Contents

ACKNOWLEDGEMENTS		i
ABS	ABSTRACT	
CH.	APTER ONE: INTRODUCTION	1
СН	APTER TWO: LITERATURE REVIEW	
2.1	Overview of copper decoration technique	4
	2.1.1 Growth of silicon dioxide (SiO ₂) layer	7
	$2.1.2$ Defects in the SiO_2 layer	10
	2.1.3 Electrolysis process	16
	2.1.3.1 Ions transportation in electrolyte	17
	2.1.3.2 Effects of ions concentration on the conductivity of	
	electrolyte	18
	2.1.3.3 Voltage drop in electrochemical cell	20
2.2	Gate oxide integrity	22
	2.2.1 Oxide breakdown in Metal-Oxide-Semiconductor (MOS)	
	structure	22
	2.2.2 The mechanism of oxide breakdown	23
	2.2.3 Gate Oxide Integrity (GOI) measurement	27
	2.2.3.1 Time Zero Dielectric Breakdown (TZDB) method	28

2.2.3.2 Time Dependent Dielectric Breakdown (TDDB-I)
method	30
CHAPTER THREE: MEASUREMENT TECHNIQUES	
AND EXPERIMENTAL DETAILS	
3.1 Working principle of main instruments used in this project	35
3.1.1 Atomic Force Microscope (AFM)	35
3.1.2 Time Of Flight Secondary Ion Mass Spectroscopy (TOF-S	SIMS) 38
3.2 Experimental setup	42
3.2.1 General procedures of copper decoration process	42
3.2.2 Formation of copper dots on oxidized wafer surface	44
3.2.2.1 Analyzing the purity of anode using Energy Dispe	ersive
X-ray Spectroscopy (EDS)	44
3.2.2.2 Determination copper concentration in methanol to	using
Inductive Couple Plasma - Optical Emission	
Spectroscopy (ICP-OES)	45
3.2.2.3 Detection of permanent damages extended to wafe	er
surface as a result of oxide breakdown	46
3.2.2.4 Studying distribution of copper dots size on copper	er
decorated wafer	48
3.2.2.5 Studying the impact of size of D-defects on size of	f
copper dots	48

	3.2.2.6 Effect of stressed field on defect density of copper	
	decorated wafers	50
	3.2.2.7 Analyzing the composition of gray ring surrounded	
	copper dots by using TOF-SIMS	51
3.2.3	Determination of stressed field by $V_{\it ox}\!\!/V_{\it app}$ ratio measurement	52
3.2.4	Effects of copper concentration in methanol on copper	
	decoration process	54
	3.2.4.1 Effect of copper concentration on the conductivity	
	of methanol	54
	3.2.4.2 Effect of copper concentration on the size (average	
	diameter) of copper dots	56
CHAPTER I	FOUR: RESULTS AND DISCUSSIONS	
4.1 Formation	n of copper dots on oxidized wafer surface	58
4.1.1 Ana	lyzing the purity of anode using Energy Dispersive X-ray	
Spe	ctroscopy (EDS)	58
4.1.2 De	termination of copper concentration in methanol using Inductive	
Co	uple Plasma – Optical Emission Spectroscopy (ICP-OES)	61
4.1.3 Trai	nsportation of copper ions in methanol	65
4.1.4 Dete	ection of permanent damages extended to wafer surface as a	
resi	ult of oxide breakdown	66
4.1.5 Stud	dying distribution of copper dots size on copper decorated	
waf	er	70

4.1.6 Studying the impact of size of D-defects on the size of copper		
dots	72	
4.1.7 Effect of stressed field on defect density of copper decorated		
wafers	79	
4.1.8 Analyzing composition of grey ring surrounded copper		
dots by using TOF-SIMS	82	
4.1.9 Formation of copper dots on copper decorated wafer	93	
4.2 Determination of stress field by V_{ox}/V_{app} ratio measurement	98	
4.3 Effects of copper concentration in methanol on copper decoration process	102	
4.3.1 Effect of copper concentration on the conductivity of methanol	102	
4.3.2 Effect of copper concentration on the size (average diameter)		
of copper dots	105	
CHAPTER FIVE: CONCLUSION	107	
REFERENCE		
APPENDIX		