnell et al., 2017). 

 

Univ
ers

iti 
Mala

ya



38 

2.3.7.8 Teodoru-Raghina et al. (2017) 

 This study utilised 13 anthropometric metrics of known sub-adults (266 females and 

334 males) ranging from five to 18 years. Population-specific DFA was conducted for 

sex estimation in Romanian sub-adults. Sex accuracies ranged from around 75% for ages 

eight-11 years to 84% for ages 16-18 years. The accuracy increased to 84% for the 16-18 

age range based on two parameters (cranial breadth and cranial base length). However, 

the development pattern did not evolve linearly, as they achieved a significantly lower 

classification accuracy (between 67% and 70%) in the group with sub-adults ranging from 

ages 12 to 15 years. This could be due to the differences in the onset of puberty between 

males and females, which resulted in varying sexual dimorphism within that period. The 

cranial vault exhibited the highest degree of dimorphism. This is because the most 

important parameters in each discriminant function are located inside the cranial vault. 

The cranial width was shown to be the most dimorphic parameter exhibited in sub-adults 

between the ages of 12 and 18 years (Teodoru-Raghina et al., 2017). 

 
 
2.3.7.9 Noble et al. (2019) 

 The study examined 152 sub-adult crania aged one to 19 years from Western Australia. 

A total of 52 3D landmarks were analysed using Procrustean geometric morphometrics. 

This study demonstrated that sexual dimorphism and age differences were apparent 

through geometric morphometric analysis of form, size, and shape. However, the analysis 

of size yielded better accuracy than shape. There was a substantial overlap in size analysis 

between the sexes, particularly in individuals below nine years. Resultantly, a low level 

of cranial sexual dimorphism before the commencement of puberty was reported. The 

accuracy of sex estimation increases with age, with average hit rates (HR) ranging from 

50% to more than 90%. HRs increasing from less than 10% in young children to almost 

70% in young adults indicated a high degree of confidence (posterior probability>0.8). 
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The average HRs were greater than the 95th percentile of random chance classification in 

sub-adults (12–17 years), showing that sex may be predicted significantly in that age 

group. While size and shape appear to be insignificant in predicting sex in the sub-adult 

human skull, basic size measurements and classic morphometric features may produce 

more accurate findings. Therefore, this study indicated that sexual dimorphism exists in 

the post-puberty cranial shape using a geometric morphometric analysis (Noble et al., 

2019). 

 
 
2.4 Ethnicity estimation 

Ethnicity is known as the most challenging and highly debated biological profile. This 

is due to disagreements in forensic anthropology regarding the use of the term race or 

ethnicity (Klales & Kenyhercz, 2015). However, when the term ethnicity is used, the 

forensic anthropologist describes the ethnic group to which the individual would have 

belonged (Hefner, 2009). This is estimated by observing metric and nonmetric traits on 

the skeletal remains. The literature on ethnicity estimation in sub-adults is limited 

compared to adults. Assessing ethnicity in sub-adults is difficult because most ethnic-

related differences develop fully only in adulthood. However, many scholars have worked 

in this direction (Christensen & Passalacqua, 2018) based on the assumption that cranial 

variety is present regardless of age (Byers, 2016). This section summarises previous 

studies on ethnicity estimation using measurements of dry bone, two-dimensional 

radiography data, and virtual reconstruction measures.  

 
 

2.4.1 Human variation  

Human variation is present in most populations due to factors such as culture, 

environment, migration, population divisions, and geography (Hunley et al., 2009). These 

factors intervene with the gene flow and result in more divided populations. Furthermore, 
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genetic drift in a population occurs as genes of a smaller segment become excessively 

representative of the parent population. There is a complex interaction which takes place 

between phenotype, genotype, and environment. This interaction will never be fully 

divided. An individual is exposed to the environment (nutrition, exposure to pathogens, 

education, climate, and physical and psychosocial stress), which begins in utero and 

continues throughout life. The environment essentially influences the selection of traits 

that will be beneficial or harmful, and adaptation occurs as the environment changes 

(Stojanowski & Schillaci, 2006). 

 

2.4.2 Malaysian population  

Malaysia is an incredibly diverse country that consists of three major ethnic groups, 

namely Malays and indigenous populations (70.1%), Chinese (22.6%), and Indians 

(6.6%). The remaining 0.7% of the population consists of individuals classified as 

Eurasians and minor ethnic groups residing in East Malaysia (Current population 

estimates, Malaysia, 2024). Each ethnic group has its own population history within the 

country. The Malays and indigenous populations (also known as Orang Asli) are grouped 

into three main tribal groups: Negrito, Senoi, and Proto-Malay (Aghakhanian et al., 2015). 

The Negritos are the smallest group and the first inhabitants in Peninsular Malaysia about 

25,000 years ago (Aghakhanian et al., 2015; Hill et al., 2006). The Senoi are the largest 

group that migrated from the mainland of Southeast Asia around 8,000 years ago (Hill et 

al., 2006). Meanwhile, Proto-Malays or aboriginal Malays have a more diverse origin 

since prehistoric times, dating back to as early as the 1800s. Thereafter, the historic influx 

and multiples admixture with Indian, Siamese, Sumatran, Javanese, Arab, Thai, and 

Chinese traders (Comas et al., 1998) introduced Deutero-Malays. Deutero-Malays are 

descendants of Proto-Malays that constitute the majority of people residing in Peninsular 

Malaysia (Simon, 2012). Nonetheless, according to Fix, the original Deutero-Malays 
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migrated from Southern China over 1,500 years ago and their intermarriages with the 

Proto-Malays and traders have resulted in the diverse Deutero-Malay, namely the 

contemporary Malay population today (Fix, 1995). 

Multiple historical events have led to further genetic variations within Peninsular 

Malaysia. In the early centuries, Peninsular Malaysia was home to various distinct 

dynasties that brought in the Indian and Buddhist cultures. Between the 6th and 7th 

century, the Straits of Malacca became a significant maritime commerce route connecting 

the Indian Ocean to the South China Sea and the Pacific Ocean (Baker, 2020). This 

contributed to the economic development of the region as a major entrepôt and business 

centre for international traders from China, India, and Southeast Asia (Belle, 2014). 

Although intermarriages had occurred between the locals and the traders, they did not 

create significant migration. This period was followed by European colonisation by the 

Portuguese, Dutch, and British starting from the early 16th century (Saw, 2007). In the 

19th century, during the reign of the British Empire, there was a substantial influx of 

Chinese from Southern China and Indians from South Indian who came to work in tin 

mines and rubber plantation industries (Tan, 2001). Consequently, the inflow of genes 

between Malays and Indians, Arabs, and Chinese traders in addition to the European 

colonists during the last 500-600 years is likely to have had a substantial impact on their 

gene pools (Deng et al., 2015; Hatin et al., 2011). Hence, the modern Malays today 

showed some admixture of genetic components from Arabia, India, China, Java, Sumatra, 

and Thailand populations (Norhalifah et al., 2016). The multi-ethnicity history of 

Malaysia is summarised in Figure 2.1. 
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Figure 2.1: The multi-ethnicity history of Malaysia Univ
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2.4.3 Ethnic differences in the skull 

The presence of ethnic differences in sub-adults is noted from an early age. One of the 

earliest examples of research relating to possible ethnic differences in sub-adults was the 

research conducted by Steyn and Henneberg in 1997. The skull of Black South Africans 

aged above five years is narrower and longer than the Europeans (Steyn & Henneberg, 

1997). Similarly, interpopulation differences in the shape and size of the skull were found 

in children above five years in the South American population (Gonzalez et al., 2010). 

The biasterionic breadths of Asian and African crania are smaller compared to that of the 

Europeans. However, Asian and European crania exhibit similar nuchal and occipital 

angles, plane proportions, and lower inion positions than Africans (Zhang & Schepartz, 

2021). 

Variation in the growth of nasal floor shape was noted in Euro-Americans, African 

Americans, Africans, Europeans, Australians, and Asians. Variation in the nasal floor 

depression appears at around the age of three (Nicholas & Franciscus, 2014). However, 

variations of the nasal spine, nasal border, and palate shape were noted from the fetal 

period in black and white perinates (Limson, 1932; Weinberg et al., 2005). This is because 

variability in nasal bone contour is present in the prenatal period (Limson, 1932; Wood, 

2015). In conclusion, variation in craniofacial traits is present at birth and becomes more 

apparent during postnatal development (Vioarsdóttir et al., 2002; Vioarsdóttir & Cobb, 

2004). 

 

2.4.4 Methods of ethnicity estimation in adults 

2.4.4.1 Stull et al. (2014a) 

This study consists of 377 crania of South African black, white, and coloured 

individuals. Data were analysed by generalised Procrustes analysis (PC) and Procrustes 

coordinates (ProCoords), a system that produces size-free shape parameters. 

Univ
ers

iti 
Mala

ya



44 

Craniometric measurements, ProCoords, and ProCoords PCs were subjected to LDA. 

LDA of the ProCoords PCs obtained an accuracy of 79% using 18 stepwise selected 

parameters. Meanwhile, LDA of craniometric analysis (D² matrix) demonstrated similar 

sizes between South African coloured and South African whites. However, both 

geometric morphometric analyses demonstrated more similarity in shape between the 

coloured and the blacks. Despite complex genetic admixture found to be present in the 

South African populations, high cross-validated accuracy (89%) was obtained from LDA 

using craniometrics and geometric morphometrics. Geometric morphometrics 

outperformed traditional craniometrics and principal component analysis (PCA) of shape 

variables in estimating the ethnic group of unknown individuals in South Africa (Stull et 

al., 2014a). 

 
2.4.4.2 Kranioti et al. (2018) 

This study analysed 297 crania of Greek and Cyprus origin and 380 CT scans of 

Turkish individuals. A total of 12 craniometric measurements were taken in both dry and 

virtual skulls. Data were subjected to PCA and DFA. Classification accuracy was 

obtained between 74.1% and 97.9%, with the highest accuracy obtained by both sexes in 

the Turks sample. In the PCA and DFA analyses, Cretans and Cypriots clustered more 

closely than the Turks sample. Thus, combining the Cretan and Cypriot samples resulted 

in 96%–98% increased accuracy (Kranioti et al., 2018). The findings of this study agree 

with genetic data suggesting a higher genetic similarity between Cypriots and Greeks 

compared to between Cypriots and Turks, as well as between Greeks and Turks 

(Hellenthal et al., 2014). 
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2.4.4.3 Herrera and Tallman (2019) 

This study analysed 190 cranial CT scans of the Dominican Republic and Haiti 

ethnicities. A total of 28 craniometric measurements were taken on the skull. 

Classification accuracy of between 53.6% and 71.4% for both sexes was obtained. 

Additionally, when 12 canonical DFA were developed, cross-validated accuracies 

increased to 72.0%–77.8% for both sexes. Males achieved higher classification rates 

(71.8%–87.5%) than females (73.7%–78.6%). Haitians were more correctly classified 

compared to the Dominicans. The percentage of accuracy reflects the genetic 

heterogeneity between Haitians and Dominicans. Hence, in certain forensic contexts, 

Latin Americans should not be grouped under the broad umbrella term “Hispanic” 

(Herrera & Tallman, 2019). 

 
 

2.4.4.4 Spradley (2021) 

This study utilised craniometric measurements to estimate the ethnicity of migrant 

remains at the United States/Mexico border. This research consisted of 690 positively 

identified and unidentified migrants from Arizona and Texas. The craniometric data were 

compared to skeletal data representing Guatemalan and Mexican Mayans by utilising 

biological distances and DFA. The biological distances between the groups demonstrated 

that Guatemalan and Mexican migrants were close to each other but varied from 

Guatemalan Mayans and Mexican Mayans. Guatemalan Mayans obtained the highest 

overall accuracy rate at 90%, followed by Mexican Mayans at 77%, Mexican migrants at 

57%, and Guatemalan migrants with the lowest accuracy rate of 40%. Therefore, it is 

possible to estimate an unknown individual from Mexican Mayans and Guatemalan 

Mayans groups. However, estimating the origin between Mexican migrants and 

Guatemalan migrants is currently impossible. This is because the migrants share a 
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population history that incorporates varied levels of European and African admixture, 

creating similar population structures that cross geopolitical borders (Spradley, 2021). 

 
2.4.4.5 Kongkasuriyachai et al. (2022) 

This study aimed to estimate ethnicity in Thai and Japanese individuals using 

craniometric measurements. A total of 440 modern Thai and modern Japanese skulls were 

measured to develop discriminating formulae. Stepwise DFA was utilised to develop four 

formulae consisting of a complete skull, cranium, male skull, and female skull. The 

accuracy obtained ranged between 84.3% and 92.0% with the highest accuracy obtained 

when using a complete skull. The difference in skull characteristics between Thai and 

Japanese reflected a complex Asian population with regional differences between the 

northern and southern continents. This is demonstrated by the outcome of this study 

where Japanese or northern skulls were found to be longer and narrower than Thai or 

southern skulls. Hence, geographical differences do not only influence genetics but also 

affect the adaptation process due to different climates (Kongkasuriyachai et al., 2022). 

 
 

2.4.5 Methods of ethnicity estimation in sub-adults 

2.4.5.1 Vioarsdóttir et al. (2002)  

Vioarsdóttir et al. (2002) conducted research to examine variations in the facial 

skeleton of 334 sub-adult individuals aged one to 19. The samples were from 10 discrete 

populations: Polynesians, Arikara Plains, Australians, Papua New Guineans, Alaskan 

Inupiaq Eskimo, Egyptian, Aleutians, African Americans, West African Ashanti, and 

French/British Caucasians. Facial landmarks and geometric morphometric methods were 

utilised. On average, 71% were correctly assigned using DFA, with two populations 

(Caucasians and Polynesians) being the most significant in the analysis. This 

demonstrated the presence of facial shape differences between the populations regardless 
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of age. In conclusion, variation in facial shape is present at birth and continues to be more 

pronounced throughout growth and development (Vioarsdóttir et al., 2002).  

 
2.4.5.2 Buck and Vidarsdottir (2004)  

Buck and Vidarsdottir (2004) used geometric morphometric methods to examine 

ethnic differences in sub-adults’ mandibles. The sample comprised 174 individuals from 

the ethnic groups African Americans, Native Americans, Caucasians, Inuit, and Pacific 

Islanders. Statistically significant differences were obtained with an accuracy of 70.1% 

of individuals correctly assigned to the group. Additionally, they found that comparisons 

between groups provided greater accuracy in the correct ethnic group assignment when 

the number of groups being compared was reduced to three populations (African 

American, Native American, and Caucasian). The African American sample had the 

lowest accuracy rate of correctly assigned individuals (84.62%) while the Caucasian 

sample had the highest accuracy (90.48%). However, cross-validation accuracy decreased 

to 56% and 79% when partial mandibular remains were used, with an average of 73% of 

correctly identified individuals for the mandibular ramus and 67.2% for the mandibular 

corpus (Table 2.2). Although accuracy decreased when using a partial mandible, the 

accuracy rate remains high. This suggests that ethnicity can be determined using either 

complete or partial mandible (Buck & Vidarsdottir, 2004). 

 
Table 2.2: Cross-validation accuracy (%) of the mandibular ramus and 
mandibular corpus between five populations and three populations  

 

  African 
American 

Native 
American 

Caucasian Inuit Pacific 
Islander 

Complete 
mandible 

Five 
populations 

69.23 73.17 76.20 63.64 68.48 

Three 
populations 

84.62 87.80 90.48 - - 

Partial 
mandible 

Ramus  79.49 68.29 71.43 - - 
Corpus  56.41 65.00  79.07 - - 
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2.4.5.3 Weinberg et al. (2005) 

Weinberg et al. (2005) analysed 13 nonmetric craniofacial traits in white and black 

Americans with a mean age of nine months. White infants were found to exhibit narrow 

occipital squamae, pronounced vomers and anterior nasal spines, “deep” sub-nasal 

margins, and semi-circular temporal squamae compared to black infants. Based on these 

five traits, an accuracy of 79.1% was obtained by using stepwise logistic regression. 

However, the accuracy decreased to 67.5% when an independent sample was utilised for 

cross-validation. The low cross-validation accuracy could be due to black perinates 

obtaining only 53.8% compared to white perinates with 100% accuracy, resulting from 

an unequal distribution of black perinates in the validation sample. In addition, the 

methods used were biased toward identifying white perinates. Unfortunately, only a 

limited number of nonmetric traits can be utilised due to disarticulated skull bones. 

Moreover, some bones were too small and not fully developed in perinates, resulting in 

some difficulty locating the landmarks. In addition, some perinates had been diagnosed 

with diseases such as tuberculosis, rickets, and syphilis, thus affecting skeletal 

morphology. Furthermore, the samples do not fully represent early 21st-century perinates, 

as they were derived from a skeletal collection in the first quarter of the 20th century. 

However, this study may be useful for anthropologists encountering unidentified cranial 

material from this age range (Weinberg et al., 2005). 

 

2.4.5.4 Smith et al. (2013) 

Smith et al. (2013) examined the temporal bone morphology of 133 sub-adult 

individuals. The samples were collected from modern sub-adults of New World 

populations (Alaskan, Mexican, Peruvian, and European Americans) as well as Old-

World populations (Austrian, Egyptian, and Polynesian). DFAs were developed, and the 

correct classification of individuals was obtained at rates of between 7.7% and 65.8%. 
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The highest misclassification rates occurred within the New World populations, with 

Utah and Mexico obtaining the lowest correct classification rates of 7.7% and 28.6%, 

respectively. The results reported that groups of closer geographic origin could be greatly 

misclassified compared to groups in geographically distant populations. Additionally, 

there were strong correlations between sub-adult morphology and the molecular distance 

matrix. This indicated that sub-adult temporal bone shape reflects genetic affinity, 

especially in the age group before the first molar eruption. Although the samples used 

were small, variation in the temporal bone structure was exhibited as early as at five years 

of age (Smith et al., 2013). 

 
2.4.5.5 Szen (2018) 

This study examined ethnicity in sub-adult skeletons using metric analysis and 3D 

digitiser. The sample included 169 individuals ranging in age from birth to 21 years 

obtained from the Hamann-Todd, Terry and American Museum of Natural History 

Osteological Collections. The analysis yielded no statistically significant results. 

However, this does not necessarily mean that the ethnicity of the individuals could not be 

determined. It is possible that the ethnic-related craniofacial differences might not be 

metrically visible until after the completion of puberty. Alternatively, the ethnicity-related 

variations may be too minute for quantification with metric methods such as the 3D 

digitisation used in the study (Szen, 2018). 

 
2.5 Sex and ethnicity estimation using machine learning (ML) algorithm 

In recent years, the method of sex and ethnicity estimation has been aided by several 

ML classification algorithms. ML has the capacity to make predictions without being 

explicitly programmed to do so. Mathematical models generated from training data can 

be used to provide a versatile and robust solution for sex and ethnicity estimation. 
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Researchers have investigated several ML strategies for estimating sex and ethnicity in 

adults with high accuracies (D’Oliveira Coelho & Curate, 2019; Imaizumi et al., 2020; 

Nikita & Nikitas, 2020; Yang et al., 2019b). However, limited research has been 

conducted using ML to estimate sex and ethnicity in sub-adult individuals (Ortega et al., 

2021). In the following section, a selection of literature that focuses on different 

classification methods employed for sex and ethnicity estimation in adult and sub-adult 

individuals worldwide will be reviewed. A summary of previous studies on sex and 

ethnicity estimation in adults and sub-adults is presented in Table 2.3. 

 
Table 2.3: Previous studies of sex and ethnicity estimation using machine learning 
methods in adults and sub-adults 

M=male, F=female, T=total, ANN=artificial neural network, DL=deep leaning, DT= decision tree, 
KNN=k-nearest neighbors, KPD=kernel probability density, LDFA=linear discriminant function analysis, 
LR=logistic regression, MLP=multi-layer perceptron, NBC=naive bayes classifier, OSSA=optimized 
summed scored attributes, QDFA=quadratic discriminant function analysis, RF=random forest, 
SVM=support vector machines, VGG16=visual geometry group 16. 
 
 

Authors Population M F T  Age 
(years) 

Analysis Accuracy 
(%) 

Bertsatos et al. 
(2020) 

European 181 14
3 

324 19-99 SVM 71.7-96.7 

Bewes et al. 
(2019) 

Australia, Italy, 
German, China, 
India, Vietnam, 

Ireland, and 
Scotland 

500 500 1000 18-60 ANN 95 

Hefner et al. 
(2015) 

White, Black, 
Hispanic 

373 244 718 16-99 ANN, SVM, 
OSSA, RF, 
DT, KNN, 
QDFA, LR, 

KPD, 
LDFA, 
NBC 

76.5-87.8 

Imaizumi et al. 
(2020) 

Japan 50 50 100 23-65 SVM 90-100 

Ortega et al. 
(2021) 

Mediterranean 83 52 135 Five 
months 

-six 
years 

ML (SVM, 
RF, 

AdaBoost) 
and DL 

(VGG16, 
ResNet50) 

49-61 

Pozzi et al. 
(2020) 

Italian 265 265 530 18-70 DT, KNN, 
LDA 

40-85.5 

Toneva et al. 
(2021) 

Bulgarian 169 224 393 18-94 SVM, ANN, 
LR 

95 

Yang et al. 
(2019b) 

China 114 153 267 18-88 MLP 94 
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2.5.1 Hefner et al. (2015) 

This study aimed to estimate the ethnicity of unknown cranium of White, Black, and 

Hispanic groups using morphoscopic traits. Samples from a total of 373 males and 244 

females aged 16 to 99 years were obtained. Out of the 11 ML methods used (ANN, SVM, 

OSSA, RF, DT, KNN, quadratic discriminant function analysis (QDFA), LR, kernel 

probability density (KPD), linear discriminant function analysis (LDFA), and naive 

bayesian (NBC)), ANN provided the highest overall classification accuracy (87.8%), 

followed by SVM (86.4%) and RF (85.5%). LR recorded the lowest overall classification 

accuracy of 76.5% (Hefner et al., 2015). 

 

2.5.2 Yang et al. (2019a)  

This study aimed to estimate the sex from the Uighur ethnic group in northern China. 

A total of 267 complete skull CT scans (consisting of 153 females and 114 males) ranging 

in age from 18 to 88 years were utilised in the study. An ensemble of shallow multilayer 

perceptron (MLP) was performed to conduct sex estimation based on six cranial 

measurements (cranial sagittal arc and chord, apical sagittal arc and chord, occipital 

sagittal arc and chord). All cases achieved higher than 94% accuracy (Yang et al., 2019a). 

 
2.5.3 Bewes et al. (2019) 

This study randomly selected 500 males and 500 females aged 18 to 60 years for 

estimation of sex using the skull. CT head scans from the Royal Adelaide Hospital were 

obtained which comprised individuals from Australia, Italy, German, China, India, 

Vietnam, Ireland, and Scotland. The ANN was trained using images of 900 skulls to 

virtually reconstruct CT scans obtained from the hospital. When evaluated using 

previously unknown skull images, the ANN achieved a sex classification accuracy of 

95%. Males have a precision of 96% and females have a precision of 94%, with an overall 
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accuracy of 95%. This demonstrated that AI systems based on ANN are well-suited for 

sex estimation of skeletal remains (Bewes et al., 2019). 

 
2.5.4 Imaizumi et al. (2020) 

This study aimed to estimate sex based on the skull, using ML on 3D skull shapes. A 

total of 100 skulls (50 males and 50 females) ranging in age from 23 to 65 years were 

obtained from the post-mortem computed tomography (PMCT) data in Tsukuba Medical 

Centre, Japan. The ML approach was adopted using an SVM with a radial basis function 

kernel. Partial least squares regression (PLS) and principal component analysis (PCA) 

were used to decrease the dimensionality of the data set, which increased the accuracy 

rate. The accuracy rates achieved for sex estimation in PCA+SVM and PLS+SVM were 

between 90% and 100% (Imaizumi et al., 2020). 

 
2.5.5 Pozzi et al. (2020) 

This research was conducted to determine the feasibility of estimating sex on two 

Italian populations (Sardinia and Bologna) using ML and craniometric data. The skeletal 

material aged 18 to 70 years were obtained from the Anthropological Museum of the 

University of Bologna, Italy. ML algorithms such as DT and KNN were compared with 

LDA. KNN obtained the highest accuracy of 84.5% and 85.5% for Sardinia and Bologna 

populations, respectively. DT obtained an accuracy of 75% and 81%, and LDA obtained 

the lowest accuracy of 40% and 83.3% for Sardinia and Bologna populations, 

respectively. Although Italian crania were sexually dimorphic, the characteristics that 

contribute to this dimorphism vary amongst groups. Indeed, whether ML or LDA was 

utilised, each method was accurate only with individuals of the same population. While 

ML and LDA frequently achieve comparable accuracy, it is noted that ML models 

provide greater consistency (Pozzi et al., 2020). 
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2.5.6 Bertsatos et al. (2020) 

This research aimed to present an automated approach for sex estimation using cranial 

sex diagnostic characteristics. The proposed technique was developed and validated using 

two European population samples: a Czech sample of 170 crania constructed from 

anonymised CT scans, and a Greek sample of 156 crania from the Athens Collection. The 

automated technique involved extracting and assessing specific morphometric features 

from 3D models of glabella, mastoid process supraorbital ridge, and occipital 

protuberance. Then, further processing was carried out using computer vision and ML 

algorithm such as SVM. The classification accuracy was determined using a two-way 

cross-validation technique involving population-specific and population generic 

classification. Population-specific categorisation accuracy varied between 78.5% and 

96.7%, but population generic classification accuracy varied between 71.7% and 90.8%. 

Overall, classification accuracy higher than 91% was obtained when all sex diagnostic 

parameters were combined. However, a 100% accuracy rate was achieved when about 

75% of the sample was used with posterior probability sex estimations (Bertsatos et al., 

2020). 

 
2.5.7 Toneva et al. (2021) 

This study selected 393 individuals (169 males and 224 females) aged 18 to 94 years 

from Bulgaria. Classification models for estimating sex were developed using 64 cranial 

measurements and 22 cranial indices. Two ML algorithms (SVM and ANN) and a 

traditional statistical analysis method (LR) were utilised. All three techniques recorded 

more than 95% accuracy rates, with SVM achieving the highest accuracy of 96.1% 

(Toneva et al., 2021). 
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2.5.8 Ortega et al. (2021) 

This research aimed to estimate the sex of infants using macroscopic examinations of 

the ilium. Photographs of the ilium from a collection of identified infant skeletons at the 

University of Granada were obtained, comprising 135 individuals (83 males and 52 

females) ranging in age from five months to six years. The efficiency of classic MLs 

(SVM, RF, and AdaBoost) and DL (VGG16 and ResNet50) were developed and 

compared to an expert’s eye evaluation. DL approaches achieved a precision of 59%, 

greater than that of ML methods (49%). Therefore, the accuracy of DL was almost similar 

to the expert’s observation under the same conditions (61%). This demonstrated the 

possibility of using AI algorithms to enhance methods for estimating sex. This 

development has received massive attention from AI researchers as various reported 

algorithms have primarily focused on sex estimation in adult individuals (Ortega et al., 

2021). 

 

2.5.9 Summary 

This section has provided summaries of previous studies on population-specific sex 

and ethnicity estimation standards for several populations worldwide. The applicability 

of medical technology such as CT to formulate population-specific standards has been 

demonstrated. This is important as such technology can be used as a substitution for actual 

bone specimens, where there is lack of documented skeletal collections available for 

study. Traditional statistical analysis (such as DFA and BLR) is useful as it accurately 

estimates sex and ethnicity in sub-adults. However, it is noted that the ML algorithm 

could potentially outperform the traditional statistical analysis. Hence, choosing the right 

statistical tool is vital to maximise accuracy rate. Furthermore, the sex and ethnicity 

estimation models generated were population-specific and can only be applied with the 

highest accuracy to populations similar to the sample populations (Spradley, 2021; 
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Walker, 2008). This demonstrated the necessity for population-specific models for 

estimating sex and ethnicity. 

 
2.6 Cephalic index (CI)  

The CI is an important parameter in assessing sexual and ethnic differences. CI was 

invented by Professor Anders Rezitus and was first used to classify human remains in 

Europe (Rakosi et al., 1993). The concept of CI can be defined as the ratio of the 

maximum width of the skull to the maximum length, multiplied by 100 (van Lindert et 

al., 2013). The width is the distance between the most projecting points at the sides of the 

head, and the length is the distance from the glabella to the most projecting point at the 

back of the head (Farkas et al., 1992; Standring & Gray, 2008; van Lindert et al., 2013). 

The original technique to measure CI was by using a caliper; however, various imaging 

technologies, such as CT scan and MRI, are now available instead of taking manual 

measurements (van Lindert et al., 2013). 

Head shapes are classified based on the CI value and divided into four categories: 

dolichocephalic, mesocephalic, brachycephalic, and hyperbrachycephalic (Soames, 

1995). A dolichocephalic head, or “long head,” describes an individual with a narrow 

cranial breadth. It usually presents a long, narrow shape and a high mandibular plane 

angle. A mesocephalic head, or “medium head,” describes an individual with an average 

cranial breadth. A brachycephalic head, or “short broad head,” describes an individual 

with a longer cranial breadth. It is usually associated with a broad, square head shape and 

low mandibular plane angle. A hyperbrachycephalic head, or “very short broad head,” 

describes a larger cranial breadth. It also presents a broader square head shape than a 

brachycephalic head. Correlation between CI as well as head shapes and age, sex, and 

ethnicity is important. It is valuable in plastic and reconstructive surgeries associated with 

craniofacial deformities and the prognosis of orthodontic treatment (Soames, 1995). 
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2.6.1 CI classifications 

Various CI classifications have been introduced by different researchers regarding the 

head shape. Standring and Gray (2008) classified dolichocephalic as having CI of less 

than 74.9, mesocephalic (75.0–79.9), brachycephalic (80.0–84.9), and 

hyperbrachycephalic as having CI of more than 85.6. Meanwhile, Cohen and MacLean 

(2000) defined head shape categories as follows: dolichocephalic (less than 75.9), 

mesocephalic (76.8– 80.9), brachycephalic (81.0–85.4), and hyperbrachycephalic (more 

than 85.5). Koizumi et al. (2010) introduced a classification according to which CI under 

76 signifies dolichocephalic, CI of 76–80.9 signifies mesocephalic, while CI exceeding 

81.0 signifies brachycephalic. Nam et al. (2021) classified the CI of Korean children as 

follows: dolichocephalic (80.1 or less), mesocephalic (80.2–93.4), brachycephalic (93.5–

100), and hyperbrachycephalic (100.1 or higher). Therefore, these classifications should 

be interpreted within the context of the specific population or sample being studied. There 

may be variations between head shape categories among ethnic groups, geographic 

regions, or age range. Thus, researchers should consider population-specific norms. 

Furthermore, considering reports that the standards of the CI may change over time, it is 

not sensible to apply any previously reported normal range to the current clinical decision-

making in the Malaysian population (Koizumi et al., 2010).  

 

2.6.1.1 CI in Indian population 

Several studies have been conducted to measure the CI of the Indian population in 

different geographic regions (Ghosh, 2018; Khanduri et al., 2021; Yagain et al., 2012). A 

study by Ghosh (2018) reported that the dominant head shape in East India was 

brachycephalic. The overall mean CI was 81.09±3.42, with males obtaining higher CI 

(81.2±5.23) than females (80.76±5.88). In Central India, males were mesocephalic, while 
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females were brachycephalic, with mean CI values of 77.92 and 80.85, respectively, and 

an overall mean CI of 77.92 ± 5.20 (Yagain et al., 2012). 

These studies suggested that there is a correlation between CI and climatic variation 

within the Indian population. The head shape appears to be influenced by environmental 

conditions, with brachycephalic head shapes being more prevalent in temperate zones as 

compared to dolichocephalic head shapes being more prevalent in tropical zones (Bharati 

et al., 2001; Khanduri et al., 2021). It is important to note that India encompasses both 

temperate and tropical regions, which contributes to the diversity of head shapes observed 

within the population. 

 

2.6.1.2 CI in Nigerian population 

Several studies have been conducted to identify the CI of the Nigerian population 

(Akinbami, 2014; Eroje et al., 2010; Musa & Danfulani, 2015). Eroje et al. (2010) studied 

school children from the Ogbia tribe in Nigeria. A total of 440 sub-adults (219 males and 

221 females) were randomly selected with their ages ranging from two to 18 years. The 

cranial length and width were measured with a spreading caliper. The overall mean CI 

was 72.96±6.12 with males obtaining higher CI (73.68±6.53) than females (72.24±5.60). 

Based on the CI, most of the head shapes were dolichocephalic (66.82%), followed by 

mesocephalic (21.59%), brachycephalic (10.23%), and hyperbrachycephalic (1.36%; 

Eroje et al., 2010). 

A similar study was carried out by Akinbami (2014) from the Ogbia tribe in Nigeria. 

A total of 700 sub-adults aged 11 to 20 years were selected. The overall mean CI was 

76.56, with males having a higher CI (77.21) than females (76.50). Based on this study, 

the majority of individuals were mesocephalic (78.68%), followed by dolichocephalic 

(11.4%), brachycephalic (9.0%), and hyperbrachycephalic (0.43%; Akinbami, 2014). 
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Another study was conducted by Musa and Danfulani (2015) on 76 children (42 males 

and 34 females) aged four to seven years. The authors reported that the mean CI value for 

the entire sample was 79.12±3.37 with higher CI values in females (80.08±3.34) than in 

males (78.35±3.23). By applying Strandring’s head shape classification, the most 

frequently occurring type of head shape was mesocephalic (55.26%), followed by 

brachycephalic (28.95%), dolichocephalic (7.89%), and hyperbrachycephalic (7.89%; 

Musa & Danfulani, 2015). These findings differed from those of previous studies 

conducted on Nigerian children by Eroje et al. (2010) and Akinbami (2014), which 

reported lower CI values. This suggested that age range differences in the study sample 

may contribute to the observed variation in CI values. Furthermore, it is important to 

consider that the results obtained from this age group may not be directly comparable to 

those obtained by studies with broader age ranges. This is because younger age groups 

tend to have higher CI values than older age groups (Pereira et al., 2008).  

 
 

2.6.1.3 CI in Polish Population 

Likus et al. (2014) aimed to develop a CI classification for Polish children with normal 

brain development from birth to three years of age. The authors found that the mean value 

of CI in children was 81.45±7.06 with the CI of males (82.22±6.87) being higher than 

females (80.54±7.20). The study also examined the variation in CI values across different 

age groups. The CI value for children under three months old was recorded as 80.19, 

which increased to 81.45 between the ages of four and six months. In the age range of 

seven to 12 months, the CI value further increased to 83.15. However, for children aged 

two years, the CI value decreased to 81.05; for children aged three years, it further 

decreased to 79.76. No significant difference in CI values was observed between males 

and females. Nevertheless, within the age group of seven to 12 months, males had higher 
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CI values than females. By applying Cohen’s skull shape classification, mesocephalic 

(34%) was the dominant head shape of Polish children (Likus et al., 2014).  

 
2.6.1.4 CI in Siberian population 

The study was conducted to compare data from two groups of students aged seven to 

15 years from Southeastern Serbia, measured in two different years, namely 1983 and 

2010. Data for the first group were obtained in 1983 and involved 968 students, while 

data from 1,037 students were collected in 2010. The students were divided into three age 

groups: seven to nine years, 10 to 12 years, and 13 to 15 years. In 1989, the overall mean 

value of CI was 82.45±4.66, with higher values observed in males (82.62±4.84) compared 

to females (82.27±4.47). The specific CI values reported for each age group were 81.34 

for the age group of 7-9 years, 83.21 for the age group of 10-12 years, and 82.80 for the 

age group of 13-15 years. In 2010, the overall CI value was lower at 80.68±4.9, with 

higher CI values observed in females (80.91±4.7) compared to males (80.45±5.1). The 

specific CI values reported for each age group in 2010 were as follows: 80.37 for the age 

group of 7-9 years, 81.51 for the age group of 10-12 years, and 80.17 for the age group 

of 13-15 years. Notably, higher CI values were noted in children aged 10 to 12 across 

both the 1989 and 2010 studies. The dominant head shape in 1983 was brachycephalic, 

whereas in 2010, it was mesocephalic. The increase in the width and length of the head 

had caused the debrachycephalisation process to occur (Cvetković et al., 2014). 

Therefore, this supports the reported study of debrachycephalisation in Europe in recent 

decades (Buretić‐Tomljanović et al., 2004; Grbeša et al., 2007; Paulová et al., 2000).  

 
2.6.1.5 CI in Iranian population 

Several studies have been conducted on the Iranian population to determine their CI 

(Golalipour, 2006a, 2006b; Golalipour et al., 2003, 2005). Golalipour et al. (2003) sought 
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to determine the CI value in male newborns from Gorgan-North of Iran. This study was 

conducted on 420 male newborns of Fars and Turkman ethnic groups within 12-24 hours 

after delivery. The CI value in the Turkman group was 77.00±5.91, and the CI value in 

the Fars group was 77.97±5.34 with no significant difference between the two groups. 

The dominant type of head shape in both the native Fars and Turkman groups was 

mesocephalic (36.5% and 38.2%, respectively; Golalipour et al., 2003). 

The authors repeated the same study for female newborns in 2005. The study was 

conducted on 423 female newborns from Fars and Turkman ethnic groups in Iran. The CI 

value in the Turkman group was 77.8±58.7 and the CI value in the Fars group was 

78.63±4.7. The CI of female newborns was found to be higher than male newborns. In 

this case, the dominant type of head shape in both the native Fars and Turkman group 

was mesocephalic (41.98% and 38.86%), similar to the male newborns (Golalipour et al., 

2005). 

Golalipour (2006b) conducted research in Gorgan, North of Iran, focusing on young 

Fars and Turkman males and females aged 17 to 20 years. In the female Turkman group, 

the mean CI was found to be 82.8±3.6, while in the female native Fars group, it was 

85±4.5. The dominant head type in the Fars group was hyperbrachycephalic, accounting 

for 53.6% of the individuals, while the Turkman group had a dominant brachycephalic 

head type at 58.1% (Golalipour, 2006a). For the male Turkman and Fars groups, the mean 

CI values were slightly lower compared to females, with 80.4±4 for Turkman males and 

84.8±6.9 for Fars males. As with the female groups, hyperbrachycephalic was the 

dominant head type in both the male Turkman and Fars groups (Golalipour, 2006b).  

2.6.1.6 CI in Brazilian population 

This study was conducted to evaluate the CI of Brazilian sub-adults ranging in age 

from birth to 18 years. Overall CI values reported no significant differences between male 

(85.45±4.08) and female (85.45±4.6) individuals. In addition, a marked decrease in the 
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mean value of CI was observed in the first year of life, followed by a milder decrease 

between the ages of four and five years. Thereafter, the CI values stabilised up to the age 

of 18 years (Pereira et al., 2008). This indicated that CI is a good indicator for skull growth 

in the early years due to the increased rate of skull growth during that time. When the 

skull growth has stabilised thereafter, it can become a good indicator for follow-up. 

 
2.6.1.7 CI in Asian population 

Several studies conducted on Asian populations (such Japanese, Korean, and 

Malaysian populations) have been found to exhibit higher CI values compared to other 

populations, such as Caucasians (Koizumi et al., 2010; Nam et al., 2021; Swamy et al., 

2013; Yusof, 2007). In a study on Japanese children ranging from birth to four years, 

Koizumi et al. (2010) reported a relatively high CI value of 86.5±7.3. Among the 

participants, males reported slightly higher CI values (87±7.5) compared to females 

(86.3±6.5; Koizumi et al., 2010). The significant difference in CI between Asian and 

Caucasian populations rendered Cohen's classification unsuitable for Japanese children, 

as it would categorise them as hyperbrachycephalic. To address this discrepancy, 

Koizumi et al. (2010) developed a new CI classification specifically for Japanese children 

using the obtained data, where the mean value of CI±1 SD was defined as mesocephalic. 

Therefore, the most prevalent head shape among Japanese children was found to be 

brachycephalic. This has provided a more accurate categorisation based on their 

population-specific characteristics (Koizumi et al., 2010). 

A study on Korean children revealed a high average CI value of 86.82±6.66. In this 

population, males exhibited slightly higher CI values (86.80±6.32) compared to females 

(86.84±7.13). Notably, Korean children showed even higher CI values than the Japanese 

population (Koizumi et al., 2010). Therefore, following the methodology established for 

Japanese children, a modified CI classification was developed by Nam et al. (2021) 
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specifically for Korean children. Based on the new CI classification, the most prevalent 

head shape among Korean children was found to be mesocephalic (Nam et al., 2021). 

Several studies have been conducted to measure CI in Malaysian children, specifically 

within the Malay ethnic group (Swamy et al., 2013; Yusof, 2007). Yusof (2007) 

conducted a study to measure CI values in the Malaysian population aged from birth to 

25 years. The author reported a relatively high CI among Malaysian children, with CI 

values of 84.8±5 for males and 85.2±4 for females (Yusof, 2007). On the other hand, 

Swamy et al. (2013) conducted a study on school children aged six to 16 years and 

reported slightly lower CI values, averaging 81.48±10.55 for males and 79.51±10.04 for 

females. The variation in CI value between the two studies could potentially be attributed 

to differences in sample size, age range, and measurement techniques employed. 

However, these studies solely focused on the Malay ethnic group and did not include 

individuals from Indian and Chinese ethnic backgrounds. Further research incorporating 

individuals from the Indian and Chinese ethnic backgrounds would enable a more 

comprehensive assessment of CI and its potential variations across the diverse ethnic 

groups in Malaysia. This would provide a deeper understanding of the cranial 

characteristics within the Malaysian population as a whole and contribute to the field of 

craniofacial anthropology and forensic sciences. A summary of CI in different 

populations is presented in Table 2.4. 
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Table 2.4: Cephalic index in different populations 

 

 

 

 

   

     

  

    

 

 

Authors Populations Age 
(years) 

Mean CI Overall mean 
CI 

Head shapes 
 Male Female 

Akinbami (2014) 
Eroje et al. (2010) 

Musa and 
Danfulani (2015) 

 11-20 
2-18 
4-7 

77.21 
73.68±6.53 
78.35±3.23 

76.50 
72.24±5.60 
80.08 ±3.34 

76.56 
72.96±6.12 
79.12±3.37 

Mesocephalic 
Dolichocephalic 

Mesocephalic 
Nigerian 

 

Cvetković et al. 
(2014) 

Siberian 7-15 82.62±4.84 (1989) 
80.45±5.1 (2010) 

82.27±4.47 (1989) 
80.91±4.7 (2010) 

82.45±4.66  
80.68±4.9  

Brachycephalic 
Mesocephalic 

Ghosh (2018) East India 17-20 81.2±5.23 80.76±5.88 81.09±3.42 Brachycephalic  
Golalipour et al. 

(2003)  
Golalipour et al. 

(2005) 
 

(Golalipour, 2006a) 
(Golalipour, 2006b) 

Iranian Newborn 

 

 

17-20 

Turkman group: 
77.00±5.91 

Fars group: 77.97±5.34 
 
 
 

Turkman group: 
80.4±4  

Fars group: 
84.8±6.9 

Turkman group: 77.8 
5±8.7 

Fars group: 78.63±4.7 
 
 
 

Turkman group: 
82.8±3.6 

Fars group: 85±4.5 

Turkman group: 
77.43± 7.31 
Fars group: 
78.3±5.02 

 
 

Turkman group: 
82.8±3.6 

Fars group: 
85±4.5  

Mesocephalic 
 

Mesocephalic 
 
 
 

F=Brachycephalic 
(Turkman group), 

Hyperbrachycephalic 
(Fars group) 

M=Hyperbrachy-
cephalic 

Koizumi et al. 
(2010) 

Japanese 0-4 87±7.5 86.3±6.5 86.5±7.3 Brachycephalic 

Likus et al. (2014) Polish 0-3 82.22±6.87 80.54±7.20 81.45±7.06 Mesocephalic 
Nam et al. (2021) Korean 0-7 86.80±6.32 86.84±7.13 86.82±6.66 Mesocephalic 

Pereira et al. (2008) Brazilian 0-18 85.45±4.08 85.45±4.6 85.45±4.34 - 
Swamy et al. (2013)  

Yusof (2007) 
Malaysian 6-16 

0-25 
81.48±10.55 

84.8±5 
79.51±10.04 

85.2±4 
80.5±10.3 
85.2±5.01 

- 
- 

Yagain et al. (2012) Central India 18-22 77.92 80.85 77.92±5.20 M=Mesocephalic 
F=Brachycephalic Univ
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CHAPTER 3: MATERIALS AND METHODS 

This chapter outlines the materials studied in the current project, the methods applied 

for data acquisition, and the statistical approaches required to achieve the project aims. 

The first aim was to develop sex and ethnicity estimation models specifically for 

Malaysian sub-adults. This was achieved by classical statistical analyses such as DFA 

and BLR, by identifying the most meaningful combination of measurements that can be 

used to develop accurate classification models. Recently, there has been growing interest 

in exploring the application of ML algorithms to improve the accuracy of sex and 

ethnicity estimation models. Therefore, another aspect of the study involved comparing 

the validity and accuracy of the sex and ethnicity estimation models developed using ML 

algorithms with those developed using classical statistical methods (DFA and BLR) 

specifically for Malaysian sub-adults.  

The second aim of the study was to propose a new classification for CI in the 

Malaysian population. It has been well-established that there are apparent sex and 

ethnicity differences in cranial dimensions and CI among different populations. 

Furthermore, the standards of CI may change over time due to various factors. Hence, it 

is impractical to rely on previously reported normal ranges for CI when studying the 

modern Malaysian population. Therefore, the study aimed to gather updated CI data 

specific to the Malaysian population, considering sex and ethnicity variations, in order to 

propose a new classification system for CI which will be applicable to the present-day 

population.  

 
3.1 Ethics 

The Medical Research Ethics Committee, University Malaya Medical Centre 

(UMMC) has approved the human research ethics aspect of this study (MREC ID NO: 

202147-10039). 
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3.2 Materials 

3.2.1 Study design 

This retrospective study has been carried out based on CT records of male and female 

individuals of known age and ethnicity at the Universiti Malaya Medical Centre 

(UMMC). MSCT records used for this study were from July 2010 to March 2021. 

 
3.2.2 Study sample 

The sample utilised in this study included sub-adults from birth to 20 years of age. 

Initially, 682 MSCT scans were collected for this study. However, due to the radiation 

risks involved in acquiring MSCT scans, many cranial scans in the Picture Archiving 

Computerised System (PACS) database did not have all the landmarks necessary for the 

study and were therefore excluded. Thus, only 521 out of 682 MSCT scans were used in 

this study, which comprised 279 males and 242 females. The patient details, including 

those of the father and mother, were obtained from the hospital record-keeping system. 

Patients and their parents were ensured to have a Malaysian identification number (IC) in 

the registration information. All MSCT scans received were anonymised beforehand to 

maintain the patients’ privacy. Therefore, birth date, scan date, sex, and ethnicity were 

the only available information that can be obtained from each MSCT scan. Each sample 

was categorised as belonging to one of six age groups as described by Klales and Burns 

(2017) with slight modifications: 0-2 years, 3-6 years, 7-9 years, 10-12 years, 13-15 years, 

and 16-20 years. The age groups were defined as follows: 0-2 years: day 1 of life to 2 

years, 11 months, and 29 days, 3-6 years: 3 years to 6 years, 11 months, and 29 days, 7-9 

years: 7 years to 9 years, 11 months, and 29 days, 10-12 years: 10 years to 12 years, 11 

months, and 29 days,13-15 years: 13 years to 15 years, 11 months, and 29 days, 16-20 

years: 16 years to 20 years, 11 months, and 29 days. Figure 3.1 shows the distribution of 

age, sex, and ethnicities in the study samples. 
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Figure 3.1: Distribution of age, sex and ethnicities in the study samples 

 

3.2.3 Inclusion and exclusion criteria 

A strict criterion was imposed when selecting MSCT images from the UMMC PACS 

database. MSCT images of individuals ranging in age from birth to 20 years with Malay, 

Chinese, and Indian ethnicities were included. In addition, good quality MSCT images 

with slice thickness of 1 mm were used. Parental ethnicity was confirmed to match that 

of the sample population; individuals whose parents did not share the same ethnicity were 

excluded from the study. Meanwhile, individuals above the age of 20 years and from 

other ethnicities were excluded from this study. MSCT images presenting a history of 

trauma, surgical procedures, deformities, or any pathological condition were excluded as 

these might have influenced normal cranial morphology. In addition, MSCT images with 

artifacts preventing landmark recognition and low resolution were also excluded. 

 
3.2.4 3D imaging technique and software 

The MSCT images were further enhanced with the Materialise Interactive Medical 

Image Control System (MIMICS) software to assess 3D cranial models.  
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3.2.4.1 Multi-slice computed tomography (MSCT) images 

The MSCT images were retrieved from the PACS database, which is a repository of 

medical scan images for Malaysians that is monitored by the Radiology Department of 

UMMC. MSCT images were selected based on several parameters, such as tube voltage 

of 120 kV, effective 110-450 mAs, slice thickness of 1 mm, and exposure time of 0.4s. 

The present study included the acquisition of craniometric measurements in 3D volume 

of Malaysian sub-adult individuals. 

 
3.2.4.2 Materialise interactive medical image control system (MIMICS) software 

Materialise interactive medical image control system (MIMICS) version 21.0 

(Materialise, Leuven, Belgium) software is a commercially accessible third-party 

software. MIMICS was used in the present study to obtain primary reconstructed images 

on multiplanar reconstruction views (axial, coronal, and sagittal). In addition, 3D 

reconstructions of cranial MSCT images were obtained for landmark identification, 

location, and measurements. The advanced and automated segmentation tools allowed for 

faster and easier reconstruction of 3D cranial models.  

 
3.3 Methods: Craniometric measurements 

3.3.1 Landmarks definition 

Landmarks are defined as geometric locations of osteological points that are 

biologically homologous (Bookstein, 1991). Landmarks can be identified and measured 

using several methods: with calipers on a physical specimen, collected digitally from a 

physical specimen using a digitiser, or collected from a CT scan using computer 

programmes that allow image visualisation and manipulation. Bookstein (1991) defined 

three different types of landmarks: Types 1, 2, and 3. All three types are discussed below. 
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3.3.1.1 Type 1 landmarks 

Type 1 landmarks have the strongest biological homology in tissues, such as the 

intersection of two sutures. They are the most desirable in biological studies because they 

are more likely to be homologous and therefore more precise (Ross & Williams, 2008). 

The most accurate and precise statistical quantification can be achieved when using Type 

1 landmarks due to the ability to identify landmarks accurately and repeatedly at the 

junction of two or more anatomical structures. An example of a Type 1 landmark in the 

present study is bregma, which is the intersection between coronal and sagittal sutures 

(O’Higgins, 2000). 

 
3.3.1.2 Type 2 landmarks 

Type 2 landmarks are the maximum curvature points along tissue boundaries or with 

biomechanical forces. An example of a Type 2 landmark is prosthion, which is defined 

as the point on the maxillary alveolar process that projects most anteriorly in the midline 

(O’Higgins, 2000). 

 
3.3.1.3 Type 3 landmarks 

Type 3 landmarks are the least desirable for biological studies due to the lack of 

homology between specimens. They are landmarks with at least one deficient coordinate, 

such as the bottom of a concavity or the tip of a rounded bump. An example of a Type 3 

landmark used in the present study is euryon, which is defined as the greatest transverse 

diameter of the head (O’Higgins, 2000). 

 
3.3.2 Landmark acquisitions 

Materialise interactive medical image control system (MIMICS) software was used to 

identify 18 homologous landmarks in each cranial scan. The selection of the homologous 
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landmarks and the measurements calculated thereafter were based on previous 

ontogenetic cranial growth and skeletal development research (Bastir et al., 2006; 

Baughan & Demirjian, 1978; Braga & Treil, 2007). Landmark definitions were 

accordingly adapted from several sources (Bass, 1987; Haas et al., 1994; Corner & 

Richtsmeier, 1991; Franklin et al., 2012; Howells, 1973). Locating some cranial 

landmarks in younger subjects could be challenging due to the presence of open spaces 

between the bones or open fontanelles, such as bregma and asterion. Hence, the 

landmarks were approximated by extending the present sutures to a meeting point (Noble, 

2015). The definitions of these landmarks are listed in Table 3.1 and illustrated in Figure 

3.2. 

Table 3.1: Definitions of anatomical landmarks used for anthropometric analysis 

(Bass, 1987) ¹, (Haas et al., 1994) ², (Corner & Richtsmeier, 1991) 3, (Franklin et al., 2012) 4, (Howells, 
1973) 5. 

 

Landmarks Code Definitions 
Midline landmarks 

Basion ba Midpoint of the anterior margin of the foramen 
magnum¹. 

Bregma br Intersection of the coronal suture and the sagittal 
suture¹. 

Glabella g Most anterior point in the median sagittal plane 
above the naso-frontal suture; can be instrumentally 

determined¹. 
Lambda l Point where the lambdoidal sutures and the 

sagittal sutures meet¹. 
Nasion n Point where the naso-frontal suture meets the 

midsagittal plane; junction of the naso-frontal suture 
and the intranasal suture¹. 

Opisthicranion op The most posterior point on the skull excluding 
the external occipital protuberance; instrumentally 

determined¹. 
Opisthion o Midpoint of the posterior margin of the foramen 

magnum¹. 
Sella s The midpoint of sella turcica¹. 

Bilateral landmarks 
Anterior 
pterion 

pt.r/pt.l Intersection of the fronto-parietal and fronto-
spehnoid suturesᶟ. 

Asterion ast.l/ast.r Junction of the occipital, temporal and parietal 
bones⁵. 

Euryon eu.l/eu.r The two points on the opposite sides of the 
cranium that form maximum cranial breadth². 

Foramen 
magnum lateralis 

fml.l /fml.r The most lateral point on the side of the foramen 
magnum⁴. 

Porion po.l/po.r The uppermost lateral point on the superior 
margin of the external auditory meatus². 
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(A) Anterior view 

 

(B) Posterior view 

 

(C) Base view 

Figure 3.2: Cranium anatomical landmarks used for anthropometric analysis from 
(A) anterior, (B) posterior, and (C) base view 
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3.3.3 3D cranial model generation 

The raw images were acquired in Digital Imaging and Communications in Medicine 

(DICOM) format and uploaded into the MIMICS software. MIMICS was used to 

reconstruct primary images on multiplanar reconstruction views for purposes of landmark 

identification and measurements in 3D images. A gantry tilt correction (±30 degrees) was 

applied to images to normalise the slice angle. This was due to the position of the 

paediatric head, which may have slanted while the scans were performed. Frankfurt 

horizontal (FH; Li et al., 2015) and midsagittal (MSP; Zhang et al., 2018) planes were 

used to ensure that the craniums were aligned consistently. MSP was constructed by using 

three reference landmarks, nasion, sella turcica, and basion (Ono et al., 1992), and making 

them perpendicular to the FH (Li et al., 2015).  

 
3.3.4 Plane-to-plane concept (PTP) 

Plane-to-plane (PTP) protocol is dependent on the curve extraction and the placing of 

semi-automated planes between the curves’ planes in offset or extreme positions. The 

protocol uses a reference plane system to define the extremities of surface-rendered 

models. In the present study, the reference system was generated using anatomical planes 

such as MSP, FH, and coronal planes. Then, offset planes (planes parallel to each 

anatomical plane) and extreme planes were created on a 3D cranial model or curve. Inter-

plane linear measurements were taken between the offset planes for 14 craniometric 

measurements, as listed in Table 3.2. Examples of craniometric measurements are 

illustrated in Figure 3.3 to Figure 3.6. Pythagoras’ theorem was used to calculate linear 

measurement of CH, CBL, OC, PC, and FC. 
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 Table 3.2: Definitions of the 14 craniometric measurements  

(Langley et al., 2016)¹. 
 

Parameters Abbreviations Landmarks            Definitions 

Biasteronic width BAW ast.r-ast.l The straight-line distance from left to 
right asterion¹. 

Cranial base 
length 

CBL ba-n Distance between the basion and nasion¹. 

Cranial height CH br-ba Linear distance from the bregma to the 
basion¹. 

Foramen 
magnum length 

FML ba-o Distance between the basion and the 
opisthion¹. 

Foramen 
magnum width 

FMW fml.l-fml.r The distance from left to right foramen 
magnum lateralis¹. 

Frontal cord FC n-b Distance from the nasion to the bregma 
measure in the MSP¹. 

Interporion width IPW po.r-po.l The distance from the right to the left 
porion¹. 

Lateral cranial 
length (right & left) 

LCL R/L pt.r/pt.l-
ast.r/ast.l 

Linear distance from the anterior pterion to 
the asterion¹. 

Maximum cranial 
length 

MCL 

 

ant frontal-op Linear distance from the anterior point of 
the frontal to the opisthocranion in the MSP 

measured in a straight line¹. 

Maximum cranial 
width 

MCW eu-eu Maximum width of the cranium in the 
coronal plane¹. 

Nasio–occipital 
length 

NOL n-op Maximum length measured in the mid-
sagittal plane from nasion to opisthocranion¹. 

Occipital cord OC l-o The distance from lambda to opisthion 
taken in the MSP¹. 

Parietal cord PC br-l The distance from bregma to lambda taken 
in the MSP¹. 
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(A) MCW and IPW 

 

(B) BAW 

Figure 3.3: Craniometric measurements from anterior and posterior view of (A) 
MCW and IPW and (B) BAW 
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(A) FMW 

 

(B) FML 

Figure 3.4: Craniometric measurements from base view of (A) FMW and (B) FML 
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(A) MCL, LCL (R/L), NOL 

 

 

(B) FC 

 

(C) PC 

Figure 3.5: Craniometric measurements from lateral view of (A) MCL, LCL(R/L), 
NOL, (B) FC, and (C) PC 
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(A) CH 

 
(B) CBL 

 

 

(C) OC 

Figure 3.6: Craniometric measurements from lateral view of (A) CH, (B) CBL, and 
(C) OC 
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3.4 Statistical analysis 

The statistical package for the social sciences (SPSS; version 26.0; IBM, Armonk, NY) 

was used to conduct the statistical analyses.  

 
3.4.1 Methods for sex estimation  

The objective of this section is to present methods for sex estimation in Malaysian sub-

adults using cranium. Two discriminant methods (DFA and BLR) were tested and 

compared. The accuracy was evaluated in estimating the sex of sub-adults.  

 
3.4.1.1 Correlation test 

A Pearson correlation test was conducted between all pairs of parameters. One 

parameter will be removed or combined in each pair of highly correlated parameters. This 

will decrease high correlations in the dataset and retain other parameters to generate 

classification models. 

 
3.4.1.2 Descriptive statistics 

All craniometric measurements were tested for normality by skewness and kurtosis 

calculations, along with histograms and normal distribution curves. Means±SD values 

were calculated for all parameters by age groups and sex. 

 
3.4.1.3 Independent t-test 

An independent sample t-test compares the means of two independent groups to 

determine the differences in a population. Significant values (p<0.05) were calculated 

using the mean±SD, minimum value, and maximum value. 
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3.4.1.4 Multivariate analysis of variance (MANOVA) 

Multivariate analysis of variance (MANOVA) was conducted to test the hypotheses in 

the present study. It evaluates the significance of sex, age groups, and the relationship 

between sex and age groups on the craniometric measurements. In addition, it determined 

whether differences were statistically meaningful according to age and sex.  

 
3.4.1.5 Sexual dimorphism percentage (SDP) 

The SDP was calculated to identify how much males and females differ from each 

other throughout their development. This was calculated using the formula below as 

proposed by Ricklan and Tobias (1986), with a ratio between the mean values of males 

and females. 

(Male mean −  Female mean)

(Male mean)
× 100 

 
 

3.4.1.6 Discriminant function analysis (DFA) 

Discriminant function analysis (DFA) is a procedure that statistically assigns an 

unknown individual to the most accurate group. DFA uses independent parameters to 

estimate which group an individual belongs to (Pietrusewsky, 2000). To conduct DFA, 

assumptions of multivariate analysis must be fulfilled to ensure the accuracy of the 

results. Two main assumptions made are multivariate normality and homogeneity of 

variances/covariances across groups (Pietrusewsky, 2000). Multivariate normality refers 

to the distributional metric parameters and their combinations. The skewness and kurtosis 

test and histograms with normal distribution curves will determine the normal 

distribution. The second assumption is the homogeneity of covariance matrix. If the level 

of heterogeneity within groups is high, then exploring other statistical procedures, such 

Univ
ers

iti 
Mala

ya



79 

as logistic regression, is highly encouraged (Ousley & Jantz, 2005). The log determinants 

and Box’s M procedure will test the equality of the group covariance matrices. 

Discriminant function analysis (DFA), by way of canonical correlations, was 

conducted for all age groups. Canonical discriminant analyses allowed the study of 

between-group variation by analysing multiple parameters simultaneously (Klecka et al., 

1980). The accuracy of the discriminant functions was calculated based on standardised 

coefficients, unstandardised coefficients, and structural matrix. The unstandardised 

coefficients in each of the canonical discriminant analyses provided the parameters in the 

equation. The sectioning points between males and females were indicated using the 

average function centroids in all the discriminant formulae. Individuals were categorised 

as males when the sectioning point was less than the score value and categorised as 

females in the opposite case (Patriquin et al., 2005). 

Wilks’ lambda is a multivariate test that provides information and assumptions 

regarding differences between and among groups. Wilks’ lambda analysis will classify 

the input of each parameter and its significance in discriminating each group and the 

overall sample size. Wilks’ lambda displays each parameter’s contribution based on a 

scale from 0.000 to 1.000, with 1.000 being the least and 0.000 representing a highly 

influential parameter contributing to discrimination. The significance of lambda is also 

based on a scale from 0.000 to 1.000, with 0.000 demonstrating the highest significance 

of data. A canonical correlation discriminant function (CAN1) displays the strength of 

correlation between the discriminant score and the set of 14 independent parameters with 

a minimum acceptable level of 0.05. Additionally, the F statistic compares the variation 

among the sample means to the variation within the samples. The variation among the 

samples is large if the value of the F statistic is large (SPSS Inc., 1999). 

Stepwise DFA was used to identify the most suitable parameters to classify the group 

(Wilks' lambda, F to enter 3.84, F to remove 2.71). In this analysis, a parameter was 
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eliminated if it made the least contribution to identifying the sex. Therefore, the 

discriminant function equations were formulated using certain chosen parameters 

(Pietrusewsky, 2000). The final stage involved performing cross-validation on all the 

classification models using the analysis procedure’s leave-one-out function. 

 

3.4.1.7 Binary logistic regression (BLR) 

Binary logistic regression (BLR) is a technique that is utilised to predict the 

relationship between independent and dependent parameters. BLR is a suitable approach 

when the data is non-parametric and not bound by data distribution assumptions. In the 

present study, BLR was conducted on each age group and the overall sample to determine 

the probability of accurately estimated sex. A stepwise procedure was used to choose the 

best predictor parameters. A significance value of p≤0.05 was required for entry into the 

model and a significance value of p>0.10 was required for removing a parameter. 

Through this process, a group of parameters would be narrowed to only the most 

significant for classification. The corresponding coefficients (𝛽) and constant from the 

overall sample and each separate age group were used to derive the regression function 

equations. Individuals were categorised as males when the scores were greater than the 

0.5 sectioning point and categorised as females in the opposite case. A second sample 

consisting of 75% from the original sample was used for cross-validation. 

 
 

3.4.2 Methods of ethnicity estimation in Malaysian sub-adults 

The objective of this section is to present methods for ethnicity estimation (Malay, 

Chinese and Indian) of the Malaysian sub-adult population. 
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3.4.2.1 Correlation test 

This method was carried out as previously described in Section 3.4.1.1. 

 
3.4.2.2 Descriptive statistics 

All craniometric measurements were assessed for normality using skewness and 

kurtosis calculations, along with histograms and normal distribution curves. The 

calculations of means±SD value were performed separately for each age group and ethnic 

group.  

 
3.4.2.3 Analysis of variance (ANOVA) 

Analysis of variance (ANOVA) was used to identify which craniometric parameters 

were significant with ethnicities. Furthermore, ANOVA can also be used to examine the 

means of the independent parameters across the dependent parameters. The results of this 

analysis helped to determine whether ethnic differences could be metrically estimated 

across age groups. 

  
3.4.2.4 Multivariate analysis of variance (MANOVA) 

Multivariate analysis of variance (MANOVA) was conducted to test the hypothesis in 

the present study. It evaluates the significance of ethnicity, sex, age groups, and the 

relationship between ethnicity and sex as well as between ethnicity and age groups on the 

craniometric measurements. 

 
3.4.2.5 Discriminant function analysis (DFA) 

In conducting DFA, two important statistical assumptions must be fulfilled. The 

assumptions are multivariate normality and homogeneity of variances/covariances. The 

log determinants and Box's M test were used to compare multivariate sample variation 
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and determine if two or more covariance matrices were equal. Therefore, the log 

determinants should be relatively equal and the Box’s M test should be non-significant 

(p>0.001), suggesting that the covariance matrices were equal (Hahs-Vaughn, 2016). 

Canonical discriminant analyses were performed using craniometric measurements to 

compare differences among the Malay, Chinese, and Indian groups. A forward stepwise 

was conducted in each DFA model to select the best parameter for group separation. The 

canonical discriminant analysis produces the canonical correlation, canonical structure, 

and canonical coefficients. Pairwise comparisons were calculated on the craniometric 

measurements in each age group to indicate levels of similarity and dissimilarity among 

the ethnicities. Discriminant score plots were produced to demonstrate multivariate 

separation among the three ethnic groups. Then, DFAs were validated with the leave-one-

out cross-validation function.  

 
3.4.3 Machine learning (ML) model development 

Machine learning (ML) techniques can be applied to gain insights and knowledge from 

craniometric data. These techniques are expressed through model building used to 

interpret patterns and relationships in the data (Williams, 2011). ML techniques, which 

may be used for classification problems or regression, consist of three steps: 1) initial 

exploration, 2) model building or pattern identification with validation/verification, and 

3) deployment. The first step involves data preparation, such as data cleaning and any 

exploratory research. Second, the appropriate model for assessing the data is selected 

depending on which model has the best predictive power. Third, the chosen model is 

applied to new data to assess how well it predicts outcomes. 

In the present study, ML techniques for classification were applied to the craniometric 

data for the entire sample. These analyses included RF, SVM, and LDA with 

GridSearchCV. A random 70% of the individuals (N=364) in the total sample were used 
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as the training data, while the remaining 30% (N=157) were used to test the model. All 

models were compared, and the models which produced the highest accuracy for sex and 

ethnicity estimation were chosen to develop the interface programme. 

Support vector machines (SVM) is one of the most popular methods of analysis 

(Imaizumi et al., 2020; Toneva et al., 2021; Ortega et al., 2021) followed by RF (Hefner 

et al., 2015; Ortega et al., 2021), and LDA (Gao et al., 2018; Nikita & Nikitas, 2020; Toy 

et al., 2022). SVM is a powerful and effective tool for sex and ethnicity estimation in ML, 

especially when dealing with high-dimensional data and non-linear relationships (Toneva 

et al., 2021). Similarly, RF is ideal for problems where the relationship between features 

and target variables is complex and non-linear. Meanwhile, LDA is widely used due to 

its simplicity and efficiency, and its ability to handle multicollinearity. Furthermore, these 

methods appear to produce overall accuracies that are high compared to alternative 

machine classifiers such as single DTs and k-NN (Maxwell et al., 2018). Therefore, these 

ML methods are well-suited for the task of sex and ethnicity estimation.  

GridSearchCV from scikit-learn was used in training the datasets to determine the 

optimal hyperparameters for ML models. Hyperparameters are settings or configurations 

that are not learnt from the data, but they are instead specified by the user before training 

a ML model. These hyperparameters are crucial for optimising the model’s performance 

and improving its accuracy. GridSearchCV automates the process of systematically 

searching through a predefined set of hyperparameters and selecting the combination that 

yields the best performance for the given evaluation metric. By specifying the number of 

cross-validation iterations, the reliability of the evaluation can be controlled (Kurachka 

& Sukhoi, 2017; Zöller & Huber, 2021).  

The most important hyperparameters for SVM are kernel, penalty coefficient (C), and 

gamma. The radial basis function (RBF) was used in the present study where the bias term 

is not required in RBF kernel (Ghezelbash et al., 2021). C is a hyperparameter that decides 
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the level of penalty over the outliers. It is directly inverse to regularisation parameter. 

When C is large, outliers will be given high penalty, and a hard margin is formed. When 

C is small, the outliers are ignored, and the margin will be wide. Hyperparameters for RF 

are n_estimators and max_depth where n_estimators is the number of trees in the forest. 

The higher the number of trees, the better it is to learn the data. While max_depth is the 

maximum number of features allowed in an individual tree. If the number of splits is too 

low, the model underfits the data and if it is too high the model overfits (Daviran et al., 

2021). On the other hand, LDA uses shrinkage estimator to regularise the covariance 

matrices of the classes.  

 
 

 
3.4.3.1 Performance metrics  

To evaluate the model with standard procedure, the true positive (TP), true negative 

(TN), false positive (FP), and false negative (FN) values were determined. Based on these 

values, accuracy, precision, recall, and F1-score were calculated (Kurachka & Sukhoi, 

2017). Accuracy is the most intuitive performance measure and it is simply a ratio of 

correctly predicted observations to the total observations. The accuracy of the model on 

the basis of TP, TN, FP, and FN was calculated based on the ratio:  

 

Accuracy = TP+TN

TP+FP+TN+FN
 

Recall is the ratio of correctly predicted positive observations to all observations in the 

actual class.  

Recall = TP

TP+FN
 

Precision is the ratio of correctly predicted positive observations to the total predicted 

positive observations. 
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Precision = TP

TP+FP
 

 
F1-Score is the weighted average of Precision and Recall.  

F1-Score = 2x [
Precision X Recall

Precision+Recall
] 

 
3.4.3.2 Interface programme development 

The interface programme is a web-based graphical user interface (GUI) developed 

using the Streamlit application. Streamlit is an open-source app framework for building 

ML and data science web apps in Python that allows developers to create interactive and 

visually appealing programmes. It can calculate made-to-order craniometric 

measurements to estimate sex and ethnicity. Furthermore, it is user-friendly as the end 

user only needs to input the values into the programme and press the “estimate” button. 

The output includes the predicted sex and ethnicity from an unknown cranium. A user 

acceptance test was performed to evaluate the system. The GUI acts as a bridge to transfer 

knowledge gained in research to practical application in the field and it will be made 

freely available to other researchers. The workflow for model and GUI development is 

shown in Figure 3.7. 
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Figure 3.7: Workflow for model and graphic user interface (GUI) development

       Pre-process data 

 

            Dataset 

           Split data 

 Training (N=364) 

 

 

       Testing (N=157) 

 RF, SVM, LDA 

 

 

          Hypertune 

 

 

       Test ML model 

 

 

     Model developed 

 

 

             Performance metrics: 
Accuracy, precision, recall, F1-Score 
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3.4.4 Cephalic index (CI) 

The maximum width and length of the cranium were measured to obtain CI. CI was 

calculated based on the following equation:  

Cephalic width

Cephalic length
× 100 

All data were demonstrated as mean±SD. Then, using the obtained data, CI was 

classified and grouped into dolichocephalic (mean CI ≤ -1 SD), mesocephalic (mean CI 

±1 SD), brachycephalic (mean CI +1 to 2 SD), and hyperbrachycephalic (mean CI ≥ 2 

SD; Koizumi et al., 2010).  

 
3.4.5 Observer error assessment 

To ensure that results are reliable and repeatable, it is essential to quantify the error 

rate (Braga & Treil, 2007). Intra-observer reliability was assessed using 25 cranial MSCT 

images of different age groups, sex, and ethnicities. The 14 modified cranial 

measurements were assessed as listed in Table 3.2, with a two-week interval between re-

measurement. Similarly, precision testing of the PTP protocol was conducted on 25 

randomly selected cranial MSCT images by an oral and maxillofacial radiologist having 

more than five years of experience. The following statistics were calculated: technical 

error of measurement (TEM), relative TEM (rTEM), and the coefficient of reliability (R) 

with acceptable levels for measurement at rTEM <1.5% and R>0.95 (Ulijaszek & Kerr, 

1999). 

 
3.4.5.1 Technical error of measurement (TEM) 

The TEM represents the most frequent measure of error. It is the SD between repeated 

measurements (Harris & Smith, 2009; Weinberg et al., 2005). It is quantified by taking 
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multiple measurements of the same object and then calculating the variance between the 

repeat values (Harris & Smith, 2009). The following equation was used to calculate TEM: 

∑𝐷²

2N
× 100 

D is the difference between the first and second measurements and N is the total 

number of individuals. TEM was recorded in the same unit as the measurement. 

 
3.4.5.2 Relative technical error of measurement (rTEM) 

To obtain the error demonstrated as a percentage, TEM was transformed into rTEM, 

which corresponded to the total average of the parameter to be analysed. Therefore, 

obtaining the average value of the parameter (X) is necessary. The equation used to 

calculate rTEM is as follows: 

TEM

X
× 100 

 
3.4.5.3 Coefficient of reliability (R) 

The coefficient of reliability (R) measures the amount of between-subject variation 

that is not due to observer error. The values range from 0 to 1. Higher R-values thus 

indicate higher precision. The following equation was used to calculate the coefficient of 

reliability: 

1 − (
(TEM)²

SD²
) 
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CHAPTER 4: RESULTS 

This chapter sets out the results obtained from statistical analyses to achieve the aims 

and objectives of this research. The first aim was to develop 3D craniometric models in 

Malaysian sub-adults for sex and ethnicity estimation, and the second was to establish a 

CI classification for Malaysian sub-adults. The objectives of this study were to compare 

the accuracy of DFA and BLR models for sex estimation in Malaysian sub-adults, to 

assess the accuracy of DFA models for ethnicity estimation in Malaysian sub-adults, to 

compare the validity of sex and ethnicity estimation models between ML algorithm and 

classical statistical methods in Malaysian sub-adults, and to determine the normative 

range of CI classification for Malaysian sub-adults. 

 
4.1 Demographic profile 

Multi-slice computed tomography data (MSCT) scans of the cranium were obtained 

from 521 individuals and grouped into six age groups. The demographic characteristics 

of the individuals based on sex, ethnicity, and age groups are presented in Table 4.1. 

 
 Table 4.1: Sociodemographic summary based on age groups, sex and ethnicity 

                

  

           

             
  

N=number of samples. 
 

Variables Percentage % (N) 

Age groups (years) 

0-2 21.5 (112) 
3-6 15.2 (79) 
7-9 10.9 (57) 

10-12 11.5 (60) 
13-15 15.2 (79) 
16-20 25.7 (134) 

Sex Male 53.6 (279) 
Female 46.4 (242) 

Ethnicity 
Malay 42.4 (221) 

Chinese 27.8 (145) 
Indian 29.8 (155) 
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4.2 Intra-observer and inter-observer errors 

Intra-observer and inter-observer errors, calculated by determining the means of TEM, 

rTEM, and R values, are provided in Table 4.2 and Table 4.3, respectively. Table 4.2 

presents the results for intra-observer errors of the 14 craniometric measurements utilised 

for this study. All measurements showed extremely low errors, indicating consistency in 

the data collection and the quality of being easily repeatable. All measurements had rTEM 

and R values of <1% and >0.99, respectively. The lowest TEM value was recorded as 

0.085mm (FMW) and the highest was 0.315mm (CH). Meanwhile, the lowest rTEM 

value was calculated as 0.097% (MCW) and the highest rTEM value was 0.551% (FML). 

Finally, the lowest R value was 0.994 (FMW and CBL) and the highest R value was 0.99 

(MCL and NOL).  

Table 4.2: Intra-observer errors (TEM; rTEM; R) of the 14 craniometric 
measurements 

Intra-observer errors   TEM (mm) rTEM (%)        R 

MCL 0.230 0.131 0.999 
LCL (R) 0.182 0.192 0.996 
LCL (L) 0.225 0.236 0.996 

NOL 0.270 0.157 0.999 
MCW 0.140 0.097 0.997 
BAW 0.219 0.201 0.997 
IPW 0.183 0.154 0.998 
PC 0.256 0.232 0.996 
OC 0.284 0.290 0.998 
FC 0.257 0.229 0.998 
CH 0.315 0.229 0.995 

CBL 0.264 0.261 0.994 
FML 0.189 0.551 0.998 
FMW 0.085 0.289 0.994 
Mean 0.221 0.232 0.997 

TEM=technical error of measurement, rTEM=relative technical error of measurement,  
R=coefficient of reliability.  
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Table 4.3 presents the results for inter-observer errors of the 14 craniometric 

measurements utilised for this study. Similar to the intra-observer errors, all 

measurements showed extremely low inter-observer errors, indicating consistency in the 

data collection. All measurements had rTEM and R values of <1.5% and >0.99, 

respectively. The lowest TEM value was 0.142mm (LCL (L)) and the highest was 

0.448mm (FMW). For the rTEM values, the lowest was recorded at 0.111% (MCL) and 

the highest was 1.3% (FML). The lowest R value was 0.990 (IPW and PC) and the highest 

was 0.995 (LCL (L)). 

Table 4.3: Inter-observer errors (TEM; rTEM; R) of the 14 craniometric 
measurements 

Inter-observer errors TEM (mm) rTEM (%) R 
MCL 0.192 0.111 0.992 

LCL (R) 0.207 0.223 0.993 
LCL (L) 0.142 0.152 0.995 

NOL 0.210 0.124 0.992 
MCW 0.218 0.153 0.992 
BAW 0.286 0.264 0.991 
IPW 0.253 0.215 0.990 
PC 0.292 0.268 0.990 
OC 0.295 0.308 0.992 
FC 0.327 0.293 0.992 
CH 0.246 0.179 0.991 

CBL 0.228 0.226 0.994 
FML 0.448 1.300 0.992 
FMW 0.272 0.917 0.992 
Mean 0.258 0.338 0.992 

TEM=technical error of measurement, rTEM=relative technical error of measurement, 
R=coefficient of reliability.  

 
 

4.3 Sex estimation in Malaysian sub-adults 

4.3.1 Correlation analysis 

Pearson product-moment correlation coefficient (Pearson correlation) revealed that 

most parameters have strong positive correlations with two independent parameters 

(Table 4.4). Since LCL (R) and LCL (L) were the most highly correlated parameters 

(r=0.982), these parameters were combined as LCL. 
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 Table 4.4: Pearson correlation coefficient of the 14 craniometric measurements for sex and ethnicity estimation 

 MCL LCL(R) LCL(L) NOL MCW BAW IPW PC OC FC CH CBL FML FMW 
MCL 1 0.850 0.852 0.896 0.721 0.782 0.839 0.789 0.706 0.884 0.880 0.879 0.327 0.656 

LCL(R)  1 0.982 0.834 0.791 0.748 0.881 0.609 0.689 0.819 0.850 0.865 0.307 0.671 
LCL(L)   1 0.838 0.786 0.745 0.882 0.608 0.694 0.818 0.849 0.868 0.303 0.666 

NOL    1 0.698 0.766 0.846 0.755 0.695 0.883 0.866 0.891 0.309 0.645 
MCW     1 0.845 0.836 0.580 0.672 0.781 0.786 0.681 0.242 0.648 
BAW      1 0.821 0.661 0.667 0.780 0.804 0.722 0.283 0.679 
IPW       1 0.602 0.700 0.854 0.891 0.890 0.304 0.736 
PC        1 0.425 0.691 0.723 0.606 0.255 0.476 
OC         1 0.660 0.724 0.643 0.225 0.573 
FC          1 0.897 0.840 0.306 0.654 
CH           1 0.896 0.312 0.711 

CBL            1 0.286 0.695 
FML             1 0.309 
FMW              1 
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4.3.2 Descriptive statistics 

Descriptive statistics of mean values±SD for the male and female cranial 

measurements are presented in Table 4.5.  

 
4.3.3 Independent sample t-test 

The means of the 14 craniometric measurements were subjected to independent sample 

t-test analysis (Table 4.5). For the entire sample, apart from the OC parameter, significant 

variations (p<0.05) were observed in all analysed parameters. Males exhibited 

considerably greater mean values than females. The measurements expressing the most 

significant dimorphism as indicated by t-values and p-values were LCL (t=4.62; 

p<0.001), followed by MCW and MCL (t=4.56; p<0.001 and t=4.55; p<0.001). For 

descriptive analysis by age groups, significant variations were found in five parameters 

(MCW, FC, CH, CBL, FML) and six parameters (LCL, MCW, IPW, FC, CBL, FMW) 

for the age groups of 0-2 years and 3-6 years, respectively. Moreover, eight parameters 

(age group of 7-9 years: MCL, LCL, MCW, BAW, IPW, FC, FML, FMW), 10 parameters 

(age group of 10-12 years: MCL, LCL, NOL, BAW, IPW, PC, FC, CH, FML, FMW), 

and 12 parameters (age groups of 13-15 years and 16-20 years: MCL, LCL, NOL, MCW, 

BAW, IPW, PC, FC, CH, CBL, FML, FMW) were found to differ significantly (p<0.05). 
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 Table 4.5: Descriptive analysis and mean variation between sexes of the entire sample (N=521) and by age groups 

Parameters  
N 

Entire sample 
(M=279 F=242) 

0-2 years 
(M=61 F=51) 

3-6 years 
(M=43 F=36) 

7-9 years 
(M=35 F=22) 

10-12 years 
(M=30 F=30) 

13-15 years 
(M=41 F=38) 

16-20 years 
(M=69 F=65) 

MCL M 
F 
t 
P 

168.45±14.07 
162.99±13.16 

4.549 
<0.001 

149.25±11.99 
145.92±16.19 

1.245 
0.216 

163.90±6.17 
162.48±7.11 

0.954 
0.343 

170.09±5.90 
166.09±5.88 

2.493 
0.016 

172.11±5.84 
165.57±6.93 

3.946 
<0.001 

176.88±8.14 
170.18±6.60 

3.979 
<0.001 

180.84±6.19 
170.22±6.22 

9.888 
<0.001 

LCL M 
F 
t 
P 

90.56±10.25 
86.57±9.34 

4.620 
<0.001 

76.33±8.19 
73.48±8.09 

1.838 
0.069 

87.32±4.53 
83.41±4.51 

3.824 
<0.001 

91.78±4.53 
88.64±6.41 

2.164 
0.035 

95.61±4.83 
92.47±5.44 

2.356 
0.022 

96.39±5.14 
91.47±4.21 

4.629 
<0.001 

98.68±5.89 
91.90±4.67 

7.351 
<0.001 

NOL M 
F 
t 
P 

163.55±15.58 
158.62±14.20 

3.756 
<0.001 

142.65±11.34 
138.68±15.79 

1.541 
0.126 

159.03±6.42 
156.80±6.75 

1.498 
0.138 

164.12±14.62 
162.35±4.80 

0.558 
0.579 

168.70±6.43 
162.48±6.84 

3.627 
0.001 

172.85±8.72 
166.70±6.28 

3.567 
0.001 

176.78±6.08 
167.48±6.22 

8.740 
<0.001 

MCW M 
F 
t 
P 

140.73±10.00 
136.77±9.71 

4.562 
<0.001 

128.81±9.42 
125.00±10.72 

2.003 
0.048 

140.72±6.71 
136.08±6.61 

3.081 
0.003 

143.58±7.49 
139.02±6.37 

2.364 
0.022 

143.97±5.72 
140.84±6.76 

1.935 
0.058 

144.61±6.80 
140.52±6.34 

2.758 
0.007 

146.10±7.65 
141.57±5.68 

3.871 
<0.001 

BAW M 
F 
t 
P 

106.54±8.94 
103.82±9.03 

3.436 
0.001 

95.42±10.10 
92.80± 11.80 

1.261 
0.210 

106.58±4.90 
104.48±4.55 

1.966 
0.053 

110.41±5.03 
106.98±5.37 

2.439 
0.018 

109.60±4.92 
107.03±4.37 

2.136 
0.037 

110.69±6.06 
107.44±5.18 

2.552 
0.013 

110.57±5.27 
107.44±5.23 

3.445 
0.001 
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 Table 4.5, continued 

Parameters  
N 

Entire sample 
(M=279 F=242) 

0-2 years 
(M=61 F=51) 

3-6 years 
(M=43 F=36) 

7-9 years 
(M=35 F=22) 

10-12 years 
(M=30 F=30) 

13-15 years 
(M=41 F=38) 

16-20 years 
(M=69 F=65) 

IPW M 
F 
t 
P 

108.77±16.44 
104.09±15.01 

3.375 
0.001 

83.99±10.32 
81.13±11.00 

1.417 
0.159 

102.85±6.09 
97.84±6.30 

3.569 
0.001 

111.16±5.31 
107.21±5.83 

2.629 
0.011 

115.00±5.44 
111.83±6.56 

2.034 
0.047 

120.11±6.47 
114.27±5.20 

4.394 
<0.001 

123.71±6.35 
114.97±5.54 

8.458 
<0.001 

PC M 
F 
t 
P 

108.13±7.98 
105.09±8.20 

4.283 
<0.001 

99.42±8.35 
96.84±9.97 

1.489 
0.139 

108.66±4.94 
108.40±6.82 

0.200 
0.842 

111.05±5.98 
108.38±5.99 

1.638 
0.107 

109.67±5.95 
105.07±5.69 

3.056 
0.003 

110.59±6.48 
107.29±5.49 

2.435 
0.017 

111.88±5.89 
107.33±5.84 

4.490 
<0.001 

OC M 
F 
t 
P 

95.66±8.12 
94.40±8.21 

1.755 
0.080 

86.73±7.50 
85.89±8.61 

0.557 
0.579 

93.87±4.86 
93.19±5.02 

0.607 
0.545 

95.83±4.37 
95.44±5.39 

0.301 
0.765 

99.60±6.38 
97.49±6.15 

1.302 
0.198 

100.98±6.79 
98.11±6.62 

1.897 
0.062 

99.70±6.12 
97.80±6.85 

1.695 
0.092 

FC M 
F 
t 
P 

106.08±10.05 
102.37±9.80 

4.248 
<0.001 

92.13±8.09 
88.61±10.06 

2.057 
0.042 

103.98±4.50 
101.24±4.89 

2.590 
0.011 

107.26±4.58 
104.38±3.73 

2.473 
0.017 

109.04±4.01 
105.61±5.31 

2.823 
0.007 

111.96±6.36 
107.37±4.53 

3.665 
<0.001 

114.33±5.41 
108.70±5.22 

6.099 
<0.001 

CH M 
F 
t 
P 

129.56±12.17 
125.68±11.93 

3.665 
<0.001 

111.60±9.04 
107.35±10.44 

2.306 
0.023 

126.91±4.95 
124.91±5.24 

1.738 
0.086 

131.58±4.99 
129.14±5.95 

1.670 
0.101 

133.47±4.30 
130.61±5.74 

2.183 
0.033 

137.15±5.83 
132.11±5.45 

3.951 
<0.001 

139.87±5.75 
133.28±5.03 

7.035 
<0.001 
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 Table 4.5, continued 

 

 
 

 

 

                      Independent sample t-test values are presented as mean±SD, unit of measurement: millimetres (mm), N=number of samples expressed as M=male  
                        and F=female, bold indicates statistical significance (p<0.05).

Parameters  
N 

Entire sample 
(M=279 F=242) 

0-2 years 
(M=61 F=51) 

3-6 years 
(M=43 F=36) 

7-9 years 
(M=35 F=22) 

10-12 years 
(M=30 F=30) 

13-15 years 
(M=41 F=38) 

16-20 years 
(M=69 F=65) 

CBL M 
F 
t 
P 

92.27±11.76 
88.70±10.62 

3.606 
<0.001 

75.21±6.05 
72.45±7.44 

2.163 
0.033 

86.53±4.15 
84.29±4.77 

2.233 
0.028 

92.93±4.55 
90.97±4.13 

1.641 
0.107 

96.24±4.73 
94.21±4.49 

1.704 
0.094 

100.79±4.77 
95.57±4.33 

5.075 
<0.001 

103.79±4.68 
96.58±3.85 

9.701 
<0.001 

FML M 
F 
t 
P 

35.12±8.84 
32.74±3.07 

3.980 
<0.001 

31.99±3.17 
29.71±3.37 

3.680 
<0.001 

33.79±2.32 
33.02±2.47 

1.417 
0.161 

35.91±2.36 
33.68±2.33 

3.477 
0.001 

35.88±2.28 
33.51±1.91 

4.348 
<0.001 

36.10±2.40 
33.97±2.46 

3.883 
<0.001 

37.40±16.82 
33.57±2.63 

2.034 
0.047 

FMW M 
F 
t 
P 

28.82±2.97 
27.59±2.73 

2.226 
<0.001 

25.20±2.47 
24.34±2.49 

1.821 
0.07 

28.56±1.68 
27.50±1.51 

2.931 
0.004 

29.62±2.22 
27.64±1.55 

3.652 
0.001 

29.83±1.76 
28.51±2.16 

2.589 
0.012 

29.97±2.40 
28.73±2.08 

2.448 
0.017 

30.66±2.23 
29.06±2.18 

4.175 
<0.001 
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4.3.4 Multivariate analysis of variance (MANOVA) 

The results of the MANOVA analysis are presented in Table 4.6. The MANOVA 

analysis tested the hypothesis of ‘sexually dimorphic differences in the cranium are 

predictable for each age group when utilising statistical analyses’. MANOVA analysis 

accepted the hypotheses (p<0.05) demonstrating statistically significant differences were 

obtained in all measurements, except for PC, across all age groups. This suggests that the 

measured parameters varied significantly across the different age groups. Additionally, 

there were significant differences between males and females for two measurements, 

namely MCW and FML. This indicated that these two measurements showed sex-related 

differences. Furthermore, there was significant interaction between sex and age groups 

for the measurement of FML. 

 Table 4.6: Interactions between age groups, sex, and age groups*sex 

    MANOVA test, bold indicates statistical significance (p<0.05). 

 
4.3.5 Sexual dimorphism percentage (SDP) 

Table 4.7 presents the results of SDP divided by age groups. The SDP was used as an 

indicator to demonstrate the differences between males and females. The pattern of SDP 

Parameters Age groups Sex Age groups*sex 

F-value Sig. F-value Sig. F-value Sig. 

MCL 12.090 0.001 0.541 0.462 0.024 0.877 
LCL 19.301 0.000 3.767 0.053 0.258 0.612 
NOL 11.798 0.001 0.031 0.860 0.004 0.951 
MCW 6.452 0.011 4.495 0.034 0.000 0.998 
BAW 4.203 0.041 2.014 0.156 0.001 0.980 
IPW 35.412 0.000 1.911 0.167 0.442 0.507 
PC 3.420 0.065 0.090 0.764 0.025 0.875 
OC 6.770 0.010 0.000 0.998 0.147 0.701 
FC 11.757 0.001 1.996 0.158 0.003 0.955 
CH 17.124 0.000 1.101 0.295 0.185 0.667 

CBL 37.044 0.000 0.507 0.477 0.724 0.395 
FML 8.969 0.003 5.633 0.018 4.013 0.046 
FMW 8.938 0.003 1.646 0.200 0.455 0.500 
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varied according to age group and region of the cranium. Most of the parameters showed 

that males were more prominent than females. The majority of parameters exhibited a 

pattern of constant increase in sexual dimorphism, with males getting progressively larger 

than females. The age groups of 0-2 years and 3-6 years represented the stages at which 

sexually dimorphic differences were least expressed, contrary to the age group of 16-20 

years, where sexually dimorphic differences were highly expressed. 

Table 4.7: Sexual dimorphism percentage (%) of the 14 craniometric 
measurements for all age groups 

 

 

 

 

 

 

 
4.3.6 Discriminant function analysis (DFA) 

To conduct DFA, two assumptions must be fulfilled: normality and homogeneity of 

variance/covariance matrices. 

 
4.3.6.1 Normality of the data 

Upon analysing the skewness and kurtosis values presented in Appendix A, most 

parameters' skewness and kurtosis ratios fell well within the normal range (skewness: -2 

to 2 and kurtosis: -7 to 7), suggesting that the data were normally distributed 

(Byrne, 2010). The histogram with normal distribution curves further demonstrated the 

normal distribution of the sample. 

Parameters 0-2 
years 

3-6 
years 

7-9 
years 

10-12 
years 

13-15 
years 

16-20 
years 

 
MCL 2.225 0.870 2.353 3.799 3.771 5.871 

LCL (R) 3.759 4.498 3.147 3.394 4.654 6.882 
LCL (L) 3.686 4.452 3.691 3.158 5.557 6.887 

NOL 2.777 1.400 1.098 3.686 3.554 5.258 
MCW 2.962 3.296 3.176 -2.175 2.830 3.103 
BAW 2.736 1.979 3.105 2.345 2.937 2.831 
IPW 3.404 4.871 3.552 2.755 4.860 7.065 
PC 2.594 0.244 2.403 4.193 2.987 4.073 
OC 0.976 0.722 0.410 -2.116 2.841 1.908 
FC 2.831 2.636 2.685 3.147 4.102 4.931 
CH 2.804 1.575 1.859 2.143 3.670 4.711 

CBL 2.669 2.592 2.113 2.109 5.177 6.948 
FML 4.138 2.264 6.204 6.596 5.896 10.252 
FMW 3.404 3.735 6.680 4.427 4.150 5.205 
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4.3.6.2 Homogeneity of covariance matrices 

The results of the log determinants and Box’s M test are presented in Table 4.8 and 

Table 4.9, respectively. The log determinants demonstrated a degree of similarity between 

males and females, while the Box's M test did not show statistical significance (p>0.001), 

thus suggesting that the covariance matrices were equal. 

 Table 4.8: Log determinants of covariance matrices for sex estimation 

 

 

 

 Table 4.9: Box's M test of equality of covariance matrices for sex estimation 

 

 

 

4.3.6.3 Stepwise discriminant function analysis (DFA) 

The 14 cranial measurements from the Malaysian sub-adult population were subjected 

to stepwise DFA. In Table 4.10, the discriminant coefficients, eigenvalues, F statistics, 

Wilk’s lambda, and canonical correlation are presented. 

The Wilks' lambda analysis was conducted to assess the discriminatory power of the 

independent parameters in different age groups for sex estimation. In the age group of 0-

12 years, the Wilks' lambda values ranged from 0.946 to 0.754, with a significance of 

0.000. This indicated a low but statistically significant contribution of the independent 

parameters to the discrimination of sex in this age group. Furthermore, the canonical 

correlation coefficients were reported to be between 0.232 and 0.582. These coefficients 

represented the correlation between the discriminant function and the independent 

Group Rank Log determinants 

Male 1 -2.498 
Female 1 -2.712 

Box’s M 

F Approx 2.910 
 df1 1 
 df2 781847.017 

 Significant 0.088 
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parameters. A moderate correlation between the discriminant function and the 

independent parameters suggested that the measured parameters have a moderate 

influence on accurately discriminating between sexes in this age group. 

In the age groups of 13-15 years and 16-20 years, high Wilks' lambda values of 0.647 

and 0.412, respectively, were obtained, both with a significance of 0.000. This indicated 

a high and statistically significant contribution of the independent parameters to the 

discrimination of sex in these age groups. Moreover, the canonical correlation 

coefficients for the age groups of 13-15 years and 16-20 years were reported to be 0.594 

and 0.767, respectively. These high correlation coefficients indicated a strong relationship 

between the discriminant function and the independent parameters, suggesting that the 

measured parameters have a strong influence on accurately discriminating between sexes 

in these age groups. Overall, these findings indicated that the independent parameters 

have varying levels of contribution to the discrimination of sex in different age groups, 

with a low but significant contribution in the age group of 0-12 years, and a high and 

significant contribution in the age groups of 13-15 years and 16-20 years. 
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Table 4.10: Discriminant coefficients, eigenvalues, F statistics, Wilks’s lambda and 
canonical correlation for the entire sample and all age groups for sex estimation 

U.C=unstandardised coefficients, C.C=canonical correlation. 

 

Table 4.11 shows the group centroids, sectioning point values, and the percentage 

accuracy for both original and cross-validated data across the entire sample and all age 

groups. The stepwise DFA was calculated for the entire sample, resulting in an accuracy 

of 61.6% after cross-validation with a sex bias of 14.8%. The accuracy percentage for 

each age group ranged between 62.5% and 88.1%, with improved accuracy as the age 

increased. The age group of 16-20 years recorded the highest classification accuracy of 

88.1%, with a low sex bias of 0.7%, followed by the age group of 13-15 years with 79.5% 

accuracy and 1.1% sex bias. In contrast, the age group of 0-2 years showed the lowest 

classification accuracy of 62.5%, with a sex bias of 3.1%, followed by the age group of 

3-6 years with 67.1% accuracy and 9.4% sex bias. The age group of 7-9 years recorded 

Age 
groups 
(years) 

Para-
meters U.C Eigen- 

values F statistics Wilk’s 
lambda 

 
p-value 

C.C 

Entire 
sample 

PC 
FMW 

Constant 

0.059 
0.241 

-13.077 

0.057 24.198 0.946 0.000 0.232 

0-2 FML 
Constant 

0.306 
-9.466 

0.123 13.539 0.890 0.000 0.331 

3-6 LCL 
Constant 

0.221 
-18.910 

0.190 14.622 0.840 0.000 0.399 

7-9 MCL 
FMW 

Constant 

0.092 
0.411 

-27.290 

0.342 13.340 0.805 0.000 0.505 

10-12 MCL 
FML 

Constant 

0.095 
0.331 

-27.551 

0.511 18.907 0.754 0.000 0.582 

13-15 IPW 
CBL 
FML 

Constant 

0.074 
0.130 
0.163 

-27.195 

0.545 25.755 0.647 0.000 0.594 

16-20 MCL 
NOL 
IPW 
CBL 

Constant 

0.357 
-0.301 
0.051 
0.129 

-29.917 

1.424 45.936 0.412 0.000 0.767 
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an accuracy of 75.4%, with sex bias of 1.4%, and the age group of 10-12 years obtained 

75% accuracy and -13.6% sex bias. Males yielded higher accuracy rates than females in 

all age groups, except the age group of 10-12 years. 

Table 4.11: Group centroids, sectioning point values, and percentage accuracy for 
original and cross-validation samples for the entire sample and age groups for sex 
estimation 

Age 
groups 
(years) 

Centroids Sectioning  
point 

Classification 
accuracy of 

original samples 
(%) 

Classification 
accuracy of 
cross-validation 
samples (%) 

Entire  
sample 

M: 0.222 
F: -0.255 

-0.017 M: 68.6 
F: 54.5 

Sex bias: 14.3 
Total: 62.2 

M: 68.5 
F: 53.7 

Sex bias: 14.8 
Total: 61.6 

0-2 M: 0.318 
F: -0.380 

-0.031 M: 67.5 
F: 59.3 

Sex bias: 8.2 
Total: 63.4 

M: 63.9 
F: 60.8 

Sex bias: 3.1 
Total: 62.5 

3-6 M: 0.394 
F: -0.470 

-0.038 M: 72.2 
F: 62.8 

Sex bias: 9.4 
Total: 67.1 

M: 72.2 
F: 62.8 

Sex bias: 9.4 
Total: 67.1 

7-9 M: 0.455 
F: -0.725 

-0.135 M: 77.3 
F: 77.1 

Sex bias: 0.2 
Total: 77.2 

M: 76.1 
F: 74.7 

Sex bias: 1.4 
Total: 75.4 

10-12 M: 0.703 
F: -0.703 

0 M: 66.7 
F: 80.3 

Sex bias: -13.6 
Total: 75.0 

M: 66.7 
F: 80.3 

Sex bias: -13.6 
Total: 75.0 

13-15 M: 0.701 
F: -0.757 

-0.028 M: 80.7 
F: 78.9 

Sex bias: 1.8 
Total: 79.7 

M: 80.0 
F: 78.9 

Sex bias: 1.1 
Total: 79.5 

16-20 M: 1.150 
F: -1.220 

-0.035 M: 89.9 
F: 87.7 

Sex bias: 2.2 
Total: 88.8 

M: 88.4 
F: 87.7 

Sex bias: 0.7 
Total: 88.1 

M=male, F=female. 
 
 
4.3.6.4 Discriminant scores 

The discriminant scores were calculated using the discriminant function equations 

derived from the unstandardised coefficients and the constant. Seven equations were 

derived from stepwise DFA for the entire sample and all age groups are summarised in 

Table 4.12. The sex estimation model was developed using two parameters (PC and 

FMW) for the entire sample. In the age groups of 0-2 years and 3-6 years, FML and LCL 
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were selected for the model development, respectively. Moreover, two parameters (age 

group of 7-9 years: MCL and FMW, age group of 10-12 years: MCL and FML), three 

parameters (age group of 13-15 years: IPW, CBL, FML), and four parameters (age group 

of 16-20 years: MCL, NOL, IPW, CBL) were selected for the development of the model. 

These equations allow for the prediction of sex based on the measured parameters for 

each age group. If an individual’s discriminant score is less than the sectioning point, the 

unknown is the closest to the female sample. On the other hand, if the value is greater 

than the sectioning point, this indicates that the unknown is the closest to the male sample. 

By applying the predictive equations and comparing the discriminant scores to the 

sectioning points, the sex of an unknown individual can be estimated based on their 

proximity to the male or female sample.  

 Table 4.12: Discriminant model equations for sex estimation 

 

The histograms in Figure 4.1 illustrate the discriminant function scores for all age 

groups in sex estimation. The horizontal axis represents each individual in the analysis, 

while the vertical axis represents the discriminant score assigned to each individual. In 

the histogram, a positive score indicated a prediction of male (represented by the black 

column), while a negative score indicated a prediction of female (represented by the 

orange column). However, misclassification had resulted in the opposite prediction, 

where a positive score was assigned to females and a negative score was assigned to 

males. 

Age groups 
(years) 

Discriminant model equations 

Entire sample -13.077+0.059(PC)+0.241(FMW) 
0-2 -9.466+0.306(FML) 
3-6 -18.910+0.221(LCL) 
7-9 -27.290+0.092(MCL)+0.411(FMW) 

10-12 -27.551+0.095(MCL)+0.331(FML) 
13-15 -27.195+0.074(IPW)+0.130(CBL)+0.163(FML) 
16-20 -29.917+0.357(MCL)-0.301(NOL)+0.051(IPW)+0.129(CBL) 
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0-2 years                                                 3-6 years 

      

 7-9 years                                                      10-12 years 

 

13-15 years                                                16-20 years 

Figure 4.1: Histograms of discriminant function scores for all age groups for sex 
estimation 
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4.3.7 Binary logistic regression (BLR) 

Table 4.13 presents the results of the stepwise analysis conducted for BLR. For the 

entire sample, MCL, NOL, MCW, OC, and FML were selected for the development of 

sex estimation model. Cross-validation accuracy was recorded at 66.9%, with males 

obtaining higher accuracy (72.9%) than females (60.1%). The lowest accuracy rate was 

obtained by the age group of 0-2 years, with an accuracy of 67.9% and a sex bias of 2.8% 

by utilising FML. Higher accuracy was obtained for males (69.5%) compared to females 

(66.7%). 

The highest classification accuracy was obtained by the older age groups (age group 

of 16-20 years followed by age group of 13-15 years). Three parameters (MCL, NOL, 

FML) were selected for the development of the model in the age group of 16-20 years to 

produce an accuracy of 90.3% with a sex bias of 0.3%. Males obtained higher accuracy 

(90%) than females (89.7%). In the age group of 13-15 years, an accuracy of 82.3% was 

obtained by utilising two parameters (MCL, FML). Males obtained higher accuracy 

(82.5%) than females (82.0%) with a sex bias of 0.5%. 
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Table 4.13: Binary logistic regression analysis for the entire sample and according 
to age groups for sex estimation 

Age 
groups 
(years) 

Para-
meters β coefficients 

 

Standard 
error 

 

Sectioning 
point 

Classification 
accuracy of 

original 
samples (%) 

Classification 
accuracy of 

cross-
validation 

samples (%) 

Entire 
sample 

MCL 
NOL 
MCW 

OC 
FML 

(Constant) 

-4.986 
4.193 
-0.979 
1.516 
-2.119 
1.049 

0.048 
0.051 
0.020 
0.029 
0.045 
1.899 

0.5 M: 73.1 
F: 61.6 

Sex bias: 11.5 
Total: 67.4 

M: 72.9 
F: 60.1 

Sex bias: 
12.8 

Total: 66.9 

0-2 FML 
(Constant) 

-3.127 
0.589 

 

0.118 
5.330 

0.5 M: 72.1 
F: 66.7 

Sex bias: 5.4 
Total: 69.6 

M: 69.5 
F: 66.7 

Sex bias: 2.8 
Total: 67.9 

3-6 MCW 
(Constant) 

-3.314 
1.376 

0.052 
8.559 

0.5 M: 75.9 
F: 68.5 

Sex bias: 7.4 
Total: 72.2 

M: 75.7 
F: 68.7 

Sex bias: 7.0 
Total: 72.2 

7-9 FML 
(Constant) 

-4.123 
2.021 

0.212 
15.049 

0.5 M: 82.0 
F: 80.4 

Sex bias: 1.6 
Total: 81.2 

M: 81.0 
F: 80.4 

Sex bias: 1.4 
Total: 80.7 

10-12 MCL 
FML 

(Constant) 

-5.165 
-4.800 
5.505 

0.63 
0.175 
12.094 

0.5 M: 77.8 
F: 88.0 

Sex bias:  
-10.2 

Total: 82.9 

M: 77.8 
F: 86.2 

Sex bias:  
-8.4 

Total: 82.0 
13-15 MCL 

FML 
(Constant) 

-3.508 
-2.884 
4.025 

0.147 
0.134 
9.721 

0.5 M: 83.7 
F: 82.1 

Sex bias: 1.6 
Total: 82.9 

M: 82.5 
F: 82.0 

Sex bias: 0.5 
Total: 82.3 

16-20 MCL 
NOL 
FML 

(Constant) 

-27.853 
18.932 
-1.979 
7.313 

0.287 
0.292 
0.164 
17.043 

0.5 M: 92.1 
F: 90.8 

Sex bias: 1.3 
Total: 91.4 

M: 90.0 
F: 89.7 

Sex bias: 0.3 
Total: 90.3 

M=male, F=female. 
 
 
 
Table 4.14 presents the overall accuracy of DFA and BLR for original and cross-

validation samples. In general, the BLR yielded slightly higher overall classification 

accuracy rates with lower sex bias rates in all cases for the validation sample compared 

to the DFA. Overall, for the validation sample, the formula with the highest accuracy rate 

was obtained by BLR (90.3%), followed by DFA (88.1%) in the age group of 16-20 years.  
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Table 4.14: Classification accuracy of original and cross-validation samples 
between DFA and BLR for sex estimation 

 

4.4 Ethnicity estimation in the Malaysian sub-adult population 

4.4.1 Correlation analysis 

The results obtained were similar to that of Section 4.3.1 (Table 4.4). 

 
4.4.2 Descriptive statistics 

Descriptive statistics of mean values±SD for Malay, Chinese, and Indian cranial 

measurements are presented in Table 4.15. 

 
4.4.3 Analysis of Variance (ANOVA)  

ANOVA was conducted to test whether the mean size of each ethnicity was 

significantly different when comparing the inter-population variation for the entire 

sample and all age groups. As presented in Table 4.15, all parameters were found to vary 

significantly (p<0.05), except for MCL, PC, FC, CH, and FML, for the entire sample. The 

measurements expressing the most significant ethnic differences as indicated by F-values 

and p-values were MCW (F=20.532; p<0.001), followed by BAW (F=9.439; p<0.001) 

Age 
groups 
(years) 

  Classification accuracy of 
original samples (%) 

Classification accuracy of cross-
validation samples (%) 

 Males Females Sex 
bias 

Total Male Female  Sex 
bias  

Total 

Entire 
sample 

DFA 68.6  54.5 14.3 62.2 68.5 53.7 14.8 61.6 
BLR 73.1  61.6 11.5 67.4 72.9 60.1 12.8 66.9 

0–2 DFA 67.5  59.3 8.2 63.4 63.9  60.8 3.1 62.5 
 BLR 72.1  66.7 5.4 69.6 69.5  66.7 2.8 67.9 

3–6 DFA 72.2  62.8 9.4 67.1 72.2  62.8 9.4 67.1 
 BLR 75.9  68.5 7.4 72.2 75.7 68.7 7.0 72.2 

7–9 DFA 77.3  77.1 0.2 77.2 76.1  74.7 1.4 75.4 
 BLR 82.0  80.4 1.6 81.2 81.0  80.4 1.4 80.7 

10–12 DFA 66.7  80.3 -13.6 75.0 66.7  80.3 -13.6 75.0 
 BLR 77.8  88.0 -10.2 82.9 77.8 86.2 -8.4 82.0 

13–15 DFA 80.7  78.9 1.8 79.7 80.0  78.9 1.1 79.5 
 BLR 83.7  82.1 1.6 82.9 82.5  82.0 0.5 82.3 

16–20 DFA 89.9  87.7 2.2 88.8 88.4  87.7 0.7 88.1 
 BLR 92.1  90.8 1.3 91.4 90.0  89.7 0.3 90.3 
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and OC (F=8.502; p<0.001). For descriptive analysis by age group, no measurement was 

found to be statistically significant in the age group of 0-2 years. Significant variations 

were found in four parameters (BAW, MCW, LCL, IPW) for the age group of 3-6 years 

and four parameters for the age group of 7-9 years (CBL, MCW, BAW, IPW). Moreover, 

nine parameters (age group of 10-12 years: BAW, MCW, LCL, IPW, PC, OC, CH, CBL, 

FMW), five parameters (age group of 13-15 years: BAW, MCW, LCL, IPW, OC), and 

seven parameters (age group of 16-20 years: BAW, MCW, LCL, IPW, OC, CH, FMW) 

were found to differ significantly between Malay, Chinese, and Indian (p<0.05). 

 

 

Univ
ers

iti 
Mala

ya



109 

 
 
 

 
 

Table 4.15: Descriptive analysis and mean variation of ethnic groups for the entire sample ( N=521) and age groups 
 

 

Para- 
meters 

 
N 

Entire sample 
(M=221 C=145 

I=155) 

0-2 years 
(M=53 C=30 

I=29) 

3-6 years 
(M=39 C=23 

I=17) 

7-9 years 
(M=21 C=20 

I=16) 

10-12 years 
(M=24 C=18 

I=18) 

13-15 years 
(M=29 C=27 

I=23) 

16-20 years 
(M=55 C=31 

I=48) 
MCL M 

C 
I 
F 
P 

164.35±13.56 
166.70±15.07 
167.42±13.11 

2.547 
0.079 

147.07±12.32 
146.99±17.46 
149.70±13.57 

0.378 
0.686 

162.12±6.30 
165.00±7.18 
163.48±6.35 

1.400 
0.253 

169.56±6.95 
167.71±5.37 
168.25±6.20 

0.478 
0.622 

168.19±6.59 
171.0839±6.48 
167.47±8.33 

1.319 
0.275 

171.20±7.85 
176.47±8.23 
173.87±7.76 

2.843 
0.064 

175.29±6.77 
176.58±9.45 
175.58±8.84 

0.249 
0.780 

LCL M 
C 
I 
F 
P 

87.69±9.91 
90.97±10.85 
88.01± 9.06 

5.288 
0.005 

74.84±7.53 
76.02±9.97 
74.36±7.67 

0.321 
0.726 

85.11±4.65 
87.72±5.23 
83.57±4.08 

4.095 
0.020 

90.00±7.15 
91.7513±4.78 
89.84±3.59 

0.701 
0.501 

92.12±4.68 
97.42±5.14 
93.21±5.01 

6.312 
0.003 

93.61±5.11 
96.52±5.09 
92.34±5.06 

4.353 
0.016 

95.67±4.95 
99.09±6.46 
92.69±6.41 

11.280 
<0.001 

NOL M 
C 
I 
F 
P 

159.24±15.35 
162.13±15.63 
163.31±14.05 

3.674 
0.026 

139.80±11.84 
140.82±16.94 
142.76±13.14 

0.436 
0.647 

157.28±6.70 
159.31±7.36 
157.96±5.40 

0.675 
0.512 

161.95±18.09 
163.56±5.40 
165.18±6.30 

0.335 
0.717 

164.758±6.8 
168.10±6.30 
164.20±8.48 

1.590 
0.213 

167.24±7.59 
172.29±8.78 
170.70±7.80 

2.743 
0.071 

171.69±6.37 
172.90±8.74 
172.50±8.47 

0.279 
0.757 

MCW M 
C 
I 
F 
P 

139.03±9.30 
142.49±11.05 
135.32± 8.85 

20.532 
<0.001 

128.32±8.74 
128.04±12.47 
123.80±9.59 

2.080 
0.130 

138.16±5.94 
142.89±6.98 
133.85±6.18 

10.230 
<0.001 

142.12±7.95 
145.33±4.93 
137.04±6.85 

6.814 
0.002 

142.79±4.83 
146.41±5.83 
137.90±6.19 

10.573 
<0.001 

142.65±5.89 
146.79±7.22 
139.09±5.59 

9.540 
<0.001 

145.25±5.73 
148.89±6.89 
139.14±5.81 

26.793 
<0.001 
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 Table 4.15, continued 

 

 

Para- 
meters 

 
N 

Entire sample 
(M=221 C=145 

I=155) 

0-2 years 
(M=53 C=30 

I=29) 

3-6 years 
(M=39 C=23 

I=17) 

7-9 years 
(M=21 C=20 

I=16) 

10-12 years 
(M=24 C=18 

I=18) 

13-15 years 
(M=29 C=27 

I=23) 

16-20 years 
(M=55 C=31 

I=48) 
BAW M 

C 
I 
F 
P 

105.02±8.44 
107.76±10.38 
103.32± 8.11 

9.439 
<0.001 

94.92±8.85 
94.86±14.19 
92.31±10.71 

0.595 
0.554 

105.06±4.58 
108.73±4.36 
102.73±3.78 

9.889 
<0.001 

110.01±5.25 
111.61±4.45 
104.71±4.03 

10.396 
<0.001 

109.14±5.41 
109.84±3.80 
105.71±3.88 

4.360 
0.017 

108.24±6.03 
112.66±6.09 
107.06±3.97 

7.168 
0.001 

109.32±4.09 
112.22±6.52 
106.70±5.06 

11.214  
<0.001 

IPW M 
C 
I 
F 
P 

105.28±15.95 
109.84±17.21 
105.44±14.32 

4.205 
0.015 

82.72±9.58 
83.27±12.17 
82.01±11.30 

0.101 
0.904 

100.36±5.79 
102.98±7.64 
97.77±6.31 

3.182 
0.047 

108.58±6.36 
113.24±4.20 
106.52±4.49 

8.174 
0.001 

112.96±4.47 
117.74±5.97 
109.69±5.95 

10.081 
<0.001 

116.49±6.78 
121.78±5.72 
114.35±4.90 

10.317 
<0.001 

119.98±6.54 
124.99±6.89 
115.33±6.10 

21.230  
<0.001 

PC M 
C 
I 
F 
P 

106.16±8.13 
107.33± 8.65 
106.93± 7.92 

0.961 
0.383 

97.52±8.18 
97.66±10.96 
100.17±8.93 

0.859 
0.426 

108.68±5.25 
107.81±6.22 
109.22±6.79 

0.302 
0.740 

110.92±7.31 
110.24±5.56 
108.57±4.88 

0.689 
0.507 

107.62±5.45 
110.00±5.41 
104.39±6.93 

4.070 
0.022 

107.22±5.20 
110.73±6.05 
109.45±7.02 

2.215 
0.116 

109.69±6.19 
110.38±5.44 
109.19±6.92 

0.334 
0.716 

OC M 
C 
I 
F 
P 

95.13±7.86 
97.01± 8.57 
93.17± 7.87 

8.502 
<0.001 

87.05±7.61 
87.84±9.68 
83.52±6.09 

2.604 
0.079 

93.20±5.10 
95.2157±4.18 

92.17±5.07 
2.144 
0.124 

96.29±3.68 
95.99±3.52 
94.48±6.94 

0.718 
0.493 

99.52±5.54 
100.88±6.31 
94.89±5.94 

5.181 
0.009 

100.76±5.52 
102.82±6.96 
95.60±6.21 

9.209 
<0.001 

98.97±5.97 
101.34±6.47 
96.91±6.73 

4.594 
0.012 

CBL M 
C 
I 
F 
P 

88.92±11.18 
90.47± 11.77 
93.15± 10.87 

   6.460 
   0.002 

73.29±5.73 
73.23±8.28 
75.92±6.91 

    1.631 
    0.201 

85.17±4.10 
85.49±4.81 
86.33±5.33 
   0.382 

0.684 

91.20±4.38 
91.33±4.03 
94.50±4.48 

   3.264 
   0.046 

93.40±4.29 
95.65±4.19 
97.23±4.95 

   3.890 
  0.026 

97.48±5.73 
98.37±5.04 
99.05±4.90 

   0.630 
  0.535 

99.30±4.85 
101.44±6.14 
100.69±5.96 

   1.636 
  0.199 Univ

ers
iti 

Mala
ya



111 

  

 

 Table 4.15, continued 

 

 

 

 

 

 

                                ANOVA test, values are presented as mean±SD, Unit of measurement: millimetres (mm), N=number of samples expressed as M=Malay, C=Chinese, 
                                I=Indian, bold indicates statistical significance (p<0.05).

Para- 
meters 

 
N 

Entire sample 
(M=221 C=145 

I=155) 

0-2 years 
(M=53 C=30 

I=29) 

3-6 years 
(M=39 C=23 

I=17) 

7-9 years 
(M=21 C=20 

I=16) 

10-12 years 
(M=24 C=18 

I=18) 

13-15 years 
(M=29 C=27 

I=23) 

16-20 years 
(M=55 C=31 

I=48) 
FC M 

C 
I 
F 
P 

103.64±9.88 
104.49±10.91 
105.25± 9.60 

1.176 
0.309 

90.72±7.60 
89.39±11.69 
91.35±9.08 

0.355 
0.702 

102.00±4.97 
103.86±5.08 
102.87±4.15 

1.071 
0.348 

107.11±5.88 
105.59±3.38 
105.58±3.44 

0.765 
0.470 

107.04±4.41 
108.10±3.63 
106.94±6.75 

0.306 
0.737 

108.19±5.16 
110.50±6.43 
110.80±6.29 

1.597 
0.209 

112.05±5.56 
112.31±6.93 
110.63±5.92 

0.988 
0.375 

CH M 
C 
I 
F 
P 

126.72±11.74 
129.10±13.56 
127.99±11.39 

1.716 
0.181 

110.02±7.82 
108.87±12.81 
109.85±10.15 

0.134 
0.875 

125.96±5.41 
126.28±5.32 
125.68±4.55 

0.065 
0.937 

130.85±6.19 
131.37±4.71 
129.46±5.47 

0.558 
0.576 

131.28±4.07 
135.01±4.87 
130.09±5.89 

4.999 
0.010 

133.93±6.13 
136.82±6.35 
133.79±5.81 

1.927 
0.153 

135.97±6.06 
140.16±6.14 
135.22±6.01 

6.862 
0.001 

FML M 
C 
I 
F 
P 

34.09±9.89 
34.07± 3.34 
33.86± 3.23 

0.055 
0.946 

30.85±2.54 
31.50±4.38 
30.57±3.83 

0.574 
0.565 

33.60±2.28 
33.30±2.70 
33.26±2.39 

0.160 
0.852 

35.00±2.89 
34.74±2.24 
35.50±2.63 

0.384 
0.683 

34.22±2.24 
35.39±2.77 
34.65±2.18 

1.235 
0.298 

34.50±2.35 
35.38±3.16 
35.44±2.44 

1.090 
0.341 

36.93±19.02 
34.95±2.08 
34.33±2.58 

0.612 
0.544 

FMW M 
C 
I 
F 
P 

27.92±2.89 
28.84± 3.05 
28.17±2.77 

4.453 
0.012 

24.63±2.15 
25.10±3.06 
24.84±2.54 

0.340 
0.712 

27.92±1.73 
28.37±1.63 
28.05±1.68 

0.504 
0.606 

29.03±2.32 
29.17±2.27 
28.24±1.94 

0.886 
0.418 

29.18±1.88 
30.16±1.89 
28.18±2.09 

4.670 
0.013 

29.18±2.55 
29.56±2.22 
29.41±2.22 

0.173 
0.841 

29.44±2.37 
31.27±1.77 
29.50±2.32 

7.759 
0.001 
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4.4.4 Multivariate analysis of variance (MANOVA) 

The results of the MANOVA analysis are presented in Table 4.16. The MANOVA 

analysis tested the hypothesis of ‘ethnic differences in the cranium are predictable across 

all age groups and between males and females when utilising DFA’. MANOVA analysis 

rejected the null hypotheses (p>0.05) demonstrating no statistically significant 

differences in all measurements among the Malay, Chinese, and Indian ethnicities except 

for MCW and CBL. In addition, no significant differences in all measurements between 

males and females except for MCW and FML. Furthermore, no significant interaction 

was observed between ethnicity and sex, or between ethnicity and age groups, for all 

parameters. 

 

Table 4.16: Interactions between age groups, sex, ethnicity, sex*ethnicity, and age 
groups*ethnicity 

MANOVA test, bold indicates statistical significance (p<0.05). 
 

 
4.4.5 Discriminant function analysis (DFA) 

Two assumptions must be fulfilled before conducting DFA, which are normality of the 

data and homogeneity of variance/covariance matrices. 

 
Para-

meters 

Age groups Sex Ethnicity Sex*ethnicity Age groups* 
ethnicity 

F-
value 

Sig. F-
value 

Sig. F-
value 

Sig. F-
value 

Sig. F-
value 

Sig. 

MCL 12.090 0.001 0.541 0.462 3.690 0.055 1.577 0.210 1.158 0.282 
LCL 19.301 0.000 3.767 0.053 0.041 0.840 0.001 0.982 0.002 0.962 
NOL 11.798 0.001 0.031 0.860 5.369 0.212 2.306 0.129 0.774 0.379 
MCW 6.452 0.011 4.495 0.034 1.560 0.021 0.078 0.780 0.054 0.816 
BAW 4.203 0.041 2.014 0.156 0.219 0.640 0.000 0.982 0.018 0.893 
IPW 35.412 0.000 1.911 0.167 0.017 0.897 0.000 0.998 0.031 0.860 
PC 3.420 0.065 0.090 0.764 3.442 0.064 2.560 0.110 0.023 0.879 
OC 6.770 0.010 0.000 0.998 0.012 0.914 0.601 0.438 0.008 0.927 
FC 11.757 0.001 1.996 0.158 0.748 0.388 0.134 0.714 0.190 0.663 
CH 17.124 0.000 1.101 0.295 0.734 0.392 0.249 0.618 0.017 0.895 

CBL 37.044 0.000 0.507 0.477 4.006 0.046 0.766 0.382 0.074 0.785 
FML 8.969 0.003 5.633 0.018 0.738 0.391 0.672 0.413 3.687 0.055 
FMW 8.938 0.003 1.646 0.200 1.303 0.254 0.650 0.421 0.147 0.702 
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4.4.5.1 Normality of the data 

Upon analysing the skewness and kurtosis values presented in Appendix B, most 

parameters' skewness and kurtosis ratios fell well within the normal range (skewness: -2 

to 2 and kurtosis: -7 to 7), suggesting that the data were normally distributed 

(Byrne, 2010). The histogram with normal distribution curves further demonstrated the 

normal distribution of the sample. 

 
4.4.5.2 Homogeneity of covariance matrices 

The results of the log determinants and the Box’s M test are presented in Table 4.17 

and Table 4.18, respectively. Log determinants were found to be relatively equal between 

Malay, Chinese, and Indian. In addition, the Box’s M test was not statistically significant 

(p>0.001), indicating that the covariance matrices were equal. 

 Table 4.17: Log determinants of covariance matrices for ethnicity estimation 

 

 

Table 4.18: Box's M test of equality of covariance matrices for ethnicity estimation 
 

 

 
4.4.5.3 Pairwise comparison among the three ethnic groups 

Pairwise comparison was calculated on the craniometric measurements in each sample 

to indicate the levels of similarity and dissimilarity among the three ethnic groups. The 

results of the pairwise comparison are presented in Table 4.19, showing that the samples 

were significantly different from each other (p<0.001). Overall, Malay and Chinese 

samples were the most similar to each other (5.729), followed by Malay and Indian 

Group Rank Log determinants 

Malay 2 -5.565 
Chinese 2 -5.297 
Indian 2 -5.990 

Box’s M 
F Approx 2.772 
 df1 6 
 df2 3651521.573 
 Significant 0.011 Univ
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samples (10.986), and finally, Chinese and Indian samples (14.637). Similar results were 

obtained when the samples were divided by age groups, where the distance between 

Malay and Chinese pair was the smallest, followed by Malay and Indian pair, and finally, 

Chinese and Indian pair. 

Table 4.19: Pairwise comparison among the three ethnic groups for ethnicity 
estimation 

Age groups 
(years) 

Ethnicity Malay Chinese Indian 

Entire 
sample 

Malay 0   
Chinese 5.729 0  
Indian 10.986 14.637 0 

0-2 Malay 0   
 Chinese 1.260 0  
 Indian 7.616 7.698 0 

3-6 Malay 0   
 Chinese 4.031 0  
 Indian 5.315 12.293 0 

7-9 Malay 0   
 Chinese 3.022 0  
 Indian 8.830 12.790 0 

10-12 Malay 0   
 Chinese 3.416 0  
 Indian 7.300 10.367 0 

13-15 Malay 0   
 Chinese 2.964 0  
 Indian 7.170 10.113 0 

16-20 Malay 0   
 Chinese 4.264 0  
 Indian 7.858 10.884 0 

 

4.4.5.4 Canonical discriminant function analysis for the entire sample 

Using stepwise DFA, canonical discriminant functions were developed for the entire 

sample and for each age group. The present study relied on canonical discriminant 

function analysis to explore the pattern of possible ethnic differences in a sample of sub-

adult craniometric measurements for the age group of 0-20 years. For the entire sample, 

six parameters (LCL, CBL, IPW, CH, FC, MCW) were selected for the development of 

ethnicity estimation model. Canonical correlations for the first and second canonical 
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variate were obtained, the values being 0.578 and 0.150, respectively. Accounting for 

95.6% of the total variance, the first canonical discriminant function displayed high 

loadings for MCW. The second canonical function accounted for 4.4% of the total 

variance and displayed high loadings for LCL, CBL, IPW, CH, and FC. This within-

group variation is illustrated in the canonical variates plot in Figure 4.2, demonstrating 

the general relationship between the three ethnic groups. A DFA structure matrix was 

used to interpret the results of the canonical variates plot, suggesting that the Chinese and 

Malay samples have longer cranial width (MCW) than Indian sample (represented on 

CAN 1). Additionally, Chinese and Indian have longer LCL, CBL, IPW, CH, and FC, 

than Malay (represented on CAN 2). The results of the structure matrix are shown in 

Table 4.20, and associated information for each axis is presented in Table 4.21 (Section 

4.4.5.5), including unstandardised coefficients, functions at group centroids, canonical 

correlations, eigenvalues, and percentage of variance (%). 

 
Figure 4.2: CAN 1 and CAN 2 representing 100% of the variation among the 
study samples 
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Table 4.20: Discriminant function analysis structure matrix for ethnicity 
estimation 

Parameters Function 1 Function 2 
MCW 0.389 0.370 
LCL 0.123 0.741 
CBL -0.168 0.683 
IPW 0.120 0.627 
CH 0.022 0.527 
FC -0.060 0.344 
OC 0.250 0.250 

Bold indicates the largest absolute correlation between each parameter and any discriminant  
functions. 

 
 

4.4.5.5 Canonical discriminant function analysis for all age groups 

The canonical discriminant function results for all age groups are presented in Table 

4.21. Canonical discriminant function for the age group of 0-2 years selected five 

parameters (LCL, MCW, OC, FC, CBL) for the development of ethnicity estimation 

model. Canonical correlations for the first and second canonical variate were obtained, 

with the recorded values being 0.557 and 0.227, respectively. The first canonical 

discriminant function accounts for 89.2% of the total variance, and the second canonical 

discriminant function accounts for 10.8% of the total variance. 

For the age group of 3-6 years, two parameters (MCW and FC) were selected for the 

development of the model. The first canonical variate had a canonical correlation of 

0.497, explaining 93.5% of the total variance. The second canonical variate had a 

canonical correlation of 0.150, explaining 6.5% of the total variance. Three parameters 

(BAW, IPW, CBL) were selected for the age group of 7-9 years. The results of the 

canonical discriminant function provided canonical correlation for the first and second 

canonical variate, with the recorded values being 0.662 and 0.351, respectively. The first 

canonical variate represented 84.8% of the variation, while the second canonical variate 

represented 15.2% of the variation, forming a total of 100% of the variation. 

For the age group of 10-12 years, four parameters (LCL, BAW, IPW, CBL) were 

selected for the development of the model. Canonical correlation for the first (80%) and 

Univ
ers

iti 
Mala

ya



117 

second (20%) canonical variate represented 100% of the variation in the craniometric 

parameters used for the analysis. For the age group of 13-15 years, three parameters 

(MCL, MCW OC) were selected. Canonical correlations for the first and second 

canonical variate were obtained, with the recorded values being 0.555 and 0.299, 

respectively. The first canonical discriminant function accounts for 81.9% of the total 

variance and the second canonical discriminant function accounts for 18.1% of the total 

variance. Finally, for the age group of 16-20 years, six parameters (MCL, LCL, BAW, 

IPW, CBL, FMW) were selected for the development of the model. Canonical 

correlations for the first (91.9%) and second (8.1%) canonical variate represent 100% of 

the variation in the craniometric parameters used for the analysis.  

 
Table 4.21: Canonical discriminant function including unstandardised coefficients, 
functions at group centroids, canonical correlations, eigenvalues, and percentage 
of variance (%) 

Age groups 
(years) 

0-2   3-6 7-9 10-12 

U.C F1 F2 F1 F2 F1 F2 F1 F2 
LCL 0.053 -0.257     0.061 0.141 

MCW 0.118 0.073 0.188 -0.025     
BAW     0.182 -0.177 0.108 -

0.081 
IPW     0.043 0.239 0.143 0.024 
OC 0.075 0.013       
FC -0.070 0.182 -0.108 0.222     

CBL -0.213 -0.048   -0.177 0.045 -0.211 0.093 

Constant -3.309 -4.062 -14.967 -19.397 -8.213 -11.032 -13.503 - 
16.189 

Functions at group centroids     
Malay 0.318 0.216 -0.006 -0.151 0.295 -0.461 0.292 -

0.518 
Chinese 0.510 -0.336 0.685 0.145 0.763 0.376 0.897 0.500 

Indian -1.110 -0.047 -0.912 0.149 -1.341 0.134 -1.287 0.191 

C.C 0.557 0.227 0.497 0.150 0.662 0.351 0.670 0.411 
Eigenvalue 0.449 0.054 0.328 0.023 0.782 0.140 0.813 0.204 

Percentage of 
variance (%) 

 
89.2 

 
10.8 

 
93.5 

 
6.5 

 
84.8 

 
15.2 

 
80.0 

 
20.0 
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Table 4.21, continued 

U.C=unstandardised coefficients, C.C=canonical correlation. 

 

4.4.5.6 Discriminant scores 

Discriminant scores were calculated for the entire sample and each age group, and the 

scores were then plotted (Figure 4.3). Discriminant score equations are presented in Table 

4.22. For the entire sample, Malay clustered between Chinese and Indian. Interestingly, 

Malay clustered closer to Chinese compared to Indian, and Chinese and Indian clustered 

furthest from each other. Similar patterns were also observed in the age groups of 0-2 

years, 7-9 years, 10-12 years, and 13-15 years. However, in the age groups of 3-6 years 

and 16-20 years, Malay clustered relatively evenly between Chinese and Indian. 

Additionally, the centroids between Malay and Chinese were plotted more closely than 

the centroids between Chinese and Indian. 

       

Age groups (years) 13-15   16-20 Entire sample 
U.C F1    F2    F1 F2 F1 F2 
MCL -0.053 0.122 -0.072 -0.018   
LCL   0.129 -0.021 0.063 0.126 

MCW 0.103 0.061   0.090 -0.038 
BAW   0.085 0.020   
IPW   0.110 -0.054 0.053 0.030 
OC 0.125 -0.074   0.038 -0.056 
FC     -0.116 -0.116 
CH     0.050 0.045 

CBL   -0.122 0.127 -0.170 0.019 
FMW   0.052 0.357   

Constant -18.037 -22.407 -11.432 -13.903 -6.117 0.944 
Functions at group centroids     

Malay 0.277 -0.383 0.241 -0.305 0.200 -0.171 
Chinese 0.684 0.357 1.223 0.309 0.786 0.176 
Indian -0.880 0.107 -1.065 0.150 -1.021 0.079 
C.C 0.555 0.299 0.665 0.256 0.578 0.150 

Eigenvalue 0.446 0.098 0.794 0.070 0.502 0.023 
Percentage of variance 

(%) 
 

81.9 
 

18.1 
 

91.9 
 

8.1 
 

95.6 
 

4.4 
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Figure 4.3: Discriminant scores for functions 1 and 2 for the entire sample and all age groups for ethnicity estimationUniv

ers
iti 

Mala
ya



120 

Table 4.22: Discriminant model equations for the entire sample and all age groups 
for ethnicity estimation 

 

4.4.5.7 Classification accuracy in ethnicity estimation for pooled-sex 

The results of the classification accuracy for both original and cross-validated data are 

presented in Table 4.23. Classification accuracy for cross-validated data ranged from 

56.0% to 67.4%. For the entire sample, ethnicity estimation yielded an accuracy of 57.5% 

for cross-validated data. Indian obtained the highest accuracy (74.2%), followed by 

Chinese (62.1%) and then Malay (36.2%). When the samples were divided by age groups, 

the best classification accuracy was obtained by the age group of 10-12 years with 67.4% 

accuracy. Indian obtained the highest accuracy (72.2%), followed by Chinese (71.8%) 

and Malay (58.3%). The lowest classification accuracy was obtained by the age group of 

3-6 years with 56% accuracy. Indian achieved the highest accuracy (69.7%) followed by 

Chinese (65.0%), while Malay achieved the lowest accuracy (33.3%).  

The misclassification rate varied among the ethnic groups, with Malay obtaining the 

highest misclassification rate compared to Chinese and Indian. For the entire sample, 

Age groups 
(years) 

Discriminant score equation 1 Discriminant score equation 2 

0-2 -3.309+(0.053*LCL)+(0.118*MCW)+ 
(0.075*OC)+(-0.070*FC)+(-

0.213*CBL) 

-4.062+(-0.257*LCL)+(0.073*MCW) 
+(0.013*OC)+(0.182*FC)+(-

0.048*CBL) 
3-6 -14.967+(0.188*MCW) + 

(-0.108*FC) 
-19.397+(-0.025*MCW)+(0.222*FC) 

7-9 -8.213+(0.182*BAW)+(0.043*IPW)+(-
0.177*CBL) 

-11.032 +(-0.177*BAW) 
+(0.239*IPW)+(0.045*CBL) 

10-12 -13.503+(0.061*LCL)+(0.108*BAW) 
+(0.143*IPW)+(-0.211*CBL) 

-16.189+(0.141*LCL)+(-0.081*BAW) 
+(0.024*IPW)+(0.093*CBL) 

13-15 -18.037+(-0.053*MCL) 
+(0.103*MCW)+(0.125*OC) 

-22.407+(0.122*MCL) 
+(0.061*MCW)+(-0.074*OC) 

16-20 -11.432+(-0.072*MCL)+(0.129LCL) 
+(0.085*BAW +(0.110*IPW)+(-

0.122CBL)+(0.052*FMW) 

-13.903+(-0.018*MCL)+(-
0.021*LCL)+(0.020*BAW)+(-

0.054*IPW)+(0.127*CBL) 
+(0.357*FMW) 

Entire 
sample 

-6.117+(0.063*LCL)+(0.090*MCW) 
+(0.053*IPW)+(0.038*OC)+(-

0.116*FC)+(0.050*CH)+(-0.170*CBL) 

0.944+(0.126*LCL)+(-0.038*MCW) 
+(0.030*IPW)+(-0.056*OC)+(-

0.116*FC)+(0.045*CH) +(0.019*CBL) 
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Malays were highly misclassified as Chinese (38%) and Indians (25.8%). In comparison, 

Chinese were misclassified as Malays (24.1%) and Indians (13.8%). Indians achieved the 

lowest misclassification rate as they were misclassified as Malays by 17.4% and Chinese 

by 8.4%. Similar patterns were obtained in all age groups except for the age groups of 3-

6 years and 13-15 years, where Malays were misclassified relatively evenly with Chinese 

and Indians. This indicated a less distinct differentiation between the ethnic groups within 

these specific age ranges. 

 

Table 4.23: Classification accuracy of original and cross-validation samples for the 
entire sample and all age groups for ethnicity estimation 

 

 

 

Age 
groups 
(years) 

  
 

Ethnicity 

Classification accuracy of original and cross-
validation samples (%) 

Malay Chinese Indian Total 

 Entire 
sample 

Original 
 
 
 

Cross-
validation 

 

Malay 
Chinese 
Indian 

 
Malay 

Chinese 
Indian 

36.7 
21.4 
17.4 

 
36.2 
24.1 
17.4 

38.0 
64.8 
8.4 

 
38.0 
62.1 
8.4 

25.3 
13.8 
74.2 

 
25.8 
13.8 
74.2 

58.6 
 
 
 

57.5 

0-2 Original 
 
 
 

Cross-
validation 

 

Malay 
Chinese 
Indian 

 
Malay 

Chinese 
Indian 

50.9 
33.3 
10.3 

 
50.9 
33.3 
11.8 

28.3 
53.3 
10.3 

 
28.3 
53.3 
10.3 

20.8 
13.3 
79.3 

 
20.8 
13.3 
77.9 

61.2 
 
 
 

60.7 

3-6 Original 
 
 
 

Cross-
validation 

 

Malay 
Chinese 
Indian 

 
Malay 

Chinese 
Indian 

33.3 
26.1 
17.6 

 
33.3 
26.3 
18.5 

33.3 
65.2 
11.8 

 
33.3 
65.0 
11.8 

33.3 
8.7 

70.6 
 

33.3 
8.7 

69.7 

56.4 
 
 
 

56.0 

7-9 Original 
 
 
 

Cross-
validation 

 

Malay 
Chinese 
Indian 

 
Malay 

Chinese 
Indian 

38.1 
25.0 
6.3 

 
38.1 
25.0 
7.8 

38.1 
65.0 
6.3 

 
38.1 
65.0 
6.3 

23.8 
10.0 
87.5 

 
23.8 
10.0 
85.9 

63.5 
 
 
 

63.0 
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 Table 4.23, continued 

 

 
4.4.5.8 Classification accuracy in ethnicity estimation for males and females 

F1m, F2m, F1f, F2f, and group centroids for each ethnicity are presented in Table 4.24. 

When each sex was treated separately, five parameters (LCL, MCW, IPW, FC, CBL) and 

two parameters (MCW, CBL) were obtained for males and females, respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Age 
groups 
(years) 

  
 

Ethnicity 

Classification accuracy of original and cross-
validation samples (%) 

Malay Chinese Indian Total 

10-12 Original 
 
 
 

Cross-
validation 

 

Malay 
Chinese 
Indian 

 
Malay 

Chinese 
Indian 

58.3 
22.2 
16.7 

 
58.3 
22.6 
19.7 

25.0 
72.2 
11.1 

 
25.0 
71.8 
11.1 

16.7 
5.6 

72.2 
 

16.7 
5.6 

72.2 

67.6 
 
 
 

67.4 

13-15 Original 
 
 
 

Cross-
validation 

 

Malay 
Chinese 
Indian 

 
Malay 

Chinese 
Indian 

44.8 
21.7 
25.9 

 
44.8 
22.5 
26.5 

27.6 
60.9 
7.4 

 
27.6 
60.1 
7.4 

27.6 
17.4 
66.7 

 
27.6 
17.4 
66.1 

57.5 
 
 
 

57.0 

16-20 Original 
 
 
 

Cross-
validation 

 

Malay 
Chinese 
Indian 

 
Malay 

Chinese 
Indian 

41.8 
16.1 
12.5 

 
41.8 
16.1 
13.3 

32.7 
71.0 
4.2 

 
32.7 
71.0 
4.2 

25.5 
12.9 
83.3 

 
25.5 
12.9 
82.5 

65.4 
 
 
 

65.1 
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Table 4.24: F1m, F2m, F1f, F2f and group centroids for Malay, Chinese, and 
Indian 

 

 

 

 

 

 

 

 

 
The results of the classification accuracy for both original and cross-validated data are 

presented in Table 4.25. Cross-validated accuracy of 54.5% and 55.4% were obtained for 

males and females, respectively. 

 
Table 4.25: Classification accuracy for original and cross-validation samples for 
males and females for ethnicity estimation 

 

N=number of males/number of females. 

 

Sex Parameters F1 F2 
Males LCL 0.075 0.082 

 MCW 0.094 0.039 
 IPW 0.071 -0.047 
 FC -0.088 -0.111 
 CBL -0.156 0.124 
 
 

(Constant) 
 

-3.901 -7.318 

Function at group centroid 
Malay 

Chinese 
Indian 

 0.229 
0.799 
-1.116 

-0.195 
0.207 
0.085 

Females 
 
 
 

MCW 0.156 0.040 
CBL -0.130 0.064 

(Constant) -9.845 -11.181 

Function at group centroid 

Malay 
Chinese 
Indian 

 0.188 
0.532 
-0.734 

-0.060 
0.068 
0.023 

                              Classification accuracy of original and cross-validation samples (%) 
 Malay 

(N=119/102) 
Chinese 

(N=79/66) 
Indian 

(N=81/74) 
Total 

Males 
Original 

 

 
38.7 

 
63.3 

 
77.8 

 
57 

Cross-
validation 

37.0 60.8 74.1 54.5 

Females 
Original 

 

 
40.2 

 
65.2 

 
70.3 

 
56.2 

Cross-
validation 

39.2 63.6 70.3 55.4 
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4.5 Machine learning methods 

4.5.1 ML methods with GridSearchCV results 

The results of each ML method with GridSearchCV are presented in Table 4.26. For 

sex estimation, RF achieved the optimal hyperparameters: max_depth=6, 

max_samples=40, and n_estimators=150. SVM obtained the best hyperparameters of 

learning rate (C)=10, gamma=0.01, and kernel=rbf, while LDA yielded a shrinkage value 

of 0.02. For ethnicity estimation, RF obtained the optimal hyperparameters with 

max_depth=6 and n_estimators=45, whereas SVM achieved the best hyperparameters 

with a learning rate (C) of 1000, gamma of 0.001, and a kernel of rbf. Additionally, LDA 

resulted in a shrinkage value of 0.01. 

 
Table 4.26: Machine learning methods with GridSearchCV for sex and ethnicity 

estimation 

RBF=radial basis function  

 

4.5.2 Performance metrics of different machine learning (ML) methods for sex 

and ethnicity estimation 

Performance metrics such as accuracy, precision, recall, and F1-score of three ML 

methods for sex and ethnicity estimation models are summarised in Table 4.27 and Table 

4.28, respectively. For sex estimation, RF had the highest accuracy ratio of 0.73, while 

LDA had the lowest accuracy ratio of 0.65. In contrast, for ethnicity estimation, LDA had 

the highest accuracy ratio of 0.58, while RF had the lowest accuracy ratio of 0.52. In 

accordance with recent efforts to make statistical programmes freely available for 

 RF            SVM LDA 
 Hyper-

parameters 
Value Hyper-

parameters 
Value Hyper-

parameters 
Value 

Sex        
estimation 

Max_depth 
N_estimators 

6 
150 

C 
Gamma  
Kernel 

10 
0.01 
RBF 

Shrin-
kage 

0.02 

Ethnicity 
estimation 

Max_depth 
N_estimators 

6 
45 

C 
Gamma  
Kernel 

1000 
0.001 
RBF 

Shrin-
kage 

0.01 
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practitioners (Berg & Kenyhercz, 2017), a GUI was developed utilising the RF and LDA 

models for sex and ethnicity estimation, respectively. This application, SNA estimator 

version 1.0, was built using streamlit application and is freely available at 

https://snaestimator.streamlit.app/ (Figure 4.4). 

 
 Table 4.27: Performance metrics of different machine learning methods for sex 
estimation 

Bold signifies the highest percentage of classification accuracy, RF=random forest, SVM=support vector 
machines, LDA=linear discriminant analysis. 

 
 

 Table 4.28: Performance metrics of different machine learning methods for 
ethnicity estimation 

Bold signifies the highest percentage of classification accuracy, RF=random forest, SVM=support vector 
machines, LDA=linear discriminant analysis. 

 
ML methods 

 
Sex 

Performance metrics 

Accuracy Precision Recall F1-Score 

RF 
 
 

SVM 
 
 

LDA 

Male  
Female 

 
Male 

Female 
 

Male 
Female 

0.73 
 
 

0.67 
 
 

0.65 

0.71 
0.75 

 
0.66 
0.69 

 
0.64 
0.66 

0.80 
0.64 

 
0.75 
0.58 

 
0.72 
0.58 

0.75 
0.70 

 
0.70 
0.63 

 
0.68 
0.62 

 

ML methods 

 

Ethnicity 

Performance metrics 

Accuracy Precision Recall F1-Score 

RF 
 
 
 

SVM 
 
 
 

LDA 

Malay 
Chinese 
Indian 

 
Malay 

Chinese 
Indian 

 
Malay 

Chinese 
Indian 

0.52 
 
 
 

0.57 
 
 
 

0.58 
 
 

0.49 
0.41 
0.69 

 
0.49 
0.60 
0.72 

 
0.51 
0.67 
0.69 

0.68 
0.31 
0.51 

 
0.71 
0.36 
0.58 

 
0.69 
0.43 
0.58 

0.57 
0.35 
0.59 

 
0.58 
0.45 
0.65 

 
0.59 
0.52 
0.63 
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Figure 4.4: GUI design for sex and ethnicity estimation, available for free at https://snaestimator.streamlit.app

Maximum Cranial Length (MCL) 

Maximum Cranial Width (MCW) 

Lateral Cranial Length (LCL.L) 

Lateral Cranial Length (LCL.R) 

Nasio-occipital Length (NOL) 

Biasteronic Width (BAW) 

Parietal Cord (PC) 

Frontal Cord (FC) 

Occipital Cord (OC) 

Cranial Height (CH) 

Cranial Base Length (CBL) 

Foramen Magnum Length (FML) 

Interporion Width (IPW) 

Age (years) 

Foramen Magnum Width (FMW) 

Estimate 
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4.5.3 Validity of sex and ethnicity estimation models between machine learning 

(ML) and classical statistical methods (DFA and BLR) 

Overall classification accuracies between ML and classical methods for the entire 

sample are summarised in Table 4.29. For sex estimation models, ML method, 

specifically RF, achieved the highest classification accuracy of 73%. On the other hand, 

the classical method of DFA obtained the lowest accuracy of 61.6%. For ethnicity 

estimation models, ML method (LDA) obtained a slightly higher accuracy of 58% 

compared to the classical method of DFA, which yielded an accuracy of 57.5%. These 

results suggested that ML methods, particularly RF for sex estimation and LDA for 

ethnicity estimation, outperformed the classical methods in terms of overall classification 

accuracy. 

 
Table 4.29: Overall classification accuracies between machine learning and 
classical methods for sex and ethnicity estimation 

Statistical methods       Accuracy (%) 
Sex estimation 

DFA 61.6 
BLR 66.9 
RF 73.0 

SVM 67.0 
LDA 65.0 

Ethnicity estimation 
DFA 57.5 
RF 52.0 

SVM 57.0 
LDA 58.0 

Bold signifies the highest percentage of classification accuracy, DFA=discriminant function analysis, 
BLR=binary logistic regression, RF=random forest, SVM=support vector machines, LDA=linear 
discriminant analysis. 
 
 

 
4.6 Cephalic index (CI) 

4.6.1 Descriptive statistics of CI 

The mean±SD of the CI for each age group are shown in Table 4.30. The overall mean 

CI was 84.04±4.71. The mean CI for males was 83.91±4.63, while the mean CI for 

females was 84.13±4.72. No significant differences were found between the male CI and 
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female CI for all age groups. Based on the values observed in the present study, a marked 

decrease in the mean value for CI for the first few years of life was noted, followed by a 

milder decrease for the age range between three and six years, with stabilisation achieved 

after that. 

 
Table 4.30: Descriptive statistics and mean variation of cephalic index between 
males and females for all age groups 

Values are presented as mean±SD (min-max), N=number of samples. 
 
 
4.6.2 Proposed CI of the Malaysian population 

Based on the data obtained in these results, the modified CI range for the current 

Malaysian population is categorised as shown in Table 4.31. The modified ranges of the 

current CI of the Malaysian sub-adult population were as follows: dolichocephalic, 78.8 

or less; mesocephalic, 78.9–89.0; brachycephalic, 89.1–94.0; and hyperbrachycephalic, 

94.1 or higher.  

 Table 4.31: The proposed Malaysian classification of cephalic index 

 

 

 
Age groups 

(years) 

CI p-value 
(<0.05) 

Total (N=521) Male (N=279) Female (N=242) 

0-2 86.31±5.37  
(75.2-101.7) 

86.52±5.22  
(75.9-96.9) 

86.06±5.59  
(75.2-101.7) 

0.835 

3-6 84.99±4.71  
(72.3-96.8) 

85.93±4.48  
(75.7-93.6) 

83.87±4.79  
(72.3-96.8) 

0.763 

7-9 84.22±4.76  
(72.9-92.6) 

84.50±4.86  
(72.9-92.6) 

83.78±4.67  
(75.0-92.1) 

0.984 

10-12 84.44±4.18  
(75.6-93.3) 

83.72±3.92  
(75.6-93.3) 

85.15±4.37  
(76.2-92.2) 

0.389 

13-15 82.27±4.70  
(72.0-92.3) 

81.89±4.64  
(72.0-92.3) 

82.67±4.79  
(74.9-91.2) 

0.962 

16-20 82.03±4.54  
(71.0-93.8) 

80.87±4.66  
(71.0-91.5) 

83.25±4.10  
(74.5-93.8) 

0.962 

Total 84.04 ± 4.71 83.91 ± 4.63 84.13 ± 4.72 0.815 

CI index Skull morphology 
X ≤ 78.8 Dolichocephalic 

78.9 – 89.0 Mesocephalic 
89.1 – 94.0 Brachycephalic 

94.1 ≥ X Hyperbrachycephalic 
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Figure 4.5 illustrates the percentages of cranial shape in Malaysian sub-adult 

population. Analysis of the cranial shape in the Malaysian sub-adult population indicated 

that the dominating type was mesocephalic (66.4%), followed by dolichocephalic 

(18.4%), and brachycephalic (12.3%). Hyperbrachycephalic shape was found to be the 

least frequently observed category (2.9%).  

 

 

Figure 4.5: The cranial shapes of Malaysian sub-adults 
 

Figure 4.6 presents the distribution of cranial shape percentages within the different 

age groups. It provides a breakdown of the cranial shape distribution among sub-adults 

of varying ages. Among the younger age groups (0-2 years, 3-6 years, 7-9 years, and 10-

12 years), the prevalent head shape was mesocephalic, followed by brachycephalic and 

dolichocephalic forms. Meanwhile, among the older age groups (13-15 years and 16-20 

years), mesocephalic remained the prevalent head shape, followed by dolichocephalic and 

brachycephalic shapes. 
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Figure 4.6: The cranial shapes of Malaysian sub-adults by age groups  
 

4.6.3 A comparison of the CI between the Malaysian population and other 

populations 

The average CI values for the Malaysian population and other populations worldwide 

are presented in Table 4.32.  

 
Table 4.32: Comparison of cephalic index values between the Malaysian 
population and other populations 
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Age groups  
    (years) 

0-2 3-6 7-9 10-12 13-15 16-20 

Malaysian 86.31 84.99 84.22 84.44 82.27 82.03 
Korean 89.01 85.79 85.84    

Japanese 86.5      
Brazilian 83 80.48 82.07 83.17 82.17 82.2 
European 82.7 80.47 81.9 82.77 82.3 82.45 
Siberian   80.37 81.51 80.17  
Polish 81.46      

Caucasian 77.87 75 82.5 74.4 75 76.5 

Dolichocephalic Hyperbrachycephalic Brachycephalic 
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4.6.4 Cephalic index (CI) classifications 

A comparison between the proposed CI classification for the Malaysian population 

and other existing CI classifications are presented in Table 4.33. The proposed Malaysian 

CI classification ranges for all cranial shapes were found to be higher than Cohen's and 

Standring's CI classifications, but lower than Nam's and Koizumi's classifications. 

Table 4.33: Comparison between the proposed cephalic index classification and 
other existing cephalic index classifications 

Cranial 
   shape 

Malaysia Cohen  Standring Nam 
 

Koizumi 

Dolicho- 
cephalic 

X≤ 
78.8 

X≤ 
75.9 

X≤ 
74.9 

X≤ 
80.1 

X≤ 
79.1 

Meso- 
cephalic 

78.9- 
89.0 

76.0- 
80.9 

75.0- 
79.9 

80.2- 
93.4 

79.2- 
93.8 

Brachy- 
cephalic 

89.1- 
94.0 

81.0- 
85.4 

80.0- 
84.9 

93.5- 
100.0 

93.9- 
101.1 

Hyper- 
brachy- 
cephalic 

94.1 
≥X 

85.5 
≥X 

85.0 
≥X 

100.1 
≥X 

101.2 
≥X 

Univ
ers

iti 
Mala

ya



132 

CHAPTER 5: DISCUSSION 

This chapter will discuss the results obtained from the statistical analyses in four main 

sections. The first two sections of this chapter will discuss the development of sex and 

ethnicity estimation models for Malaysian sub-adults. The estimation models were 

developed using classical statistical analyses, such as DFA and BLR, based on the most 

meaningful combinations of measurements. However, it was proposed that ML algorithm 

may increase the accuracy percentage of sex and ethnicity estimation (Nikita & Nikitas, 

2020). Thus, the third section will compare the validity of the sex and ethnicity estimation 

models developed using ML algorithms (RF, SVM, and LDA) and classical statistical 

methods (DFA and BLR). The fourth section will discuss the new CI classification for 

the Malaysian sub-adult population. This new classification system aimed to provide a 

more accurate and refined approach for interpreting CI measurements of the Malaysian 

sub-adult population considering the variations observed within this specific group. By 

achieving these goals, this study aimed to contribute to the field of forensic anthropology 

and population studies by providing more accurate and updated sex and ethnicity 

estimation methods, as well as a refined CI classification system for the Malaysian sub-

adult population. Additionally, this chapter will address the limitations of this study and 

provide recommendations for future research. 

 
5.1 Sex estimation models 

5.1.1 Sexual dimorphism 

Sexual dimorphism is the differences in size, shape, or other physical characteristics 

between males and females. These differences are frequently influenced by the secretion 

of hormones during growth and development (İşcan, 2005; Klales & Burns, 2017; 

Scheuer & Black, 2000). Prior to birth, females would receive more estrogen than males 

would receive testosterone during the same period of development. Differences in the 
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secretion of sex hormones between males and females provide the initial requirements for 

the development of sexual dimorphism early in life. During puberty, there is an increase 

in the levels of hormonal activities. For example, estradiol is responsible for pubertal 

growth spurts and increases in body fat in females. Meanwhile, testosterone is responsible 

for growth spurts, decreased body fat, and increased muscle mass in males. These sex 

hormones are also responsible for the development of secondary sexual characteristics 

and the acceleration of skeletal maturation (Roche & Sun, 2003). Therefore, the traits 

between females and males are very distinctive due to the development of the female 

secondary sexual characteristics that starts to occur approximately two years earlier than 

males. This difference would result in an early growth spurt in females, whereas males 

have a delayed growth spurt (Humphrey, 1998). However, the levels of these hormones 

can fluctuate throughout development and can be influenced by numerous genetic and 

environmental factors. Therefore, these factors must be considered when studying the 

development and expression of sexual dimorphism in different populations. 

The neurocranium, which includes the cranial base and cranial vault, is the most 

sexually dimorphic region of the sub-adult craniofacial skeleton. This is because the early 

growth trajectory of the neurocranium is mainly related to neurological development and 

brain growth. During the first two years of life, the brain undergoes substantial change, 

leading to an increase in head circumference from 65% to 90% of the adult size. The 

growth of the cranial vault is completed by around five years of age, while the increase 

of the cranial base happens gradually and reaches adult size at around 13 years of age. 

Because of these growth patterns, the neurocranium develops faster and reaches adult size 

earlier than the facial complex, which includes the maxilla, mandible, and other structures 

related to mastication and speech. This difference in growth can contribute to the 

development of sexual dimorphism in measurements associated with the neurocranium, 

as the rates of neurological development and brain growth may differ between males and 
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females (Farkas et al., 1992; Waitzman et al., 1992). However, the specific patterns of 

sexual dimorphism in the neurocranium can vary depending on the specific traits being 

studied and the population being analysed, as these patterns can differ among ethnic 

groups and geographic regions. 

This study found that the growth of neurocranium is most significant within the first 

six years of age and slowly continues until 20 years of age. Specifically, six measurements 

were found to be statistically significant (p<0.05) in the youngest age group of 0–2 years 

(MCW, FC, CH, CBL, FML, and FMW) and 3-6 years (LCL, MCW, IPW, FC, CBL, and 

FMW), and the number of significant measurements increased with age (Table 4.5). A 

parallel growth pattern for males and females prior to six years had resulted in low levels 

of sexual dimorphism. Conversely, differences in the onset of puberty between males and 

females aged 10 to 12 had increased the level of sexual dimorphism in the Malaysian sub-

adults (Table 4.7). Sexual dimorphism became more evident in the older age group (>16 

years), as they had reached the end stage of craniofacial development before skeletal 

maturity (Gonzalez, 2012). Hence, the findings for the age group of 16-20 years were 

comparable with the results of other studies on adult populations (Franklin et al., 2013b; 

Gillet et al., 2020; Ramamoorthy et al., 2016). The existence of sex differences could also 

be due to age-related growth changes, as observed when the accuracy of sex estimation 

improved with age from 60% (62.5% to 67.9%) to higher than 85% (88.1% to 90.3%; 

Table 4.14). 

The present study’s findings were consistent with two previous studies conducted by 

Gonzalez (2012) and Noble et al. (2019). These studies reported that the level of sexual 

dimorphism was minimal in the age range of 3–6 years, which then increased with age. 

The results showed that the differences between males and females, in terms of various 

measurements used for sex estimation, would become more pronounced as individuals 

grow older. Baughan and Demirjian (1978) contributed to the understanding of sexual 
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dimorphism by demonstrating that it was present as early as at six years of age, with a 

5% difference between males and females. The authors observed that the level of sexual 

dimorphism diminished during puberty (around 4% difference) before becoming more 

pronounced post-puberty at the age of 18 (8% difference). These findings indicated that 

the level of sexual dimorphism would fluctuate throughout different stages of 

development and maturation. The magnitude of sexual dimorphism can also vary between 

and within populations. This variation can be influenced by several factors, including 

differences in body composition, biochemical factors, environmental conditions, 

nutrition, and genetics (Kimmerle et al., 2008).  

The effects of population differences were evident in this study, particularly in cranial 

length and height. The cranium of the Malaysian sub-adult population was found to be 

4%–17% smaller than the standard Romanian (Teodoru-Raghina et al., 2017) and 

Taiwanese (Hsiao et al., 2010) populations. These discrepancies suggested that foreign 

indices are unsuitable for the Malaysian population. However, data for the Malaysian sub-

adult population are currently unavailable. Thus, sex estimation should be conducted 

based on data derived from the respective population.  

 

5.1.2 Discriminant function analysis (DFA) vs binary logistic regression (BLR) 

The accuracy of sex estimation in the present study depended on the selection of 

suitable statistical methods. DFA and BLR are commonly employed to analyse 

craniometric data. DFA is widely utilised in sex estimation and is known to be population-

specific. However, the accuracy of this method can vary based on the specific population 

under study (İşcan & Steyn, 2013). Previous researchers have used DFA to estimate the 

sex of sub-adults’ crania and achieved different ranges of classification accuracies 

(Gonzalez, 2012; Hsiao et al., 2010; Noble et al., 2019; O’Donnell et al., 2017; Teodoru-

Raghina et al., 2017; Veroni et al., 2010). On the other hand, BLR was reported to have 

Univ
ers

iti 
Mala

ya



136 

outperformed DFA in assessing cranial sexual dimorphism due to its increased flexibility 

and robustness (Toneva et al., 2018). In the present study, DFA and BLR showed similar 

classification accuracies between the original and validation samples. However, BLR 

consistently achieved a higher classification accuracy of approximately 4.9% and lower 

sex bias rates compared to DFA (Table 4.14). In addition, BLR has also successfully 

determined sex using fewer parameters (Table 4.13). This observation is aligned with 

previous works that produced marginally better rates of classification when BLR was 

used (Ekizoglu et al., 2017; Macaluso Jr., 2010; Santos et al., 2014; Singh & Pathak, 

2013). 

A minimum standard of accuracy for adult sex estimation methods was set at 80% to 

85% (Klales & Burns, 2017). However, it has been recommended that sub-adults' 

accuracy be ≥75% (Stull et al., 2020). In the present study, DFA and BLR recorded 

accuracies of ≥75% in all age groups, except for 0–2 years and 3–6 years (Table 4.14). 

The age group of 0-2 years showed the lowest accuracy rate for DFA and BLR due to the 

low level of sexual dimorphism in foetal and infants’ crania (Klales & Burns, 2017). In 

the age group of 5-6 years, males and females experienced similar changes that included 

the end of neurocranial growth and the decreasing rate of growth in the transition from 

being a child to a juvenile (Scheuer & Black, 2000). These factors could have contributed 

to a reduced ability to accurately estimate sex using DFA and BLR in these age groups. 

The findings of the present study are aligned with the results of another study that found 

sex estimation as being unreliable in this age range (Noble et al., 2019). However, the 

present study contradicted their findings by demonstrating that DFA and BLR can be 

confidently employed for sex estimation of sub-adults from seven to 20 years, which is 

earlier than previously reported (Noble et al., 2019). Overall, this study has highlighted 

the limitations of DFA and BLR for sex estimation in the early years of life. The findings 
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supported the notion that these methods could become more reliable and accurate for sub-

adults above the age of six years. 

Previous methods have demonstrated higher sex biases toward male classification 

(Gonzalez, 2012; Teodoru-Raghina et al., 2017). Similarly, the current findings also 

demonstrated higher classification accuracies in males than females. This could be due to 

a slightly larger male sample size than the female sample size, which influenced the 

predictive power of sex estimation methods (Hanifah et al., 2015). However, the accuracy 

rate for females in this study was higher than for males aged 10 to 12. In this age range, 

the traits between females and males would be very distinctive due to the development of 

the female secondary sexual characteristics, which starts to occur approximately two 

years earlier than males (Humphrey, 1998). 

The classification accuracy of sub-adults’ crania in this study was comparable to the 

accuracy of previous studies (Gonzalez, 2012; Hsiao et al., 2010; Noble et al., 2019). 

Discriminant equations were developed and more than 80% classification accuracy was 

achieved by several studies (Gonzalez, 2012; Hsiao et al., 2010). The accuracy of sex 

estimation can be influenced by two main factors: age and population differences. Studies 

which focused on older age groups, particularly after puberty, obtained higher accuracy 

rates (Hsiao et al., 2010) compared to studies involving younger age groups (Noble et al., 

2019). This observation can be attributed to the lower level of sexual dimorphism present 

in younger individuals prior to the onset of puberty (Noble et al., 2019). Population 

homogeneity can also impact the classification accuracy of sex estimation. A study on the 

homogeneous population of Taiwan reported a higher accuracy rate of up to 95% (Hsiao 

et al., 2010). However, a study on the New Mexican population with diverse ethnicities 

reported an accuracy rate of lower than 60% (O’Donnell et al., 2017). Moreover, previous 

research has shown that ethnic variations can influence the classification accuracy of sex 

estimation of the neurocranium (Holland, 1986; Wescott & Moore-Jansen, 2001). 
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Considering Malaysia's diverse and multi-ethnic composition, it is important to use data 

derived from the Malaysian population instead of referring to population data from other 

countries. Therefore, the lower overall classification accuracy observed in the present 

study could be attributed to the age and ethnic variations present within the Malaysian 

population. These factors highlighted the importance of using population-specific data, 

as well as to account for age and ethnic variations, when developing and applying sex 

estimation models based on cranial measurements in Malaysia. 

 

5.2 Ethnicity estimation models 

Metric and nonmetric anthropological analyses would often be deployed when 

assessing ethnicity from skeletal remains (İşcan, 2005). As a nonmetric method, the 

assessment of morphoscopic traits in sub-adults can be challenging in terms of 

reproducibility and accuracy (Weinberg et al., 2005). This is because most sub-adult 

bones are small and not fully developed, causing difficulties in locating the 

anthropological landmarks (Weinberg et al., 2005). Therefore, this present study has 

focused on the metric method of using MSCT data to determine the differences in cranial 

measurements in the Malaysian multi-ethnic sub-adult population. This approach allows 

for more reliable, objective, accurate, and reproducible measurements, which can 

facilitate the assessment of cranial differences among various ethnic groups within the 

sub-adult population in Malaysia. 

Cranial features were found to differ significantly in the different ethnic groups in 

Malaysia (Kranioti et al., 2018). The present study observed that Malays and Chinese 

cranium shapes were shorter and wider than that of Indians. Additionally, several 

parameters, such as MCW, BAW, and OC, showed significant differences between 

Malays, Chinese, and Indians (Table 4.15). Previous studies have also reported that these 

parameters indicated significant differences between ethnicities in different populations, 
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such as Japanese and Thai (Kongkasuriyachai et al., 2022) and Turks, Cypriots, and 

Cretans (Kranioti et al., 2018). Hence, these parameters could be essential in devising 

robust classification models for cranium-based ethnicity estimations for sub-adults.   

Cranial growth during the sub-adult age is a dynamic process influenced by various 

factors, including differences in growth patterns and the onset of puberty between males 

and females (Norris & Carr, 2020). These factors contribute to cranial variations between 

younger and older sub-adults. The present study observed that ethnic variations were not 

particularly significant in the younger age groups (below six years; Table 4.15). This level 

of variation could be attributed to a parallel growth pattern observed in males and females 

of Malay, Chinese, and Indian ethnicities during the early developmental period. The 

similarities in cranial growth trajectories among the different ethnic groups may lead to 

the lack of ethnic variations in cranial measurements in the younger age groups (0-2 years 

and 3-6 years).  

The overall classification accuracy for ethnicity estimation in the sub-adult population 

was 57.5%. However, there were notable differences in the accuracy between the different 

ethnic groups, with Malays exhibiting a substantially lower accuracy rate (36.2%) 

compared to Chinese (62.1%) and Indians (74.2%). These differences can be attributed 

to a high similarity of craniometric measurements between Chinese and Malays compared 

to the measurements between Indians and Malays, and Chinese and Indians, as is evident 

in the discriminant score plots where the Malay cluster was more inclined towards the 

Chinese cluster (Figure 4.3). These pairwise comparisons also showed that several 

differences existed between Malays and Chinese (Table 4.19). Genetic data studies have 

demonstrated higher genetic similarities between Malays and Chinese than between 

Malays and Indians. The presence of more than 20% of Chinese DNA markers in Malay 

DNA was apparently adequate to manifest resemblances in cranial morphology (Deng et 

al., 2014). In contrast, only 4.3% and 1.3% of Malay and Chinese DNA markers were 
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found in Indians, respectively, which resulted in a great partition between the two groups 

(Malays/Chinese vs Indians; Wong et al., 2014). Similarly, a study of the Singaporean 

population found that Malays and Chinese have a higher anthropological association with 

each other than with Indians (Yong et al., 2006). 

The present study obtained low accuracy rates in the age groups of 0-2 years and 3-6 

years (Table 4.23). However, as individuals reached the age group of 10-12 years, 

differences in the onset of puberty between males and females became more apparent. 

Differences in the timing and progression of puberty can contribute to increased levels of 

ethnic variations in the Malaysian sub-adults’ crania. The divergent effects of puberty on 

cranial growth and development between males and females within different ethnic 

groups may lead to greater disparities in cranial measurements, as individuals progress 

through the sub-adult age range. This can be observed when the highest classification 

accuracy of 67.4% was obtained by the age group of 10-12 years, which corresponded to 

the emergence of secondary sex characteristics and implied the presence of ethnic 

differences in cranial morphology during this stage of development (Table 4.23). 

Therefore, the observed variations in cranial measurements and the influence of ethnic 

factors would become more pronounced with age, particularly during the period close to 

the onset of puberty. These findings highlighted the importance of considering age-

specific cranial variation and development patterns when performing ethnicity estimation 

in sub-adult populations. 

The low overall accuracy in ethnicity classification could be attributed to the unequal 

distribution of samples across different age groups, as DFA tends to be more accurate 

when applied to small sample sizes (Buck & Vidarsdottir, 2004). Imbalanced sample sizes 

across ethnicities or age groups could influence the overall accuracy rates. In addition, a 

combination of factors, including genetics, inter-racial marriages, and migrations, can 

also influence ethnic variations in cranial measurements. In inter-racial marriages, the 
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estimation of an individual’s ethnicity may be incorrect if their biological ethnicity differs 

from their self-identified or cultural ethnicity. The current findings have highlighted the 

importance of considering both age and ethnicity factors when studying cranial variations 

and developing sex estimation models for Malaysian sub-adults. 

The sex of a cranium can affect the accuracy of ethnicity estimation due to the 

differences in size between male and female craniums. However, the present study found 

that the accuracy percentages between pooled-sex were higher than the accuracy between 

males and females (Table 4.23 and Table 4.25). This could be due to the low level of 

sexual dimorphism in the Malaysian sample. This reduced variability in crania within the 

Asian population was also observed in Japanese, Thai, and Filipino samples (Green & 

Curnoe, 2009; Kongkasuriyachai et al., 2022; Tallman, 2019). These findings contrast 

with the results of studies on the Caribbean (Herrera & Tallman, 2019) and Mediterranean 

(Kranioti et al., 2018) populations, where higher sex-specific cross-validated 

classification accuracies were observed in males than in females. These findings 

emphasised the importance of developing population-specific methods for ethnicity 

estimation in Asian groups. Hence, it would not be sensible to generalise these findings 

as a standard for other population groups. 

The current classification accuracies obtained in this study were comparable to those 

obtained by Smith et al. (2013) and Buck and Vidarsdottir (2004), which ranged between 

7.7% and 76.2%. Smith et al. (2013) studied the ethnicity estimation of sub-adults using 

temporal bone traits. The lower classification accuracies observed in Utahn (7.7%) and 

Mexican groups (28.6%) compared to Austrian (65.8%), Egyptian (56.7%), and 

Polynesian (53.3%) groups were due to their close geographic proximity and genetic 

similarities. Meanwhile, Buck and Vidarsdottir (2004) obtained over 70% accuracy when 

estimating the ethnicity of sub-adults of five distinct population groups, namely African 

Americans, Native Americans, Caucasians, Inuit, and Pacific Islanders, using mandibular 
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morphology and DFA. Their findings supported the current findings that ethnic groups 

within a close geographical area could be more prone to being wrongly classified 

compared to populations that are located far from each other. 

Previous research on sub-adults mostly utilised the geometric morphometrics method 

(GMM) as the primary method, as it is a robust statistical approach. It is often used to 

analyse variations in skeleton shapes among different populations. However, this 

approach requires an enormous sample size to ensure an accurate estimation (Noble et 

al., 2019). Using a large sample of children and adolescents can be challenging; therefore, 

acquiring measurements that are linear and easy to process would be useful. Furthermore, 

the accuracy obtained in the present study was not much different from that obtained 

using geometric methods in previous studies (Buck & Vidarsdottir, 2004; Smith et al., 

2013). Consequently, it was recommended that forensic estimation studies focus on 

measurements of size and traditional inter-landmark distances, as they only need a modest 

number of individuals to produce accurate results (Noble et al., 2019).  

 
 

5.3 Machine learning (ML) algorithm vs classical statistical methods (DFA and 

BLR) 

Statistical methods have been employed more frequently in recent years, as they offer 

objective and robust approaches for sex and ethnicity estimation. Classical statistical 

methods, such as DFA and BLR, are widely used for sex and ethnicity classifications in 

forensic anthropology (Hsiao et al., 2010; Noble et al., 2019; O’Donnell et al., 2017; 

Smith et al., 2013; Sprowl, 2013; Teodoru-Raghina et al., 2017). However, BLR is 

restricted to sex classification, whereas DFA can be used for both sex and ethnicity 

classifications. ML algorithms recently emerged as a popular modeling approach that 

offers an alternative class of models with more computational flexibility (Steyerberg et 

al., 2014). ML is a subset of AI with the capacity to make predictions without being 
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explicitly programmed to do so, using mathematical models generated from training data 

(Williams, 2011). Over the last few years, ML algorithms achieved significant success 

across a broad range of fields due to their superiority, such as their ability to model 

nonlinear relations and the accuracy of their overall predictions (Nikita & Nikitas, 2020). 

Nevertheless, most of the existing sex and ethnicity estimation models based on 

craniometrics in sub-adults are founded on classical statistical methods (Hsiao et al., 

2010; Noble et al., 2019; O’Donnell et al., 2017; Sprowl, 2013; Teodoru-Raghina et al., 

2017). Therefore, this study has compared the validity of sex and ethnicity estimation 

models that utilised ML algorithms (RF, SVM, and LDA) and classical statistical methods 

(DFA and BLR), with the aim of their applicability to the Malaysian sub-adults.  

The key difference between ML and classical statistical methods lies in their 

objectives: the former emphasizes maximizing prediction accuracy, whereas the latter are 

geared towards deducing relationships between variables (Azzolina et al., 2019). ML 

methods have been reported to obtain a higher accuracy compared to classical methods, 

especially for complex data with a high-dimensional feature space (Pozzi et al., 2020; 

Bidmos et al., 2023). In the present study, ML methods obtained higher accuracy rates 

than classical methods for sex and ethnicity estimation using sub-adults’ crania (Table 

4.29). The high accuracies obtained by ML methods can be attributed to the ability of the 

model to capture complex class signatures, accept a variety of input predictor data, and 

operate without making assumptions about the data distribution. In a study by Bidmos et 

al. (2023), the authors evaluated their models' performance using classification accuracy 

and reported that ML methods achieved a significantly higher accuracy rate (90.77%) 

than DFA (81.9-84.2%). Similarly, Pozzi et al. (2020) reported that ML methods achieved 

higher accuracy (74-85.5%) than LDA (40%) in the Sardinia dataset. This demonstrates 

that the application of the ML algorithms enables a more accurate classification of sex 

(Pozzi et al., 2020).  
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This present study has demonstrated that RF achieved a higher accuracy in sex 

estimation of sub-adult’s crania, followed by SVM and LDA (Table 4.27). However, 

previous studies in adult sex estimation reported contradictory results (Gao et al., 2018; 

Nikita & Nikitas, 2020; Toy et al., 2022). A study that explored sex differences using 

cranial and pelvic traits proposed that LDA has a distinct, albeit slight, edge over other 

ML methods (LR and ANN; Nikita & Nikitas, 2020). LDA has also shown superior 

performance when used with a skull measurement dataset compared with most ML 

methods (SVM, DT, and BP neural networks; Gao et al., 2018). In addition, LDA has 

reportedly obtained higher accuracy rates than DT and RF when estimating sex using 

cranium measurements (Toy et al., 2022). The different classification accuracies obtained 

by these studies can be attributed to several factors, such as population differences, sexual 

dimorphism expression, methodological methods used, and differences in statistical 

analyses.  

This study provided the first methodological approach to estimate the sex and ethnicity 

of sub-adults’ crania using different ML methods. In addition, this represents the first 

instance of a comparison between ML and classical methods for estimating sex and 

ethnicity in sub-adult crania. This present study has employed several performance 

metrics, including precision, recall, F1 score, and accuracy, have been employed to 

confirm the algorithms' reliability and results (Table 4.27 and Table 4.28). Furthermore, 

ML methods used in the present study were designed as 70% training and 30% test set. 

By allowing ML algorithms to learn from the training dataset, and assessing the models’ 

performance using the testing dataset, this has increased the prediction reliability and 

value of the study in comparison with classical methods.  
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5.3.1 Advantages of computed tomography (CT) images 

Advances in imaging techniques, such as CT, offer an anatomically precise 

characterisation of skeletal architecture that surpasses conventional morphometric 

practices (Franklin et al., 2013a). The MSCT scan used in this study has proven to be a 

suitable approach for collecting data, and a viable alternative for dry bone analysis. 

Despite the ambiguity of virtual model measurements that are prone to errors when 

compared with dry bone measurements, recent investigations have validated that the 

measurement error of virtual bones of sub-adult cranium was ≤ 2 mm, which showed high 

reliability (Corron et al., 2022; McIntosh et al., 2020). The overall differences between 

virtual cranial measurements and dry bone measurements were generally small and 

negligible at an average of 1.5% (Franklin et al., 2013a). In addition, the conversion from 

the DICOM files to 3D models and their subsequent postprocessing was found to be 

appropriate for craniometric purposes since it has negligible effect on the overall 

geometry of the cranium (Bertsatos et al., 2020). Hence, CT scans’ skull measurements 

were relatively comparable to direct dry skull measurements. Data derived from 

contemporary individuals should be used to support the identification process in present-

day forensic cases. In this regard, medical imaging allows samples of contemporary 

populations to be studied and helps to keep forensic standards up to date.  

 
5.4 Cephalic index (CI) 

CI is a valuable measurement for determining the shape of a skull. It plays a crucial 

role when comparing individuals of different ages, sexes, and ethnic backgrounds in 

forensic and clinical contexts. CI allows for a quantitative assessment of cranial 

characteristics and can provide insights into population-specific variations. Nonetheless, 

a single standard for CI may not be applicable or accurate for populations worldwide. By 

considering population-specific CI, forensic and clinical practitioners can enhance the 
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accuracy of sex and ethnicity estimation and improve the precision of craniofacial 

comparisons across diverse populations. This helps to account for the inherent variations 

in cranial morphology observed among different ethnic groups and aids in making more 

reliable and appropriate assessments. 

The present study demonstrated that skull growth undergoes accelerated development 

during the first two years of life, as shown by the high CI value of 86.31±5.37 (Table 

4.30). However, it was found that the rate of change in CI gradually slows down after the 

initial three years of life, leading to a decrease in CI value of 84.99±4.71. Subsequently, 

growth velocity further decreases and eventually reaches a plateau from six years of age 

into adulthood. These findings indicated that the most significant changes in cranial 

proportions occur during early infancy, providing valuable insights into cranial 

proportions and growth patterns. Moreover, as growth decelerates from early childhood 

to adulthood, CI has proven to be a reliable indicator for monitoring skull development 

in both females and males. 

In the present study, females are found to have a higher CI value (83.91 ± 4.63) than 

males (84.13 ± 4.72; Table 4.30). This showed that female skulls were narrower and 

shorter than male skulls, possibly resulting from the effects and interactions between 

growth and sex hormones. This observation indicated that the CI could be greater in either 

sex, depending on the characteristics of the population under study. Differences in skull 

morphology across the sexes underscored the significance of customising assessments of 

anatomical variations to specific individuals within a group. Since the development of an 

individual’s skeleton is influenced by hormones, dietary status, cultural variances, and 

environmental conditions, males and females will acquire skeletal maturity at different 

ages (Norris & Carr, 2020). Therefore, it is an essential feature to consider when 

comparing the sexes. 
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The findings of the present study demonstrated that the CI values of Malaysian sub-

adults’ exhibit variations across diverse populations. Therefore, according to Cohen and 

MacLean (2000) and Standring and Gray (2008), a higher frequency of 

hyperbrachycephalic head shape in the Malaysian sub-adult population was observed 

when applying the skull shape classification. This high frequency was due to the 

percentages used for cranial classification derived from European populations, where the 

Caucasian race predominates and exhibits physical characteristics distinct from other 

populations (Halazonetis, 2007). This observation suggested that the current 

classification system might not accurately represent the diversity of cranial shapes 

observed in non-European populations (Halazonetis, 2007). The CI classifications 

proposed by Koizumi et al. (2010) and Nam et al. (2021) may not be suitable for 

application in the Malaysian context due to the lack of inclusion in the country's multi-

ethnic diversity. Therefore, the proposed Malaysian CI classification in the present study 

is more suitable for capturing the unique cranial proportions and growth patterns 

presented in Malaysia's multi-ethnic population (Table 4.31). 

Differences in CI values among populations have been reported in various studies 

(Haas, 1952; Koizumi et al., 2010; Likus et al., 2014; Nam et al., 2021; Pereira et al., 

2008; Waitzman et al., 1992; Table 4.32). The findings of the present study implied that 

Malaysians have relatively higher CI values compared to Caucasians (Waitzman et al., 

1992), Brazilians (Haas, 1952), Europeans (Pereira et al., 2008), and Polish (Likus et al., 

2014) populations. While differences in CI values were also observed in Asian 

populations, the extent of these differences was generally found to be smaller than in 

Caucasian populations. Specifically, the CI values of the Japanese (Koizumi et al., 2010) 

were relatively similar to those of Malaysians, whereas Koreans (Nam et al., 2021) had 

higher CI values than Malaysians. These differences proved that cultural differences 

could have a more significant impact on the shape of Asian skulls. 
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The differences in CI value were also reported within the Malaysian population. The 

present study observed higher CI values (males: 83.91, females: 84.13) than a previous 

study conducted on Malaysians in the age group of 7-17 years (males: 81.55, females: 79; 

Swamy et al., 2013). In contrast, higher CI was reported by a previous study of Malaysian 

sub-adults in the age group of 0-25 years (males: 84.8, females: 85.2; Yusof, 2007). These 

differences could be due to variations in CI values across studies that can be influenced 

by several factors such as sample size, demographics, measurement techniques, and the 

composition of the population sample. Previous studies had exclusively focused on Malay 

individuals and thus may not have captured the full diversity and potential variations in 

CI value that may occur across different ethnic groups (Swamy et al., 2013; Yusof, 2007). 

In contrast, the present study had advantages such as larger sample size, greater ethnic 

diversity, and improved statistical analyses, allowing for a more comprehensive 

investigation of CI values in the Malaysian population. 

Using the proposed Malaysian CI developed in this study, a greater proportion of 

Malaysians presented as mesocephalic (66.4%), followed by dolichocephalic (18.4%; 

Figure 4.5). Similar patterns of more prevalent mesocephalic cranial types have been 

observed in other populations, including the inhabitants of Southern Iran (Golalipour et 

al., 2005), Poland (Likus et al., 2014), Europe (Haas, 1952), Korea (Nam et al., 2021), 

and Siberia (Cvetković et al., 2014). Meanwhile, brachycephalic skulls are more common 

in Iranians (Golalipour, 2006a) and Japanese (Koizumi et al., 2010), and dolichocephalic 

heads are more prevalent in Africa (Eroje et al., 2010) and Colombia (Torres-Restrepo et 

al., 2014). In India, different regions presented with varying shapes of head, with 

dolichocephalic skulls being more common in North India (Khanduri et al., 2021), while 

brachycephalic skulls are found to be typical in East India (Ghosh, 2018). However, in 

Central India, male head shapes are more often mesocephalic, while female head shapes 

are more commonly brachycephalic (Yagain et al., 2012; Table 2.4). The different head 
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shapes in India suggested that CI values vary substantially between locations. The heads 

of tropical inhabitants are longer and narrower than their temperate counterparts. In 

addition, the dietary patterns of a population could also influence the craniofacial anatomy 

of its people (Kasai et al., 1993). 

The variation in head shape observed between younger and older sub-adults within the 

Malaysian population is likely influenced by a combination of genetic, developmental, 

environmental, and hormonal factors (Figure 4.6). Throughout childhood and early 

adolescence, there is substantial growth and development of the brain, which impacts the 

shape of the skull to accommodate the expanding brain (Humphrey, 1998). At puberty, 

hormonal changes trigger the release of growth hormones and sex hormones, which are 

pivotal not only for overall growth and development but also for the development of 

secondary sexual characteristics and the acceleration of skeletal maturation (İşcan, 2005; 

Klales & Burns, 2017; Scheuer & Black, 2000; Roche & Sun, 2003). These factors 

interact dynamically to shape cranial morphology throughout the stages of younger and 

older sub-adults. 

Cranial measurements obtained in this study revealed that some CI values were 

accurate markers for skull development and can be used to monitor growth throughout 

time. These values could enable a thorough evaluation of abnormally tiny or large heads. 

In addition, the CI is a coded measure of cranial capacity that is assumed to be able to 

measure brain volume and predict cognitive ability (Maina et al., 2011). A higher CI value 

reflects a faster skull growth rate in the first year of life, indicating that this phase of rapid 

development is essential for appropriate brain maturation. After the first three years of 

life, the rate of change in cranial diameter will stabilise. As the pace of growth decreases 

and stabilises past this age, while the statistical significance of measurements diminishes, 

cranial size or tables with skull diameters could become reliable indicators of skull 

development for both sexes. 
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5.5  Limitations 

Several limitations have been identified in the present study. First, this study lacked 

an equally distributed sample across age, sex, and ethnicity. This limitation is inherent in 

any study using MSCT scans, especially in studies involving sub-adults. Given the 

radiation risk to patients, it was challenging to obtain MSCT scans with an appropriate 

level of resolution and the correct landmarks. In terms of ethnicity, the Malaysian 

population comprises a mix of cultures and inter-racial marriages. Thus, the exact ethnic 

origin of subjects in inter-racial marriages was challenging to trace. Furthermore, 

individuals often identify their ethnicity as a cultural element rather than attributing it to 

population affinity.  

Second, the socioeconomic status of individuals included in this study was unknown. 

Thus, it was assumed that all individuals have access to healthcare. However, 

socioeconomic status, nutrition, and stress are factors that should be considered, as they 

can affect skeletal growth and development (Schmeling et al., 2005). Third, the sample 

for this study came from a very specific part of the Malaysian population, which might 

not be fully representative of the entire population and could limit the generalisability of 

the findings to other regions or ethnic groups within Malaysia. Thus, it is vital to 

acknowledge the regional specificity of the sample and to interpret the results with caution 

when applying them to broader populations.  

Fourth, the use of a cross-sectional sample in this study could be viewed as a limitation. 

Longitudinal studies are preferred because they can reveal accurate growth patterns of 

individuals, as this type of study can collect repeated measurements of the same 

individuals over time. However, longitudinal data can take many years to manage, which 

makes longitudinal studies not cost-effective. It is also impossible to conduct a 

longitudinal study on a sample large enough to represent a population accurately. 
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5.6 Future research 

The present study has presented valuable findings that lay the groundwork for future 

research in the development of sex and ethnicity identification methods. Expanding the 

research to include measurements of the pelvis, long bones, and mandibles in addition to 

the crania, can indeed provide a more comprehensive understanding of sexual 

dimorphism and ethnicity identification. The pelvis, long bones, and mandibles have been 

widely recognised as reliable indicators of sex, often exhibiting greater sexual 

dimorphism than the cranium alone. Including these skeletal elements in the analysis 

could potentially improve the success rates of sex and ethnicity estimation. Furthermore, 

comparing the accuracy rates between cranial and postcranial measurements can yield 

insights into which skeletal regions are more reliable for sex and ethnicity identification. 

This information would be valuable for forensic practitioners and anthropologists 

working with incomplete or fragmentary remains, allowing them to prioritise certain 

skeletal elements in their analysis.  

To assess the generalisability of the proposed technique, future studies should increase 

the number of individuals from various geographic regions in Malaysia. This can help 

researchers to identify population-specific patterns and develop more accurate models for 

sex and ethnicity identification within each region. In addition, it helps to reduce 

demographic composition bias and ensures that the models are reliable and valid across 

diverse population groups. Future studies should also include the adult population to 

ensure that the research captures craniofacial sexual dimorphism and ethnic 

characteristics that are fully developed and stable. This can contribute towards providing 

more accurate reference standards and predictive models specific to adult individuals. 

Finally, the integration of deep learning methods in sex and ethnicity estimation for 

sub-adult skeletal remains holds great promise in advancing the field of forensic 
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anthropology. With the development of large and diverse datasets, deep learning models 

have the potential to provide more accurate, efficient, and objective estimations. 
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CHAPTER 6: CONCLUSION 

The availability of modified standards that offer reliable sex and ethnicity estimation, 

with a high and quantified degree of accuracy, is essential to biological and forensic 

anthropology. However, research pertaining to sex and ethnicity estimation using cranium 

in the Malaysian sub-adult population is lacking. The most sensitive method that can be 

adopted to address this issue is by acquiring cranial measurements from the MSCT 

dataset. Data obtained from contemporary individuals should be used to support 

identification processes in present-day forensic cases. In this regard, medical imaging 

methods, such as CT, allow samples of contemporary populations to be studied and 

forensic standards to be up to date. Metric estimations of sex and ethnicity are more robust 

when multivariate techniques are employed, such as a classification function derived from 

classical methods like DFA or BLR. Nevertheless, the focus has shifted towards utilising 

ML classification algorithms. Based on the methods tested in this study, ML models were 

able to provide greater classification accuracies compared to classical models for 

estimating both sex and ethnicity. Furthermore, the SNA estimator version 1.0 allows 

forensic anthropologists to utilise the developed models and it also offers measures of a 

model’s success, which are essential for quantifying the obtained results. 

CI values tend to show sex and ethnicity differences. In the present study, the mean CI 

values were found to be higher for females than males. Also, the CI of the Malaysian 

population was higher than most CI values of other populations worldwide, such as 

Europeans, Nigerians, Caucasians, and Iranians, but lower than most Asian populations, 

such as Japanese and Koreans. Hence, the present CI classification was proposed for the 

Malaysian population ranging in age from birth to 20 years. Based on the proposed 

classification, the dominating head type for the Malaysian population was mesocephalic 

(66.4%), followed by dolichocephalic (18.4%), and brachycephalic (12.3%). 

Hyperbrachycephalic was the least frequently observed category (2.9%). The CI of the 
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Malaysian sub-adults reported in this study will provide a valuable reference to diagnose 

and plan for surgery of cranial deformities. 
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