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MINIMIZING CHARGING COSTS OF PLUG-IN ELECTRIC VEHICLE 

BASED ON  ENSEMBLE MACHINE LEARNING TECHNIQUES AND 

OPTIMAL CONTROL 

ABSTRACT 

Plug-in Electric Vehicles (PEVs) offer an environmentally friendly alternative to 

conventional internal combustion engine vehicles, promising reduced greenhouse gas 

emissions and conservation of oil reserves. However, their increasing integration into the 

electric grid raises concerns about stability and reliability owing to heightened charging 

demands. Random or uncoordinated charging within the distribution network can 

exacerbate these challenges, leading to increased charging costs for PEV owners and 

potential strain on the grid. In the present study, a smart and coordinated charging 

approach with centralized control is proposed, aimed at minimizing charging costs and 

supporting grid stability. This is achieved using the optimal control (OC) technique, 

considering fixed fluctuations in electricity prices and various driving patterns. Empirical 

results indicate that, compared to a random charging plan, smart and coordinated charging 

strategies can reduce charging costs by up to 73% and 21%, respectively. A new hybrid 

machine learning (ML) model was proposed for electricity price forecasting (EPF) to 

further optimize charging costs. It integrates the linear automatic relevance determination 

(ARD) model, addressing trend and seasonality, with the ensemble bagging extra tree 

regression (ETR) model, capturing interactions. Validated with a Nord Pool market 

dataset, this approach surpassed other hybrid models, achieving reductions in testing 

mean absolute error and root mean square error values by 32.1% and 21.5%, respectively. 

Random PEV charging activities are well-recognized for their potential impacts on both 

vehicle owners and electric networks, resulting in elevated charging costs and degraded 

distribution system performance such as power loss, and voltage deviation. To address 

these challenges, scheduling of PEV charging activities is essential. Coordinated and 
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smart charging strategies incorporated with EPF using ML and OC methods have been 

devised. These strategies not only lead to cost savings for PEV owners but also benefit 

electric utilities. To guide PEV charging decisions based on price forecasts, three ML 

classifiers were employed: neural network, naïve Bayes, and an ensemble approach. 

Empirical results show that the ensemble ML classifier outperforms its counterparts in 

various charging strategies. Remarkably, the proposed ensemble smart charging strategy 

recorded a PEV charging cost of £15, which was significantly lower than the £280 

incurred using the random charging strategy. Moreover, compared to the base random 

charging case, the proposed ensemble-based smart and coordinated approaches reduced 

the charging cost by approximately 94% and 40%, respectively. To illustrate the impacts 

of the proposed coordinated and smart charging techniques compared to random charging 

at various levels of PEV penetration levels (16%, 28%, and 41%), both modified and 

standard IEEE 69-bus radial distribution systems were employed, smart and coordinated 

PEV charging showcased better performance in terms of power consumption, voltage 

drop, and system loss than those of random charging. Overall, this study indicates that an 

ensemble-based coordinated and smart PEV charging strategy is a promising approach 

for efficiently managing electricity usage. As PEV adoption increases, smart charging 

technologies are likely to become more widespread and help drive the transition to a more 

sustainable energy future. 

Keywords: Electric vehicle charging, electricity price forecasting, smart EV charging, 

optimal control theory, coordinated charging. 
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MENGURANGKAN KOS PENCASAN KENDERAAN ELEKTRIK PLUG-IN 

BERDASARKAN TEKNIK PEMBELAJARAN MESIN ENSEMBLE DAN 

KAWALAN OPTIMUM 

ABSTRAK 

Kenderaan Elektrik Plug-in (PEV) menawarkan alternatif mesra alam kepada kenderaan 

enjin pembakaran dalam konvensional, yang menjanjikan pengurangan pelepasan gas 

rumah hijau dan pemuliharaan rizab minyak. Walau bagaimanapun, penyepaduan yang 

semakin meningkat ke dalam grid elektrik menimbulkan kebimbangan tentang kestabilan 

dan kebolehpercayaan disebabkan oleh permintaan pengecasan yang meningkat. 

Pengecasan rawak atau tidak diselaraskan dalam rangkaian pengedaran boleh 

memburukkan lagi cabaran ini, membawa kepada peningkatan kos pengecasan untuk 

pemilik PEV dan potensi ketegangan pada grid. Dalam kajian ini, pendekatan pengecasan 

pintar dan diselaraskan dengan kawalan berpusat dicadangkan, bertujuan untuk 

meminimumkan kos pengecasan dan menyokong kestabilan grid. Ini dicapai 

menggunakan teknik kawalan optimum (OC), dengan mengambil kira turun naik tetap 

dalam harga elektrik dan pelbagai corak pemanduan.  

Keputusan empirikal menunjukkan bahawa, berbanding dengan pelan pengecasan rawak, 

strategi pengecasan pintar dan terkoordinasi boleh mengurangkan kos pengecasan 

masing-masing sehingga 73% dan 21%. Model pembelajaran mesin hibrid (ML) baharu 

telah dicadangkan untuk meramal harga elektrik (KWSP) bagi mengoptimumkan lagi kos 

pengecasan. Ia menyepadukan model penentuan perkaitan automatik linear (ARD), 

menangani arah aliran dan bermusim, dengan model regresi pokok tambahan (ETR) 

ensemble, menangkap interaksi. Disahkan dengan set data pasaran Nord Pool, pendekatan 

ini mengatasi model hibrid yang lain, mencapai pengurangan dalam ujian ralat mutlak 

min dan nilai ralat purata kuasa dua akar masing-masing sebanyak 32.1% dan 21.5%. 
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Aktiviti pengecasan PEV rawak diiktiraf dengan baik kerana potensi kesannya 

terhadap kedua-dua pemilik kenderaan dan rangkaian elektrik, mengakibatkan kos 

pengecasan yang tinggi dan prestasi sistem pengedaran yang merosot seperti kehilangan 

kuasa dan sisihan voltan. Untuk menangani cabaran ini, penjadualan aktiviti pengecasan 

PEV adalah penting. Strategi pengecasan yang diselaraskan dan pintar yang digabungkan 

dengan KWSP menggunakan kaedah ML dan OC telah dirangka. Strategi ini bukan 

sahaja membawa kepada penjimatan kos untuk pemilik PEV tetapi juga memanfaatkan 

utiliti elektrik. Untuk membimbing keputusan pengecasan PEV berdasarkan ramalan 

harga, tiga pengelas ML telah digunakan: rangkaian saraf, Bayes naif dan pendekatan 

ensemble. 

Keputusan empirikal menunjukkan bahawa pengelas ML ensemble mengatasi rakan 

sejawatannya dalam pelbagai strategi pengecasan. Hebatnya, strategi pengecasan pintar 

ensemble yang dicadangkan merekodkan kos pengecasan PEV sebanyak £15, yang jauh 

lebih rendah daripada £280 yang ditanggung menggunakan strategi pengecasan rawak. 

Selain itu, berbanding dengan kes pengecasan rawak asas, pendekatan pintar dan 

terkoordinasi berasaskan ensemble yang dicadangkan mengurangkan kos pengecasan 

sebanyak kira-kira 94% dan 40%, masing-masing. Untuk menggambarkan kesan teknik 

pengecasan yang diselaraskan dan pintar yang dicadangkan berbanding dengan 

pengecasan rawak pada pelbagai peringkat tahap penembusan PEV (16%, 28%, dan 

41%), kedua-dua sistem pengedaran jejari 69-bas IEEE yang diubah suai dan standard 

telah digunakan. Pengecasan PEV yang diselaraskan dan pintar mempamerkan prestasi 

yang lebih baik dari segi penggunaan kuasa, penurunan voltan dan kehilangan sistem 

berbanding pengecasan rawak. 

Secara keseluruhan, kajian ini menunjukkan bahawa strategi pengecasan PEV yang 

diselaraskan dan pintar berasaskan ensemble adalah pendekatan yang menjanjikan untuk 

menguruskan penggunaan elektrik dengan cekap. Apabila penggunaan PEV meningkat, 
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teknologi pengecasan pintar mungkin akan menjadi lebih meluas dan membantu memacu 

peralihan kepada masa depan tenaga yang lebih mampan. 

 

Keywords: Pencasan kenderaan elektrik, ramalan harga elektrik, pencasan EV pintar, 

teori kawalan optimum, pencasan berkoordinasi. 
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CHAPTER 1: INTRODUCTION 

This chapter briefly discusses the background of electric vehicle (EV) technology and 

the challenges associated with developing a smart and coordinated system for charging 

plug-in EVs (PEVs). Additionally, it presents the organization of this research and its 

novel contributions.  

1.1 Background  

The automotive industry is rapidly expanding, with fossil fuel-powered vehicles 

accounting for most sales. However, many countries are becoming increasingly 

concerned about the environmental impact of these vehicles, including the release of 

harmful contaminants, depletion of fossil fuel reserves, and higher greenhouse gas (GHG) 

emissions. Consequently, EVs are receiving considerable attention globally as they 

employ rechargeable batteries and are classified as eco-friendly vehicles. It is widely 

acknowledged that internal combustion engine (ICE) vehicles consume a significant 

amount of oil. Hence, EVs have been proposed as a promising technology that can reduce 

noise, improve efficiency, reduce costs, and have lower or near-zero CO2 emissions and 

gasoline consumption compared to traditional vehicles comprising ICEs (Lopes et al., 

2010). Furthermore, EVs are classified into three main categories: battery electric 

vehicles (BEVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles 

(PHEVs). The most common type of EV used currently is the PEV, which refers to any 

EV that can be charged by plugging into an external power source. BEVs rely solely on 

electric motors for power and do not have a fuel tank, gasoline engine, or exhaust pipe, 

and high-capacity batteries are used to power the motor and all electronic systems. BEVs 

can be recharged through an external source, and they often employ regenerative braking 

technology to help recharge their batteries. Despite being powered solely by electricity, 

BEVs can be considered as plug EVs because they can be charged through an external 
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source. Popular examples of available BEVs include the Tesla Model S, Tesla Model 3, 

Chevy Bolt, Nissan LEAF, BMW i3, Fiat 500e, and Ford Focus Electric (Simsekoglu & 

Nayum, 2019). Figure 1.1 shows the key components of a typical BEV. 

 

Figure 1.1: Key components of a BEV (afdc.energy.gov, 2020) 

 

HEVs employ two complementary drive systems: an ICE with a fuel tank and an 

electric motor with a battery. Both systems can control the transmission simultaneously, 

which in turn powers the wheels. Unlike BEVs, HEVs cannot be recharged through the 

electric grid; instead, they use gasoline to power the ICE and regenerative braking to 

charge the batteries that power the electric motor. Typically, HEVs use the electric motor 

at low speeds and switch to the ICE at higher speeds. Figure 1.2 shows the essential 

components of an HEV. Some examples of HEVs currently in use include the Chevrolet 

Tahoe Hybrid, Toyota Prius, Toyota Camry Hybrid, Ford C-Max, Honda CR-Z, and Kia 

Optima Hybrid (Karden et al., 2007). 
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Figure 1.2: Key components of an HEV (afdc.energy.gov, 2020) 

 

Similar to HEVs, PHEVs also employ both an electric motor and an ICE; however, 

the electric motor can be charged through regenerative braking or plugging the vehicle 

into an external power source, such as an electric vehicle charging station. Additionally, 

the ICE can charge the battery at lower speeds or serve as the primary power source when 

the battery is depleted. From a technical perspective, PHEVs are full hybrids with 

additional technology. The main difference between PHEVs and full hybrids is that 

PHEVs have a larger traction battery that can also be recharged through an auxiliary 

external power source, whereas full hybrids can only recharge through regenerative 

braking. The essential components of a PHEV are illustrated in Figure 1.3. Some 

examples of PHEVs currently in use are the Toyota Prius Plugin, Porsche Panamera SE, 

BMW i3, BMW i8, Cadillac ELR, and GM Chevy Volt (Fathabadi, 2018). 
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Figure 1.3: Key components of a PHEV (afdc.energy.gov, 2020) 

 

However, EVs rely solely on rechargeable batteries to power their electric motors, with 

lithium-ion batteries being the most commonly employed owing to their high energy 

density. Lithium-ion batteries comprise cells having a cathode, an anode, and an 

electrolyte that enables the movement of ions to store or release energy. The battery 

performance is determined based on its capacity and charging speed, which affects 

driving range and recharging time, respectively. Additionally, its lifespan depends on 

various factors such as its chemistry, temperature, and the user’s charging habit, and 

degradation can reduce its capacity, thereby lowering its lower range. Continuous 

advancements in battery technology are aimed at enhancing the performance and 

durability of EV batteries (Fan et al., 2018). According to the international energy agency 

(IEA), there were approximately 3.1 million EVs worldwide in 2017, and this number is 

expected to increase to 130 million by 2030 (International Energy Agency (IEA), Global 

EV Outlook, 2022). This growth is owing to the increased environmental and economic 

concerns regarding GHG emissions from fossil fuels, and the threat of energy crises such 

as depleting natural oil resources and rising fuel prices. Moreover, various automotive 
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companies, such as Nissan, General Motors, and Chevrolet, have recently launched new 

PEVs (Chevrolet, Volt Electric Car, 2021; Nissan LEAF Electric Car, 2021; Tesla Motors 

High-Performance Electric Vehicles. , 2021). 

1.2 Problem Statement  

The widespread adoption of PEVs in the distribution network has resulted in significantly 

more capital investments in smart grid technologies primarily because EV charging 

operations demand a substantial amount of electricity owing to their considerable battery 

capacities and charging durations. Erratic or uncoordinated scheduling of PEV charging 

sessions can increase charging costs and electricity consumption, which subsequently 

strain the distribution network and can have various detrimental effects, including 

distribution network overload.  Another concern is voltage quality degradation as voltage 

fluctuations adversely affect the performance and reliability of electrical equipment. 

Considering these challenges, a combination of a centralized control framework structure 

and day-ahead EPF is essential for effectively scheduling PEV charging operations. This 

approach can allow grid operators to strategically schedule PEV charging during periods 

of low electricity demand and prices, thereby reducing charging costs and promoting 

efficient grid utilization. Therefore, implementing a centralized control framework for 

coordinated and smart charging operations by integrating day-ahead EPF into the 

scheduling is crucial for reducing charging costs. This dissertation addresses these 

challenges, with the aim of creating coordinated and smart charging plans to minimize 

charging expenses of vehicle owners,  and overall performance of the power network. 

Additionally, it addresses the challenges associated with accurate short-term EPF to 

optimize economic gains and minimize power market risks. The main obstacles for 

developing reliable machine learning (ML) prediction models for EPF are the complex 

characteristics of electricity prices, including high volatility, sudden surges, and seasonal 

variations. By tackling these complexities, this dissertation aims to enhance the efficacy 
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of forecasting models to enable effective scheduling of PEV charging operations. 

Therefore, coordinated, and smart charging strategies were implemented by integrating 

them with EPF to mitigate the negative impacts on the distribution network, with an aim 

to lower charging costs for vehicle owners and improve power grid performance. 

Furthermore, these strategies can facilitate the integration of RES, thereby supporting the 

transition toward a more sustainable and resilient energy system. 

1.3 Research Area  

This thesis focuses on proposing efficient strategies for smart and coordinated 

scheduling of PEV charging and discharging. These strategies aim to minimize the cost 

associated with charging EVs while also satisfying the requirements of the distribution 

grid. The proposed techniques employ advanced algorithms and ML models to forecast 

electricity prices and accordingly optimize PEV charging schedule. By intelligently 

managing PEV charging, this study aims to reduce the stress on the power grid and ensure 

that the vehicles are charged in a cost-effective and sustainable manner. Furthermore, 

owing to the increasing adoption of PEVs, managing their charging has become a critical 

challenge. A key limitation of PEV charging is the potential strain it can put on the power 

grid, especially during peak demand periods (Muratori, 2018). However, by optimizing 

the charging schedule, PEVs can be charged during off-peak hours when electricity is 

cheaper and demand is lower. In addition to minimizing costs, managing PEV charging 

and discharging can also help improve the overall stability of the power grid. This is 

achieved by allowing utility companies to better manage fluctuations in supply and 

demand that occur owing to various factors such as weather and the deployment of 

renewable energy sources (RES) (Mohammad et al., 2020). In summary, developing 

efficient strategies for managing PEV charging operation is an important area of research 

that can potentially impart substantial benefits to both the PEV owners and the power 

grid. At the crux of this challenge lies the ingenious creation of a communication bridge 
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that seamlessly connects PEVs and power grids by integrating power supply and data. As 

smart grid technologies progress, PEVs  can be transformed from simple electric loads 

into distributed energy storage hubs on the power grid. In this context, PEVs serve dual 

purposes: storing excess energy during low-demand periods, returning the stored energy 

back to the grid when demand surges. Consequently, it is technically feasible to 

accommodate a certain PEV penetration level (PL) for energy supply by employing smart 

and coordinated charging and discharging approaches. The foundation of synchronized 

PEV charging and discharging relies on building a smart information platform to 

streamline energy management between PEVs and the grid. Figure 1.4 illustrates the 

interconnected relationship between information and energy flow when PEVs are 

integrated into the grid. The power grid is an intricate assembly comprising generation, 

transmission, and distribution systems, among other components. In such a framework, 

system operators are essential for integrating the actions of the power consumers and 

developing a rational strategy for power generation, transmission, and distribution to 

ensure that the demand and supply are coordinated (Zheng et al., 2019).  

Further discussion on smart and coordinated PEV charging and electricity price 

forecasting (EPF) are presented in Chapter 2. 
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Figure 1.4: Framework of coordinated PEV charging/discharging 

 

1.4 Aim and Objectives 

The broader aim of this study was to develop and evaluate coordinated and smart 

charging techniques for PEVs to minimize charging costs, thereby maximizing vehicle 

owners' savings, and enhancing the overall performance of the distribution grid. This 

research also aimed to tackle the challenges associated with day-ahead EPF, particularly 

those of time series data, such as volatility and irregular spikes, to schedule PEV charging 

operations effectively. Additionally, it evaluated the implications of these charging 

techniques on the distribution grid to demonstrate their effectiveness. Finally, it addresses 

the issues associated with random (uncoordinated) PEV charging, which can increase 

charging costs, electricity consumption, and power losses. Accordingly, this study 

focused on the following four objectives: 
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1. To develop a smart scheduling system for controlling PEV charging by 

formulating the EV battery as a differential equation model that incorporates 

electricity price and optimal control (OC) method. ensuring enhanced 

performance and efficient energy management. 

2. To develop a hybrid ML model for day-ahead EPF by combining both linear 

and ensemble techniques. This approach adeptly captures and handles 

complex electricity price fluctuations, ensuring superior accuracy and 

reliability of EPF.  

3. To develop two control techniques for further scheduling PEV charging 

operations using OC and ML ensemble approaches that incorporate 

forecasting of electricity price.  

4. To evaluate the impact and effectiveness of both random and proposed PEV 

charging approaches on the distribution grid by examining key performance 

indicators associated with system losses and power consumption.   

1.5 Original Contributions  

This study presents several significant original contributions in the fields of PEV 

charging, day-ahead EPF, and centralized charging control methods.  

First, it introduces a coordinated and smart scheduling system that formulates the EV 

battery as a differential equation model, incorporates a typical day of electricity price 

information, and seamlessly integrates a numerical OC method to minimize PEV 

charging costs. Second, it proposes an innovative hybrid ML model for day-ahead EPF 

that combines linear regression (LR), tree-based ensemble techniques, and real electricity 

market data, resulting in superior accuracy, reliability, and decision-making. 

Furthermore, two cutting-edge charging control techniques involving OC and ML 

ensemble approaches, which employ the electricity price information derived from the 
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EPF, are proposed for scheduling PEV charging operations. Finally, it comprehensively 

evaluates the effects of both the random and proposed PEV charging techniques on the 

distribution grid by measuring key performance indicators related to system losses, power 

consumption, and voltage deviation to provide valuable insights to guide future research 

and implementation. Thus, this study presents original advancements in PEV charging 

control approaches and day-ahead EPF that can collectively benefit the EV and power 

grid industries, as well as EV owners. 

1.6 Thesis overview  

 
This dissertation is organized into five chapters as follows: 

Chapter 1 presents an overview of the mechanisms and principal components of EVs, 

specifically BEVs, HEVs, and PHEVs. It also briefly highlights the ML techniques 

employed in this study. This is followed by discussing the research area of this 

dissertation, focusing on PEV technology and the challenges associated with developing 

smart and coordinated PEV charging strategies. Finally, the problem statement along with 

the research aims and objectives are presented. 

 Chapter 2 provides a brief background of the various PEV charging and discharging 

techniques. It also cites various studies that have addressed scheduling of PEV charging 

operations by employing different optimization and control algorithms to minimize PEV 

charging costs and maintain grid performance. Thereafter, it introduces coordinated and 

smart charging strategies, considering grid-to-vehicle (G2V) and vehicle-to-grid (V2G) 

technologies to manage peak loads through load shifting. Additionally, it reviews relevant 

studies that employed distinct techniques, such as ML, deep learning (DL), and statistical 

approaches, for modeling and predicting electricity prices, particularly in the global 
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market. Finally, the various scheduling approaches employed for PEV charging and EPF 

are also analyzed and compared. 

Chapter 3 discusses the scheduling of PEV charging and discharging operations using 

the OC theory and establishes EV battery models based on three types of charging 

strategies: random (uncoordinated), coordinated (unidirectional), and smart 

(bidirectional). Additionally, it presents the system architecture assumptions and 

formulates control tasks. Implementations of the proposed forecasting methods, which 

were designed to predict electricity prices using both individual and hybrid ML models, 

are also thoroughly discussed. Subsequently, the importance of smart, coordinated 

charging techniques implemented using OC and ML classification approaches and 

integrated with EPF is discussed. Furthermore, the impacts and effectiveness of various 

charging plans on the power distribution system are analyzed. The primary aim was to 

evaluate the proposed approach in terms of overall power losses and system power 

consumption. 

Chapter 4 presents the results of optimizing PEV charging cost using OC with various 

charging strategies under fixed electricity prices. It details the data exploration process, 

outlines the experimental setup, and elucidates the statistical forecasting measurements 

of individual and hybrid ML models. Furthermore, it compares the performance of the 

proposed EPF model with those of several state-of-the-art models to demonstrate its 

robustness. Moreover, the performances of these models are meticulously compared and 

analyzed. Finally, the performances of the proposed PEV charging techniques employing 

OC and ML approaches are evaluated. These techniques encompass all PEV charging 

behaviors and employ EPF.  

Finally, the study contributions, concluding remarks, and directions for future work are 

summarized in Chapter 5.  
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CHAPTER 2: LITERATURE REVIEW  

2.1 Introduction  

This chapter comprehensively analyzes existing research related to PEV charging 

optimization, with a focus on minimizing PEV charging cost, short-term EPF, and 

deploying various techniques to schedule PEV charging and discharging considering 

three specific charging strategies: random, coordinated, and smart. This analysis aimed 

to not only collate and critically evaluate the current state of knowledge in the field but 

also identify gaps in the existing literature, thereby establishing a robust foundation for 

the methodologies and analyses employed in this research. First, studies focused on 

minimizing PEV charging costs are explored, followed by a discussion regarding EPF 

and the application of ML techniques for scheduling PEV charging. Thereafter, it delves 

into the optimization of charging costs through EPF, culminating with an evaluation of 

various PEV charging plans and their impacts on the distribution grid.  

2.2 Scheduling Techniques for PEV Charging  

 
Scheduling techniques play a crucial role in PEV charging optimization, with a 

specific emphasis on minimizing charging costs. Moreover, the applications of various 

scheduling methods have considerably improved the efficiency and cost-effectiveness of 

PEV charging. A comprehensive classification of the various PEV charging strategies, 

which are generally classified into non-smart (random) and smart charging, is illustrated 

in Figure 2.1. In the non-smart or random charging strategy, also referred to as 

uncoordinated charging, the vehicle begins charging as soon as it is plugged into an 

external power source. Moreover, this strategy does not allow controlling the charging 

speed, and charging only stops once the battery is fully charged or the vehicle is 

disconnected from the charging point (Ahmadian et al., 2020).  
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Figure 2.1: Classification of different PEV charging strategies. 

Smart charging strategies can be further categorized into coordinated (unidirectional) 

and smart (bidirectional) charging. The coordinated charging strategy optimally 

determines the timing and rate of PEV charging through an optimization algorithm. 

However, it necessitates the definition of an objective function and the determination of 

decision variables (time and power rate) that are subject to technical constraints, which 

encompasses both the power grid and PEV battery constraints. The objective function can 

be used to minimize charging costs and losses, or enhance voltage regulation, among 

other factors. The unidirectional power flow, which is exclusively employed to charge 

PEV batteries using the G2V technology, has a relatively low implementation cost. This 

approach avoids additional battery degradation as the battery does not discharge by 

supplying power back to the grid. This type of flow requires only one electrical 

connection to the power grid. Notably, the benefits of this technique include the 

possibility of employing a simple control for coordination, which can mitigate the impacts 

of charging rate limitations on the network (Saldanha et al., 2016). In the smart 

(bidirectional) charging strategy, the timings, and rates for charging and/or discharging 

PEVs are determined optimally. This strategy not only optimizes the charging schedules 
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of PEVs but also allows them to support the grid by sending power back. Although 

bidirectional power flow incurs higher costs than the unidirectional approach, it enables 

both charging control and supplying energy to the grid when required. However, owing 

to the higher number of discharge cycles, the battery may undergo additional degradation. 

Moreover, implementing such strategies requires the deployment of bidirectional 

communication and smart metering. This type of power flow allows providing ancillary 

services to the grid and supports the entry of RES. The performances of the different 

charging strategies of random (uncoordinated), coordinated (unidirectional), and smart 

(bidirectional) from various perspectives is outlined in Table 2.1 (Ahmadian et al., 2020; 

Amjad et al., 2018).  

Table 2.1: Performances of PEV charging strategies from different perspectives. 

PEV owner and electric 
 grid perspective 

Random 
(uncoordinated) 

Coordinated 
(unidirectional) 

Smart 
 (bidirectional) 

Charging cost High Low Low 
Full charging assurance Good Medium Poor 

PEV lifespan Long Long Short 
Peak load reduction Poor Good Good 

Power loss High Low Low 
Voltage regulation Poor Good Good 

Power grid reliability Low Medium High 
Component lifetime Short Long Long 
Component capacity Low High High 

Poor grid operation cost High Low Low 
Infrastructure cost Low Medium High 

Power flow Unidirectional Unidirectional Bidirectional 
Battery degradation Low Low High 

 

2.3 Charging Control Methods  

PEV charging management can be categorized into centralized or decentralized 

charging control. Centralized charging control allows the power grid operator to manage 

the PEV charging demand based on the electric grid conditions, such as power loss and 
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voltage constraints. Sometimes, a third party, referred to as an aggregator, is required to 

coordinate the charging demand between the grid operator and vehicle owners. 

Depending on the objective functions, aggregators manage PEV demand by considering 

the constraints of both the grid operator and vehicle owners. They can also participate in 

electricity markets such as the day-ahead energy and ancillary service markets. In 

centralized control, either the grid operator or the PEV aggregator directly manages the 

charging demand to optimize the power usage. However, in decentralized control, 

charging demands are individually managed by the PEV owners (Amin et al., 2020). The 

aggregator serves as an intermediary that manages the communication and electricity 

distribution between the group of electricity users (EV charging customers) and 

providers, as shown in Figure 2.2. The main role of the aggregator is to establish and 

monitor market supply and demand between load devices and dispatchers. In a 

cooperative setup, an aggregator coordinates and schedules PEV charging to minimize 

the overall charging cost. Thus, the aggregator can manage off-peak loading of the power 

grid and improve the load curve by consuming the surplus power during off-peak periods 

(Amin et al., 2020; Jian et al., 2017).  
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Figure 2.2: Function of a PEV aggregator in the energy market. 

 

The significant electric grid penetration of PEVs necessitates substantial investments 

in smart grid technology owing to the considerable electrical demand associated with 

charging them. However, improper scheduling of PEV charging can result in increased 

electricity consumption, potentially leading to higher charging costs and grid overloads. 

Hence, numerous studies have investigated and proposed various charging strategies 

employing a power aggregator to optimize and coordinate PEV charging and minimize 

charging costs (Muratori, 2018). Linear programming (LP) has been proposed to optimize 

EV charging scheduling from the customer’s perspective; it considers aggregator profits, 

customer demand, and related costs (Jin et al., 2013). Another optimization approach, 

called the Bat algorithm, has been proposed to provide central control for managing the 

power unit and charging performance. This method aims to reduce the overall cost of 

PEVs (Tabatabaee et al., 2017). Likewise, a robust optimization technique, called mixed 
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integer LP (MILP), has been proposed, which considers a model of upstream grid prices 

instead of the estimated expenses for modeling an undefined restriction (Cao et al., 2020). 

In contrast, (Ren et al., 2023) introduced a reinforcement learning framework that 

combined a long short-term memory (LSTM) network and an improved LP algorithm 

(ILP). This LSTM-ILP framework aims to optimize the V2G control of EVs by 

considering the overall EV charging demand, discharge potential, large grid electricity 

price, aggregator, and user interest demands. Heuristic algorithms, such as the genetic 

algorithm (GA), particle swarm optimization (PSO), differential evaluation (DE), and 

artificial bee colony (ABC), have been proposed to optimize charging and discharging 

coordination and reduce the coordination cost, considering the network and EV 

constraints. However, these methods require a considerable number of variables for time 

discretization (Dogan et al., 2018). However, (Fernandez et al., 2020; Gong et al., 2020) 

studied GA and PSO coupled with the shuffled frog leaping algorithm (SFLA) to 

minimize PEV charging costs. Although GA and PSO have achieved noteworthy results, 

reducing costs by up to 29% and 19%, respectively, they also have certain limitations, 

such as computational intensity, tendency to converge on local minima, and their 

applicability in dynamic real-world environments. Another technique has investigated the 

problem of PEV charging costs in the housing sector by proposing a new V2G algorithm, 

called the V2G-optimal logical control (OLC) that sells electricity back to the grid during 

peak hours. The results showed that V2G-OLC is significantly more efficient than 

traditional OC strategies, with an average cost reduction of 47% (Turker & Bacha, 2018). 

Other studies, such as those conducted by (Cao et al., 2016; Suyono et al., 2019), have 

focused on reducing both the impacts of PEV charging on the distribution system and 

PEV charging cost by employing MILP and metaheuristic optimization approaches to 

minimize customer expenses and improve grid performance. Moreover, (Amamra & 

Marco, 2019; Dahmane et al., 2021) proposed an optimized bidirectional V2G technique 
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based on a fleet of PEVs connected to a distributed power system. This was achieved by 

employing a network of charging stations and optimized time steps for EV charging by 

considering cost and temperature, demonstrating that the cost savings of EVs can be 

enhanced by adopting V2G technology. Numerous studies have been presented. The 

details of numerous studies that have presented various methods for optimizing PEV 

charging are summarized in Table 2.2, including the objectives, methods employed, 

charging strategies used, and primary outcomes. 

Table 2.2: Details of existing studies on optimizing PEV charging schedule. 

Authors Objective  Method 
employed 

PEV 
charging 
strategy 

Remarks  

(Mohammed 
et al., 2022) 

Minimize 
PEV 

charging 
costs.  

Modified 
placement 
algorithm 
(MPA), 
heuristic 

Unschedule
d, 

scheduled.  

This approach successfully 
reduced PEV charging costs, but 

its effectiveness may vary in 
different real-world conditions, and 

it requires further comparative 
validation. 

(Usman et al., 
2021) 

Make EV 
charging 

more cost-
effective.  

Optimal 
charging 

starting time 
(OCST), 
binary 

evolutionary 
programming 

(BEP). 

Random, 
coordinated.  

Although this method aims to 
benefit EV customers, its 

effectiveness may vary based on 
EV PLs and it may find handling 

high levels of unexpected EV 
arrivals challenging. 

(Ren et al., 
2023) 

Minimize 
charging 

costs of EVs.  
LSTM-ILP Ordered and 

unordered.  

This method successfully reduced 
charging expenses by up to 42.1%. 

However, LSTM struggles with 
longer sequences and ILP 

potentially oversimplifies complex 
situations. 

(Tabatabaee et 
al., 2017) 

Minimize 
total PEV 
charging 

cost. 

Stochastic 
optimization 

(Bat 
algorithm) 

Smart V2G 
technology. 

This method can effectively 
manage PEV charging behavior; 
however, stochastic methods can 

yield unpredictable results. 

(Cao et al., 
2020) 

Maximize 
EV 

aggregator 
profits. 

MILP 

Various 
charging and 
discharging 
strategies. 

Developed robust scheduling for 
underprice uncertainty. Savings 
increased by 69.78% using the 

optimistic strategy, whereas they 
decreased by 54.94% for 

pessimistic cases. 

(Dogan et al., 
2018) 

Minimize 
coordination 

cost. 

GA, PSO, DE, 
ABC 

Optimized 
charge/disch

arge 
coordination 

in V2G. 

Achieved efficient charging 
coordination while satisfying 

network requirements. GA 
achieved the best optimization 

performance; however, heuristic 
methods may not always guarantee 

the optimal solution. 
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(Table 2.2 continued) 

(Hou et al., 
2023) 

Minimize 
operating 

costs. 

Two-stage 
stochastic 

optimization 
framework.  

Not detailed.  

The proposed method reduced 
daily operating costs by up to 

27.5%, demonstrated through a 
case study using real-world data.  

(Fernandez et 
al., 2020) 

Minimize 
charging 

cost. 
PSO, SFLA Not detailed. 

Demonstrated that the proposed 
methods effectively reduced 
charging costs by up to 29%. 

However, it did not explicitly detail 
the PEV charging patterns. 

(Gong et al., 
2020) 

Reduce 
charging 

cost. 

Dynamic 
spike pricing 
(DSP) policy, 

GA 

Various 
charging 

behaviors. 

Implemented a DSP policy for load 
management, achieving a cost 

reduction of approximately 19%; 
however, the model assumes 

precise forecasting of demand and 
transformer capacities. 

(Turker & 
Bacha, 2018) 

Reduce 
charging 

costs.  
 V2G-OLC 

Smart 
unidirectional 

and 
bidirectional 

charging. 

Introduced the V2G-OLC 
algorithm that reduced charging 
costs by up to 47.94%; however, 
the effectiveness varies based on 

the energy billing systems 
employed in different regions. 

(Cao et al., 
2016) 

Reduce PEV 
charging 

cost. 
MILP Not detailed. 

This optimization algorithm 
achieved a cost reduction of up to 

18%. 

 (Amamra & 
Marco, 2019) 

Minimize 
charging 

cost. 
NLP Bidirectional 

charging. 

Demonstrated the potential for grid 
support and cost reduction by 33%; 
however, the results may vary for 
various EV charging strategies. 

 

Despite the considerable number of studies published on optimizing PEV charging, 

scheduling PEV charging remains challenging. The OC theory differs from previously 

applied methods as it adopts a mathematical approach to find the best control or policy 

for a dynamical system over a given period. It is advantageous over other methods that 

are complex or require extensive data management as it aims to either minimize or 

maximize a given function within the set constraints, which may include initial and 

terminal conditions as well as state and control limitations (Mall et al., 2020; Naidu, 

2018), resulting in an adaptable and efficient method. One of the objectives of this study 

is to minimize PEV charging costs by intelligently scheduling PEV charging. Moreover, 

the application of the OC theory in the context of PEV charging is particularly promising 

as it can intelligently adapt to changing market conditions. By continuously optimizing 

the control policy according to a predefined cost function, such as charging cost, the OC 
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theory can generate a more flexible and efficient charging schedule, which can enhance 

the savings of PEV owners and improve grid load management, thereby addressing the 

gaps identified in the literature. Hence, this study addresses the fundamental issue of 

uncoordinated or nonintelligent EV charging, which can result in higher charging costs 

owing to the hourly fluctuations in electricity rates, which can burden EV owners. The 

charging model was developed based on the ordinary differential equation (ODE). 

Subsequently, the limitations of uncoordinated charging are discussed and thereafter, 

coordinate charging through the application of OC is proposed. Finally, a discharging 

model (smart) is embedded into the charging model to further improve charging 

coordination.  

2.4 Electricity Price Forecasting  

Electricity prices are a critical component of the electricity market. Therefore, an 

economical and reliable operation of the power grid can be ensured through accurate EPF, 

which is considered to be a critical component by all participants in the power market 

competition. Additionally, users may be able to control electricity purchase costs by 

adjusting their usage based on the EPF. Conversely, producers can use EPF to formulate 

an accurate bidding plan for increasing revenue (Yang et al., 2017; Zhou et al., 2019). 

Moreover, the features of electricity prices differ from those of other resources and even 

commodities owing to characteristics such as balancing supply and demand, oligopolistic 

market, and unexpected decreases in consumption and generation that may cause grid 

instability owing to imbalances (Lago et al., 2018; Ugurlu et al., 2018). These 

characteristics result impart various significant attributes to energy prices, including daily 

volatility owing to the increasing deployment of RES, irregular fluctuations, and seasonal 

variations. However, owing to privacy concerns and market competition, information 

regarding these characteristics could not be accessed by investigators as it is classified 

and regulated. To generate accurate EPF, it is necessary to evaluate several input 
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combinations, and improving EPF accuracy can help prevent the adverse effects of price 

instability, improve system stability, and realize economic gains (Hayfavi & Talasli, 

2014; Yang et al., 2017). Although EPF has a certain degree of regularity, it comprises 

several factors that cause electricity price instabilities, such as historical price data, 

market design, weather conditions, demand and supply balance, and bidding strategies 

employed by participants. Furthermore, the decision-making in power markets strongly 

depends on electricity prices, making the EPF an essential factor for ensuring organized 

and effective market operations. An accurate EPF has many advantages that allow power 

consumers and producers to make appropriate decisions based on the market 

environment; for instance, it can be used to optimize electricity storage and reduce energy 

consumption during peak times. Therefore, developing an accurate model to forecast 

electricity prices in a time series is challenging (Nowotarski & Weron, 2018; Weron, 

2014). Most studies published over the last few years have focused on various techniques 

such as DL, statistical models, and ML to model and predict electricity prices, particularly 

for the world market (Ascione et al., 2017; Bissing et al., 2019; Jiang et al., 2016). 

2.4.1 Deep Learning and Statistical Models  

DL is a highly effective ML technique for EPF owing to its ability to learn complex 

data patterns and relationships. It includes methods such as convolutional neural networks 

(CNNs) and LSTM. Furthermore, various DL models have been applied for EPF; for 

instance, (Zhou et al., 2019) proposed an LSTM-based technique for hourly day-ahead 

EPF using a dataset from the Pennsylvania, New Jersey, and Maryland (PJM) electricity 

marker. However, they focused on generating a network structure and selecting 

appropriate hyperparameters for the model by employing a heterogeneous LSTM model. 

(Sun et al., 2021) executed various EPF phases by employing a deep neural network 

(DNN) with a stacked pruning sparse denoising autoencoder (SPSDAE) to eliminate the 

dataset noise with various supplies. The results indicated improvement in terms of the 
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accuracy of electricity price and decrease effectual error criterion. Additionally, (Zhang 

et al., 2022) proposed a hybrid method based on the Catboost technique with bidirectional 

LSTM (BDLSTM) to forecast electricity prices using a Nord Pool market dataset. The 

proposed approach exhibited better performance than conventional models such as 

support vector machine (SVM), LSTM, and multilayer perceptron. (Darudi et al., 2015) 

proposed another hybrid approach, called the adaptive neuro-fuzzy inference system 

(ANFIS) and autoregressive–moving average (ARMA), for EPF in the Spanish market. 

They employed ordered weighted average (OWA) to construct an individual price 

forecasting model by combining three models. (Ugurlu, et al., 2018) proposed a novel 

model that combines the gated recurrent unit (GRU) and LSTM models for day-ahead 

EPF in the Turkish market; the results indicated that the model outperformed various 

other neural networks (NN) structures. (Huang et al., 2021) proposed a hybrid model, 

called SEPNet, comprising a combination of CNN, GRU, and variational mode 

decomposition (VMD) algorithms, and applied it on the New York electricity dataset. 

Their results showed that CNN and VMD-CNN outperformed the other models. 

Similarly, (Zhang et al., 2020) proposed a DL-based hybrid framework for day-ahead 

EPF of the PJM electricity market by combining four forecasting models deep belief 

network (DBN), LSTM, recurrent neural network (RNN), and CNN. Empirical results 

showed that their method offered valuable benefits compared with benchmark techniques. 

(Pavićević & Popović, 2022) introduced various NN structures for EPF using the 

Hungarian Power Exchange (HUPX) dataset. Their results demonstrated that combining 

fully connected layers and RNN is the best approach for predicting electricity prices. 

Furthermore, (Chang et al., 2019) proposed a hybrid model based on wavelet transform 

and an Adam-optimized LSTM neural network for EPF. They validated the proposed 

method under various scenarios using datasets from Australia, New South Wales, and 

France, and confirmed that it successfully enhanced prediction accuracy. In the same 
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context, (Cheng et al., 2019) employed a hybrid model using SVM, support vector 

regression, empirical wavelet transform (EWT), and BDLSTM for EPF on European 

Power Exchange Spot (EPEXSPOT) data. Statistical results showed that their hybrid 

model performs better than the other models used for comparisons. Furthermore, (Kuo & 

Huang, 2018) proposed a hybrid approach, called EPNet, using a combination of CNN 

and LSTM, and employed a PJM dataset to predict hour-ahead electricity prices based on 

the previous 24-h prices. The results showed that their model outperformed other 

algorithms in terms of forecast accuracy.  

Additionally, statistical techniques have been applied to predict electricity prices using 

various datasets. (González et al., 2017) proposed a functional version of the 

autoregressive–moving-average model with exogenous inputs (ARMAX) time series 

model based on Hilbert operators; however, this approach assesses the moving average 

(MA) terms of practical time series models. The proposed technique was validated using 

the German and Spanish electricity price market data. Conversely, (Zhang et al., 2019) 

introduced day-ahead EPF using new integrated model based on ARMAX, improved 

empirical mode decomposition (IEMD), ANFIS, and exponential generalized 

autoregressive conditional heteroscedasticity (EGARCH) and applied it to Australian and 

Spanish market data. The results showed that the proposed model achieved a better 

prediction accuracy than other well-known models. Furthermore, (Angamuthu et al., 

2018) focused on EPF by combining an ARIMA model with another prediction method 

to enhance residual errors in hourly price forecasting for the Iberian electricity market. 

(Zhang et al., 2020) proposed a hybrid model based on VMD, seasonal autoregressive 

integrated moving average (SARIMA), simulated annealing particle swarm optimization 

(SAPSO), and (DBN) to predict electricity price using datasets from the PJM, Australian, 

and Spanish markets; however, SAPSO was employed to optimize DBN and can therefore 
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capture irregular variations in electricity price. The proposed model exhibited better EPF 

performance than other models. 

2.4.2 Machine Learning Techniques  

ML techniques include a wide range of algorithms and methodologies that allow 

computers to learn and make predictions or decisions without explicit programming. 

These techniques involve using statistical models and algorithms that allow computers to 

analyze and interpret complex data patterns. Some common ML techniques include 

supervised learning, wherein models are trained using labeled data; unsupervised 

learning, wherein patterns and structures are identified from unlabeled data; and 

reinforcement learning, wherein agents learn to make optimal decisions through 

interactions with environments. Additionally, techniques such as DL employ artificial 

neural networks (ANNs) with multiple layers to learn hierarchical data representations. 

These techniques have been instrumental in various fields, such as forecasting analytics 

and classification, as they empower machines to perform tasks that traditionally required 

human expertise (Alzubaidi et al., 2021; Esenogho et al., 2022). Numerous studies have 

employed ML models for EPF; for example, (Albahli et al., 2020) applied extreme 

gradient boosting (XGBoost) on a dataset provided by an independent electricity system 

operator (IESO) to forecast electricity prices. Their simulation results indicated that the 

prediction performance of their model is better than those of benchmark approaches such 

as SVM and random forest (RF). Similarly, (Rafiei et al., 2016) conducted hourly EPF 

by applying a new learning method based on the generalized extreme learning machine 

(GELM) on the Ontario and Australia electricity market data; however, this approach is 

computationally intensive and provides indeterminate outcomes for large datasets. 

Another hybrid method proposed by (Wang et al., 2017) combined SVM and kernel 

principal component analysis (KPCA); however, their model is highly static and location 

dependent and cannot handle seasonal price variations across different locations. 
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(Alamaniotis et al., 2015) introduced a hybrid method to forecast electricity prices using 

historical data of New England. They employed relevance vector machines (RVMs) for 

individual predictions, which were combined to perform LR; the results showed that their 

method performed better than those used for comparisons. Furthermore, (Abedinia et al., 

2016) employed feature selection (FS) instead of simplistic training for EPF using data 

from the PJM regulation zone, Spain, and New York electric markets. They employed the 

information gain (IG) and mutual information (MI) techniques to implement FS; 

however, their model is limited to online predictions. In contrast, (Zhang et al., 2019) 

developed a bilevel ML strategy for EPF, wherein LR is employed at the first level to 

anticipate prices across the wholesale U.S. electricity market. The second level comprises 

a limited optimal model that receives the price signal and provides feedback regarding 

the optimal dispatch solutions to the LR model for EPF at the subsequent level.  

A summary of the various aspects, such as forecasting models employed, datasets 

used, and key findings and limitations, of recent EPF studies are listed in Table 2.3.  

Table 2.3: Summary of EPF studies. 

Authors Forecasting model Dataset 
used Key findings and limitations Single Hybrid 

(Albahli et al., 
2020) 

XGboost N/A Ontario 

ML technique was employed to 
increase electricity rates to offload 
data storage and reduce energy 
consumption at cloud data centers. 
However, it proposes a single 
technique to predict EPF using small 
samples of time series data.  

(Abedinia et al., 
2016) 

FS N/A PJM, Spain, 
New York 

This study addressed FS instead of 
simple training. Although they 
obtained an MAE of 4.09 during 
tests, the model can only perform 
offline predictions using a large 
dataset. 

(Pavićević & 
Popović, 2022) 

Dense-
LSTM 

N/A HUPX 

Owing to the increasing number of 
markets. ANN is becoming essential 
for performing predictions. However, 
the dataset employed had a high 
number of features, which might 
impact the prediction performance. 
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(Table 2.3 continued) 

(Ugurlu et al.,  
2018) N/A GRU-

LSTM Turkish 

Analysis model for EPF with 
emphasis on the performances of 
GRU and LSTM. However, 
experimental results validated only 
for day-ahead forecasting. Further, 
the results are inconsistent and can 
diverge based on season, making the 
proposed model inadequate for 
broader applications. 

(Wang et al., 2017) N/A SVM-
KPCA 

ISO, New 
England 

Extracting new features with minimal 
redundancy, which improves SVM 
results. As a large dataset was 
employed, a significant computation 
overhead was imposed, contributing 
to the proposed model's inefficiency. 

(Kuo & Huang, 
2018) N/A EPNet PJM 

The model performed better than 
traditional ML approaches. However, 
CNN is substantially slower owing to 
operations such as max pooling. The 
model outputs prices with large errors 
during real-time forecasting that 
involves significant computational 
complexity. 

(Sun et al., 2021) N/A 
SDR-

MASES-
SPSDAE 

Australia 
The proposed approach analyzes a 
large amount of input data by 
separating the essential elements. 

(Zhang et al., 
2020) N/A 

VMD, 
SAPSO, 

DBN 

Australia, 
PJM, 

Spanish 

Although the proposed method can 
enhance forecasting accuracy, it has 
some limitations in terms of 
computation time and complexity. 

(Zhang et al., 
2019) N/A 

ANFIS, 
ARMAX, 
EGARCH 

Australian, 
Spanish 

The proposed model can improve 
accuracy. However, ANFIS is a 
highly complex structure and the 
statistical model has fragile owing to 
limited capture of nonlinear behavior 
of electricity fluctuations. 

(Zhang et al., 
2020) N/A 

RNN, 
LSTM, 
CNN 

PJM 

Hybrid DL framework proposed for 
EPF offers considerable bidding 
potential. DNNs requires a significant 
amount of data to obtain better results 
compared to traditional techniques. 

(Zhang et al., 
2022) N/A BDLSTM Nord Pool 

The categorical feature of the 
proposed model is managed 
efficiently. However, the proposed 
method requires a considerable 
amount of time for training and 
forecasting. 

(Darudi et al., 
2015) 

ANFIS, 
ANN, 

ARIMA 
N/A Spanish 

Different forecasting models were 
combined to produce a single 
framework that conducts accurate 
EPF. This study employed statistical 
and DL models using weekly season 
data (training with limited data). 

 

Most of these studies employed ML techniques, such as statistical and conventional 

models, for EPF (Albahli et al., 2020; Pavićević & Popović, 2022). However, a time series 
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electricity price dataset has characteristics such as high volatility, rapid spikes, and 

seasonality, making it challenging to forecast prices using individual models such as 

XGBoost and ANN. Moreover, these techniques may produce unsatisfactory results with 

large forecasting residuals between actual and forecasted values. Additionally, they are 

inefficient for identifying nonlinear time series behavior and exhibit weak forecasting 

abilities. Furthermore, several hybrid techniques have also been applied for EPF. 

However, most researchers have focused on combining linear methods with DL 

techniques (Kuo & Huang, 2018; Ugurlu et al., 2018; Zhang et al., 2022). DL techniques 

have complex architectures and consume a significant number of computational 

resources. Hence, LR with ensemble tree-based models has been proposed to improve 

EPF performance. Therefore, this study used LR models such as automatic relevance 

determination (ARD) and ridge in combination with ensemble tree-based models, 

including extra tree regression (ETR), random forest regression (RFR), and AdaBoost 

(ADA). Additionally, a real-world Nord Pool electricity market dataset was used to 

evaluate the methods as it is one of the most volatile and seasonal electricity markets with 

rapid spikes. Thus, the electricity price dataset adopted in this study could be used to 

extensively assess the efficiency and applicability of the proposed forecasting model. This 

allows achieving one of the aforementioned objectives (i.e., Objective 2). Moreover, this 

study employed supervised learning algorithms, categorized into two distinct phases. The 

first phase focuses on employing LR techniques, specifically using two models: ridge and 

ARD. These models serve as solid foundations for predicting continuous target variables. 

The second phase explores ensemble tree-based models, which have gained significant 

attention owing to their ability to handle complex data relationships. The prominent 

models within this category, ETR and RFR, were employed along with ADA. This study 

aims to comprehensively assess the performances and applicability of these models to 
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various prediction tasks. Figure 2.3 illustrates the classification of the algorithms used in 

this study. 

 

Figure 2.3: Classification of the ML methods used in this study. 

2.4.2.1 Linear Regression Model 

LR is a widely used supervised learning algorithm that aims to predict a continuous 

target variable based on input features. It assumes a linear relationship between the 

features and the target variable to determine the best-fitting line that minimizes the 

difference between the predicted and actual values. Moreover, both ridge regression and 

ARD are powerful extensions of LR that address different challenges and improve model 

performance. Ridge regression handles overfitting by adding a regularization term, 

whereas ARD automatically determines feature relevance, making it particularly useful 

for scenarios with potentially numerous irrelevant features. These techniques enhance the 

predictive capabilities of LR and provide valuable tools for modeling and prediction tasks 

using supervised learning (Carrera & Kim, 2020; Renkens, 2017). The LR analysis model 

can be formulated as follows:  

.........0 1 1Y X Xi i   = + + +  (2.1) 
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where iX  Y , i , 0 , and i  denote the independent variable, dependent variable, 

estimated slope coefficient, intercept, and number of data samples for multiple LR, 

respectively. The random error component is defined as  . The unobservable error 

component accounts for the failure of the data to lie on a straight line and represents the 

difference between the true and observed values of Y. 

2.4.2.2 Ensemble Tree-based Model 

The ensemble technique is a popular ML approach that combines a collection of 

learners, instead of employing individual learners, to forecast unidentified targets. Each 

learner's output values are combined using a voting process to forecast the final class 

label. The fundamental objective of ensemble learning is to create a more accurate 

classifier composed of several learners. Moreover, various ensemble techniques such as 

bagging (ETR and RFR) and boosting (ADA) have been established and implemented. 

Bagging generates several bootstraps from the training dataset and generates a prediction 

pattern for each bootstrap, as shown in Figure 2.4. However, ETR employs multiple 

decision trees trained on different training data subsets, and random FS is performed for 

each split. The predictions of these trees are combined through averaging or voting, which 

improves stability, reduces overfitting, and ensures robust predictions. Similarly, RFR 

builds an ensemble of decision trees by using bootstrapping to create different subsets of 

the training data and random FS. The predictions of individual trees are combined through 

voting or averaging, resulting in a robust and accurate regression model (Geurts et al., 

2006).  
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Figure 2.4: Workflows of boosting and bagging techniques. 

Additionally, the ADA model is a boosting algorithm that iteratively trains weak 

learners, often decision trees, by assigning higher weights to misclassified examples. The 

weak learners are then combined to produce a strong ensemble model by leveraging the 

strengths of each individual learner. However, this increases the risk of selecting 

misclassified samples as the training data, but a higher proportion of instances are 

correctly classified. Thus, boosting is a continuous process of constructing classifiers 

enhanced by the weights of weak classifiers from previous rounds to reduce dataset 

volatility and variability (Cha et al., 2021; Ribeiro & dos Santos Coelho, 2020).  

2.5 Coordinated and Smart Plug-in Electric Vehicle Charging Using Machine 

Learning and Optimal Control  

As governments worldwide continue investing in EVs and charging infrastructure to 

tackle climate change, the number of EVs worldwide is expected to reach 130 million by 

2030 (Tirunagari et al., 2022). Hence, PEV penetration of the distribution grids will 

continue to increase. However, large-scale adoption of PEVs can result in a demand side 

management (DSM) issue from the supplier’s perspective as PEV chargers impart 

substantial loads on the grid. A possible scenario is that numerous PEV owners begin 

charging their vehicles as soon as they arrive home from work, which is already a period 
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of high demand. Thus, random (uncoordinated) PEV charging strategies can result in 

higher charging expenses for PEV owners; this issue can be further intensified under 

uncoordinated charging demand. Therefore, well-coordinated and smart charging 

synchronization between grid operators and EVs is essential. Random charging of many 

PEVs can result in a very serious problem for electric grid operators (Muratori, 2018). 

Additionally, it can have various negative impacts on the distribution grids, such as 

transformer overloads, voltage deviations, higher operational costs, and power losses. 

Consequently, they may pose a significant risk to the safe and reliable operation of the 

distribution grid, which could result in significant system blackouts due to overloading. 

Therefore, efficient scheduling of PEV charging with the aim of minimizing charging 

costs and accounting for the substantial adoption of PEV creates new challenges for the 

operation of distributed generation and power units within the network (Amin et al., 2020; 

Deilami et al., 2011; Lyu et al., 2020). To alleviate these impacts, it is recommended that 

PEVs should be charged during off-peak hours by optimizing their charging schedules, 

considering hourly variations in electricity price and flexibility of demand load. This will 

allow charging PEVs during periods of low electricity prices and grid load, thereby 

minimizing charging costs and enhancing savings of PEV owners by selling energy back 

to the grid during peak hours. Generally, an aggregator is an essential link between PEVs 

and the DMS. It is also entirely accountable for ensuring that collaborative PEV charging 

is employed while benefiting both the grid operator and PEV owners. Thus, an effective 

communication structure is required to allow real-time information exchange between 

PEVs and the aggregator for enabling efficient control and monitoring of PEV charging 

and discharging operations (Liu et al., 2019).  

Recently, various studies have addressed scheduling PEV charging operations using 

different techniques. For instance, (Jin et al., 2013; Turker & Bacha, 2018) proposed 

linear programming-based optimal schemes and heuristic algorithms for solving static 
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and dynamic problems, respectively, to schedule PEV charging, with an aim to increase 

the savings of owners by incorporating aggregator profits and customer demand. They 

exploited both the V2G and V2H techniques to minimize the electricity costs of a 

household by using only the EV’s battery. Although (Amamra & Marco, 2019; Cao et al., 

2020; López et al., 2018) proposed various techniques, such as MILP, nonlinear 

programming (NLP), and dynamic programming (DP), for scheduling PEV aggregators 

under upstream grid price uncertainty to minimize the overall charging cost. 

Nevertheless, these techniques have limitations in that they can rapidly become extremely 

complex and computationally intensive, especially for cases with many variables and 

constraints. This may pose a challenge for developing an ideal solution within a practical 

time frame. (Momber et al., 2014) developed a two-stage stochastic LP model to 

maximize the profits of EV aggregators in both the day-ahead and balancing markets by 

considering the uncertainties of EV fleet mobility and market prices. (Vagropoulos & 

Bakirtzis, 2013; Wu et al., 2015) proposed stochastic programming approaches to manage 

EV fleet charging by considering the randomness of regulation signals, bidding in the 

market and offering ancillary services. Optimal EV charging and discharging activities 

were discussed by (Hadian et al., 2020), who modeled electric vehicle charging stations 

(EVCS) through multi-objective particle swarm optimization (MOPSO) and a sequential 

Mont Carlo simulation to control the time and rate of EV charging and discharging by 

employing three different battery operation techniques. (Gong et al., 2020) also proposed 

a charging strategy based on dynamic spike pricing wherein GA was employed to 

minimize the EV charging cost and prevent transformer overloads, considering the 

seasonality of EV charging demand. Additionally, (Dahmane et al., 2021) showed that by 

employing V2G technology to sell power back to the electric grid during high peak 

demand, EV owners can reduce their charging costs. Moreover, this study proposed an 

optimal decentralized smart charging method, wherein the dynamic time step was 
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considered to be a decision variable instead of a fixed time step. Similarly, (Chiş et al., 

2016; Li et al., 2019) proposed an approach aimed at reducing the charging cost for an 

individual PEV. It was modeled as a Markov decision process (MDP) with unknown 

transition probabilities and a constrained MDP, and reinforcement learning (RL) 

techniques were employed to create an energy consumption plan for EVs, wherein EV 

charging was controlled using a heuristic scheme, and the outcomes of the charging policy 

were obtained via RL. In contrast, (Wan et al., 2018) employed deep RL algorithms to 

determine the most effective solutions for scheduling EV charging/discharging based on 

future electricity prices. However, RL has a limitation in that it may require a considerable 

amount of data to learn effective policies. Moreover, many hyperparameters must tuned 

to achieve acceptable performance, which can be a time-consuming and computationally 

expensive process. (Rotering & Ilic, 2010) proposed a method for optimizing smart 

charging without V2G technology and V2G technology with only power regulation. 

However, this method does not consider the impact on the state of charge (SOC) owing 

to bidirectional power regulation with equal upward and downward bidding, as well as 

battery discharging during periods of high electricity prices. Additionally, (Mehta et al., 

2016) proposed two smart charging techniques considering both V2G and G2V 

technologies to handle peak loads through load shifting. Nevertheless, for all V2G 

strategies, it must be assumed that users will provide their EVs to allow implementing 

smart charging strategies and expect longer charging times. Generally, the system 

operator aims to maintain grid performance, whereas PEV owners aim to charge their 

vehicles concurrently. Based on this, numerous researchers have explored diverse 

objectives, such as enhancing voltage profiles, reducing system power losses, and 

minimizing PEV charging expenses. These objectives can be met using various 

optimization methods. (Amin et al., 2020) tried to minimize system power losses by 

optimally managing customer charging requests; they considered a normal driving pattern 
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without any charging preference. (Suyono et al., 2019) proposed coordinated charging 

approaches, such as binary particle swarm optimization (BPSO), binary grey wolf 

optimization (BGWO), and metaheuristic techniques, to minimize system losses. They 

employed different tariff zones and organized customer demand into their preferred tariff 

slots. Although they considered the fixed charging priorities of customers, their 

preference flexibility was not considered. Various techniques, such as PSO and BEP, have 

been proposed to develop optimal EV charging schedules for a distribution network that 

does not comprise renewable resources. For instance, (Hajforoosh et al., 2016) adopted a 

variable charging technique with a single objective, whereas (Rahman et al., 2018; Usman 

et al., 2021) adopted fixed charging with multiple objectives. Their findings revealed that 

the proposed approach with fixed charging resulted in the lowest power consumption and 

power losses compared to other algorithms. Although these researchers employed 

advanced techniques, they did not address the crucial topic of reducing EV charging costs 

or consider electricity price variations. (Deilami et al., 2011) proposed a load management 

system that considers market prices that vary with time, time zones preferred by EV 

owners based on their priority selection, and random plugging in of EVs for coordinated 

charging in a smart grid system. Thereafter, they employed the maximum sensitivities 

selection (MSS) optimization method to allow charging EVs as soon as possible based on 

the priority time zones while maintaining the operational criteria of the grid. Meanwhile, 

(Clement-Nyns et al., 2009) formulated the power loss problem resulting from extensive 

grid penetration of EVs as a sequential quadratic optimization algorithm. The charging 

power obtained through quadratic programming cannot be higher than the maximum 

power of the charger. The algorithm involves solving a sequence of quadratic 

programming problems, which is a time-consuming process that requires a significant 

amount of computing power. Moreover, the performance may be sensitive to the initial 
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conditions of the optimization problem. The distinctive approaches of these related 

studies are summarized in Table 2.4.  

Table 2.4: Summary of related studies on various PEV charging strategies. 
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(Table 2.4 continued) 

 

Based on the aforementioned studies, it is evident that selecting the right scheduling 

objective is crucial. Objectives such as reducing system loss and improving voltage 

profiles focus on network performance, whereas minimizing PEV charging costs and 

maximizing owner savings are aimed toward customer care. Most of the cited studies 

primarily focused on either customer benefits or grid performance. However, allowing 

PEV customers the flexibility to charge their vehicles during their preferred periods while 

optimizing network performance and minimizing charging costs is a more complex 

approach for integrating PEVs into the distribution grid. To the best of the author’s 

knowledge, this aspect has not been extensively explored in previous studies. Therefore, 

this study proposes a smart and coordinated charging technique that schedules PEV 

charging with an aim to reduce long-term electricity charging costs and maintain 

distribution grid stability. Although distinct techniques with the same aims have been 

proposed in literature, they were tested under various conditions and assumptions, e.g., 
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PEV battery size, daily load profile (DLP), daily energy price (DEP), charging and 

driving patterns, etc. However, each study was performed in its own context; therefore, 

comparing the performances of all strategies is challenging. However, this study aims to 

minimize PEV charging costs using OC and ML techniques, which include NNs, naïve 

Bayes (NB), and ensemble classifiers. These methods were selected by considering the 

designated charging zone, EPF, and various PEV charging strategies, such as random, 

coordinated, and smart. The approaches were selected based on their individual and 

complementary strengths, along with their proven capabilities for handling complex 

predictive tasks. By combining these techniques, a balance between computational 

efficiency, prediction accuracy, and model interpretability could be achieved, which is 

essential for developing a sustainable and cost-effective plug-in charging system. The 

charging signals obtained using the proposed methods were evaluated using the standard 

and a modified IEEE 69-bus distribution grid system to assess the performance indicators 

associated with system losses, power consumption, and voltage deviations.  

2.6 Research Gap 

While OC theory offers a promising mathematical approach to identify optimal 

charging strategies for dynamic systems, existing methods lack specific consideration for 

minimizing PEV charging costs. This gap is particularly relevant when accounting for 

diverse PEV charging behaviors and designated charging times. Addressing this need for 

cost-effective solutions requires further research into comprehensive PEV charging 

systems. Existing techniques for EPF often struggle with capturing the non-linear aspects 

of electricity prices, hindering their accuracy. This limitation highlights the need for more 

advanced models that can effectively handle complex price patterns and improve 

prediction efficiency. While previous research has addressed customer care and grid 

performance independently, there's a lack of investigation into how to optimize both 
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simultaneously, particularly regarding cost-effective charging. This gap highlights the 

need for further studies that address both grid performance and reduced charging costs. 

2.7  Summary  

 
A substantial number of studies have been conducted for reducing PEV charging costs 

and optimizing PEV charging, signifying the crucial significance of this topic. However, 

optimal scheduling of PEV charging is still considerably challenging. Among the various 

methods adopted to address this issue, the OC theory stands out owing to its unique 

mathematical approach, wherein it aims to identify the OC for a dynamic system over a 

given period. However, a noticeable research gap exists in that no strategies are 

specifically aimed at minimizing PEV charging costs by considering factors such as 

different PEV charging behaviors and designated charging times. This highlights the need 

for further research to explore comprehensive solutions for developing a more efficient 

and cost-effective PEV charging system. 

Additionally, recent studies on EPF have employed techniques such as DL, statistical 

models, and ML to model and predict electricity prices, particularly for the global market. 

However, the inherent characteristics of time series electricity price datasets, such as high 

volatility, rapid spikes, and seasonality, complicate the prediction process. Moreover, 

popular traditional models, such as ANN and XGboost, can yield unsatisfactory results, 

with considerable discrepancies between the forecasted and actual values. Furthermore, 

they exhibit limited efficacy for identifying nonlinear time series behavior, thereby 

limiting their predictive capabilities. This research gap emphasizes the urgent need for 

developing more advanced models to predict electricity prices accurately and efficiently.  

Finally, a comprehensive review of the extant literature has emphasized the pivotal 

role of selecting appropriate scheduling objectives for integrating PEVs into the 
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distribution grid. The significant objectives include minimizing PEV charging costs, 

system losses, improving voltage profiles, and thereby maximizing PEV owner revenue. 

Some of these objectives are focused more toward improving network performance, 

whereas others aim to enhance customer benefits. Generally, studies have tended to focus 

on either enhancing customer benefits or improving grid performance, and rarely 

achieved a balance between the two. However, a more inclusive approach should provide 

PEV customers with the flexibility to charge and discharge their vehicles during low and 

high-demand times, respectively, optimize network performance, and minimize charging 

costs. To the best of the author’s knowledge, existing studies have not adequately 

explored an approach that integrates customer benefits (reduces PEV charging cost based 

on price forecasting) with grid performance optimization. This research gap validates the 

need for additional investigations and a comprehensive study in this field. 
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CHAPTER 3: METHODOLOGY 

3.1 Introduction  

This chapter elucidates the methods and procedures employed to achieve the 

objectives outlined in Chapter 1. It is divided into several subsections. First, intelligent 

charging control by a power aggregator for PEVs by employing OC to minimize charging 

cost using a fixed electricity price is presented. Moreover, the assumptions and system 

architecture, along with control task formulation, are also presented. The implementation 

steps for EPF employed in individual and hybrid ML models are also thoroughly 

explained. Thereafter, it discusses the methodologies of smart and coordinated charging 

techniques employing these OC and ML classification approaches that consider EPF. 

Finally, various PEV charging techniques and radial distribution systems with different 

PEV PLs are used to evaluate the impacts and effectiveness of the proposed charging 

techniques. 

3.2 Plug-in Electric Vehicle Charging Control by Power Aggregator through 

Optimal Control 

This section presents an optimized EV battery charging and discharging scheduling 

model employing the OC theory, along with the system assumptions. To evaluate the 

various PEV charging behaviors, it employs the electricity prices on a typical day, along 

with three different charging strategies: random (uncoordinated), coordinated 

(unidirectional), and smart (bidirectional). 

3.2.1 Assumptions and System Architecture  

Two types of control architectures can be employed for optimal PEV charging: 

centralized and decentralized. In a decentralized control framework, the decision-making 

power for PEV charging is distributed among the PEVs, and each PEV owner determines 

their own charging schedule based on their preferences and requirements. Although this 
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framework allows the customers to make individual charging decisions, it may not 

guarantee an optimal solution for the distribution grid as the aggregators cannot directly 

regulate the charging activities. In contrast, in a centralized control framework, the 

aggregator is entirely responsible for ensuring that the charging process for PEVs is 

effectively coordinated, considering advantages to both the customers and grid operator. 

Furthermore, this approach enables better optimization and coordination of charging 

schedules, considering factors such as grid load, price, and peak demand periods. By 

considering real-time information and employing advanced algorithms, this system can 

determine the most cost-effective periods for charging vehicles by taking advantage of 

lower electricity prices. It can also effectively balance the grid load by distributing the 

charging demand across different periods. Moreover, strategic scheduling of charging 

sessions can help avoid periods of peak demand when electricity prices are higher and the 

grid is strained. This can reduce the overall charging costs for PEV owners and ensure 

that the grid infrastructure is used efficiently (Amin et al., 2020; Ma et al., 2011). Both 

centralized and decentralized control architectures for PEV charging are illustrated in 

Figure 3.1.  

Univ
ers

iti 
Mala

ya



42 

 
Figure 3.1: PEV charging control architectures: (a) decentralized and (b) 

centralized  

Owing to its advantages and the need for optimally controlled PEV charging, the 

centralized control architecture was employed in this study. It includes an aggregator that 

streamlines PEV charging activities by directly managing the charging strategy for each 

vehicle, which indirectly accesses the electricity market through this aggregator, 

benefiting from the smart interface it provides between the PEVs and the market. The 

aggregator efficiently schedules charging operations for multiple vehicles, ensuring that 

the charging process is effective and coordinated. The information flow of the selected 

centralized control architecture is depicted in Figure 3.2. 
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Figure 3.2: Information flow in a centralized control architecture. 

To implement the centralized control architecture, this study made the following 

assumptions: 

• The aggregator is set as a price taker, indicating that it does not have a 

sufficiently large market share to affect electricity prices. 

• The aggregator is assumed to have knowledge of the electricity price, 

although in reality, it must be forecasted.  

• Automated communication technology is available to facilitate smart 

charging. For instance, all information regarding PEVs can be promptly 

communicated to the aggregator, and the control signal generated by the 

aggregator can be transmitted to the PEVs. 

• To establish an effective charging strategy, a representative driving pattern 

must be adopted. Generally, intracity or short-term driving patterns exhibit 

higher levels of predictability owing to fixed working hours and established 

routes of users. Consequently, it was presumed that these driving patterns are 

known in advance. Moreover, it is imperative to determine the energy 

required for each trip.  
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3.2.2 Optimal Control Theory  

The OC theory is a branch of mathematical optimization that deals with finding the 

best possible control for a dynamical system over a period of time. However, it involves 

calculating the time history of the control variables associated with a system, with the aim 

of optimizing a particular performance index, while satisfying various constraints such as 

boundary condition, state, and control path. The two main types of methods in the OC 

theory are direct and indirect. Direct methods discretize the control problem by dividing 

the time horizon into discrete intervals. The control inputs are parameterized over each 

interval and directly optimized to minimize a given cost function, considering the 

constraints and system dynamics. In contrast, indirect methods, also known as variational 

methods, focus on deriving the conditions required to achieve the optimal solution. The 

most prominent indirect method is the Pontryagin's maximum principle (PMP). It 

formulates the necessary conditions for an OC solution by minimizing the Hamiltonian 

function, which is the sum of the system dynamics and cost function, multiplied by the 

adjoint variables (costate variables). By solving a two-point boundary value problem 

derived using the PMP, the OC and state trajectories can be determined. Furthermore, 

indirect methods, such as PMP, are more advantageous for minimization problems as they 

guarantee global optimality and handle constraints naturally. In contrast, direct methods 

suffer from discretization errors, require control input parameterization, and may 

converge to local optima. Therefore, indirect methods, such as the PMP, are preferable 

for minimization problems owing to their global optimality, constraint handling, and 

sensitivity analysis capabilities (Kirk, 2004; Mall et al., 2020). 

The general formulation of the OC problem using indirect methods, including the 

PMP, is expressed as follows:  

1. Specify the dynamic behavior of the system using ODEs: 
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( ) ( ( ), ( ), )X t f X t U t t
•

=                                 (3.1) 

where X(t) denotes the state variables, U(t) denotes the control inputs (a vector 

or multiple control variables), and f denotes the system dynamics function. 

2. Define a cost function J that quantifies the objective or performance index to 

be minimized: 

    
0

( ( ), ( ), )
ft

t

J L X t U t t dt=                                     (3.2) 

where L is the instantaneous cost function, t0 is the initial time, and tf is the 

final time. 

3. Construct the Hamiltonian function H, which combines the system dynamics 

and cost function by introducing adjoint variables ( ( ))t : 

( ( ), ( ), ( ), ) ( ( ), ( ), ) ( ) ( ( ), ( ), )TH X t U t t t L X t U t t t f X t U t t = +  (3.3) 

where ( )t  denotes the adjoint variables (also known as a costate variables). 

4. Derive the necessary conditions for optimality using PMP. These conditions 

involve the minimization or maximization of the Hamiltonian function with 

respect to the control inputs. In the case of multiple control options or bang–

bang control strategy, control U can have two values, e.g., U1 and U2; the OC 

U is then determined based on the sign of the partial Hamiltonian derivative 

with respect to U (dH/dU) as follows:  

 

1*

2

      ( ) 0
( )

     ( ) 0
U if dH dU t

U t
U if dH dU t


= 


                         (3.4) 
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where U1 and U2 represent the two possible control states. The control 

switches to the minimum value of U1 when the derivative of the Hamiltonian 

function with respect to U is negative, where U2 has the maximum value when 

this derivative is positive.  

5. Obtain the adjoint equation by considering the Hamiltonian derivative with 

respect to the state variables, as well as boundary conditions for the state and 

adjoint variables at the initial and final time points: 

H
X




= −


                                                                    (3.5) 

0 0( ) ,       ( ) 0fX t X t= =                                  (3.6) 

6. Formulate the OC problem as a two-point boundary value problem (BVP) 

using the system dynamics, adjoint equation, and boundary conditions. 

Thereafter, numerically solve this BVP using appropriate techniques, such as 

shooting or collocation methods, to determine the OC and state trajectories, 

considering the constraints and the switching behavior of the bang–bang 

control strategy. 

By following these steps and solving the resulting two-point BVP, the indirect 

approach with PMP offers a solution that satisfies the necessary conditions for optimality 

in the OC problem, even with multiple control options or a bang–bang control strategy. 

3.2.3 Electric Vehicle Battery Model  

The PEV charging strategies can be categorized into random (uncoordinated), 

coordinated (unidirectional), and smart (bidirectional). In the random strategy, charging 

begins when the EV is plugged into a charging point and stops only when the battery is 

fully charged or the EV is disconnected. In contrast, smart and coordinated processes 

employ a scheduling technique to monitor the charging process. Coordinated 
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(unidirectional) PEV charging involves one-way flow of electricity, from an external 

power source to the vehicle's battery, and does not allow the vehicle to supply electricity 

back into the grid. In contrast, smart (bidirectional) charging, also known as V2G 

charging, allows the EV to not only receive electricity from the grid but also send it back 

when required. Moreover, bidirectional PEV charging offers several benefits, such as 

allowing EV users to monetize their idle EVs by buying and storing electricity when 

prices are low and selling it when prices are high, thereby allowing them to profit from 

these transactions. Additionally, in case of emergencies, the bidirectional feature can be 

used to power other EVs, thereby acting as a backup power source. By leveraging this 

technology, EVs can serve as a substitute energy resource to help alleviate the strain on 

the electric grid during peak hours and high-demand periods (Un-Noor et al., 2017). In 

this research, EVs are considered as battery packs to implement planned charging. 

Moreover, each battery is modeled as a steady-state equivalent circuit (SSEC), 

represented by the ideal voltage source Voc and internal resistance Rint of a Li-ion battery, 

as illustrated in Figure 3.3. Each Voc and the Rint depend on the SOC of the battery. Power 

is obtained from the SSEC using Ohm’s low: int( )V RocP I I−= . Additionally, the circuit 

current can be obtained by determining the value I through a quadratic equation as 

follows:  

2
int

int

( ) ( ( )) 4
( , , )

2
oc oc

oc

V soc V soc R P
I soc V P

R
− −

= =                (3.7) 

where P is set to cover all possible values obtained using either max. .BT t t plugP U P −= −

when plugt T or BT drP P= when drivet T , where drP denotes the required available power 

when the EV is being driven, Ut denotes the control variable, and t denotes the 

efficiency. In modern batteries, this efficiency is usually close to 100% (Rotering & Ilic, 

2010).  
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Figure 3.3: Circuit configuration of a Lithium-ion battery. 

 
3.2.3.1 Plug-in Electric Vehicle Charging Model 

As the electricity price of a typical day was considered, the charging operation 

involved an entire day.  

For instant operation, the entire time day is represented as [0, N], which is discretized 

into [ , 1]t t + , where, t = 0,1,2,3…N, and time interval Δt. This problem is addressed by 

considering the following discrete first-order system that describes the battery state: 

1 ( , , )t t tX f X U t+ =                                                        (3.8) 

where the SOC is denoted by state variable Xt at time index t, which is described as the 

set of allowable decisions that indicate the possible SOC of the battery spanning (0%, 

1%, 2%, … 99%, 100%). Typically, battery operation is limited to a specific SOC range, 

whose minimum is set to 10%, constraining the SOC between 10 and 100%. Ut is a set of 

permissible states for random (uncoordinated), coordinated (unidirectional), and smart 

(bidirectional) charging processes that indicate the possible control signals. In the preset 

X, any state value that can be obtained as a function of battery charge tQ and total battery 

charge capacity maxQ  is included, and it is defined as:  

 
max

t
t

QX
Q

=                                                                  (3.9) 

   

+

−

 

 

    

+

−
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Furthermore, the Nissan LEAF EV was considered in this study owing to its 

bidirectional charging capability (Nissan LEAF Electric Car, 2021). As the Nissan LEAF 

EV does not comprise an ICE to provide power for propulsion, the battery must be 

charged through an external power source. Hence, the value of Ut is restricted to 0 when 

the EV is being driven, whereas it changes to either 0 or 1 when the EV is plugged-in. 

The EV cannot be charged and discharged simultaneously; hence, the value of Uplug was 

set such that it covered all possible values of Ut, which is computed as follows: 

    
0          

t plug plug
t

t drive

U U t T
U

U t T
 = 
= 

                                 (3.10) 

where Uplug and Tplug are sets of indices T for the period wherein the EV is plugged-in, 

whereas Tdive denotes the period wherein it is being driven. The total number of time 

intervals N is equal to the number of elements in Tplug and Tdive, which is a predefined set 

t ∈ T = [Tplug, Tdive]. The state equation of the problem can be obtained by deriving the 

time of state variable Xt presented in Equation (3.9) as follows: 

max

( , )t tdX I X t
dt Q

=                                                     (3.11) 

 

3.2.3.2 Optimal Control of Plug-in Electric Vehicle Model  

(a) Minimization of Objective Function 

To minimize charging costs, OC can be employed without affecting the daily drive 

profile of the owner, which can maximize their profits. Hence, the objective function of 

OC is defined as: 

Minimize 
0

( , , )
N

t t ty X U t dt                                    (3.12) 
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              Subject to: 
max

( , )t
t

I X tX
Q

•

=  

where yt denotes the charging cost which has two possible values The general equation of 

the cost is expressed as  

( , , )
( , , )     

( )
plug t t plug

t t t
drive drive

y X U t t T
y X U t

y t t T


= 


            (3.13) 

where yplug = ηt. Ut. Pmax-plug. Cel(t). Δt and ydrive(t) = 0 to indicate the driving state. To 

simplify the simulation, the value of ηt was assumed to be 100%. Cel denotes the electricity 

price on a typical day and Δt denotes the time interval. In OC, the necessary optimality 

conditions are employed by minimizing a specific Hamiltonian function H:[0,t], which is 

constructed as follows: 

( , , )        [ ,  ]t
t t t plug drive

dXH y X U t t T T T
dt


 = +   = 
 

      (3.14) 

By replacing dXt/dt and yt with Equations (3.11) and (3.13), respectively, the 

Hamiltonian function can be expressed as follows:  

. . max2( ) ( 4 ( )  int
2max int

2( ) ( 4 ( )                        int
2max int

cells

cells

yplug

U Pt t plugV X V R t Toc t oc n plug
Q R

H
ydrive

PdrV X V R t Toc t oc n drive
Q R







+

  

−  − −    
   

  
  
   = 

+

  

 − −  
 

  
 
 
 







            (3.15) 

The stationary equation dH/dUt and costate equation dH/dXt are obtained by deriving the 

Hamiltonian equation using Ut and Xt, respectively. The charging or no charging control 

is determined based on the value of the derived Hamiltonian with respect to the control 

variable Ut, which is also called the switching function: 
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max. U . . ( ).  max . . max2( 4max int

t

Pt plugdH P C tt t plug el tdU U Pt t plugQ n V Rcells oc ncells

 




  −=  −−
−

  + 

  (3.16) 

where Ut is used as a bang–bang input control variable and is expressed as 

[with charge]

[with nocharge]

1     PEV                   0
  

0    PEV                  0

dH
dU

t dH
dU

  
U

 


= 


                (3.17) 

The costate λ in Equation (3.14) is set to cover all possible values and can be defined by 

deriving the Hamiltonian function against the state variable Xt as follows: 

max int

     max2
max int

max int

2
max int

 
 2

  4  [ ]

 
 2

. . 

 .  4  [ ]

   

             

oc

oc t
U Pt t plug

cells oc ncells
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oc t
Pdr

cells oc ncells

V
Q R

V x plug

Q n V R

V
t Q R

V X drive

Q n V R

t T
dH
dX

t T













  −

− 



 

•   + 

− 



 + 

 +
 



= − = 
+

 



            (3.18) 

 

(b) Optimal Control Parameters of Plug-in Electric Vehicles 

The optimization objective is to schedule a charging plan for each PEV such that the 

charging costs are minimized and owners can profit by selling electricity back to the grid 

during peak hours. This study compares the results of OC-based coordinated and smart 

charging with those of random (uncoordinated) strategies to illustrate the advantages of 

employing an optimization approach. The plugged-in time of an EV begins as the vehicle 

owner finishes their drive; however, the charging schedule is divided into 288 intervals 

of 5 min each, representing a total of 24 h. The structure of an EV battery pack is 

illustrated in Figure 3.4. To create a battery module, two cells are linked in series and 

then in parallel with another pair of cells. Thereafter, 48 battery modules are linked 

together in a series to create a battery pack. Table 3.1 lists the electrical characteristics of 

the battery pack of Nissan LEAF (Braco et al., 2020; Du et al., 2018; Nissan LEAF 

Electric Car, 2021).  
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Table 3.1: Electrical characteristics of the Nissan LEAF battery pack 

Type, Exterior dimensions of cells Lithium-ion, 290 × 216 mm (L × W) 

Capacity, Charging rate 24 kWh, 6.6 kW 

Battery cell voltage, Nominal voltage  3.7–3.8 V, 360–400 V 

Internal resistance of cells 0.0025 Ω 

 

 

Figure 3.4: Structure of an EV battery pack. 

Furthermore, it is crucial to understand the driving behavior of EV owners throughout 

the day by considering factors such as battery SOC, driving pattern, and energy 

requirements for each trip. This study assumed three daily trips: morning, afternoon, and 

night. To determine the SOC for all trips during the driving state, the federal test 

procedure (FTP), new European driving cycle (NEDC), and urban dynamometer driving 

cycle (UDDC) were employed as driving patterns for each trip type, (Driving Cycle 

(Simulink Block), 2022) as well as a permanent magnet DC motor was considered as the 

electric motor (Usman et al., 2019). The specific details regarding each trip, according to 

the vehicle parameters, are presented in Table 3.2 (Nissan LEAF Electric Car, 2021). 

Another crucial component was electricity prices, which were selected based on a fixed 

typical workday and collected from the UK data of Nord Pool market (Nord Pool 

Historical Market Data, 2020). 
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Table 3.2: Driving pattern for each daily trip.  

Trips Driving pattern used Energy required SOC requirement of each trip 

Morning FTP 5.738 kWh 23.908 % 

Afternoon NEDC 2.826 kWh 11.775 % 

Night UDDC 3.975 kWh 16.574 % 

 

3.2.3.3 Plug-in Electric Vehicle Charging Strategies  

This section introduces the three different charging strategies considered in this 

research: random (uncoordinated), coordinated (unidirectional), and smart (bidirectional). 

In random charging, EVs begin charging immediately when they are plugged into an 

external power source, without considering the daily fluctuations in electric prices, and 

stops when the batteries are full. Furthermore, a PEV using the random charging 

technique can be one of the following three states:  

Figure 3.5 presents a flow chart of the processes involved in an uncoordinated charging 

system. During driving, the SOC of the battery decreases, whereas the vehicle remains 

idle (no-charging) when the SOC reaches 100%. Thus, the battery is recharged without 

considering the daily electricity price. 

Random

1      PEV in charging state
= 0     PEV in idle state

-1    PEV in driving state 
U







                           (3.21) 
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Figure 3.5: Flow chart of a random (uncoordinated) PEV charging plan. 

 

In coordinated unidirectional charging, OC is applied to decide whether charging 

should be initiated. This approach differs from the uncoordinated charging strategy, 

wherein the charging process initiates whenever the SOC is below 100% and the EV is 

in the idle state. OC considers market prices and aims to minimize daily charging 

expenses of PEV owners. Moreover, the coordinated unidirectional charging system can 

be in one of the following three control states:  

Coordinated

1     PEV in charging state
0    PEV in idle state
-1   PEV in driving state  

 

U

= 



                         (3.22) 

In smart bidirectional charging, the decision to charge or discharge is based on the 

outcome of OC. Additionally, the decision to discharge is based on the energy required 

for the next trip, SOC, and electricity price. The flowchart in Figure 3.6 illustrates the 
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charging power control, denoted by a dashed square, which represents the coordinated 

unidirectional charging processes. At the beginning of the day, the system checks whether 

the EV is being used, and if it is, the SOC decreases. However, if the EV is idle, the 

stationary equation dH/dU is used to determine whether the EV should be charged, based 

on the values obtained using Equation (3.16). If dH/dU < 0, the EV is charged; else, it 

remains in the idle state. If the result of the dH/dU evaluation suggests that the EV should 

not be charged, the coordinated unidirectional charging switches to the smart bidirectional 

mode. In this mode, the scheduling system charges the PEV only if certain constraints, 

such as the minimum SOC or energy requirement for the next trip, are violated. However, 

if these constraints are not violated, the PEV is allowed to discharge the excess energy 

back into the grid. Consequently, the optimized plan for PEV smart bidirectional charging 

is obtained, represented by a bold line in the flow chart illustrated in Figure 3.6. Moreover, 

in the smart bidirectional charging plan, the EV is in one of the following four control 

states: 

 Smart

1       PEV in charging state
0      PEV in idle state
-1     PEV in driving state
-2     PEV in discharging state

U



= 



                        (3.23) 

where U denotes the control input that is determined based on values obtained using 

Equation (3.16). Furthermore, the smart charging feature is only activated if the EV is in 

the idle state and the SOC exceeds the minimum threshold. For simplicity, the charging 

and discharging states are defined in Equation (3.23).  
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Figure 3.6: Flowchart of the optimized, smart, and coordinated PEV charging 
control. 

 

3.3 Electricity Price Forecasting Using a Hybrid Regression Model  

This section describes the implementations of the proposed forecasting methods to 

predict day-ahead electricity prices using individual and hybrid ML models, as shown in 

Figure 3.7. First, hourly time series data were collected from the UK data of Nord Pool 

spot market, which is a pan-European power exchange (Nord Pool Historical Market 

Data, 2020). Thereafter, the data were split into train and test sets. For training, several 

ML models, including single and hybrid, were applied and their performances were 

compared using the test set. Subsequently, the final predication model was obtained. 
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Figure 3.7: Overall framework of the day-ahead EPF employed in this study. 

 

3.3.1 Performance Indices for Evaluating Model Effectiveness  

The performance of the proposed regression model was evaluated using various 

criteria, as discussed by (Botchkarev, 2019). Moreover, three statistical indices were 

employed to evaluate EPF performance: mean absolute error (MAE), mean square error 

(MSE), and root mean square error (RMSE). These indices were computed as follows: 

1
1

N

i iN i
MAE X y

=
= −  (3.24) 
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2

1

1 ( y )
N

i ii
MSE X

N =
= −  

(3.25) 

21
1
( y )

N

i iN i
RMSE X

=
= −  

(3.26) 

where iX  denotes the actual value, iy  denotes the predicted electricity price at time i , and 

N is the number of testing samples. Generally, lower MSE, MAE, and RMSE scores 

indicate higher prediction accuracy, which occurs when the predicted value iy  is close to 

the actual value iX .  

3.3.2 Time Series Data  

A time series is a collection or sequence of observable data organized chronologically 

using equally spaced periods, such as days or hours. Time series analyses are primarily 

employed to generate suitable models for predicting future events based on known past 

events using an observed time series. Subsequently, these models are used for accurate 

time series forecasting. Furthermore, time series data can be visualized and analyzed to 

find the most effective component, such as a trend that elucidates the observation of 

downwards or upwards patterns over an extended period. Additionally, seasonal 

variations are regular; for example, electricity consumption is high throughout the day 

and low at night. The cyclical component is considered over the long-term (Mudelsee, 

2019). These time series data components are illustrated in Figure 3.8. The historical time 

series dataset used in this study only contained the measured price information and 

approximately 2200 instances, collected every 1 h. The characteristics of the dataset, 

including periods and data preparation, are discussed in Chapter four. 
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Figure 3.8: Components of time series data. 

 

3.3.3 Proposed Hybrid Forecasting Method 

ARD is a linear model that is highly comparable to Bayesian ridge regression. 

However, the ARD regression model outputs a sparser coefficient; it also replaces the 

spherical Gaussian distribution with a centered elliptic one. This means that each 

coefficient can be drawn from a Gaussian distribution, centered on zero. Conversely, 

Bayesian ridge regression has its standard deviation. ARD allows selecting relevant 

features, which can prevent overfitting. Thus, using the benefits of ARD, it is theoretically 

possible to enhance the prediction accuracy for a short-term EPF time series (Wipf & 

Nagarajan, 2007). The ensemble bagging method ETR is an ML technique that extends 

the RF algorithm and is less prone to overfitting. It employs a framework similar to RF 

and randomly selects features for training each base estimator. However, it also randomly 

selects the optimal feature and value for splitting the node. ETR trains each regression 

tree during the entire training set. In contrast, RF trains the model on a bootstrap replica 

(Geurts et al., 2006). Moreover, ETR enhances model functionality, reduces errors, and 

forecasts spikes by learning from interactions to generate accurate predictions. The 

structure of an ETR model is shown in Figure 3.9. Moreover, the ML-based linear model, 
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ARD, and tree-based bagging model, ETR, were combined into a single model, called the 

ARD-ETR, for day-ahead EPF. This was done because ARD captures the general trends 

and seasonality, whereas the ETR improves performance by reducing errors and 

predicting spikes by learning from interactions to produce accurate forecasts. Hence, 

combining LR with the ensemble tree model, ARD-ETR, can produce more accurate 

forecasts and overcome the shortcomings of each model. 

 

Figure 3.9: Framework of the ETR model. 

 

During the training phase, the parameters of model i were optimized to minimize the 

loss function Li as follows: 

2( )i i iL X y= −                                                               (3.27) 
 

where Xi and yi denote the actual and predicted outcomes of model i, respectively. 

However, ML models are not ideal because, for instance, the value predicted by ARD 

deviates from the actual value 1predict iARD X = + .Therefore, an ETR model was trained 
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to forecast residuals 1  by reducing the loss to decrease the deviation 1 . The loss is 

defined as follows: 

2
2 1( )predictL ETR = −                                              (3.28) 

 
where 1 1predictARD X = − . The final EPF of the hybrid model is expressed as  
 

1 1 1 2 1 2( ) ( )predict predictEPF ARD ETR X X   = − = + − + = +      (3.29) 
 
 

The experimental results were in agreement with those of ensemble learning and 

showed that hybrid error 2  < 1 . Hence, the challenges of time series data for EPF were 

eliminated owing to the robustness of these models. The proposed hybrid method is 

illustrated in Figure 3.10 using a comprehensive flowchart. This approach includes the 

following steps: 

1. Samples of historical time series datasets with hourly time steps were 

collected from the Nord Pool spot electricity market price. 

2. The values of past weeks were used to forecast day-ahead electricity prices 

by dividing the samples into a train: test ratio of 80:20.  

3. Final EPF is predicted using the trained hybrid ARD-ETR model.  

4. The hybrid model developed in Step (3) was trained. The final trained model 

was used to generate predictions, and its accuracy was assessed using MSE, 

RMSE and MAE values. Univ
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Figure 3.10: Flowchart of the proposed hybrid approach for EPF. 

 
3.4 Smart Plug-in Electric Vehicle Charging Control Using Ensemble Machine 

Learning Approach with Electricity Price Forecasting 

This section introduces smart and coordinated PEV charging techniques incorporating 

EPF to establish the most cost-effective charging schedule that benefits vehicle owners 

and enhances network performance. Additionally, it provides an overview of the PEV 

charging assumptions and approaches employed. 

3.4.1 System Control and Assumptions 

This study considered a fluctuating electricity market price, which is significant 

because the price is immediately given weight in the scarcity signal of electricity. A 

market that includes day-ahead and spot electricity prices is appropriate for employing 

OC charging. To provide grid support, prices of ancillary services based on capacity, 

rather than energy production, should also be made available. To employ these market 

signals, vehicle charging must be based on forecasted rather than fixed rates. As 

                    

 train

Actual price test

           

                 

 train

Actual price test

           

                 

                

          

                                      

 test
 test

Actual price trian

                    

−

Univ
ers

iti 
Mala

ya



63 

mentioned earlier, this study employed a centralized control architecture, providing 

automated communication infrastructure exists. In this architecture, all information is sent 

to a charge controller, which sends a dispatch plan for a given period to the system 

operator. These modules are linked through the Internet, a wireless network, or any other 

communication network. The other important piece of information is the driving pattern, 

which is assumed to be known and in reality, may be estimated based on past trip 

information or route planning made available by an on-board system or the vehicle owner. 

Additionally, in the centralized control approach, the aggregator directly manages the 

charging strategy for each vehicle. However, every vehicle indirectly interacts with the 

electricity market via this aggregator, which serves as an intelligent intermediary between 

the EVs and the market and coordinates the charging and discharging of numerous 

vehicles. By consolidating several EVs, the aggregator increases its proficiency in the 

electricity market, and may potentially have the opportunity to purchase electricity at 

lower rates and provide steady ancillary services to the grid. After gathering all 

information, the aggregator is fed with data to generate a PEV charging plan, as illustrated 

in Figure 3.11. It should be noted that certain underlying assumptions exist for centralized 

control, such as the aggregator is the price taker, implying that it lacks sufficient market 

share to impact electricity prices. Additionally, automated connection technology 

facilitates smart and coordinated charging by allowing instant transmission of EV-related 

information to the aggregator, which can then send the generated control signals back to 

the vehicles.  Univ
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Figure 3.11: General PEV control flow in a centralized control architecture. 

 

3.4.2 Control Task Formulation  

This section presents the formulation of the PEV charging and discharging scheduling 

problem from the user's perspective, with an aim to minimize charging costs and meet the 

EV charging demand, while considering the SOC, a narrow arrival time range, and EPF. 

The problem formulation uses OC and ensemble ML techniques for scheduling PEV 

charging.  

3.4.3 Plug-in Electric Vehicle Charging with Optimal Control  

The OC theory can play a significant role in optimizing the PEV charging process by 

employing it to minimize the overall charging cost, thereby enhancing savings of PEV 

owners. In this regard, the EV battery model and OC parameters described in Section 

3.2.3 were adopted, which precisely outlines the objective function and associated 

components. By employing OC, the PEV charging process can be strategically managed 

to enhance savings while ensuring efficient energy utilization, ultimately benefiting PEV 

owners in terms of charging costs and sustainability. The general equation of the cost 

function is defined as  
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 [Charge/discharge]

 [nocharge/drive]

   
( , , )

     
t plug

t t t
t drive

y t T
y X U t

y t T
= 


                             (3.30) 

where yt denotes the charging/discharging cost when the EV is plugged-in and no-

charging/drive when EV is in the driving mode. Ut denotes the generated control signal, 

which is defined in Equation (3.10). The control action of charging, discharging, and no-

charging is based on the Hamiltonian function defined in Equations (3.15) and (3.16). 

However, instead of fixed electricity price, the EPF obtained using the hybrid regression 

model was employed using various driving patterns. It is assumed that owners depart their 

homes during morning hours, when the EVs are in a drivable state, and return in the 

evening. Based on this assumption, most owner’s plug-in their EVs for charging upon 

arriving home. To determine the SOC of the battery during the driving state, the 

worldwide harmonized light vehicles test procedure (WLTP) was employed as the driving 

pattern (Driving Cycle (Simulink Block), 2022). A simulation and vehicle parameters 

were used to determine that the SOC required for the entire trip was approximately 45.4% 

and the energy requirement for the entire trip was approximately 10.89 kWh (Nissan 

LEAF Electric Car, 2021). Hence, the control signal is restricted to 0 when the EV is in 

the driving state, whereas it has a value of 0 or 1 when the EV is plugged into the charging 

point. Here, 0 denotes not charging, whereas 1 denotes either charging or discharging. 

Thereafter, OC verifies PEV in all possible charging plans, including smart and 

coordinated.  

3.4.4 Machine Learning-based Plug-in Electric Vehicle Charging  

Supervised ML classifiers, such as NN, NB, and ensemble approaches, were employed 

for coordinated and smart PEV charge scheduling problems using the best EPF model. 

To determine whether the PEV was in the charging, no charging (coordinated scenario), 

or charging and discharging (smart scenario) state, the arrival time of the EV was 

included. The best EPF models based on the time of arrival (tA) to departure time (tD) 

Univ
ers

iti 
Mala

ya



66 

were classified into high forecast zone (HFZ) and low forecast zone (LFZ) in the 

coordinated charging architecture, and HFZ, medium forecast zone (MFZ), and LFZ in 

the smart charging architecture, based on the threshold values of the battery SOC at the 

time of arrival. A high SOC indicates that the EV requires less time to recharge; thus, the 

charging region is smaller than the discharging region. Conversely, a low SOC indicates 

that the EV requires more time to recharge; hence, the charging region will be larger than 

the discharging one. The MFZ denotes hours of medium prices, which lie between the 

HFZ and LFZ that denote peak and off-peak price hours, respectively. A time series 

electricity price dataset with hourly time intervals, collected from the Nord Pool market, 

was used for classification. To label datasets, two and three values for coordinated and 

smart charging plans, respectively, were employed.  Any value in coordinated charging 

plan more than the threshold 1 was set to 0 (HFZ), and the others were set to 1 (LFZ), 

while  the smart charging plan comprised three values based on two thresholds, where, 

any value more than the threshold 1 was set to -1 (HFZ), and the others were set to 1 

(LFZ) . However, any values between  threshold 1 and threshold 2 were set to 0 (MFZ), 

and there was no charging plan for this region, as shown in Figure 3.12. Subsequently, 

three supervised ML algorithms (i.e., NN, NB, and ensemble) were employed to classify 

the charging regions based on EPF. 
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Figure 3.12: Charging time zones for PEVs based on forecasted electricity 
prices: (a) coordinated and (b) smart charging. 

3.4.4.1 Neural Networks  

NNs are commonly used in classification and regression tasks. Consequently, 

numerous designs, training algorithms, and activation functions for NNs have been 

proposed (Alzubaidi et al., 2021). The network architecture selected in this study 

comprised an input layer, a single hidden layer with 100 neurons, and an output layer 

comprising neurons corresponding to the number of classes. A hyperbolic tangent 

sigmoid activation function was applied to the hidden and output layers. The NN labeling 

produced [1, 0]T and [1, 0, -1]T labels for the coordinated and smart charging plans, 

respectively. Thus, the connection weights between nodes were adjusted by employing 

the resilient backpropagation algorithm in the MATLAB environment. Each class in the 

coordinated charge strategy represents LFZ and HFZ, whereas those in the smart strategy 

represent LFZ, MFZ, and HFZ. 
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3.4.4.2 Naive Bayes 

The NB classifier is a probabilistic ML model based on Bayes' theorem. It is called 

”naïve” because it makes a powerful assumption regarding feature independence. The NB 

classifier takes in a set of features as input for a classification problem and employs Bayes' 

theorem to calculate the probability that a sample belongs to each class based on the 

features. Thereafter, the class with the highest probability is selected as the prediction. A 

fitcnb function from the ML Toolbox in MATLAB was adopted because it allows training 

a multiclass classifier on a dataset and using it to make predictions for new data 

(MathWorks. Fit Naive Bayes Classifier, 2022).  

3.4.4.3 Ensemble Approach  

An ensemble classifier is an ML model that combines the predictions of multiple 

smaller classifiers to improve accuracy. The idea behind ensemble models is that they can 

harness the strengths of different models to improve overall performance. This technique 

is often applied to enhance the performance of ML models as it can make more robust 

and accurate predictions than a single classifier. The statistics ML Toolbox from 

MATLAB was employed to create an ensemble of learners for a classification task using 

the “fitcensemble” function, which can improve the model performance by reducing 

overfitting and increasing its generalizability, followed by the function “predict” to 

predict the test data classification (MathWorks. Fit Ensemble Classifier, 2022). The 

“fitcensemble” function trains each classifier on a subset of the data, and the final 

prediction is obtained by taking the weighted average of the forecasts provided by the 

individual classifiers. The weights are selected such that the individual classifiers that 

show good performance for the training data are assigned higher weights. The main 

advantage of employing “fitcensemble” is that the model performance is improved by 

reducing overfitting and its generalizability is increased as each classifier is trained on a 

different subset, which helps minimize model variance and enhance its robustness. 
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Furthermore, “RUSBoost” was used as the ensemble classification method, wherein 

individual classifiers are trained using random subspace sampling, i.e., each classifier is 

trained on a different, randomly selected subset of predictor variables. This helps in 

reducing the correlation between the classifiers, which can improve the overall model 

performance (Seiffert et al., 2009). Algorithm 1 illustrates PEV charge scheduling 

through ML approaches. The inputs of Algorithm 1 are the battery SOC after driving, 

best EPF model, and dataset collection (ψ). The output is provided through trained 

classifiers. At Line 1, a time series dataset with hourly time steps is created. Thereafter, 

based on the charging plan, threshold value λ1 is set for coordinated charging, whereas λ1, 

and λ2 are set for smart charging. The training and testing phases of all ML classifiers 

begin at the inner loop of Line 19, whereas the results are obtained at Line 24. 

Table 3.3: ML-based PEV Charging Schedule.  

Algorithm 1 PEV charging scheduling through ML approaches  
Input: SOC of the battery, arrival time, best model of EPF (ARD-ETR), and historical datasets. 
Output: Trained classifiers. 
1: Create an hourly dataset (ψ) using the data from the Nord Pool spot market. 
2: Assign one or two threshold values (λ1, λ2) for coordinated or smart charging plans, respectively. 
3: while i = 1: length (ψ) do  
4: Set charging plan (coordinated) 
5: if Any value of ψ > λ1 then 
6: Assign class 1 = 0; 
7: else 
8: Assign class 2 = 1; 
9: end if 
10: Set a charging plan (smart) 
11: if Any value of ψ > λ1 && ψ > λ2 then  
12: Assign class 1 = -1; 
13: else if ψ < λ1 && ψ < λ2 
14: Assign class 2 = 1; 
15: else  
16: Assign class 3 = 0; 
17: end if  
18: end while 
19: for (trail =1,…10) do  
20: Randomly use 80% data for training and remaining 20% for testing. 
21: Train the NNs, NBs, and ensemble methods using the training dataset. 
22: Implement equations of matrices according to test data labels and classification outcomes. 
23: end for 
24: Determine the accuracy, precision, recall, and F-score for each ML approach. 
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3.5 Plug-in Electric Vehicle Charging Techniques and Radial Distribution 

System  

3.5.1 Plug-in Electric Vehicle Charging Behavior 

Various factors, including charging strategy, SOC, start time, and charging duration, 

influence the PEV charging process. In this context, this study examines three distinct 

PEV charging strategies: random (uncoordinated), coordinated (unidirectional), and 

smart (bidirectional). As stated earlier, random charging refers to charging without any 

coordination or optimization. However, if many vehicles in a specific area are plugged-

in simultaneously without coordination, the electric grid can be strained, causing voltage 

fluctuations or power outages. This can be particularly problematic during periods of high 

demand, such as hot summer days or cold winter nights when the electricity grid is already 

under stress. Therefore, coordinated, and smart PEV charging strategies have been 

proposed to minimize charging costs and reduce system power losses by employing 

algorithms to manage the PEV charging activities and shifting some of the charging 

demand to off-peak hours when electricity prices are lower. Additionally, smart charging 

strategy allows PEVs to sell electricity back to the grid during periods of high demand 

when prices are higher, resulting in cost savings for both the PEV owners and the electric 

utility. Furthermore, the decision to charge or discharge the PEV is determined by 

applying OC and ensemble ML strategies, considering EPF and system constraints to 

ensure that the charging session is well-organized and cost-effective.  

3.5.2 Radial Distribution System Topology 

To demonstrate the impact and effectiveness of the proposed coordinated and smart 

charging strategies compared to the random (uncoordinated) charging strategy for various 

PEV PLs, a radial distribution system based on the topology of an IEEE 69-bus system, 

as shown in Figure 3.13, was employed (Badr et al., 2022a; Baran & Wu, 1989). 
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Figure 3.13: IEEE 69-bus distribution system. 

Moreover, the challenge involves controlling PEV charging under various PLs, 

minimizing the overall charging expense, and examining the effects of different charging 

plans on the distribution grid. To assess the impact and effectiveness of the proposed PEV 

charging system, two case studies were conducted: one using a modified IEEE 69-bus 

distribution system with active and reactive powers of 456.2 kw and 323.232 kVar, 

respectively, and the other using an original system with 3.8 MW and 2.69 MVar, 

respectively (Badr et al., 2022b). The modified IEEE 69-bus distribution system aimed to 

replicate real-world conditions by introducing voltage drops and congestion issues that 

can arise owing to the integration of PEVs into the power grid, thereby providing a 

suitable environment for evaluating the performances of the proposed charging 

techniques. The second case study employed the original system without any 

modifications, providing a baseline to evaluate the improvements and benefits of the 

proposed PEV charging system. In the first case study, the modified IEEE 69-bus 

distribution system was structured such that each node represented a low-voltage 

residential feeder, which was designed to simulate power distribution to one or two 

households under various PEV PLs. This setup allowed analyzing the impact of PEVs on 

voltage drops and congestion issues at the household level. In contrast, the second case 

study employed the original system, wherein each feeder represented approximately ten 
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customer households on average with different PEV PLs. By considering a larger group 

of customer households within each feeder, this case study provided insights into the 

effects of PEVs on the overall performance of the power grid, including voltage stability 

and power consumption. All residential feeders are supplied through main buses using 

12.66 kV/ 400 V, 100 MVA distribution transformers. The residential load applied on the 

IEEE 69-bus distribution system was based on the residential load profile over 24 h using 

a one-hour time basis, collected from the Nord Pool market, as shown in Figure 3.14.  

 

Figure 3.14: Daily residential load curve of the radial distribution system. 

To cover a broad range of potential PEV charging scenarios, three PEV penetration 

levels (16%, 28%, and 41%) were simulated for each charging strategy, wherein PEVs 

were randomly distributed across low voltage levels. PL is defined as the ratio of PEV 

nodes to the total number of low-voltage residential nodes. The number of PEVs 

connected to the selected node for each PL in case one is illustrated in Figure 3.15. The 

total power loss was computed using Equation (3.31), and the voltage constraints of the 

distribution system were considered by setting the upper and lower limits to correspond 

to the typical voltage regulation limits set by utilities. The voltage limits were set to 

( 10 %−
+ ), which is typical of most distribution systems (Badr et al., 2022a; Deilami et al., 

2011).  
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24 1

 , ( , 1)
1 1

T N
loss

total loss t j j
i j

P P
= −

 +
= =

=                                              (3.31) 

min ,( ) max        1,...i t nodeV V V for i N  =                        (3.32) 

where the , ( , 1)
loss

t j jP +
 denotes the real power loss between line sections i and i + 1. The 

voltage limits of ,( )i tV   denote the voltage of node i at any time interval t , whereas Vmin 

and Vmax denote the minimum and maximum voltage limits, respectively. The load flow 

in the modified IEEE 69-bus distribution system under nominal load, before the 

introduction of PEVs, was 2.804 kW and the total power loss over 24 h was 49.374 kW, 

with a minimum node voltage of 0.9899 PU. Furthermore, selecting 100 MVA and 12.66 

kV as the base power and voltage, respectively, allowed for relative comparisons of power 

and voltage values across the system. By expressing power and voltage in per-unit (PU) 

values relative to these base values, the real power, and voltages at different buses within 

the system can be determined. Therefore, the base values of 100 MVA and 12.66 kV for 

power and voltage, respectively, were considered appropriate for analyzing the IEEE 69-

bus distribution system and conducting power system calculations. 
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Figure 3.15: PEV connections at the selected nodes for different PEV PLs: (a) 
16%, (b) 28%, and (c) 41%. 

3.6 Summary  

This chapter described intelligent PEV charging control by a power aggregator in 

detail. First, OC techniques and their applications for managing PEV charging were 

discussed. Thereafter, the system architecture and assumptions were presented, which 

laid the foundation for subsequent discussions, including centralized and decentralized 

framework controls, and the factors that must be considered for implementing intelligent 

PEV charging strategies were discussed. EV battery packs were considered for various 

charging plans by modeling the EV battery as an SSEC. Subsequently, the control task 

was formulated, emphasizing the importance of OC for establishing an efficient and 

coordinated PEV charging system. Next, the implementation of day-ahead EPF using 

both hybrid and individual ML models was discussed; these forecasting techniques are 

essential for optimizing the charging process. 
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Thereafter, the methodologies of smart and coordinated charging techniques 

employing OC and ML classification approaches integrated with EPF were presented. 

This integration can enable the development of efficient charging strategies that consider 

the predicted electricity prices. 

Finally, it discussed various PEV charging techniques and radial distribution bus 

systems under different PLs, with the aim to showcase the benefits and impacts of 

random, coordinated, and smart charging plans on the distribution grid in terms of factors 

such as charging costs, power losses, and power consumption. The analytical results are 

collated under Chapter 4. 
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1  Introduction  

This chapter presents and discusses the results of the advanced modeling and 

simulations conducted in this study. First, the validation results for optimizing PEV 

charging cost through OC using a fixed electricity price with various PEV charging 

strategies are presented. Second, the data exploration and experimental setup of the 

proposed EPF method, including statistical forecast measurements of hybrid and 

individual models, are discussed. Third, the performance evaluation and simulation 

analysis of PEV charging, which incorporates ML classification and OC approaches 

integrated with price forecasting, are presented. Finally, the impact and effectiveness of 

the random and proposed charging techniques on the distribution grid for various PEV 

PLs are presented.  

The results presented in this chapter are obtained using the methods described in 

Chapter 3. 

4.2 Intelligent Plug-in Electric Vehicle Charging Using Optimal Control  

This section evaluates the three different PEV charging strategies: random 

(uncoordinated), coordinated (unidirectional), and smart (bidirectional). Each strategy is 

analyzed using an OC framework with the aim of minimizing daily charging costs, and 

thereby benefiting vehicle owners. Additionally, the charging costs associated with each 

charging method are also compared. 

4.2.1 Plug-in Electric Vehicle Charging Behavior  

The charging behavior of PEVs is influenced by various factors such as the charging 

strategy employed, battery SOC, battery capacity, and charging duration. However, these 

factors become uncertain when all PEVs plugged into a charging station are considered. 

To better understand this variability, three distinct charging plans were considered: 
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random, coordinated, and smart charging. As stated previously, the random 

(uncoordinated) charging strategy lacks coordination with the grid demand and electricity 

pricing and can potentially result in higher charging costs and grid instability due to 

potential overloads during peak demand hours. Figure 4.1 illustrates the SOC of an EV 

battery throughout the day, divided into different regions indicating trips and charging 

periods, under a random charging strategy. Regions R1, R3, and R5 correspond to 

morning, afternoon, and night trips, respectively, and indicate EV usage. In contrast, 

regions R2, R4, and R6 correspond to charging periods, wherein the EV is plugged-in and 

begins charging immediately without considering the daily electricity price fluctuations. 

After reaching full SOC, the EV state changes to idle with no charging activity, exhibiting 

a constant SOC during this period, as indicated at regions R4 and R6. By the end of the 

day, the EV battery is fully charged and ready to be used the next day. 

 

Figure 4.1: SOC of EV for an entire day under a random (uncoordinated) 
charging strategy. 

Additionally, four subplots indicating electricity price, charging state, SOC with 

battery capacity, and charging cost are shown in Figure 4.2, which illustrate the 

consequences of random PEV charging. The “Electricity Price” subplot shows the daily 

electricity price fluctuations, whereas the “Charging State” subplot depicts the 

uncoordinated PEV charging instances. The “SOC” and “Battery Capacity” subplots 

                               
           

   

   

   

 

  
  

  
 

  

   

   

   

  

   

Univ
ers

iti 
Mala

ya



78 

show the SOC and battery capacity of the PEV over time, indicating periods of charging 

and idling, wherein the battery is fully charged. Moreover, the “Charging Cost” subplot 

highlights the financial impact of random charging, which does not consider electricity 

price variations. This uncoordinated approach results in a considerable charging cost, 

amounting to approximately £882, indicating the potential for cost optimization through 

more strategic charging plans. 

 

Figure 4.2: Random (uncoordinated) charging plan profile: (a) electricity price, 
(b) charging state, (c) SOC (%) with battery capacity, and (d) charging cost (£). 
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The coordinated (unidirectional) charging strategy employs OC, which is based on the 

stationary equation discussed in Chapter 3, to strategically schedule PEV charging during 

periods of low electricity prices. This approach significantly minimizes charging costs, 

thereby enhancing savings of vehicle owners. Thus, it offers substantial improvements 

compared to random charging and highlights the importance of strategic PEV charging 

coordination. Furthermore, Figure 4.3 presents a visual representation of the SOC of an 

EV battery over a day, considering both trips and charging periods, under the coordinated 

(unidirectional) charging strategy. Regions R1, R3, and R5 correspond to the morning, 

afternoon, and night trips respectively, indicating periods when the EV is in the driving 

state. Additionally, regions R2, R4, and R6 depict charging periods, wherein the EV is 

plugged-in and charged at strategic intervals by exploiting lower electricity prices. The 

application of this strategy is particularly evident in region R2, wherein the EV does not 

charge during the first hour but resumes charging as soon as the electricity price drops. 

Consequently, the SOC starts increasing. Notably, after the afternoon trip (R3), the EV is 

charged for only one hour before charging ceases owing to high electricity prices, 

resulting in a constant SOC during this period. This is followed by the night trip (R5), 

which again decreases the SOC; however, after the night trip concludes, the SOC 

increases again as charging resumes, capitalizing on periods of low electricity prices. 
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Figure 4.3: SOC of an EV for an entire day under the coordinated 
(unidirectional) charging strategy. 

The planned, unidirectional coordinated charging system is illustrated in Figure 4.4. It 

is evident that the PEV is charged during periods of considerably low electricity prices, 

as indicated by the “charging state” subplot, wherein periods of PEV charging and no-

charging are indicated in orange and blue, respectively, whereas periods of driving are 

indicated in black. This is accomplished by implementing an OC technique that accounts 

for electricity price fluctuations, allowing the aggregator to make data-driven decisions 

for each PEV by sending the control signal obtained using the OC technique to either 

initiate or suspend charging. To minimize charging costs, some charging demand is 

shifted to off-peak hours to align with periods of low electricity prices. However, it is 

crucial to guarantee that the battery’s SOC has sufficient capacity for the upcoming trip. 

In this charging plan, PEV owner’s plug-in their vehicles for charging immediately after 

trip completion. However, the actual charging process is postponed until off-peak hours 

based on the control signal received through OC. Compared to the random approach, the 

coordinated charging plan notably reduced charging expenses, resulting in savings of 

approximately £690. This number emphasizes the considerable potential for reducing 

PEV charging costs by employing a well-coordinated charging strategy.  
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Figure 4.4: Coordinated (unidirectional) charging plan profile: (a) electricity 
price, (b) charging state with dH/dU, (c) SOC (%) with battery capacity, and (d) 

charging cost (£).  

Smart (bidirectional) charging is an advanced V2G technology that enables two-way 

energy transfer between the PEV and the power grid. It not only permits charging PEVs 

during periods of low electricity demand, but also allows them to return excess energy 

from their batteries back into the grid when it is under strain or during peak price periods. 

This allows balancing the grid load, optimize energy usage, and potentially generate 

revenue for vehicle owners. The SOC of an EV battery across a 24-h period, including 

charging, discharging, and driving instances, is shown in Figure 4.5. It is evident that 

regions R1, R3, and R5 correspond to morning, afternoon, and evening trips, respectively, 

indicating periods of driving. Conversely, regions R2, R4, and R6 represent periods of 
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charging and discharging. During these intervals, the EV is plugged-in and is either 

charging or discharging, depending on the electricity prices. This is particularly evident 

at the start of region R2, where the EV is discharged owing to high electricity prices, 

resulting in a progressive decrease of SOC. Subsequently, after the afternoon trip (R3) is 

completed, the PEV is charged for 1 h by capitalizing on lower electricity prices, thereby 

increasing the SOC. Additionally, the PEV discharges power when electricity prices are 

high, decreasing the battery SOC, as depicted at region R4. This is followed by the night 

trip (R5), which again reduces the SOC based on the trip requirements. However, after 

the night trip concludes, the SOC surges again as the charging process recommences to 

capitalize on periods of lower electricity prices. Thereafter, energy is discharged back 

into the grid at the midnight hour, especially when no charging activity is occurring, or 

the EV remains idle. However, the discharging process is restricted when the SOC reaches 

the minimum threshold value that indicates whether it is sufficient for the next day's trip. 

Consequently, despite high electricity prices, the SOC remains constant. Subsequently, 

the PEV recommences charging primarily during periods of low electricity prices, as 

indicated at region R6. 

 

Figure 4.5: SOC of an EV over a 24 h period under a smart (bidirectional) 
charging plan. 
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Moreover, Figure 4.6 shows the charging states, SOC, battery capacity, and charging 

costs of the EV, providing insights into the implications of the smart PEV charging 

strategy. The “Charging State” graph represents the smart charging and discharging of 

the PEV, indicating intervals of charging (orange), idling (blue), and discharging (green). 

The “SOC” and “Battery Capacity” subplots show the changes in the SOC and battery 

capacity over time. Furthermore, the “Charging Cost” graph exhibits the financial 

implications of employing smart charging by considering electricity price fluctuations. 

The advantages of this intelligent approach are exemplified by the charging cost of 

approximately £232, which demonstrates its significant potential for reducing charging 

costs compared to other charging strategies, as shown in Figure 4.7. It is evident that the 

coordinated charging plan has a considerable advantage over random (uncoordinated) 

charging, with approximately 21.6% lower charging costs. However, the most significant 

cost reduction can be observed using the smart charging and discharging plan, which 

offers cost reduction of up to 73.7% compared to random charging. This remarkable cost 

disparity highlights the effectiveness of the smart PEV charging strategy. 
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Figure 4.6: Smart (bidirectional) charging plan profile: (a) electricity price, (b) 
charging state with dH/dU, (c) SOC (%) with battery capacity, and (d) charging 

cost (£).   

 

Figure 4.7: Minimum PEV charging costs under various strategies. 
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4.2.2 Comparative Studies of Plug-in Electric Vehicle Charging Cost 

As illustrated in Figure 4.8, the methods proposed in this study demonstrate a notable 

superiority for reducing the cost of charging PEV compared to previous studies. Notably, 

the charging cost was reduced by up to 73%, which was considerably higher than other 

methods. In comparison, (Turker & Bacha, 2018) achieved a cost reduction of 

approximately 47%, whereas (Cao et al., 2016; Gong et al., 2020) achieved comparatively 

lower cost reductions of 18% and 19% respectively. This indicates that the proposed 

strategy can effectively optimize the PEV charging process. However, it must be 

validated under various conditions, such as EPF and diverse driving patterns, to confirm 

its widespread applicability.  

 

Figure 4.8: PEV charging cost reductions achieved in various studies. 

4.3 Electricity Price Forecasting Using Hybrid Regression Technique  

This section discusses the data preparation techniques employed and experimental 

results obtained in this study. Additionally, the proposed model is benchmarked against 

several state-of-the-art models to demonstrate its robustness. A concise comparative 

analysis is also included at the end. 
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4.3.1 Experimental Setup and Data Preparation  

The proposed forecasting model employed a real electricity price dataset collected 

from the UK data of Nord Pool spot electricity market (Nord Pool Historical Market Data, 

2020). Furthermore, historical time series data from 2015–2020 were included in a single 

CSV file with 24 h observations divided into hours. The overview of the entire dataset as 

a time series is presented in Figure 4.8. Moreover, the essential statistical characteristics 

indicate mean, maximum, minimum, and standard deviation values of 43.6502, 999, -

38.8, and 18.95, respectively. As illustrated in Figure 4.9, the dataset comprised irregular 

price fluctuations, as well as trend and seasonality variations. Additionally, the price 

fluctuated significantly and exhibited random spikes. Moreover, the dataset included 

some negative values, which generally occur if supply exceeds demand; this usually 

happens in the middle of the day, when various utilities (i.e., wind, large-scale solar, and 

coal-fired) compete for energy dispatch. To comprehensively assess the performance, 

samples from different seasons were selected and used for price forecasting. Additionally, 

a time series dataset comprises a chronological sequence of observations recorded at 

regular intervals. Supervised learning takes (x) patterns as input and outputs (y) patterns; 

hence, the algorithm can learn how to forecast (y) using (x). Thus, a time series dataset 

requires reframing into supervised learning by shifting data into the past to predict future 

values. In this study, the past weeks' values were used for one day-ahead EPF by 

employing lag features, also known as time-lag or time-shifted features, which are 

variables derived from previous observations of a time series analysis. They involve using 

past values of a variable to predict or analyze its current or future behavior.  
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Figure 4.9: Historical time series data from 2015–2020 collected from Nord 
Pool. 

The dataset was split into two subsets, 80% for training and 20% for testing, as 

illustrated in Figure 4.10. However, the time series data comprised irregular fluctuations 

over some periods, which can be attributed to either or combinations of high energy 

demand, supply disruptions, and global shortages of oil, gas, and coal that affect global 

energy prices (Albahli et al., 2020). During training, sliding window validation was 

employed for the time series data to fine-tune the model, wherein the algorithms were 

continuously trained K times (Bengio & Grandvalet, 2003). At this instance, a K value of 

5 was selected, as indicated in Figure 4.10. As sequential samples in a time series are 

correlated, a standard train/test split that assumes the samples are independent does not 

make sense. Instead, sliding window validation allows testing the predictive performance 

at various correlated time steps, mimicking a model that is retrained as more data is 

collected, followed by electricity price prediction. The experiments were conducted in a 

Python 3.8.5 environment on a PC comprising an Intel i7-8565U CPU @1.8 GHz, 8 GB 

RAM and, NVIDIA GeForce MX150 GPU. Furthermore, effective day-ahead EPF can 

allow producers and consumers to make appropriate decisions in a market-oriented 

environment as it can be used to optimize electricity storage and enables demand-side 

flexibility to reduce consumption during peak demand periods. Finally, it can maximize 

economic benefits and reduce power market risks.   
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Figure 4.10: Training and testing phases represented in a time series dataset. 

4.3.2 Forecasting Results  

To assess the performance of the proposed hybrid ML method, the performances of 

various ML-based forecasting methods, including individual and hybrid models, were 

compared. Tables 4.1 and 4.2 list the statistical forecasting results of individual and 

hybrid regression models. As indicated in Table 4.1, the ensemble bagging ETR 

regression model exhibited the highest MAE, RMSE, and MSE scores of 2.99, 4.36, and 

19.03, respectively, followed by another bagging model, RFR, which exhibited MAE, 

RMSE, and MSE values of 3.43, 4.94, and 24.37, respectively. Thereafter, linear models 

such as the ridge obtained a lower MAE of 4.06, compared to RMSE and MSE values of 

6.24 and 38.95, respectively, whereas ARD obtained marginally higher MAE, RMSE, 

and MSE values of 4.1, 6.26, and 39.24, respectively. Additionally, ADA achieved the 

worst scores among all ML models. These results indicate that the forecasting 

performance of the LR model is better than that of the ensemble boosting method. This 

is because the LR model performs remarkably well for linearly separable time series 

datasets and manages overfitting effectively by using sliding window validation and 

dimensionality reduction techniques. However, the tree-based bagging models achieved 

better results than LR owing to their ease of implementation, ability to handle overfitting, 

and variation reduction by the learning algorithm, which increased their accuracies. 
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Table 4.1: Statistical forecasting results of various ML-based forecasting 
models. 

Model MSE (£/MWh) RMSE (£/MWh) MAE (£/MWh) 

RFR 24.37 4.93 3.43 

ARD 39.24 6.26 4.1 

Ridge 38.95 6.24 4.06 

ETR 19.03 4.36 2.99 

ADA 45.67 6.76 5.16 

 

Moreover, Table 4.2 lists the day-ahead EPF accuracy results of the proposed model, 

ARD-ETR, and other models, such as ARD-RFR, ARD-ADA, Ridge-ETR, Ridge-RFR, 

and Ridge- ADA, in terms of MSE, MAE, and RMSE, wherein ARD-ETR achieved the 

best values of 11.7, 2.03, and 3.42, respectively. This linear model with an ensemble 

bagging tree also obtained the best results because linear models can manage the 

challenges associated with time series data, such as trend and seasonality. Additionally, 

it generates extraordinarily linearly separable datasets and adequately handles overfitting. 

Moreover, the ensemble bagging model handles irregular price fluctuations over time and 

can effectively learn from interactions with low variance; therefore, integrating ARD with 

ETR produces the best EPF results, as indicated in Table 4.2.  

Table 4.2: Statistical forecasting performances of various hybrid models. 

Model MSE (£/MWh) RMSE (£/MWh) MAE (£/MWh) 

ARD-RFR 16.4 4.05 2.8 

Ridge-RFR 15.8 3.98 2.4 

Ridge-ETR 17.24 4.15 2.83 

ARD-ADA 38.32 6.19 4.85 

Ridge-ADA 37.71 6.14 4.81 

ARD-ETR (Proposed) 11.7 3.42 2.03 

 

The forecasting accuracies of various ML approaches and the proposed hybrid model 

are illustrated in Figure 4.11, wherein it is evident that the proposed hybrid method ARD-
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ETR achieves significantly better MSE, RMSE, and MAE scores than ML models and 

other hybrid approaches. Thus, the proposed hybrid method can successfully predict 

electricity prices. 

 

Figure 4.11: Forecasting results of the proposed and other hybrid models. 

 

To elucidate the differences between the forecasting curves generated through various 

hybrid methods, 24 forecasted samples for different days of the forecasted data were 

plotted to verify the model performance. Figure 4.12 depicts the forecasting results of the 

individual ETR and other hybrid models. It is evident that the performance of ARD-ADA 

is inadequate as it cannot determine the actual electricity price, resulting in high 

predictions. ETR obtained better results than the hybrid ARD-RFR model as it can 

determine the actual price with fewer errors. However, the forecasts of the proposed 

hybrid ARD-ETR method are incredibly close to the actual electricity prices, which is in 

contrast to other ML approaches.  
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Figure 4.12: Forecasting results of the proposed and other hybrid models: test 
data on (a) day 1 and (b) day 2. 

The following index was employed to evaluate the improvements of the proposed 

method (Zhang et al., 2020): 

p o
index

o

N N
P

N
−

=                                                     (4.1) 

where Pindex denotes the assessment index, No denotes the error value of other models, 

and NP denotes the residual error of the proposed model. Table 4.3 lists the results of 

various ML approaches, wherein the proposed hybrid model shows significant 

improvements. Compared to the RFR, ARD, ARD-RFR, Ridge, Ridge-RFR, ETR, Ridge-

ETR,ADA, ARD-ADA, and Ridge-ADA models, the proposed method exhibited RMSE 

reduction of 30.62%, 45.36%, 15.55%, 45.19%, 14.07%, 21.55%, 17.59%, 49.4%, 

44.74% and 44.29%, respectively, MAE reduction of 40.8%, 50.48%, 27.5%, 50%, 

15.41%, 32.1%, 28.26%, 60.65%, 58.14%, and 57.79%, respectively, and MSE reduction 

of 51.99%, 70.18%, 28.65%, 69.96%, 25.94 %, 38.51%, 32.13%, 74.38%, 69.46%, and 
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68.97%. These results demonstrate that the proposed hybrid method can handle the 

challenges associated with time series price data. Hence, the proposed method produces 

more accurate EPF. 

Table 4.3: Performance comparison of various ML models with the proposed 
method  

Model PRMSE PMAE PMSE 

RFR 30.62 40.8 51.99 

ARD 45.36 50.48 70.18 

ARD-RFR 15.55 27.5 28.65 

Ridge 45.19 50 69.96 

Ridge-RFR 14.07 15.41 25.94 

ETR 21.55 32.1 38.51 

Ridge-ETR 17.59 28.26 32.13 

ADA 49.4 60.65 74.38 

ARD-ADA 44.74 58.14 69.46 

Ridge-ADA 44.29 57.79 68.97 

 

4.3.3 Comparative Analysis  

Among the various techniques compared in this study, the results showed that the 

ARD-ETR method is the most suitable for day-ahead EPF. Moreover, empirical results 

indicated that the proposed hybrid strategy outperforms other methods in terms of MAE, 

RMSE, and MSE. Figure 4.13 illustrates the reductions in MAE and RMSE values by 

four hybrids algorithms, including the proposed ensemble ETR model. Additionally, the 

proposed hybrid approach, ARD-ETR, successfully reduced the MAE and RMSE by 32.1 

and 21.5%, respectively, which was significantly higher than the other hybrid methods.  
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Figure 4.13: RMSE and MAE reduction using various hybrid models, including 
the proposed ARD-ETR model. 

The forecasting accuracy results of the proposed hybrid ARD-ETR model and 

previous studies are listed in Table 4.4, wherein it is evident that the proposed model 

achieved the lowest MAE and RMSE of 2.03 (£/MWh) and 3.42 (£/MWh), respectively. 

Additionally, (Albahli et al., 2020) applied the XGboost model on an Ontario electricity 

market dataset collected between November and December, and achieved and RMSE and 

MAE of 9.25 (£/MWh) and 3.74 (£/MWh), respectively. In contrast, the EPNet method 

(Kuo & Huang, 2018) attained and MAE and RMSE of 8.84 (£/MWh) and 14.2 (£/MWh), 

respectively. In addition, (Zhang et al., 2022) employed BDLSTM on a Nord Pool market 

dataset and achieved an RMSE of 34.99 (£/MWh) and MAE of 22.186 (£/MWh), were 

significantly worse than those achieved by the proposed ARD-ETR model. Additionally, 

the proposed model was slightly superior to that proposed by (Zhang et al., 2020), 

exhibiting better results with lower testing error values for EPF compared to other 

approaches. 
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Table 4.4: Forecasting results of the proposed hybrid ARD-ETR and previously 
proposed models. 

Authors Forecasting 
Techniques 

Testing Matrices 
(£/MWh) Dataset Used 

This study ARD-ETR RMSE: 3.42 
MAE: 2.03 

Nord Pool 
market 

(Albahli et al., 2020) XGboost RMSE: 9.25 
MAE: 3.74 Ontario 

(Pavićević & Popović, 2022) Dense-LSTM RMSE: N/A 
MAE: 14.438 HUPX market 

(Zhang et al., 2022) BDLSTM RMSE: 34.99 
MAE: 22.186 Nord Pool 

(Abedinia et al., 2016) FS RMSE: 18.9 
MAE: 4.09 

PJM, Spanish, 

New York 

(Ugurlu et al., 2018) GRU-LSTM RMSE: 11.99 
MAE: 5.71 Turkish 

(Wang et al., 2017) SVM-KPCA RMSE: 10.21 
MAE: 18.97 

ISO, New 

England 

(Kuo & Huang, 2018) EPNet RMSE: 14.2 
MAE: 8.84 PJM 

(Zhang et al., 2020) VMD-DBN RMSE: 3.28 
MAE: 2.07 

Australia, PJM, 
Spanish 

(Zhang et al., 2022) SSA-DELM RMSE: 4.7 
MAE: 3.8 Nordic market 

(Sun et al., 2021) 
SDR-MASES-

SPSDAE 
RMSE: 4.12 

MAE: 11.76 Australia 

 
 
4.4 Coordinated and Smart PEV Charging Techniques Using Machine 

Learning and Optimal Control  with Electricity Price Forecasting 

This section evaluates the proposed PEV charging techniques and demonstrates their 

effectiveness through a simulation analysis. Additionally, it discusses the generation of 

datasets and experimental results obtained using the random, coordinated unidirectional, 

and smart bidirectional PEV charging strategies, and their impacts on the distribution 

grid. Furthermore, all experiments included in this section were executed in MATLAB 

2020a on a PC with an Intel Core i7-8565U@1.8 GHz CPU, 8 GB RAM, and NVIDIA 

GeForce MX150 GPU. 
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4.4.1 Data Collection and Experimental Setup 

The performance of the ML classification approaches was evaluated using a dataset 

composed of an hourly time series of electricity prices across two years, 2020 and 2021, 

collected from the Nord Pool market. However, datasets used for classification tasks must 

be labeled (classes); thus, two and three classes were adopted based on the number of 

threshold values and charging plan employed (coordinated or smart). The commuting 

behavior from WLTP was employed in this study, wherein the EV customer arrives home 

in the evening. In this regard, most PEV owners tend to plug-in their vehicles for charging 

when they return home from work. Therefore, a uniformly distributed probability density 

function (PDF) with a narrow range around 5:00 PM was considered to be close to the 

actual conditions. Hence, the charging session was set to commence at 5:00 PM for all 

charging plans. The Nissan LEAF model with the maximum battery capacity of 24 kWh 

was employed for the experiments. Various ML classifiers were used to generate optimal 

charging and discharging schedules, and their performances were evaluated using four 

performance metrics: accuracy, precision, recall, and F-score. Additionally, a confusion 

matrix was employed to evaluate the outputs using true positive (TP), true negative (TN), 

false positive (FP), and false negative (FN) values. These performance metrics were 

computed as follows (Alzubaidi et al., 2021): 

100%
TP TN

Accuracy
TP FP TN FN

 +
=   + + + 

 
   

          (4.2) 

100%
TP

Precision
TP FP

 
=   + 


 

                                           (4.3) 

100%
TP

Recall
TP FN

 
=   + 


 

                                              (4.4) 

_ 2 100%Recall× PrecisionF score
Recall + Precision

 =   
 

                          (4.5) 
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The ensemble model was employed for both charging strategies, and it showed 

significantly improved prediction accuracy compared to other models. For comparison, 

we selected three distinct ML models (NN, NB, and ensemble) that are widely employed 

and have proven history of efficiency and accuracy owing to their individual strengths, 

including simplicity and efficiency with robustness through model diversity, and error 

reduction capabilities. The performance results of the three ML classifiers for both the 

coordinated and the smart charging strategies are presented in Table 4.5. It is evident that 

the ensemble approach performed best for both charging strategies, achieving accuracy, 

precision, recall, and F-scores of 98.3%, 100%, 92.2%, and 95.9%, respectively, for the 

coordinated charging strategy, and 99.5%, 98.5%, 100%, and 99.2%, respectively, for the 

smart charging strategy. This is because the ensemble approach combines the predictions 

of multiple smaller classifiers to improve accuracy. 

Table 4.5: Performances of the three ML classification approaches employed. 

Classificatio

n approach 

Coordinated charging strategy  Smart charging strategy 

Accurac

y (%) 

Precisio

n (%) 

Recall 

(%) 

F-

score 

(%) 

Accurac

y (%) 

Precision 

(%) 

Recall 

(%) 

F-score 

(%) 

NB 89.338  76.827  90.91 84.917  97.78  97.121  95.815  96.463  

NN 94.277  100  81.9  90.006  87.951  72.417 100  83.9  

Ensemble  98.324  100  92.28  95.98  99.544  98.579 100  99.284  

 

4.4.2 Plug-in Electric Vehicle Random Charging Base Case 

In the random charging strategy, the PEV owner’s plug-in their vehicles immediately 

upon arriving home. Thus, the batteries recharge as quickly as possible without 

considering electricity price fluctuations, as illustrated in Figure 4.14, ensuring that the 

EV is fully charged by morning. Hence, the SOC of the EV decreases until the trip ends, 

and no charging action occurs during this period. However, after the trip ends, the EV 

begins charging instantaneously despite high electricity prices, resulting in high PEV 
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charging costs, which were estimated to be £280. As depicted in Figure 4.14, the SOC of 

the battery becomes full at approximately 10:00 PM and remains consistent thereafter in 

preparation for the next trip. Additionally, the random charging strategy allows owners 

to recharge their vehicles without considering system constraints. Thus, the distribution 

system faces increased risks, such as substantial power losses and unacceptable voltage 

deviations. The effects of this charging strategy are illustrated in Figures. 4.15, 4.16, and 

4.17. 

 

Figure 4.14: Effects of the random (uncoordinated) PEV charging strategy: (a) 
EPF, (b) charging state, (c) SOC (%) with battery capacity, and (d) charging cost 

(£). 
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The purple line in Figure 4.15 represents the typical electricity demand profile without 

the integration of PEVs. The blue, red, and yellow lines represent the additional electricity 

demand resulting from random PEV charging for PEV PLs of 41%, 28%, and 16%, 

respectively. Evidently, as multiple PEVs begin charging simultaneously, there are 

sudden and unpredictable spikes in electricity demand. These spikes can impart a 

significant amount of stress on the grid, particularly during peak demand hours, resulting 

in increased electricity prices and power outages. Moreover, high percentages system 

losses were observed under different PLs and the voltage constraints at the worst node 

were violated, as illustrated in Figures 4.16 and 4.17. 

 

Figure 4.15: Impact of random (uncoordinated) PEV charging on system 
demand.  

 

Figure 4.16: Impact of random (uncoordinated) PEV charging on system power 
losses.  
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Figure 4.17: Impact of random (uncoordinated) PEV charging on voltage 
profile.  

4.4.3 Coordinated Plug-in Electric Vehicle Charging  

This section discusses the coordinated PEV charging strategy that aims to minimize 

charging costs and prevent grid overloads. This was achieved by employing OC and 

ensemble ML techniques with EPF, which allow the aggregator to make informed 

decisions for each PEV by sending a control signal, which is obtained through the OC 

and ensemble approach, that instructs it to charge or not. Thus, it shifts some charging 

demand to off-peak hours when electricity prices are lower and the grid is less likely to 

be overloaded. In this charging strategy, PEV owner’s plug-in their vehicles as soon as 

they return home; however, charging is delayed until off-peak hours based on the control 

signal obtained from the aggregator. Furthermore, the control signal in the coordinated 

PEV charging strategy with OC is adjusted based on the control input and stationary 

equations provided in Chapter 3. As illustrated in Figure 4.18, the PEVs are charged when 

electricity prices are comparatively lower. The charging control obtained using the OC 

method manages all possible values for charging and not charging throughout the 

charging session, considering period of peak and off-peak electricity prices. 
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Figure 4.18: Coordinated PEV charging strategy with OC: (a) EPF, (b) 
charging state with dH/dU, (c) SOC (%) with battery capacity, and (d) charging 

cost (£).  

Figure 4.18 shows that the SOC decreases during the day, and upon reaching home, 

the PEV owner plugs the vehicle into the charging point. The charging session begins as 

soon as the PEV is plugged-in, as illustrated in the charging state graph, wherein the 

orange color bars indicate that the EV is in charging mode, whereas the blue indicates 

periods of no charging. It is evident that the EV initially charges for only 1 h and then 

stops charging owing to the start of peak hours, resulting in a constant SOC during this 

period. Thereafter, charging resumes when electricity prices reduce, resulting in a total 

charging cost of approximately £182. After conducting a simulation study of random PEV 

charging, the proposed optimal coordinated PEV charging strategy was implemented 
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using PLs of 41%, 28%, and 16% to examine its effects on system load, power loss, and 

voltage deviation, which are depicted in Figures 4.19, 4.20, and 4.21, respectively. As 

shown in Figure 4.19, coordinated PEV charging can help manage peak demand on the 

electric grid at several PEV PLs by charging the PEVs during low demand periods. 

Additionally, as evident from Figures 4.20 and 4.21, the coordinated charging strategy 

significantly reduces the total system losses and voltage drops compared to the random 

charging strategy for various PEV PLs.  

 

Figure 4.19: Impact of coordinated PEV charging using OC on system demand. 

 

 

Figure 4.20: Impact of coordinated PEV charging using OC on system loss. 
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Figure 4.21: Impact of coordinated PEV charging using OC on voltage profile. 

 

Additionally, the control signal obtained using the proposed ML approach is based on 

employing an ensemble classifier, which divides charging times into low and high 

charging zones, as explained in Chapter 3. Additionally, the coordinated PEV charging 

strategy with the ensemble approach is illustrated in Figure 4.22. 
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Figure 4.22: Coordinated PEV charging plan using an ensemble approach: (a) 
EPF, (b) charging state, (c) SOC (%) with battery capacity, and (d) charging cost 

(£). 

  

As depicted in Figure 4.22, the PEV charging control signal obtained using the 

ensemble approach is only active after midnight, which means that the SOC of the EV 

remains constant until the charging signal becomes active when the forecasted price is 

substantially low, resulting in a notable increase in the SOC. Additionally, this strategy 

results in a PEV charging cost of approximately £168, which is lower than those obtained 

via previous techniques owing to varying charging periods based on different charging 

signals. After conducting a simulation analysis of the PEV coordinated charging strategy 

with OC, another charging technique based on an ensemble approach was implemented 
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using different PEV PLs. This approach considered two designated charging time zones, 

red (high) and green (low), to assess its impacts on system load, power loss, and voltage 

deviations, as illustrated in Figures 4.23, 4.24, and 4.25 respectively. The results indicate 

that the ensemble-based coordinated charging approach not only reduced power 

consumption and system losses of the electric grid but also enhanced network 

performance in terms of voltage deviation compared to the previous coordinated and 

random charging strategies. Additionally, the charging process shifted from red (high 

zone) to green (low zone) based on the control signal obtained using the proposed 

ensemble technique considering EPF. This enhanced the cost savings of PEV owners by 

charging the batteries only in the low zone. Thus, coordination PEV charging can 

optimize electric grid utilization, minimize charging costs, and enhance grid reliability 

and efficiency. 

 

Figure 4.23: Impact of the ensemble-based coordinated PEV charging approach 
on system demand. 
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Figure 4.24: Impact of the ensemble-based coordinated PEV charging approach 
on system loss. 

 

Figure 4.25: Impact of the ensemble-based coordinated PEV charging approach 
on voltage profile. 

 

4.4.4 Smart Plug-in Electric Vehicle Charging  

Smart charging refers to the use of advanced technologies and strategies to optimize 

the charging and discharging processes of PEVs such that the efficiency and benefits for 

both the vehicle owner and the power grid are satisfied. This charging technique allows 

PEV to discharge the stored energy back into the grid during peak hours, acting as a 

valuable power source for the grid that can help reduce the electricity bills of vehicle 

owners. Moreover, when PEV owners plug their vehicles into an external power source 

to recharge the batteries, the aggregator sends a control signal, obtained using the OC and 
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ensemble ML approaches, to either charge or discharge the battery. The control signal in 

a smart PEV charging strategy with OC changes based on the switching function; thus, 

the control input is obtained using the control equation presented in Chapter 3. The 

performance of the smart PEV charging plan with OC is illustrated in Figure 4.26, which 

indicates the PEV charging (orange) and discharging (green) states according to the 

electricity price variations during the charging period. The results show that the PEV 

begins charging after it is plugged into the charging point in the evening. However, the 

charging session stops during peak hours (high demand), indicating that these periods are 

more suitable for discharging, provided that the batteries have sufficient energy. 

Moreover, the negative SOC slope indicates that the EV batteries are discharging; hence, 

the PEV charging cost increases gradually, as shown in Figure 4.26. Thereafter, the 

charging session resumes when electricity demand is comparatively lower and thus, the 

SOC increases, and the PEV charging cost for the charging session increases, resulting in 

a total cost of approximately £25.  
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Figure 4.26: Smart PEV charging strategy with OC: (a) EPF, (b) charging state 
with dH/dU, (c) SOC (%) with battery capacity, and (d) charging cost (£). 

To observe the impacts of this charging strategy on the power load, total system losses, 

and voltage deviations on the distribution grid, an IEEE 69-bus distribution system with 

three PEV PLs of 41%, 28%, and 16%, was employed, as illustrated in Figures 4.27, 4.28, 

and 4.29. The results indicate that the smart charging strategy helped manage the system 

demand by shifting PEV charging to off-peak hours and discharging them during high-

demand periods. Furthermore, smart charging plans can reduce power losses and mitigate 

voltage deviations on the power grid, as illustrated in Figures 4.28 and 4.29. 
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Figure 4.27: Impact of the smart PEV charging strategy with OC on system 
demand. 

 

 

Figure 4.28: Impact of the smart PEV charging strategy with OC on system loss. 

 

  

Figure 4.29: Impact of the smart PEV charging strategy with OC on voltage 
profile. 
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Additionally, the proposed smart charging control signal based on the ensemble 

approach is obtained by classifying charging hours into three charging zones: green (low), 

blue (medium), and red (high). The low and high zones represent off-peak and peak 

demands, respectively, whereas the medium zone denotes neutral demand. The 

performance of the ensemble-based smart charging strategy in terms of PEV states, SOC, 

and charging cost are illustrated in Figure 4.30. It evident that there is no charging session 

at the beginning owing to the gradual increase in prices, the SOC remains constant. 

However, during peak (high-demand) hours, the EV discharges, lowering the SOC. 

Subsequently, charging begins again after midnight when demand is low, again 

increasing the SOC. Moreover, the charging cost for the entire day is approximately £15, 

which is significantly lower than that of the previously discussed charging strategies. 

Further, the impacts of ensemble-based PEV smart charging on system power 

consumption, system losses, and voltage drops are presented in Figures 4.31, 4.32, and 

4.33 respectively. 
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Figure 4.30: Ensemble-based smart PEV charging approach : (a) EPF, (b) 
charging state, (c) SOC (%) with battery capacity, and (d) charging cost (£).  

 

Figure 4.31: Impact of the ensemble-based smart PEV charging approach on 
system demand. 
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Figure 4.32: Impact of the ensemble-based smart PEV charging approach on 
system loss. 

 

Figure 4.33: Impact of the ensemble-based smart PEV charging approach on 
voltage profile. 

The results also show that the ensemble-based smart charging strategy performed 

better than the previous charging strategies in terms of power consumption, total system 

losses, and voltage drops. Furthermore, smart PEV charging activities employing the 

ensemble ML approach may transition from high-demand (red) to low-demand (green) 

zones based on the control signal obtained using the proposed ensemble technique with 

EPF. This implies that PEV owners can reduce their charging expenses by charging at 

lower electricity prices and discharging at higher prices. Overall, the ensemble-based 

smart PEV charging strategy is a promising approach for efficiently and effectively 

managing electricity usage. As PEV adoption increases, smart charging technologies are 
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likely to become more widespread and help drive the transition to a more sustainable 

energy future. 

4.4.5 Comparison Results of Various Plug-in Electric Vehicle Charging Strategies  

This section compares the various random, coordinated, and smart PEV charging 

strategies in terms of charging cost and impact on the distribution grid for various PEV 

PLs (41%, 28%, and 16%); the empirical results indicate that the proposed ensemble-

based smart charging strategy outperforms the others. Furthermore, Figure 4.34 illustrates 

the charging costs incurred using various PEV charging strategies with EPF. 

 

Figure 4.34: PEV charging costs incurred using various charging approaches 
with EPF. 

The results show that the proposed smart charging strategy incurred a PEV charging 

cost of £15, which was significantly lower than £280 incurred using the random charging 

strategy. However, the ensemble-based coordinated PEV charging strategy incurred a 

lower PEV charging cost than other coordinated and random charging strategies, with 

cost reductions of approximately 8% and 40%, respectively. Conversely, the proposed 

smart ensemble-based smart charging strategy reduced the charging cost by 

approximately 94% compared to the base random charging strategy. The system losses 

incurred for all charging strategies are listed in Table 4.6, wherein it is evident that 
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compared to the random charging base case, the proposed ensemble-based smart charging 

strategy incurred the least amount system power losses, followed by coordinated charging 

strategies with various PEV PLs. Furthermore, the findings indicate that the smart 

charging approach offers significant benefits in terms of PEV charging costs and negative 

impacts on the distribution grid. 

Table 4.6: Power losses incurred by various charging strategies for different 
PEV PLs. 

PEV PL (%) Min_voltage (PU) Total power loss (kW) Increase in losses (%)  
Nominal case without PEVs  

0 0.9899 49.374  - 
Random (uncoordinated) charging base case:  

16 0.9892 51.758 4.828 
28 0.9887 54.026 9.421 
41 0.9884 56.248 13.922 

Coordinated charging using OC:  
16 0.9897 51.234 3.767 
28 0.9892 53.06 7.465 
41 0.989 54.933 11.259 

Ensemble-based coordinated charging:  
16 0.9921 51.108 3.511 
28 0.9915 52.831 7.001 
41 0.9913 54.617 10.618 

Smart charging using OC:  
16 0.9897 50.2 1.672 
28 0.9892 51.31 3.921 
41 0.989 52.81 6.96 

 Proposed ensemble-based smart charging:  
16 0.9921 50.08 1.43 
28 0.9915 51 3.29 
41 0.9913 52.49 6.311 

 

4.4.6 Original System Case Study  

This section focuses on the authentication of the proposed smart and coordinated PEV 

charging scheduling strategies on an original radial distribution test system. Several 

simulations were conducted to test the smart and coordinated charging strategies. 

Additionally, a comprehensive analysis was performed to investigate the reduction in 

system losses and the effects of voltage deviation to verify the proposed techniques. The 

analysis included three behaviors of charging: the random, coordinated, and proposed 

ensemble-based smart charging strategies. The effects of the random charging strategy on 
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the original IEEE 69-bus distribution system are illustrated in Figures 4.35, 4.36, and 

4.37. As indicated in Figure 4.35, the system overloads during peak hours, surpassing the 

maximum demand limit. Notably, the voltage constraints at the most affected node are 

violated, particularly under PEV PLs of 28% and 41%, which exhibit substantial system 

losses, as evident in Figures 4.36 and 4.37. The peak losses are sustained at the PEV PL 

of 41%, as it involves more charging load than the other levels. 

 

Figure 4.35: Impact of random PEV charging on system load using the original 
IEEE 69-bus distribution system. 

 

Figure 4.36: Impact of random PEV charging on system voltage using the 
original IEEE 69-bus distribution system.  
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Figure 4.37: Impact of random PEV charging on system power loss using the 
original IEEE 69-bus distribution system.  

Following the random charging simulation, the proposed smart and coordinated 

charging strategies were simulated to examine their impacts on the distribution grid. 

Initially, the coordinated charging strategy was employed, followed by the smart charging 

technique, factoring in a control signal derived using an ensemble ML method. Under 

coordinated charging, the system load remained within the maximum demand level 

during peak times for PEV PLs of 16% and 28%, as depicted in Figure 4.38. Additionally, 

the voltage drops at all nodes were within the acceptable utility limits, even at higher PEV 

PLs, as illustrated in Figure 4.39. Additionally, Figure 4.40 indicates that the total system 

power losses reduced significantly compared to those shown in Figure 4.37. 

 

Figure 4.38: Impact of coordinated PEV charging on power consumption using 
the original IEEE 69-bus distribution system.  
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Figure 4.39: Impact of coordinated PEV charging on system voltage using the 
original IEEE 69-bus distribution system.  

 

Figure 4.40: Impact of coordinated PEV charging on power system loss using 
the original IEEE 69-bus distribution system.  

 

Moreover, the control signal of the smart charging strategy was employed to assess its 

effectiveness in terms of system power consumption, system voltage, and total system 

losses. The power consumption and optimal periods for charging and discharging for 

various PEV PLs are depicted in Figure 4.41. The results indicate that all EVs were 

charged during low-demand periods and discharged during high-demand periods. Thus, 

this strategy effectively minimized charging costs, improved the system voltage profile, 

and reduced power losses, as illustrated in Figures 4.42 and 4.43. To highlight the 

effectiveness of the proposed charging strategies, the obtained results are juxtaposed with 
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those of the random charging technique, wherein the total system losses are significantly 

higher than those using smart and coordinated charging strategies. Additionally, in 

uncoordinated PEV charging, a substantial number of voltage drops are evident, 

particularly at high PEV PLs (i.e., 28%, 41%), resulting in poor power quality. In contrast, 

coordinated and smart PEV charging strategies ensure that the voltage deviations are 

constrained within the utility limits, resulting in superior power quality and customer 

satisfaction.  

Additionally, coordinated charging increased system losses by approximately 18.6% 

at high PLs compared to the random charging base case. However, smart charging 

incurred less system losses by approximately 8.36% for the same PLs. The simulation 

results for power loss are listed in Table 4.7. 

 

Figure 4.41: Impact of smart PEV charging on system power load using the 
original IEEE 69-bus distribution system.  

 

                               
           

 

 

 

 

 

 

  
  

  
  

  
  

  
  

  
 

  
  

  
   

 

                    

       
       
       
      

Univ
ers

iti 
Mala

ya



118 

 

Figure 4.42: Impact of smart PEV charging on system voltage using the original 
IEEE 69-bus distribution system.  

 

Figure 4.43: Impact of smart PEV charging on power system loss using the 
original IEEE 69-bus distribution system.  

 
Table 4.7: Results of the various charging strategies for different PEV PLs using 

the original IEEE 69-bus distribution system. 

PEV (%) Min_vlotage (PU) Total power loss (MW) Increase in losses (%)  
Nominal case without any PEV  

0 0.9092 3.883  - 
Random (uncoordinated) charging:  

16 0.901 4.13 6.36 
28 0.8947 4.369 12.51 
41 0.8918 4.605 18.6 

Ensemble-based coordinated charging:  
16 0.929 4.052 4.35 
28 0.923 4.225 8.807 
41 0.9203 4.408 13.52 

Ensemble-based smart charging:  
16 0.929 3.95 1.72 
28 0.923 4.054 4.403 
41 0.9203 4.208 8.37 
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4.5 Comparative Studies  

This study introduced smart and PEV charging coordinated strategies, with the aim of 

minimizing charging expenses for PEV owners and ensuring power grid stability. A 

comprehensive overview of this study and related works is presented in Table 4.8, which 

presents the study objectives, approaches employed, evaluation systems used, datasets 

adopted, and performance results obtained, thereby facilitating a direct comparison of the 

results obtained in each study. Importantly, it is evident that this study achieved superior 

results than the others, especially in terms of reducing PEV charging costs and 

minimizing impacts on the distribution grid. 

Table 4.8: Comparative analysis of this and related studies on PEV charging 
strategies. 

Authors Objectives Method Evaluation 
system Dataset  

Performance 
results (PEV 
charging cost 

reduction) 

This study 

Minimize 
charging cost 

and power 
losses 

ML 
(ensemble) 

and OC 

Modified and 
original IEEE 

69-bus 
distribution 

system 

Nord Pool 
market 

Empirical results 
revealed a 94% 

reduction in PEV 
charging expenses 
and 6.7% reduction 

of power losses 
compared to 

random charging. 

(Deilami et 
al., 2011) 

Minimize 
charging cost 

and losses  
MSS 

IEEE 31-bus 
distribution 

system 

Western 
Australia 

Coordinated RT-
SLM reduced 

charging cost by 
approximately 9.7% 

compared to the 
uncoordinated 

method. 

(Cao et al., 
2020) 

Maximize 
profits and 
minimize 

charging cost 

MILP  N/A N/A 

Charging cost 
was reduced by 

27.06%. 

(Amamra & 
Marco, 2019) 

Minimize 
charging cost  NLP 

Standard IEEE 
33-node 

distribution 
system 

N/A 

EV charging cost 
was reduced by 

33.3%. 

(López et al., 
2018) 

Decrease 
charging cost DP N/A 

Winnipeg, 
Manitoba, 

Canada 

Findings indicated 
that the proposed 

method 
significantly 

reduced charging 
costs.  
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(Table 4.8 continued) 

(Ren et al., 
2023) 

Minimize 
charging cost LSTM-ILP N/A Data.gov 

website 

The approach 
effectively 
decreased 

charging costs by 
42.1%. 

(Jin et al., 
2013) 

Reduce PEV 
charging costs LP N/A 

Glasgow, 
UK and 
NYISO 

PEV charging cost 
was reduced by 

17.4% compared 
to simple 
charging. 

(Turker & 
Bacha, 2018) 

Minimize 
PEV charging 

costs in the 
housing sector 

Heuristic 
algorithms N/A 

French 
energy 
billing 
system 

Compared to basic 
charging, the 

charging cost was 
reduced by 
47.94% on 
average. 

(Chiş et al., 
2016) 

Reduce 
electricity cost 
of PEV owner 

MDP N/A ISO New 
England 

Results from 
simulations 

indicated that the 
charging cost was 
reduced by 10–

50%. 

(Hou et al., 
2023) 

Minimize 
operating 
expenses 

Two-stage 
stochastic 

optimization 
N/A Vancouver 

The proposed 
method reduced 
daily operating 

expenses by 
27.5%. 

(Li et al., 
2019) 

Reduce PEV 
charging cost  MDP N/A 

USA, 
retail-
energy 

Simulation results 
indicated that the 
proposed method 
can significantly 
reducing cost. 

(Suyono et al., 
2019) 

Minimize 
system losses 

and PEV 
charging cost 

Metaheuristic 
method 
(BPSO, 
BGWO) 

Modified of 
IEEE 31-bus 
distribution 

system 

Western 
Australia 

Simulation results 
indicated that the 
proposed strategy 

could reduce 
charging cost by 

15.89%. 
 

4.6 Summary  

This chapter comprehensively presented and discussed the key results obtained in this 

study. First, the validation results for optimizing PEV charging cost were presented, 

demonstrating the application of OC techniques with a fixed electricity price using 

various PEV charging strategies, such as random (uncoordinated), coordinated 

(unidirectional), and smart (bidirectional). Subsequently, data exploration and the 

experimental setup for the proposed EPF were discussed, including statistical forecasting 

measurements for hybrid and individual ML models. Thereafter, performance evaluation 
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and simulation analysis of the various PEV charging strategies are presented, which 

incorporate ML classification and OC methods integrated with EPF. Finally, the impact 

and effectiveness of both the random and proposed charging strategies on the distribution 

grid under various PEV PLs were reported and discussed. The findings suggest that the 

ensemble-based smart PEV charging strategy offers substantial benefits as it effectively 

reduces the PEV charging cost and impact on the distribution grid. Comprehensive 

performance comparisons indicated that the smart and coordinated charging strategies 

using ensemble ML algorithms and OC offer notable improvements compared to the 

random (uncoordinated) PEV charging strategy. 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

In this thesis, significant efforts were made to schedule PEV charging with the aim of 

minimizing charging cost and system losses using various charging strategies. The results 

of the random charging strategy were compared with those of coordinated and smart 

strategies. In this study, a new hybrid ML technique was developed to forecast day-ahead 

electricity prices using real-world electricity data to handle the issues associated with time 

series data, such as volatility and irregular spikes. It also proposed using ML and OC with 

EPF to further optimize PEV charging cost. Furthermore, the control charging signals 

derived using these techniques were evaluated using both the standard and a modified 

IEEE 69-bus distribution system. 

The main findings of this can be summarized as follows: 

• The random plan represents an uncoordinated PEV charging strategy wherein 

the PEVs begin charging immediately when they are plugged into a charging 

point, without considering electricity prices or grid demand. This approach 

may not only potentially result in grid instability during peak hours, but also 

incurred substantial charging costs, estimated at approximately £882. 

However, coordinated charging involves initiating or postponing charging 

based on OC, which considers energy prices. This strategy significantly 

reduces charging costs compared to the random strategy, resulting in savings 

of approximately £690. In contrast, in smart bidirectional charging based on 

OC is significantly cost-effective, incurring a total charging cost of 

approximately £232. Although coordinated charging decreases the charging 

cost by approximately 21% compared to random charging, smart bidirectional 

charging reduces it by approximately 73%.  
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• Developing robust ML tools for EPF is challenging owing to the complex 

characteristics of electricity price, such as high volatility, and rapid spikes, 

which can affect short-term electricity price predictions. Therefore, a new 

hybrid ML technique, ARD-ETR, based on LR and ensemble tree bagging 

models was proposed for price prediction. A historical dataset was collected 

as a time series which was used to validate the efficiency of the proposed 

method. Empirical results demonstrated that the proposed ARD-ETR model 

achieved the best performance in terms of MAE, RMSE, and MSE compared 

to the individual and other hybrid approaches employed in this study. The 

ARD-ETR model obtained the lowest MAE, RMSE, MSE values of 2.03, 

3.42 and 11.7 (£/MWh) respectively.  

• Simultaneously charging many PEVs in a specific area without any 

coordination can put considerable strain on the electric grid, resulting in 

voltage fluctuations or power outages. Therefore, coordinated, and smart PEV 

charging strategies were proposed to minimize charging costs and reduce 

system power losses by employing ML and OC algorithms to manage PEV 

charging, which can enhance cost savings for both PEV owners and the 

electric utility. Three distinct ML approaches were employed (i.e., NN, NB, 

and ensemble) based on designated charging zones. Empirical results showed 

that the ensemble approach achieved better results for both charging strategies 

than the other approaches, obtained accuracy, precision, recall, and F-scores 

of 98.3%, 100%, 92.2%, and 95.9%, respectively, for the coordinated 

approach, and 99.5%, 98.5%, 100% and 99.2%, respectively, for the smart 

approach. Additionally, the simulation results indicated that the proposed 

smart charging approach significantly reduced the PEV charging cost 

compared to the random charging base case, from £280 and £15. Moreover, 
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the ensemble-based coordinated PEV charging strategy incurred a lower 

charging cost than the other coordinated and random charging strategies, 

reducing the cost by approximately 8% and 40%, respectively. However, 

compared to the base case, the proposed ensemble-based smart approaches 

reduced the charging cost by approximately 94%. 

• To illustrate the impacts and efficiencies of the proposed coordinated and 

smart charging techniques compared to random charging at various levels of 

PEV PLs (16%, 28%, and 41%), both modified and standard IEEE 69-bus 

radial distribution systems was employed. The modification aimed to create 

a conducive environment for evaluating the performances of the proposed 

charging strategies. It was structured such that each node represented a low-

voltage residential feeder. These feeders were designed to simulate power 

distribution to one or two households under different PLs. The results 

indicated that the impacts of the smart and coordinated charging were lower 

than those of random charging. By contrast, each feeder in the standard 

system configuration distributed power to approximately ten households on 

average, which also exhibited varying PLs. The results showed that the smart 

and coordinated PEV charging strategies exhibited superior performances 

than the uncoordinated approach in terms of power consumption, voltage 

drops, and system losses. 

In summary, the results indicated that the proposed charging approach can 

significantly reduce the charging cost and improve grid reliability and stability compared 

to uncoordinated charging. Thus, owing to the increasing adoption of PEVs, the 

prevalence of smart and coordinated charging techniques is expected to increase, thereby 

aiding the transition toward a more sustainable energy future. 
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5.2 Recommendations for Future Work  

This study proposed scheduling PEV charging using various strategies to minimize 

charging cost and improve grid reliability. Moreover, a new hybrid ARD-ETR method 

was proposed to forecast electricity prices. Thereafter, various optimized PEV charging 

approaches were employed using ML and OC with EPF and different charging strategies. 

To determine the impacts of the proposed charging approaches, a modified and standard 

IEEE 69-bus radial distribution system grid was adopted. However, the following 

suggestions can provide directions for future work to further reduce PEV charging costs and 

improve grid stability: 

• This research could be extended to incorporate multiple types and models of 

EVs, considering the variations in battery capacities and energy 

consumptions. Moreover, diverse usage patterns, potentially exceeding three 

trips per day or encompassing irregular usage, can be considered. 

Additionally, exploring the potential impacts of integrating RES, such as solar 

panels and wind farms, into the charging infrastructure could provide further 

insights into changes in charging costs or grid performance. 

• The performance of the ARD-ETR hybrid model can be further validated by 

applying it on more extensive or diverse datasets, from various regions and 

power markets, to validate its robustness. Additionally, a deeper exploration 

of parameter optimization for the ARD and ETR models might enhance the 

overall performance of the hybrid model. Finally, hybrid models can be 

extended to investigate its potential for long-term EPF, offering additional 

benefits for future planning in the energy sector. 

• Analyses of alternative distribution grids, especially those with large feeders, 

can present a broader validation scope for the proposed charging model. 

Integrating this model with smart grid technologies, or exploring its 
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interactions with RES, may provide valuable insights into its enhancement of 

grid efficiency and stability. Additionally, prediction accuracy can be 

enhanced by employing various ML techniques, such as hybrid models. A 

comprehensive study of V2G strategies, their grid impact, and the effects of 

different charging schedules on the battery lifespan of PEVs can provide a 

deeper understanding of the model's practical implications. Finally, 

evaluating real-time applications of the optimized charging techniques can 

provide insights into their adaptability to dynamic conditions, such as 

unexpected trips or fluctuations in electricity prices. 
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