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 ABSTRACT 

Wood colour sorting is essential in woodworking to maintain uniformity and 

consistency in the appearance of the final products, thus, improving consumer 

satisfaction. Majority of the wood manufacturing companies in Malaysia are depending 

heavily on manual colour sorting that solely relies on human visual inspection, which can 

be subjective, inconsistent, laborious, and subject to errors. Automation is a goal, 

however, the cost for implementation of established technologies is always extortionate 

especially for small and medium industries (SMI). Therefore, the aim of this research is 

to develop a computerized vision system to perform colour sorting for multi-scale 

woodworking facilities. To achieve the research goal, our objectives are set to determine 

a suitable algorithm for colour features classification, to select the best features which 

contribute the most in the classification and to compare the effect of different cameras in 

the performance of the colour sorting. We have compared camera of different genres, 

namely an industrial camera, a prosumer action camera, and a webcam.  Three cameras 

used were: i) Hikrobot® MV-CE200-10UC (CE200), ii) Logitech® C920 HD Pro 

(C920), and iii) Sony® RX0 II (RX0 II). After setting up a veneer imaging prototype, a 

total of 1,289 distinct images of American red oak (Quercus rubra), yellow poplar 

(Liriodendron tulipifera), and maple (Acer spp.) were acquired from each camera, 

summing up to 3,867 images from all cameras. After performing image preparations and 

calibrations, 26 features were extracted from each image. The features were based on the 

average and standard deviation of the wood basal colour and wood grain colour. Salient 

features were obtained using Sequential Forward Selection (SFS), which were then used 

to train a Self-Organizing Map (SOM). The results affirmed that the colour of the basal 

colour is highly correlated with human sorted colour groups. As expected, CE200 

performed the best being of industrial grade. Interestingly, C920 exhibited comparable 

performance to CE200. RX0 II performed the worst due to its interface software 
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limitations. This proposed system achieved accuracies of 89.0% for red oak, 94.3% for 

yellow poplar and 96.4% for maple. This research will assist the SMI to develop 

affordable vision systems for colour sorting. 

Keywords: Wood Colour Sorting, Otsu’s Threshold, Sequential Forward Selection, 

Self-Organizing Map 
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ABSTRAK 

Pengisihan warna kayu amat penting dalam industri perkayuan untuk mengekalkan 

keseragaman dan konsistensi dalam penampilan produk supaya dapat memuaskan 

pengguna. Majoriti kilang perkayuan di Malaysia masih menggunakan cara manual 

dalam pengisihan warna kayu yang bergantung pada pemeriksaan manusia yang 

berkemungkinan subjektif, kurang konsisten dan berlakunya kesilapan. Automasi 

merupakan cara yang ideal, walau bagaimanapun, kos untuk pelaksanaan teknologi yang 

sedia ada amat tinggi terutamanya bagi industri kecil dan sederhana. Dengan ini, 

penyelidikan ini bertujuan untuk membina sistem visual berkomputer untuk 

melaksanakan pengisihan warna yang fleksibel untuk kilang-kilang perkayuan dengan 

skala yang berbeza. Untuk mencapai matlamat penyelidikan ini, objektif kami adalah 

untuk menentukan algoritma yang sesuai untuk klasifikasi ciri-ciri warna, memilih ciri-

ciri yang menyumbang kepada prestasi klasifikasi dan membandingkan kesan kamera 

yang berbeza dalam prestasi pengisihan warna. Kami telah membandingkan kamera dari 

pelbagai genre, iaitu kamera industri, kamera tindakan prosumer dan kamera web. Tiga 

kamera yang digunakan ialah: i) Hikrobot® MV-CE200-10UC (CE200), ii) Logitech® 

C920 HD Pro (C920), dan iii) Sony® RX0 II (RX0 II). 1,289 imej oak merah Amerika 

(Quercus rubra), poplar kuning (Liriodendron tulipifera), dan maple (Acer spp.) yang 

dilabelkan oleh pekerja-pekerja kilang telah diambil dengan prototaip pengimejan venir 

(lapisan kayu nipis) bagi setiap individu kamera, sejumlah 3,867 imej bagi semua kamera. 

Selepas melakukan penyediaan dan penentukuran imej, 26 ciri-ciri warna telah diekstrak 

daripada setiap imej. Ciri-ciri tersebut adalah berdasarkan purata dan sisihan piawai bagi 

warna asas dan ira kayu. Ciri-ciri yang menonjol diperoleh dengan kaedah ‘Sequential 

Forward Selection’ (SFS), dan kemudian digunakan untuk melatih mesin klasifikasi 

‘Self-Organizing Map’ (SOM). Keputusan didapati bahawa warna basal berkorelasi 

dengan kumpulan warna yang diisih manusia. Seperti yang dijangkakan, kamera gred 
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industri CE200 menunjukkan prestasi yang terbaik. Menariknya, kamera web C920 

menunjukkan prestasi yang setanding dengan CE200. Kamera Tindakan RX0 II 

mempamerkan prestasi yang paling lemah disebabkan oleh batas program kamera. Sistem 

yang dicadangkan ini telah mencapai ketepatan 89.0% untuk oak merah, 94.3% untuk 

yellow poplar dan 96.4% untuk maple. Penyelidikan ini akan membantu industri untuk 

membangunkan sistem visual pengisihan warna yang mampu milik. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Malaysia is one of the top 5 exporting countries in Asia for wood-based products, such 

as plywood, furniture, and sawn timber (Wood Products, 2021). The performance of 

Malaysian wood product exports has increased gradually over the past few years, as 

shown in Figure 1.1. Although there was a performance dip back in 2020 due to the 

economic impact of the Coronavirus disease 2019 or the COVID-19 pandemic, the wood 

industry has recovered in the subsequent years, reaching RM 25.213 billion, which 

accounts for over 15% of the total export value in the year 2022 (Annual Report, 2023; 

Malaysia External Trade Statistics, 2022). In short, wood products significantly 

contribute to Malaysia's export economy, playing a crucial role in international trade. 

 

Figure 1.1 Annual performance of Malaysian wood products export from year 
2018 to 2022. 

Sustainable forestry practices, diversified wood species, and contemporary design 

aesthetics are among the key determinants that lead to the positive reception and 

appreciation of Malaysian wood products. Visual aesthetics create pleasure, satisfaction, 

and quality perception, thus, increasing the market value of wood products. Wood colour 

homogeneity serves as a vital component in enhancing aesthetic appeal and overall 

acceptance of wood products (Høibø & Nyrud, 2010; Jonsson et al., 2008). The wood 
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industry often implements grading systems to categorize and classify wood components 

to ensure colour consistency of the products meets the consumer satisfaction.  

Industries working with wood veneers face different sets of challenges when it comes 

to colour sorting. Veneers are commonly 0.6 mm thick, but other thicknesses are possible, 

such as 0.3 mm, 0.5 mm, up to 2.0 mm. They are sliced from a log, or a single piece of 

timber, therefore veneers in the entire flitch are rather uniform in colour and texture. 

However, when veneers from different flitches are used, the same problems associated 

with solid timber pieces apply. While the most logical method of ensuring colour 

consistency would be to use veneers from the same flitch, however the need for specific 

lengths for product components, coupled with yield maximization requirements may 

require veneers from different flitches to be matched together. For instance, the veneers 

used for the stiles and rails of engineered doors as depicted in Figure 1.2, require colour 

matching to ensure appearance consistency in the final products.  

 

Figure 1.2 Engineered doors a) before veneer lamination and b) after veneer 
lamination on the stiles and rails. 

  

a) b) 

Univ
ers

iti 
Mala

ya



3 

Manual sorting is the most common method of colour sorting and classification (Wang 

et al., 2021). This involves human workers manually segregating the wood pieces. There 

are several techniques employed during segregation – the most common being ‘relative 

judgement’ whereby wood components are laid out adjacent to each other and evaluated 

for colour consistency. Another common approach is to determine the number of colour 

groups to be sorted to and determining the ‘standard bearers’ of each group which will be 

used as reference colour samples. 

Human perception of colour difference is nevertheless subjective, inaccurate, and may 

differ from one observer to another. These inaccuracies may be more pertinent, especially 

after long hours of such tedious work. The main drawbacks with human inspection 

include time consumption, fatigue, and lack of concentration (Naqvi, 1996). Visual 

inspection is therefore vulnerable to human errors (Ramesh et al., 2021). Moreover, most 

factories rely on natural sunlight as the source of light when performing human colour 

evaluation, with the option of artificial lighting during overcast days or during night shifts. 

Since the intensity and colour composition of natural sunlight changes depending on the 

time of day, weather, cloud conditions, and even position of the sun (or window or door 

opening) with relation to the timber and observer, getting consistent results is challenging. 

Consequently, adopting automated systems not only outperforms human in accuracy, 

but also has the potential to yield a shorter payback period (Buehlmann & Thomas, 2002). 

A computerised vision system would be advantageous for an objective and repeatable 

result. There are several colour sorting machines available in the market as shown in 

Table 1.1.  
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Table 1.1 Existing industrial solutions for colour sorting of timber.  

Image Description 

 - Company: Michael Weinig AG 
- Model: CombiScan Sense 
- Origin: Germany 
- Functions:  

o Defect detection (knot/pith/wane/holes/ 
cracks/insect holes)  

o Unspecified colour sorting for wood pieces 

 - Company: WoodEye AB 
- Model: WoodEye Parquet 
- Origin: Sweden 
- Functions:  

o Defect detection (pith, cracks, holes, 
sapwood, pitch pocket, darkness, colour, 
wane, wormhole, structure, angled cracks, 
knot)   

o Colour and grain sorting for wood parquet 

 

- Company: ATB Blank GmbH 
- Model: Spectra for Parquet Sorting 
- Origin: Germany 
- Functions:  

o Defect detection (pith, cracks, holes, 
sapwood, pitch pocket, darkness, colour, 
wane, wormhole, structure, angled cracks, 
knot)  

o Colour and grain sorting for wood parquet 

 - Company: EBI Electric 
- Model: Inspector B 
- Origin: Canada 
- Functions:  

o Defect detection (splits, shake)  
o Colour and grain sorting for known 

species: American red and white oak, 
maple, hickory, yellow and white birch, 
ash, cherry walnut 

 

- Company: James L. Taylor Manufacturing 
Company 

- Model: Opti-Match  
- Origin: USA 
- Functions:  

o Colour sorting of wooded boards into 
groups of five to seven of best matching 
pieces 
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Despite the significance of implementing automated systems and the availability of 

the technologies, Malaysian wood industry still heavily relies on labour force rather than 

embracing automated systems (Ratnasingam et al., 2019). Part of the rationale for this 

could be financial constraints. High initial investment, coupled with a perceived 

preference for the craftsmanship and flexibility offered by human workers, creates a 

dynamic where the industry prioritizes the known advantages of a traditional workforce 

over the potential benefits of automated technologies. Particularly, small and medium-

sized enterprises (SMEs) in the wood industry operating within a constrained budget may 

hesitate when contemplating an investment in costly machinery. 

Additionally, concerns about the adaptability and customization to existing procedures 

may hinder the willingness of most local wood industry players to implement a new 

automated system. Some of the species targeted by the machines are monospecific timber 

(European beech, Fagus sylvatica; American white oak, Quercus alba; American red oak, 

Quercus rubra, etc.), which enables a much simpler colour sorting algorithm to be 

employed as compared with multi-specific forest species such as red meranti (Shorea 

spp.), which consists of 19 distinct species (Sosef, 2017). The greater the number of 

species associated with the timber, the larger the variation they will present in terms of 

its colour, grain density, and overall visual morphology, and all these factors influence 

the visual properties of the timber.  

While challenges may have slowed down the adoption of automated systems, the 

Malaysian government, on the other hand, actively encouraging the wood industry to 

embrace Industry 4.0 as technology advances and awareness grows. Initiatives have been 

undertaken to steer the sector towards a more automated future, addressing challenges 

and leveraging the advantages of automation to enhance efficiency and competitiveness.  

In 2021, the Standards and Industrial Research Institute of Malaysia (SIRIM) and the 

Malaysian Timber Industry Board (MTIB) signed a Memorandum of Understanding 
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(MoU) to enhance collaboration. SIRIM, operating under the Ministry of International 

Trade and Industry (MITI), will partner with MTIB to explore technology areas, including 

Industry 4.0, machinery and equipment fabrication. Notably, one of the collaborative 

projects is the development of an automated visual inspection system for assessing wood 

colour, size, and defects (SIRIM, 2021). This study is funded by the research grant under 

the project. 

1.2 Problem Statement 

This research addresses the financial concerns faced by Malaysian wood industries in 

the investment of an automated vision system for wood colour sorting. By filling the gap 

in understanding different camera options, the research aims to explore a wider range of 

imaging equipment in vision system. Besides that, this research targets the system 

adaptability to diverse wood species. This study seeks to investigate the anticipation of 

both basal and grain colour attributes in the realm of wood colour characterisation, 

contributing to a deeper understanding and holding implications for a diverse range of 

wood species. Additionally, despite the availability of timber colour sorting machines in 

the market, this research investigates and resolves the challenges of working with delicate 

veneers, ultimately fostering the development of a wood colour sorting system for 

veneers. 
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1.3 Objectives 

This research aims to develop a computer vision system for sorting wood products 

based on colour aspects that align with human visual perception. To achieve this research 

goal, three main objectives have been identified: 

i. To assess and compare the performance of various camera genres in the 

context of industrial veneer colour sorting. 

ii. To identify and select optimal colour features from the basal and grain 

aspects that effectively distinguish veneer colour variations in red oak, 

yellow poplar, and maple. 

iii. To deploy an industrial veneer colour sorting prototype 

This research holds the potential to advance the development of a highly precise colour 

sorting mechanism tailored for diverse wood species, with potential applicability to non-

tested varieties. The evaluation of camera effectiveness in achieving accurate colour 

distinctions offers viable options for the industry players, SMEs particularly, who may be 

grappling with financial limitations. Beyond theoretical exploration, this research aims to 

translate its findings into practical applications. The deployment of a tangible prototype 

for industrial veneer colour sorting serves as a testament to the real-world relevance and 

applicability of the research outcomes, providing valuable insights and solutions for the 

wood industry.  

The research methodology comprises two key processes: image acquisition and image 

processing. In the image acquisition phase, the hardware system is established, 

encompassing cameras, lighting, and an enclosure rig. Additionally, software applications 

are deployed to capture images of the veneer samples. The image processing stage 

includes essential steps such as pre-processing, features extraction, features selection, and 

classifier building. The research strives to provide a comprehensive understanding of the 
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overall system. The findings will elucidate which features contribute most significantly 

to colour distinguishability. Furthermore, the research explores the impact of various 

cameras on the performance of the colour sorting process, providing valuable insights 

into their influence on system outcomes. 

1.4 Structure of Dissertation 

The dissertation is organized into five chapters, each serving a distinct purpose. The 

literature review explores past works, laying the foundation for proposed adapted 

approaches. In the methodology section, the processes are detailed, providing a 

comprehensive understanding. Results are presented graphically and tabulated, 

showcasing the findings. Discussions critically compare this study with related work and 

evaluate the implementation of the first prototype. Finally, the conclusion scrutinizes 

whether the research goals and objectives are achieved, highlights limitations, and 

suggests potential avenues for future improvements. 
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CHAPTER 2: LITERATURE REVIEW 

This chapter serves as a foundational exploration into the existing body of knowledge 

relevant to the essential components of this research. Structured into two main sections, 

this chapter critically examines the current state of research within the domains of image 

acquisition and image processing. The image acquisition section reviews key findings 

related to two pivotal elements: cameras and lighting. Meanwhile, the image processing 

section analyses the pre-processing approaches, features extraction techniques, feature 

selection methods and classifiers. This chapter aims to provide a comprehensive 

understanding of the intricacies involved in both image acquisition and processing, laying 

the groundwork for the subsequent methodologies and discussions. 

2.1 Image Acquisition 

A vision system comprises a hardware system designed to capture images for 

subsequent processing. The quality of the captured images is influenced by the hardware 

components. The primary hardware components include cameras and lighting systems.   

2.1.1 Cameras 

The camera serves as the capturing device in a vision system, employing a sensor to 

transform light information within the field of view into digital signals, resulting in 

monochrome or colour images. Cameras can be broadly categorized into two types based 

on imaging techniques: area scan and line scan cameras. As depicted in Figure 2.1, area 

scan cameras utilize a matrix of pixels arranged in rows and columns, capturing the entire 

two-dimensional (2D) image in a single exposure. This imaging technique is commonly 

referred to as 2D imaging. In contrast, line scan cameras have pixels aligned in a linear 

array along a single axis, capturing images line by line, thus, it is also known as one-

dimensional or 1D imaging. The direction of the scan depends on the acquisition setup, 
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either following the direction of object motion, as seen in conveyor systems, or against 

the direction of camera motion, as observed in scanner setups.  

 

Figure 2.1 Area scan and line scan image sensor (Line Scan Cameras vs Area 
Scan Cameras – Which Is Suitable For Your Applications?). 

Table 2.1 outlines the distinct advantage of both area scan and line scan cameras, the 

choice between them depends on the specific requirements of the application. Line scan 

cameras excel in high-speed imaging scenarios, such as continuous moving lines like 

conveyor systems. They can achieve greater resolution since the constructed images are 

not constrained by fixed vertical resolution, and they require simpler illumination as they 

scan only a narrower linear area at a time, compared to their area scan counterparts.  

In Table 2.2, it is evident that line scan cameras were commonly used to capture wood 

samples on moving conveyor systems, meeting the industrial requirements of high speed 

and resolution. The work of Liu and Furuno (2002) achieved a similar output for their 

images, despite not involving a conveyor system; they utilised a scanner with a moving 

line scan camera. In contrast to conveyor systems, where vertical resolution can be 

adjusted based on the length of the object, the vertical resolution in scanners is constrained 

by the physical size of the device.  

On the contrary, area scan cameras are well-suited for applications requiring imaging 

within a defined scan area. They are cost-effective due to their less complicated 

installation compared to line scan cameras, which demand precise coordination of 
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acquisition timing and the motion of the camera or object (Kashyapa, 2021). Generally, 

they have a more extensive application scope. Table 2.2 demonstrates that area scan 

cameras exhibit versatility, being applicable in both static systems where wood pieces are 

placed manually within the camera’s field of view, and dynamic systems, where sensors 

detect the presence of moving wood objects and trigger image capture.  

In cases where a single scan cannot accommodate longer pieces, Liu et al. (2020) 

employed image stitching, capturing images consecutively to reconstruct the entire wood 

piece. While this approach suited their focus on combining two-colour tones (light and 

dark) and three different types of textures, it may not be optimal for scenarios requiring 

the determination of multiple colour groups. Stitching area-scanned images can result in 

uneven light distribution between seams, potentially misrepresenting colour information 

and affecting classification performance. 

While most researchers utilised a single camera in their work,  Srikanteswara et al. 

(1997) employed two cameras to capture both the top and bottom faces of their wood 

panels. This choice may be attributed to their emphasis on furniture components, where 

the selection criteria for panels are typically more rigorous, necessitating both faces to 

meet similar standards. Conversely, researchers working with wood flooring, joinery or 

other engineered products concentrated solely on one side of the wood pieces, given that 

the other side will be covered or hidden. Furthermore, it is often assumed that the colour 

of a thin wood piece is homogeneous. Consequently, analysing the colour on one side is 

deemed sufficient to represent the overall colour.  

Noteworthily, Nurthohari et al. (2019) implemented a home-office grade webcam in 

their acquisition system, achieving comparable results with researchers who chose 

industrial-grade cameras. Given that these studies all employed a single type of camera, 

an intriguing path for investigation is to study the impact of different camera genres, 
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ranging from office-grade webcams to industrial cameras, on the performance of colour 

sorting systems. To address this knowledge gap, the current study compares cameras of 

three distinct genres: office-grade webcam, action camera, and industrial camera. 

Considering the wood sample type in this study is confined to wood veneer, the use of an 

area scan camera with a quasi-dynamic system for industrial setting is deemed most 

suitable. This could be achieved by deploying a conveyor system for transmission, with 

pauses for capture under the camera. This choice is driven by the thin and fragile nature 

of veneers, requiring careful handling.  

Table 2.1 Comparison between area scan and line scan cameras.  

 Area Scan Camera Line Scan Camera 

Sensor Configuration Pixels arranged in 2D array Pixels arranged in 1D array 

Working Principle Capture an image in a single 
exposure 

Capture an image line by line 

Resolution Limited by number of pixels in 
both horizontal and vertical axes 

Limited by number of pixels in 
the horizontal axis, vertical 
resolution varied by object 
length or constrained by camera 
physical memory 

Illumination Area * Wider Narrower 

Object Motion 
Coordination 

Not critical Critical to synchronize capture 
timing with object motion 

General Application Defined scan area, can be 
employed in both static and 
dynamic systems  

High-speed continuous moving 
systems like conveyor systems 

Cost Effectiveness Higher for its less complicated 
setup 

Lower for its more complicated 
installation and fine coordination 

* Assuming similar working distance and scan area width 
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Table 2.2 Acquisition system setups of related work. 

Wood Sample 
Type 

Wood Sample State of 
Motion 

Imaging Technique 
Camera Position 

Relative to Sample 
Camera 
Count 

Source 

Solid Veneer 
Linear 

Movement 
Stationary Area Scan Line Scan Top Bottom 

✔  ✔   ✔ ✔ ✔ 2 Lu et al. (1997); Srikanteswara et al. (1997) 

✔  ✔   ✔ ✔  1 Bombardier et al. (2008); Wang et al. (2021) 

✔  ✔   ✔ ✔  1 Lin et al. (2020) 

✔   ✔  ✔  ✔ 1 Liu and Furuno (2002) 

✔  ✔   ✔ ✔  1 Zhuang et al. (2021) 

✔  ✔  ✔  ✔  1 Liu et al. (2020) 

✔  ✔  ✔  ✔  1 Nurthohari et al. (2019) 

✔   ✔ ✔  ✔  1 Kurdthongmee (2008); Lu and Tan (2004) 

✔   ✔ ✔  ✔  1 Bianconi et al. (2013) Univ
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2.1.2 Lighting 

Luminance is integral to colour perception. In a vision system, maintaining appropriate 

luminance levels ensures faithful colour reproduction. Moreover, maintaining consistent 

luminance is important for the reliability of the vision system's analysis. Consistency 

ensures that the system algorithms can be applied uniformly, regardless of variations in 

lighting conditions. 

Table 2.3 showed the lighting setups of the studies which employed area scan camera. 

Although light emitting diodes (LEDs) or fluorescence lamps were suitable light sources, 

LEDs have gain significant popularity over the years due to their proven better energy 

efficiency more environmentally friendly outcomes (Perdahci et al., 2018).  Additionally, 

LED lights have a higher colour rendering index (CRI) compared to fluorescent lights, 

which enables them to accurately display a wider range of colours (Heffernan et al., 

2007). 

There are generally two lighting techniques: direct or indirect lighting. The work of 

Liu et al. (2020) showcased direct lighting, revealing an uneven lighting illustrated in 

Figure 2.2. In attempts to minimize this effect, both Nurthohari et al. (2019) and 

Kurdthongmee (2008) strategically positioned the direct lighting source at a distance, 

thereby reducing the hotspot created by the light through diffusion. Notably, Nurthohari 

et al. (2019) achieved optimal performance when the light source was located furthest 

away from the object. 

 

Figure 2.2 Uneven lighting due to direct lighting (Liu et al., 2020).  
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Another alternative involves the application of indirect lighting technique such as 

dome light illumination source adopted by Bianconi et al. (2013). Figure 2.3 shows the 

arrangement of mounting LEDs upwards facilitates the illumination of the dome from 

various angles. The dome radiates the light, resulting in the formation of parallel streams 

of light, ensuring uniform lighting of the target. This technique is especially useful for 

uneven surface, making it an advantageous choice for scenarios involving of wood 

veneers. 

 

Figure 2.3 Dome light illumination technique (Dome Lights).  

One of the complications with veneers is that they are typically sliced from green 

timber or wet logs, and then dried. This causes some sheets of veneers to curl, warp or 

buckle depending on internal stresses present in the wood fibres. Thus, wavy veneers 

make imaging using a static camera and direct lighting difficult as the shadows and bright 

spots causes the camera to register inaccurate information of the actual colour of the 

veneer (when they are eventually pressed flat when laminated onto a substrate). Figure 

2.4 presents a comparison between direct lighting and dome light techniques on wavy 

veneers. Therefore, findings indicate that, for the purposes of this study, the use of dome 

light proves to be a superior approach for imaging wood veneers. 
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a) i) ii) 

b) i) ii) 

c) i) ii) 

  
Figure 2.4 Images of the same wavy a) red oak, b) yellow poplar, and c) maple 

veneers, taken under i) direct lighting (bar light), and ii) a dome light. 
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Table 2.3 Lightings used in related work. 

Light Source Setup Illustration Source 

LED Panel Light: 
- Colour Temperature 6500 K 
- Illuminance 1000 lx 

 

 

Liu et al. (2020) 

Setting 1, LED Strip: 
- Power 3 W 
- Illuminance 71 lx 
- Height 5 cm 

Setting 2, LED Lamp: 
- Power 3 W 
- Illuminance 401 lx 
- Height 10 cm 

Setting 3 *, LED Lamp: 
- Power 6 W 
- Illuminance 1201 lx 
- Height 15 cm 

* Optimal setting 

 

Nurthohari et al. (2019) 

LED Dome Light: 
- Voltage 18 V 
- Illuminance 78,600 lx 

 

Bianconi et al. (2013) 

Fluorescent Lamp: 
- Power 15 W 
- Colour Temperature 5000 K 
- Illuminance 4150 lx 

- Distance 3 m angled at 45 ° 

- Kurdthongmee (2008) 
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2.2 Image Processing 

Image processing is the backbone of a machine vision system, interpreting the visual 

information in the form of digital images. It involves a series of computational techniques 

and algorithms applied to digital images to extract meaningful insights, patterns, and 

features. In the context of automated colour sorting machine, image processing plays a 

paramount role in tasks ranging from colour feature extraction to classification. 

2.2.1 Image Pre-processing 

Image pre-processing is a pivotal step in computer vision and image analysis to 

enhance the quality and interpretability of digital images. This preliminary stage involves 

a series of operations applied to raw images before they undergo more complex analyses. 

The primary objective is to address various challenges introduced during image 

acquisition, such as noise, distortion, and uneven illumination, thus, improving the overall 

reliability and accuracy of subsequent image analysis tasks, including feature extraction 

and classification.  

Different lightings of the same setting will result in images with different colour 

profiles. When designing a vision system, it is crucial to possess the insights of the 

lighting conditions to prevent erroneous interpretations derived from raw images. Dealing 

with scenarios where lighting conditions may vary, colour calibration will be carried out 

to rectify the images to ensure consistent intensity levels for identical colours. In Figure 

2.5, Sunoj et al. (2018) demonstrated how different lighting conditions affect the image 

intensities and the correction done with a standard colour calibration chart.  
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Figure 2.5 Intensities of colour images before and after calibration under two 
lighting conditions (Sunoj et al., 2018). 

McCamy et al. (1976) had introduced the ColorChecker Color Rendition Chart (also 

called the Macbeth Chart, as utilised in Figure 2.5 and Figure 2.6) with 24 squares of 

colour samples which reflect light consistently under a variety of lighting conditions over 

time. The colour chart has become essential as an image calibration tool, especially in 

photography. 

a) b) c) 

   

Figure 2.6 Macbeth calibration chart as imaged using a) Hikrobot MV-CE200-
10UC, b) Logitech C920 HD Pro webcam, and c) Sony RXO II action camera. 
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Most studies implemented controlled lighting settings and conducted their image 

acquisition within specific time frames, the need for colour calibration may not be 

necessary. This assumption stems from the presumption that the lighting conditions 

remained constant, or any variations were deemed negligible. However, deterioration can 

occur over time, particularly in the case of aging lights or camera equipment, especially 

within the harsh environment of industrial settings. This will inevitably lead to inaccurate 

results particularly in colour classification tasks (McCamy et al., 1976). 

Therefore, it is always a good practice to incorporate calibration into any machine 

vision system to accommodate variabilities in real life applications particularly for use 

over long periods of time. This is important for addressing factors like the replacement of 

cameras or lighting equipment. Periodic calibration is essential to ensure the sustained 

quality of the colour images, thereby minimizing misclassification rates.  

2.2.2 Feature Extraction 

Feature extraction is a critical component that bridges raw visual data with meaningful 

information. As the initial step in the process, feature extraction involves the 

identification and isolation of relevant characteristics or patterns from digital images of 

wood samples. The extracted features serve as distinctive markers, enabling the machine 

vision system to discriminate between different colour tones. This process lays the 

foundation for subsequent classification algorithms to precisely categorise, and sort wood 

pieces based on their distinct colour characteristics. 

2.2.2.1 Colour Space 

Colour space refers to a specific organisation of colours, defining the range and 

combinations of colours that can be represented. It provides a way to express and quantify 

colours in a standardized manner. When working with digital images, it is essential to be 
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aware of the colour space used by the camera and to choose the appropriate colour space 

for specific output requirements or post-processing tasks. 

Understand how the image sensor in the camera works helps to comprehend the colour 

space output from the camera. The sensor incorporates a Bayer filter over its pixels, with 

each pixel having either a red, green, or blue filter arranged in a mosaic pattern, as shown 

in Figure 2.7. Each pixel captures only one colour, and interpolation of neighbouring pixel 

values is employed to estimate the missing colour information to reconstruct a full-colour 

image. The arrangement includes more green filters as the human eye is more sensitive 

to green light.  

 

Figure 2.7 Bayer pattern (Monochrome Camera vs. Color Camera: All You Need 
to Know). 

As outlined in Table 2.4, colour spaces are graphically represented through coordinate 

systems, each offering unique characteristics. The RGB colour space utilizes intensities 

of red, green, and blue ranging from 0 to 255 to define individual pixels. YCbCr colour 

space employs luminance (Y) in the range of 16 to 235, accompanied by chrominance 

components (Cb and Cr) ranging from 16 to 240. HSL and HSV colour spaces, although 

similar, differ in their representation of hue (0° to 360°), saturation, and value or lightness 

(expressed as percentages). HSL uses a lightness component in percentages, where 100% 

signifies white, while HSV employs a value component to indicate blackness. The 

CIEL*a*b* colour space incorporates L* for lightness (0 to 100) and a* and b* for 

chromaticity, representing green to red and blue to yellow, respectively. 
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Table 2.4 Colour components of different colour spaces. 

Colour Space Colour Components   

RGB 

R (Red Intensity)   : 0 – 255  

G (Green Intensity)   : 0 – 255 

B (Blue Intensity)   : 0 – 255 

 

[1] 

YCbCr 

Y (Luminance / Brightness) : 16 – 235 

Cb (Blue Chrominance)  : 16 – 240 

Cr (Red Chrominance)  : 16 – 240  

 

[2] 

HSL 

H (Hue / Colour Type)  : 0 – 360 ° 

S (Saturation / Colour Intensity) : 0 – 100 % 

L (Lightness / Brightness) : 0 – 100 % 
 

[3] 

HSV 

H (Hue / Colour Type)  : 0 – 360 ° 

S (Saturation / Colour Intensity) : 0 – 100 % 

V (Value / Blackness)  : 0 – 100 % 
 

[3] 

CIEL*a*b* 

L* (Lightness)   : 0 – 100  

a* (Green to Red)  : -110 – 110 

b* (Blue to Yellow)  : -110 – 110 

[4] 

[1]: How to Convert an RGB Image to a Grayscale   

[2]: File:YCbCrColorSpace Perspective.png   

[3]: File:Color solid comparison hsl hsv cube cylinder cone.png   

[4]: Color Management: Know about Color Spaces   
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Colour spaces serve as different models for representing colours in digital images. 

Each colour space comes with its unique set of components, and there might be a need 

for converting between these spaces for specific purposes or to ensure compatibility with 

different devices and standards. Conversion between colour spaces involves transforming 

the colour information from one model to another while preserving the perceived visual 

information. Table 2.5 presents the interrelationships between the widely used RGB 

colour space and other common colour spaces. 

Table 2.5 Conversion table for common colour spaces. 

RGB to HSL 
 

When R, G and B are integers between 0 and 255: 
 

൭
𝑅′
𝐺′
𝐵′

൱ =

⎝

⎜
⎜
⎛

𝑅

255
𝐺

255
𝐵

255⎠

⎟
⎟
⎞

 

 

𝐶௠௔௫ = max (𝑅′ 𝐺′ 𝐵′) 
𝐶௠௜௡ = min (𝑅′ 𝐺′ 𝐵′) 
∆= 𝐶௠௔௫ − 𝐶௠௜௡ 

 

𝐻 =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

0°, ∆= 0

60° × ቆ
𝐺ᇱ − 𝐵′

∆
mod6ቇ , 𝐶௠௔௫ = 𝑅′

60° × ቆ
𝐵ᇱ − 𝑅′

∆
+ 2ቇ , 𝐶௠௔௫ = 𝐺′

60° × ቆ
𝑅ᇱ − 𝐺′

∆
+ 4ቇ , 𝐶௠௔௫ = 𝐵′

 

 

𝑆 = ቐ

0, ∆= 0
∆

1 − |2𝐿 − 1|
, ∆≠ 0

 

 

𝑉 =
𝐶௠௔௫ + 𝐶௠௜௡

2
 

HSL to RGB 
 

When 0° ≤ 𝐻 ≤ 360°, 0 ≤ 𝑆 ≤ 1, 0 ≤ 𝐿 ≤ 1: 
 

𝐶 = (1 − |2𝐿 − 1|) × 𝑆 

𝑋 = 𝐶 × ൬1 − ฬ൬
𝐻

60
°൰ mod2 − 1ฬ൰ 

𝑚 = 𝐿 −
𝐶

2
 

 

൭
𝑅′
𝐺′
𝐵′

൱ =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧൭

𝐶
𝑋
0

൱ , 0° ≤ 𝐻 < 60°

൭
𝑋
𝐶
0

൱ , 60° ≤ 𝐻 < 120°

൭
0
𝐶
𝑋

൱ , 120° ≤ 𝐻 < 180°

൭
0
𝑋
𝐶

൱ , 180° ≤ 𝐻 < 120°

൭
𝑋
0
𝐶

൱ , 240° ≤ 𝐻 < 300°

൭
𝐶
0
𝑋

൱ , 300° ≤ 𝐻 < 360°

 

 

൭
𝑅
𝐺
𝐵

൱ =  ቌ

(𝑅ᇱ + 𝑚) × 255
(𝐺ᇱ + 𝑚) × 255
(𝐵ᇱ + 𝑚)  × 255

ቍ 
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Table 2.5, continued 
 

RGB to HSV 
 

When R, G and B are integers between 0 and 255: 
 

൭
𝑅′
𝐺′
𝐵′

൱ =

⎝

⎜
⎜
⎛

𝑅

255
𝐺

255
𝐵

255⎠

⎟
⎟
⎞

 

 

𝐶௠௔௫ = max (𝑅′ 𝐺′ 𝐵′) 
𝐶௠௜௡ = min (𝑅′ 𝐺′ 𝐵′) 
∆= 𝐶௠௔௫ − 𝐶௠௜௡ 

 

𝐻 =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

0°, ∆= 0

60° × ቆ
𝐺ᇱ − 𝐵′

∆
mod6ቇ , 𝐶௠௔௫ = 𝑅′

60° × ቆ
𝐵ᇱ − 𝑅′

∆
+ 2ቇ , 𝐶௠௔௫ = 𝐺′

60° × ቆ
𝑅ᇱ − 𝐺′

∆
+ 4ቇ , 𝐶௠௔௫ = 𝐵′

 

 

𝑆 = ቐ

0, 𝐶௠௔௫ = 0
∆

𝐶௠௔௫
, 𝐶௠௔௫ ≠ 0

 

 

𝐿 = 𝐶୫ୟ୶  

 

HSV to RGB 
 

When 0° ≤ 𝐻 ≤ 360°, 0 ≤ 𝑆 ≤ 1, 0 ≤ 𝑉 ≤ 1: 
 

𝐶 = 𝑉 ×  𝑆 

𝑋 = 𝐶 × ൬1 − ฬ൬
𝐻

60
°൰ mod2 − 1ฬ൰ 

𝑚 = 𝑉 − 𝐶 
 

൭
𝑅′
𝐺′
𝐵′

൱ =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧൭

𝐶
𝑋
0

൱ , 0° ≤ 𝐻 < 60°

൭
𝑋
𝐶
0

൱ , 60° ≤ 𝐻 < 120°

൭
0
𝐶
𝑋

൱ , 120° ≤ 𝐻 < 180°

൭
0
𝑋
𝐶

൱ , 180° ≤ 𝐻 < 120°

൭
𝑋
0
𝐶

൱ , 240° ≤ 𝐻 < 300°

൭
𝐶
0
𝑋

൱ , 300° ≤ 𝐻 < 360°

 

 

൭
𝑅
𝐺
𝐵

൱ =  ቌ

(𝑅ᇱ + 𝑚) × 255
(𝐺ᇱ + 𝑚) × 255
(𝐵ᇱ + 𝑚)  × 255

ቍ 

 
RGB to YCbCr <Hamilton 1992> 

 
𝑌 = 0.299𝑅 + 0.587𝐺 + 0.114𝐵 
𝐶௕ = −0.1687𝑅 − 0.3313𝐺 + 0.5𝐵 + 128 
𝐶௥ = 0.5𝑅 − 0.4187𝐺 − 0.0813𝐵 + 128 

   

YCbCr to RGB <Hamilton 1992> 
 

𝑅 = 𝑌 + 1.402(𝐶௥ − 128) 
𝐺 = 𝑌 − 0.34414(𝐶௕ − 128) − 0.71414(𝐶௥ − 128) 

𝐵 = 𝑌 + 1.772(𝐶௕ − 128) 

RGB to CIEXYZ 
 

ቈ

𝑥
𝑦
𝑧

቉ = ൥
0.4125 0.3576 0.1804
0.2127 0.7152 0.0722
0.0193 0.1192 0.9503

൩ ൥
𝑅
𝐺
𝐵

൩ 

 

CIEXYZ to RGB 
 

൥
𝑅
𝐺
𝐵

൩ = ൥
3.2405 −1.5371 −0.4985

−0.9693 1.8760 0.0416
0.0556 −0.2040 1.0572

൩ ൥
𝑋
𝑌
𝑍

൩ 

CIEXYZ to CIEL*a*b* 
 

൥
𝐿∗

𝑎∗

𝑏∗
൩ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 116𝑓 ൬

𝑌

𝑌௡
൰ − 16

500 ൭𝑓 ൬
𝑋

𝑋௡
൰ − 𝑓 ൬

𝑌

𝑌௡
൰൱

200 ൭𝑓 ൬
𝑌

𝑌௡
൰ − 𝑓 ൬

𝑍

𝑍௡
൰൱

⎦
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As summarised in Table 2.6, each colour space has its own strengths and weaknesses, 

and the choice depends on the specific requirements of the task at hand, such as colour 

manipulation, image processing, or computer vision applications.  

Table 2.6 Advantages and disadvantages of colour spaces used in related work. 

Colour Space Advantages Disadvantages Sources 

RGB Intuitive for displays; 

Common colour space 
for digital images 

 

May not be 
perceptually uniform 

Kavitha and Suruliandi 
(2018); Khan et al. 
(2019); Lin et al. 
(2020); Liu and Furuno 
(2002); Manjunath et al. 
(2001); Singh et al. 
(2018); Srikanteswara 
et al. (1997); Zhang et 
al. (2015) 

YCbCr Separation of 
brightness and colour 
information 

Not as intuitive for 
colour manipulation 

Hiremath and 
Bhusnurmath (2016); 
Hu et al. (2013); Lin et 
al. (2020); Manjunath et 
al. (2001) 

HSV Intuitive for selecting 
colours by human 
perception 

May not be 
perceptually uniform 

Hiremath and 
Bhusnurmath (2016); 
Hu et al. (2013); 
Kurdthongmee (2008); 
Lin et al. (2020); 
Manjunath et al. (2001); 
Wang et al. (2021); 
Zhuang et al. (2021) 

CIEL*a*b* Perceptually uniform; 

Suitable for colour 
corrections 

Complex mathematical 
transformation; 

Less intuitive 

Faria et al. (2008); 
Hiremath and 
Bhusnurmath (2016); 
Kurdthongmee (2008); 
Musat et al. (2016) 

 

As its effectiveness is as comparable as other colour spaces to perform colour 

comparisons in machine vision applications, a lot of studies that still preferred RGB 

colour space since it is the common colour space for digital images and there will be 

substantial computation overheads to convert RGB colour space to other colour spaces. 
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2.2.2.2 Colour Feature 

Colour features or descriptors play a crucial role in the field of image processing and 

computer vision, providing the means to quantify and analyse the colour characteristics 

of digital images. These features serve as invaluable tools, particularly in tasks such as 

image classification. Colour features or descriptors are derived from the colour 

components corresponding to the colour space of a digital image. They capture 

meaningful information about the distribution, intensity and relationships among colours 

in an image. The following are the common colour features employed in colour 

classification studies: 

(a) Colour Histogram 

A colour histogram represents the distribution of colours in an image, providing a 

statistical breakdown of the number of pixels with specific colour values. In a histogram, 

colours are usually grouped into bins, and the height of each bin corresponds to the 

frequency of pixels with colour values falling within that range. For example, in an RGB 

image, there are separate histograms for the red, green, and blue colour channels. Colour 

histograms are easy to implement and require minimal computational load. However, the    

space, which is a crucial aspect based on the nature of the object used in the study. 

Moreover, there is a possibility of losing detailed colour information, especially when 

dealing with samples exhibiting subtle colour variations due to the binning process. 

(b) Colour Percentile 

Colour percentile is a statistical measure to describe the relative position of a colour 

intensity value, providing insights into the distribution of colour intensities across 

different percentiles of a colour image. This method enables the identification of critical 

points in the colour spectrum, revealing patterns, concentrations, or variations that may 

not be apparent through other colour analysis techniques. By assessing colour percentiles, 
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researchers gain a more comprehensive view of the colour composition and intensity 

within a colour image, enhancing the precision and depth of their colour-related analyses. 

Nevertheless, implementing colour percentiles may involve complex calculations and 

statistical procedures. This complexity arises from the need to organise and analyse a 

large set of colour data points, which may involve intricate mathematical computations. 

Additionally, it is essential to handle outliers appropriately as percentile is sensitive to 

outliers, which could lead to skewed results. 

(c) Mean Colour Value (First Moment in Statistics) 

The mean value is a fundamental colour feature that provides understanding of the 

average colour intensity across all pixels in the colour image. In RGB colour space for 

instance, it is computed by averaging the individual red, green, and blue intensity values 

of each pixel. The mean represents the central tendency of colour distribution and gives 

a sense of the overall colour tone of the image. This feature is particularly useful in 

applications to obtain a general characterization of the dominant colour in a colour image. 

The mean value is a simple and computationally efficient metric, forming the basis for 

more advanced colour features and analyses in image processing and computer vision. 

However, it may not capture nuances in colour variations and may be sensitive to outliers.  

(d) Standard Deviation of Colour Values (Second Moment in Statistics) 

The standard deviation of the overall colour image is a measure of the amount of 

variation or dispersion of colour values across each colour component. It quantifies the 

deviation from each individual pixel colour to the mean colour value. It is computed by 

calculating the square root of the average of the squared differences between each pixel 

value and the mean value. A larger standard deviation indicates a greater the degree of 

colour variability. Conversely, a lower standard deviation suggests more uniformity in 

colour distribution. This colour feature proves valuable in assessing the overall diversity 
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or uniformity of colours within an image, shedding light on its complexity or 

homogeneity. Nonetheless, it is sensitive to outliers and, when used alone, may has 

limited interpretability and lack detailed information about the specific colour patterns. 

Thus, it is often complemented with colour mean value for a more comprehensive 

representation of the overall image. 

(e) Skewness of Colour Values (Third Moment in Statistics) 

Skewness of colour values is a measure of the asymmetry or lack of symmetry in the 

distribution of colour values within each colour component of an image. It quantifies the 

degree and direction of deviation from a symmetric distribution. Skewness provides 

insights into the overall shape and balance of the colour distribution curve. In Figure 2.8, 

positive skewness indicates that the distribution has a longer right tail, negative skewness 

suggests a longer left tail, while normal distribution with no skew has equal tails. A 

positive skewness may signify an abundance of higher-intensity colours, while negative 

skewness may suggest a prevalence of lower-intensity colours. Calculating skewness 

involves assessing the third standardized moment of the colour distribution. Despite its 

capability to reveal distribution characteristics, skewness may be influenced by outliers 

and should be interpreted in conjunction with other colour features for a thorough 

understanding of the image. 

 

Figure 2.8 Normal versus skewed distribution curves (Skew). 
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(f) Kurtosis of Colour Values (Fourth Moment in Statistics) 

Kurtosis of colour values refers to a statistical measure that characterizes the shape of 

the distribution of colour intensities in an image. It describes the “peakedness” or flatness 

of a distribution. As illustrated in Figure 2.9, positive kurtosis indicates a distribution with 

more pronounced and sharper peak, potentially suggesting concentrated colours, while 

negative kurtosis suggests a flatter distribution with less concentration of colours. 

Calculating kurtosis involves assessing the fourth standardised moment of the colour 

intensity distribution. This colour feature aids in understanding the distribution 

characteristics of colour in an image. However, its sensitivity to outliers and complexity 

in interpretation have limited its practical utilisation since in most cases, simpler measures 

like mean and standard deviation might suffice.  

 

Figure 2.9 Types of kurtosis (Coefficient of Kurtosis) 

Table 2.7 summarises the commonly used colour features. Histograms provide a 

statistical breakdown of colour distribution, while percentiles reveal critical points in the 

colour spectrum. Mean and standard deviation quantify overall colour intensity and 

variation. Skewness indicates asymmetry in colour distribution, and kurtosis measures 

the shape of the distribution. Colour features are essential in tasks like colour 

classification, offering unique insights into the nuances and patterns present in colour 

images. The choice of features depends on computational load, efficiency, sensitivity to 

outliers, and the interpretability needed for specific applications. 
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Table 2.7 Comparison between common colour features in related studies. 

 
Histogram Percentile Mean Standard Deviation Skewness Kurtosis 

Formula 
𝑁 = ෍ 𝑚௜

௞

௜
 𝑃 =

n

𝑁
× 100 𝜇 =

∑ 𝑥௜
ே
௜

𝑁
 

𝜎 = ඨ
∑ (𝑥௜ − 𝜇)ଶே

௜

𝑁
 

𝑠 =
∑ (𝑥௜ − 𝜇)ଷே

௜

𝑁 × 𝜎ଷ
 𝑘 =

∑ (𝑥௜ − 𝜇)ସே
௜

𝑁 × 𝜎ସ
 

 N: pixel count 
k: bin count 
𝑚௜: bin frequency  

P: percentile 
n: ordinal rank 
N: pixel count 

𝜇: mean value 
N: pixel count 
𝑥௜: pixel value 
 

𝜎: standard deviation 
N: pixel count 
𝑥௜: pixel value 
𝜇: mean 
 

𝑠: skewness 
N: pixel count 
𝑥௜: pixel value 
𝜇: mean 
𝜎: standard deviation 

𝑘: kurtosis 
N: pixel count 
𝑥௜: pixel value 
𝜇: mean 
𝜎: standard deviation 

Computation load Moderate to high Moderate Low Moderate Moderate Moderate 

Sensitivity to outliers Moderate High High High High High 

Distinguishability of 
colour nuances 

Subtle nuances may be lost 
due to binning 

Critical points in the 
colour spectrum are 
captured 

Only central point in the 
colour spectrum is 
captured 

Variations quantified 
but not captured 

Variations could not 
be captured 

Variations could not 
be captured 

Colour information Colour distribution Critical colour 
points 

Central colour point Spread of colours Symmetricity of 
distribution 

Shape of distribution 

Sources Bianconi et al. (2013); 
Bombardier and Schmitt 
(2010); Faria et al. (2008); 
Kurdthongmee (2008); Lin 
et al. (2020); Rozman et al. 
(2006); Srikanteswara et al. 
(1997); Wang et al. (2021) 

Bianconi et al. 
(2013); Rozman et 
al. (2006) 

Bianconi et al. (2013); 
Bombardier and Schmitt 
(2010); Hu et al. (2013); 
Liu and Furuno (2002); 
Rozman et al. (2006); 
Wang et al. (2021); 
Zhuang et al. (2021) 

Bianconi et al. (2013); 
Hu et al. (2013); 
Rozman et al. (2006); 
Wang et al. (2021); 
Zhuang et al. (2021) 

Bianconi et al. (2013); 
Rozman et al. (2006) 

Rozman et al. (2006) 
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Building on insights from the literature review, where existing studies primarily 

analyse wood images as a whole or by distinct regions, this study introduces a novel 

perspective. This study aims to assess the individual contributions of the basal and grain 

parts to the separability of wood colours. Specifically, this study investigates whether the 

basal or grain components play a more decisive role in determining overall colour tone. 

To distinguish between relatively darker grain and brighter basal parts, the widely used 

Otsu method was leveraged for background-foreground separation. The Otsu method 

assumes a bipolar distribution, iteratively searching the optimal threshold point until the 

point where the means of the two groups are maximized. By applying Otsu thresholding 

in this context, the grain (background) and basal (foreground) parts of the wood can be 

separated effectively. Subsequently, colour extraction techniques, such as mean 

estimation, will be applied to these distinct zones for a more nuanced analysis. 

2.2.3 Feature Selection 

Feature selection involves choosing a subset of relevant features from the original set 

of features to reduce the model complexity and improve the performance of the following 

classification. Feature selection aims to retain the most informative and discriminative 

features while eliminating the irrelevant or redundant ones. This process not only 

enhances the efficiency of the model but also helps mitigate the risk of overfitting and 

improves interpretability. Selecting appropriate colour features is vital for accurately 

representing colours and effectively distinguishing between different colour groups. 

There are two main types of feature selection: supervised and unsupervised (Kuhn & 

Johnson, 2013). 
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2.2.3.1 Supervised Feature Selection 

Supervised feature selection methods utilize the target variable (label) during the 

selection process. This category includes three subtypes: filter method, wrapper method, 

and intrinsic method. 

(a) Filter Method 

Filter methods evaluate the relevance of features independently of the chosen machine 

learning model. They rely on statistical measures to rank or score each feature, dropping 

features according to their correlation with the labelled output. Common filter methods 

include Fisher score, chi-squared test, information gain, correlation, analysis of variance 

(ANOVA), etc. This approach is computationally efficient, model-agnostic, and suitable 

for high-dimensional datasets. However, feature dependencies and interactions may be 

overlooked. 

(b) Wrapper Method 

Wrapper methods select features based on the performance of a specific machine 

learning model or classifier. They involve iterating through feature subsets and evaluating 

model performance. Common wrapper methods include sequential forward selection 

(SFS), sequential backward selection (SBS), etc. This approach starts with either an 

empty feature set or all features set, using a classifier model to rank the performance of 

each feature iteratively to include relevant features or eliminate redundant features 

accordingly. This model-specific method may improve model performance by 

considering feature interactions. Nevertheless, it is computationally expensive and prone 

to overfitting. 

(c) Intrinsic Method 

Intrinsic methods incorporate feature selection within the learning algorithm itself. The 

model is designed to inherently select relevant features during training. For example, 
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decision trees and random forests inherently perform feature selection by selecting split 

points based on feature importance. Features are selected during the model training 

process based on their contribution to minimizing impurity or maximizing information 

gain. Integration with the learning algorithm makes it more efficient, although it may not 

always generalize well, and it is model-dependent. 

2.2.3.2 Unsupervised Feature Selection 

Unsupervised feature selection methods do not use the target variable during the 

selection process. They are often used for dimensionality reduction or preprocessing. 

Unsupervised feature selection methods aim to identify and retain the most relevant 

features without utilizing information from the target variable. These techniques are 

particularly useful for tasks where the target variable is unavailable or for dimensionality 

reduction in high-dimensional datasets. Common unsupervised feature selection methods 

include principal component analysis (PCA) and autoencoders. Unsupervised feature 

selection is valuable in scenarios where labelled data is scarce or absent. These methods 

can help reduce the computational burden associated with training models on high-

dimensional data while preserving the intrinsic structure and patterns within the dataset. 

Table 2.8 summarizes the approaches to feature selection along with their pros and 

cons. It is essential to consider the specific characteristics of the data and the goals of the 

analysis when choosing between supervised and unsupervised feature selection methods. 
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Table 2.8 Comparison of various feature selection approaches. 

  Examples Advantages Disadvantages 

Supervised 
feature 
selection 

Filter 
method 

Fisher score; 

Chi-squared test; 

Information gain; 

Correlation; 

ANOVA 

Efficient; 

Model-agnostic; 

Suitable for high-
dimensional 
datasets 

Feature 
dependencies and 
interactions may not 
be considered 

 Wrapper 
method 

SFS; 

SBS 

Feature interactions 
are considered 

High computational 
costs; 

Prone to overfitting 

 Intrinsic 
method 

- Efficient Model-dependent 

Unsupervised 
feature 
selection 

 PCA; 

Autoencoders 

Labelled data not 
required; 

Suitable for 
exploratory 
analysis; 

Effective in 
handling high-
dimensional 
datasets 

Limited 
interpretability; 

Validation can be 
challenging 
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2.2.4 Classifier 

A classifier is a model or algorithm that can automatically assign predefined classes to 

new, unseen data point based on the patterns identified in the learning process. In the 

context of wood colour sorting, colour features are the distinctive attributes used by a 

classifier to distinguish between different colour groups. In this section, common 

classifiers adapted in the wood colour sorting studies are discussed and compared. 

2.2.4.1 K-Nearest Neighbours  

K-Nearest Neighbours (KNN) is a type of instance-based learning, where the model 

makes predictions based on the majority class of its k-nearest neighbours in the feature 

space. It utilises distance metric, such as Euclidean distance or Manhattan distance, to 

determine the proximity between data points in the feature space. The parameter k 

represents the number of neighbours to be considered when making predictions. KNN is 

simple and intuitive, requires no training phase as the model directly uses the training 

data during prediction. Nonetheless, it is sensitive to irrelevant or redundant features and, 

the computational cost rises as the feature set gets larger, where more distance 

calculations are required for each prediction. Additionally, the choice of k can impact the 

results; too small a value can lead to overfitting, while too large a value can result in 

underfitting. 

2.2.4.2 Fuzzy Classifier 

A fuzzy classifier leverages fuzzy logic to handle uncertainty in data. Unlike 

conventional classifiers that assign data points to distinct classes, fuzzy classifier assigns 

each data point to membership values for each class ranging from 0 to 1 using appropriate 

membership functions. Membership functions map input features to a membership value 

that indicates the strength of association with a given class. The membership values are 

then combined with fuzzy rules to decide the class to assign. Fuzzy classifiers excel in 
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scenarios where the boundaries between classes are vague, or instances exhibit 

characteristics of multiple classes. However, designing and fine-tuning the fuzzy rules 

and membership functions can be complex and require domain expertise. Moreover, the 

degree of membership might be challenging to be interpreted intuitively. 

2.2.4.3 Linear Discriminant Analysis 

Linear discriminant analysis (LDA) is a statistical method used to discover linear 

combinations of features that effectively discriminate between classes in a dataset. The 

primary objective of LDA is to maximize the separation between the means of different 

classes while minimizing the within-class variance. It achieves this by projecting the 

feature sets into a new subspace defined by the eigenvectors and eigenvalues derived from 

the mean vectors and scatter matrices. When classifying new data points, LDA assigns 

them to the classes with the closest mean in the derived subspace. LDA helps reducing 

the dimensionality of the feature space while preserving class discriminatory information. 

Nevertheless, it is sensitive to outliers and assuming that the feature sets are normally 

distributed. 

2.2.4.4 Support Vector Machine 

Support vector machine (SVM) is a supervised machine learning algorithm that uses 

hyperplane in a high-dimensional space to separate data points into different classes. In a 

two-dimensional space, the hyperplane is a line. In a three-dimensional space, the 

hyperplane is a plane, and so on. Support vectors are the data points that are closest to the 

hyperplane and have a crucial role in determining the positioning and orientation of the 

hyperplane. The aim of SVM is to formulate a hyperplane that maximizes the separation 

between classes. In cases where classes are not linearly separable, input features can be 

transformed into a higher-dimensional space, without needing to explicitly calculate the 

transformed feature vectors, by using kernels include Polynomial, Radial Basis Function, 
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and Sigmoid. SVM is effective and robust against overfitting in high-dimensional spaces. 

Despite that, it could be computationally expensive for large datasets and is sensitive to 

the choice of kernel and parameters. 

2.2.4.5 Convolutional Neural Network 

A Convolutional Neural Network (CNN) is a class of deep neural networks, leveraging 

convolutional layers to automatically learn hierarchical representations. CNNs are built 

of convolutional layers that convolves across the input image to capture local patterns and 

features, pooling layers to down-sample the spatial dimensions of the feature space and 

activation functions to introduce non-linearity to the model. CNNs are trained using 

backpropagation and optimization algorithms like stochastic gradient descent. During 

training, the model adjusts its parameters (weights and biases) to minimize the difference 

between predicted and actual outputs. A loss function such as cross-entropy loss is used 

to measure the difference between the predicted and true labels. CNNs can automatically 

learn hierarchical representations from data to identify relevant features and have 

consistently achieved state-of-the-art performance in image classification tasks. 

Nevertheless, training CNNs can be computationally intensive, requiring powerful 

hardware, and may require substantial amounts of labelled data for effective training. 

2.2.4.6 Self-Organising Map 

Self-Organizing Map (SOM) is introduced by Teuvo Kohonen in the 1980s, also 

known as a Kohonen map, is an unsupervised machine learning algorithm used for 

clustering and visualizing high-dimensional data. A SOM consists of a grid of nodes or 

neurons, each represents a weight vector of the same dimensionality as the feature set. 

The weights are initialized randomly and adjusted its weights based on the input data 

throughout the training process. The neuron with the weight vector closest to the input is 

considered the winner or "best matching unit" (BMU). The weights of the BMU and its 
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neighbours are adjusted to move closer to the input sample. The training process 

continues for a specified number of iterations or until convergence. Over time, the SOM 

becomes a topological representation of the input data. After training, the SOM provides 

a low-dimensional representation of the input data. New input samples are mapped to 

closest regions to decide the clusters or groups they belong to. SOM is effective for 

clustering and visualizing high-dimensional data and provides insights into the structure 

and organization of complex data. However, it is sensitive to hyperparameters and 

initialization, while the selection of network size and topology may require some trial and 

error. 

The classifiers of related work are tabulated in Table 2.9.  Classifiers play a critical 

role in identification and differentiation of patterns within datasets. Supervised 

classification methods include techniques like KNN and SVM, where the algorithm learns 

from labelled training data to make predictions on new, unseen instances. Unsupervised 

methods, such as clustering algorithms like SOM, group similar data points without 

predefined class labels. Each classification approach comes with its own set of strengths 

and weaknesses, making the selection of the most suitable method contingent on the 

specific characteristics of the dataset and the goals of the analysis.
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Table 2.9 Classifiers adapted in related work. 

 KNN Fuzzy Classifier LDA SVM CNN SOM 

Principle Predict new data 
based on the majority 
class of its k-nearest 
neighbours 

Predict new data by 
using membership 
values and fuzzy 
rules 

Predict new data based 
on the class with the 
closest mean in new 
subspace 

Predict new data 
based on the region 
separated by 
hyperplane 

Predict data based on 
the output from 
convolutional layers 
with trained weights 

Predict data based on 
the best matching unit 
in the trained map 

Advantages Simple and intuitive; 

Training not required 

Suitable for vague 
class boundaries; 

Suitable for data 
with characteristics 
of multiple classes 

Simple; 

Reducing the 
dimensionality of the 
feature space  

Effective and robust 
against overfitting in 
high-dimensional 
spaces  

Automatically identify 
relevant features; 

State-of-the-art 
approach 

Effective for 
clustering; 

Visualization of high-
dimensional and 
complex data 

Disadvantages Sensitive to 
redundant features; 

High computational 
cost for large dataset; 

Sensitive to the 
choice of k 

Domain expertise 
required in 
designing the rules 
and functions;  

Non-intuitive for 
interpretation 

Sensitive to outliers; 

Dataset is assumed to 
be normally 
distributed 

High computational 
cost for large dataset; 

Sensitive to the 
choice of kernel and 
parameters 

Computational 
intensive; 

Substantial amounts of 
labelled data required 

Sensitive to 
hyperparameters and 
initialization; 

Trial and error required 
for selection of 
network size and 
topology 

Sources Lin et al. (2020); Lu 
et al. (1997) 

Bombardier and 
Schmitt (2010); 
Zhuang et al. (2021) 

Hiremath and 
Bhusnurmath (2016, 
2017); Zhang et al. 
(2015) 

Eshaq et al. (2020) Nurthohari et al. (2019) Kurdthongmee (2008) Univ
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2.3 Summary 

This literature review meticulously delineates the principal methodologies and 

algorithms employed in the pivotal phases of image acquisition and processing, providing 

a solid groundwork for comprehensive exploration. The exploration of image acquisition 

in wood colour sorting involves the use of line scan and area scan cameras, tailored to 

different settings based on the conveyor line speed. Given the fragile nature of wood 

veneer, an area scan camera with a slow-moving conveyor system is deemed most 

suitable. The study delves into the comparison of three genres of area scan cameras—

industrial grade, action camera, and webcam—to assess their impact on system 

performance. If the image quality has insignificant effect in the system performance, it 

would encourage wider adoption of such vision system in the industry. 

Controlled lighting is crucial for precise colour image analysis. The review delves into 

different lighting techniques, emphasizing the discovery of indirect lighting method, like 

dome light technologies. This approach helps alleviate issues related to uneven lighting 

and shadows on wavy veneers induced by direct lighting. In the pre-processing stage, 

calibration emerges as a crucial step, especially in real-life industrial settings where 

equipment deterioration can affect colour consistency over time. While not always 

necessary in short-term controlled experiments, calibration becomes essential for long-

term industrial applications. 

The feature extraction review involves discussions on different colour spaces and 

colour features. The RGB format is widely adopted for its simplicity and minimal 

computational load. This study focuses on simpler yet effective features like mean and 

standard deviation, specifically exploring the separation of grain and basal parts. 

Understanding the role of grain and basal parts in colour distinguishability is one of the 

key objectives. The review delves into various supervised and unsupervised feature 
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selection approaches, identifying the SFS wrapper method as suitable for evaluating the 

relevance of different features.  

The literature presents an array of common classifiers, each with varying intuition and 

visualisation. The ultimate objective of the study, which involves deploying an industrial 

prototype, leans towards a visually intuitive approach for enhanced user experience and 

easier comprehension. The Self-Organizing Map (SOM) stands out as a tool providing 

visual representations of distinct clusters, effectively conveying the concepts of training 

and testing. This approach allows for future algorithm expansion to be more inclusive of 

factory workers. In summary, the comprehensive exploration of current solutions 

enhances the strategic planning and execution of the methodology in this study. 

 

 

Univ
ers

iti 
Mala

ya



42 

CHAPTER 3: METHODOLOGY 

This chapter outlines the systematic approach employed in the two main phases of the 

study: image acquisition and image processing. The flowchart depicted in Figure 3.1 

provides a visual representation of the integrated process. The methodology initiates with 

the setup of hardware and software and sample preparation for image acquisition, 

followed by a series of sequential processing steps encompassing pre-processing, feature 

extraction, feature selection, and classifier building. Each step is designed to contribute 

towards the objective of implementing a functional wood colour sorting system. 

 

Figure 3.1 Methodology flowchart. 
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3.1 Image Acquisition 

In this section, an overview of the hardware and software setup designed for the 

acquisition of colour images of wood veneers is presented. The hardware configuration 

involves detailing the specifications of the chosen cameras and lighting. For the software 

components, the image acquisition software and camera parameter settings are 

highlighted. 

3.1.1 Hardware Setup  

In Figure 3.2, both a 3D rendered image and an actual photograph of the colour sorting 

machine are presented. The machine is equipped with a versatile conveyor system 

designed for both manual and auto modes of operation. The inclusion of switches allows 

for the manual feeding of wood veneers into the image acquisition chamber, while 

integrated proximity sensors facilitate automated control over the feeding process. 

a) 3D rendered image b) Actual photograph 

  

Figure 3.2 a) 3D rendered image and b) actual photograph of the colour sorting 
machine. 

The close-up of the image acquisition chamber shown in Figure 3.3 reveals the lighting 

source and cameras. To address the challenges posed by the wavy structure of wood 

veneers, which is susceptible to shadowing effects, an indirect lighting source is 

employed. Specifically, a flat dome light, CCS LFXV-300SW, featuring a 300 x 300 mm 

Univ
ers

iti 
Mala

ya



44 

illuminating surface area and white light LED with a 5500 K colour temperature, is 

positioned at the bottom of the chassis, elevated 28 mm above the conveyor belt. This 

design choice, with a thin case, effectively reproduces the effect of a dome light when 

used in proximity to the workpiece. Importantly, this innovative solution results in a 

compact and space-saving system, a departure from the conventional bulkier dome light 

configurations typically needed for the required illuminating surface area.  

Cameras from three common genres with different price range and resolution were 

selected for comparison: lower-tier webcam, mid-tier action camera and higher-tier 

industrial camera. For instance, Logitech C920 HD Pro webcam (C920) of 3.0 

megapixels, Sony RX0 II action camera (RX0 II) of 15.3 megapixels, and Hikrobot MV-

CE200-10UC industrial camera (CE200) of 20.0 megapixels were selected to represent 

each of the genres of cameras mentioned. The cameras were placed on the top center of 

the chassis, arranged inline along the moving direction of the conveyor belt. The centers 

of the lens were 80 mm apart and the front tip of the lens were 280 mm above the 

conveyor. The industrial camera with narrower field of view was positioned in the middle 

with the other two cameras on either side of it. 

 

 

 

 

 

Figure 3.3 Close-up of the image acquisition chamber. 
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3.1.2 Software Setup 

The software used for image acquisition for CE200, RX0 II and C920 are Machine 

Vision Software MVS V3.3.1 by Hangzhou Hikrobot Technology Co., Ltd., Image Edge 

Desktop by Sony Corporation and MATLAB R2021b by MathWorks respectively. When 

using MVS software and MATLAB to connect to CE200 and C920, image acquisition 

properties such as pixel format, resolution, gain, focus, exposure and white balance can 

be customised. However, when using Image Edge Desktop, these parameters are preset 

and cannot be changed.  Table 3.1 in the following summarises the parameters of the 

cameras used. 

Table 3.1 Camera parameters for image acquisition. 

  Cameras  

Parameters CE200 RX0 II C920 

Image Format Bitmap Jpeg Bitmap 

Pixel Format RGB RGB RGB 

Bit Depth 24 24 24 

Resolution 5472 × 3648 5472 × 3648 1920 × 1080 

Gain Disabled Not shown Not shown 

Focus Manual Auto Manual 

Exposure Mode Manual Auto Manual 

White Balance Manual Auto Manual 

Gamma Correction None Yes Yes 
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3.1.3 Sample Preparation 

Veneer samples supplied by Weng Meng Industries Sdn. Bhd. (WM) were pre-sorted 

manually into different colour groups and labelled by the factory personnels. Veneers are 

restocked upon request from customer orders. Veneer images acquisition was carried out 

on six non-consecutive dates over a period of two months (Mar to May 2022) to include 

samples from different batches to account for intragroup variability. Prior to each session 

of image acquisition, images of the X-rite ColorChecker Passport Photo 2 (ColorChecker) 

were captured with each camera as the colour reference for the calibration in the later 

stage of image processing. A total of 1,289 distinct images of veneers from red oak, 

yellow poplar and maple were obtained with each camera, summing up to 3,867 images 

taken by the three cameras. The breakdown of the image count by colour groups is 

tabulated in Table 3.2. 

Table 3.2: Veneer image count per camera, broken down by human-classified 
colour groups*, for red oak, yellow poplar, and maple. 

Date 
Red Oak  Yellow Poplar  Maple 

D O W Y  D W Y  R W Y 

10/3/2022 0 14 0 43  11 39 22  0 0 0 

21/3/2022 0 0 0 0  27 26 20  0 0 0 

31/3/2022 64 42 37 37  37 62 46  67 60 0 

20/4/2022 50 59 50 76  0 0 0  63 47 47 

28/4/2022 46 0 0 0  0 0 0  0 0 51 

12/5/2022 0 0 0 0  40 0 46  0 0 63 

Subtotal 160 115 87 153  115 127 134  130 107 161 

Total 515  376  398 

 * D = Dark, O = Orange, Y = Yellow, W = White 
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3.2 Image Processing 

 All the analysis were performed using MATLAB R2022a on two PCs with the 

following specifications: i) Intel® Core™ i7-9700 CPU with 16 GB RAM, and ii) Intel® 

Core™ i7-11700 CPU with 16 GB RAM. For actual implementation, the MATLAB 

functions were translated into Visual Basics language, in which the system software 

program was written.  

3.2.1 Image Pre-processing 

Images were enhanced in preparation steps to facilitate the feature extraction. Image 

preparation involved two steps: background removal and colour calibration. In 

background removal, the images were cropped and masked. Cropping was done to the 

boundaries around the overlapping region of the field of view of the three cameras. The 

boundaries were indicated by manually comparing the relative position of the images with 

a measuring tape. Any blurred edges due to the feathering effect around the lighting frame 

were excluded from the cropped region.  

After image cropping, the remaining of the images may contain unwanted background 

i.e., regions with conveyor when the incoming veneer pieces were narrow in width. 

Background removal process was done with the moving average gradient analysis process 

with the following steps: 

1. Filter image with 3-by-3 Gaussian kernel: 
ଵ

ଵ଺
× ൥

1 2 1
2 4 2
1 2 1

൩ 

2. Apply 50 data-point moving average filter to the red intensities of vertical 

slices with n pixels each, where the averaged red value at any y position, 𝑟௬ =

⎩
⎪
⎨

⎪
⎧ ∑

௥೔

௬ାଶସ
 

௬ାଶସ
௜ୀଵ , 𝑦 ≤ 25

∑
௥೔

ହ଴
 

௬ାଶସ
௜ୀ௬ିଶହ , 25 < 𝑦 < 𝑛 − 23

∑
௥೔

௡ି௬ାଶ଺
 ௡

௜ୀ௬ିଶ , 𝑦 ≥ 𝑛 − 23
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3. Find the gradient of the average curve in Step 2 by computing the difference 

between two consecutive pixels. 

4. Locate the maximum peak and minimum peak of the gradient curve in Step 3. 

5. Top-justify the image to the furthest maximum peak from top. 

6. Mask the pixels below the minimum peaks by setting R, G and B values zero. 

The process is visualised in Figure 3.4. 

 

Figure 3.4 The flow of moving average gradient analysis process: a) cropped 
image, b) i) gaussian filtered image, example of a slice at x=1000 highlighted in 
green, b) ii) slice analysis plot, blue curve - moving average of red intensities, red 
curve - gradient curve. c) peaks of each slice highlighted in red. d) image top justified 
and the region below the bottom red line is masked.   

The output images from background removal process then underwent the calibration 

process. The calibration was done with the images of ColorChecker taken before each 

session of image capturing. The image of the first day was used as the reference where 

all others were correlated to. There was no correction done on the images taken on the 

first day. For all other days, the R, G and B values of all 24 standard reference points were 

compared to the target image to obtain the average drift values. The deviation values were 

used in the adjustment on the images captured on the same day.  
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The output images of RX0 II and C920 are gamma corrected by the camera processor 

to closely correspond to the non-linear light intensity response curve in human vision. 

CE200 camera however produces images with linear response curve, thus, those images 

were gamma corrected as shown in Figure 3.5 a) with a ɣ value of 1/2.2 to better emulate 

how human perceives light. The corrected image of CE200 day 1 calibration chart was 

then used as the reference to adjust brightness plots of images from other days for all 

cameras with an assumption that the shifts are linear. 

a) i) a) ii) 

  

b) c) 

  

Figure 3.5 Day 1 calibration charts of a) CE200 i) before and ii) after gamma 
adjustment, b) C920, and c) RX0 II. 
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3.2.2 Feature Extraction 

The features were extracted with Otsu thresholding approach as the Otsu Soft Colour 

Descriptors (OSCD) with the following steps: 

1. Compute the histogram of the input grayscale image for intensity level ranged from 

0 to 255. 

2. Normalize the histogram by dividing each bin by the total number of pixels: 

𝑃(𝑖) =
௛(௜)

ே
, where 𝑃(𝑖)  normalized probability of intensity level ℎ(𝑖)  is the 

histogram value at intensity level 𝑖, and 𝑁 is the total number of pixels. 

3. Compute the cumulative probabilities: 𝑃௥(𝑖) = ∑ 𝑃(𝑘)௜
௞ୀ଴ , where 𝑃௥(𝑖)  is the 

cumulative probability of intensity level 𝑖. 

4. Compute the cumulative mean: 𝜇௥(𝑖) = ∑ 𝑘 ∙ 𝑃(𝑘)௜
௞ୀ଴ , where 𝜇௥(𝑖)  is the 

cumulative mean of intensity level 𝑖. 

5. Compute global mean: 𝜇் = ∑ 𝑘 ∙ 𝑃(𝑘)ଶହହ
௞ୀ଴ . 

6. Calculate the between-class variance for each intensity level: 𝜎஻
ଶ(𝑖) =

[ఓ೅∙௉ೝ(௜)ିఓೝ(௜)]మ

௉ೝ(௜)∙(ଵି௉ೝ(௜))
, where 𝜎஻

ଶ(𝑖) is the between-class variance at intensity level 𝑖. 

7. Find the optimal threshold that maximises the between-class variance, 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = arg 𝑚𝑎𝑥௜ 𝜎஻
ଶ(𝑖). 

8. Create bit masks for lower stratum and upper stratum based on the threshold value. 

9. Apply the masks onto the pre-processed image individually. 

10. Estimate the mean and standard deviation of each channel for both strata. 

 The masking of a pre-processed image is illustrated in Figure 3.6. 
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Figure 3.6 a) Pre-processed image. b) Thresholding of the grayscale histogram. c) 
i) Lower and ii) upper stratum bit mask. d) i) Lower and ii) upper stratum bit mask 
on the pre-processed image. 

It is assumed that the bimodality of the plot to be present, though it may not be two 

equally normal plots as the example in Figure 3.6 b), typically or the species with less 

distinctive grains. After thresholding, the lower and upper strata bit masks were generated 

in Figure 3.6 c). The bit masks were then mapped onto the pre-processed colour image in 

Figure 3.6 a) to extract the colour layer in each stratum in Figure 3.6 d), where the means 

and standard deviations were estimated for each colour channel. Those values together 

with the Otsu threshold value were termed as the Otsu Soft Colour Descriptors (OCSDs). 

The OCSDs were extracted from each image in both full and half resolutions, and given 

corresponding notations, as tabulated in Table 3.3 
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Table 3.3 Notations for 26 OCSDs extracted from each image. 

Soft Descriptor Resolution Notation 

Otsu Thresholding Value, OTV 
Full, F OTVF 

Half, H OTVH 

  Lower Stratum, L Upper Stratum, U 

  R G B R G B 

Mean, 𝛍 
Full, F μ୊୐ୖ μ୊୐ୋ μ୊୐୆ μ୊୙ୖ μ୊୙ୋ μ୊୙୆  

Half, H μୌ୐ୖ μୌ୐ୋ μୌ୐୆ μୌ୙ୖ μୌ୙ୋ μୌ୙୆ 

Standard Deviation, 𝛔 
Full, F 𝜎୊୐ୖ 𝜎୊୐ୋ  𝜎୊୐୆ 𝜎୊୙ୖ 𝜎୊୙ୋ 𝜎୊୙୆ 

Half, H 𝜎ୌ୐ୖ 𝜎ୌ୐ୋ 𝜎ୌ୐୆ 𝜎ୌ୙ୖ 𝜎ୌ୙ୋ 𝜎ୌ୙୆ 

 

3.2.3 Feature Selection 

Feature selection is essential in reducing the dimensionality of the feature vector to 

minimize the computational efforts for real-life applications. This involves the 

identification of the contributing features in the classification, thus eliminating the 

redundant ones from the features set. The Sequential Forward Selection (SFS) is a well-

known wrapper method in feature selection algorithms that trains a classifier model 

through iterative trials with different combinations of features. In this study, Linear 

Discriminant Analysis (LDA) was used as the classifier for its ease of implementation 

and relatively stable performance.  

LDA is a supervised classifier which uses a feature vector (or data vector) of m-

columns of features by n-rows of observations, each row with a known class label to find 

the linear discriminants that maximize the interclass distance. The following are the 

processing steps for LDA model training (Raschka, 2014; Tanner, 2021): 
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1. Calculate the class mean vectors, 𝒎௜ = ቎

𝜇௜,ଵ
𝜇௜,ଶ

…
𝜇௜,௝

቏, where 𝜇௜,௝ is mean of feature j of 

class i. 

2. Compute the between- and within-class scatter matrices.  

Within-class scatter matrix, Sௐ  Sௐ = ∑ (𝑁௜ − 1) ∗ 𝑆௜
௖
௜ୀଵ , where 𝑆௜  is the scatter 

matrix of class i, 𝑁௜ is the number of rows in data vector of class i, c is number of 

classes, and scatter matrix of each class,  S௜ =
ଵ

ே೔ିଵ
∑ (𝒙௜,௥ − 𝒎௜)(𝒙௜,௥ − 𝒎௜)

்ே೔
௥ୀଵ , 

where 𝒙௜,௥ is the row vector r of class i, 𝒎௜ is the mean vector of class i, and 𝑁௜ is 

the number of rows in data vector of class i.  

Between-class scatter matrix, S஻ = ∑ 𝑁௜(𝒎௜ − 𝒎)(𝒎௜ − 𝒎)்௖
𝒊ୀ𝟏 , where 𝒎௜  is 

the mean vector of class i, 𝒎 is the overall mean vector, 𝑁௜ is the number of rows 

in data vector of class i, and 𝑐 is the number of classes. 

3. Compute the eigenvectors and their corresponding eigenvalues by solving the 

equation: Sௐ
ିଵS஻𝒗 =  λ𝒗, where Sௐ is the within-class scatter matrix, S஻  is the 

between-class scatter matrix, 𝒗 is the eigenvector, and λ is the eigenvalue. 

4. Sort eigenvalues in descending order and select the top k eigenvectors 

corresponding to the eigenvalues.  

5. Construct the transformation matrix by arranging eigenvectors as columns. 

To test evaluate the performance of the LDA model: 

1. Transform the test set into new subspace with the transformation matrix. 

2. Compare each data point with each and assign the colour group with the closest 

mean to it. 

3. Calculate the accuracy by computing the percentage of correctly assigned data 

points. 
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SFS starts with an empty feature set. All the features will be tested individually to find 

the feature which gives the best classification results and add it to the feature set. Then, 

the remaining features will be paired with the winning feature to find the best 

combination. The process is repeated until the criterion is met, either certain size of the 

feature set or accuracy level is reached, or the classification result has reached a plateau 

where there is no significant improvement in the accuracy with increasing number of 

features. For this study, the stopping criterion is that the number of features used reaches 

ten.  

Five-fold cross validation is used to determine the winning feature. This is done by 

splitting the dataset into five equivalent subsets, where four of the sets are used for LDA 

model training, and the remaining set is used as the test set. Five training and testing 

processes are performed with one subset being used as the testing set in each iteration 

respectively. The performance metric is obtained by averaging the classification accuracy 

of the five tests.  

3.2.4 Classifier 

Self-Organizing Map (SOM) was first proposed by Kohonen (1990), which uses the 

unsupervised machine learning technique to transform a high dimensional dataset into a 

more visualizable two-dimensional map, as exemplified in Figure 3.7. It is a type of 

artificial neural network but trained with competitive learning mechanism. The map is 

first initialized with m-rows by n-columns nodes of N-feature depth, each with a 

randomized weight value (also known as the seed value). Each data point will be tested 

with all the nodes to find the closest node (also known as best matching unit, or BMU) 

with the shortest Euclidean distance computed as shown in Equation (3.1). The weights 

of the node and its surrounding or neighbouring nodes are then updated as per Equation 

(3.4) to approach the data point at a certain training rate. The process is repeated for all 
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the data points, followed by multiple iterations with a decaying neighbourhood size as 

per Equation (3.2) and training rate as per Equation (3.3). In this study, a 6-row by 9-

column hexagonal SOM map was used. The initial neighbourhood size, learning rate and 

the ordering of tuning phases are the default values by MATLAB: 3, 0.9, and 0.02 

respectively. Varying number of epochs (2000, 12000, and 24000) were tested for both 

ordering and tuning parameters. 

 

Figure 3.7 Graphical representation of SOM 
 

𝑫𝒊,𝒋 = ඩ෍൫𝑾𝒊,𝒋,𝒙 − 𝑾𝒙൯
𝟐

𝑵

𝒙ୀ𝟏

 

where 

𝑊௫  weight of data for feature 𝑥 

𝑊௜,௝,௫  weight of node at column 𝑖 and row 𝑗 for feature 𝑥 

 𝐷௜,௝  distance between data and node (𝑖, 𝑗) 

 𝑁  total number of features 

𝐻௧ = 𝐻଴ ∙ 𝑒ି௧∙ௗಹ 

𝐿௧ = 𝐿଴ ∙ 𝑒ି௧∙ௗಽ 

Output 
layer 

Weights 

Input layer 

(3.1) 

(3.2) 

(3.3) 
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𝑊′௜,௝,௫ = 𝐿௜ ∙  𝑒
ି

ೝమ

ಹ೟ ∙ ൫𝑊௫ − 𝑊௜,௝,௫൯ 

where 

𝑊′௜,௝,௫  new adjusted weight for feature 𝑥 at node (𝑖, 𝑗) at epoch 𝑡 

𝐻଴  neighbourhood rule 

𝐻௧  neighbourhood rule at epoch 𝑡 subjected to decay rate 𝑑ு 

𝐿଴  learning rate 

𝐿௧  learning rate at epoch 𝑡 subjected to decay rate 𝑑௅ 

𝑟  distance of node (𝑖, 𝑗) from BMU node 

Eventually, neighbouring nodes associated with more similar data points from the 

same group will form cluster, while different groups tend to cluster away from each other. 

The class of the node is determined by the simple majority rule from its associate data 

points. Each data point is pre-labelled with a class number, which depicts the colour group 

one is in. A node with no associated data points will be labelled as null, a node with all 

the data from the same class will be labelled as that class, while a node with data from 

more than one class will be classified to the class with highest count.  

For testing, the weights (or the feature values) of an unknown sample are compared 

with the weights of only the labelled nodes, excluding the null ones. The closest node 

with the shortest Euclidean distance (or the BMU) calculated using the same Equation 

(3.1) is where the sample belongs, thus, it will be classified to the class of that node. The 

low computational cost and complexity of SOM makes it competent for deployments 

where speed is crucial. 

(3.4) 
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In this study, the best features derived from SFS as well the full feature set were used 

in SOM training, and their performance were compared. The performance metric used is 

the misclassification count, assuming the human categorized colour groups to be true. 

Similarly, with the majority-wins rule, the node is classified to the colour group with the 

greatest number of data points from the same group, while the other data points from 

other group will be accumulated in the misclassification count. The conformance rates, 

complementary to misclassification rates were computed. This is iterated for different 

number of SOM epochs. 
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CHAPTER 4: RESULTS 

In this chapter, the outcomes derived from the methodologies presented in the 

preceding chapter will be illustrated and examined through a series of figures and tables. 

The presentation aims to encapsulate the essence of the conducted experiments, providing 

a comprehensive understanding of the obtained results. 

4.1 Calibration 

The correlation between reference intensities from CE200 day 1 gamma adjusted 

calibration chart with intensities of all cameras is illustrated in Figure 4.1. Each 

correlation plot is constructed with 72 datapoints (24 reference colours by 3 colour 

channels R, G and B). The intensities of each colour channel range from 0 to 255 (8 bits 

per channel) for 24-bit image.  

Figure 4.1 a) shows the correlation between gamma adjusted and raw intensities of 

CE200. It is a non-linear correlation, where the lower intensity values were boosted to a 

greater extent compared to the higher ones. Figure 4.1 b) compared the intensities of C920 

with the adjusted intensities of CE200. The raw intensities of C920 in Figure 4.1 b) i) 

though were in a slight underexposure, showing a close correlation with the CE200 

intensities after adjustment as shown in Figure 4.1 b) ii). RX0 II on the other hand was 

having an overexposure issue, where its intensities were flattened at 255 when the gamma 

adjusted values of CE200 exceeded value about 150, as shown in Figure 4.1 c) i). 

Although it showed better correlation with CE200 after adjustment in Figure 4.1 c) ii), 

but the plateaus remained noticeable. The overexposure could be the result of exposure 

compensation done internally by the RX0 II processor during image acquisition when 

there were dark regions of the lighting rim appeared in the field of view.  
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a)   

 

b) i) b) ii) 

c) i) c) ii) 

  

Figure 4.1 a) Correlation plot of CE200 Day 1 gamma adjusted against raw 
intensities. b), c) Correlation plots of C920, RX0 II Day 1 i) before and ii) after 

adjusted intensities against CE200 Day 1 gamma adjusted intensities. 
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Table 4.1 shows the percentage drifts within each camera between the calibration 

points on different days using the first day values as reference. The value 100% denotes 

negligible drift, the lower the value the larger the drift, the further away is it from the 

reference point. The drifts could be due to the use of different devices to connect to the 

cameras. For instance, a personal computer or laptop were used on different occasions. 

All three cameras were connected to the device via Universal Serial Bus (USB) cable for 

data transmission. CE200 and C920 were both powered by the same USB port each was 

connected to, whereas RX0 II was powered by its built-in rechargeable lithium-ion battery 

which loses charge while streaming data. C920 exhibited the most stable colour 

representations with minimal drifts for every session, while a relatively larger drift in 

CE200 was observed on the second day, calibration is therefore essential even with the 

industrial grade cameras for the unaccountable drifts as such.  

Table 4.1 ColorChecker calibration points’ correlation plot percentage drift in R, 
G and B channel in each camera during each image acquisition session. 

Date CE200  C920  RX0 II 

R G B  R G B  R G B 

10/3/2022* 100.0 100.0 100.0  100.0 100.0 100.0  100.0 100.0 100.0 

21/3/2022 82.1 99.5 83.7  99.7 99.7 100.0  99.9 100.0 100.0 

31/3/2022 99.9 99.5 98.4  99.5 99.6 99.8  98.0 98.0 97.8 

20/4/2022 99.5 98.7 97.6  100.0 100.0 100.0  99.2 99.2 99.3 

28/4/2022 98.6 98.0 96.6  100.0 100.0 100.0  94.4 94.3 94.0 

12/5/2022 97.6 97.9 96.9  100.0 100.0 100.0  97.2 97.3 97.2 
* Calibration reference target Univ
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Table 4.2 shows the image preparation processes of a sample oak veneer images from 

the three cameras. The output images of CE200 and C920 showed a close resemblance in 

colour by inspection.  

Table 4.2 Sample oak veneer image from each camera undergoing the image 
preparation processes. 

Process CE200 C920 RX0 II 

Image Capturing 

  
 

Image Cropping 

   

Background Removal 

   

Colour Calibration* 

   

* CE200 images underwent an additional gamma correction process 

 

  Univ
ers

iti 
Mala

ya



62 

4.2 Feature Performance 

Figure 4.2 shows the individual feature performance plots of all three cameras in 

different species. CE200 and C920 had similar performance while RX0 II slightly 

underperformed. 

a) 

 
b) 

 
c) 
 .                                                                                                                                                                                                                                                          

 

 
Figure 4.2 The performance of 26 individual features in CE200, C920 and RX0 

II for species a) red oak, b) yellow poplar and c) maple, the µ and σ features of 
each region are arranged orderly in R, G, B triplets. 
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It is observed that OTVF outperformed OTVH in most cases. These features represent the 

Otsu thresholding values, which separate the image grey histogram into lower and upper 

strata to isolate the grain from the basal part. Given that different colour groups exhibit 

varying distributions in both strata, particularly in the upper stratum, this threshold 

becomes a crucial indicator in colour classification. However, when the resolution is 

halved, performance diminishes. This dip may be attributed to unintended shifts in the 

threshold caused by averaging the brightness of adjacent pixels during the down-

sampling. Overlapping thresholds make colour groups less distinguishable, causing the 

performance as such. 

Generally, µ features performed better than σ features, suggesting that µ is a more 

distinguishable colour feature as an individual. Notably, µFUG stood out as the best 

individual feature. This aligns with the finding of Dowling and Dowling Jr (2016) on the 

human eye's sensitivity to green light. Meanwhile, upper stratum features µFU and µHU 

performed better than their lower stratum counterparts µFL and µHL, suggesting that the 

basal part of plays a more significant role than the grain part as colour descriptors. On the 

other hand, the feature performances from both resolutions are comparable, thus, 

processing images at half the original resolution may be recommended for systems where 

computational speed is crucial. 

Figure 4.3 depicts the best performance values from five-fold cross-validation during 

SFS using LDA for each camera across all species. Stable performance for all cameras 

was observed from eight features onwards, SFS was therefore stopped at ten features, 

with an additional test with all 26 features for comparison. Notably, combination of 

features produced more convincing results than using single feature. It took around four 

features to reach optimal performance for both CE200 and C920. However, RX0 II 

required up to eight features, especially for maple. Interestingly, the use of all features 
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did not perform as well compared to the smaller feature sets, signifying the importance 

of feature selection as irrelevant features may hinder the classification performance. 

a)  

 
b) 

 
c)  

 
 

Figure 4.3 SFS performance of three cameras for a) red oak, b) yellow poplar 
and c) maple using the best scoring combinations of one to ten features as well as 

all features. 
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The top 5 ranking features derived from SFS for each camera in different species are 

shown in Table 4.3. µFUG being the dominant feature in all species, followed by µFUR. 

This conforms to the individual feature performance discussed earlier, where these two 

features outperformed most of the others individually, further enhancing the accuracy in 

a group with other features. Although the performance of µFUB surpassed µFLB as an 

individual in most cases, however, µFLB played a more significant role than µFUB in a 

group to achieve the best scoring feature set. This shows grain part feature (lower 

spectrum) though may not be as performing as basal part feature (upper stratum) when 

compared individually, it indeed contributes to the performance when combined with 

others. Overall, µ features are more favourable compared to σ features except for some 

occasions such as RX0 II in maple where the top 5 features were dominantly represented 

by σ values.  

Table 4.3 Top 5 ranked features from SFS in each species for the three 
cameras*. 

Rank Red Oak  Yellow Poplar  Maple 

 CE200 C920 RX0 II  CE200 C920 RX0 II  CE200 C920 RX0 II 

#1 μ୊୙ୋ μ୊୙ୋ μୌ୙୆  μ୊୙୆ μ୊୙ୋ μ୊୐୆  μ୊୐୆ μ୊୙ୋ σ୊୙୆ 

#2 μ୊୙ୖ μ୊୙ୖ μୌ୙ୋ  μ୊୙ୋ μୌ୙୆ μୌ୐ୖ  μ୊୐ୋ σ୊୐ୖ σ୊୐୆ 

#3 μ୊୐୆ σୌ୙ୋ μ୊୙ୖ  μ୊୐୆ μୌ୙ୋ μୌ୐ୋ  OTVୌ μ୊୐ୋ σ୊୐ୋ 

#4 μ୊୐ୋ μ୊୐ୖ μ୊୐୆  σ୊୙୆ σୌ୙୆  μୌ୐୆  μ୊୐ୖ 𝜎୊୙୆ μୌ୐୆ 

#5 OTV୊ σୌ୐ୖ OTV୊  σ୊୐୆ μ୊୐୆ μ୊୐ୖ  OTV୊ μ୊୙ୖ μୌ୐ୋ 

 

Confusion matrix visualised in Table 4.4  summarises the performance of top 5 SFS 

selected features for CE200. For red oak, there are some confusions between dark and 

orange groups as well as white and yellow. For yellow poplar, yellow is often confused 

with dark or white since it is a transition from dark to white. Maple has less confusions 

where all the groups are very well distinguishable. White generally is quite separable 

from darker colour like red and dark. 
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Table 4.4 Confusion matrix of different species for CE200 using LDA with top 5 
SFS selected features, the columns are human categorized groups, the rows are 

SFS resulted groups. 

Species Colour Group* Confusion Matrix (Count) 

Red Oak 

 D O W Y 
D 154 27 0 0 
O 6 88 0 1 
W 0 0 83 15 
Y 0 0 4 137 

Yellow Poplar 

 
D W Y 

 

D 91 0 12 
W 2 118 8 
Y 22 9 114 

Maple 

 R W Y  

R 130 4 0 
W 0 103 0 
Y 0 0 161 

      
* D = Dark, O = Orange, R = Red, W = White, Y = Yellow 

 

Some colour groups are easily confused due to the ambiguous boundary between two 

adjacent colours in the wood colour spectrum. For example, white can be confused with 

yellow in red oak and yellow poplar, while dark is often mistaken as orange in red oak 

and yellow in yellow poplar. These colours overlap with each other in the spectrum that 

has no clear border line between colour bins. The darkest colour and the brightest colour 

on the other hand are mostly mutually exclusive, white in red oak and yellow poplar is 

having little to no confusion with dark group, and white in maple is well separable from 

red. These colours are usually further apart in the colour spectrum with minimal 

overlapping. 
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4.3 Classifier Performance 

Figure 4.4 illustrated the performance of classifier SOM trained at different number of 

epochs (2000, 12000 and 24000) with naïve feature set and 2000 epochs with best feature 

set by SFS for all species and cameras. The conformation rate with the human-labelled 

groups was used as the performance metrics in this study. Interestingly, increasing the 

number of epochs had not improved the performance to a greater extent. On the contrary, 

in most cases where number of epochs increased from 2000 to 12000, declined 

conformation rates were recorded. 

 

Figure 4.4 Performance of SOM based on conformation rate with human-
labelled groups with naïve features at different number of epochs and SFS selected 
features at 2000 epochs for all species and devices.  
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On the other hand, the feature set with top five features that was selected by SFS with 

LDA and tested on SOM has outperformed the naïve set of all 26 features. The SFS 

selected features set has improved the performance of SOM, by having less computational 

efforts with smaller subset while showing higher accuracy. This technique can be 

implemented in industrial applications where high-speed decision making is required.  

 SOM is a clustering technique with no prior knowledge of the classes the data points 

belong. The schisms on the maps within the same cluster or colour group suggested that 

there could be an alternative way of categorizing the colours, for e.g., creating another 

subgroup. This could be another the scope in future studies. In this experiment setup, an 

overall conformation rates of 89.0 %, 94.5 % and 96.4 % were achieved for red oak, 

yellow poplar, and maple respectively. 

During training, the number of datapoints from each class associated with each node 

were recorded. At the end of the training, each node is classified to the class having most 

datapoints according to the majority rule. For instance, the SOM map generated from the 

best performing species, maple with SFS selected features in Figure 4.5 shows the 

distribution of white, yellow, and red colour groups. White group highlighted in blue is 

the furthest away from the red group at the bottom, with yellow group between them. 

There is a node classified as white located in between the yellow and red regions, 

suggesting that there could be misaligned perceptions between human and the algorithm. 

The non-highlighted region is composed of the nodes with no datapoints falling into them 

during the training session, leaving them unlabelled. During actual implementation, this 

region will be ignored, only those labelled nodes will be considered in BMU evaluation. 
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Figure 4.5 SOM map for maple for CE200 with selected features showing 
human categorized colour groups white, yellow, and red highlighted in blue, 

yellow, and red respectively. 
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CHAPTER 5: DISCUSSION 

5.1 Camera Performance 

The image acquisition software used for each device is different in this study. For 

instance, Machine Vision System (MVS) was used for CE200, MATLAB webcam image 

acquiring package for C920, and Sony Imaging Remote Software for RX0 II. Unlike 

MVS and MATLAB, where the parameters of the camera i.e., auto-white balance feature 

can be turned off, RX0 II had its auto-white balance turned on all the time. In addition to 

that, there could be some internal processing done automatically by the camera to beautify 

the image before outputting the images to the users, which is a common feature in most 

modern consumer cameras for aesthetic purposes. Therefore, the resulting calibration 

images showed different colour profiles from the reference image.  

This study was limited by the access restriction to the camera parameters through the 

Imaging Remote Software. In future studies, Sony Camera Remote Software 

Development Kit (SDK) could be utilised for parameters adjustment. A custom connector 

may be required to connect the camera with personal computer for direct access to the 

SDK. The SDK would come in handy to control the camera settings such as exposure 

time, aperture size, auto-white balance, and post-processes handling. Alternatively, the 

presence of calibration chart in each image may be implemented for future studies for 

colour standardization, the results would be more representative for research purpose, 

though it may not be practical for industrial settings. 
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5.2 Comparison with Previous Studies 

The proposed algorithm of this research has reported a conformation rate ranged from 

89% to 96% for the species red oak, yellow poplar, and maple. This is analogous to SOM 

algorithm of Kurdthongmee (2008) on rubberwood (95% accuracy), fuzzy logic of Faria 

et al. (2008) on cherry, beech, and oak (over 95%), 1-NN classifier of Bianconi et al. 

(2013) on teak (90%) and SVM classifier of Nurthohari et al. (2019) on cedar (90%). It 

is noteworthy these studies were using sample size ranged from one to 30 each class. 

Some of them had produced more samples by using overlapping segments of the original 

images. Comparatively, this research has used nearly 100 different images per class per 

species. Furthermore, to account for intra-class variations, image acquisition was taken 

place on non-consecutive days. Therefore, the results from this study shall ensure greater 

reliability and robustness for real life applications. 

     The features selected by this study were mostly soft colour descriptors, particularly 

mean values and standard deviations in RGB colour space, were proven to be comparable 

to those of alternative colour spaces, for e.g., HSV or CIEL*a*b*. Bianconi’s 1-NN 

classifier though different with SOM approach, but they are using similar comparators 

i.e., the Euclidean distance, thus their conclusion on different colour spaces complies with 

this study. On the other hand, the implementation of a fixed lighting condition and 

calibration to a reference date in this study was resemblance to the Bianconi’s colour 

space transformation from RGB to CIEL*a*b*, the practical significance of colour space 

conversion remains debatable (Bianconi et al., 2013). 

The difference between this study and most studies is the spectrum from which the 

descriptors were extracted. Generally, the conventional way of retrieving the means and 

standard deviations is by the whole image or a segmented window where all the pixels in 

the region will be evaluated to produce one set of descriptors, that is, single mean and 
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standard deviation value per channel. This study differed by performing Otsu 

thresholding on the grayscale image to isolate the grain from the basal part, hence 

harvesting two sets of descriptors from both spectra of different intensity levels. Thus, 

the characterisation of the wood colour is more comprehensive for a prominent result. 

5.3 Industrial Implementation 

The vision system developed in this study were deployed in WM’s facility. While this 

study focused on red oak, yellow poplar and maple, several other veneer species were 

also tested for usability, namely red meranti (Shorea spp.), American white oak, 

American black walnut (Juglans nigra). While the other trained species trained were 

tested alright by the operators, it was found that performance for black walnut was not 

stable. This is because the timber contained many ‘layers’ of colour, which a single Otsu 

bifurcation into two intensity layers was insufficient to distinguish the different colour 

groups correctly as compared to human judgement. One possible solution would be to use 

multiple iterative Otsu thresholding to further extract more refined colour features of each 

colour layer.  

Also, the same algorithm (and software) is being used with another industrial 

implementation at a separate facility, Sim Seng Huat Wood Industries Sdn. Bhd. (SSH) 

for performing colour sorting of light red meranti (Shorea spp.) solid timber (not veneers). 

Although the system setup in SSH uses line scan cameras with line lights, the same colour 

sorting algorithm is applicable. The system is flexible to allow user to train new species 

or train the existing species with more colour groups. The user-interface of the colour 

sorting software in Figure 5.1 showed that different species can be setup for training, and 

the parameters can also be changed for testing. For instance, while 9 × 6 SOM map was 

used in this study, a 12 × 9 map can be selected for a wider range of colours. 
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Figure 5.1 User-interface of colour sorting software deployed in WM with light 
red meranti selected. 
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CHAPTER 6: CONCLUSION 

Among the cameras in this study, CE200 from Hikrobot has outperformed the rest, 

proving its viability as an industrial grade device. Interestingly, the second-best 

performing webcam C920 from Logitech had achieved an accuracy close to that of 

CE200. The results of RX0 II from Sony is the worst due to the software-related 

limitations mentioned earlier. Nevertheless, its performance may be improved if the 

camera settings are manually optimized. Therefore, a properly calibrated high-quality 

webcam could be an acceptable alternative when budget is of concern. However, the 

durability and other considerations in the industrial environment has yet to be tested. 

This study confirmed that Otsu thresholding is feasible of separating the intensity 

levels of the grayscale wood images into lower and upper strata to represent the darker 

grain part and the brighter basal part respectively. The soft descriptors extracted from the 

higher stratum contributed significantly to the segregation of colour groups. The mean 

colour values from the basal part generally outperformed the other descriptors. 

Additionally, SFS approach is proven to enhance the sorting performance by selecting 

best performing features from the naïve feature set which may contain irrelevant features. 

On top of that, SOM is a robust classifier to sort the different colour groups for red oak, 

yellow poplar, and maple. 

The system is currently being implemented in the industry for red oak, white oak, 

yellow poplar, maple and light red meranti. Performance for the black walnut was 

unsatisfactory and shall be scope in future studies. 
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