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ENHANCED COMPUTATIONAL METHODS FOR DETECTION AND 

INTERPRETATION OF HEART DISEASE BASED ON ENSEMBLE-

LEARNING AND AUTOENCODER FRAMEWORK. 

ABSTRACT 

Heart disease remains the primary cause of mortality globally, and its early detection 

is critical for reducing mortality rates. However, the challenge of class imbalance and 

high dimensionality in clinical data significantly impedes the efficacy of Machine 

Learning (ML) models in this domain. This thesis presents two innovative methods that 

holistically address these challenges at algorithmic and data levels to enhance heart 

disease detection. The first method introduces an Improved Weighted Random Forest 

(IWRF) approach, focusing on algorithmic innovation to tackle the imbalance problem. 

It employs supervised infinite feature selection (Inf-FSs) to identify significant features 

and Bayesian optimization for fine-tuning hyperparameters. Validated on Statlog and 

heart disease clinical records datasets, this method demonstrates a notable improvement 

in prediction accuracy and F-measure, outperforming existing models and marking an 

accuracy enhancement of 2.4% and 4.6% on these datasets. In contrast, the second method 

addresses the data-level imbalance through a novel framework named Conditional 

Autoencoder with Stack Predictor for Heart Disease (CAVE-SPFHD). This approach 

integrates a conditional variational autoencoder (CVAE) to effectively balance the dataset 

and a stack predictor (SPFHD) that utilizes tree-based ensemble learning algorithms. The 

base models' predictions are integrated using a support vector machine, significantly 

enhancing detection accuracy. Tested across four datasets, CAVE-SPFHD surpasses 

state-of-the-art methods in f1-score, providing improved not only predictive performance 

but also critical interpretative insights using the SHapley Additive explanation (SHAP) 

algorithm. Together, these two methods represent a comprehensive approach to heart 

disease detection in ML, effectively addressing the dual challenges of class imbalance 
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and high dimensionality. By innovatively tackling these issues at both the algorithm and 

data levels, this thesis significantly contributes to the field, offering robust, accurate, and 

interpretable ML solutions for early heart disease detection, which is crucial for proactive 

healthcare interventions. 

Keywords: Heart disease, Conditional variational auto-encoder, Stacking ensemble 

learning, SHAP, Tree ensemble, Hyperparameter optimization, Feature selection, 

Imbalance. 
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KAEDAH KOMPUTASIONAL YANG DIPERTINGKATKAN UNTUK 

PENGESANAN DAN TAFSIRAN PENYAKIT JANTUNG BERDASARKAN 

PEMBELAJARAN ENSEMBLE DAN RANGKA KERJA AUTOENCODER.. 

ABSTRAK 

Penyakit jantung merupakan penyebab utama kematian di seluruh dunia, dan 

pengesanan awalnya adalah kritikal untuk mengurangkan kadar mortaliti. Namun, 

cabaran ketidakseimbangan kelas dan dimensi data yang tinggi secara signifikan 

menghalang keberkesanan model Pembelajaran Mesin (ML) dalam domain ini. Tesis ini 

mempersembahkan dua kaedah inovatif yang secara holistik menangani cabaran ini pada 

kedua-dua tahap algoritma dan data untuk meningkatkan pengesanan penyakit jantung. 

Kaedah pertama memperkenalkan pendekatan Random Forest Berbobot Terbaik (IWRF), 

yang memberi tumpuan pada inovasi algoritma untuk menangani masalah 

ketidakseimbangan. Ia menggunakan pemilihan ciri tak terhingga yang diawasi (Inf-FSs) 

untuk mengenal pasti ciri-ciri penting dan pengoptimuman Bayesian untuk penyelarasan 

halus hiperparameter. Divalidasi pada dataset Statlog dan rekod klinikal penyakit jantung, 

kaedah ini menunjukkan peningkatan yang ketara dalam ketepatan ramalan dan ukuran 

F, mengatasi model-model sedia ada dan mencatatkan peningkatan ketepatan sebanyak 

2.4% dan 4.6% pada kedua-dua dataset tersebut. Sebaliknya, kaedah kedua menangani 

ketidakseimbangan data melalui kerangka baru yang dinamakan Autoencoder Bersyarat 

dengan Penumpu Ramal untuk Penyakit Jantung (CAVE-SPFHD). Pendekatan ini 

mengintegrasikan autoencoder variasi bersyarat (CVAE) untuk menyeimbangkan dataset 

secara efektif, digabungkan dengan penumpu ramal (SPFHD) yang menggunakan 

algoritma pembelajaran ansambel berasaskan pohon. Ramalan dari model asas 

diintegrasikan menggunakan mesin vektor sokongan, meningkatkan ketepatan 

pengesanan secara signifikan. Diuji merentas empat dataset, CAVE-SPFHD mengatasi 

kaedah terkini dalam skor f1, bukan sahaja memberikan prestasi ramalan yang lebih baik 
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tetapi juga wawasan interpretatif kritikal menggunakan algoritma Penjelasan Aditif 

SHapley (SHAP). Secara bersama-sama, kedua-dua kaedah ini mewakili pendekatan 

menyeluruh untuk pengesanan penyakit jantung dalam ML, menangani cabaran 

ketidakseimbangan kelas dan dimensi data secara efektif. Dengan menangani isu-isu ini 

secara inovatif pada kedua-dua tahap algoritma dan data, tesis ini memberikan 

sumbangan yang signifikan ke dalam bidang ini, menawarkan penyelesaian ML yang 

kuat, tepat, dan boleh diinterpretasi untuk pengesanan awal penyakit jantung, yang 

penting untuk intervensi kesihatan proaktif. 

Kata kunci: Penyakit Jantung, Auto-Encoder Variasi Bersyarat, Pembelajaran 

Ansambel Bertingkat, SHAP, Ansambel Pohon, Pengoptimuman Hiperparameter, 

Pemilihan Ciri, Ketidakseimbangan 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Heart disease is a cardiovascular disease (CVD) that persists as the leading cause of 

death worldwide and accounts for roughly 30 percent of global deaths (Rana et al., 2021). 

It kills more individuals than any other cause. For example, in 2016, the death rate was 

approximately 17.9 million, accounting for a third of global mortality; 85% of the total 

died due to a heart attack or a stroke. Based on the World Health Organization (WHO) 

projections, the worldwide death toll is expected to reach approximately 23.6 million by 

2030 if no action is taken. In Malaysia, the burden of CVD death and morbidity has 

increased during the past three decades. The Malaysian Ministry of Health reported that 

cardiovascular disease remained the major cause of mortality from the 1980s to the 

present. For example, in 2017, it is anticipated that chronic diseases, including CVD, 

diabetes, and cancer, incurred a total of RM 9.65 billion in actual medical expenses. 

Improving the early detection and treatment of CVD would benefit Malaysia's and the 

global economy's public health (Benjamin et al., 2019). Heart disease remains the main 

culprit in cutting short the lives of Malaysians—it’s the number one cause of premature 

deaths in the country. Premature deaths refer to lives lost between the ages of 30 and 69, 

below Malaysia's average life expectancy of around 75 years. A total of 95,266 deaths 

were recorded in 2022 within this age group, according to the Statistics on Causes of 

Death Malaysia 2023 report. Heart disease was the top killer, accounting for 18.4% of 

medically certified deaths in that year, based on the report by the Department of Statistics 

Malaysia (Meikeng, 2023). 

On a fundamental level, clinical medicine works by detecting the symptoms and signs 

of disease in patients who present themselves. The physician collects a patient's medical 

history and vitals and performs a physical examination. This information is utilized to 

establish a list of potential diagnoses, further refined by laboratory tests, diagnostic 
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procedures, or imaging as needed. These data are evaluated and used to prescribe the 

proper behavioural adjustments, drugs, therapeutic procedures, or surgical procedures. 

This paradigm has remained essentially unchanged for decades. However, evidence for 

the efficacy of novel diagnostics and data sources such as whole-genome sequencing, 

pharmacogenomics, and mobile device data continues to accumulate. This trend is 

predicted to increase exponentially, particularly as the cost of –omics research, 

computation decreases, and wearable devices (Tsao et al., 2022). 

Moreover, linkages between CVD illness and inflammatory, neurological, and other 

chronic disorders are becoming increasingly apparent and will eventually play a 

significant role in the practice of CVD medicine (Arabasadi et al., 2017; Tsao et al., 

2022). This will require cardiologists to analyze and implement knowledge from other 

biomedical domains. Concurrently, physicians are spending less time with each patient, 

and patients are demanding more quick and individualized care. In fact, physicians are 

overwhelmed with data that necessitates a more complex interpretation while also being 

asked to perform more efficiently. In cardiology, the promise of artificial intelligence (AI) 

and machine learning (ML) is to give the required tools to supplement and expand the 

cardiologist's function. With these technologies, every step of the patient care process 

might be improved, from the initial diagnosis to the selection and monitoring of medicines 

using real-time, companion diagnostics. Therefore, an accurate diagnosis is vital, and 

good treatment can lower the likelihood of illness progression. To enhance the diagnosis, 

a thorough knowledge of the risk is necessary (Tsao et al., 2022).  

The conventional method diagnoses disorders by assessing a patient's symptoms and 

medical history, such as an electrocardiogram (ECG) testing, blood glucose levels, blood 

pressure, and cholesterol levels. However, this procedure is time-intensive and costly. It 

is simplified with the use of ML. This methodology saves a great deal of time and, as a 
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result, enhances the effectiveness of the diagnosis, especially with the availability of 

clinical data and patients' medical histories (Beunza et al., 2019). The amount of data 

available increases daily, and hospitals gradually embrace big data technologies 

(Pramanik et al., 2022). Utilizing clinical data in the health establishment yields enormous 

advantages, such as enhancing the findings and minimizing expenses. Effective 

deployment of ML boosts the efficiency and effectiveness of healthcare services. 

Applying ML has shown considerable improvement in clinical data diagnosis. For 

example, diabetes, CVD, and breast cancer have been diagnosed utilizing ML (Weng et 

al., 2017). 

1.2 Problem Statement 

Although the performance of CVD detection is exceptional, due to various reasons 

such as outliers, noise, high dimensional features of CVD patients and the class imbalance 

problem among classes, the overall performance and CVD detection accuracy are 

significantly degraded. The high-dimensional space includes redundant and irrelevant 

characteristics, both of which lower CVD detection accuracy and increase the ML model 

complexity and computational time. Moreover, real-world data is not simply high-

dimensional since there are several intrinsic features, which are the features that create 

the observed class, that must be considered. Sometimes it is unclear precisely what should 

be assessed, which could result in repeated measurements of traits that are combinations 

of other attributes. CVD patients (minority class) and non-CVD (majority class) comprise 

the two classes. The proportion between the two classes varies, with various proportions 

between the two classes in different datasets. For example, according to the heart disease 

clinical records (Ahmad et al., 2017), 67.55% of the individuals survived, and 32.44% 

were deceased for 299 CVD patients. Further, in some cases, the minor and major classes 

change where non-CVD individuals are the minor cases, and the CVD patients are a major 
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class. For example, in Z-Alizadeh Sani (Arabasadi et al., 2017), 71.28% of the individuals 

have CVD, while the 28.71% are non-CVD.  

Individuals belonging to a majority class are likely to have a greater variation in the 

number of individuals compared to those of a minority class. The majority of samples 

significantly impact the training process; hence, the trained machine learning model is 

biassed and tends to classify data as belonging to the majority class (2017). This 

discrepancy in sample quantities between the two groups leads to the incorrect 

identification of CVD patients during testing, and the cumulative loss exceeds the final 

loss. The combination of high-dimension features and imbalanced data reduces the 

effectiveness of the trained ML model and renders the learning process ineffective for 

distinguishing CVD connections from the data (Blagus & Lusa, 2013; Sağlam & Cengiz, 

2022). Therefore, it becomes a scheming task to balance non-CVD and CVD individuals. 

1.2.1 Problem Due to Class Imbalance Dataset 

The clinical data is categorized into two classes, i.e., CVD patients (minority class) 

and non-CVD individuals (majority class). The non-CVD individual samples have a 

higher number of samples than the CVD individuals. The samples corresponding to a 

majority class tend to have more samples compared to minority class samples. Therefore, 

the majority class samples influence the training process; the trained ML model becomes 

biased and tends to classify the samples as the majority class (Blagus & Lusa, 2013). This 

variation in sample numbers between two classes leads to the false detection of a CVD 

patient in the testing process, and the cumulative loss overwhelms the final loss. The high-

dimensional features and imbalanced data decrease the trained model's performance and 

make the learning process inefficient in distinguishing clinical relationships from the data 

(2019). it becomes a scheming task to balance non-CVD and CVD individuals. For 

instance, the Synthetic Minority Oversampling Technique (SMOTE) is widely utilized in 

many works (Umer et al., 2022). In (Ishaq et al., 2021), the Extra Tree Classifier (ETC) 
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was proposed where the Random Forest Classifier (RFC) is used for the feature selection 

(FS), and the SMOTE is utilized to make the data balances. SMOTE-based artificial 

neural network (ANN) was mentioned by (Waqar et al., 2021). In contrast, the 

Randomoversampler was employed for data balancing (Kibria & Matin, 2022), and the 

ML-based fusion approach consisting of adaptive boosting (AdaBoost) combined with a 

decision trees model was proposed for heart disease severity prediction. Also, [30] 

employed the RFC to predict heart disease (HD) using the SOMTE for dataset balancing.  

Most of the prior studies employed SMOTE method to balance the data distribution. 

However, SMOTE method has some disadvantages. First, the newly generated samples 

might fall in the majority class region, causing overlapping and generating noise patterns 

that didn't exist before (Sağlam & Cengiz, 2022). The second drawback is the 

neighborhood links. The number of linkages for each sample is constant, and the number 

of neighbors can't vary from one sample to the next (Sağlam & Cengiz, 2022). Also, 

SMOTE is not recommended for high-dimensional data; otherwise, the classifier will be 

biased toward the minor class (Blagus & Lusa, 2013). This work employs a conditional 

variational autoencoder (CVAE) to handle data imbalance. Therefore, a method is 

required to balance the difference between classes (CVD and non-CVD). 

1.2.2 Problem in Existing Machine Learning Models and Optimization 

Techniques in CVD Predictive Systems 

It can be observed that the models mentioned in the previous works have performed 

well in predicting CVD (mentioned in Chapter 2- Applications of ML in detecting CVD). 

However, their work still has several shortcomings. Currently, models are trained using 

quite simple ML algorithms such as DT (Almazroi, 2022), ETC (Ishaq et al., 2021), XGB 

(Ahmad et al., 2022), or RFC (Ali et al., 2021). However, recent developments in ML 

methodologies have enabled the successful use of stack-ensemble learning framework 

and deep learning in computational biology and healthcare, particularly for developing 
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more accurate and stable models to enhance the performance of HD diagnosis. Therefore, 

there is room for improvement in developing a hybrid ML model for CVD detection on 

different CVD datasets compared to other ML classifiers' deep learning techniques. In 

addition, many previous works did not introduce HPO for the ML models (Ali et al., 

2021; Fitriyani et al., 2020; Haq et al., 2018; Ishaq et al., 2021; Nilashi et al., 2020; Tiwari 

et al., 2022), where HPO automates the hyperparameter tuning process and enables users 

to apply ML models (Hutter et al., 2019), it increases ML models' efficiency since many 

ML hyperparameters have distinct optimal values for optimal performance on various 

datasets (Yang & Shami, 2020).  

There is no literature study that has used some advanced optimization algorithm to 

tune the hyperparameters of hybrid models for CVD detection over multiple datasets. 

Furthermore, the comparison of advanced optimization algorithms with conventional 

optimization methods, including a genetic algorithm (GA), grid search (GS), and particle 

swarm optimization (PSO), is also missing. Therefore, an advanced optimization 

algorithm with better convergence speed is also required to tune the hyperparameters of 

the developed ML model to enhance its prediction accuracy in comparison with GA, RS, 

and PSO algorithms. 

1.2.3 Problem-related to ML model interpretation 

"Black-box" models are challenging to comprehend, as it is important to know why 

forecasts are made as well as the prediction itself. Although these strategies enhance CVD 

research, higher prediction accuracy can hinder model interpretability. For example, a 

trained RFC ML model predicts whether a specific sample is non-CVD or CVD. The 

model uses all the sample's attributes, such as age, gender, and chest pain, to predict 

whether they have a disease. Suppose the RFC model predicts a 93% chance of detection 

for a particular sample. How did it come to this conclusion? RFC models can easily 

Univ
ers

iti 
Mala

ya



 

7 

consist of tens or hundreds of "decision trees." This makes it nearly impossible to grasp 

their reasoning. However, each sample decision can be made interpretable using an 

approach for model interpretation. The model interpretation plots show how the model 

used each sample feature and reached a prediction of 93% (or 0.93). A certain conclusion 

can be obtained using the most important features the model factored. For instance, CVD 

chances increase substantially if the individual is over 40. Also, if the individual was 

male, the chances of disease increased even more. Finally, if the individual was not having 

chest pain, the chances of not having CVD disease might fall slightly. Therefore, applying 

these analysis algorithms in clinical fields is vital for better prediction interpretation, 

visualizing the most contributing features on the model's output, and showing the feature 

interactions. 

1.3 Research Objectives 

This study aims to propose a pragmatic and efficient CVD detection method that 

accurately classifies each individual in the clinic as a CVD or non-CVD individual. The 

following objectives are proposed for this research to achieve the aim of this study: 

1. To develop an improved weighted random forest-based method to handle the data 

imbalance issue on the algorithm level. 

2. To develop a conditional variational auto-encoder-based method to handle the 

data imbalance issue on the data level by generating new samples. 

3. To build and optimize cardiovascular disease detection systems using hybrid ML 

model with improved prediction accuracy through proposed model architecture. 

4. To investigate the proposed learning mechanisms and highlight the most 

contributing features enabling the proposed model to produce accurate CVD 

prediction outcomes through a deeper insight and model interpretation. 
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1.4 Research Methodology 

The research methodology adopted to achieve the objectives of this research work is 

highlighted in this section. 

1. A review of past research on the detection of CVDs is conducted to identify the 

most successful methodologies developed and adopted for CVD detection. 

2. The problem associated with CVD prediction using an imbalanced dataset is 

highlighted based on the literature review. 

3. Study different ML-proposed CVD detection and classification models to develop 

an optimal network for this research. 

4. Study different balancing methods based on algorithm-level or data-level to 

understand their capabilities and constraints for tackling imbalanced datasets and 

build a balancing model to overcome the stated issues. 

5. Study different optimization techniques in terms of their capabilities and 

limitations. The metaheuristic techniques include Genetic Algorithm (GA) and 

Particle Swarm Optimization (PSO). The model-free algorithms include Grid 

search (GS) and Random Search. The Bayesian optimization algorithms include 

the Gaussian Process (GP) and Tree-structured Parzen Estimator (TPE). The 

optimization methods will be utilized to solve the optimum hyperparameters for 

the balancing and classifier models. 

6. Implement a model interpretation framework for a deeper insight into the 

proposed model working mechanisms to understand the feature interaction and 

impact on the proposed CVD detection system. It then highlighted the most 

contributing and essential features to enable the proposed model to produce 

improved CVD prediction outcomes. 
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7. To show the effectiveness of the proposed balancing and detection model, the 

results are verified using statistical tests and then compared with other machine 

or deep learning models. 

1.5 Scope of Research 

The CVD detection model is an interesting assistance tool for the cardiologist, which 

classifies each sample into its respective class, whether CVD or non-CVD. ML is the 

most recent and successful technique used for disease diagnosis. Several ML architectures 

and methodologies have been proposed and deployed to classify individuals of different 

classes precisely. CVD detection is a binary classification task that classifies a person into 

two classes, i.e., CVD and non-CVD samples. The different number of CVD and non-

CVD samples in any given data introduces a class imbalanced data problem, resulting in 

low detection accuracy. Moreover, the outlier and missing data make it hard for the 

samples to be accurately predicted because they possess dual properties of both classes. 

Further, it comes in the form of multiclassification for severity classification, which 

classifies the individual severity of CVD level. Therefore, this study critically analyses 

the effect of class imbalance data in the training process. It investigates the potential of 

ML structure and other methods on the algorithm-level and data-level to balance the 

natural difference between CVD and non-CVD samples. A balancing factor is generated 

from the ratio of CVD and non-CVD samples. Moreover, CVD can be detected using 

heart imaging or Electrocardiography (ECG) to predict whether an individual has CVD. 

However, this study focuses on the detection of CVD through clinical data. 

In addition, the hyperparameters of the developed hybrid ML model are optimized 

further to improve the prediction accuracy of CVD, using TPE-BO optimization 

compared with different optimization methods such as PSO, GA, and RS. Various 

datasets that depict complicated and real-world problems are utilized to demonstrate the 
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accuracy of the proposed methods. Cleveland, Statlog, Z-Alizadeh, and heart disease 

clinical records are the only datasets used to validate and evaluate the performance of the 

proposed methods. Using Python frameworks like scikit-learn and TensorFlow, several 

CVD detection models are developed and trained. Python is also used for any dataset 

preprocessing, such as normalization and scaling. Based on its classification accuracy and 

misclassification error rate, the performance of an ML model utilizing a particular dataset 

is evaluated. 

In summary, the proposed CVD detection methods have great potential not only in the 

CVD detection field but also in other fields such as breast cancer, diabetes, and so on. 

1.6 Research Outline 

This thesis consists of five chapters. Chapter 1 presents the overview of the CVD 

detection system, problem statement, research objective, and scope of the research.  

Chapter 2 presents a concise and comprehensive literature review on machine 

learning, deep learning, balancing methods, network architectures, CVD detection 

systems, and existing research.  

Chapter 3 describes the methodology of the proposed solution, including model 

architecture, balancing method, system configuration, and hardware description.  

Chapter 4 evaluates the experimental results obtained from the simulations and the 

performance of the proposed method. The proposed method's performance is further 

analyzed compared to existing research.  

Chapter 5 summarizes the research work, the current limitation of the proposed work, 

and proposes directions for further improvement in the future. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

Within this chapter, an exhaustive exposition of cardiovascular diseases is provided 

with the aim of elucidating the condition and distinguishing it from other diseases. 

Furthermore, a comprehensive delineation of data preprocessing is presented, 

encompassing data cleansing, transformation, rebalancing, and the assessment of feature 

significance. Additionally, an in-depth discussion on the utilization of machine learning 

methodologies for addressing this problem is conducted. Lastly, a critical examination of 

the application of machine learning in the context of heart disease detection is undertaken, 

drawing insights from existing literature and culminating in a summarized conclusion for 

this chapter. 

2.2 An overview of heart disease 

Cardiovascular disease (CVD) encompasses a spectrum of pathological conditions, 

including but not limited to hypertension, stroke, heart failure (HF), and arrhythmia 

(Cheriyan et al., 2010). It is a leading global cause of mortality, with a projected escalation 

in worldwide fatalities to approximately 23.6 million by the year 2030 (Zaragoza et al., 

2011). Traditional clinical diagnostic modalities, such as chest x-rays, echocardiograms, 

and electrocardiograms, have conventionally served as tools for the diagnosis and 

ongoing monitoring of cardiovascular health (Bonnefont-Rousselot, 2016). The 

assessment of cardiovascular risk often relies on established factors such as cholesterol 

levels, diabetes status, age, smoking habits, and hypertension. However, the reliability of 

these factors in routine clinical evaluation is not infallible. This can result in individuals 

without a high predisposition to CVD receiving unnecessary preventative measures. 

Consequently, there is a pressing need for more refined methodologies to distinguish 

between individuals with CVD and those without. One promising avenue is the utilization 

Univ
ers

iti 
Mala

ya



 

12 

of machine learning techniques for the enhanced identification of heart disease (Weng et 

al., 2017). 

2.3 Data Preprocessing 

The preparatory procedures conducted on data prior to its utilization in an algorithm 

are commonly referred to as data pre-processing. Data pre-processing is the systematic 

conversion of unrefined data into a refined dataset. Essentially, when data is amassed 

from diverse sources, it often lacks the structure required for meaningful analysis. 

Therefore, data preprocessing, an integral facet of the data analysis and knowledge 

extraction process within a database framework, assumes paramount importance. In 

scenarios characterized by copious amounts of irrelevant, redundant, noisy, or unreliable 

data, the process of knowledge extraction during analysis and mining phases becomes 

substantially more arduous. It is during this phase that raw data undergoes a series of 

transformations to render it comprehensible and amenable to analysis (Saboor et al., 

2022). Typical stages in data preprocessing encompass data cleansing, transformation, 

feature selection, and data balancing. 

2.3.1 Data cleaning and transformation 

Data cleansing constitutes the systematic procedure of identifying and subsequently 

eliminating deceptive, erroneous, or irrelevant data entries, often involving corrective 

actions such as data replacement, modification, or removal. This process is further 

facilitated through operations such as imputing missing values, smoothing noisy data, and 

rectifying inconsistencies within the dataset (Bhatt et al., 2023). 

 Conversely, data transformation embodies the act of converting data from one format 

to another, typically transitioning from the format native to a source system to one 

compatible with the requirements of a destination system. Data transformation serves as 
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an integral component of numerous data integration and data management endeavors, 

including data wrangling and data warehousing. 

Within the domain of data transformation, several methods for data normalization 

exist, including the employment of techniques such as MinMaxScaler and standard 

deviation. MinMaxScaler normalization, for instance, is particularly advantageous when 

machine learning algorithms perform optimally with features of comparable scales and 

data distributions that closely approximate normality. In essence, scaling entails the 

alteration of value ranges without modifying the underlying distribution's shape. 

Typically, this operation results in a range between 0 and 1. MinMaxScaler achieves this 

by subtracting the minimum feature value from each data point and subsequently dividing 

by the range, where the range represents the difference between the highest and lowest 

original values. Importantly, MinMaxScaler maintains the original distribution's shape 

and preserves the information content contained within the initial dataset, without 

significantly diminishing the influence of outliers. On the other hand, StandardScaler 

normalizes a feature by firstly subtracting the mean and then scaling to achieve unit 

variance. Unit variance is attained by dividing each data point by the standard deviation. 

It is worth noting that StandardScaler deviates from the stringent definition of scaling 

outlined previously. In the distribution produced by StandardScaler, both the standard 

deviation and variance assume a value of 1. Therefore, the distribution is characterized 

by a mean of 0, with approximately 68% of data points falling within the range of -1 to 1 

(Ramesh et al., 2022). 

2.3.2 Feature importance 

The concept of feature significance serves as a critical determinant of the extent to 

which individual features contribute to a model's predictive capacity. It quantifies the 

degree of usefulness associated with a specific variable within the context of the current 
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model and its predictive capabilities. In a study conducted by Kursa and Rudnicki (Kursa 

& Rudnicki, 2011), it was observed that Random Forests are commonly leveraged within 

data science workflows for the purpose of feature selection. This preference is 

underpinned by the inherent characteristics of tree-based techniques employed by 

Random Forests, which naturally rank features based on their ability to enhance node 

purity. This enhancement entails a reduction in impurity levels across all constituent trees. 

It is noteworthy that nodes exhibiting the most substantial reduction in impurity are 

typically encountered at the initial stages of tree development, while nodes with minimal 

impurity reduction tend to manifest towards the latter phases of tree growth. 

Consequently, by strategically pruning trees below a designated node, it becomes feasible 

to derive a subset of the most indispensable features for subsequent model construction 

and analysis (Pathan et al., 2022). 

2.4 Data balancing 

A balanced dataset is characterized by a relatively equitable distribution of labels, with 

labels denoting the categorical assignments associated with individual data points. To 

illustrate, consider a dataset encompassing two distinct classes, such as 'male' and 

'female.' In the context of a balanced dataset, the distribution approximately allocates an 

equal share to each class, resulting in a nearly 50% representation for both males and 

females. On the contrary, an unbalanced dataset manifests when there exists a significant 

discrepancy in class memberships. Employing the male and female classes as an 

exemplar, an unbalanced dataset may exhibit a substantial imbalance between the two 

groups, with one class significantly outnumbering the other. In light of the implications 

stemming from imbalanced datasets, it is reassuring to note the existence of viable 

solutions to rectify such disparities. In the ensuing discussion, we will explore several of 

these solutions in detail (Nagavelli et al., 2022). 
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2.4.1 Random Over-sampling 

Random oversampling, as elucidated by Chawla, Bowyer, Hall, and Kegelmeyer 

(Chawla et al., 2002), entails the augmentation of training data by introducing additional 

instances of select minority classes. The oversampling process may be iterated multiple 

times, and rather than merely replicating each sample from the minority class, a technique 

involving random selection with replacement may be employed, thus enhancing the 

diversity of the augmented dataset. Random oversampling represents a non-heuristic 

approach, which aims to rectify class distribution imbalances through the stochastic 

duplication of minority class instances. This technique, despite its simplicity, 

demonstrates a high level of competitiveness when juxtaposed with more intricate 

oversampling methodologies. Furthermore, it is computationally economical in 

comparison to alternative methods that yield substantial performance enhancements 

(Batista et al., 2004). To illustrate the application of random oversampling, let us consider 

a binary classification problem encompassing two classes and a dataset comprising one 

hundred thousand data points. In this scenario, the positive class, denoting the minority 

class, comprises 20,000 instances, while the negative class contains 80,000 instances. To 

achieve class balance, the positive class is oversampled by replicating its 20,000 data 

points fourfold, resulting in a total of 80,000 instances for both the positive and negative 

classes. Accordingly, the dataset's size is expanded to 160,000 instances   ) Chaudhuri et 

al., 2024( (Chaudhuri et al., 2024). 

In cases involving undersampling, particularly when dealing with a highly prevalent 

class, the primary objective is to diminish the representation of the majority class to 

achieve dataset balance. To illustrate this concept, consider a binary classification 

problem featuring two classes and a dataset comprising one hundred thousand data points. 

In this scenario, the positive class consists of 20,000 instances, while the negative class 

encompasses 80,000 instances. The task at hand is to perform undersampling on the 
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majority class. This involves the random selection of 20,000 data points from the pool of 

80,000 available instances. As a result, we obtain 20,000 positive data points and 20,000 

negative data points, resulting in a dataset totaling 40,000 instances. Tomek linkages 

represent a technique utilized to address classification challenges and enhance data 

classification precision by minimizing class label noise. The primary objective of this 

technique is to eliminate as much class label noise as possible, whereby label noise refers 

to alterations in the assigned labels associated with instances. In the context of 

classification, each instance is associated with a label that signifies its category. Label 

noise may occur due to various factors, resulting in inaccurate labels. Class noise, a subset 

of label noise, pertains specifically to instances where observable labels have been 

modified inappropriately, such as erroneously assigning a positive label to a negative 

instance. Tomek linkages serve to identify instances that are borderline, carrying a higher 

risk of misclassification. Subsequently, these instances are subject to removal, a process 

known as Tomek link deletion. Tomek linkages pertain to points characterized by distinct 

class labels that serve as nearest neighbors to one another. This technique facilitates the 

identification and elimination of instances near different class labels, effectively 

eradicating undesired class overlap. Consequently, only instances with neighbors 

belonging to the same class are retained, thereby reducing class imbalance (Albert et al., 

2023).  

Comparatively, the performance of a Support Vector Machine (SVM) algorithm bears 

similarity to that of the Tomek links approach. SVMs are adept at classification tasks, as 

they establish a hyperplane decision boundary that effectively separates samples into 

distinct groups, making them suitable for both classification and regression tasks. This 

hyperplane is characterized by a margin that maximizes the distance between the 

boundary and the nearest instances of each class. However, SVMs exhibit sensitivity to 

imbalanced datasets and may yield suboptimal outcomes. Nevertheless, SVM 
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performance on imbalanced data can be enhanced by adjusting a parameter denoted as C, 

which governs the trade-off between expanding the margin between classes and 

minimizing misclassification instances. In the context of imbalanced datasets, the C value 

can be weighted to reflect the relative importance of each class, thereby enabling SVMs 

to operate effectively with such data. This variant of SVM, referred to as Weighted SVM 

or Cost-Sensitive SVM, accommodates the intricacies of imbalanced datasets. 

2.4.2 Synthetic Minority Over-sampling Technique (SMOTE). 

The Synthetic Minority Over-sampling Technique (SMOTE) represents an advanced 

approach to oversampling, designed to enhance the effectiveness of random 

oversampling. It accomplishes this by generating new synthetic instances that lie along 

the linear path between minority class examples and their specifically chosen nearest 

neighbors (Blagus & Lusa, 2013). SMOTE operates by creating novel minority instances 

through the amalgamation of existing minority instances, effectively constructing virtual 

training records for the minority class via linear interpolation. These synthetic training 

records are generated by randomly selecting one or more of the k-nearest neighbors for 

each instance within the minority class (Hussain et al., 2022). 

 Following the completion of the oversampling process, the dataset undergoes a 

reconstruction phase, and subsequently, various classification models can be applied to 

the processed data. The application of SMOTE renders decision regions less constrained 

and more expansive. However, it's important to note that while balance is achieved, no 

new or additional information is introduced to the model. SMOTE serves as a means of 

oversampling that differs from traditional replication of minority class instances. Instead, 

SMOTE generates entirely new instances by selecting those in close proximity within the 

feature space. This process involves identifying the k-nearest neighbors (k-NN) within 
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the minority class. The k-nearest neighbors method involves classifying data points based 

on their proximity to other data points within the dataset. 

 SMOTE proceeds by randomly selecting an instance from the minority class and 

computing its k-NN. Subsequently, one of the neighboring instances is chosen at random, 

and a synthetic example is created at a randomly determined location along the segment 

connecting the two instances. This process can be repeated as needed to generate the 

requisite number of synthetic instances for the minority class to achieve balance. An 

advantage of oversampling techniques like SMOTE is the absence of data loss from the 

original training set, as both majority and minority class data are utilized in their entirety. 

However, it is important to be aware of the potential drawback of oversampling, which is 

the risk of overfitting the model (Muntasir Nishat et al., 2022). 

2.5 Machine learning algorithms 

Presently, artificial intelligence (AI) stands as a transformative force impacting 

multiple industries, such as banking and medical diagnosis, demonstrating its prowess in 

tackling intricate problems (Marwala & Xing, 2018). The advent of machine learning 

(ML) has notably expedited the progress of artificial intelligence (Cioffi et al., 2020). 

Machine learning, encompassing both the academic discipline and its practical 

techniques, represents a subset of AI. In recent years, ML has emerged as the linchpin for 

advancing AI, finding widespread application in both industry and academia to create 

predictive models capable of delivering accurate outcomes in highly complex scenarios 

(Sidey-Gibbons & Sidey-Gibbons, 2019). Many achievements in machine learning hold 

the potential for further exploration and enhancement, particularly in domains 

characterized by imbalanced datasets such as credit risk prediction and medical diagnosis. 

This chapter offers a comprehensive overview of numerous machine learning applications 

within these domains. Furthermore, it introduces the two primary categories of machine 
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learning, namely supervised and unsupervised machine learning. Additionally, this 

chapter furnishes a mathematical exposition of the algorithms utilized throughout the 

dissertation, exemplifying the supervised and unsupervised machine learning models, as 

illustrated in Figure 2.1 (Ramesh et al., 2022).  

 

Figure 2.1: Machine learning classification models. 

2.5.1 Supervised learning 

Supervised learning stands out as the predominant paradigm in the realm of machine 

learning (Bengio & LeCun, 2007). It is characterized by the utilization of datasets 

featuring known target variables to train models. In the context of supervised learning, 

these target variables may assume either discrete or continuous forms. In instances where 

the target variable takes on a discrete value, the process is recognized as classification. 

For instance, it encompasses tasks such as predicting the creditworthiness of an applicant 

(creditworthy or not), categorizing clients as good or bad, or determining the presence or 

absence of a disease (Sidey-Gibbons & Sidey-Gibbons, 2019). 
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Classification in supervised learning encompasses a spectrum of algorithms, including 

logistic regression, naïve Bayes, random forest, support vector machines, and neural 

networks. Conversely, when the target variable assumes continuous values, supervised 

learning is termed regression. Regression methodologies enable predictions based on 

continuous response variables, leveraging the insights gleaned during the training phase. 

Various regression algorithms are available, including linear regression, multivariate 

regression, and lasso regression. The selection of a particular regression analysis method 

is contingent upon factors such as data attributes, response variables, and the inherent 

characteristics of the regression curve. This regression curve serves as a visual 

representation of the relationship between predictor and predicted variables (C. Gupta et 

al., 2022). 

2.5.1.1 Decision tree algorithm 

Decision tree algorithms are a class of supervised machine learning methods used for 

both classification and regression tasks (Topîrceanu & Grosseck, 2017). In the context of 

classification, decision trees are specifically referred to as classification trees, where the 

predicted variable comprises a binary set of values. Conversely, when the predicted 

variable takes on continuous values, it is termed a regression tree. Decision trees, known 

for their simplicity, find widespread utility across various applications (Ozcan & Peker, 

2023). 

A decision tree is comprised of three fundamental components: the root node, leaf 

nodes, and branches. The tree construction process commences with the root node, which, 

along with the leaf nodes, contains questions or criteria that must be satisfied. The 

branches, depicted as arrows connecting nodes, signify the flow from questions to 

corresponding answers. Several tree-based machine learning algorithms exist, including 

Classification and Regression Tree (CART), Iterative Dichotomiser 3 (ID3), and C4.5. 
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To calculate the Gini index for a data sample with classes, one can employ the following 

assumptions, as indicated in Eq 2.1: 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = �𝑝𝑝𝑖𝑖

𝐽𝐽

𝑖𝑖=1

�𝑝𝑝𝑘𝑘 = �𝑝𝑝𝑖𝑖

𝐽𝐽

𝑖𝑖=1

(1 −
𝐽𝐽

𝑘𝑘=1

𝑝𝑝𝑖𝑖) = �(𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖2)
𝐽𝐽

𝑖𝑖=1

= �𝑝𝑝𝑖𝑖

𝐽𝐽

𝑖𝑖=1

−�𝑝𝑝𝑖𝑖2
𝐽𝐽

𝑖𝑖=1

= 1 −�𝑝𝑝𝑖𝑖2
𝐽𝐽

𝑖𝑖=1

 

2.1 

where denotes the probability that an instance is classified into a specific class (Loh, 

2011). 

2.5.1.2 Support vector machine 

Support Vector Machine (SVM) is a machine learning algorithm suitable for 

addressing both regression and classification problems. Grounded in the principles of 

statistical learning, SVM has demonstrated its proficiency in delivering accurate 

predictions across diverse domains (Marwala, 2014). SVM's versatility extends to linear 

classification tasks, and it proves invaluable in resolving non-linear classification 

challenges through the application of the kernel method (Kafai & Eshghi, 2017). The 

kernel method effectively transforms non-linearly separable input data into a higher-

dimensional space, within which a hyperplane capable of effectively segregating the data 

is constructed. SVM offers a selection of kernels, encompassing polynomial, radial basis, 

linear, Gaussian, and various non-linear kernels (Faieq & Mijwil, 2022). 

Considering the input data as T{(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)𝑁𝑁}, where 𝑦𝑦𝑖𝑖∈{+1, -1}, the primary objective 

of the SVM classifier is to determine a hyperplane that effectively partitions the feature 

space into two distinct regions corresponding to the classes within the input data (Kafai 

& Eshghi, 2017). In this context, a hyperplane denotes a linear function of x, denoted as 

𝑓𝑓(𝑥𝑥) = 〈𝑤𝑤. 𝑏𝑏〉 + 𝑏𝑏, as demonstrated in Eqs 2.2 and 2.3. 
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𝑦𝑦𝑖𝑖�𝑓𝑓(𝑥𝑥)� = 𝑦𝑦𝑖𝑖(〈w.b〉+b)>0 2.2 

�𝑓𝑓(𝑥𝑥)� = (〈w.b〉+b)=0 2.3 

where w denotes a weight vector, b represents bias, whose value is a scalar quantity. 

The remarkable generalization capability of the SVM stems from its inherent ability 

to minimize the generalization error while simultaneously maximizing the separation 

margin. This optimization problem is formally expressed and addressed through 

constrained optimization techniques, specifically, the minimization of  1
2
‖w‖ 2 or 

equivalently, the maximization of the margin 2
‖w‖ 

 with respect to 𝑦𝑦𝑖𝑖(〈w. b〉 + b) > 1. The 

application of the Lagrange multipliers strategy is instrumental in solving this constrained 

optimization problem. Upon computing the Lagrange function (denoted as L) and 

introducing an undetermined scalar α, the following relationship is derived as shown in 

Eqs (2.4 and 2.5): 

𝑤𝑤 = �𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 2.4 

𝐿𝐿 = �𝛼𝛼𝑖𝑖 −
1
2
�𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗

𝑁𝑁

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1

 2.5 

The Lagrangian function is optimized to determine the coefficients α𝑖𝑖 while adhering 

to the given constraint, as shown in Eq 2.6: 

�𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖 = 0,
𝑁𝑁

𝑖𝑖=1

𝛼𝛼𝑖𝑖 > 0 2.6 

Once the coefficients α𝑖𝑖 are obtained, a hypothesis is derived, which corresponds to a 

linear combination of the input data points. Subsequently, the decision function is 

formulated as in Eq 2.7. 
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ℎ(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠(〈𝑤𝑤. 𝑥𝑥〉 + 𝑏𝑏) = 𝑠𝑠𝑠𝑠𝑠𝑠(〈�𝛼𝛼𝑗𝑗𝑦𝑦𝑗𝑗𝑥𝑥𝑗𝑗 . 𝑥𝑥
𝑁𝑁

𝑖𝑖=1

〉 + 𝑏𝑏) 2.7 

Equation (2.7) reveals that SVM learning relies on the inner products of input pairs, 

while the prediction of unseen samples is entirely contingent on the inner product between 

the sample under consideration and the input or training data. Moreover, SVM is well-

suited for scenarios with small datasets, and its performance tends to degrade when 

dealing with larger datasets. 

2.5.1.3 k-Nearest Neighbors 

The K-nearest neighbors (KNN) algorithm is a versatile machine learning technique 

capable of performing both classification and regression tasks. Nevertheless, its primary 

utilization is in classification, and it is characterized as a lazy learning and non-parametric 

algorithm (Lestari & Sumarlinda, 2022). It earns the non-parametric label because it 

refrains from making any underlying assumptions about the input data. Furthermore, 

KNN is classified as lazy learning due to its characteristic of adapting to data patterns 

upon query (Lestari & Sumarlinda, 2022). In practical terms, KNN classifies unlabeled 

samples by assigning them to the class of labeled samples with which they share the 

highest similarity. Several distance metrics can be employed for KNN computations, 

including Hamming, Manhattan, and Euclidean distance. For most applications, 

Euclidean distance is a prevalent choice (Raj & Thinakaran, 2022), and it can be 

expressed mathematically as: 

𝐷𝐷(𝑝𝑝, 𝑞𝑞) = �(𝑝𝑝1 − 𝑞𝑞1)2 + (𝑝𝑝2 − 𝑞𝑞2)2 + ⋯+ (𝑝𝑝𝑛𝑛 − 𝑞𝑞𝑛𝑛)2 2.8 

In Equation (2.8), p and q denote the samples under comparison, each possessing 

distinct features. In the context of applying the KNN algorithm, a crucial parameter, 

denoted as 'k,' must be specified. This parameter signifies the quantity of nearest data 

points, often referred to as neighbors, considered during the algorithm's execution. The 
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KNN algorithm is characterized by its simplicity in implementation and has found 

widespread application across various domains, including but not limited to credit risk 

prediction and medical diagnosis. 

2.5.1.4 Naïve Bayes Classifier 

The Naïve Bayes classifier is a machine learning algorithm that is rooted in Bayes' 

theorem. It bears the name "naïve" because it makes the simplifying assumption that the 

input features are mutually independent (Chen et al., 2020). Various forms of naïve Bayes 

classifiers, including multinomial and Gaussian naïve Bayes, have been developed and 

are predominantly applied in scenarios involving extensive datasets (Huang & Li, 2011). 

In accordance with Bayes' theorem, the class variable (c) for a given sample data point 

(x) is computed by evaluating the posterior probability, denoted as P(c|x), as follows: 

𝐷𝐷(𝑐𝑐|𝑥𝑥) =
𝑃𝑃(𝑥𝑥|𝑐𝑐)𝑃𝑃(𝑐𝑐)

𝑃𝑃(𝑥𝑥)
 2.9 

In equation 2.9, (c|x) signifies the posterior probability of sample data x given class c, 

while P(c) represents the prior probability of the class variable c. P(x) corresponds to the 

prior probability of the sample data x. 

2.5.1.5 Logistic regression 

Logistic regression is a statistical modeling approach employed for the analysis of 

datasets containing multiple predictor variables to predict a binary response variable 

(Bejjanki et al., 2020). Logistic regression is particularly advantageous in scenarios where 

the class attributes exhibit binary characteristics, making it a valuable tool in credit risk 

prediction and medical diagnostics. Furthermore, this method aims to construct a model 

that best characterizes the relationship between the response variable and predictor 

variables, yielding the following formulated variables, as demonstrated by Eq (2.10). 
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𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝) = 𝑏𝑏0 + 𝑏𝑏1𝑋𝑋1 + 𝑏𝑏2𝑋𝑋2 + 𝑏𝑏3𝑋𝑋3 + ⋯+ 𝑏𝑏𝑘𝑘𝑋𝑋𝑘𝑘 2.10 

In this context, " p " represents the probability of the presence of the attribute under 

consideration. This entails a logit transformation of the likelihood of the attribute's 

presence. Additionally, the logit transformation is visualized as the natural logarithm of 

the odds, as depicted by Eqs 2.11-2.12. 

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =
𝑝𝑝

1 − 𝑝𝑝
=
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

 2.11 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝) = ln ( 𝑝𝑝
1−𝑝𝑝

) 2.12 

Another iteration of logistic regression is the softmax regression, alternatively known 

as multinomial logistic regression. It is employed to construct models designed for 

datasets containing multiple class variables. The softmax function is mathematically 

defined as represented in Eq 2.13. 

𝑓𝑓(𝑥𝑥𝑖𝑖) =
𝑒𝑒𝑥𝑥𝑖𝑖

∑ 𝑒𝑒𝑥𝑥𝑖𝑖𝑘𝑘
𝑗𝑗=1

(𝑖𝑖 = 1, 2, … . ,𝑁𝑁) 2.13 

where 𝑥𝑥1, 𝑥𝑥2, , , 𝑥𝑥𝑁𝑁  represent the input values, and f(𝑥𝑥𝑖𝑖) is the output, representing the 

probability of the sample belonging to the i-th class. Throughout this work, logistic 

regression is employed. 

2.5.1.6 Random Forest 

Random Forest Regression (RFR) is a tree-based regression technique developed by 

Breiman, which involves the construction of a substantial number of regression trees 

(Breiman, 2001). RFR has garnered considerable attention in recent years due to its 

exceptional performance, ease of implementation, and computational efficiency. 

Essentially, a random forest consists of an ensemble of tree predictors, denoted as 

fn(X;𝜃𝜃𝜃𝜃). Each tree is a collection of if-statements that can be visualized in a tree 

structure, akin to graph theory. The task of identifying an optimal set of if-statements that 
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aligns with the observed data is referred to as model development or training. Therefore, 

training entails an optimization process guided by an objective function aimed at 

minimizing the discrepancy between the predicted value fn(x𝑖𝑖;𝜃𝜃𝜃𝜃) and the observed 

values y𝑖𝑖, as expressed in Eq. (2.14). 

Objective function = min
𝜃𝜃

 ∑ (fn(x𝑖𝑖;𝜃𝜃𝜃𝜃) − y𝑖𝑖)𝑖𝑖
2 2.14 

The function fn(x𝑖𝑖;𝜃𝜃𝜃𝜃) is typically chosen to represent the mean of the observations 

that satisfy a particular if-statement condition. A pertinent concern may arise regarding 

the prevention of the model from generating overly extensive if-statements tailored to 

each record in the dataset. To mitigate such issues, constraints are imposed on the tree in 

terms of maximum depth and a predefined limit on the number of branches. These 

constraints act as safeguards against overfitting. Additionally, the model's performance is 

assessed using a dataset that was not part of the training data, ensuring its ability to 

generalize. For a detailed exploration of the convergence equations of random forests, 

please refer to the provided source. The ultimate prediction produced by a random forest 

regressor, denoted as 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌, is the averaged estimate derived from 𝑁𝑁 individual trees, as 

illustrated in Eq (2.15). 

𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 =  
∑ fn(X;𝜃𝜃𝜃𝜃)𝑁𝑁
𝑛𝑛=1

𝑁𝑁
 2.15 

2.5.2 Unsupervised learning 

Unsupervised learning, a machine learning paradigm, operates on data without the 

guidance of explicit class labels, aiming to extract meaningful insights and patterns 

(Aïmeur et al., 2013). One prominent application of unsupervised learning is clustering, 

a technique commonly employed in exploratory data analysis to unveil latent structures 

within data. Principal component analysis and autoencoders are additional techniques that 

fall within this category. Furthermore, there exists a specialized branch of machine 
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learning termed semi-supervised learning, wherein algorithms leverage a combination of 

labeled and unlabeled data for training. Semi-supervised learning represents the 

intersection of supervised and unsupervised learning methodologies (Van Engelen & 

Hoos, 2020). 

2.5.2.1 Clustering 

In the realm of unsupervised ML, a cluster is defined as a grouping of data points that 

exhibit similarity within the group while demonstrating dissimilarity with other clusters 

(Krittanawong et al., 2017). Various clustering algorithms, such as k-means, k-harmonic 

means, and hierarchical clustering algorithms, can discern different clusters within 

unlabeled data. Subsequently, the clustered or grouped data can be subjected to further 

analysis (Luo et al., 2011). It is crucial to note that the primary objective of clustering is 

not to categorize, approximate, or predict specific data values. Instead, it focuses on 

partitioning the data into homogeneous clusters of records, where the variance among 

different clusters is significantly higher than the variance within each individual cluster 

(Maimon & Rokach, 2005). Among the most renowned clustering algorithms, k-means 

clustering stands out. This algorithm establishes a user-defined number of centroids to 

delineate data clusters. Each data point is assigned to its nearest centroid, and through 

iterative calculations on the centroids, they are optimized until the desired number of 

predefined iterations is achieved (Kilic, 2020). Hierarchical clustering, another prominent 

algorithm, organizes data into a hierarchy of clusters, creating a structure with a single 

encompassing cluster at the highest level and individual object singleton clusters at the 

lowest level. This process culminates in the construction of a dendrogram (Murtagh & 

Contreras, 2012). 
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2.5.2.2 Principal component analysis 

Principal component analysis (PCA) is a fundamental algorithm that facilitates the 

transformation of the initial variables within a dataset into a novel set of orthogonal 

variables recognized as principal components (Abdi & Williams, 2010). This popular 

unsupervised ML technique, PCA, is extensively applied for feature extraction. It 

accomplishes this by projecting the original parameter vectors into a fresh feature space 

through the utilization of a linear transformation matrix (Wang & Paliwal, 2003). 

Additionally, PCA is adept at reducing the dimensionality of a dataset, thereby converting 

high-dimensional data into a lower-dimensional format while endeavoring to retain the 

maximum degree of variability inherent in the dataset (Nie et al., 2014). One of the 

underlying assumptions of PCA is grounded in the belief that the bulk of information 

contained within the dataset is concentrated in the directions characterized by the most 

substantial variations (Wang & Paliwal, 2003). 

2.6 Deep Learning 

Deep learning (DL), an increasingly prominent subfield within the realm of artificial 

intelligence (AI), has made significant strides in tackling a wide array of intricate 

challenges. DL has achieved remarkable breakthroughs in diverse domains, 

encompassing image recognition, classification, and segmentation (Krizhevsky et al., 

2017), speech recognition (Sainath et al., 2015), genomics (Alipanahi et al., 2015), 

reconstruction of brain circuits (Helmstaedter et al., 2013), natural language 

understanding (Collobert et al., 2011), and recognition of heart sounds (Chen et al., 2016). 

DL, in essence, emulates the intricate processing patterns of the human brain and typically 

consists of multi-layered artificial neural networks. It leverages data to scrutinize and 

comprehend intricate hierarchical representations featuring multiple levels of abstraction 

(LeCun et al., 2015). The widespread application of compute-intensive DL 

methodologies has been made feasible by the technical progress in graphics processing 

Univ
ers

iti 
Mala

ya



 

29 

units and the advent of cloud computing, thus ushering in transformative capabilities for 

DL (Raina et al., 2009). Among the most prevalent DL-based neural network algorithms 

are the Convolutional Neural Network (CNN) and the Recurrent Neural Network (RNN). 

As an illustrative instance, Xiong et al. devised a DL-based model known as RhythmNet, 

which seamlessly integrates both CNN and RNN approaches. This innovative fusion, 

known as RhythmNet, was tailored for the classification and diagnosis of atrial fibrillation 

(AF) utilizing ECG data. 

2.6.1 Convolutional Neural Network 

CNN is an artificial neural network structure characterized by multiple layers, 

including a convolutional layer designed to extract hierarchical features from raw input 

data. It is further complemented by fully connected layers that serve as classifiers (Xia et 

al., 2018). Notably, CNN has garnered extensive utilization in the domains of image 

processing and classification (Gulshan et al., 2016). Furthermore, CNN has found wide-

ranging applications in the realm of arrhythmia detection, particularly through the 

utilization of publicly available ECG databases. These applications have yielded 

impressive results, achieving an accuracy exceeding 75% (Hannun et al., 2019). The work 

conducted by Hannun et al. is particularly noteworthy, as they harnessed CNN to classify 

various arrhythmia conditions. They accomplished this by analyzing single-lead ECG 

data derived from a substantial patient population, ultimately attaining an impressive Area 

Under the Curve (AUC) value of 0.97 (Hannun et al., 2019). This research underscores 

the promising potential of DL within clinical contexts, showcasing its capacity to 

significantly enhance the diagnosis and categorization of arrhythmias. 

2.6.2 Recurrent Neural Network 

RNN, or Recurrent Neural Network, represents a potent dynamic system tailored to 

model neural sequences, particularly focusing on the identification of temporal patterns 
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within longitudinal data (Choi et al., 2017). It has proven instrumental in tackling intricate 

machine learning tasks, including tasks related to linguistic phrase acquisition and the 

generation of coherent natural language descriptions for images and their constituent 

regions (Choi et al., 2017). In a noteworthy application, Choi et al. harnessed the 

capabilities of RNN to explore longitudinal electronic health record data, with a particular 

focus on discerning relationships among time-stamped events, such as disease diagnoses 

and medication orders (Choi et al., 2017).This research serves as a compelling 

demonstration of RNN's potential, notably in the context of incident heart failure 

detection. The study achieved an AUC of 0.777 when using data collected over a 12-

month observation window, and an even more impressive AUC of 0.883 when extending 

the observation window to 18 months (Choi et al., 2017). These results highlight the 

promising prospects of RNN in the realm of healthcare applications. 

2.7 Application on heart disease detection using machine learning. 

In the subsequent sections, we will delve into a comprehensive discussion of the 

utilization of various machine learning models for the purpose of detecting heart disease. 

2.7.1 Applications of Logistic Regression 

Over the years, logistic regression has gained extensive utility across various 

predictive tasks, including its application in medical diagnosis prediction (Tortajada et 

al., 2015). Recently, an approach was introduced for predicting diabetes (Zhu et al., 

2019). This method incorporated PCA to enhance the predictive capabilities of both KNN 

and logistic regression. PCA, a mathematical algorithm, aims to reduce the 

dimensionality of input data while preserving the inherent variability within the dataset. 

This reduction is achieved by identifying the principal components, which are directions 

in the data space along which variability is maximized. The application of PCA to the 

data led to a 1.98% improvement in the accuracy of the logistic regression classifier. 
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Furthermore, logistic regression has found utility in predicting sepsis-related mortality 

(Ribas et al., 2012). The proposed approach involved the analysis of sepsis indicators 

through feature extraction employing a latent model. Simulation results demonstrated a 

notable enhancement in classifier performance. Sepsis, characterized by an exaggerated 

response to bacterial infections in the bloodstream, stands as a leading cause of mortality 

among Intensive Care Unit (ICU) patients (Keeley et al., 2017), (Thompson et al., 2019). 

Thus, research focused on predicting sepsis-related mortality holds considerable 

significance. 

2.7.2 Applications of Support vector machine 

In the realm of medical diagnosis, SVM have been harnessed for the prediction of a 

wide array of diseases, including instances such as diabetes and breast cancer detection 

(Gürbüz & Kılıç, 2014). This approach introduced a feature adaptivity mechanism aimed 

at expediting computational processes while concurrently augmenting predictive 

accuracy. The proposed algorithm demonstrated superior performance in contrast to 

conventional SVM methodologies. Referred to as "adaptive SVM," this algorithm 

exhibited outstanding predictive capabilities in the context of diabetes and breast cancer, 

achieving a remarkable accuracy rate of 100% in both instances. Furthermore, an 

empirical evaluation was undertaken to compare the performance of various Machine 

Learning (ML) algorithms using a heart disease dataset (Hussain et al., 2020). The 

ensemble of algorithms encompassed several SVM kernels in addition to other ML 

techniques, including decision trees, KNN, and an ensemble classifier. The SVM kernels 

examined in the study encompassed Gaussian, linear, radial basis function, and 

polynomial kernels. The experimental outcomes distinctly favored the linear kernel, 

which yielded superior performance metrics, including an AUC value of 0.97 and an 

accuracy rate of 93.1%. 
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2.7.3 Applications of k-Nearest Neighbors 

 KNN has found extensive application in the domain of disease prediction (Dalen et 

al., 2014; Qin et al., 2014). One notable approach entailed the prediction of heart disease 

through the synergistic integration of a genetic algorithm and KNN (Deekshatulu & 

Chandra, 2013). This methodology revolved around the prioritization of attributes based 

on their significance and the elimination of extraneous features employing genetic search 

as a metric of utility. Notably, by training KNN on the most pivotal attributes, a 

discernible enhancement in predictive performance was observed.  In a separate study 

conducted by Sowmiya and Sumitra  (Sowmiya & Sumitra, 2021), an innovative 

technique was introduced for heart disease prediction, leveraging the ant colony 

optimization method for feature selection. A hybrid KNN classifier was subsequently 

employed for the predictive task. This approach yielded a classification accuracy of 

99.2%, manifesting a remarkable level of performance superiority when contrasted with 

various other machine learning classifiers, including decision trees, naïve Bayes, SVM, 

and traditional KNN.  Furthermore, another research endeavor harnessed KNN to 

anticipate the two-year risk of type 2 diabetes mellitus development in individuals with 

prediabetes (Garcia-Carretero et al., 2020).  The dataset utilized for algorithm training 

encompassed 1647 samples, featuring clinical and laboratory test-derived attributes. 

Remarkably, the KNN classifier attained a test accuracy rate of 96%, coupled with a true 

negative rate of 78% and a true positive rate of 99%. 

2.7.4 Applications of naïve Bayes 

A NB classifiers have found substantial utility in the realm of medical diagnosis. A 

Gaussian NB model was harnessed for the prediction of lung and breast cancers in a study 

conducted by Kamel, Abdulah, and Al-Tuwaijari (Kamel et al., 2019), attaining test 

accuracies of 90% and 98%, respectively. In a separate endeavor, naïve Bayes was 

enlisted to classify melanoma (skin cancer) as either malignant or benign using 
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epiluminescence microscopy-derived images as input data (Arasi et al., 2018). 

Comparative analysis with a decision tree indicated the superiority of the NB classifier, 

boasting an accuracy rate of 98.8%, while the latter achieved an accuracy of 92.86%. 

 Moreover, a novel Hidden Naïve Bayes (HNB) approach was proposed to discern 

heart disease by Jabbar and Samreen (Jabbar & Samreen, 2016). Diverging from the 

traditional naïve Bayes, HNB modifies the independence assumptions among predictor 

variables. Impressively, the HNB classifier achieved a test accuracy of 100%. NB-based 

models have been proficiently employed in predicting and detecting various heart 

diseases (Quesada et al., 2019). Vembandasamy et al. (2015) utilized clinical data from 

approximately 500 diabetic patients (exact numbers not specified in the article), 

encompassing attributes like age, gender, serum cholesterol, resting blood pressure, 

fasting blood sugar, and chest pain type, to train an NB model for predictive diagnostics 

of heart diseases. This model successfully discriminated against individuals with or 

without heart diseases, achieving an accuracy of approximately 86.4% (Vembandasamy 

et al., 2015). 

 In another investigation, an NB classifier was applied to analyze 303 observations 

from the Cleveland Clinic Foundation, focusing on 14 clinical parameters, including age, 

gender, cholesterol levels, exercise-induced angina, resting electrocardiographic results, 

and resting blood pressure, to diagnose heart diseases. The trained NB classifier 

effectively categorized patients into different risk levels of heart disease, with values 

ranging from "0", indicating no risk, to "4", signifying the highest risk (Medhekar et al., 

2013). 

 Additionally, in a cross-sectional study involving 1187 participants, the NB model 

demonstrated its capacity to predict the necessity for coronary angiography, employing 

features such as gender, age, and fasting blood glucose for training. This research yielded 
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an AUC of 0.74 and a sensitivity of 0.892 (Golpour et al., 2020). Dekamin et al. delved 

into the data of 303 individuals, incorporating 54 features collected from a Tehran-based 

hospital, and utilized NB as one of the algorithms for diagnosing coronary artery disease, 

achieving an accuracy rate of 86.36% (Dekamin & Sheibatolhamdi, 2017). 

2.7.5 Applications of Decision Tree 

The DT algorithm, one of the pioneering supervised machine learning methodologies, 

derives its name from its inherent capacity to facilitate decision-making processes (Sitar-

tăut et al., 2009). This algorithm constructs a tree-like model within the supervised 

learning framework, where nodes represent features, and branches denote the outcomes 

of tests associated with their respective nodes. Decision trees are useful in solving 

classification problems (Aljaaf et al., 2015). When traversing the tree from its root to the 

leaves for sample classification, a thorough examination of each node along the path 

culminates in assigning each sample to its predicted class (Uddin et al., 2019). Decision 

tree-based machine learning classifiers have played a pivotal role in various studies 

concerning predictive diagnostics of heart diseases (Aljaaf et al., 2015). For instance, in 

a study leveraging the heart disease dataset from the Cleveland Clinic Foundation, 

encompassing 297 patients with heart disease, a decision tree model was trained to stratify 

patients into five risk categories corresponding to different stages of heart failure. This 

endeavor yielded an average AUC of 0.91, a sensitivity of 0.865, and a specificity of 

0.955 (Aljaaf et al., 2015). Puyalnithi et al. devised a risk assessment model based on 

decision trees, employing medical and behavioral datasets obtained from general 

screening processes, resulting in an AUC of 0.94 and a precision value of 0.93 (Puyalnithi 

& Viswanatham, 2016). Decision trees have also been employed in prognostic endeavors 

related to cardiovascular diseases. In the context of right ventricular failure, which is a 

common concern following the implantation of a left ventricular assist device (LVAD), 

Wang et al. constructed a decision tree model trained on clinical records of 183 LVAD 
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recipients, encompassing parameters like right atrial pressure, heart rate, and white blood 

cell count. This model was employed to predict the need for right ventricular support and 

achieved an AUC of 0.87 (Wang et al., 2012). 

2.8 Applications of Deep learning 

Deep learning (DL), a prominent and burgeoning subfield within the domain of 

Artificial Intelligence (AI), has made significant strides and found application in 

addressing a multitude of intricate challenges. DL has achieved notable breakthroughs 

across various domains, encompassing tasks such as image recognition, classification, 

and segmentation (Krizhevsky et al., 2017), speech recognition (Sainath et al., 2015), 

genomics (Alipanahi et al., 2015), reconstruction of brain circuits (Helmstaedter et al., 

2013), natural language comprehension (Collobert et al., 2011), and the recognition of 

heart sounds (Chen et al., 2016). This approach to machine learning endeavors to emulate 

the intricate processing of the human brain and is typically constructed upon multi-

layered artificial neural networks. DL employs data to analyze complex hierarchical 

representations characterized by multiple levels of abstraction (LeCun et al., 2015). The 

extensive utilization of compute-intensive DL techniques has been made feasible through 

advancements in graphics processing units and cloud computing, ushering in a new era 

of DL capabilities (Raina et al., 2009). 

 Two prominent neural network algorithms within the DL framework are 

Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN). For 

instance, Xiong et al. devised a DL-based model known as RhythmNet, amalgamating 

both CNN and RNN methodologies to undertake the classification and diagnosis of atrial 

fibrillation (AF) based on ECG data (Xiong et al., 2018). DL has found wide-ranging 

applications in the realm of cardiovascular diseases, encompassing conditions like 

arrhythmias, congestive heart failure, chronic heart failure, coronary artery disease, and 
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AF. In a recent study, Ali et al. introduced an ensemble DL-based smart healthcare 

monitoring system tailored for predictive heart disease detection (Ali et al., 2020). 

Additionally, Tison et al. harnessed deep neural networks to detect AF using smartwatch 

data (Tison et al., 2018). 

 Furthermore, DL's utility extends to the analysis of fundus photography within the 

field of cardiology studies (Son et al., 2020). For example, Poplin et al. leveraged retinal 

fundus images to predict cardiovascular risk factors, including age, gender, smoking 

status, as well as major adverse cardiac outcomes (Poplin et al., 2018). The DL model, 

trained with fundus photography data, achieved an AUC of 0.70, validated across two 

distinct cohorts. 

2.8.1 Applications of Convolutional Neural Network 

CNN comprises artificial multilayers that include a convolutional process responsible 

for extracting hierarchical features from raw input data. It is equipped with fully 

connected layers used as classifiers (Bizopoulos & Koutsouris, 2018). CNN has found 

extensive application in image processing and classification (Dilsizian & Siegel, 2018). 

Furthermore, CNN has been widely employed in the detection of arrhythmias using 

publicly available ECG databases, achieving an accuracy exceeding 75% (Dilsizian & 

Siegel, 2018). Hannun et al. utilized CNN to classify a broad spectrum of arrhythmia 

conditions, employing data from single-lead ECGs obtained from a substantial number 

of patients, and obtained an impressive AUC of 0.97 (Dilsizian & Siegel, 2018). This 

study exemplifies the promising potential of deep learning in clinical contexts, 

substantially enhancing the diagnosis and classification of arrhythmias. 

 DL techniques, utilizing CNN architectures, have also been explored for ECG data 

analysis aimed at detecting AF (Ping et al., 2020). ECG segmentation data, obtained 

through a signal conversion approach employing methods like the short-term Fourier 
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transform (STFT) or stationary wavelet transform (SWT), were used to train and test a 

deep CNN model for AF detection, achieving accuracies of 98.27% and 98.36% for STFT 

and SWT, respectively (Xia et al., 2018). Additionally, Zheng et al. proposed a method 

focusing on the Spectro-temporal data matrix of ECG signals, trained with a deep CNN 

model for AF detection (Zhao et al., 2018). 

Photoplethysmogram data were also utilized for training CNN models to detect AF 

(Poh et al., 2018). Raw data from 180 hours of Photoplethysmography monitoring were 

employed, resulting in an impressive AUC of 0.99 (Gotlibovych et al., 2018).  

In another study, an 11-layer CNN model was developed for diagnosing congestive 

heart failure using minimally pre-processed ECG signals, achieving an impressive 

accuracy of 98.97% (Acharya et al., 2019). DL techniques have also been applied to 

cardiac MRI images for tasks such as left-ventricle segmentation (Tan et al., 2017), left-

ventricle/right-ventricle segmentation (Bai et al., 2018), and whole heart segmentation 

(Li et al., 2017). Furthermore, DL modeling with echocardiography images using CNN 

architectures has been employed to recognize 15 echocardiographic views (Madani et al., 

2018). In another echocardiographic study, a CNN-based model classified 

echocardiographic images into 5 standard views with an accuracy of 98.1% (Madani et 

al., 2018). 

2.8.2 Applications of Recurrent Neural Network 

Recurrent neural network, or RNN constitutes a robust dynamic system that embodies 

a neural sequence model, adept at identifying temporal patterns within longitudinal data 

(Choi et al., 2017). RNN has demonstrated its capability to tackle intricate machine 

learning tasks, including the acquisition of linguistic phrases and the generation of natural 

language explanations for images and their respective regions (Cho et al., 2014). Choi et 

al. harnessed longitudinal electronic health record data to establish relationships among 
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time-stamped events, encompassing disease diagnoses and medication orders (Choi et al., 

2017). This study serves as a testament to the promising utility of RNN in detecting 

incident heart failure, attaining AUC values of 0.777 and 0.883 when considering data 

collected over 12-month and 18-month observation windows, respectively. 

2.8.3 Applications of Artificial Neural Network 

Neural networks (NN), characterized by their adaptability, are versatile tools for 

analyzing diverse data types and solving a wide array of computational challenges, 

including identification, classification, and prediction (Bishop, 1995). These networks, 

comprised of numerous interconnected nodes distributed across multiple layers, bear a 

resemblance to the neurons in the human brain. It's noteworthy that NN was employed as 

a non-invasive method for diagnosing ischemic heart diseases and myocardial ischemia 

approximately two decades ago (Kukar et al., 1999). NN was utilized as an auxiliary 

approach to analyze clinical and follow-up data from heart failure (HF) patients, 

effectively assessing HF severity and HF type with accuracies of 77.8% and 84.73%, 

respectively (Guidi et al., 2014). Several investigations have drawn upon the UCI 

Machine Learning Repository, housing patients' clinical information such as age, sex, 

cholesterol levels, and resting blood pressure, to develop NN-based machine learning 

models for predictive HF diagnostics. These NN approaches have demonstrated 

commendable prediction accuracies, typically ranging between 80% and 90% 

(Wadhonkar et al., 2015).  

Ruiz-Fernandez et al. (2016) embarked on an exploration of both supervised and 

unsupervised machine learning methodologies, analyzing data sourced from the 

Cardiovascular Foundation of Colombia. Their objective was to predict and classify risks 

associated with congenital heart surgery. Notably, the multilayer perceptron, a supervised 

artificial NN model, exhibited the highest prediction accuracy among the models 
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examined (Ruiz-Fernandez et al., 2016). Furthermore, Atkov et al. devised various NN-

based models to assess diagnostic accuracies for coronary heart disease. These models 

explored different combinations of patient features, encompassing genetic factors, age, 

and coronary angiography data. The prediction accuracies achieved by these models 

spanned from 64% to 91% (Atkov et al., 2012). 

2.9 Applications of Data balancing 

Balancing the data can improve the prediction and help in reducing errors. For 

instance, the SMOTE is widely utilized in many works (Umer et al., 2022). In (Ishaq et 

al., 2021), the ETC was proposed where the RFC is used for the FS, and the SMOTE is 

utilized to make the data balances. SMOTE-based artificial neural network (ANN) was 

mentioned by (Waqar et al., 2021), whereas the Randomoversampler was employed for 

data balancing (Kibria & Matin, 2022), and the ML-based fusion approach consisting of 

adaptive boosting (AdaBoost) combined with a decision trees model was proposed for 

heart disease severity prediction. A hybrid RFC with a linear model (HRFLM) was 

proposed by (Mohan et al., 2019), and the proposed HRFLM managed to predict heart 

disease with an accuracy of 88.7%. Different intelligent ML models were used (Gupta et 

al., 2019; Haq et al., 2018). For instance, various ML models such as SVM, K-nearest 

neighbors and decision trees were used by (Haq et al., 2018) to predict heart disease, 

where the proposed hybrid intelligent system attained an accuracy of 88%. A machine 

intelligence framework for HD diagnosis was presented by (Gupta et al., 2019), where 

the factor analysis of mixed data is used to extract and derive features from the Cleveland 

dataset in order to train the ML prediction models. Further, a computational intelligence 

system for HD diagnosis was proposed by (A. Gupta et al., 2022), and the SMOTE was 

used to balance the unbalanced datasets. The proposed model has enhanced the accuracy 

compared to the literature techniques published in 2020 by 5.17%, with an accuracy of 

97.37%. In contrast, an N2Genetic-nuSVM model proposed by (Abdar et al., 2019) 
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attained an accuracy of 93.08%. The teaching-learning-based optimization along with 

fuzzy C-means (TLBO-KM/FCM) model was suggested by (Dubey et al., 2021); the 

model outperformed the other models with an accuracy of 99.4%. Finally, the proposed 

work in (Ali et al., 2021) employed the RFC to predict the HD using the SOMTE for 

dataset balancing. 

2.10 Applications of tuning the hyperparameter optimization 

Tuning of the hyperparameter (HP) plays a significant role in better prediction 

accuracy. The grid search (GS) was used by (Ahmad et al., 2022) and (Gu et al., 2022) 

for the hyperparameter optimization (HPO), whereas the manual trails and the MGOHBO 

were employed for tuning the HP in (Tiwari et al., 2022) and (Shan et al., 2022), 

respectively. Further, the multi-objective particle swarm optimization (MOPSO) was 

used in (Asadi et al., 2021) to tune the parameters and feature selection in order to enhance 

the performance of the proposed RF for heart disease diagnosis. The results revealed the 

MOPSO-RF attained accuracy values of 85.21 and 88.26 for the Cleveland and Statlog 

datasets, respectively. The authors (Abdellatif, Abdellatef, Kanesan, Onn, et al., 2022) 

proposed an improved weighted RF to deal with the imbalance dataset problem on an 

algorithm level, and the algorithm was optimized using  Bayesian optimization (BO). 

Finally, the verification test is considered a good indicator of the model's effectiveness 

across multiple datasets. The T-paired verification test was applied in (Fitriyani et al., 

2020), and the proposed DBSCAN+ SMOTE-ENN+ eXtreme Gradient Boosting (XGB) 

was proposed to solve the cardiovascular prediction problem. The IG was employed to 

select the feature and the SMOTE edited nearest neighbour to balance the data. A two-

step statistical significance test was presented in (Tama et al., 2020), a two-tier ensemble 

PSO-based FS model was used, and the hyperparameter was optimized using a GS. 

Finally, the hyperband for HPO is utilized in (Abdellatif, Abdellatef, Kanesan, Chow, et 

al., 2022) to optimize the ETC model for better heart disease detection. 
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2.11 Summary 

The literature review identifies key advancements and research gaps in using ML models 

to predict CVD, focusing on addressing model stability, interpretability, and data 

imbalance issues. Existing models have made progress in CVD prediction but largely rely 

on simpler algorithms such as Decision Trees, Extra Trees Classifier, and Random 

Forests. In contrast, recent developments in ML, such as stack-ensemble learning and 

deep learning, offer more robust options. Many prior studies did not implement 

hyperparameter optimization (HPO), which is critical for improving model performance 

across various datasets. Additionally, handling imbalanced datasets remains a challenge, 

with methods like SMOTE being widely used but often introducing noise and bias, 

particularly in high-dimensional data. 

 Based on the limitations identified in previous studies, two methodologies are proposed 

to address the challenges in CVD prediction, one at the algorithm level and the other at 

the data level. The first methodology focuses on addressing class imbalance at the 

algorithm level. An Improved Weighted Random Forest is proposed, incorporating cost-

sensitive learning to manage imbalanced datasets effectively. This approach also 

integrates supervised infinite feature selection for feature selection and Bayesian 

Optimization to optimize the model’s performance. The aim is to enhance the accuracy 

and reliability of CVD detection and survival prediction. 

The second methodology addresses data imbalance at the data level by proposing a stable 

and interpretable stack predictor for heart disease. This model combines a conditional 

variational autoencoder to balance the data distribution and solve the data imbalance on 

the data level with Bayesian Optimization for hyperparameter tuning. Integrating these 

techniques seeks to improve the predictive accuracy of CVD models while maintaining 

interpretability through model-interpretation tools. These methodologies, built upon the 
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gaps in the existing research, offer solutions to improve model performance, accuracy, 

and interpretability, providing a more robust framework for CVD prediction, which will 

be detailed further in Chapter 3. 

In conclusion, the aforementioned research endeavors have been succinctly outlined and 

tabulated in Table 2.1. These investigations encompass various critical considerations, 

encompassing feature selection, data balancing techniques, hyperparameter optimization 

strategies, validation methodologies, statistical tests for model verification, 

interpretability of the models, and the specific datasets utilized in each study (Ahsan & 

Siddique, 2022). 
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Table 2.1: Summary of Literature Review 

References Method FS Balancing HPO Validation 
Verification 

Test 

Model 

Interpretation 
Dataset 

(Nilashi et al., 

2020) 

KNN+SOM+PCA+ 

Fuzzy SVM 
SOM ✕ ✕ ✕ ✕ ✕ Cleveland, Statlog 

(Thanga Selvi & 

Muthulakshmi, 

2021) 

OANN (DBMRI-

TLBO-ANN) 
✕ ✕ TLBO 10-fold cv ✕ ✕ Cleveland 

(Fitriyani et al., 

2020) 

DBSCAN+ SMOTE-

ENN+ XGBoost 
GI SMOTE-ENN ✕ 10-fold cv T-paired ✕ Cleveland, Statlog 

(Tama et al., 

2020) 

PSO-Two-tier 

ensemble 
PSO ✕ GS 10-fold cv 

Two- statistical 

verification test 
✕ 

Z-Alizadeh Sani, 

Statlog, Cleveland, 

Hungarian 

(Ishaq et al., 

2021) 
ETC RF SMOTE ✕ ✕ ✕ ✕ HD clinical records 
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Table 2.1: Summary of Literature Review (continued) 

(Kibria & 

Matin, 2022) 
ADA+ DT ✕ 

Randomoversa

mpler 

Not 

mentioned 
✕ ✕ ✕ Cleveland 

(Haq et al., 

2018) 
Relief + LR Relief ✕ ✕ 10-fold cv ✕ ✕ Cleveland 

(Waqar et al., 

2021) 
SMOTE-based ANN ✕ SMOTE ✕ ✕ ✕ ✕ Cleveland 

(Mohan et al., 

2019) 
HRFLM RF ✕ ✕ ✕ ✕ ✕ Cleveland 

(Ali et al., 2019) Stacked SVM SVM ✕ HGSA ✕ ✕ ✕ Cleveland 

(Gupta et al., 

2019) 
MIFH 

FAMD+R

F 
✕ 

Not 

mentioned 

holdout 

validation 

scheme 

✕ ✕ Cleveland 

(Ahmad et al., 

2022) 
XGB 

GBC 

evaluator 
✕ GS 5-fold cv ✕ ✕ Kaggle dataset 

(Dubey et al., 
2021) 

K-means+ fuzzy c-
means ✕ ✕ TLBO 10-fold cv ✕ ✕ Cleveland, Statlog 

(Almazroi, 
2022) DT ✕ ✕ ✕ 5-fold cv ✕ ✕ HD clinical records 
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Table 2.1: Summary of Literature Review (continued) 

(Umer et al., 

2022) 
CNN ✕ SMOTE ✕ 10-fold cv ✕ ✕ HD clinical records 

(Abdar et al., 

2019) 
N2Genetic-nuSVM 

PSO or 

GA 
✕ N2Genetic 10-fold cv ✕ ✕ Z-Alizadeh Sani 

(Tiwari et al., 

2022) 

Stacked ensemble 

method 
✕ ✕ ✕ 10-fold cv ✕ ✕ 

Heart disease (IEEE) 

dataset 

(Shan et al., 

2022) 
MGOHBO-KELM ✕ ✕ MGOHBO 10-fold cv ✕ ✕ Cleveland, Statlog 

(Vivekanandan 

& Narayanan, 

2019) 

DE-Cox regression 
modified 

DE 
✕ ✕ ✕ ✕ ✕ Cleveland 

(Ali et al., 2021) RF ✕ SMOTE ✕ 10-fold cv ✕ ✕ Kaggle dataset 

(A. Gupta et al., 
2022) C-CADZ FAMD+B

BA SMOTE Not 
mentioned 

holdout 
validation 
scheme 

✕ ✕ Z-Alizadeh Sani 

(Asadi et al., 
2021) RF MOPSO ✕ MOPSO 10-fold cv Two- statistical 

verification test ✕ 
Statlog, Cleveland, 

SPECT, PECTF, VA 
Long Beach, and Eric 
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Table 2.1: Summary of Literature Review (continued) 

(Gu et al., 2022) SSGNet 

permutatio

n 

importance 

✕ grid search ✕ ✕ ✕ 
Heart Disease 

Cleveland 

Proposed 

model 1 
Inf-FSs+BO+IWRF Inf-FSs 

Algorithm-

based 
BO 10-fold cv ✕ ✕ 

Statlog, 

Heart failure clinical 

records 

Proposed 

model 2 
SPFHD SHAP CVAE BO 10-fold cv 

Two- statistical 

verification test 

SHAP 

Framework 

Statlog, Cleveland, 

Heart failure clinical 

records Data Set, and 

Z-Alizadeh Sani 
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CHAPTER 3: METHODOLOGY 

3.1 Introduction 

This chapter presents the methodology employed to achieve the research objectives. 

The CVD datasets are described in detail along with the data collection. The steps for data 

preprocessing are elaborated for use in classification methodology. Furthermore, the 

proposed methodologies (IWRF for data balancing on the algorithm level and CVAE for 

data balancing on the data level) for CVD detection are elaborated separately. In addition, 

the methodology of other detection methods, such as single and hybrid models [RFC, 

ETC, XGB and LGBM], data balancing techniques integrated with different classifiers 

such as SMOTE-RFC, is also discussed for comparison with the proposed methodologies 

technique. The performance metrics are discussed to assess the accuracy of detection 

techniques by evaluating the difference between predicted and actual values. 

Furthermore, the methodology of different optimization algorithms, namely: GA, PSO, 

RS, Hyperband, and BO, is presented to tune the hyperparameters of the developed 

methods to enhance CVD detection accuracy. 

3.2 Data Collection and preprocessing 

Data is the backbone of any analytical endeavor. Whether developing ML models, 

conducting statistical analyses, or generating business intelligence reports, the process 

invariably begins with collecting relevant data. However, raw data often comes with 

irregularities and imperfections. Thus, the subsequent cleaning and preparation steps 

become crucial to ensure that the data's potential is fully realized. After collection, data 

is seldom ready for immediate analysis. It might contain missing values, outliers, or 

erroneous entries. Data cleaning involves identifying and rectifying these issues. This 

might mean imputing missing values, correcting mislabeled data, or removing duplicates.  
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Once cleaned, the data needs to be transformed into a format suitable for analysis. This 

can involve various tasks such as encoding categorical variables, feature engineering, or 

normalization. One popular method for normalization is using the z-score. The formula 

for the Z-score normalization is:  

𝑧𝑧 =  
𝑥𝑥 −  𝜇𝜇
𝜎𝜎

 3.1 

Where x is the raw score, μ is the mean of the dataset, and σ is the standard deviation 

of the dataset. The Z-score essentially tells us how many standard deviations away a data 

point is from the mean. By converting data into z-scores, we ensure our dataset has a 

mean of 0 and a standard deviation of 1.  

Z-score normalization is considered for several reasons, first is scale independence, 

where ML algorithms, particularly those that rely on distances like k-means clustering or 

k-nearest neighbors, can be sensitive to the scale of the features. Normalizing data using 

Z-scores will give all features the same scale, making these algorithms work more 

effectively. Second, Z-scores can be useful for identifying outliers. For instance, data 

points with Z-scores significantly greater than 3 or less than -3 could be considered 

outliers in many contexts. Third, improves convergence for optimization algorithms, 

especially those used in deep learning models; having features on the same scale can lead 

to faster convergence. 

In cases like heart disease prediction, where datasets might contain features measured 

in different units (like age in years, cholesterol levels in mg/dL, and blood pressure in 

mmHg), using Z-score normalization ensures that no feature disproportionately 

influences the model's outcomes simply because of its scale. Multiple datasets are used 

to evaluate the proposed methodology discussed below. 
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3.2.1 Cleveland dataset 

The Cleveland Heart Disease Dataset is one of the pioneering datasets in medical data 

science, especially concerning cardiovascular diseases (Janosi et al., 1988). Originating 

from the renowned UCI Machine Learning Repository, the Cleveland dataset has become 

emblematic, often a foundational stepping stone for many researchers and enthusiasts 

exploring heart disease prediction. The dataset's data was collected from real patients and 

aggregated several clinical parameters. It was conceived to discern patterns that influence 

the occurrence of heart disease. With its comprehensive features, the dataset provides a 

holistic view of the patient, capturing essential details from demographics to more 

intricate medical metrics. Over the years, numerous machine learning models have been 

trained on this dataset, making it a benchmark in heart disease research. The Cleveland 

dataset contains 303 samples with 14 features detailed in Table 3.1; the samples are 

divided into classes, 137 having CVD and 160 being non-CVD. However, one of its 

limitations is the potential imbalance in the class distribution. In some versions, there's a 

skewed representation of patients with and without heart disease, which can influence the 

performance of machine learning models. This imbalance might lead to more accurate 

models predicting the majority class while failing to identify the minority class 

effectively.  
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Table 3.1: Summary of Features in the Cleveland and Statlog Heart Disease 
Datasets: A comprehensive overview detailing the names, descriptions, data types, 

and range of values for each feature. 

 

3.2.2 Statlog 

The Statlog (Heart) Dataset is another seminal dataset in cardiovascular research, 

distinguished by its amalgamation of data from diverse sources to offer a comprehensive 

set of records (Statlog (Heart) Data Set). Its fusion approach sets the Statlog dataset apart, 

making it a hybrid resource. While it carries similarities with the Cleveland dataset, the 

Statlog dataset presents its unique challenges and characteristics. It has been a cornerstone 

for many comparative studies that aim to discern the performance of models across 

No. # Attribute Description Type Range 

1 Age Age in years Numeric 29 to 77 

2 Sex Gender Categorical Female = 0, Male = 1 

3 cp Chest pain type Nominal 
Typical angina = 1, atypical 

angina = 2, non-anginal pain = 3, 
asymptomatic = 4 

4 threstps Resting blood 
pressure (mmHg) Numeric 94 to 200 (mmHg) 

5 chol Serum cholesterol 
(mg/dl) Numeric 126 to 564 (mg/dl) 

6 fbs Fasting blood sugar 
(value >120) Categorical False = 0, true = 1 

7 restecg Resting 
electrocardiographic Categorical 

normal = 0, ST-T wave 
abnormality = 1, Probable or 

definite left ventricular 
hypertrophy =2 

8 thalach Maximum heart rate Numeric 71 to 202 

9 exang Exercise induced 
angine Categorical No = 0, Yes = 1 

10 oldpeak 
ST depression 

induced by exercise 
relative to rest 

Numeric 0 to 6.2 

11 slope 
Slope of peak 
exercise ST 

segment 
Categorical Up-sloping = 1, Flat = 2, Down-

sloping = 3 

12 ca Number of major 
vessels Categorical 0 to 3 

13 thal Defect Categorical Normal = 3, Fixed = 6, 
Reversable = 7 

14 Class Predicted patient 
status Categorical Absence = 0, Presence = 1 Univ
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datasets of similar nature but different data distributions. Its utility has been demonstrated 

in various academic papers and projects, where it has consistently proven to be a valuable 

asset in understanding heart diseases' underlying patterns and risk factors. The Statlog 

dataset has the same features as Cleveland, with different ranges as shown in Table 3.1 

and 270 samples; the samples are divided into classes, 120 having CVD and 150 being 

non-CVD. However, like the Cleveland dataset, Statlog also grapples with class 

imbalance. This disparity in representation can result in models that might be biased 

towards the more prevalent class. Researchers leveraging this dataset often employ 

techniques like resampling or synthetic data generation to address this imbalance and 

achieve more robust and generalizable models. 

3.2.3 Z-Alizadeh Sani 

The Z-Alizadeh Sani dataset is a contemporary addition to the collection of heart 

disease datasets, designed explicitly with the modern challenges of medical diagnostics 

in mind (Arabasadi et al., 2017). Unlike its predecessors, this dataset encompasses a 

broader range of clinical features, painting a more detailed portrait of patients and their 

cardiovascular health. Its design is focused on predicting the occurrence of coronary 

artery disease, a specific subset of heart diseases, making it highly specialized. With its 

extensive list of features, the Z-Alizadeh Sani dataset provides researchers and clinicians 

with deeper insights into the multifaceted nature of coronary artery diseases. It embodies 

the evolution of medical data, reflecting advancements in data collection and the growing 

understanding of heart diseases in the medical community. This dataset contains 54 

features shown in Table 3.2 with a total of 303 samples; the samples are divided into 

classes as 216 have CVD and 87 have non-CVD. However, even with its advanced design, 

it isn't free from drawbacks. There's a known imbalance in the dataset, with more patients 

diagnosed with coronary artery disease than those without. This discrepancy can 
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influence machine learning endeavors, possibly leading to overfitting towards the 

majority class. 

Table 3.2: Summary of Features in the Z-Alizadeh Heart Disease Dataset: A 
comprehensive overview detailing the names, descriptions, data types, and range of 

values for each feature. 

No. FT* Attribute- Description Type Values 

1 

Demographic 

Age Numeric 30–86 

2 Weight Numeric 48–120 

3 Length Numeric 140-188 

4 Sex Categorical M, F 

5 
BMI (Body Mass Index 

Kg/m2) 
Numeric 18–41 

6 DM (Diabetes Mellitus) 

Categorical Y, N 

7 HTN (Hypertension) 

8 Current smoker 

9 Ex-smoker 

10 FH (Family History) 

11 Obesity Categorical 

Yes if MBI > 

25, No 

otherwise 

12 CRF (Chronic Renal Failure) 

Categorical Y, N 

13 
CVA (Cerebrovascular 

Accident) 

14 Airway disease 

15 Thyroid disease 

16 
CHF (Congestive Heart 

Failure) 

17 DLP (Dyslipidemia) 
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Table 3.2: Continue Summary of Features in the Z-Alizadeh Heart Disease 
Dataset: A comprehensive overview detailing the names, descriptions, data types, 

and range of values for each feature (continued) 

18 

Symptom and 

examination 

 

BP (Blood Pressure mm Hg) Numeric 30–86 

19 PR (Pulse Rate ppm) Numeric 50–110 

20 Edema 

Categorical 

Y, N 

21 Weak peripheral pulse 

22 Lung rales 

23 Systolic murmur 

24 Diastolic murmur 

25 Typical chest pain 

26 Dyspnea 

27 Function class 1, 2, 3, 4 

28 Atypical 

Y, N 

29 Nonanginal chest pain 

30 Exertional chest pain 

31 
Low Th Ang (low-Threshold 

angina) 

32 

ECG 

 

Q wave 

Categorical Y, N 

33 ST elevation 

34 ST depression 

35 T inversion 

36 
LVH (Left Ventricular 

Hypertrophy) 

37 Poor R-wave progression 

38 BBB 
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Table 3.2: Continue Summary of Features in the Z-Alizadeh Heart Disease 
Dataset: A comprehensive overview detailing the names, descriptions, data types, 

and range of values for each feature (continued) 

39 

Laboratory 

and echo 

 

FBS (Fasting Blood Sugar 

mg/dL) 

Numeric 

62–400 

40 Cr (Creatine mg/dL) 0.5–2.2 

   

41 TG (Triglyceride mg/dL) 37–1050 

42 
LDL (Low-Density 

Lipoprotein mg/dL) 
18–232 

43 
HDL (High-Density 

Lipoprotein mg/dL) 
15–111 

44 
BUN (Blood Urea Nitrogen 

mg/dL) 
6–52 

45 
ESR (Erythrocyte 

Sedimentation Rate mm/h) 
1–90 

46 HB (Hemoglobin g/dL) 8.9–17.6 

47 K (Potassium mEq/lit) 3.0–6.6 

48 Na (Sodium mEq/lit) 128–156 

49 
WBC (White Blood Cell 

cells/mL) 
3700–18,000 

50 Lymph (Lymphocyte %) 7–60 

51 Neut (Neutrophil %) 32–89 

52 PLT (Platelet 1000/mL) 25–742 

53 EF (Ejection Fraction %) 15–60 

54 Region with RWMA Categorical 0,1,2,3,4 

55 VHD (Valvular Heart Disease) Categorical 
Normal, Mild, 

Moderate, 
Severe 
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3.2.4 Heart disease clinical records 

The Heart Failure Clinical Records dataset, hosted on the reputable UCI ML 

Repository, embodies the symbiotic relationship between traditional medical research and 

contemporary data science techniques. This dataset is designed to predict mortality due 

to heart failure (Ahmad et al., 2017); it has gained traction among researchers and industry 

professionals for its comprehensive features and clinical relevance. 

Heralding from actual clinical records, the dataset encapsulates many metrics pertinent 

to heart health. The dataset provides a panoramic view of factors influencing heart failure, 

from laboratory test results such as platelet counts to echocardiogram metrics like ejection 

fraction. Including lifestyle elements, such as smoking status, further enriches its breadth, 

making it a well-rounded resource for in-depth analyses. This dataset contains 299 

samples divided into classes of 203 as non-CVD and 96 deceased because of CVD, and 

12 features represented in Table 3.3. 
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Table 3.3: Summary of Features in the Heart Disease Clinical Records Dataset: 
A comprehensive overview detailing the names, descriptions, data types, and range 

of values for each feature. 

No. # Attribute Description Type Range 

1 Time following up period Numeric 4 to 285 

2 Event 
(Target) 

If the patient died in the 
following time Categorical 0, 1 

3 Sex Male or Female Categorical Female = 1, Male = 0 

4 Smoking If the patient smokes Categorical 0, 1 

5 Diabetics If the patient has diabetics Categorical 0, 1 

6 BP If the patient has blood 
pressure problem Categorical 0, 1 

7 Anaemia Decrease in red blood cell Categorical 0, 1 

8 Age Age of the patient Numeric 40 to 95 

9 Ejection 
fraction 

Percentage of blood leaving 
the heart at each 

concentration 
Numeric 14 to 80 

10 Sodium Level of sodium in the 
blood Numeric 114 to 148 ( mEq/L) 

11 Creatinine Level of creatinine in the 
blood Numeric 0.50-9.40 ( mq/L) 

12 Platelets Platelets in the blood Numeric 25.01-850 ( Kiloplatelets/mL) 

13 CPK Level of   CPK enzyme in 
the blood Numeric 23-7861 ( Mcg/L) 

14 Time following up period Categorical Absence = 0, Presence = 1 
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Table 3.4: The summary of the utilized datasets in the study. 

Dataset 

Name 

Num of 

features 

Number of 

samples 

Samples The ratio between 

HD & Normal 

Data 

distribution Normal HD 

Cleveland 13 297 160 137 1: 1.17 Balanced 

Statlog 13 270 150 120 1: 1.25 Balanced 

Z- Alizadeh 

Sani 
54 303 87 216 1: 0.4 Not Balanced 

HD clinical 

records 
12 299 203 96 1: 2.11 Not Balanced 

 

3.3 Proposed Method for CVD detection and tackling the imbalanced issue on 

the algorithm level. 

In this subsection, the methodology that describes CVD detection and overcoming the 

imbalanced problem on the algorithm level is elaborated. Figure 3.1 presents the 

flowcharts of the proposed method one (IWRF). 
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Data preprocessing and partitioning 

Training set Testing set

Inf-FS

10-folds cross validation

Performance evaluation and 
benchmarking

The CVD Dataset 
(UCI repository)

Select the common features 
between validation folds

Choose the 
selected features

Selected 
Features

CVD detection or patients’ survival 
classification using proposed IWRF

Tune IWRF using BO

Optimized IWRF

Optimal 
performance?

 

Figure 3.1: Flowchart of the proposed method one (IWRF) 

3.3.1 Feature selection using infinite feature selection. 

In the vast world of machine learning, feature selection is a cornerstone to constructing 

robust models. This process optimizes the input features and ensures that models aren't 

overburdened with irrelevant or redundant data, ultimately leading to better performance 

and more interpretable outcomes (Roffo et al., 2017). Enter Inf-FSs, a graph-based feature 

filtering approach has emerged as a leading method in feature selection. As delineated by 

(Roffo et al., 2020), Inf-FSs operates by considering all potential subsets of features and 

can work in both supervised and unsupervised forms. This method views the feature space 

as a fully connected, weighted, undirected graph G = (V, E). In this depiction: nodes V 

represent all features, and edges E represent pairwise relationships between features.  
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If we envision G as an adjacency matrix A, then each component aij where 1 ≤ I, j ≤ n, 

signifies the confidence degree that both nodes, namely vi and vj (features in the dataset 

context), are potential candidates for selection. The weight function, φ(vi,vj), quantifies 

the value of each edge. In Inf-FSs, edge weight determination is an integration of class 

labels through the Fisher criteria and mutual information. Specifically, the weight 

function φ(vi,vj) arises from three primary factors: first, Fisher criteria (hi) quantifies how 

distinct two classes are for the ith feature, expressed in Equation 3.2: 

ℎ𝑖𝑖 =  
|𝜇𝜇𝑖𝑖,1 − 𝜇𝜇𝑖𝑖,2|2

𝜎𝜎𝑖𝑖,12 +  𝜎𝜎𝑖𝑖,22
 3.2 

Here, μ and σ represent the mean and standard deviation of the ith attribute for a given 

class, respectively. Second, Normalized Mutual Information (mi): A measure indicating 

the reduction in uncertainty about each class based on the knowledge of a feature vector, 

expressed in Equation 3.3: 

𝑚𝑚𝑖𝑖 =  ��𝑝𝑝(𝑧𝑧,𝑦𝑦)log �
𝑝𝑝(𝑧𝑧,𝑦𝑦)
𝑝𝑝(𝑧𝑧)𝑝𝑝(𝑦𝑦)�

𝑧𝑧∈𝑓𝑓𝑖𝑖𝑦𝑦∈𝑌𝑌

 
3.3 

Where Y represents class labels, and p(z,y) denotes the joint probability distribution. 

Third, calculate the Normalized Standard Deviation (σi) for a feature normalized to [0,1] 

using the maximum standard deviation across all features. Subsequently, a linear 

combination of these factors provides a score si for each feature.  

𝑠𝑠𝑖𝑖 =  ℎ𝑖𝑖𝛼𝛼1 + 𝑚𝑚𝑖𝑖𝛼𝛼2 + 𝜎𝜎𝑖𝑖𝛼𝛼3 3.4 

The coefficients αk, limited to [0,1] and summing up to 1, can be tuned experimentally. 

Finally, the adjacency matrix A is constructed using: 

A(i, j) = φ(𝑣𝑣𝚤𝚤���⃗ ,  𝑣𝑣𝚥𝚥���⃗ ) = sisj 3.5 

To illustrate the working of the Inf-FSs on your heart disease dataset. For instance, the 

heart disease dataset contains 13 features such as age, gender, chest pain type, resting 
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blood pressure, cholesterol levels, etc. These features are used to predict the target 

variable presence or absence of heart disease. As always, begin with data normalization 

and cleaning to ensure the feature values are on a comparable scale. After scaling, the 

three metrics is calculated, the Fisher criteria hi for each feature, which quantifies the 

separation between the classes (presence/absence of heart disease) based on each feature. 

The mutual information mi for each feature indicates how much information about the 

class labels each feature provides. The normalized standard deviation σi is calculated for 

each feature. The computed metrics for each feature determine the score si for each 

feature using Equation 3.4. Once each feature's score is determined, the adjacency matrix 

A is constructed using Equation 3.5. After constructing the adjacency matrix, rank the 

features based on their scores in the matrix. Higher scores suggest higher relevance and 

less redundancy concerning other features. Use cross-validation to determine the optimal 

mixing coefficients αk. Depending on the CV results, tweak these coefficients for the best 

performance. For example, Inf-FSs will rank features like 'chest pain type' or 'resting 

blood pressure' higher due to their direct correlation with heart diseases.  

3.3.2 Improved Weighted Random Forest 

Random Forest Classification (RFC) is a tree-based ensemble learning technique that 

is an extension of Breiman's ensemble of decision trees (Breiman, 2001). RFC has gained 

significant popularity in recent years due to its superior performance, simplicity of 

implementation, and low computational cost. A random forest is basically an ensemble 

of tree predictors fn(X;𝜃𝜃𝜃𝜃). Each tree operates based on a series of conditional 

statements, often visualized in a decision tree format as per graph theory. The 

fundamental principle guiding the RFC is the bootstrapping methodology coupled with 

aggregation, colloquially known as bagging. Given a dataset of size N, RFC generates 

multiple bootstrap samples, each constructed by randomly choosing N instances from the 
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original dataset, allowing for replacements. This ensures diversity as some data points 

may be sampled multiple times, while others might be missed entirely. 

For each bootstrap sample, RFC builds a decision tree. However, instead of 

considering all predictors at every node as in a conventional decision tree, RFC considers 

only a random subset of predictors. This subset typically comprises √M predictors for 

classification tasks and M/3 for regression, where M is the total predictor count. Such 

randomness not only promotes tree diversity but also bolsters the forest's robustness. RFC 

trees split nodes based on impurity measures (Bashar et al., 2020). For classification, Gini 

impurity or entropy is prevalent. The Gini impurity for a node t is calculated as in 

Equation 3.6:  

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡) = 1 −  �𝑝𝑝(𝑖𝑖|𝑡𝑡)2
𝑐𝑐

𝑖𝑖=1

 3.6 

Where p(i∣t) is the proportion of samples that belong to class i for node t. The model's 

training aims to optimize these conditional statements to best fit the data. This is 

essentially an optimization task targeting either the minimization of the misclassification 

rate or the maximization of a given impurity criterion, such as Gini impurity. The 

objective function can be denoted as in Equation 3.7.  

Objective function = min
𝜃𝜃

 ∑ 𝐼𝐼(fn(x𝑖𝑖;𝜃𝜃𝜃𝜃)  ≠ y𝑖𝑖)𝑖𝑖  3.7 

where I is an indicator function outputting 1 if prediction fn(xi;θn) mismatches the 

actual label yi, and 0 otherwise, uniquely, in RFC, each tree split contemplates only a 

random subset of features, introducing the characteristic "randomness." This tactic 

effectively curbs overfitting. Often, trees are also confined by certain parameters like 

maximum depth or maximum leaf nodes. Another advantageous RFC feature is the Out-
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of-Bag (OOB) samples. These are data points excluded from a particular tree's training 

and serve to assess the tree's performance.  

Predictions in RFC stem from a democratic process: each tree in the forest "votes" for 

a class. The class receiving the majority becomes the final prediction. For a more formal 

representation described in Equation 3.8. 

𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚({ f1(X;𝜃𝜃1), f2(X;𝜃𝜃2), … . , fn(X;𝜃𝜃𝜃𝜃) 3.8 

Where fn(X;𝜃𝜃𝜃𝜃) is the prediction of nth tree, N symbolizes the total tree count. The 

mode function yields the class with the highest vote frequency.  

In imbalanced data classification, RF classifiers tend to be biased in the direction of 

the major class since standard RF treats both classes equally. In addition, there is a 

substantial chance that a bootstrap sample has few or no instances of the minority class, 

leading to a tree with low performance in predicting the minority class. However, several 

studies have shown that a weighted RF can deliver better prediction results. For this 

reason, this study presents an Improved Weighted Random Forest (IWRF). 

In the traditional RFC, each bootstrap sample from the dataset is chosen randomly, 

which can perpetuate class imbalance in each sample. In the custom version, we introduce 

controlled sampling. For each bootstrap sample of size N, we ensure that a specified 

proportion of p is selected from the minority class, with the remainder coming from the 

majority class. The parameter p can be defined for each bootstrap, either randomly within 

a specified range or through optimization methods. 

For example, selecting p within the range [0.3, 0.5] ensures that each bootstrap sample 

has at least 30% and at most 50% of instances from the minority class. This helps preserve 

the majority class's diversity while also giving adequate representation to the minority 

class. 
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Imagine a dataset of 100 instances with an imbalanced ratio of 0.4:1 (minority: 

majority). Traditionally, in RFC, if you were to draw a bootstrap sample of 100 instances, 

it could contain approximately 27 instances from the minority class and 73 from the 

majority class, due to random selection. While for the IWRF: If p is set to 0.4, then 40% 

of the instances in each bootstrap sample should be from the minority class. Hence, for a 

bootstrap sample of size 100, you would deliberately select 40 instances from the minority 

class. The remaining 60 instances would be drawn randomly from the majority class. This 

ensures a consistent representation of the minority class in each bootstrap sample, giving 

it a stronger voice in the model's decision-making process. 

Moreover, the IWRF assigns a weight for each class a higher weight for the minor 

class. The class weight in the random forest can be computed using the inversely 

proportional class frequencies in the training dataset. The class weights are presented as 

the following in Equation 3.9. 

𝐶𝐶𝐶𝐶1  =  
𝑀𝑀

2𝑀𝑀1
 &  𝐶𝐶𝐶𝐶2  =  

𝑀𝑀
2𝑀𝑀2

 3.9 

Where M presents the total number of samples in the dataset, M1 and M2 show the 

number in major and minor classes. We assign a new coefficient, the weighting factor 

(α), to compute class weights. Thus, the class weights will be calculated as in Equation 

3.10: 

𝐶𝐶𝐶𝐶1  =  𝛼𝛼1
𝑀𝑀

2𝑀𝑀1
 &  𝐶𝐶𝐶𝐶2  =  𝛼𝛼2

𝑀𝑀
2𝑀𝑀2

  3.10 

Where α1 and α2 are the weighting factor for major and minor classes, respectively, α1 

and α2 vary in a range from [0, 1] with default values M1/M2 and one for α1 and α2. To 

ensure that CW2 is always greater than CW1 to have a heavier penalty on misclassifying 
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the minor class, the weighting factor is subjected to the constrain as shown in Equation 

3.11: 

𝛼𝛼1
𝑀𝑀1

<
𝛼𝛼2
𝑀𝑀2

 3.11 

The RF algorithm incorporates class weights in two places. Class weights are used in 

the tree induction technique to weight the Gini criteria for detecting splits. Class weights 

are again considered at each tree's terminal nodes. A weighted majority vote establishes 

each terminal node's class prediction. This adds weight to influence the decision-making 

process in tree construction. In Gini impurity calculations as presented in the Equation 

3.12.  

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡) = 1 −  �𝑤𝑤𝑖𝑖𝑝𝑝(𝑖𝑖|𝑡𝑡)2
𝑐𝑐

𝑖𝑖=1

 3.12 

where wi is the weight of class i, the misclassification of a minority class instance 

results in a heightened penalty due to its higher associated weight. This can drive the 

decision tree to prioritize the correct classification of minority class samples. 

For instance, suppose without weights, where a node has 5 instances belonging to not 

having CVD (majority) and 3 to having CVD (minority). If a split results in 4 from not 

having CVD and 3 from having CVD in one child node, it may seem acceptable from an 

impurity standpoint without weights. However, with class weights, the decision to make 

such a split becomes more expensive due to the higher penalty for misclassifying the 

minority class. The tree may optimize for a different split to reduce this penalty. Also, 

when determining the class of a terminal node, weights again play a role. A node 

populated with many majority class (not having CVD) instances might still predict the 

minority class (having CVD) if the accumulated weight of the minority instances 

surpasses that of the majority. 
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In the context of IWRF, given the introduced class weights, each tree's vote isn't just a 

simple vote anymore. It’s a weighted vote, where the weight is derived from the 

importance of the class, especially designed to tackle imbalances in the dataset. 

For a tree that predicts a sample to belong to a particular class, the vote it casts for that 

class is multiplied by the weight for that class, as in Equation 3.13:  

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖 =  fn(𝑋𝑋;𝜃𝜃𝜃𝜃) ∗ 𝐶𝐶𝑊𝑊𝑖𝑖 3.13 

Where 𝐶𝐶𝑊𝑊𝑖𝑖 is the weight for the class i. The final prediction is then based on the sum 

of weighted votes for each class across all trees, as expressed in Equation 3.14. 

�1 𝑖𝑖𝑖𝑖 � (fn(𝑋𝑋;𝜃𝜃𝜃𝜃) ∗ 𝐶𝐶𝑊𝑊1) >  � (fn(𝑋𝑋;𝜃𝜃𝜃𝜃) ∗ 𝐶𝐶𝑊𝑊2)
𝑁𝑁

𝑛𝑛=1

𝑁𝑁

𝑛𝑛=1
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

 3.13 

3.3.3 Bayesian Optimization 

Bayesian Optimization (BO) is an iterative algorithm widely recognized for its 

proficiency in Hyperparameter Optimization (HPO) challenges (Snoek et al., 2012). The 

foundation of BO is grounded on two pivotal components: an acquisition function and a 

surrogate model. This surrogate model, which is often probabilistic, encapsulates and 

emulates the behavior of the objective function based on observed evaluations.  

Upon establishing the surrogate model's predictive distribution, the acquisition 

function is critical when choosing prospective hyperparameter combinations. It 

masterfully balances exploration (probing untested regions) and exploitation (focusing on 

promising regions with expected optimal outcomes). By integrating these dual strategies, 

Bayesian tuning efficiently identifies the most likely optimal regions and ensures that 

potentially superior configurations in lesser-known regions are not overlooked (Hazan et 

al., 2017).  
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In the context of BO, a standout surrogate model is the Tree-structured Parzen 

Estimator (TPE) introduced by (Bergstra et al., 2011). At the core of TPE is creating two 

probability density models: l(x) representing better outcomes and g(x) denoting poorer 

outcomes. Importantly, these models are not strict likelihoods but instead capture the 

underlying densities of hyperparameters based on their observed performances. A 

predefined threshold, typically a percentile such as y∗ of the observed objective values, 

helps delineate 'good' from 'bad' outcomes. Central to TPE is the non-parametric approach 

of Parzen Windows, used to estimate the probability density function of a random 

variable. In essence, this method places a 'window' or kernel around each data point in its 

sample. The shape and size of this window dictate the estimated density. Aggregating 

these windows over all data points furnishes a comprehensive approximation of the 

density function, allowing it to flexibly adapt to observed data without any predefined 

form for the underlying distribution.  

Guided by the ratio between g(x) and l(x), the acquisition function then selects new 

configurations for evaluation, as emphasized by (Elshawi et al., 2019). Modern 

implementations of BO have enhanced parallelization capabilities, making it feasible to 

evaluate multiple configurations simultaneously. Thus, the earlier belief that BO is 

inherently sequential and hard to parallelize has been countered. Within a relatively 

limited number of iterations, BO can zone in on optimal or near-optimal hyperparameter 

values, minimizing computational overhead (DeCastro-García et al., 2019). 

For instance, when tuning the IWRF classifier, hyperparameters such as α1 and α2 (the 

coefficients for class weights), n_estimators, max_depth, and max_features, and other 

hyperparameters are selected and set to the search space. BO-TPE could suggest starting 

with a medium number of trees, deep trees, and a high number of features for the first 

iteration. Based on the performance of this configuration (using f1 score as the objective 
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metric), the surrogate model is updated. In subsequent iterations, TPE might recommend 

exploring shallower trees or fewer features, iterating and refining the recommendations 

until an optimal configuration emerges or until a predefined stopping criterion is met. 

Given that l(x) is the likelihood of x based on good results and g(x) is the likelihood of 

x based on poorer results, the Expected Improvement (or acquisition function) can be 

defined as the ratio as defined in Equation 3.14: 

𝐼𝐼(𝑥𝑥) =  
𝑔𝑔(𝑥𝑥)
𝑙𝑙(𝑥𝑥)

 3.14 

We're looking to sample the next hyperparameter x at a point where the expected 

improvement is maximized. With a given threshold y∗ to segregate good and bad results, 

we use all observed hyperparameters x with a function value better than y∗ to model l(x) 

and all others to model g(x). The generative model can be expressed with Parzen windows 

as shown in Equation 3.15.  

𝑝𝑝(𝑥𝑥|𝑦𝑦,𝐷𝐷) = � 𝑙𝑙(𝑥𝑥), 𝑦𝑦 < 𝑦𝑦∗
𝑔𝑔(𝑥𝑥), 𝑦𝑦 ≥ 𝑦𝑦∗ 3.15 

Where D represents the search space of the hyperparameters, the efficacy of BO-TPE 

is often contingent on the characteristics of the problem domain. For high-dimensional 

search spaces, where hundreds of hyperparameters need evaluation, the efficiency 

advantage of BO may diminish. There might also be interdependencies between 

hyperparameters, which TPE captures naturally through its tree structure, but this could 

add complexity. Another constraint is the computational cost of updating and querying 

the surrogate model, especially when the dataset is large. 

The objective function in hyperparameter tuning is often the model's performance on 

a validation set using a given hyperparameter configuration. As new configurations are 

evaluated, the objective function's knowledge grows. For an IWRF, the F1-score is taken 
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as a metric. The fitness function, which can be synonymous with the objective function 

in this context, is updated with each new evaluation, providing a richer understanding of 

the hyperparameter space and informing subsequent iterations of the BO process. 

In the context of IWRF hyperparameter tuning, our objective function is the validation 

error ε concerning the hyperparameters x. It can be represented as in Equation 3.16: 

𝜀𝜀 = 𝑓𝑓(𝑥𝑥) 3.16 

Where f is the IWRF classifier's performance dependent on the hyperparameter 

configuration x, the steps of BO-TPE can be summarized as follows:  

1. Dataset Partitioning: The dataset is divided into training, validation, and testing 

sets. The test set is kept untouched until the final evaluation. 

2. Defining Search Space: Identify the hyperparameters to tune. The 

hyperparameters for the proposed IWRF and other selected models for 

comparison are set in Table 3.4. 

3. Initial Sampling: Start with a few random hyperparameter combinations to obtain 

initial data points, which can guide the TPE model in subsequent iterations. 

4. Constructing the TPE Model: 

• Based on a predefined threshold (y*), segregate the observations into 

"good" and "bad" outcomes. 

• Construct two probability models: l(x) for good outcomes and g(x) for bad 

outcomes. These models are built using Parzen Windows, a non-

parametric approach. 

5. Acquisition Function Calculation: For TPE, the acquisition function is defined 

as the ratio between the likelihoods given by the two models g(x) and l(x), as in 

Equation 3.14. This acquisition function will suggest areas with higher chances of 

improvement. 
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6. Selection of Next Point: Choose the hyperparameter combination that maximizes 

the acquisition function, guiding where to evaluate next. 

7. Update the Model: Evaluate the selected hyperparameter combination using 

cross-validation on the training set. Based on this new data point (hyperparameter 

configuration and its corresponding performance), update the l(x) and g(x) 

models. 

8. Iteration: Steps 4 to 7 are repeated for a predefined number of steps or until 

convergence. 

9. Parallelization: Modern TPE implementations can evaluate multiple 

hyperparameter configurations in parallel. This speeds up the process by allowing 

simultaneous evaluations of the objective function, which is especially useful for 

computationally intensive tasks with many hyperparameter configurations. 

10. Final Model Selection and Evaluation: Once TPE iterations are complete, select 

the hyperparameter combination with the best performance on the validation set. 

Re-train the IWRF and other ML models with these optimal hyperparameters on 

the combined train-validation set. Evaluate its performance on the independent 

test set to get an unbiased estimate of its capability. The flowchart of the BO-TPE 

process is illustrated in Figure 3.2. 
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Table 3.5: Model Hyperparameter Exploration: A Comprehensive Table of 
Hyperparameters Selections, Types, and Ranges 

Model Selected Hyperparameter Type Search Space 

SVM 

Kernel Categorical ['linear',' sigmoid',' poly',' rbf'] 

C (penalty par.) 
Continuous 

[0.1,20] 

gamma (kernel paramter) [0.05,0.2] 

kNN 
n_neighbors Discrete [1,20] 

weight Categorical [‘uniform’, ‘distance’] 

LR 

penalty Categorical [‘L1’, ‘L2’] 

C Continuous [0.1,20] 

solver Categorical ['liblinear', 'lbfgs', 'sag'] 

SGD 
Alpha Continuous [0.0001,0.1] 

penalty Categorical [‘L1’, ‘L2’] 

ETC & 

RFC 

n_estimators 

Discrete 

[10, 100] 

min_samples_splits [2, 7] 

min_samples_leaf [1, 7] 

max-depth [5, 35] 

max-features [1, 12] 

criterion Categorical ['gini', 'entropy'] 

LGBM 

& 

XGBoost 

n_estimators Discrete [10, 100] 

Learning rate 

Continuous 

[0.01, 0.5] 

subsample [0.5, 1] 

colsample_bytree [0.5, 1] 

max_depth Discrete [5, 30] 

GBC 

learning_rate 
Continuous 

[0.1, 0.5] 

subsample [0.5, 1] 

n_estimators 
Discrete 

[10, 100] 

max_depth [3, 15] 
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Figure 3.2: BO-TPE A Graphical Representation of Bayesian Hyperparameter 
Tuning with Tree Parzen Estimator of ML Models 

3.3.4 Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a nature-inspired optimization technique 

grounded on the social behavior of birds and fish. It has gained traction for its efficacy in 

HPO challenges (Kennedy & Eberhart, 1995). PSO's key components include a swarm of 

particles and a fitness function, which acts as the objective function that the algorithm 

tries to optimize. 
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In PSO, each particle represents a potential solution in the hyperparameter space. The 

particles iterate through the space, adjusting their positions based on their own experience 

and the experience of their neighbors. This can be viewed as an amalgamation of 

exploration and exploitation, akin to the dual strategies employed in Bayesian 

Optimization. PSO efficiently identifies promising regions in the hyperparameter space 

while also probing less-explored areas, ensuring that optimal configurations are not 

missed (Bonyadi & Michalewicz, 2017). 

Central to PSO is the concept of "velocity," which determines how particles adjust 

their positions in the hyperparameter space. The velocity is updated based on cognitive 

and social components, usually guided by the best-known positions of the particle and its 

neighbors. The mathematical formula for velocity adjustment typically includes inertia, 

cognitive, and social components, each weighted by a factor are expressed in Equations 

3.17, 3.18. In PSO, each particle i has a position Xi in the hyperparameter space and a 

velocity Vi. These are updated according to: 

𝑉𝑉𝑖𝑖(𝑡𝑡 + 1) = 𝑤𝑤.𝑉𝑉𝑖𝑖(𝑡𝑡) + 𝑐𝑐1. 𝑟𝑟1. �𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑖𝑖 − 𝑋𝑋𝑖𝑖(𝑡𝑡)� + 𝑐𝑐2. 𝑟𝑟2. (𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑋𝑋𝑖𝑖(𝑡𝑡)) 3.17 

𝑋𝑋𝑖𝑖(𝑡𝑡 + 1) = 𝑋𝑋𝑖𝑖(𝑡𝑡) +  𝑉𝑉𝑖𝑖(𝑡𝑡 + 1) 3.18 

Where  

• w is the inertia weight 

• c1, c2 are cognitive and social scaling factors 

• r1, r2 are random numbers in [0, 1] 

• Pbest,i is the best-known position for particle i 

• Gbest is the best-known global position 

• t denotes the iteration number 
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The inertia weight w controls the impact of the previous velocity, while c1 and c2 

determine how much the particle is influenced by its best and the swarm's global best 

positions, respectively. In this study, w, c1 and c2 are set to be 0.9, 1.5, and 2 respectively. 

When tuning hyperparameters for an IWRF classifier, PSO could initialize particles 

randomly across the hyperparameter space, covering α1 and α2 (the coefficients for class 

weights), n_estimators, max_depth, max_features, and other relevant parameters. The 

fitness function can be the model's performance on a validation set using F1-score 

metrics. As particles iterate, they hone in on the best-performing hyperparameter 

configurations based on the fitness function. 

In the context of hyperparameter tuning, let f(x) be the performance metric dependent 

on hyperparameter configuration x. The objective function, or fitness function, to be 

optimized can be denoted as in Equation 3.19: 

𝜀𝜀 = 𝑓𝑓(𝑥𝑥) 3.19 

Finally, the steps of PSO can be summarized as follows: 

1. Dataset Partitioning: Same as in BO-TPE. 

2. Defining Search Space: Use the same hyperparameters and their search space as 

BO-TPE, detailed in Table 3.4. 

3. Initialization Sawrm: Begin with a swarm S=[p(1),p(2),…,p(m)], where m is the 

number of particles. Each particle p(i) represents a unique set of hyperparameters 

like [α1,α2,n_estimators,…]. 

4. Fitness Function F(p): Measure the performance of a model with a given set of 

hyperparameters p. This is the F1-score of an IWRF classifier with 

hyperparameters p. 
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5. Calculate Velocities: Each particle i has a velocity Vi. Update the velocities based 

on the best-known positions of the particles and the global best position Gbest. The 

updated equation is: 

𝑉𝑉𝑖𝑖(𝑡𝑡 + 1) = 𝑤𝑤.𝑉𝑉𝑖𝑖(𝑡𝑡) + 𝑐𝑐1. 𝑟𝑟1. �𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑖𝑖 − 𝑝𝑝𝑖𝑖(𝑡𝑡)� + 𝑐𝑐2. 𝑟𝑟2. (𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑝𝑝𝑖𝑖(𝑡𝑡)) 

6. Update Positions: Update the position of each particle using its new velocity: 

𝑝𝑝𝑖𝑖(𝑡𝑡 + 1) = 𝑝𝑝𝑖𝑖(𝑡𝑡) +  𝑉𝑉𝑖𝑖(𝑡𝑡 + 1) 

7. Evaluate and Update Best Positions: Calculate F(p) for each particle and update 

the best-known positions Pbest,i and Gbest. 

8. Iteration: Repeat steps 3-6 for a set number of iterations or until convergence to 

find a particle p∗ that maximizes F(p). 

9. Parallelization: Modern PSO implementations support parallel evaluations, 

which is beneficial for computationally expensive tasks. 

10. Final Model Selection and Evaluation: Select the hyperparameter configuration 

corresponding to the global best position. Re-train the model using this 

configuration on the combined training and validation sets and evaluate its 

performance on the test set. Figure 3.3 illustrates the flowchart of PSO. 
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Figure 3.3: PSO Workflow for Hyperparameter Tuning of ML Models 

3.3.5 Genetic Algorithm 

Genetic Algorithm is a nature-inspired optimization technique that simulates the 

process of natural selection to find optimal solutions. It has been successfully applied to 

several HPO problems (Arabasadi et al., 2017; Deekshatulu & Chandra, 2013; Goldberg 

et al., 1989; Sun et al., 2020). At its core, GA uses a population of individuals (solutions), 

where each individual represents a possible hyperparameter configuration for the problem 

at hand. GA performs selection, crossover (recombination), and mutation operations to 

evolve the population towards better solutions over time. This can be seen as a balance 

between exploration and exploitation, much like in Bayesian Optimization and PSO.  
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In GA, each individual i has a chromosome Xi that encodes a possible solution in the 

hyperparameter space. These individuals are evolved using genetic operations, typically 

based on the fitness of each solution (Booker et al., 1989). The GA operations can be 

mathematically formalized as: 

Selection: A fitness-proportional selection mechanism could be employed, where the 

probability Pselect(i) of selecting an individual i is proportional to its fitness F(Xi) as 

expressed in Equation 3.20. 

𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖) =  
𝐹𝐹(𝑋𝑋𝑖𝑖)

∑ 𝐹𝐹(𝑋𝑋𝑗𝑗)𝑗𝑗
 3.20 

Where the j is a variable used in the summation ∑, it iterates over all the individuals 

in the population, to sum up their fitness values. Essentially, the denominator ∑j F(Xj) 

calculates the total fitness of all individuals in the population to normalize the probability 

of selection.  

Crossover: For two parent chromosomes X1 and X2, the crossover operation generates 

two offspring Y1 and Y2 as shown in Equation 3.21. 

𝑌𝑌1 =  𝛼𝛼𝑋𝑋1 + (1 −  𝛼𝛼)𝑋𝑋2,  𝑌𝑌2 =  𝛼𝛼𝑋𝑋2 + (1 −  𝛼𝛼)𝑋𝑋1 3.20 

Where α represents the crossover rate. Mutation: This operation introduces small random 

changes in chromosome X, denoted as Mutate(X).  

In the context of GA, let's consider a simplistic chromosome as a string x = [x1, x2,…,xn

] where each xi is a hyperparameter (like α1, α2, n_estimators, etc.). The fitness function 

F(x) would be the model's performance with these hyperparameters. We would initiate a 

population P=[x(1), x(2),…,x(m)] where m is the total number of these individual solutions 

you are considering simultaneously at any given iteration and evolve this population over 

multiple generations until we find a chromosome x∗ that maximizes F(x). The objective 
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function to optimize could be the IWRF model's performance on a validation set using 

the F1-score metric. Let f(x) be the performance metric, the fitness function can be 

expressed as in Equation 3.21: 

𝜀𝜀 = 𝑓𝑓(𝑥𝑥) 3.21 

The steps of the GA can be summarized in the following steps: 

1. Dataset Partitioning: Similar to BO-TPE and PSO, the data is divided into 

training, validation, and testing sets. 

2. Defining Search Space: The hyperparameters and their search space are similar 

to those in BO-TPE and PSO; refer to Table 3.4. 

3. Initialization: Start with a population P=[x(1), x(2),…,x(m)] where m is the number 

of individual solutions (chromosomes) you start with. Each x(i) is a unique set of 

hyperparameters, e.g., x(1) =[α1,α2,n_estimators,…]. 

4. Fitness Function F(x): The fitness function evaluates the performance of a model 

with a given hyperparameter set x. For instance, this could be the F1-score of an 

IWRF classifier with hyperparameters x. 

5. Selection: Select pairs of chromosomes based on their fitness for the crossover 

operation.  

6. Crossover: In crossover, pairs of parent chromosomes produce child 

chromosomes. For example, consider two parent chromosomes 𝑥𝑥(𝑖𝑖) =

[𝑥𝑥1𝑖𝑖 , 𝑥𝑥2𝑖𝑖 , … . , 𝑥𝑥𝑛𝑛𝑖𝑖 ] and 𝑥𝑥(𝑗𝑗) =  [𝑥𝑥1
𝑗𝑗 , 𝑥𝑥2

𝑗𝑗 , … . , 𝑥𝑥𝑛𝑛
𝑗𝑗]. A simple one-point crossover might 

produce one child as follows: 

1. Child 1: [𝑥𝑥1𝑖𝑖 , 𝑥𝑥2𝑖𝑖 , … . , 𝑥𝑥𝑘𝑘𝑖𝑖 , 𝑥𝑥𝑘𝑘+1
𝑗𝑗 , … . ,  𝑥𝑥𝑛𝑛

𝑗𝑗]  

Here, k is a randomly selected crossover point. 
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7. Mutation: After crossover, the mutation is applied to the offspring with a certain 

probability. Mutation slightly alters one or more hyperparameters in a 

chromosome. For example, an offspring [x1,x2,…,xn] might be mutated to [x1,x2

+Δ,…,xn], where Δ is a small random change. 

8. Next Generation: The children produced by crossover and mutation replace the 

least fit individuals in the population, creating the next generation of solutions. 

9. Iteration: Steps 3-6 are repeated for a predefined number of generations or until 

a stopping criterion is met, such as finding a chromosome x∗ that maximizes F(x). 

10. Parallelization: Modern GA implementations also allow for parallel evaluations 

of the fitness function, particularly useful for computationally demanding tasks. 

11. Final Model Selection and Evaluation: At the end of the GA run, the individual 

with the highest fitness is selected. The model is retrained using this 

hyperparameter configuration on the combined training and validation sets, and 

its performance is evaluated on the test set. Figure 3.4 shows the flowchart of GA. 
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Figure 3.4: GA Workflow for Hyperparameter Tuning of ML Models 
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3.4 Proposed Method for CVD detection and tackling the imbalanced issue on 

the data level. 

In this subsection, the methodology that describes CVD detection and overcoming the 

imbalanced problem on the data level is elaborated. Figure 3.5 presents the flowcharts of 

the proposed method two (SPFHD). 

 

Figure 3.5: Flowchart of the proposed method two (SPFHD) 
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3.4.1 CVAE-based method for data balancing 

Variational autoencoder (VAE) models (Kingma & Welling, 2013) are a variant of the 

classical autoencoder (AE) network (Bourlard & Kamp, 1988). Similar to an AE, a VAE 

comprises two coupled neural networks: an encoder and a decoder. The encoder is an 

inference model q (z|x) that maps input data x to a lower-dimensional latent variable 

space, z. In contrast, the decoder network receives the latent space z variables as input 

and outputs the probability distribution of the data p (x|z). A VAE differs from an AE 

network in forming a latent vector; rather than immediately producing a latent vector and 

maximizing the marginal log-likelihood, a vector of standard deviations (σ) and a vector 

of means (μ) are created and merged to form the latent vector. However, the network 

would not be able to learn the distribution that results from the encoder since the direct 

combination of these parameters in the latent vector z indicates that this is a continuous 

random variable. The reparameterization approach should be used to resolve this issue 

and describe the random variable z as a deterministic variable, with z depending on the 

parameters of the encoder output (μ; σ) and an additional variable epsilon sampled from 

a Gaussian distribution expressed in Eq. 3.10: 

𝑧𝑧(𝑖𝑖,𝑙𝑙) =  𝜇𝜇(𝑖𝑖) +  𝜎𝜎(𝑖𝑖) ⊙  𝜀𝜀(𝑙𝑙), 𝜀𝜀(𝑙𝑙) ~ 𝒩𝒩 (0, 𝛪𝛪) 3.22 

VAE further differ from classical AE in that they maximize the evidence lower bound 

(ELBO) on the marginal log-likelihood of p(x) presented in Eq. 3.10. The Kullback-

Leibler (KL) divergence between the previous distribution p(z) and the encoder's 

distribution q(z|x) is referred to as KL(q(z|x)||p(z)) in Eq. 3.11. This term is a regularizer, 

assessing the information lost when p is represented by the distribution q. Fig. 3.3 depicts 

the comparative information flow of the two architectures (AE and VAE). 

min
𝑝𝑝
𝔼𝔼𝑞𝑞(𝑧𝑧|𝑥𝑥)[log 𝑝𝑝(𝑥𝑥|𝑧𝑧)] −  𝐾𝐾𝐾𝐾 (𝑞𝑞(𝑧𝑧|𝑥𝑥)||𝑝𝑝(𝑧𝑧)) 3.23 
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CVAE is a variant of VAE (Sohn et al., 2015). In this type, conditional information y 

or other data information is introduced to the model in both the encoder and decoder. This 

addition makes the model conscious of the sample class that must be mapped into the 

encoder's latent space z, enhancing its capacity to distinguish between sample classes. As 

demonstrated in Eq. 3.12. 

min
𝑝𝑝
𝔼𝔼𝑞𝑞(𝑧𝑧|𝑥𝑥,𝑦𝑦)[log 𝑝𝑝(𝑥𝑥|𝑧𝑧,𝑦𝑦)] −  𝐾𝐾𝐾𝐾 (𝑞𝑞(𝑧𝑧|𝑥𝑥, 𝑦𝑦)||𝑝𝑝(𝑧𝑧|𝑦𝑦)) 3.24 

 

Figure 3.6: The difference between the information flow of a VAE and 
conventional AE 
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output. Also depicted is the propagation of the loss throughout the model, derived in the 

objective function Eq. 3.12. This loss corresponds to an entire batch in a model iteration. 

It represents the variation that must be applied to both the encoder and the decoder. 
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decoder network has a similar layout in reverse order, with three hidden layers comprising 

25, 50, and 100 neurons. Also, the encoder network includes two outputs with eight 

neurons each, corresponding to latent space z size that serves as the decoder's input. Each 

hidden layer of the CVAE-based model employs ReLU activation functions, except for 

the latent variable layers and the decoder output layer, which employ linear and sigmoid 

activation functions, respectively. In addition, an extra input neuron is added to the 

encoder and decoder to incorporate label information. 

 

Figure 3.7: Schematic diagram of the functioning of the proposed CVAE model 

To train the proposed CVAE, the loss function used consisted of a reconstruction term 

to make the encoding-decoding scheme effective. A regularization term to make the latent 
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performed by varying the latent vectors z and selecting the condition (label of the minor 

class). The number of generated samples for each minor class is decided based on how 

many new instances are needed to balance the input dataset for training. 

 After the training phase of the proposed CVAE model, the encoder network yields 

covariance means, which act as the foundational structure for our sample generation. 

Leveraging this, we strategically sample new latent vectors 'z'. These vectors are infused 

with variability, achieved by sampling from a normal distribution, ensuring each vector 

possesses a unique profile. The generation of these vectors is paired with specific 

conditions corresponding to the labels of the minority class, directing the creation of 

samples representative of this class. New samples are produced by decoding these latent 

vectors alongside their associated conditions. The volume of samples generated is tailored 

to the minority class's needs. This methodology offers a nuanced, data-driven means to 

augment datasets, bringing them closer to balance while preserving the diversity and 

representativeness of the generated samples (Abdellatif et al., 2024) . 

3.4.2 SPFHD Framework 

To identify the presence and absence of HD, we apply a stacking method to develop 

SPFHD. Stacking is an ensemble learning strategy incorporating data from multiple 

prediction models to produce a stable stacked model. The technique uses a practical 

scheme to decrease the generalization error rate of multiple classifiers, as well as its 

stability and effectiveness, have been demonstrated (Charoenkwan et al., 2022). The 

stacking learning approach consists of two major stages, with predictive models in these 

two stages referred to as base and meta-learner, respectively. In the initial stage, base 

learners are applied, and their output is then integrated to reduce generalization errors. 

In the first stage of stack learning, five tree-based ensemble learning classifiers have 

been applied to construct the first layer, including two bagging-based classifiers, RFC 
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(Breiman, 2001) and ETC (Geurts et al., 2006). Also, three popular boosting-based 

classifiers gradient boosting classifier (GBC) (Friedman, 2001), XGB (Chen et al., 2015) 

and light gradient boosting machine (LGBM) (Ke et al., 2017). RFC is a bagging 

ensemble model whose individual model is a decision tree. The bagging method trains 

individual models in parallel, utilizing a random subset of the training data for each 

model. RFC is a well-known algorithm in computational biology and cardiovascular 

disease, and it is widely employed to solve a wide range of research concerns in 

cardiovascular illness (Ali et al., 2021; Gupta et al., 2019; Mohan et al., 2019). The sole 

difference between the RFC and ETC is the manner in which trees are constructed. Each 

decision tree in the additional tree classifier is constructed from the initial training sample. 

Random samples of k best features are used for decision making, and the Gini index is 

applied to determine the best feature for data partitioning in a tree. ETC has shown 

efficacy and consistency in numerous cardiac disease prediction tests (Ishaq et al., 2021). 

GBC is a boosting model that learns directly from the residual errors as opposed to 

updating the sample weight. GBC generates a new forecast by combining the past 

forecasts of all trained trees. GBC has two efficient extensions and implementations: 

XGB and LGBM. These techniques have been utilized successfully in computational 

biology since they efficiently deal with big datasets and parallel computing (Budholiya et 

al., 2020; Fitriyani et al., 2020; Kibria & Matin, 2022). 

The output probability is computed using the outputs of the five base learners to train 

the meta-learner SVM model. In addition, the stacking approach is applied using the k-

folds cv method. This approach extends the classic stacking algorithm by utilizing cv to 

arrange the input data for the meta-learner, hence avoiding overfitting (Aggarwal & 

Reddy, 2014). This approach divides the training dataset into k-folds (using ten folds). As 

k rounds, k-1 subsets are utilized to fit the base learners. In each iteration, the base learners 

subsequently validated on other fold that has not been utilized for model fitting. The 
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stacked predictions are then utilized as input for the meta-learner. Once training with the 

stacking cv process finishes, the base learners are fitted to the whole data set. The entire 

procedure for the SPFHD model during training and testing with the data partitioning is 

shown in Figure 3.8. To cut down the computational time for training and testing SPFHD, 

the base learners learn in parallel. Therefore, the computational time of the SPFHD can 

be computed as in Equation 3.25 instead of Equation 3.26. 

SPFHDCT = max(RFCCT + ETCCT + GBCCT + XGBCT + LGDMCT) + SVMCT 3.25 

SPFHDCT = RFCCT + ETCCT + GBCCT + XGBCT + LGDMCT + SVMCT 3.26 
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(b) 

Figure 3.8: The entire procedure for the SPFHD model during (a) training and 

(b) testing. 

3.5 Performance evaluation metrics 

Different performance metrics are considered to evaluate the proposed models’ 

performance. This work utilized six performance metrics: accuracy, precision, recall, 

specificity, f1-score, and Mathew's Correlation Coefficient (MCC). The experiments are 

executed five times using different seeds to avoid randomness, and the mean value is 

considered. The six-evaluation metrics (accuracy, precision, recall, specificity, f1-score, 

and MCC, respectively) are summarized from Equations (3.27-3.32) as follows: 

Accuracy (ACC)  =  
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇
 3.27 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑃𝑃𝑃𝑃𝑃𝑃) =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 3.28 
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝑇𝑇𝑇𝑇𝑇𝑇) =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 3.29 

Specificity (SPC) =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 3.30 

𝐹𝐹1 =  
2 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 
3.31 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
(𝑇𝑇𝑇𝑇 ∗ 𝑇𝑇𝑇𝑇) − (𝐹𝐹𝐹𝐹 ∗ 𝐹𝐹𝐹𝐹)

�(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)
 

3.32 

3.6 Model interpretation using SHapley Additive exPlanations (SHAP) 

Understanding why ML models make specific predictions can be significant for 

investigating the uncertainty in heart disease prediction. SHAP is a strategy suggested by 

Lundberg and Lee to explain the individual predictions of ML models based on the game 

theory approach Shapely (Lundberg & Lee, 2017). The framework integrated the 

previously proposed methods for interpretation of ML models (LIME, DeepLIFT, 

Shapley sampling values, Shapley regression values, Layer-Wise Relevance Propagation, 

and tree interpreter). The SHAP framework utilizes cooperative game theory by assigning 

a relevance score to each attribute based on its impact on the model forecast. SHAP 

creates a simple descriptive model to describe the prediction d using the formula 𝑋𝑋𝑖𝑖′{0,1}𝑀𝑀 

where i is the instance and 𝑀𝑀 is the number of features. The local explanation model is 

represented by Eq. 3.19. 

𝜏𝜏�𝑋̀𝑋� = 𝛿𝛿𝑜𝑜 + �𝛿𝛿𝑖𝑖𝑋̀𝑋𝑖𝑖

𝑀𝑀

𝑖𝑖=1

 3.19 

The SHAP values assigned a significant value 𝛾𝛾𝑖𝑖 to each feature, signifying the effect 

of training the model using that feature. The SHAP values can be estimated as follows in 

the cooperative game theory, as shown in Eq. 3.20. 
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𝛾𝛾𝑖𝑖 = �
|𝐶𝐶|! (|𝐷𝐷| − |𝐶𝐶| − 1)!

|𝐷𝐷|!
𝐶𝐶⊆𝐷𝐷\{𝑖𝑖}

�𝑑𝑑𝐶𝐶∪{𝑖𝑖}�𝑋𝑋𝐶𝐶∪{𝑖𝑖}� − 𝑑𝑑𝐶𝐶(𝑋𝑋𝐶𝐶)� 3.20 

Where 𝐷𝐷 represents the feature set, and 𝐶𝐶 represents the feature subset which removes 

the ith feature in 𝐷𝐷. Then, two models, 𝑑𝑑𝐶𝐶∪{𝑖𝑖} and 𝑓𝑓𝑆𝑆 are retrained. Finally, predictions 

from these two models are compared to the current input 𝑑𝑑𝐶𝐶∪{𝑖𝑖}�𝑋𝑋𝐶𝐶∪{𝑖𝑖}� − 𝑑𝑑𝐶𝐶(𝑋𝑋𝐶𝐶), where 

𝑋𝑋𝐶𝐶  represents the values of the input features in the feature subset 𝐶𝐶. Furthermore, the 

SHAP technique offers an exciting capability to generate interpretable predictions and 

assign each feature weight for the forecasts of the complex ensemble models (Mubarak 

et al., 2022). In the context of applying SHAP to the SPFHD to have a better 

understanding of how SPFHD is making predictions, the following steps sum it up: 

1. Stacked Model Overview: A SPFHD model combines predictions from five tree-

based ML algorithms to create a more accurate ensemble prediction. Each of these 

individual algorithms could have its unique way of processing features, and therefore, 

understanding the cumulative importance of a feature across these models is crucial. 

2. Data Input: Feed the raw input data to the SPFHD model. Each base model in the 

stack will generate its prediction or an intermediate representation of the data. 

3. Compute SHAP Values: For each base model in the SPFHD: 

• Calculate the SHAP values for each feature. This gives you an insight into how 

each feature influences the prediction for that specific base model. 

• The SHAP value for a feature signifies how much the prediction deviates from 

the baseline (usually the average prediction) when that feature is considered. 

4. Aggregating SHAP Values: Given the layered nature of a stacked model, multiple 

sets of SHAP values corresponding to each base model: 
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• Weighted Aggregation: Aggregate the SHAP values depending on the weight or 

influence of each base model on the final prediction. Since all have the same 

weight, the average of SHAP values is taken. 

• The aggregated SHAP values will represent the overall influence of each feature 

across the entire stacked model. 

5. Analyzing Feature Importance: 

• Summary Plot: Visualize the aggregated SHAP values using a summary plot. 

Features will be ranked based on their importance, with the magnitude and 

direction of the SHAP value indicating how much and in which direction they 

influence the final prediction. 

• Positive vs. Negative Influence: Features with positive SHAP values push the 

model's output higher (than the baseline), while those with negative SHAP values 

push the output lower. The magnitude gives an idea of the strength of this 

influence. To understand this more, here is an example: Positive SHAP Value for 

"Age": When a particular sample has a positive SHAP value for the "Age" feature, 

it signifies that the age of this sample contributes to an increased likelihood of the 

model predicting heart disease. This means that for this specific instance, the 

model views the age in question as increasing the risk of heart disease. Negative 

SHAP Value for "Age": On the other hand, if a sample has a negative SHAP value 

for the "Age" feature, it means the age of this sample is leading the model to 

predict a decreased likelihood of heart disease. In this instance, the model 

perceives the given age as reducing the risk of heart disease. 

As a conclusion of interpreting the positive and negative SHAP values for "Age", If 

we observe that the positive SHAP values for the "Age" feature predominantly occur for 

samples with higher ages, it reinforces the idea that older age contributes to a higher 
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predicted risk of heart disease. Similarly, suppose negative SHAP values for the "Age" 

feature are commonly seen for samples with younger ages. In that case, it supports the 

idea that the model sees younger age have less risk of having heart disease. 

6. Interpreting the Results: 

• Features with larger absolute SHAP values have a stronger impact on the model's 

prediction. 

• The sign of the SHAP value indicates whether the presence of a feature increases 

or decreases the prediction. 

• Features closer to the top of the summary plot are more influential in the stacked 

model's decision-making. 

Consequently, we utilized the SHAP approach to understand the SPFHD results. The 

SHAP method's use in this work can be illustrated in Figure 3.9. The entire process of 

each step in the flowchart will be elaborated in Figure 3.5 as follows: 

Step 1: Data collection, preprocessing, and partitioning. This process is detailed in 

Data Collection and Preprocessing 3.2; four datasets are used to validate the proposed 

model, including Cleveland, Statlog, Z-Alizadeh Sani, and HD clinical records. This step 

embraces four stages: eliminating samples with missing attributes, label grouping, data 

normalizing using mean and standard deviation, and dataset splitting. 

Step 2: the proposed CVAE model is trained, and new samples from the minor class 

are generated for data balancing. Otherwise, if the data is balanced, it directly goes to the 

next step. 
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Step 3: The stack ensemble model is developed after the data balancing. Where the 

model is formed of one layer containing five base learners (RFC, ETR, GBC, XGB, and 

LGBM), the base learners' prediction will be combined as an input for the meta-learner. 

Step 4: The evaluation of the ML classifiers will be conducted in this step by utilizing 

MCC and F1. When the model fulfills the optimal performance conditions, it moves to 

the next step. Otherwise, it will return to update the model HPs. 

Step 5: In this step, the model interpretation is handled for a deeper insight into the 

learning mechanism of the SPFHD and a better understanding of features utilizing the 

SHAP test. The most contributed features will be selected. 

Step 6: Finally, the performance evaluation and benchmarking will be conducted in 

this step. 

 

Figure 3.9: The implementation of the SHAP framework in interpreting the 

SPFHD model. 

3.7 Summary 

This chapter describes the two methodologies used to accomplish the research 

objectives. The CVD datasets and the data gathering are detailed in detail. The data 

processing is given for classification methods. In addition, the proposed approaches 

(IWRF for data balancing on the algorithm level and CVAE for data balancing on the 

data level) for detecting CVD are expanded independently. The first methodology detects 

the CVD and solves the problem of the unbalanced data on the algorithm level by 
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assigning a weight for each class with a larger weight for the minor class using IWRF. In 

contrast, the second proposed methodology tackles the imbalanced problem on the data 

level by balancing the data distribution by generating new samples from a minor class by 

employing CVAE. In addition, the methodology of alternative detection approaches, such 

as single and hybrid models [RFC, ETC, XGB, and LGBM], data balancing strategies 

combined with other classifiers, such as SMOTE-RFC, are compared to the methodology 

proposed. Performance metrics are described to evaluate the accuracy of detection 

systems by comparing anticipated and actual results. In addition, the approach of various 

optimization algorithms, namely GA, PSO, RS, Hyperband, and BO, is described to tune 

the hyperparameters of the proposed methods in order to improve CVD detection 

accuracy. 
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CHAPTER 4: RESULT AND DISCUSSION 

This section presents the proposed models' results for different data sets according to 

the performance metrics. Further, the feature selection results, classification results, and 

SHAP results are demonstrated in each subsection. Finally, a comparative study is 

elaborated at the end of this section to highlight the effectiveness of the proposed models. 

4.1 The proposed Inf-FSs-IWRF model. 

This part proposes an effective method to predict CVD and patients' survival: Inf-FSs 

to rank the features by importance and select the best features, IWRF to predict CVD, and 

BO to find the best weighting coefficient. In addition, two public datasets were chosen to 

develop the model and test the model, the Statlog dataset (Statlog (Heart) Data Set) to 

detect the absence and presence of CVD and the heart failure clinical record dataset 

(Ahmad et al., 2017) to predict the patients' survival. Hence, an ML algorithm is 

developed to diagnose CVD and patient survival to assist healthcare professionals. As a 

result, early treatment might be implemented to avoid the deaths caused by late CVD 

detection. Moreover, this section presents the feature selection results first, followed by 

HD presence and survival classification performed for both datasets. The developed 

model was built and tested for HD on Statlog and heart failure clinical record datasets. 

The Statlog dataset consists of 14 attributes with the status label, 270 cases, 150 for HD 

absence and 120 for HD presence. The heart failure clinical record dataset consists of 13 

attributes with the survival label, 299 total cases, 203 patients survive, and 96 patients 

deceased. We used a 10-fold cv procedure in our experiment to avoid overfitting (Kohavi, 

1995). The model performance is evaluated using six performance metrics. 

4.2 Feature Selection Results for the proposed Inf-FSs-IWRF model. 

Inf-FSs-based feature selection is conducted at each stage of the 10-fold cv utilizing 

the training data. The Inf-FSs method ranks and weights each feature in the 13 and 12 
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features pool for both datasets. Table 4.1 summarizes the features and associated Inf-FSs 

weights for a given fold. The top ten attributes for each validation fold are chosen from 

these ranking features automatically. Nine characteristics appear in both datasets' top ten 

features for each of the 10-folds of the training data evaluated. As a result, the presence 

and survival classifications use these nine features. The selected features for both datasets 

are listed in Table 4.2. 

A comparison of feature rankings and their associated importance weights as 

determined by the Inf-FSs method, across two datasets: the Statlog dataset and the heart 

disease clinical record is presented in Table 4.1. In the Statlog dataset, a total of 13 

features are listed, ranging from 'Age' to 'Thal'. 'Thal' emerges as the most critical feature, 

occupying the top rank with the highest weight of 13.165, while 'Chol' stands at the 

bottom of the list at rank 13, holding the lowest weight of 5.619. Features like 'Gender' 

and 'Exang' also feature prominently, securing the third and second ranks with weights of 

9.928 and 11.092, respectively. Other attributes fall in between, each with a distinct rank 

and weight that reflects its importance according to the Inf-FSs method. 

In parallel, the heart disease clinical record dataset encompasses 12 features with 'Age' 

and 'Time' bookending the list. 'Anemia' is deemed the most important feature with the 

highest weight of 11.191 and a corresponding rank of 1. In contrast, 'CPK' is identified as 

the least significant feature with a weight of 6.403, ranking at 11. Other features such as 

'Diabetes' and 'High BP' are also highlighted for their significance, holding the second 

and third ranks with weights of 11.135 and 10.768, respectively. The weights and ranks 

collectively represent the features' relative importance in this dataset for the given fold of 

cross-validation. 
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Table 4.1: Feature ranking and weight importance determined by Inf-FSs 

 

Building on the ranking and weighting of features, Table 4.2 combines the selected 

features identified as the most significant for each dataset post the Inf-FSs feature 

selection process. For the Statlog dataset, the selection narrows down to 'Thal', 'Exang', 

'Gender', 'Restecg', 'Ca', 'CP', 'Slope', 'Thalach', and 'Oldpeak'. These features are 

pinpointed as the most relevant for the Statlog dataset's predictive modeling. Similarly, 

for the heart disease clinical record, the method selects 'Anemia', 'Diabetes', 'High BP', 

Statlog dataset Heart disease clinical record 

Attributes Rank Weight  Attributes Rank Weight  

Age 11 6.133 Age 7 7.203 

Gender 3 9.928 Anaemia 1 11.191 

CP 6 8.898 CPK 11 6.403 

Tresthps 12 5.793 Diabetes 2 11.135 

Chol 13 5.619 
Ejection_fracti

on 
8 6.849 

Fbs 10 7.159 High BP 3 10.768 

Restecg 4 9.875 Platelets 12 6.382 

Thalach 8 7.758 
Serum_creatini

ne 
10 6.404 

Exang 2 11.092 Serum_sodium 9 6.728 

Oldpeak 9 7.722 Gender 4 10.766 

Slope 7 7.897 Smoking 5 10.587 

Ca 5 9.231 Time 6 8.04 

Thal 1 13.165    
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'Gender', 'Smoking', 'Time', 'Age', 'Ejection_fraction', and 'Serum_sodium'. These 

features are distinguished as the most predictive for outcomes within the heart disease 

clinical records, implying their strong potential for influencing the model's performance. 

Both tables together provide a clear depiction of the outcome of applying Inf-FSs within 

a ten-fold cross-validation framework, underscoring the features that consistently hold 

the most predictive power across multiple folds. 

Table 4.2: Selected features of both datasets. 

Dataset Selected features 

Statlog Thal, Exang, Gender, Restecg, Ca, CP, Slope, Thalach, Oldpeak 

HD clinical record 
Anemia, Diabetes, High BP, Gender, Smoking, Time, Age, 

Ejection_fraction, Serum_sodium 

 

4.2.1 Classification results for the proposed Inf-FSs-IWRF model. 

The developed IWRF model was used for both datasets and showed significant 

improvement in prediction accuracy compared to existing models. For comparison, we 

chose six distinct machine learning models (G-NB, LR, SVM, kNN, XGBoost, and RF) 

frequently utilized in the research field and have a proven record of accuracy and 

efficiency. The results of different ML models are presented in Table 4.3 and Table 4.4 

for Statlog and HD clinical records, respectively, including the effects of both with and 

without FS. IWRF performed better across both datasets than other ML models achieving 

accuracy, F-measure, and MCC up to 95.5%, 94%, and 0.9 for Statlog, 93.3%, 86%, and 

0.81, for the HD clinical dataset, respectively. Also, it is noted that all models have been 

improved when using FS on both datasets, especially for IWRF, by reaching accuracy, F-

measure, and MCC up to 97.7%, 97%, and 0.95 for Statlog, and 95.9%, 91.3%, and 0.88, 

for HD clinical dataset, respectively. 
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Furthermore, it can be shown from the results that IWRF achieved better results than 

the standard RF model in handling the imbalanced data, where IWRF improved the 

performance for detecting CVD and patients' survival by 3.7% and 5%, respectively, after 

FS. Recognizing the minority class sufficiently during classification is difficult because 

the standard RF and the other models used to learn from data input are biased towards the 

majority class. With the benefit of feature selection, doctors can forecast the survival of 

patients and the presence of HD by assessing the essential attributes. 

To get another point, the IWRF was compared with SMOTE as it is commonly used 

in handling unbalanced datasets. As with any sampling technique, SMOTE is not a stand-

alone classifier but can be integrated with any classifier. For a fair comparison, SMOTE 

was combined with RF and then compared with IWRF. Table 4.5 and Table 4.6 present 

the results of IWRF against base RF with SMOTE for both datasets. Moreover, we 

employed BO for tuning SMOTE hyperparameters (sampling ratio and k-neighbors) and 

(α, p) for IWRF, while the other hyperparameters such n_estimators, max_depth, 

max_features, and min_samples_split, are set for the default values as in Sklearn library. 

The findings showed that IWRF achieved higher results than base RF with SMOTE since 

SMOTE has several drawbacks related to overlap and noisy information. It regularly 

assigns a global k-neighbor but ignores the local distribution features (Cheng et al., 2019; 

Sáez et al., 2015). The hyperparameter tuning improved model prediction accuracy, but 

it showed more impact on SMOTE. Increasing the k-neighbor value to compensate for 

the imbalance ratio may be effective in SMOTE. The results illustrated in Figure 4.1 show 

that the improvement achieved by the proposed IWRF is higher than SMOTE-RF 

compared to the base RF classifier. The proposed model improved the performance of 

CVD detection by 3.62%, 4.82%, for the Statlog dataset, and 6.3%, 11.98% for HD 

clinical records in terms of accuracy and f-measure, respectively.  
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Table 4.3: Performance evaluation of Statlog dataset for the proposed FS method 

Model 

Without FS With FS 

Acc. Pre. Recall 
F-

measure 
SPC MCC Acc. Pre. Recall 

F-

measure 
SPC MCC 

SVC 0.921 0.947 0.847 0.894 0.969 0.836 0.929 0.948 0.866 0.905 0.969 0.852 

kNN 0.87 0.886 0.771 0.821 0.933 0.728 0.895 0.914 0.809 0.857 0.951 0.781 

G-NB 0.907 0.944 0.81 0.872 0.97 0.806 0.907 0.9 0.857 0.878 0.939 0.804 

LR 0.903 0.916 0.828 0.87 0.951 0.797 0.907 0.917 0.838 0.875 0.951 0.804 

XGBoost 0.933 0.939 0.885 0.91 0.963 0.859 0.944 0.949 0.904 0.926 0.969 0.882 

RF 0.929 0.938 0.876 0.905 0.963 0.851 0.94 0.949 0.895 0.92 0.969 0.875 

IWRF 0.955 0.98 0.904 0.94 0.987 0.906 0.977 0.963 0.98 0.97 0.975 0.954 
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Table 4.4: Performance evaluation of HD clinical records dataset for the proposed FS method 

Model 

Without FS With FS 

Acc. Pre. Recall 
F-

measure 
SPC MCC Acc. Pre. Recall 

F-

measure 
SPC MCC 

SVC 0.839 0.762 0.677 0.716 0.909 0.609 0.849 0.771 0.711 0.74 0.909 0.636 

kNN 0.786 0.699 0.511 0.576 0.904 0.459 0.809 0.712 0.622 0.663 0.89 0.535 

G-NB 0.833 0.75 0.667 0.706 0.905 0.592 0.85 0.765 0.722 0.743 0.9 0.63 

LR 0.843 0.759 0.7 0.728 0.905 0.619 0.839 0.756 0.689 0.72 0.9 0.61 

XGBoost 0.889 0.804 0.801 0.802 0.926 0.726 0.912 0.827 0.83 0.827 0.942 0.769 

RF 0.893 0.813 0.801 0.806 0.93 0.733 0.909 0.817 0.83 0.823 0.937 0.762 

IWRF 0.933 0.851 0.871 0.86 0.952 0.814 0.959 0.926 0.9 0.913 0.978 0.881 
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Table 4.5: Comparison results between IWRF and SMOTE-RF on Statlog dataset 

Model 

Without Optimization With Optimization 

Acc. Pre. Recall 
F-

measure 
SPC MCC Acc. Pre. Recall 

F-

measure 
SPC MCC 

SMOTE-RF 0.947 0.952 0.912 0.93 0.97 0.891 0.978 0.979 0.965 0.972 0.986 0.955 

IWRF 0.977 0.963 0.98 0.97 0.975 0.954 0.983 0.986 0.972 0.979 0.991 0.966 

Table 4.6: Comparison results between IWRF and SMOTE-RF on HD clinical record dataset 

Model 

Without Optimization With Optimization 

Acc. Pre. Recall 
F-

measure 
SPC MCC Acc. Pre. Recall 

F-

measure 
SPC MCC 

SMOTE-RF 0.939 0.866 0.883 0.872 0.956 0.831 0.962 0.922 0.919 0.919 0.975 0.892 

IWRF 0.959 0.926 0.9 0.913 0.978 0.881 0.972 0.944 0.943 0.943 0.982 0.922 
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Figure 4.1: The comparison between the proposed IWRF and SMOTE-RF. 

4.3 The proposed Stack Predictor for Heart Disease (SPFHD) model. 

This section presents the classification results between the proposed method (SPFHD) 

and five base learners. In addition, the model interpretation using the SHAP framework 

for deeper insight and feature selection is demonstrated. Finally, a comparison between 

the proposed model with the previous works form the literature is conducted to highlight 

the supremacy of the proposed model. 

4.3.1 Classification results for the proposed SPFHD model 

The performance of the SPFHD with five different base learners is compared on the 

testing set for the four different datasets using the performance metrics to evaluate the 

efficacy of this strategy and the extent to which the stacked SPFHD model learns from 

the base learners. The results in Table 4.7 show the comparison between the developed 

stack ensemble and the five base learners using the default hyperparameters on the 

Cleveland and Statlog datasets. The results indicated that the stacked SPFHD model 

performed the best in terms of Acc, F1, and MCC for predicting HD. Furthermore, in 

terms of six performance parameters, SPFHD had the best performance for predicting the 

existence of HD on the Cleveland and Statlog datasets. In the case of Cleveland, the 

SPFHD achieved a result of 95.2, 93.42, 94.67, 95.56, and 0.9 for ACC, PPV, TPR, F1, 
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and MCC, respectively. On the other hand, in the Statlog dataset, the XGB outperformed 

SPFHD only in the TPR with a value of 93.33. 

Table 4.7: The results for the SPFHD and the base models on the balanced 
datasets using the default hyperparameters. 

Model 
Cleveland 

ACC PPV TPR F1 SPC MCC 

RFC 92.00 91.19 88.66 89.82 94.22 0.83 

ETC 93.33 92.54 90.67 91.56 95.11 0.86 

GBC 92.53 91.81 89.33 90.53 94.67 0.84 

XGB 94.93 93.37 94.00 93.65 95.56 0.89 

LGBM 94.40 93.28 92.67 92.95 95.56 0.88 

SPFHD 95.20 93.42 94.67 94.03 95.56 0.90 

Model 
Satalog 

ACC PPV TPR F1 SPC MCC 

RFC 93.91 93.95 90.48 91.89 96.10 0.87 

ETC 94.44 96.36 89.52 92.51 97.58 0.89 

GBC 93.91 94.07 90.48 91.92 96.10 0.87 

XGB 94.44 92.60 93.33 92.80 95.09 0.88 

LGBM 94.81 95.39 91.43 93.10 96.97 0.89 

SPFHD 95.18 96.48 91.43 93.50 97.52 0.90 

 

In this part, the effectiveness of a CVAE in addressing data imbalances is discussed. 

Other classical data imbalance handling methods, such as ADASYN and SMOTE, are 

applied to generate balanced datasets, which are then classified using the proposed 

SPFHD and other base learners. Additionally, no data balance handle is performed. Each 
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experiment is repeated five times for a more robust and reliable analysis, and the findings 

are averaged. The results in Table 4.8 compares the test set's performance with the Acc, 

PPV, TPR, F1, SPC, MCC, and Gmean values highlighted in bold of the two unbalanced 

datasets (Z-alizadeh and HDclinical records). 

Table 4.8: The results for the SPFHD with different data balancing methods on 
two datasets 

Model 
Z-alizadeh 

Acc PPV TPR F1 SPC MCC G-mean 

CVAE-SPFHD 96.55 94.93 98.64 96.67 94.42 0.93 96.46 

Adasyn-SPFHD 95.63 92.78 99.09 95.83 92.09 0.91 95.53 

SMOTE-

SPFHD 
96.09 93.58 99.09 96.26 93.02 0.92 96.01 

Original 87.48 90.61 93.00 91.78 70.67 0.65 81.07 

Model 
HD clinical records 

Acc PPV TPR F1 SPC MCC G-mean 

CVAE-SPFHD 94.33 97.50 88.80 92.85 98.28 0.88 93.38 

Adasyn-SPFHD 93.33 95.93 86.11 90.68 97.89 0.85 91.77 

SMOTE-

SPFHD 
93.33 96.39 87.20 91.56 97.71 0.86 92.28 

Original 90.00 89.32 77.14 82.75 95.80 0.76 85.96 

 

According to Table 4.8, the combination of CVAE-SPFHD provides the best Acc, 

SPC, and G-mean performance on both the Z-alizadeh and HD clinical record test sets. 

At the same time, SMOTE and Adasyn with SPFHD achieved higher TPR only on the Z-

alizadeh test. The CVAE-SPFHD model obtained the best G-mean for the Z-alizadeh 

dataset (96.46), which is higher than the second-best technique (SMOTE-SPFHD, with 
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G-mean = 96.01). The proposed CVAE-SPFHD (G-mean = 93.38) strategy for the HD 

clinical records dataset is also better than the best approach SMOTE-SPFHD with G-

mean = 92.28. 

Table 4.9: The results for the SPFHD and base learners with CVAE-based 
method for data balancing methods on two datasets 

Model 
Z-alizadeh 

Acc PPV TPR F1 SPC MCC G-mean 

RFC 93.33 92.48 94.55 93.43 92.09 0.87 93.27 

ETC 93.79 91.79 96.36 93.99 91.16 0.88 93.71 

GBC 92.64 91.61 94.09 92.81 91.16 0.85 92.60 

XGB 95.40 93.11 98.18 95.57 92.56 0.91 95.32 

LGBM 95.17 93.06 97.73 95.32 92.56 0.90 95.10 

SPFHD 96.55 94.93 98.64 96.67 94.42 0.93 96.46 

Model 
HD clinical records 

Acc PPV TPR F1 SPC MCC G-mean 

RFC 93.00 96.77 86.40 91.16 97.71 0.85 91.84 

ETC 92.78 96.67 83.80 89.71 98.46 0.84 90.79 

GBC 92.22 92.23 86.91 89.41 95.53 0.83 91.08 

XGB 93.33 92.82 88.60 90.66 96.10 0.85 92.24 

LGBM 93.00 95.42 87.20 91.17 97.14 0.85 92.01 

SPFHD 94.33 97.50 88.80 92.85 98.28 0.88 93.38 

 

Furthermore, the effectiveness of the proposed SPFHD is compared to that of the base 

learner algorithms with the CVAE-based method. Table 4.9 highlights the average scores 

for the test set performance for the Z-alizadeh and HD clinical records datasets. With Acc 
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values of 96.55 and 94.33, MCC values of 0.93 and 0.88, and G-mean values of 96.46 

and 93.38 on Z-alizadeh and HD clinical records test sets, respectively, the proposed 

method (SPFHD) method surpasses the base learner algorithms for predicting HD. In 

addition, the proposed technique increased specificity by 23.75 % for Z-alizadeh dataset 

and sensitivity (TPR) by 11.66 % for the HD clinical records dataset. 

4.3.2 Hyperparameter optimization results for the proposed SPFHD model 

Three HPO methods (BO, PSO, and GA) are employed to reduce the effort of ML 

hyperparameter tuning, especially for complex ML models with many HPs. The proposed 

model and the base learners with their default HP configuration are trained and evaluated 

as baseline models in the first step. Then, each HPO algorithm is used for the ML models 

in order to evaluate and compare their classification performance. It is evident from Table 

4.7 that using the default HP settings does not produce the best model performance 

throughout the experiments across four datasets, highlighting the significance of 

employing HPO techniques. Table 4.10 shows the results after applying HPO methods to 

the SPFHD. The performance of SPFHD improves sharply; for example, the MCC 

increases from 0.9 to 0.98, 0.97, and 0.97 after applying BO, PSO, and GA, respectively, 

for the Cleveland dataset. It is clear from the results that BO achieved the highest 

improvement rate across the four datasets. Also, GA achieved the lowest improvement 

rate across the datasets (except for the HD clinical records dataset, PSO achieved a lower 

enhancement. 
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Table 4.10: The results for the SPFHD with different HPO methods on different 
datasets 

Model 
Cleveland 

ACC PPV TPR F1 SPC MCC 

SPFHD 95.20 93.42 94.67 94.03 95.56 0.90 

GA-SPFHD 98.67 97.46 99.33 98.36 98.22 0.97 

PSO-SPFHD 98.67 98.06 98.67 98.35 98.67 0.97 

BO-SPFHD 98.93 98.10 99.33 98.69 98.67 0.98 

Model 
Statlog 

ACC PPV TPR F1 SPC MCC 

SPFHD 95.18 96.48 91.43 93.50 97.52 0.90 

GA-SPFHD 98.41 97.43 98.64 97.99 98.23 0.97 

PSO-SPFHD 98.94 98.76 98.64 98.65 99.13 0.98 

BO-SPFHD 99.02 99.24 98.25 98.72 99.48 0.98 

Model 
Z-Alizadeh Sani 

ACC PPV TPR F1 SPC MCC 

SPFHD 96.55 94.93 98.64 96.67 94.42 0.93 

GA-SPFHD 97.93 98.26 97.73 97.95 98.14 0.96 

PSO-SPFHD 98.62 98.69 98.64 98.64 98.60 0.97 

BO-SPFHD 98.85 98.69 99.09 98.87 98.60 0.98 

Model 
HD clinical records 

ACC PPV TPR F1 SPC MCC 

SPFHD 94.33 97.50 88.80 92.85 98.28 0.88 

GA-SPFHD 97.77 97.99 97.44 97.69 98.14 0.96 

PSO-SPFHD 97.53 97.97 96.92 97.42 98.14 0.95 

BO-SPFHD 98.49 98.99 97.95 98.45 99.09 0.97 
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4.3.3 Model interpretation for the proposed SPFHD model 

Here, the mechanisms related to SPFHD's predicted reliability are assessed. Five tree-

based ensemble algorithms (RFC, ETC, GBC, XGB, and LGBM) are employed to 

develop the basis classifiers of SPFHD. For the predictions of the complex ensemble 

models, the SHapley Additive exPlanations (  SHAP) technique provides an attractive 

ability to generate interpretable predictions and assign a relevance score to each feature. 

Consequently, the SHAP approach is used to understand the stacked SPFHD findings. 

SHAP is utilized to determine the essential SPFHD attributes. Figure 4.2 displays the 

features based on SHAP values for heart disease presence and failure ordered by the sum 

of SHAP-value magnitudes across all observations and displays the distribution of each 

feature's impact on SPFHD output. The majority of variables with high values 

corresponded to positive SHAP values, whereas those with low values corresponded to 

negative SHAP values, according to the findings. Calculating the risk stratification is 

based on the risk factors dependent on age and sex. First, age alone with no comorbidities 

plays a risk in increasing the CVD events from 2% at age 40-50 years to 32.5 % at the 

age of 100 (Savji et al., 2013). Second, the male sex is at a slightly higher risk of 

developing CVD than females due to unknown mechanisms (Kappert et al., 2012; 

Tunstall-Pedoe et al., 1999). Now for the other risk factors: 

1. Patients having increased BP (at rest or having HTN) are at greater risk of 

developing CVD (Franklin et al., 2001) at all ages, but it is more considerable 

after the age of 55 years for males and 65 years for females (James et al., 2014). 

2. According to the INTERHEART study, DM plays a risk in increasing CVD, while 

it doesn't play a major role in hospitalization or mortality due to CVD. 

3. CKD increase the risk of CVD, according to the American Heart Association 

(AHA) and American College of Cardiology (ACC).  
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4. Smoking, according to the INTERHEART study, increases the risk of CVD. 

5. Also, increased BMI increases the risk of CVD (Harris et al., 1988). 

6. Family history independently increases the risk of CVD, mainly in younger adults.  

7. Increased LDL, total cholesterol, and decreased HDL play a risk in developing 

CVD but to a lesser extent, same for FBS (Eckel et al., 2004; Tirosh et al., 2011). 

8. But before listing the risk factors, you must consider any CV event by doing the 

following investigation: 

a. History taking for any event, chest pain (typical or atypical), and dyspnea.  

b. Physical examination starts with vitals  focusing on resting blood pressure 

and chest examination, including heart sounds and murmurs.   

c. Labs, including electrolytes and CPK.  

d. ECG (resting as a baseline mainly in previous admissions to the ER or 

hospitalization to compare it with the new ones). 

e. Echography to calculate the EF. 

f. Any other investigation 

After that, the risk stratification and the mortality rate can be calculated. Going back 

to diagnosing and extracting the prognosis of the CVD, there are multiple factors -taken 

by the internist- that affect this pathway, mostly the age, sex, ECG, HTN, symptoms and 

signs in the physical examination, which is also found to be in the datasets such as Statlog 

and Cleveland datasets to assist the physician for taking the right decision for example as 

shown in Fig. 4.3 (a, b) as the age increases (changes from blue to red), the risk of having 

CVD increases also, and any change in the resting ECG may indicate further investigation 

for the diagnosis of CVD (as the indicator changes from blue to red the need of further 

investigation increases) and the same for the other parameters. At the same time, the Z 
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dataset specifies each component and adds much more details to the features in the Statlog 

and Cleveland datasets and has an add on features like TTE-EF, where when it increases, 

the outcome is more favorable (as the indicator changes from red to blue the result is more 

favorable). On the other hand, in DM, when the patient has the disease, the outcome is 

less favorable. The prognosis of CVD is poor (as the indicator changes from blue to red, 

CVD is worst, and as fact, Type 2 DM is associated with poor prognosis (Al-Delaimy et 

al., 2004; Almdal et al., 2004; Kannel & McGee, 1979), which makes it more specific for 

the diagnosis of CVD and a better indicator for the prognosis as shown in fig. 4.3 (c). 

On the other hand, HD clinical records data sets explained the mortality rate and the 

prognosis of the patient having CVD. According to this data set, with an increase of one 

of the factors, the outcome will be increased mortality or worst prognosis except for the 

TTE-EF. Any increase means a better prognosis, and the sex where if the sex is female, 

the prognosis is better since females follow up more frequently (Adams Jr et al., 1999; 

Frazier et al., 2007; Ghali et al., 2002; O’Meara et al., 2007; Simon et al., 2001) (since it 

is red means it's of highest survival rate and the males are in blue, so they have more 

mortality rate). Also, we should consider the follow-up period since as it decreases, the 

mortality of CHF increases and the prognosis worsens (as the indicator change from blue 

to red, the follow-up period increases and the mortality rate decreases), as represented in 

Fig. 4.3 (d). Univ
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Figure 4.2: features rank based on SHAP values for SPFHD prediction of 

presence and patient survival of CVD. Red indicates a high value, blue is a low value 

for attributes, whereas SHAP values (negative or positive) reflect the directionality 

of the attributes. Negative SHAP values represent negative predictions (absence (a, 

b, c) and alive (d)). Conversely, positive SHAP values signify positive predictions 

(presence (a, b, c) and death event (d)). 

Moreover, the second illustration of the SHAP analysis (Fig. 4.4) provides general 

information about the features' importance on different datasets. It can be seen in Figure 

4.4 the impact of each feature on different datasets. For instance, Ca, CP, and Thal have 

more impact on the model output, while Thalach, Fbs, Chol, and Exang have small 

contributions. Likewise, the Statlog dataset shares the same best and least features that 

impact the model’s output with different means, as shown in Fig. 4.4 (a,b). In addition, 

Typical and Atypical chest pain have the highest impact on the model’s output in the Z-

alizadeh Sani dataset presented in Fig. 4.4 (c) (same feature ‘CP’ in Cleveland and 

statlog). The feature importance for the HD clinical dataset is illustrated in Fig. 4.4 (d), 

where time, ejection fraction, and serum creatinine contribute the most to the model’s 

output, while anemia, diabetes, smoking, and CPK have a minimal impact on the model’s 

output. 
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Figure 4.3: The effect of each attribute on SPFHD’s output according to the 

SHAP framework where each figure refers to the ranking of the attribute 

effectiveness on different datasets (a) Cleveland, (b) Statlog, (c) Z-AliZadeh Sani, 

and (d) HD Clinical Records. 

Finally, in the future, to increase the accuracy of the SPFHD model to assist in the 

diagnosis and calculating the prognosis of CVD, it may include add-on components like 

pro-BNP and C-troponin T (Anand et al., 2003; Berger et al., 2002; Koglin et al., 2001; 

Stanek et al., 2001) and other features like the number of hospitalization. The diagnosis 

of CVD happens when the patient is inpatient or outpatient since these terms affect the 

mortality rate (Taylor et al., 2019). The outcomes showed that models lacking the eight 

best characteristics had a lower predictive performance as measured by the average Acc 

(99.01 vs. 98.02) and MCC (0.98 vs. 0.96), among other performance metrics for HD 

clinical records. The features are selected after applying SHAP analysis to investigate the 

most contributing factors to SPFHD’s output. The features chosen for all the datasets are 

shown in Table 4.11. These findings showed how crucial these features (selected by 

SHAP) are to SPFHD's ability to make accurate predictions. The results after applying 

the most key features highlighted by SHAP on the four datasets are shown in Table 4.12. 

Table 4.11: The selected features after applying the SHAP analysis for the four 
datasets. 

Dataset Selected Features 

Cleveland and Statlog Ca, CP, Thal, Sex, Age, Oldpeak, Tresthps, Restecg, Slope 

Z-Alizadeh Sani 
Typical chest pain, Atypical, ST elevation, HTN, T inversion, 

Age, DM, K, EF-TTE, ESR, HB, Sex, Dyspnea, St depression 

HD clinical Records 
Time, Ejection fraction, Serum creatinine, Sex, Age, HBP, 

Platelets, Serum sodium 
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Table 4.12: The comparison between the proposed model with optimal features 
selected by SHAP. 

Model 
Cleveland 

ACC PPV TPR F1 SPC MCC 

SPFHD 98.93 98.10 99.33 98.69 98.67 0.98 

FS-SPFHD 99.47 99.35 99.33 99.33 99.56 0.99 

Model 
Statlog 

ACC PPV TPR F1 SPC MCC 

SPFHD 99.02 99.24 98.25 98.72 99.48 0.98 

FS-SPFHD 99.21 99.35 98.64 98.97 99.52 0.99 

Model 
Z-Alizadeh Sani 

ACC PPV TPR F1 SPC MCC 

SPFHD 98.85 98.69 99.09 98.87 98.60 0.98 

FS-SPFHD 100 100 100 100 100 1 

Model 
HD clinical Records 

ACC PPV TPR F1 SPC MCC 

SPFHD 98.02 98.00 97.95 97.96 98.14 0.96 

FS-SPFHD 99.01 98.50 99.49 98.98 98.66 0.98 

 

4.4 Statistical Analysis  

Two-step statistical tests have been conducted for statistical verification between the 

proposed model and the other ML models to show the significant difference between 

classifiers across multiple datasets.  First, an omnibus test utilizing the Friedman rank is 

performed as recommended in (Demšar, 2006). If differences in classifier performance 

can be identified, then a Friedman post hoc test is conducted. The Friedman test analyses 
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the hierarchy of benchmarked classifiers, whereas the Iman-Davenport test determines 

whether at least one classifier has a considerable advantage over others. Finally, a pair-

wise test utilizing the Friedman post hoc with the corresponding p-value is performed for 

multiple comparisons after identifying such a difference. In the Friedman test, the 

classifier optimized by BO is considered since BO-SPFHD achieved the highest 

improvement rate among the three HPO methods. Regarding the Friedman post hoc test, 

a comparison to the reference (BO-SPFHD) is considered. The BO-SPFHD is chosen as 

a control classifier against comparing other base learners, including RFC, ETC, GBC, 

XGB, and LGBM optimized using BO. The significance of a difference is determined by 

a p-value that must be less than the threshold (0.05). Table 4.13 displays the mean ACC 

value, Friedman's average rank, and the Iman-Davenport test's p-value. It should be noted 

that the better the classifier, the lower its rank. The evidence is shown in Table 4.8, 

demonstrating that the SPFHD algorithm is the best method because it has the lowest rank 

(Friedman Rank=1). The p-value = 0.033, indicating a substantial difference (p-value < 

0.05) between at least two benchmarked methods, which indicates that the null hypothesis 

assuming comparable performance across all classifiers can be rejected. In addition, once 

the null hypothesis is rejected, the Friedman post hoc test is used to assess the 

performance differences between the pairs. The results of the statistical comparison 

between the pairings are shown in Table 4.14. Notably, the differences in performance 

between the proposed algorithm and all basic learners are highly significant (p-value < 

0.05). These findings confirmed that SPFHD's stacking method could learn a high-level 

classifier more efficiently than five base learners. 
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Table 4.13: The results of the Friedman rank and Iman-Davenport tests, as well 
as the mean value of the accuracy (%). 

Model Cleveland Statlog 
Z- Alizadeh 

Sani 

HD 

Clinical 

Records 

Friedman 

Rank 

Iman-

Davenport 

p-value 

BO-RFC 97.60 98.68 94.71 96.32 5 

0.033226 

BO-ETC 97.87 98.98 97.24 96.81 3.13 

BO-GBC 97.33 97.66 95.17 95.12 5.75 

BO-XGB 98.14 98.15 95.86 97.53 3.5 

BO-LGBM 97.87 98.94 98.16 97.79 2.63 

BO-SPFHD 98.93 99.02 98.85 98.49 1 

 

Table 4.14: Comparison of the proposed method and other classifiers with 
respect to Friedman's post hoc test 

Comparison p-value (post hoc) 

Proposed VS BO-RFC 0.030 

Proposed VS BO-ETC 0.032 

Proposed VS BO-GBC 0.006 

Proposed VS BO-XGB 0.022 

Proposed VS BO-LGBM 0.035 

 

4.5 Comparative Analysis 

A performance evaluation and comparison of the developed method to current 

methods. Using the same dataset to evaluate predicted performance is typically a more 

objective and bias-free method. Comparing SPFHD to state-of-the-art predictors across 

the four datasets, namely Cleveland, Statlog, Z-Alizadeh Sani, and HD clinical records, 
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presented in Tables 4.13, 4.14, 4.15, and 4.16, respectively, reveal that SPFHD has 

superior predictive performance in terms of ACC, PPV, TPR, F1, SPC, and MCC for HD 

prediction when compared to the other approaches including ML and DL models. For 

example, the developed stack-ensemble model achieved better results than 

SMOTE+CNN (Umer et al., 2022) (refer to table 4.14) and SMOTE + Deep Learning 

(Waqar et al., 2021) (refer to table 4.11); the ACC values achieved using SPFHD are 

99.01% and 99.47% as compared to SMOTE+CNN (92.63%) and SMOTE+ deep 

learning (96%) respectively, where DL entails more data and memory to train. In addition, 

the proposed model achieved higher results than DBMRITLBO-ANN (95.41%) and 

ANN + RF (95.08) (refer to table 4.13), as the model focused on ANN, which is more 

likely to overfit. Generally, the models developed using single models did not perform 

well, as shown in Tables 4.14 and 4.15. Finally, the ACC attained by SPFHD was around 

2% higher than other models across all four datasets, indicating that SPFHD is superior 

to earlier methods. Notably, only SPFHD on HD clinical records dataset achieved 

consistent results compared to the models, achieving better ACC, PPV, TPR, and F1 by 

1.81%, 4.1%, 5.19%, and 4.68%, respectively, than the second model. Therefore, these 

findings suggested that SHFPD is a reliable and stable predictor of HD diagnosis.
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Table 4.15: Performance comparison between the proposed method and previous work on the Cleveland dataset. 

Author Method 
Performance Evaluation 

ACC PPV TPR F1 SPC MCC 

(Tama et al., 2020) Two-tier ensemble PSO 
based FS 85.71 - - - 86.49 - 

(Fitriyani et al., 2020) 
DBSCAN + SMOTE-ENN 

+ XGBoost 98.4 98.57 98.33 98.33 98.32 0.97 

(Nilashi et al., 2020) KNN+SOM+PCA+ Fuzzy 
SVM 96.86 - 96.66 94.35 - - 

(Thanga Selvi & 
Muthulakshmi, 2021) DBMRITLBO-ANN 95.41 - 97.33 93.23 95.74 - 

(Waqar et al., 2021) SMOTE + Deep Learning 96 96.1 95.7 - 95.7 - 
(Vivekanandan & 
Narayanan, 2019) DE-Cox regression 91 - - - - - 

(Kibria & Matin, 
2022) 

ANN + RF 95.08 95 95 - 95 - 

(Shan et al., 2022) MGOHBO-KELM 81.85 - 82..76 85.47 - 0.6513 

(Asadi et al., 2021) MOPSO-RF 85.21 - - - - - 

Proposed Method 2 SPFHD 99.47 99.35 99.33 99.33 99.56 0.99 
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Table 4.16: Performance comparison between the proposed method and previous work on the Statlog dataset. 

Author Method 
Performance Evaluation 

ACC PPV TPR F1 SPC MCC 

(Tama et al., 

2020) 

Two-tier ensemble PSO 

based FS 
93.55 - - - 91.67 - 

(Fitriyani et al., 

2020) 

DBSCAN + SMOTE-ENN + 

XGBoost 
95.9 97.1 94.6 95.4 95.3 0.92 

(Nilashi et al., 

2020) 

KNN+SOM+PCA+ Fuzzy 

SVM 
97.87 - 96.97 96.97 - - 

(Shan et al., 

2022) 
MGOHBO-KELM 75.91 - 58.02 86.99 - 0.45 

(Asadi et al., 

2021) 
MOPSO-RF 88.26 - - - -  

Proposed 

Method 1 
Inf-FSs+BO+IWRF 0.983 0.986 0.972 0.979 0.991 0.966 

Proposed 

Method 2 
SPFHD 99.21 99.35 98.64 98.97 99.52 0.99 
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Table 4.17: Performance comparison between the proposed method and previous work on the Z-Alizadeh Sani dataset. 

Author Method 
Performance Evaluation 

ACC PPV TPR F1 SPC MCC 

(Tama et al., 

2020) 

Two-tier ensemble PSO 

based FS 
98.13 - - - 96.6 - 

(Abdar et al., 

2019) 
N2Genetic-nuSVM 93.08 - - - 91.51 - 

(Yuvalı et al., 

2022) 
RS-LR 92.4 89.5 91.9 - 90.7 - 

(A. Gupta et al., 

2022) 
FAMD + BBA + RF-ET 97.37 - 98.15 95.45 - 0.45 

Proposed 

Method 2 
SPFHD 100 100 100 100 100 1 
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Table 4.18: Performance comparison between the proposed method and previous work on the HD clinical records dataset. 

Author Method 
Performance Evaluation 

ACC PPV TPR F1 SPC MCC 

(Ishaq et al., 

2021) 
SMOTE + RF + ET 92.6 93 93 93 - - 

(Almazroi, 2022) DT 80 78.94 65.21 - 71.4 - 

(Umer et al., 

2022) 
SMOTE+CNN 92.63 92.81 93.99 - 93.4 - 

Proposed 

Method 1 
Inf-FSs+BO+IWRF 97.2 94.4 94.3 94.3 98.2 0.922 

Proposed 

Method 2 
SPFHD 99.01 98.50 99.49 98.98 98.66 0.98 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

This chapter fills the gaps and supplements existing research in the literature 

concerning the evolving issue of CVD detection. Hence, two methodologies were 

proposed, the first on the algorithm level by selecting a higher weight for the minor class, 

while the other is on the data level to balance the two classes by generating new data 

samples from the minor class. Moreover, recommendations for further enhancements will 

be proposed as part of future work in the current study. 

5.1 Conclusion 

The CVD detection model serves as a valuable aid for cardiologists by categorizing 

each sample into its respective class, distinguishing between CVD and non-CVD. The 

ML emerges as a contemporary and efficacious technique for disease diagnosis, with 

various architectures and methodologies proposed to classify individuals into different 

classes precisely. The binary classification task of CVD detection involves categorizing 

individuals as having CVD or non-CVD. Class imbalance in the number of CVD and 

non-CVD samples introduces challenges in reducing detection accuracy. Additionally, 

the presence of outliers and missing data further complicates accurate predictions, as 

samples exhibit dual properties of both CVD and non-CVD classes. 

 Furthermore, this thesis extends its focus to multiclassification for severity 

classification, aiming to categorize individuals into different severity levels of CVD. A 

critical analysis of the impact of class imbalance data on the training process is conducted, 

exploring the potential of ML structures and other methods at both the algorithmic and 

data levels to address the inherent differences between CVD and non-CVD samples. A 

balancing factor is derived from the ratio of CVD to non-CVD samples, contributing to a 

more balanced training process. 
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 Moreover, CVD detection traditionally involves heart imaging or ECG, but this thesis 

specifically concentrates on the detection of CVD through clinical data. The hybrid ML 

model developed in the study undergoes further optimization of hyperparameters to 

enhance the prediction accuracy of CVD. The optimization is carried out using Tree-

Structured Parzen Estimator Bayesian Optimization (TPE-BO), which is compared 

against other optimization methods such as PSO, GA, and RS. Various datasets, including 

Cleveland, statlog, Z-Alizadeh, and heart disease clinical records, are employed to 

validate and evaluate the performance of the proposed methods. Implementation and 

training of several CVD detection models are conducted using Python frameworks like 

scikit-learn and TensorFlow, with Python utilized for dataset preprocessing, including 

normalization and scaling. Finally, the evaluation of ML model performance is based on 

classification accuracy and misclassification error rate, showcasing the effectiveness of 

the proposed methods across diverse and complex real-world datasets. 

In pursuit of the first objective, an exhaustive inquiry into machine learning-driven 

methodologies for the detection of cardiovascular diseases utilizing clinical data 

classification was conducted. This investigation aimed to establish a ranking system for 

identifying optimal models applicable to cardiovascular disease detection. Subsequently, 

an IWRF approach was devised to address the challenge of data imbalance at the 

algorithmic level. The contribution of this objective lies in developing and improving the 

Random Forest algorithm to handle data imbalance more effectively at the algorithm 

level, which can be applied to various other applications facing similar data challenges. 

The proposed model improved the performance of CVD detection by 3.62% and 4.82% 

for the Statlog dataset and 6.3% and 11.98% for HD clinical records in terms of accuracy 

and f1-score, respectively, as compared to the recently published works by reaching 

values of 98.3% and 99.1% for accuracy and f1-score for Statlog dataset. As well as 

reaching values of 97.2% and 98.2% accuracy and f-score for HD clinical records dataset. 
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For the second objective, a method based on conditional variational auto-encoder was 

formulated to tackle the data imbalance concern at the data level. This involved 

generating new samples from the minor class that adhere to the original data distribution, 

thereby achieving dataset equilibrium. The introduced model demonstrated notable 

efficacy in addressing the imbalanced data issue at the data level and underwent validation 

using imbalanced datasets for CVD detection. The results showed that the proposed 

SPFHD model outperformed the state-of-art methods over four datasets, achieving higher 

f1-score of 4.68 %, 4.55 %, 2 %, and 1 % for HD clinical, Z-Alizadeh Sani, Statlog, and 

Cleveland, respectively. The contribution of this objective lies in the development of the 

CVAE model, which had not been applied to these types of applications before, and it 

effectively solves the data imbalance issue at the data level, offering a novel approach 

that can be extended to other fields facing similar challenges The enhanced performance 

of SPFHD can be attributed to the new balancing model (CVAE) and hyperparameter 

optimization. 

For the third objective, a cardiovascular disease detection system was established 

employing a hybrid machine learning model designed to enhance prediction accuracy. 

This involved the development of a model architecture (IWRF and the CVAE-SPFHD) 

and subsequent hyperparameter optimization. The proposed model was then subjected to 

a comprehensive statistical analysis, comparing its performance with existing models for 

validation and evaluation. The significance and contribution of this objective lie in 

developing a multi-level approach that addresses critical challenges from data 

preprocessing to feature selection and optimization. The system achieves greater accuracy 

and reliability by integrating algorithm and data-level methodologies such as data 

balancing, feature ranking, and hyperparameter optimization. This holistic approach 

enhances prediction performance for cardiovascular disease detection and offers a 

framework that can be applied to various domains requiring robust ML solutions. 
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In the final objective, the study delves into the proposed learning mechanisms, 

emphasizing the most influential features that empower the model to yield accurate CVD 

prediction outcomes. A thorough investigation leveraging the SHAP framework was 

conducted to gain a deeper insight into the model's inner workings and interpretability. 

This model interpretation exercise elucidated the most pivotal features and parameters for 

each dataset. By identifying these key features, the proposed model (SPFHD) 

demonstrated a heightened capacity to detect heart diseases, thereby offering a more 

effective approach based on these discerning features rather than relying on alternative 

ones. 

5.2 Future work 

Despite the commendable performance exhibited by the proposed methodologies, 

IWRF and SPFHD, in predicting the presence of CVD and the survival of patients, certain 

limitations warrant consideration. The primary constraint lies in the relatively constrained 

nature of the training dataset, particularly concerning features. The inclusion of additional 

features is deemed essential for enhancing diagnostic accuracy, necessitating a broader 

spectrum of relevant patient characteristics. The study acknowledges that the predictive 

performance for patient status falls short of complete satisfaction due to these constraints. 

Future endeavors will center around the expansion of this work, primarily 

concentrating on the collection of new data encompassing a more comprehensive array 

of features and a larger patient cohort. Specifically, the incorporation of vital features like 

pro-BNP and C-troponin T, anticipated to become available in subsequent datasets, will 

be pivotal in improving diagnostic accuracy. Additionally, outlier detection and removal 

techniques will be implemented to ensure the quality of the data used for training. By 

identifying and removing data points that deviate significantly from the norm, the model’s 

robustness and predictive reliability will be further enhanced. Beyond data collection and 
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feature expansion, future work will explore advanced techniques for detecting and 

managing data outliers, which can significantly impact model performance if left 

unaddressed. Outlier detection will be critical in ensuring that the model’s predictions are 

not skewed by anomalous data points, and methods such as Isolation Forest and robust Z-

scores will be considered to handle this issue effectively. 

Moreover, this work's scope is poised for enlargement, not only through the 

incorporation of new features but also by encompassing a more extensive segment of 

patients. The stable and robust SPFHD framework and IWRF methodology hold promise 

for facile adaptation and extension to diverse survival and severity identification tasks, 

potentially extending their applicability to tasks such as heart disease severity level 

identification and diabetes prediction. Further research may also investigate the use of 

deep learning models or transfer learning to improve predictive performance across 

different heart disease subtypes and patient populations. Additionally, there is potential 

for integrating multimodal data sources, such as imaging and genetic data, to provide 

more holistic predictions in future iterations of the model. This will significantly enhance 

the model’s adaptability and accuracy in broader clinical applications. 
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