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DETECTION OF COVID-19 PNEUMONIA ON COMPUTED TOMOGRAPHY 

IMAGES USING A LIGHTWEIGHT DEEP LEARNING MODEL 

ABSTRACT 

SARS-CoV-2, also known as COVID-19, is a novel contagious respiratory disease 

discovered in 2019 that caused a worldwide pandemic that claimed many lives. The virus 

epidemic was initially discovered in December 2019 in Wuhan, China. It immediately 

escalated into an international crisis, causing widespread illness, death, and significant 

socio-economic disruptions. The rapid and accurate identification of COVID-19 is crucial 

to the ongoing global epidemic. One of the various medical devices is computed 

tomography (CT) imaging, which has shown promise in its application to detect 

distinctive patterns associated with lung tissue deterioration. The common practice is 

relying on radiologists to diagnose the CT images, which is time-consuming. Various 

advanced CNN architectures can detect and classify CT images. However, most require 

high computational costs and are not designed for commercial use. The study aims to 

automatically detect and classify ‘COVID-19 pneumonia’, 'normal', and ‘pneumonia’ 

lung CT images using transfer learning of the pre-existing CNN models and the proposed 

model. The study proposed a DL model inspired by ResNeXt and Inception to create a 

synergistic effect. The research conducted binary classification to compare the results of 

the existing models and multi-classification to compare the existing models and the 

proposed model. The existing models are DenseNet 201, GoogLeNet, ResNet 50, ResNet 

101, ResNet 152, and ResNeXt 101. The dataset was collected from medRxiv, bioRxiv, 

NEJM, JAMA, Lancet, and the China National Centre of Bioinformatics. A 

comprehensive dataset was subdivided into training, validation, and testing. The images 

were then pre-trained using existing CNN architectures. Pre-trained models that had been 

fine-tuned extracted the features from the CT images. The research study applied transfer 

learning and deterministic concepts to the existing and proposed models to evaluate and 
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compare their results. The proposed model is also designed to capture nuanced features 

indicative of COVID-19 infection, inspired by ResNeXt 101 and Inception, to achieve a 

lightweight and efficient CNN model. Data augmentation was applied to the dataset to 

introduce variations of unseen data to the proposed model. The study indicated the results 

for binary classification, ResNeXt 101, which obtained the best results among the existing 

CNN architectures. It acquired the highest sensitivity, specificity, precision, negative 

predicted value (NPV), accuracy, and F1-score of 0.9571, 1.0000, 1.0000, 0.9639, 

0.9800, and 0.9781. The experimental results for multi-class classification showcase the 

efficacy of the proposed model, achieving an impressive accuracy, precision, recall, and 

F1-score of 0.9980. The proposed model has 7,724,523 parameters, 11 times less than 

ResNeXt 101 while having similar accuracy. The research depicted the possibilities of 

the proposed model in aiding medical diagnosis, especially in COVID-19 pneumonia 

detection using CT images. In conclusion, the proposed model and other developed 

models from the thesis offer promising tools for healthcare professionals to identify and 

detect COVID-19 pneumonia CT images early. It encourages the application of CNN 

architectures as a diagnostic aid for radiologists, particularly during the pandemic. 

 

Keywords: convolutional neural network, deep learning, computed tomography, 

COVID-19, coronavirus  
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PENGESANAN PNEUMONIA COVID-19 PADA IMEJ TOMOGRAFI 

KOMPUTER MENGGUNAKAN MODEL PEMBELAJARAN DALAM RINGAN 

ABSTRAK 

SARS-CoV-2, juga dikenali sebagai COVID-19, ialah penyakit pernafasan berjangkit 

baru yang ditemui pada 2019 dan menyebabkan wabak di seluruh dunia yang meragut 

banyak nyawa. Wabak virus itu pada mulanya ditemui pada Disember 2019, Wuhan, 

China. Ia serta-merta meningkat menjadi krisis antarabangsa, menyebabkan penyakit 

berleluasa, kematian, dan gangguan sosio-ekonomi yang ketara. Pengenalpastian 

COVID-19 yang pantas dan tepat adalah penting dalam wabak global yang berterusan. 

Salah satu daripada pelbagai peranti perubatan ialah pengimejan tomografi berkomputer 

(CT), yang telah menunjukkan janji dalam aplikasinya untuk mengesan corak tersendiri 

yang berkaitan dengan kemerosotan tisu paru-paru. Amalan biasa adalah bergantung 

kepada ahli radiologi untuk mendiagnosis imej CT, yang memakan masa. Pelbagai seni 

bina CNN canggih boleh mengesan dan mengklasifikasikan imej CT. Walau 

bagaimanapun, kebanyakannya memerlukan kos pengiraan yang tinggi dan tidak direka 

untuk kegunaan komersial. Kajian ini bertujuan untuk mengesan dan mengklasifikasikan 

secara automatik imej CT paru-paru ‘COVID-19 pneumonia’, ‘normal’ dan ‘pneumonia’ 

menggunakan pembelajaran pemindahan model CNN yang sedia ada dan model yang 

dicadangkan. Kajian itu mencadangkan model DL yang diilhamkan oleh ResNeXt dan 

Inception untuk mencipta kesan sinergistik. Penyelidikan ini menjalankan klasifikasi 

binari untuk membandingkan keputusan model sedia ada dan pelbagai klasifikasi untuk 

membandingkan model sedia ada dan model yang dicadangkan. Model sedia ada ialah 

DenseNet 201, GoogLeNet, ResNet 50, ResNet 101, ResNet 152 dan ResNeXt 101. Set 

data dikumpulkan daripada medRxiv, bioRxiv, NEJM, JAMA, Lancet dan Pusat 

Bioinformatik Kebangsaan China. Set data komprehensif telah dibahagikan kepada 

latihan, pengesahan dan ujian. Imej-imej itu kemudiannya dilatih terlebih dahulu 
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menggunakan seni bina CNN sedia ada. Ciri-ciri imej CT telah diekstrak oleh model pra-

latihan yang telah diperhalusi. Kajian penyelidikan menggunakan pembelajaran 

pemindahan dan konsep deterministik dalam model sedia ada dan yang dicadangkan 

untuk menilai dan membandingkan keputusannya. Model yang dicadangkan juga direka 

bentuk untuk menangkap ciri-ciri yang menunjukkan jangkitan COVID-19 yang 

diilhamkan oleh ResNeXt 101 dan Inception untuk mencapai model CNN yang ringan 

dan cekap. Pembesaran data telah digunakan pada set data untuk memperkenalkan variasi 

data yang tidak kelihatan kepada model yang dicadangkan. Kajian itu menunjukkan 

keputusan untuk klasifikasi binari, ResNeXt 101, yang memperoleh hasil terbaik di 

kalangan seni bina CNN sedia ada. Ia memperoleh kepekaan, kekhususan, ketepatan, nilai 

ramalan negatif (NPV), ketepatan dan skor F1 tertinggi sebanyak 0.9571, 1.0000, 1.0000, 

0.9639, 0.9800 dan 0.9781. Keputusan eksperimen untuk klasifikasi berbilang kelas 

mempamerkan keberkesanan model yang dicadangkan, mencapai ketepatan, dan skor F1 

yang mengagumkan sebanyak 0.9980. Model yang dicadangkan mempunyai 7,724,523 

parameter, 11 kali kurang daripada ResNeXt 101 sambil mempunyai ketepatan yang 

sama. Penyelidikan itu menggambarkan kemungkinan model yang dicadangkan dalam 

membantu diagnosis perubatan, terutamanya dalam pengesanan pneumonia COVID-19 

menggunakan imej CT. Kesimpulannya, model yang dicadangkan dan model lain yang 

dibangunkan daripada tesis menawarkan alat yang menjanjikan untuk profesional 

penjagaan kesihatan untuk mengenal pasti dan mengesan imej CT pneumonia COVID-

19 lebih awal. Ia menggalakkan penggunaan seni bina CNN sebagai bantuan diagnostik 

untuk ahli radiologi, terutamanya semasa wabak. 

 

Kata kunci: rangkain neural berlingkaran, pembelajaran dalam,  imbasan tomografi 

berkomputer, COVID-19,  koronavirus
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CHAPTER 1: INTRODUCTION 

1.1 Background 

COVID-19 is an infectious disease, the fifth flu pandemic after the 1918 pandemic. 

The name of the virus is SARS-CoV-2. COVID-19 is one of seven coronaviruses 

discovered by humankind that cause illness in humans and animals. Besides COVID-19, 

SARS and MERS are other lethal coronaviruses that cause minor pandemics in certain 

third-world countries. Other coronaviruses create mild illness called rhinoviruses 

(Kandola, 2020). Coronaviruses are under the subfamily Orthocoronavirinae, 

inonaviridae, order Nidovirales and realm Riboviria (Executive Committee of ICTV, 

2019) (Fan et al., 2019). The initial report indicated that while the COVID-19 viral 

pneumonia differed from the actual SARS coronaviruses, it shared 88% sequence identity 

with two bat-derived SARS-like viruses (Lu et al., 2020). 

 

Figure 1.1: Scientifically Accurate Coronavirus Model (SARS-CoV-2) 
(Solodovnikov & Arkhipova, 2021).  

One of the main parts of coronaviruses is a nucleocapsid with helical symmetry and a 

positive-sense single-stranded RNA genome, as described in Figure 1.1 (Chen et al., 

2007). Its genome size ranges from roughly 26 to 32 kilobases, and it is one of the most 

significant RNA viruses. Each coronavirus particle consists of 74 surface spikes, 

approximately 20 nm long. On the surface of the lipid bilayer envelope, attach the 
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glycoprotein spikes. The spike protein interacts with the host cell receptor binding of an 

infected animal or human and undergoes membrane fusion. It is part of the order 

Nidovirales, family Coronavirdiae, and the subfamily Coronavirinae. The COVID-19 

pneumonia RNA genome comprises a 5’ methyl-guanosine cap, poly (A)-tail, and 29,903 

nucleotides. It indicated that bats and rodents are the genetic foundations of α and β 

coronaviruses, and avian species are the genetic bases of most δ and γ coronaviruses 

(Yen-Chin Liu, 2020).   

Coronaviruses (CoVs) are viruses responsible for various mild-to-severe human 

illnesses. It was named for the crown-like spikes on its surfaces. Initially, six 

coronaviruses caused disease in humans. The set of coronaviruses included the alpha (α), 

beta (β), gamma (γ), and delta (δ) subgroups. α-coronaviruses (229E, NL63,) and β-

coronaviruses (OC43, HKU1) were the most prevalent in humans (UK Research and 

Innovation, 2022). Table 1.1 describes the seven types of coronaviruses that are harmful 

to humanity, and COVID-19 was the latest to be discovered (UK Research and 

Innovation, 2020). In December 2019, in Wuhan City, Hubei Province, China, an 

unknown aetiology of a lower respiratory tract febrile illness was initially identified 

(Moore, 2021). This pulmonary disease has been declared Coronavirus Disease 2019 

(COVID-19) by the World Health Organisation (WHO). It is the latest coronavirus to be 

found, infecting people worldwide. 
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Table 1.1: Seven Types of Coronaviruses (UK Research and Innovation, 2020). 

Type of Coronavirus Type of Illness 

SARS-CoV-2 COVID-19 

SARS-CoV SARS 

MERS-CoV MERS 

HCoV-NL63  

Common Cold 
HCoV-229E 

HCoV-OC43 

HKU1 

 

All coronaviruses originate in animals and are later transmitted to humans. These 

animals are the coronavirus's natural hosts. Bats are unquestionably significant and the 

source of α and β-coronaviruses. They will likely be the first hosts of the common cold, 

SARS, and MERS viral pneumonia (Yen-Chin Liu, 2020). Furthermore, rodents were 

likely the source of HCoV-OC43 and HKU1 (Yen-Chin Liu, 2020). As intermediary 

hosts, domestic animals can contract diseases that spread viruses from wild animals to 

people. For instance, the SARS-CoV and MERS-CoV viruses have infected camels and 

masked palm civets, respectively (Yen-Chin Liu, 2020). By comparing the genome’s full-

length SARS-CoV-2, RNA sequences at the beginning of the COVID-19 outbreak only 

had 79.6% RNA sequence identity with SARS-CoV (Yen-Chin Liu, 2020). However, it 

practically has a 96.2% similarity at the whole-genome level to Bat-CoV RaTG13, which 

was initially identified in Rhinolophus affinis from Yunnan Province, more than 1500 

kilometres from Wuhan (Yen-Chin Liu, 2020). Although bats are the most probable 

SARS-CoV-2 reservoir hosts, it is still unclear if Bat-CoV RaTG13 jumps straight to 

people or passes through intermediary hosts to enable animal-to-human transmission 

(Yen-Chin Liu, 2020). Researchers did not obtain an intermediate host sample in 
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Wuhan’s initial cluster of COVID-19 infections. Table 1.2 illustrates the classification of 

human coronaviruses. 

Table 1.2: Classification of Human Coronaviruses (Yen-Chin Liu, 2020). 

Strain Year 

Found 

Cellular 

Receptor 

Natural 

Host 

Intermediate 

Host 

Symptoms 

HcoV-

229E 

1966 Aminopeptidase 

N (CD13) 

Bat Camelids Minor 
 

HcoV-

OC43 

1967 9-O-Acetylated 

sialic acid (SA) 

Rodent Cattle Minor 
 

SARS 2003 ACE2 Bat Masked 
palm civets 
 

Major 

HcoV-

NL63 

2004 ACE2 Bat Unknown 
 

Minor 
 

HcoV-

HKU1 

2005 9-O-Acetylated 

sialic acid (SA) 

Rodent Unknown 
 

Minor 
 

MERS 2012 DPP4 Bat Dromedary 

camels 

Major 

COVID-19 2019 ACE2 Bat Pangolin Major 

 

COVID-19 is similar to viral pneumonia lung inflammation in the alveoli (WebMD, 

2020). The inflammation brought on by COVID-19 pneumonia destroys the cells and 

tissues of the air sac line in the lungs, causing the respiratory system to fail (WebMD, 

2020). The inflammation gradually builds up fluid and pus in the alveoli, causing 

breathing difficulties. The patient exhibits chest pains, stuffy nose, weariness, shortness 

of breath, cough, fever, fatigue, and other symptoms. The symptoms are comparable to 
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viral pneumonia and include acute respiratory distress syndrome (ARDS) (Seladi-

Schulman, 2020), rapid heart rate, dizziness, and heavy perspiration (WebMD, 2020). 

Henceforth, it is challenging to accurately detect a patient with COVID-19 pneumonia or 

other variations of viral pneumonia via medical images. Deep learning models can aid 

medical experts in executing time-consuming and labour-intensive work, such as 

determining CT images for symptoms of COVID-19 pneumonia and identifying the 

severity of the infection (Chouhan et al., 2019). CNN architectures imitate human-level 

accuracy and precision in examining and segmenting medical images without human 

error. The intensive growth of CNN and AI has been actively applied to medical imaging. 

Its approaches have proven to achieve quality prediction capabilities mimicking the 

results of radiologists (Müller et al., 2020). However, CNN models cannot replace 

medical professionals like physicians, radiologists, and clinicians in diagnosing medical 

images. 

The COVID-19 virus alleviated environmental concerns worldwide as the government 

announced a lockdown, and guidelines for social distancing, quarantine, and washing 

hands are frequently advised to the general public nationwide. With the travel restrictions 

implemented worldwide, the virus has been transmitted exponentially, with confirmed 

cases transmitted in Europe, the United Kingdom, the United States, and worldwide 

(World Health Organization, 2020). The coronavirus possessed a different nucleic acid 

sequence that was unbeknownst to humankind. The virus was detected in lung fluid, 

blood, and throat swab samples. The medical and scientific communities found 

themselves racing against time to stop the disease from spreading and develop vaccines 

immediately. Medical imaging has been identified as an essential tool to help the 

scientific community provide early disease recognition and isolate affected patients. It is 

a diagnostic tool for monitoring disease progression and defining characteristics of the 

coronavirus’s acute and chronic phases (Al-Tawfiq et al., 2014). 
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In the past, similar pulmonary syndromes have been identified as the cause of other 

coronavirus families. Severe acute respiratory syndrome (SARS) and Middle East 

respiratory syndrome (MERS) are the most famous coronaviruses that primarily and 

severely affect the population worldwide. The last known SARS outbreak was reported 

in 2003, and it had been contained. The imaging features of SARS and MERS are 

inconsistent and non-specific. The imaging results of COVID-19 pneumonia were also 

deemed to be ambiguous. Researchers are trying to further categorise the imaging features 

of COVID-19 images. As of November 9, 2022, COVID-19 cases were confirmed in 230 

countries and territories worldwide, with 638,435,847 cases and total deaths of 6,608,101, 

a mortality rate of 1.55% (American Library Association (ALA), 2022). The United 

States of America (USA), India, Brazil, France, the United Kingdom (UK), Russia, 

Turkey, Italy, and Spain are the top 10 nations where COVID-19 pneumonia cases have 

been documented. 

Automated detection is necessary for early detection before symptoms manifest, as 

asymptomatic transmission might become the source of infection. The results of CT scan 

diagnostic abilities can be supported by AI-based detection technologies, which further 

alleviate the workload on local medical systems for both the clinical and public health 

sectors. The COVID-19 vaccine has been developed to provide immunity against ARDS. 

Before COVID-19, knowledge about coronaviruses’ structures, like SARS and MERS, 

was well established. That established knowledge accelerated the progress of numerous 

COVID-19 inoculations during early 2020 and finally developed vaccines and distributed 

them at the end of 2020 (Li et al., 2020). The genetic sequence of SARS-CoV-2 was 

available through GISAID, and on March 19, 2020, the global pharmaceutical industry 

proclaimed its obligation to address and develop a vaccine for COVID-19 (Padilla, 2021). 

Since February 7, 2022, 10.22 billion COVID-19 vaccines have been distributed globally, 

and 23.37 million are administered daily (Ritchie et al., 2020). While various vaccines 
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have been administered globally, prompt diagnosis and identification of medical images 

are essential. Hence, we should use advanced technology to eliminate this global 

epidemic. 

1.1.1 Classification Pulmonary Computed Tomography Images 

Over the years, various classifications of CT images in different body positions have 

been used in deep learning (DL) (Sugimori, 2018). CNN architectures were built and 

compared with AlexNet and GoogLeNet to sort CT scans of the brain, chest, abdomen, 

pelvis, and neck, using both plain and contrast-enhanced images (Sugimori, 2018). CNN 

architectures have successfully classified general document images (LeCun et al., 1998). 

The intricacies of the human anatomy are an obstacle for DL to conduct accurate 

classification (Roth et al., 2015). The classification of pulmonary CT images is 

significantly complex; only trained radiologists are certified to diagnose the images 

accurately. Pulmonary diseases often applied to CT scans for diagnosis are pulmonary 

embolism, lung cancer, pleural effusion, thoracic trauma, smoking and cancer risk cases, 

Chronic Obstructive Pulmonary Disease (COPD) (Cagle Jr et al., 2023), bronchiectasis, 

emphysema, and respiratory diseases. The application of CNN can perform several 

classifications on pulmonary CT images, like segmentation, detection, diagnosis, or 

prognosis. 

1.1.2 Clinical Findings, Diagnostics, Testing and Vaccinations 

During the pandemic, there are numerous simultaneous clinical implications for global 

healthcare professionals to prevent the spread of SARS-CoV-2. Understanding the 

evolutionary network and pathophysiology of the disease is crucial to determining how 

the new virus has adapted to humans and various contexts. Healthcare professionals need 

to find and identify the virus in the interim, then provide meticulous patient care and 

prevent further infection (Weissleder, Lee, Ko, & Pittet, 2020). The virus was initially 
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revealed at the end of December 2019 from Wuhan, where the submitted sequence 

differed from the discovery at the beginning of April 2020 from North America, 

according to information provided by COVID-19 viral sequences uploaded into the 

GISAID record in January 2020. Information on creating vaccines for various populations 

will come from analysing the geographical patterns of several COVID-19 variants. In 

contradiction to SARS and MERS, which have a greater death rate but stronger 

reinfection than community transmissibility, the COVID-19 virus can spread rapidly in 

the population (Yen-Chin Liu, 2020). 

The COVID-19 virus incubation period differs from one another but approximately 

ranges from 1 to 14 days. The average incubation period for COVID-19 was shown to be 

5.2 days, with a 95% confidence interval (CI) (Yen-Chin Liu, 2020; Adaloglou, 2021). A 

person infected with COVID-19 is highly contagious during that period (Li et al., 2020). 

Pneumonia affected every patient, and almost half of them also had dyspnea. After 

admission, COVID-19 pneumonia patients exhibited arrhythmia, severe cardiac damage, 

decreased renal function, and abnormal liver function (Yen-Chin Liu, 2020). Research in 

Wuhan, China, indicated that 36.4% of the 214 COVID-19 pneumonia-infected patients 

suffered from neurologic symptoms. 

It was further discovered that a neurovirulent COVID-19 viral infection of the olfactive 

system was the cause of the impaired capacity to taste or smell observed in some patients 

(Yen-Chin Liu, 2020). A wide range of symptoms can be found in an infected patient, 

together with fever, cough, chills, difficulty breathing, lack of breath, chest ache, sore 

throat, vomiting, nausea, and diarrhoea (Coronavirus disease (COVID-19), 2020). 

Infected patients might have average white blood cell counts (Guan et al., 2020; Wang et 

al., 2020). Some patients experience indications of hemoptysis (Guan et al., 2020; Wang 

et al., 2020) and can be symptomless, while the rapid development of the disease may 
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cause organ dysfunction. The following examples of organ dysfunction may cause the 

body to experience extreme reactions: shock, acute respiratory disease syndrome 

(ARDS), acute cardiac and kidney injury, and even death. Henceforward, quarantine and 

isolation protocols were established based on the virus’s incubation period in the body. 

Unvaccinated individuals or those who were not up-to-date in receiving their primary 

series of COVID-19 vaccines, followed by booster doses, have to quarantine, refrain from 

travelling, and be immediately tested.  

As a result of the COVID-19 disease’s rapid dissemination, diagnostic tools were 

created very quickly, enabling the early identification of this novel virus. A rapid test 

must be conducted once the patient is infected. The suggested specimen for molecular 

analysis is a nasopharyngeal swab. The CDC has approved oropharyngeal, mid-turbinate, 

and nasal swabs as acceptable specimen types of nasopharyngeal swabs  (Yen-Chin Liu, 

2020). Initially, the standard tool to diagnose COVID-19 was to detect the existence of 

COVID-19 viral pneumonia in a collected specimen using reverse transcript polymerase 

chain reaction (RT-PCR). The specimen is collected via nasal or throat swabs to detect 

the existence of COVID-19 viral pneumonia RNA (Ferrari & Angelis, 2020). Patients 

suspected of having a COVID-19 pneumonia infection have samples taken from their 

upper and lower respiratory tracts. The latest viral assessments are the nucleic acid 

amplification tests (NAATs) and antigen tests to distinguish the current infection with 

COVID-19. 

NAATs are sensitive, specific, and accurate in diagnosing SARS-CoV-2 infection. It 

discovers one or more viral RNA genes to indicate the status of the infection. NAATs are 

commonly conducted in the laboratory and may take up to 3 days to receive the results. 

There are also point-of-care test options for some NAATs, with results available in 15 to 

45 minutes. The rapid version of the NAATs is not a hypothetical result and can confirm 
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whether an individual is infected (Centers for Disease Control and Prevention, 2021). The 

recommended samples to collect and test are samples from the upper respiratory system. 

Antigen and antibody tests are other test methods that can be performed rapidly. Antigen 

tests detect a specific viral antigen but are less sensitive than most NAAT rapid tests. It 

is usually applied as a screening tool to detect who is contagious immediately. Antibody 

tests, also known as serology tests, are not recommended to diagnose current infections. 

It should not determine whether a person is immune to reinfection. Oral specimens are 

inappropriate for confirmatory testing (Centers for Disease Control and Prevention, 

2021).  

Differential diagnosis reports from several regions with high COVID-19 infections 

depicted chest CT as one of the diagnostic tools (Park et al., 2021). The application of 

chest CT is relevant, especially in a hospital where inpatients are high, and the suspicion 

of the patient with COVID-19 is undetectable by the RT-PCR swab test (Park et al., 

2021). Moreover, patients with respiratory symptoms might have underlying respiratory 

diseases and need to perform a chest CT to diagnose the respiratory issue. Lately, meta-

analysis has indicated that pulmonary thrombus and embolism are complications of 

COVID-19. Diagnostic analysis indicates typical CT abnormalities, such as bilateral 

pulmonary parenchymal ground glass and consolidated pulmonary opacities that were 

occasionally spherical and distributed throughout the peripheral lungs (Yen-Chin Liu, 

2020). These patients are admitted to the Intensive Care Unit (ICU) and have a CT 

pulmonary angiogram to prove the diagnosis.  

Since 2020, vaccines have been developed, and several are currently in phases I/II. 

There are three principal methods for developing a vaccine: (1) the whole microbe, (2) 

the subunit, and (3) the genetic approach (Le et al., 2020). Figure 1.2 illustrates the 

vaccine platform divided into categories and subcategories. 
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Figure 1.2: Types of Vaccines (VIPER Group COVID-19 Vaccine Tracker 
Team, 2022) 

The most effective method to train the human immune system to recognise viruses or 

antigens is via vaccinations. The COVID-19 virus comprises spike protein on the surface 

as an antigen (VIPER Group COVID-19 Vaccine Tracker Team, 2022). When a person 

who has received the vaccine is exposed to the COVID-19 virus, their immune system 

will distinguish the viral antigen and mobilise to protect their health (VIPER Group 

COVID-19 Vaccine Tracker Team, 2022). As shown in Figure 1.2, COVID-19 

vaccinations commonly fall into one of two categories: i) whole virus vaccines; ii) 

component viral vaccines. The component viral vaccines consist of five types: i) protein 

subunit, ii) virus-like particles (VLP), iii) DNA-based and RNA-based, iv) non-replicated 

viral vector, and v) replicating viral vector. At the same time, the whole virus vaccines is 

divided into inactivated and live-attenuated vaccines. 

V
ac

ci
n

e 
P

la
tf

o
rm

Component Viral 
Vaccines

Protein Subunit

Virus-like Particles

DNA-Based

RNA-Based

Non-replicating 
viral vector

Replicating Viral 
Vector

Whole Viral 
Vaccines

Inactivated

Live-Attenuated

Univ
ers

iti 
Mala

ya



12 

Protein subunit vaccines are the type that include a tiny portion of the isolated or 

purified viral protein, enabling the immune system to identify that virus fragment 

(National Library of Medicine, 2023). Viral genetic material, such as mRNA, is present 

in DNA- or RNA-based vaccinations, and it gives the body instructions on how to produce 

tiny virus pieces that the immune system can recognise (Shukla, 2021). The non-

replicating viral vector vaccines transmit the genetic code for making tiny fragments of 

viral protein encapsulated inside a different harmless virus that cannot replicate itself 

(Guo et al., 2023). The immune system then recognises that viral protein fragment 

(VIPER Group COVID-19 Vaccine Tracker Team, 2022). Table 1.3 shows the types of 

vaccines differentiated by the development methodologies and administered in several 

respective countries worldwide. 
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Table 1.3: Vaccines Information (VIPER Group COVID-19 Vaccine Tracker 
Team, 2022). 

Types of Vaccines Development 
Methodologies 

Status 

 
Novavax: Nuvaxovid NVX-
CoV2373 

Protein Subunit 40 Countries 

Serum Institute of India: 
COVOVAX (Novavax 
formulation) 

Protein Subunit 6 Countries 

Moderna: Spikevax mRNA-
1273 

RNA 88 Countries 

Pfizer/BioNTech: Comirnaty 
Tozinameran, BNT162b2 

RNA 149 Countries  

Janssen (Johnson & Johnson) 
Ad26.COV2.S 

Non-Replicating Viral 
Vector  

113 Countries 

Oxford/AstraZeneca: 
Vaxzevria AZD1222, 
ChAdOx1 nCoV-19 

Non- Replicating Viral 
Vector 

149 Countries  

 
Serum Institute of India 
Covishield (Oxford/ 
AstraZeneca formulation) 

Non-Replicating Viral 
Vector 

49 Countries  

 
Bharat Biotech: Covaxin 
BBV152 

Inactivated 14 Countries  

Sinopharm (Beijing) Covilo 
BBIBP-CorV (Vero Cells) 

Inactivated 93 Countries 

Sinovac CoronaVac Inactivated 56 Countries 
Anhui Zhifei Longcom Zifivax Protein Subunit 4 Countries 
Bagheiat-allah University of 
Medical Science Noora 
Vaccine 

Protein Subunit 1 Country 

Bharat Biotech iNCOVACC Non-replicating Viral 
Vector 

1 Country 

Biological E Limited Corbevax Protein Subunit 2 Countries 
CanSino Convidecia Non-Replicating Viral 

Vector 
10 Countries 

CanSino Convidecia Air Non-Replicating Viral 
Vector 

2 Countries 

Center for Genetic 
Engineering and 
Biotechnology (CIGB) Abdala 

Protein Subunit 6 Countries 

Chumakov Center KoviVac Inactivated 3 Countries 
Gamaleya Gam-COVID-Vac Non-Replicating Viral 

Vector 
1 Country 
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Table 1.3 Continued. 
Types of Vaccines Development 

Methodologies 
Status 

 
Gamaleya Sputnik Light Non-Replicating Viral 

Vector 
26 Countries 

Gamaleya Sputnik V Non-Replicating Viral 
Vector 

74 Countries 

Gennova Biopharmaceuticals 
Limited GEMCOVAC-19 

RNA 1 Country 

Health Institutes of Turkey 
Turkovac 

Inactivated 1 Country 

Instituto Finlay de Vacunas 
Cuba Soberana 02 

Protein Subunit 4 Countries 

Instituto Finlay de Vacunas 
Cuba Soberana Plus 

Protein Subunit 2 Countries 

Livzon Mabpharm Inc V-01 Protein Subunit 1 Country 
Medicago Covifenz VLP 1 Country 
Medigen MVC-COV1901 Protein Subunit 4 Countries 
Moderna Spikevax Bivalent 
Original/Omnicron BA.1 

RNA 38 Countries 

Moderna Spikevax Bivalent 
Original/Omnicron BA.4/BA.5 

RNA 33 Countries 

National Vaccine and Serum 
Institute Recombinant SARS-
COV-2 Vaccine (CHO Cell) 

Protein Subunit 1 Country 

Organisation of Defensive 
Innovation and Research 
FAKHRAVC (MIVAC) 

Inactivated 1 Country 

Pfizer/BioNTech Comirnaty 
Bivalent Original/Omicron 
BA.1 

RNA 35 Countries 

Pfizer/BioNTech Comirnaty 
Bivalent Original/Omicron 
BA.4/BA.5 

RNA 33 Countries 

PT Bio Farma IndoVAC Protein Subunit 1 Country 
Razi Vaccine and Serum 
Research Institute Razi Cov 
Pars 

Protein Subunit 1 Country 

Research Institute for 
Biological Safety Problems 
(RIBSP) QazVac 

Inactivated 2 Countries 

Sanofi/GSK VidPrevtyn Beta Protein Subunit 30 Countries 
Shenzhen Kangtai Biological 
Products Co KCONVAC 

Inactivated 2 Countries 
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Table 1.3 Continued. 
Types of Vaccines Development 

Methodologies 
Status 

 
Shifa Pharmed Industrial 
CoCOVIran Barekat 

Inactivated 1 Country 

Sinopharm (Wuhan) 
Inactivated (Vero Cells) 

Inactivated 2 Countries 

SK Bioscience Co Ltd 
SKYCovione 

Protein Subunit 1 Country 

Takeda TAK-019 (Novavax 
formulation) 

Protein Subunit 1 Country 

Takeda TAK-919 (Moderna 
formulation) 

RNA 1 Country 

Valneva VLA2001 Inactivated 33 Countries 
Vaxine/CinnaGen Co. 
SpikoGen 

Protein Subunit 1 Country 

Vector State Research Center 
of Virology and Biotechnology 
Aurora-CoV 

Protein Subunit 1 Country 

Vector State Research Center 
of Virology and Biotechnology 
EpiVacCorona 

Protein Subunit 4 countries 

Walvax AWcorna RNA 1 Country 
Zydus Cadila ZyCoV-D DNA 1 Country 

 

 At least one nation has approved the above vaccinations. Vaccines that have 

received approval have been authorised, licenced, designated for emergency use, or made 

accessible outside clinical trials (VIPER Group COVID-19 Vaccine Tracker Team, 

2022). 

1.2 Problem Statement 

At the beginning of the COVID-19 diagnosis, RT-PCR tests are the critical diagnostic 

methods to identify COVID-19 in a patient. Early diagnosis and isolation of infected 

COVID-19 patients are essential for preventing the severe spread of the infection and 

supporting triage, clinical, and public health to evaluate and monitor potential patients 

that may decrease operational strain on the healthcare sector to cope with the 
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overwhelming COVID-19 pandemic (Rohanian et al., 2023). Molecular assays like RT-

PCR are currently used to support effective clinical and public use for detecting various 

respiratory infections, resulting in institutions' viral outbreaks (CDC, 2019). The physical 

appearance of the test kit is similar to a pregnancy test; instead of using urine to determine 

if an individual is COVID-19 positive, the RT-PCR uses oral fluids like saliva, phlegm, 

or nasal mucus, but its low sensitivity and false negative rate require alternative methods 

to diagnose COVID-19 (CDC, 2019).  

Computed tomography (CT) could also be one of the alternatives to detect if the patient 

is diagnosed with COVID-19 pneumonia. With the increase in COVID-19 pneumonia 

cases, CT scans can be implemented as the primary screening and diagnostic tool for 

COVID-19 pneumonia detection, as they quick and easy to perform, but the job process 

is challenging for physicians. Even though the resolutions of the CT images increase, 

producing high COVID-19 pneumonia detection capabilities, the evaluation, annotation, 

and segmentation of the pulmonary lungs on the medical images are labour-intensive, 

monotonous, and time-consuming procedures conducted by radiologists (Ronneberger et 

al., 2015). The process of annotation, segmentation, and classification by a person is a 

burden (Ronneberger et al., 2015). A patient requires numerous CT images to support the 

claims and accurately detect COVID-19 pneumonia. The problem of procuring accurate 

assessments arose when medical professionals were required to deal with a colossal 

number of patients in a short period. Clinical experience is also a significant factor 

influencing the quality of annotating medical images (Cozzi et al., 2020). However, CT 

images interpreted by professionals may also develop issues to a certain percentage, such 

as human error, practical predisposition, variations among medical professionals, and 

interpretation discrepancy (Lee et al., 2022).  
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Implementing AI-based algorithms to automate disease recognition is vital to 

accurately diagnosing pulmonary CT scans. The technology can assist clinicians in triage 

valuation, clinical investigation, and diagnostic detection (Ronneberger et al., 2015). 

However, most deep-learning models that classify CT images have many parameters that 

require high computational costs and time to run and produce results (Adaloglou, 2021). 

Moreover, the higher number of parameters in the CNN model does not imply it is more 

accurate in classification (Adaloglou, 2021). Therefore, a lightweight DL model is 

required to classify COVID-19 CT images accurately.  

1.3 Aim & Objectives of the Study 

This research aims to study, design, and develop a deep learning proposed model that 

can classify ‘COVID-19 pneumonia’, ‘normal’, and other ‘viral pneumonia’ pulmonary 

CT images. 

The objectives of this research are: 

1. To evaluate deep learning models for classifying ‘COVID-19 pneumonia’, 

‘normal’, and other ‘viral pneumonia’ pulmonary CT images. 

2. To design a lightweight deep learning model comparable with the preexisting 

models' capabilities. 

3. To evaluate the performances of established transfer learning models and 

compare them with the design proposed model with a confusion matrix and 

performance metrics. 

1.4 Scope of the Study 

This research aims to design and develop a proposed CNN architecture to automate 

binary and multi-classification ‘COVID-19 pneumonia’, ‘normal’, and ‘other viral 

pneumonia’ pulmonary CT images. A thorough investigation of COVID-19, bacterial, 
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and other viral pneumonia clinical and radiological information is performed. The study 

is categorised into three stages. The initial stage includes a feasibility study of the CT 

images using CNN algorithms and classifying them. Various CNN architectures are 

studied, and the related research is included and summarised. The second stage is the 

development of CNN classification models, starting by pre-processing the CT images. 

Data augmentation is applied to upsurge the quantity and introduce variations of unseen 

datasets for training and validation.  

The final stage is to design a proposed CNN model and compare the proposed model 

with various established CNN architectures via transfer learning. Modifications to the 

hyperparameters in the CNN models are performed to ensure the models are vigorous and 

consistent.  

1.5 The Organisation of the Thesis 

The thesis is separated into five chapters. Chapter 1 presents the background research, 

problem statements,  aim and objectives, and scope of work. The research background 

provides insight into COVID-19 pneumonia and its development as a worldwide 

epidemic. The problem statement highlights the trials in detecting COVID-19 pneumonia 

using CT imaging. Also, the scope describes the research’s general roadmap. 

Chapter 2 is the literature review, a compilation of various research studies comprising 

clinical studies about COVID-19 and the current diagnostic tests and vaccines. The 

literature review also includes the study of AI in medical imaging, explaining various 

CNN architectures implemented on pulmonary CT images to classify ‘COVID-19 

pneumonia’, ‘normal’, and ‘other viral pneumonia’ images.  

Chapter 3 is the research methodology that depicts the data acquisition, pre-processing, 

data augmentation, transfer learning, proposed workflow, model training, validation, 

testing, and model designing. Chapter 4 contains the CNN models’ training, validation, 
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and test results, which are discussed accordingly. Finally, Chapter 5 concludes the 

research based on the findings, including limitations and recommendations for future 

improvement.
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CHAPTER 2: LITERATURE REVIEW 

2.1 Coronavirus Disease 2019 (COVID-19) 

2.1.1 Radiological Perspective of COVID-19 

Computer tomography (CT) images have been ideal for diagnosing COVID-19 

(Apostolopoulos & Mpesiana, 2020). There are numerous diagnostic challenges in 

applying CT scans to detect the early stages of COVID-19 pneumonia symptoms. 

Radiography imaging plays a vital role in revealing the COVID-19 pneumonia 

indications as ground-glass opacities with peripheral, bilateral, and primary basal 

distributions (Rubin et al., 2020). High-resolution CT scans can detect small lung lesions, 

visualise the inflammation, and signal the radiologist regarding the patient’s condition. 

Besides, CT images can track and monitor the progress of a treated patient. SARS and 

MERS have similar virulent aspects, clinical indications, and imaging structures, which 

are significant advantages that may assist in identifying COVID-19 imaging in the critical 

and chronic stages of the patients (Hosseiny et al., 2020). However, the WHO rejected 

CT findings without RT-PCR tests to confirm the validity of the images (Zu et al., 2020). 

COVID-19 has the primary symptoms of pneumonia. The chest X-ray images (CXR) for 

COVID-19 describe patchy or diffuse asymmetric air space opacity characteristics (Chen 

et al., 2020). Multifocal ground-glass opacities and consolidations were seen on CT scans, 

along with peripheral lung predilection and patchy ground-glass opacities on both sides 

(Chung et al., 2019). The following are the characteristics of COVID-19 patients’ CT 

images: a) ground-glass opacities; b) consolidations; c) the number of lobes affected by 

ground-glass opacities or consolidations; d) total severity scores; e) the presence of 

nodules; f) pleural effusion; g) thoracic lymphadenopathy; h) underlying lung diseases; i) 

other abnormalities in the lungs (Zu et al., 2020). Ground-glass-like lung appearances are 

most likely caused by the severe lung inflammation that prevents lung cells from 

exchanging oxygen and carbon dioxide during the SARS-CoV-2 infection (Yen-Chin Liu, 
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2020). Based on a study by (Park et al., 2021), chest CT has a sensitivity of 90% to 

diagnose COVID-19. However, the specificity varies and falls from 25% to 83%. The 

application of chest CT is limited even in hospitalised patients, where it is only performed 

with rapid tests or blood tests with high false-positive rates (Park et al., 2021).  

 Computed tomography (CT) imaging is essential for the ancillary analysis at the 

preliminary screening. The finding is subsequently verified by the positive outcomes of 

the NAATs performed on blood samples or respiratory tract specimens using RT-PCR. 

When the viral load is low, the detection rate is poor, which indicates false-negative 

results, severely restricting this diagnosis method. The positive diagnosis for COVID-19 

viral pneumonia can be assessed and results determined, and while pulmonary CT images 

may demonstrate the disease progression, neither the severity of the pulmonary condition 

nor the disease progression can be confirmed. As a result, the patient needs to be separated 

and treated immediately if they have COVID-19 suspicion and have positive imaging 

results but negative NAAT results (Dai et al., 2020).  

2.1.2 COVID-19 vs. Viral Pneumonia 

Computed tomography images (CT) are used as an essential complementary method 

to diagnose COVID-19 pneumonia when other resources like RT-PCR or sequencing are 

scarce in the emergency setting (Hani et al., 2020). Generally, the characteristics of 

COVID-19 chest CT images are the existence of ground glass opacities (GGO) usually 

found at the peripheral and sub-pleural distribution (Salehi et al., 2020; Cheng et al., 

2020).  The majority of COVID-19 patients were found to have GGO in their lower lobes, 

which was combined with focal consolidations and overlaid intralobular reticulations to 

form an odd pavement pattern.   
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Figure 2.1: COVID-19 Chest CT Findings - A) Peripheral GGO, B) Peripheral 
GGO Upper Portion of the Lungs, C) Lower Lobes Linear Consolidations (Hani et 

al., 2020) 

Figure 2.1 describes an unenhanced COVID-19 CT image of a 55-year-old male. The 

patient was tested twice using RT-PCR, and the results were negative. It was only after 

reviewing of the CT findings that a third test was conducted and finally, the result showed 

positivity (Hani et al., 2020). Multifocal bilateral patchy ground-glass opacities (GGOs), 

consolidation with the interlobular septum, and vascular thickening, which is typically 

found on the periphery of the lungs, are the most frequently found characteristics on chest 

CT scans (Li M. , 2020). GGOs and consolidation have occurrence rates of roughly 86% 

and 29%, respectively, and their prevalent form is patchy, round opacities, followed by 

triangular and linear ones (Kanne, 2020). Many viruses, including the respiratory 

syncytial virus (RSV), influenza virus, parainfluenza virus, adenovirus, measles virus, 

SARS, MERS, and COVID-19 virus, are frequently responsible for viral pneumonia 

(Hadjiliadis et al., 2022). The lungs' morphology, distributions, number of lobes, 

particular focal signs, and extrapulmonary symptoms are assessed by the chest CT 

features (Niu et al., 2021).  

Unless they have a persistent illness, older adults and younger children are more 

susceptible to viral pneumonia because their immune systems are not as developed as 

those of people in their prime (Freeman & Leigh, 2023). Many viruses, including the 

respiratory syncytial virus (RSV), influenza virus, parainfluenza virus, adenovirus, 

measles virus, SARS, MERS, and COVID-19 virus, are frequently responsible for viral 
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pneumonia (Freeman & Leigh, 2023). However, the morphology of the chest CT images 

is greatly affected by the demographics and epidemiology of society. Some patients had 

only pure GGO patterns, solid nodules, consolidations, or fibrous stripes. Other patients 

had more than one of the four morphological lesions that were used to figure out their 

clinical symptoms (Niu et al., 2021). The way CT scans are used to diagnose viral 

pneumonia has changed a lot since the invention of the thin-section CT scan, which can 

find problems in the parenchyma and help confirm the diagnosis of viral pneumonia when 

a CXR gives false negative results. (Freeman & Leigh, 2023). The viral pneumonias that 

have the closest similarity in clinical features are SARS and MERS (Park et al., 2020). 

2.2 Convolutional Neural Networks (CNN) 

CNNs are designed to mimic the structure and function of the human visual system, 

which is known to process visual information hierarchically, from simple features such 

as edges and corners to more complex ones such as shapes, objects, and scenes (Zhang et 

al., 2021) (Jozwik et al., 2017). CNN architecture is based on learning how to represent 

features in a hierarchical way from raw input data like text, images, or speech signals 

(Alzubaidi et al., 2021). To do this, CNNs use many convolutional layers, which are 

learnable filters that mix input signals with a group of learned kernels to pull out local 

features at various levels of abstraction (Li et al., 2019). Then, these features are put 

through a set of nonlinear activation functions, which are known as activation layers. 

These add nonlinearity to the neural network and let it learn the complex and nonlinear 

mapping between the input and output (Alzubaidi et al., 2021). Finally, the output of the 

last layer, typically a fully connected layer or a softmax layer, is used to make a prediction 

or classification of the input data. CNNs’ ability to automatically extract features from 

raw data without requiring manual feature engineering, their scalability to large datasets, 

and challenging tasks like object recognition, image segmentation, and natural language 

processing are their main benefits over rudimentary machine learning algorithms 
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(Alzubaidi et al., 2021). The swift advancement of medicine, in conjunction with diverse 

computational methodologies, has resulted in a multitude of advancements. Artificial 

intelligence (AI) is a subdivision of computer science. 

The human body images were generated for medical operations and diagnosis in the 

field of medical imaging. The main emphasis of medical imaging lies in the disciplines 

of radiology, cardiology, and pathology. A case study of radiology involves the detection 

of automated microcalcifications and masses on mammography, as well as lung nodules 

on chest X-rays and CT scans (Le, Yefeng, Gustavo, & Lin, 2017). Computer-aided 

diagnosis (CAD) has emerged as a supplementary diagnostic tool for experts and doctors. 

CAD applications are diverse and utilise algorithms to generate hypotheses for detecting 

anomalies in several organs, including the breasts, lungs, heart, gastrointestinal tract, 

nervous system, and the entire body (Fujita, 2020). Nevertheless, if the algorithm utilised 

by the CAD system lacks precision, it could generate incorrect positive results and 

erroneously diagnose or misidentify the patient as having an abnormality, leading to a 

different outcome. The emergence of artificial intelligence (AI) and the advancement of 

convolutional neural networks (CNN) have enabled the capability to recognise images 

and detect things within them (Sarvamangala & Kulkarni, 2022).   

The creation of CAD systems requires a significant investment of time and effort. 

Thus, humans are utilising artificial intelligence (AI) capabilities to enhance the 

effectiveness of CAD systems (Leeuwan et al., 2022). The CAD algorithm is comprised 

of two distinct components: initial lesion diagnosis and false-positive reduction. The 

initial step involves identifying the primary lesion by pre-processing, segmenting the 

body areas, generating potential candidates, and extracting relevant features. On the other 

hand, the visual representation of CAD findings by the radiologist constitutes a false-

positive reduction (Liang et al., 2021). The elucidation of CAD systems has proven to be 
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arduous. After acquiring the medical data and reference standards, it is necessary to 

annotate the data (Summer, 2017). An expert is necessary to precisely identify the specific 

location of the abnormality. For optimal accuracy in determining the location of the 

lesion, it is advisable to have multiple specialists annotate the photos. Therefore, the most 

reliable information is derived from extensive datasets, which are typically inaccessible 

until a well-financed study. 

The introduction of deep learning aimed to enhance neural network architectures by 

incorporating multiple layers to enable the representation of complex abstractions. The 

application of DL effectively identified objects in real-world photos and acquired their 

characteristics from the training data. Therefore, certain researchers have discovered that 

computer-aided design (CAD) methods that necessitate the human selection and 

annotation of hand-chosen parameters and hand-crafted features are expensive, time-

consuming, delicate, and not dependable when used with unfamiliar data (Summer, 

2017). Deep learning obviates the need for laborious manual hand-tuning techniques. 

The utilisation of chest X-rays (CXR) and computer tomography (CT) images has 

demonstrated their significant value in extracting COVID-19 features through the 

application of transfer learning (Apostolopoulos & Mpesiana, 2020). The new network 

incorporates VGG19, MobilenetV2, Inception, Xception, and ResNet v2, to execute 

classification tasks. VGG19 demonstrated the highest accuracy in binary classification, 

obtaining a rate of 98.75%. In multiclass classification, VGG19 achieved an accuracy of 

93.48% (Tulin et al., 2020). The DarkCovidNet, which is built upon the DarkNet 

architecture, achieved a binary classification accuracy of 98.8% and a multiclass 

classification accuracy of 87.02%. This was accomplished by utilising two datasets and 

employing feature extraction and transfer-learning techniques. Various CNN 

architectures such as VGG, Inception, ResNet, NASNet, Xception, MobileNet, and 

Univ
ers

iti 
Mala

ya



26 

DenseNet were selected and yielded exceptional results on the ImageNet dataset (Ohata 

et al., 2021). Subsequently, they opted for various arrangements from the learned CNN 

architectures, eliminated the fully connected layers from these arrangements, and retained 

the convolutional and pooling layers. It is essential to transform the CNN architectures 

into feature extractors for CXR images by utilising the sub-datasets as input. 

The ultimate categorization employed machine learning algorithms including Support 

Vector Machine (SVM), K-Nearest Neighbour (KNN), Bayes, Random Forest (RF), and 

Multilayer Perceptron (MLP). The author elucidated the several categories of classifiers: 

KNN is an instance-based algorithm, RF is a method that utilises decision trees, MLP is 

based on neural networks, and there are more methods as well. The MobileNet-SVM 

architecture achieved a superior accuracy rate of 98.5% for the initial dataset, while the 

DenseNet201-MLP model attained the highest accuracy rate of 95.6% for the subsequent 

dataset. Through logical inference rules, the computer may automatically reason about 

the arguments in these formal languages, which has been the goal of several AI programs 

that have aimed to hard-code information about the world. An ML logistic regression 

system suggests that a caesarean section is necessary for birth. 

Naive Bayes is another easy machine-learning technique for distinguishing between 

spam and legitimate email (Goodfellow et al., 2016). The data representation dramatically 

affects the effectiveness of simple ML techniques. For example, the obstetrician has to 

directly feed recommended information to the machine learning algorithm to inform the 

doctor of relevant information correctly. Each piece of information fed into the algorithm 

is called a feature. The application of logistic regression to the algorithm allowed the 

learning of each feature representation to correlate with various outcomes. However, the 

ML algorithm cannot produce accurate predictions if the feature is in a format other than 

the one declared appropriate for the algorithm. It is also tricky for ML to identify the 
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features and extract them accurately, especially when the feature is in pixel format. For 

example, an ML algorithm was written to identify a truck on the road. A house has gates 

and fences, which are highlighted as essential to identify the main gate. Although 

describing a gate in pixel values is problematic because it is not just the simple geometric 

shape but also the shadows of an object falling on another item, the sunlight reflected 

from the shiny metal surfaces, the fireguard at the foreground obscuring part of the object 

that happens to be in the background, and many other obstacles. An image of a red truck 

taken at night may have nearly dark pixels, and depending on the angle from which the 

image is taken, the truck’s silhouette may take various shapes. One of the solutions is 

representation learning, which allows the system to quickly adapt to new jobs with little 

human intervention. An example of representation learning is the autoencoder 

associations with an encoder function that converts the input data into various depictions 

of the input data and a decoder that alters new representations back into the original 

format (Goodfellow et al., 2016). 

Deep learning addresses this fundamental issue in representation learning; deep 

learning introduces representations in terms of other, more straightforward 

representations. The ability to generate complicated concepts out of smaller ones is a 

feature of deep learning. Multilayer Perceptron (MLP) is a feedforward deep-learning 

model with a mathematical function mapping the set of input data to output data, allowing 

the ML to learn the proper representation of the data, and the depth allows the ML to learn 

layers of representation step-by-step (Goodfellow et al., 2016).  

2.2.1 Deep Learning (DL) and CNN Architectures 

Deep learning is a subfield of AI and ML; it is considered a key technology of the 

current Fourth Industrial Revolution (Sarker, 2021). The capacity of DL to learn by 

feeding data to the models has made it an important issue to research and develop (Sarker, 
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2021). The most renowned deep learning framework is CNN architectures, which 

implement various approaches from computer vision to natural language processing 

(Kumar, 2021). The CNN architecture can learn enormous amounts of data and offer 

excellent results on many intricate cognitive tasks, similar to or even exceeding 

professional human performance expectations (Alzubaidi et al., 2021). DL has 

outperformed renowned ML methods in many fields, such as cybersecurity, NLP, 

bioinformatics, robotics and control, medical imaging, processing of medical data, and 

several more (Alzubaidi et al., 2021). Researchers are inspired to apply the DL algorithm 

to extract discriminative features from representative information with the least manual 

labour and specialised expertise (LeCun et al., Deep learning, 2015). The multitiered data 

architecture retrieves the low-level element in the first layer and the high-layer component 

in the last layer (Alzubaidi et al., 2021). The approach was initially adopted through AI, 

which simulates the operation of the sensory core of the human brain. The human brain 

can extract data from a different environment and identify it immediately. More 

accurately, the human brain can process many inputs, depending on the objective, 

classifying the object as the immediate output. CNN applies automatic detection to detect 

substantial features without human oversight, alleviating the burden and saving time, so 

it is the most widely used technique, especially for the classification and detection of 

images (Alzubaidi et al., 2021). 

DL also had its drawbacks, including lack of training data, imbalanced data between 

classes, interpretability, uncertainty scaling, catastrophic interference, model 

compression, overfitting, underfitting, disappearing gradient problems, immense 

multiplication of gradient problems and underspecification (Alzubaidi et al., 2021).  
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Figure 2.2: Types of AI Discipline (Goodfellow et al., 2016) 

Figure 2.2 describes the types of AI discipline and the evolution of AI, from ML to 

DL (Goodfellow et al., 2016). The availability of training data increases, and the 

advancement of computer infrastructure on both hardware and software encourages deep 

learning techniques to evolve and become more valuable (Sarker, 2021). The design of 

DL begins by learning the intricate structures of deep learning neural networks by 

applying practical mathematics like linear algebra, probability, and information theory, 
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the fundamentals of DL and ML, mathematical computation, deep feedforward networks, 

contemporary mathematical techniques, and research (Goodfellow et al., 2016; Sarker, 

2021). With the discovery of the AlexNet model in 2012 and the High-Resolution model 

in 2020, CNN architectures have advanced exponentially. International corporations like 

Google, Microsoft, AT&T NEC, and Facebook recognised the potential of CNN and 

expanded their research and development in the field (Celine & Kumar, 2021).  

2.2.2 Deep Feedforward Networks 

Multilayer perceptrons (MLPs) and deep feedforward networks are the same (Gupta 

& Raza, 2020). Modern DL’s primary goal is to solve real-world problems. DL 

technologies are widely used in a variety of industries (Alzubaidi et al., 2021; Sarker, 

2021). Advanced DL requires a state-of-the-art framework for supervised learning, and 

the intricate neural network becomes more complex as layers are added to create depth 

(Hu et al., 2021). It is easy for a person to perform simple tasks and activities like 

manually mapping representations of information from input to output (Sarker, 2021). 

However, carrying out intricate and complex operations that cannot be defined or 

classified by associating one vector with another in large quantities is more complicated, 

tedious, and time-consuming.  

The structure of MLPs is reasonably straightforward. The input data travels through 

the network channel, is assessed through transitional computations, and, finally, is 

directed to the output (Goodfellow et al., 2016). Feedforward neural networks do not have 

feedback connections. If a feedforward neural network is extended to include feedback 

connections, they are recurrent neural networks. Feedforward neural networks are 

designed with various functions connected to a chain structure to form neural networks. 

The chain structure comprises many layers, from the first to n. The learning algorithm of 

the MLPs determines by what method to apply these layers to achieve the required output. 
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In between the layers of the networks, there are hidden layers. Every hidden layer contains 

vector-valued elements that determine the model’s width, and the vector element is 

comparable to a neuron in the human nervous system. Although the model of the brain 

inspires modern neural network research, feedforward networks use mathematical 

probability and engineering disciplines to achieve results. The simplest way to understand 

an MLP is to start with linear networks and study the limitations of the linear function 

that it has to overcome (Brownlee, 2022). A linear function can only have an input and 

an output. Hence, it is difficult for a linear model to understand the interaction that begins 

with two inputs. A case of MLP commercial applications is CNNs applied for object 

identification and detection from images (Goodfellow et al., 2016).  

Linear models must extend to accommodate nonlinear functions but include a 

transform input. The transformed input is a bundle of feature representations describing 

the actual input instead of using the same input (Brownlee, 2022). Linear and logistic 

regressions are examples of linear models. These regressions are simple to use because 

they are efficient and reliable. However, due to their simple nature, the regressions have 

limitations because they comprise linear functions that only limit one input and output at 

a time (Zhang et al., 2021). Linear and logistic regressions cannot learn and receive two 

input variables to create an output (Goodfellow et al., 2016).  

CNNs are a subfield of deep feedforward networks that are specially developed to 

handle grid-like topologies like images (Goodfellow et al., 2016). The kernel technique 

can obtain nonlinear learning as well by utilising transform input. There are several 

methods to choose the mapping of the transform input into the function. The first method 

is to apply generic transform input (Brownlee, 2020). The algorithm can fit the training 

set as long as the dimension is high, but it does not have enough preliminary information 

to solve advanced problems (Google Developers, 2023). The second method is to 
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engineer the transform input manually. Manually engineering the transform input was the 

usual approach before deep learning became well-known in the industry; humans needed 

to put decades of work into each separate task, specialising in different elements, to 

develop the transferable algorithm (Brownlee, 2020). The third method is to learn the 

transform input using parameters to learn a broad class of functions instead of searching 

for the proper function (Brownlee, 2020). The final method is the beginning of 

deterministic mapping and extension feedforward networks with feedback connections, 

also known as recurrent neural networks (RNN) (Merkh & Montufar, 2019). Training 

kernel mapping and learning functions with response over a single vector are some 

principles that have emerged from the evolution of DL models (Goodfellow et al., 2016). 

If a set of information representations is described as x, the mapping φ provides a new 

representation of x. MLPs are the foundation for learning and training deterministic 

mappings from input to output without feedback. The kernel functions are used on the 

input representation data to link them into a higher dimension with intricate and 

complicated relationships to extract the features and provide the necessary output. The 

higher-dimensional feature mapping means the original input information is linked to new 

data points that capture non-linear relationships. Mapping information to a higher-

dimensional space increases computational costs. 

2.2.2.1 Learning XOR 

The XOR function is an “exclusive or” operation on two binary values, either 0 or 1. 

When the two inputs are the same, the XOR function returns null, and vice versa; when 

the two inputs are different, the XOR function output is one. The concept of XOR 

functions focuses on simplicity, where the network will train the features to learn four 

points, and the challenge is to fit the training set (Goodfellow et al., 2016). Linear models 

have done well so far, but nonlinear functions are more practical in describing the features 

at a given input using affine transformations controlled by parameters such as activation 
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functions. Instead of using a linear function, XOR problems can be solved by learning 

representations, which will also help the model generalise the function. The XOR 

functions learned that multiple inputs in the network cannot be linearly separated and 

require intricate models like multi-layered models (Goodfellow et al., 2016). 

2.2.2.2 Gradient-Based Learning 

The training ML and DL models with gradient descent are the foundation for designing 

and training CNN architectures. Neural networks are non-linear, which is the main 

distinction between linear models. It comprises computing the gradient of a loss function 

depending on the applied model’s parameters. The parameters are attuned to reduce the 

loss. The neural networks cause interesting loss functions to become non-linear, usually 

trained by gradient-based optimisers (Goodfellow et al., 2016). 

For MLP, all weights are initialised to small random values, and the biases start at zero 

or positive values. Firstly, there is the option to apply the cost function, loss function, or 

objective function using the cross-entropy methodology to train the data and determine 

the magnitude of the gap between the neural network’s predictions and the actual values 

(Goodfellow et al., 2016). The most straightforward approach is to predict the estimates 

of the output based on the input. Regularisation strategies like weight decay can be 

applied to the primary cost function. The modern neural network uses maximum 

likelihood. The gradient of the objective function must be substantial and consistent to 

employ as a guide for the learning algorithm; otherwise, the function is saturated, causing 

the gradient to be flat. The saturation of the gradient descent happens when the activation 

function is the output of the hidden units. The output unit is directly proportional to the 

cost function chosen in the neural network. However, the output unit can be hidden in any 

neural network model. The output units are also called linear units based on affine 

transformation without linearity. The log-likelihood function is used in ML to evaluate 
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and observe input data. Maximising it is equal to minimising the mean squared error. The 

output units, or layer, may not necessarily be the last layer. There are other examples of 

output units. For instance, the output can be linear units, sigmoid units, softmax units, and 

others, depending on the neural network and the type of distributions, which can guide 

how to design a suitable cost function to produce the output layer (Goodfellow et al., 

2016).  

The choice of neural networks trained with gradient-based optimisation determines the 

type of output units. Another choice is to determine the unit in the hidden layer of the 

model. Rectified Linear Units (ReLU) is a standard default to apply as a hidden unit. The 

choice of applying the type of suitable units is usually impossible to predict in advance, 

and designing the neural network requires a lot of trial, error, and intuition to choose a 

hidden unit that works well for the neural network (Goodfellow et al., 2016). The 

performance of the model will be assessed with validation sets. Some hidden units in the 

neural network model cannot be differentiable, e.g., when the value is 0. Therefore, the 

gradient descent can perform well in practice even though ReLU is implemented in the 

model because the neural network training algorithms usually do not reach the cost 

function’s local minimum but merely reduce the value significantly. ReLU is comparable 

to linear units; the only variance is that half of the ReLU’s output domain is 0. Whenever 

the unit is above 0, the derivatives through ReLU remain large. Logistic sigmoid and 

hyperbolic tangents were utilised before the introduction of ReLU. The sigmoid method 

was discouraged because the probability predicts the binary variable, which is 1. The 

problem with the sigmoid method is that when the unit is positive, it will be saturated at 

the high value, whereas when the unit is hostile, it will be saturated at the low value.  
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2.2.3 CNN Hyperparameters 

In CNN, there are several parameters applied for image training. The following 

parameters are standard and can be found in various CNN architectures: i) convolutional 

filter magnitude; ii) the number of kernels; iii) the number of strides; iv) padding value; 

v) activation function; vi) pooling; and vii) learning rate.  

2.2.3.1 Convolutional Filter Size 

The filter, or kernel size, is one of the hyperparameters that must be chosen carefully 

to ensure the model can adapt the correct information from the data. The kernel's 

magnitude determines the model's local or global receptive field, the region of the input 

data that impacts the activation of a particular feature map in the output (Hoogen et al., 

2023). The convolutional kernel size refers to the dimension of the filter used to extract 

features from an input image. Generally, the convolutional filter size is a square matrix 

with odd dimensions. A smaller filter size, such as 3 x 3, is commonly used in the earlier 

network layers, allowing the network to capture fine details and edges in the image. The 

larger filter sizes, such as 5 x 5 or 7 x 7, can be used in deeper network layers to capture 

more complex features or global features such as shapes and objects.  

The choice of filter size also depends on the size of the input image. If the input image 

is small, it may be beneficial to use smaller filters to prevent the loss of too much 

information in the convolutional layers. Conversely, larger filters may capture more high-

level features if the input image is large (Hossain & Sajib, 2019). 

Another important consideration when choosing the filter size is the overlap between 

adjacent filters. Overlapping filters can help capture more information regarding the 

arrangement, position, and distribution of the targeted object in the image and prevent 

loss of information at the edges (Nwe & Lynn, 2019). However, too much overlap can 

increase computational costs and slow the training process. The input data's exact tasks 
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and features determine the kernel size. It is often determined through trial and error or by 

using techniques such as grid search to optimise the hyperparameters of the network.  

2.2.3.2 Filters 

In a CNN, filters are kernels, one of the hyperparameters in the neural network, which 

are small matrices convolved with the input image to extract features. The number of 

kernels applied in a CNN architecture can be tuned constantly during training. Every filter 

produces a separate feature map, representing a specific feature the filter is designed to 

detect (Goodfellow et al., 2016; Sahoo, 2018). The number of filters used in a layer can 

affect the capacity of the CNN to identify different characteristics of an input image. A 

larger number of filters can intensify the CNN’s ability to extract more complex features, 

while a smaller number of filters can lead to faster training times and a lower chance of 

overfitting. The depth of the CNN models also impacts the filter size. The more profound 

CNN architecture requires more filters to detect more intricate characteristics from the 

input data, while smaller kernel sizes can lead to a faster training time and a reduced 

possibility of overfitting. The number of filters used in the first few layers of a CNN 

architecture is usually lower than those used in the later layers because the lower layers 

of the network detect low-level features of the images, such as edges and corners. The 

subsequent layers detect more complex features, such as objects and shapes within the 

images. The number of filters in a CNN plays an essential role in the network’s ability to 

extract useful features from an image, and it is a hyperparameter that should be carefully 

tuned during training to optimize the performance of the network.  

2.2.3.3 Stride 

Stride in CNN designates the number of pixels by which the convolutional filter is 

shifted across the input image or feature map (Shahid, 2019). It determines the number 

of steps the pixel has to move in the CNN. The default value for stride is one. It can be 
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tuned to control the spatial downsampling or upsampling of the output feature map. Stride 

plays a significant role in determining the magnitude of the output feature map. The 

following formula calculates the size of the output feature map: 

Output size = (Input Size – Filter Size)/Stride + 1     2.1 

For instance, if the input size of the image is 32 x 32, the filter size is 3 x 3, and the 

stride is 1, the output size will be 30 x 30. If the stride is increased to 2, the output size 

will be 15 x 15. Increasing the stride decreases the output feature map's spatial resolution, 

leading to more efficient computation and faster training times. However, this also results 

in losing information and details in the output feature map. In contrast, decreasing the 

stride results in a larger output feature map with more spatial resolution but requires more 

computation and longer training times.  

2.2.3.4 Padding  

Padding in CNN refers to adding extra zeros or any other predefined value around the 

input data to ensure that the output feature maps have the exact spatial resolution as the 

output feature maps, which is an essential hyperparameter in determining the result of the 

CNN. It processes an image by moving across and scanning the features individually and 

converting the pixels into data (Perera, 2018). Padding is applied to images because the 

image will shrink during CNN operations if the CNN model is more profound and 

comprises many layers (Nanos, 2023). The centre pixels of the image are often involved 

with numerous convolutional activities throughout the training and validation processes, 

and the cornel pixels of the images are often neglected. Therefore, the edges of the images 

will not be relevant because the features were not extracted. There are two main types of 

padding in CNNs: valid padding and the same padding (Pandey, 2020).  

Valid padding is no padding added to the input data. The filter is applied only to the 

valid part of the input, resulting in an output feature map that is smaller than the input 
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feature map. Valid padding is proper when the input size is large and the model is deep, 

as it reduces the computational cost and memory requirement (Nanos, 2023).  

The same padding applies when the size of the output feature map is kept the same as 

the input feature map by adding zeros or any other predefined value around the input. The 

same padding is functional when the model needs to maintain the spatial resolution of the 

input, especially in shallow networks or when the input size is small. It adds features to 

the surrounding pixels of the image to ensure the input and output sizes are equal (Nanos, 

2023) 

Another padding variant applied in one-dimensional convolutional layers is causal 

padding. The goal of causal padding is to provide information at the beginning of the data 

that assists in predicting the values earlier (Nanos, 2023).  

The decision to include padding in the CNN architecture significantly impacts the 

performance of a CNN, as it affects the size of the output feature maps, which in turn 

affects the number of parameters and the computational complexity of the model.  

2.2.3.5 Activation Function 

The activation function is a vital component of a CNN as it helps introduce 

nonlinearity into the model, allowing it to handle complex, nonlinear functions between 

input features and output labels. The activation function applies element-wise after each 

convolutional or fully connected layer. Some of the most commonly used activation 

functions in CNNs are ReLU (Rectified Linear Unit), Leaky ReLU, Sigmoid, Tanh, and 

Softmax (Himanshu, 2019).  

2.2.3.6 ReLU 

ReLU (Rectified Linear Unit) is a commonly used activation function in convolutional 

neural networks (CNNs). ReLU works similarly to a linear function that provides outputs 
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if the input is positive, or else the output will be zero. The mathematical expression for 

ReLU is: 

𝜺𝒇(𝒙) = 𝐦𝐚𝐱⁡(𝟎, 𝒙)𝜺        2.2 

Where x is the input to the function and f(x) is the output.  

ReLU has several advantages as an activation function in CNNs; it has a non-linear 

function that allows the network to model complex relationships between the inputs and 

outputs. The sparsity that ReLU produces in the activation maps means that many neurons 

in a layer output zero, which aids the network in decreasing the computational intricacy 

and prevents overfitting. ReLU only involves simple thresholding, so it is a 

computationally efficient and straightforward function that is easy to implement and 

understand.  

ReLU is an unbounded activation function, which means that the output can grow 

without limit as the input becomes bigger, leading to numerical instability and making 

the network difficult to optimise. However, ReLU has limitations. For instance, if the 

output is zero for all inputs, the ReLU neurons can “die”. Dead neurons in ReLU can 

occur during the training of the neural network if the weights in the algorithm are updated 

so that the output is always negative. Once a neuron is “dead”, it will continuously output 

zero for all future inputs, and the gradient of the loss concerning its weights will also 

become zero. Dead neurons reduce the training process, making learning difficult 

(Brownlee, 2019).  

The limitations of ReLU were addressed by proposing several ReLU variants, like 

Leaky ReLU, Parametric ReLU, and Exponential ReLU. These variants introduce slight 

modifications to the original ReLU function to address the limitation above while 

maintaining the advantages of ReLU.  
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2.2.3.7 Leaky ReLU 

Leaky ReLU is a type of activation function derived from the popular ReLU that 

addresses its limitations. The Leaky ReLU function is: 

𝒇(𝒙) = 𝐦𝐚𝐱⁡(𝒂𝒙, 𝒙)        2.3 

Where x is the input to the function, a is a small positive constant called the “leakiness” 

parameter, and max is the maximum function that returns the higher value between its 

two inputs. The leakiness parameter is usually assigned to a small value like 0.0, meaning 

the function has a slope of 1 for positive and 0.01 for negative inputs. The small slope 

exists for negative inputs to allow the Leaky ReLU function to avoid the “dying ReLU” 

problem, which happens when the ReLU function outputs 0 for all negative inputs, 

causing the gradient to be 0, preventing further learning (Himanshu, 2019).  

Leaky ReLU has become famous for many deep learning applications, especially in 

computer vision and natural language processing tasks. One of the main advantages of 

Leaky ReLU over other activation functions is its ability to handle negative input values 

without causing saturation, which can occur with other activation functions such as the 

sigmoid and hyperbolic tangent functions, improving the performance of deep neural 

networks. However, it is essential to note that the optimal choice of activation function 

depends on the specific task and dataset, and experimentation is necessary to obtain the 

best option.  

2.2.3.8 Sigmoid 

Sigmoid is applied as an activation function in a neural network; it is a nonlinear 

activation function that takes any real-valued number and “squashes” it into a range 

between 0 and 1 (Goodfellow et al., 2016). The definition of the sigmoid function is: 

𝒔𝒊𝒈𝒎𝒐𝒊𝒅(𝒙) =
𝟏

(𝟏+𝒆(−𝒙))
         2.4 
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Where x is the input to the function and e is the exponential function. 

The sigmoid function is nonlinear. The output of the sigmoid function is always 

between 0 and 1, which is helpful for binary classification tasks where the goal is to 

predict a probability that an input belongs to one of the two classes. It is also a smooth 

function, meaning it has a continuous first derivative and is helpful for gradient-based 

optimisation algorithms like stochastic gradient descent (SGD).  

The disadvantage of the sigmoid function is the vanishing gradient, which causes 

difficulty when training deep neural networks. When the input to the sigmoid function is 

very large or small, the gradient of the function becomes very small, causing difficulty in 

updating the network weights during training. It can be alleviated to some extent by using 

the ReLU activation function or its variants, like ReLU.  

2.2.3.9 Tanh (Hyperbolic Tangent) 

Tanh is the hyperbolic tangent, a popular activation function used in neural networks 

that maps its input to a range between -1 and 1. The formula of the hyperbolic function 

is:  

𝐭𝐚𝐧𝐡(𝒙) =
(𝒆𝒙−𝒆−𝒙)

(𝒆𝒙+𝒆−𝒙)
   ,         2.5 

where e is Euler’s number and x is the input value. 

Tanh is a smooth, S-shaped, zero-centred function, meaning its outputs are centred 

around zero. It is commonly used in hidden layers of neural networks and is preferred 

over the sigmoid function because it can produce both positive and negative output 

values. Tanh's property allows the model to process more complex neural networks with 

nonlinear relationships in the data. Tanh also suffers from the vanishing gradient problem. 

When the input values to the Tanh function are significant, its derivatives approach zero, 

which makes it difficult for the network to learn from the data.  
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2.2.3.10 Softmax 

Softmax is an activation function commonly used in the output layer of a neural 

network to produce a probability distribution over multiple classes. It is beneficial for 

multi-class classification problems, where the task is to predict the probability of each 

class. The Softmax function takes a vector of arbitrary real-valued scores as input and 

produces a vector of the same size as output, where each element represents the 

probability of the corresponding class. The output vector is a probability distribution, 

meaning that the sum of all its elements equals one (1). 

The formula for the Softmax function is:  

𝝈(𝒛𝒋) =
𝒆
𝒛𝒋

𝝃𝒌=𝟏
𝑲 𝒆𝒛𝒌

 ,          2.6 

where z is the input vector of scores, 𝜎(𝑧𝑗) is the output vector of probabilities, and K 

is the number of classes. 

In this formula, 𝑒𝑧𝑗 represents the “importance” of the j-th class, and the denominator 

𝜉𝑘=1
𝐾 𝑒𝑧𝑘  is the sum of the “importance” values of all classes. The softmax function 

normalises these “importance” values by dividing each by the sum so that they add up to 

one, which makes them suitable to represent probabilities, which is easy to interpret. The 

formula is differentiable, which makes it suitable for use in backpropagation algorithms 

to train neural networks. The softmax function is also monotonic, which means that 

increasing the score for one class will increase the probability of that class and decrease 

the probability of other classes.  

The activation function option depends on the specific tasks of the assigned CNN 

architecture. Trial and error is often required to determine which activation function 

works best for the given problem.  
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2.3 Types of CNN Architecture 

The term architecture applies to the overall structure of the network, including the 

number of units they should have and how they are connected. Neural networks are 

arranged into groups of units known as layers. Each layer will consist of weight, bias, and 

units. The architecture design considers the depth and width of each layer. The application 

of  CNN has proven useful, especially when human experts are limited and unavailable 

to perform the tasks personally (Yadav & Jadhav, 2019). Sometimes, experts or highly 

skilled professionals cannot explain the decisions made. This situation can be observed 

in understanding languages and medical decisions like reading CT or CXR images to 

differentiate between COVID-19, viral and bacterial pneumonia, and speech recognition. 

Problems and solutions sometimes update over time, like price prediction, stock 

preference, weather prediction, and tracking. (Carvelli et al., 2020; Fauw et al., 2018; 

Topol, 2019; Kermany et al., 2018). Table 2.1 shows the prominent CNN architecture 

from 1998 to 2021. 

Table 2.1: Prominent CNN Architectures from 1998 – 2021. 

Sources CNN Contributions 

(Wu et al., 

2021) 

AutoFormer 

(2021) 

Microsoft Research Asia once again used 

transformer-based architecture that uses a “masked 

token prediction” pretraining task to learn better 

representations of images. 

(Chen et al., 

2021) 

CrossViT 

(2021) 

Microsoft Research Asia combines the transformer-

based architecture of ViT with cross-attention 

mechanisms to capture global and local features in 

images. 
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Table 2.1: Continued. 

(Liu et al., 

2021) 

Swin 

Transformer 

(2021) 

Microsoft Research Asia introduced a transformer-

based neural network that uses hierarchical feature 

pooling to capture images' local and global spatial 

relationships.  

(Zhang et al., 

2020) 

ResNeSt 

(2020) 

The Chinese University of Hong Kong builds this 

CNN upon the residual learning framework of ResNet 

and introduces a new “split attention”. 

(Dosovitskiy 

et al., 2020) 

Vision 

Transformer 

(ViT) (2020) 

Google introduces it as a transformed-based neural 

network that uses a self-attention mechanism to 

capture spatial relationships between image patches.  

(Radosavovic 

et al., 2020) 

RegNet 

(2020) 

It uses the ‘regularisation’ module to encourage the 

network to learn more efficiently. 

(Tan & Le, 

2019) 

EfficientNet 

(2019) 

It uses a compound scaling method to optimise 

network depth, width and resolution. 

(Howard et 

al., 2017) 

MobileNet 

(2017) 

The model is optimised for deployment on mobile and 

embedded devices 

(Hu et al., 

2017) 

SENet 

(2017) 

It was introduced to improve the ability of the 

network to model interdependencies between feature 

channels.  

(Huang et al., 

2017) 

DenseNet 

(2017) 

It concatenates feature maps from all previous layers. 

(Xie et al., 

2017) 

ResNeXt 

(2017) 

The improved version of ResNet with ‘cardinality’ 

increases the model's width instead of the depth. 

(Szegedy et 

al., 2016) 

Inception v4 

(2016) 

It is an improved version of the Inception module 

Univ
ers

iti 
Mala

ya



45 

Table 2.1: Continued. 

(He et al., 

2015) 

ResNet 

(2015) 

It introduces residual learning to train intense 

networks.  

(Szegedy et 

al., 2015) 

Inception v3 

(2015) 

It is an improved version of Google. 

(Szegedy et 

al., 2014) 

GoogleNet 

(2014) 

Uses ‘inception’ modules to capture multiple scales 

of features 

(Simonyan & 

Zisserman, 

2015) 

VGG (2014) It consists of tiny filters and deeper layers than 

AlexNet. 

(Zeller & 

Fergus, 2013) 

ZFNet 

(2013) 

It is a modified version of AlexNet with smaller 

filters. 

(Krizhevsky 

et al., 2012) 

AlexNet 

(2012) 

Winner of ImageNet Large Scale Visual Recognition 

2012 

(LeCun et al., 

1998) 

LeNet (1998) CNN architecture, used for handwritten digit 

recognition 
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2.3.1.1 LeNet 

LeNet, formerly known as LeNet-5, is a CNN architecture that Yann LeCun and 

his colleagues at AT&T Bell Laboratories introduced in 1998 (LeCun et al., 1998). LeNet 

is a simple architecture and one of the first to be developed. It was designed for character 

recognition applications, specifically for recognising handwritten digits. It is an old-

school CNN architecture that cannot be scaled to all image classes (Alzubaidi et al., 

2021). However, some research has applied novel LeNet to CT images (Islam & Matin, 

2020). LeNet has two convolution layers, two pooling layers, and three fully connected 

layers, making it seven. The input layer to the network is grayscaled images, and the 

output probability distribution over ten classes corresponds to the digits 0–9. Le Net 

served as the pioneer of CNN architecture in deep learning. Although it is no longer 

widely used for image classification, it is the base for many modern CNN architectures 

(Alzubaidi et al., 2021).  

LeNet-5 comprises several convolutional and pooling layers, followed by one or 

more fully connected layers with Gaussian connections, and, finally, the output layer. The 

convolutional layers use small 5 x 5 or 3 x 3 kernels and a small number of channels, 

decreasing the parameters in the model to avoid overfitting. The pooling layers are used 

to reduce the spatial dimensions of the feature maps, and max pooling or average pooling 

is used to extract the most prominent features.  

One of the critical contributions of LeNet was the application of the “gradient-

based learning” algorithm for training neural networks, also known as backpropagation 

(LeCun et al., 1998), which used the chain rule of calculus to compute the gradients of 

the loss function efficiently concerning the model parameters. Backpropagation allows 

the network to learn from the vast amount of labelled data and improve its performance 

over time.  
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LeNet achieved advanced performance in several character recognition tasks and 

has since inspired the development of many other CNN architectures for computer vision 

tasks. While LeNet is relatively simple compared to the more recent CNN architectures, 

it was a pioneering work that helped establish the foundations of deep learning and 

demonstrated the potential of CNNs for image recognition tasks. Figure 2.3 describes the 

LeNet diagram.  
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Figure 2.3: LeNet Diagram (LeCun et al., 1998) 
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2.3.1.2 AlexNet  

In the 2012 ImageNet competition (Krizhevsky et al., 2012), AlexNet was 

discovered as an effective neural network applied to various computer vision applications 

(Szegedy et al., 2015). AlexNet pioneered CNN in computer vision and set standards for 

the neural network. It was introduced to improve learning capabilities by increasing the 

layers' depth and optimising parameters (Alzubaidi et al., 2021; Krizhevsky et al., 2012). 

AlexNet recommended ReLU nonlinearity as the activation function, overlapping 

pooling, dropout, and the effectiveness of DCNN in image recognition. The 

implementation of ReLU has become the standard technique in CNN training. Since then, 

convolutional neural networks’ quality has significantly improved by using deeper and 

broader network designs to yield high performance. 

AlexNet, though revolutionary when it was discovered, has several limitations, 

which include a lack of scalability, large numbers of parameters, overfitting, fixed input 

size, and lack of depth (Ayyar, 2020). AlexNet has 60 million parameters (Krizhevsky et 

al., 2012), but it is not deep enough to classify intricate features from an image. CT images 

are complex images with various resolutions, depending on the type of CT equipment 

used on the patient. CT images differ from natural images, and data preprocessing is 

required to adjust the image to fit the model. The input size of 224 x 224 is fixed and must 

be adjusted to fit the model (Krizhevsky et al., 2012). Figure 2.4 shows the architecture 

of AlexNet. Univ
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Figure 2.4: AlexNet Diagram (Krizhevsky et al., 2012) 
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2.3.1.3 ZF Net 

ZF Net, also known as “Zeiler and Fergus Net,” is a CNN architecture introduced in 

2013 by researchers at New York University and Facebook AI Research (Zeller & Fergus, 

2013). It was designed to improve the performance of CNN architecture on the ImageNet 

dataset, a massive visual recognition competition dataset that contains millions of labelled 

images across thousands of object categories.  

AlexNet, which had acquired advanced results on the ImageNet dataset in 2012, served 

as an inspiration for ZF Net. It retained the overall structure of AlexNet but utilised 

smaller filter sizes in the convolutional layers to capture more detailed features of the 

input images. ZFNet also applied smaller stride sizes in the pooling layers, preserving 

more spatial information in the output feature maps (Zeller & Fergus, 2013).  

ZF Net key contribution was applying “deconvolutional” layers to visualise the learned 

features in the network. Deconvolutional layers are the inverse of convolutional layers 

and are used to reconstruct the input image from the output feature maps of the CNN 

layer. Using this technique, the researchers could understand how the network 

represented the different objects and textures within the input images. Since then, ZF Net 

has inspired researchers to develop many other CNN architectures that use smaller filter 

sizes and stride sizes to capture more detailed features and preserve more spatial 

information. Figure 2.5 describes the layout of ZFNet. Univ
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Figure 2.5: ZFNet Diagram (Zeller & Fergus, 2013) 
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Overall, the ZF Net architecture is similar to AlexNet but with slightly different sizes 

and strides that were optimised through a process called “visualizing and understanding 

convolutional neural networks" (Zeller & Fergus, 2013), which involved using 

visualization techniques to understand the behaviour of the model better and improve its 

performances.  

2.3.1.4 VGG Net 

The Visual Geometry Group (VGG) was created to increase the depth of the neural 

network to increase the model performance (Simonyan & Zisserman, 2015). The deep 

CNN architecture shown in VGG16/VGG19 has 16 and 19 layers, and uses small 

convolution filter sizes (3 x 3). As a result, it works better  (Simonyan & Zisserman, 

2015). The design of VGG is straightforward. The structure of the models applied 

recurring convolutional layers and max pooling layers to make the model deeper 

(Simonyan & Zisserman, 2015). The model has small convolutional kernel sizes. 

Although VGG has compelling features and a simple architectural design, the 

computational cost of evaluating the network is very high. VGG employs three (3) times 

more parameters than AlexNet’s 60 million parameters, which makes VGG less desirable.  

2.3.1.5 GoogLeNet 

GoogLeNet, also known as Inception-v1, was developed using only 5 million 

parameters and a sparse structure instead of fully connected network architectures, 

drastically cutting the computational cost while outperforming its forerunner. Due to its 

low computing cost and limited memory, Inception is now practical for big-data settings. 

The general design principle of Inception is to avoid representational bottlenecks at the 

beginning of the network. 
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2.3.1.6 ResNet 

ResNet is short for “Residual Network”. Researchers from Microsoft Research 

first introduced it in 2015. The CNN architecture was developed to address the vanishing 

gradients issue in AlexNet, VGG, and GoogLeNet (Alzubaidi et al., 2021). The ResNet 

architecture comprises a series of convolutional, batch normalisation, ReLU layers, and 

residual blocks. The basic building block of ResNet is called the “Residual Block”. It 

consists of two convolutional layers with a skip connection or residual mappings that 

directly create a channel from the input to the output of the second convolutional layer. 

The “Residual Block” learns residual mappings. In other words, the network learns to 

model the difference between the input and output of a block instead of trying to learn the 

output from the input directly, making the network much more profound than traditional 

neural networks while maintaining good performance. CNN architectures before ResNets 

applied standard feedforward neural networks where the output of one layer is the 

sequential input to the next (He et al., 2015). Unfortunately, as the input images become 

more intricate than standard images, it requires a deeper network to learn and train, 

causing the gradient's value to become small until the point of insignificance, leading to 

vanishing gradients (He et al., 2015). ResNet was created to fix vanishing gradients by 

collecting the leftover data needed to make the output and using those leftover 

connections to let gradients flow easily (He et al., 2015). Residual blocks were developed 

to train intense networks. Figure 2.6 is the diagram of a general ResNet model. 
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Figure 2.6: ResNet Diagram (He et al., 2015) 
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architecture includes 5 sets of residual blocks, with the number of blocks per set 

depending on the specific ResNet variant. The residual blocks are repeated throughout 

the network, with the number of filters increasing as the spatial dimensions of the feature 

maps decrease (He et al., 2015). 

2.3.1.7 Inception v3 and Inception v4 

Inception v3 was introduced in 2015 after ResNet. It was designed to improve the 

original Inception network by addressing its limitations, like its high computational cost 

and many parameters in the network (Szegedy et al., 2015). The novelty of Inception v3 

is the use of “factorised” convolutions, which decompose a standard convolution into two 

smaller convolutions (Szegedy et al., 2015). The “factorised” method decreases the 

number of parameters and improves computational efficiency. The neural network also 

uses a “bottleneck” that reduces the number of channels in the input before applying 

convolutions to reduce computational costs.  

Inception v3 consists of Inception module blocks of convolutional layers that use 

various kernel sizes in parallel. Several kernel sizes capture different feature types in the 

input image and improve the network’s performance. The network can capture a wider 

range of features with multiple kernel sizes in parallel.  

The architecture includes a final pooling layer and a fully connected layer, followed 

by a softmax output layer for classification. The CNN applied a combination of batch 

normalisation, dropout, and auxiliary classifiers to improve training stability and prevent 

overfitting. Figure 2.7 describes the layout for Inception v-3. 
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Figure 2.7: Inception v-3 Diagram (Szegedy et al., 2015) 
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A stem convolution and pooling layer comes first in the Inception v3 architecture, 

followed by several inception blocks (Szegedy et al., 2015). The Inception blocks 

comprise multiple parallel convolutional layers with different kernel sizes and stride 

values concatenated at the end. The output layer of the Inception block is through a final 

pooling layer, a fully connected layer, and an output layer with 1000 classes for image 

classification tasks.   
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Figure 2.8: Inception v-4 Diagram (Szegedy et al., 2016) 
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Inception v4 architecture is similar to Inception v3 architecture, with several 

improvements. The upgraded version includes several new design features to improve 

accuracy, including residual connections, factorised 7 x 7 convolutions, and a stem 

module that combines convolutional layers and pooling layers to reduce the input size. 

The residual connections introduced in the ResNet architecture allow the network to learn 

an identity function and overcome the vanishing gradient problem. The factorised 7 x 7 

convolution reduces the computational cost of the network while maintaining accuracy. 

The stem module aids the network in extracting more valuable features from the input 

data by decreasing the spatial size.  

Figure 2.8 describes Inception v-4. The application of “Inception-A” and “Inception-

B” blocks replaces some of the standard inception blocks, includes a more significant 

number of parallel convolutional layers with varying kernel sizes, and is designed to 

capture a broader range of features. These reduction blocks use a combination of 

convolution, max pooling, and average pooling operations to reduce the feature map size 

while preserving important features.  

2.3.1.8 DenseNet 

DenseNet, known as the Dense Convolutional Network, aims to improve the channel 

of data and gradients through the network by introducing dense connections between 

layers (Huang et al., 2017). In typical neural network architectures, each layer takes input 

feature maps from all preceding layers, resulting in a dense connectivity pattern. Within 

the dense layer, each layer is connected to every other layer in a feedforward manner. A 

dense block typically ends with a transition layer that reduces the number of feature maps 

and spatial resolution and helps to control the number of parameters in the network. The 

model has achieved advanced results on various image classifications. Figure 2.9 shows 

the DenseNet architecture.  
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Figure 2.9: DenseNet Diagram (Huang et al., 2017) 
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operation that reduces the spatial dimensions of the feature maps and an “excitation” 

operation that learns a set of weights to apply to the channel. These weights are learned 

during training and are used to scale the feature maps to amplify more critical feature 

maps and suppress less important feature maps (Hu et al., 2017).  

The squeeze layer is the global average pooling layer that applies one value for each 

feature map and condenses the spatial dimension to one value. An MLP that learns a set 

of weights that scale each feature map according to its significance creates the excitation 

layer. The following convolutional block in the network receives the scaled feature maps 

as the final step (Hu et al., 2017).  

2.3.1.10 MobileNet 

MobileNet is a CNN architecture designed for efficient mobile applications with 

limited computational resources (Sandler et al., 2019). The model’s novelty applies 

depth-wise separable convolutions that significantly decrease the number of parameters, 

reducing computational costs (Sandler et al., 2019). Depth-wise convolution applies a 

single filter of 3 x 3 kernels to each input channel separately. Point-wise convolution is 1 

x 1 convolution, also known as network-in-network layer. It changes the number of 

channels, which refers to the depth of a neural network that assists in transforming the 

features and decreasing the dimension of the channel space. Depth-wise convolution is 

often followed by point-wise convolution. (Sandler et al., 2019). It has become a famous 

architecture for mobile vision applications due to its lightweight architecture to extract 

features and information within the space and decrease computational cost (Sandler et al., 

2019).  

MobileNet uses other methods to make it smaller and cheaper to run. For example, it 

uses a linear bottleneck structure to lower the number of input channels for each depth-

wise convolution, a width multiplier to lower the number of output channels for each 
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point-wise convolution, and a global average pooling layer instead of a fully connected 

layer at the network's end (Sandler et al., 2019).   

2.3.1.11 EfficientNet 

EfficientNet was presented in 2019 by Google researchers to find the ideal balance 

between model size, accuracy, and computational efficiency by expanding the network 

architecture in a principled way (Tan & Le, 2019). The architecture consists of a series of 

building blocks repeated multiple times, forming a hierarchy of feature extractors. The 

feature maps' width, depth, and resolution are increased at each level, allowing the model 

to capture more intricate patterns. At the lowest level, the network consists of a stem 

convolution layer followed by a series of repeated blocks that include depthwise separable 

convolutions with fewer parameters than traditional convolutions (Tan & Le, 2019).  

The EfficientNet architecture is scaled using a complex scaling method that 

concurrently expands the network's width, depth, and resolution. Because of the method, 

RegNet attains higher accuracy with fewer parameters than previous CNN architectures. 

The basic building block of an EfficientNet network is called an MBConv block, which 

stands for Mobile Inverted Residual Bottleneck Convolution (Tan & Le, 2019). It consists 

of a depth-wise separable convolution. EfficientNet uses a series of these blocks, with 

different numbers of repetitions and different kernel sizes, to create the complete network 

architecture. 

The architecture consists of a series of MBConv blocks with different kernel sizes, 

expansion factors, output channels, and strides. The network’s depth coefficient 

determines the number of repetitions for each block, while the network’s width coefficient 

determines the output channel size. The network’s resolution coefficient determines the 

resolution of the input image. Additionally, the network's depth, width, and resolution are 
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scaled up or down using a set of scaling coefficients to create a family of EfficientNet 

models with different sizes and computational costs.  

The EfficientNet has a few variants. The number of variants in the name dictates the 

overall scale of the model. The highest number means that the model is the most accurate 

of all the other variants.  

2.3.1.12 RegNet 

RegNet uses systematic design space exploration to optimize the neural network 

architecture based on simplicity, scalability, and regularization principles (Radosavovic 

et al., 2020). RegNet consists of a sequence of building blocks called RegNetX and 

RegNetY, where X and Y represent the number of layers and the width multiplier, 

respectively. RegNetY networks are wider than RegNetX networks and are designed for 

larger computation budgets.  

The RegNet architecture uses group normalization, which normalizes the activation 

statistics of a group of features instead of normalizing each feature independently, and 

residual bottleneck blocks with width-wise convolutions, which reduce the number of 

input channels before applying a standard convolution. With this strategy, accuracy is 

maintained while computing complexity is decreased. With fewer parameters and a 

quicker inference time than other top architectures, the RegNet architecture has exceeded 

performance expectations on various benchmarks for image classification (Radosavovic 

et al., 2020). 

Convolutional layers with 32 filters and a stride of 2 are applied in the first layer of the 

RegNet architecture to minimise the input’s spatial dimensions, and next is a max pooling 

layer with a 3 x 3 pool and a stride of 2. Subsequently, the network has a sequence of 

residual blocks with a progressively more significant number of filters, each consisting 
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of two convolutional layers that skip the residual block. The network uses group 

normalization after each residual block to normalise the activation statistics of each group 

of features. Finally, the network uses a global average pooling layer to produce a fixed-

size feature vector, followed by a fully connected layer and a softmax activation to 

produce the classification probabilities for the input image (Radosavovic et al., 2020).  

2.3.1.13 ViT Transformer 

The ViT transformer method was first applied in natural language processing (NLP), 

but it can be applied to classify complex images (Dosovitskiy et al., 2020). It is a 

transformer, which dictates that the model is convolution-free (Chen et al., 2021). It is a 

transformer-based method with a performance that exceeds CNNs for image 

classification (Chen et al., 2021). The basic idea of ViT is to represent an image as a 

sequence of patches, each of which is embedded into a vector using a learnable 

embedding function. The sequence of patch embeddings is then fed into a transformer 

encoder, which consists of multiple layers of self-attention and feedforward neural 

networks. The classification head is usually an FC layer receiving the transformer 

encoder's output to produce the final prediction.  

ViT Transformer divides the input image into non-overlapping ‘p’ patches. Each patch 

is flattened into a vector and passed through a linear projection layer to get a patch 

embedding; to obtain a series of token embeddings, the patch embeddings are 

concatenated and put through a linear projection layer. A classification task can be 

optimised by adjusting the number of transformer and hidden layers, attention heads, and 

patch embedding size (Dosovitskiy et al., 2020).  

2.3.1.14 ResNeSt  

ResNeSt (Residual Neural Network with Split-Attention) is a deep learning 

architecture inspired by the original ResNet architecture and incorporating a split-
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attention mechanism to capture the interdependencies between channels in convolutional 

feature maps effectively (Zhang et al., 2020). The split-attention mechanism involves 

dividing the channels of a convolutional feature map into multiple groups and more fine-

grained relationships between channels, leading to better feature representations and 

improved performance. ResNeSt also introduces a nested multi-scale architecture, where 

each network stage is composed of multiple parallel branches that process features at 

different scales (Zhang et al., 2020), allowing the network to capture information more 

effectively across a range of spatial scales and resolutions.  

The ResBlock is the basic building block of the ResNeSt architecture. It consists of a 

sequence of operations, including convolution, batch normalisation, and activation, 

followed by a split-attention mechanism. The ResBlock is repeated multiple times within 

each stage of the network. The number of ResBlocks in each stage depends on the depth 

of the network, with deeper networks having more ResBlocks.  

2.3.1.15 Swin Transformer 

Swin Transformer is a proposed architecture for vision tasks that combines the benefits 

of the transformer and the convolutional neural network (Liu et al., 2021). Swin 

Transformer applies a hierarchical architecture with several stages consisting of blocks; 

each block starts with a layer normalisation operation on the input. Subsequently, a 1 x 1 

convolution is applied at the input, dividing the channels into four. The generated feature 

maps are divided into p x p sized patches on a grid. A convolutional layer of 3 x 3 with 

filters is implemented (Liu et al., 2021). The resulting feature maps are then aggregated 

into a single tensor using a 1 x 1 convolution with ‘c’ filters. A connection to bypass the 

in-between channels is added from the input to the output of the block, which is also 

normalised. Finally, a ReLU is applied (Liu et al., 2021).  
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The Swin Transformer architecture is based on a series of these blocks, each with an 

increasing spatial resolution. The input is downsampled at each stage, increasing the 

number of channels. The Swin Transformer also uses a shifted window mechanism, 

which allows overlapping receptive fields and reduces the need for pooling operations. 

The Swin Transformer has achieved advanced results on several target datasets for image 

classification and object detection tasks.  

2.3.1.16 CrossViT 

The CrossViT is a recently proposed computer vision model that combines the Vision 

Transformer (ViT) architecture with a cross-attention module. The CrossViT architecture 

comprises a stack of CrossViT blocks, each containing multiple multi-scale attention 

layers. These layers use a combination of self-attention and cross-attention mechanisms 

to capture the input image's local and global features. The self-attention layers capture 

local features, while the cross-attention layers capture global features by attending to 

features from other spatial locations. The CrossViT block’s multi-scale attention layers 

produce a collection of attention feature maps from various scales after receiving input 

feature maps from the input layer before them. The attended feature maps are then 

processed by a feed-forward network and normalised using layer normalisation. The 

output of the block is fed into the next block in the stack. Instead of requiring quadratic 

time, the CrossViT model only requires linear time for computational and memory 

complexities (Chen et al., 2021). Overall, CrossViT is a powerful and flexible architecture 

that achieves advanced performance on various image classification benchmarks and is 

computationally efficient. There are many other variations of ViT transformer models; 

CrossViT developed a dual-path representation incorporating a vision transformer (Chen 

et al., 2021).  
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CrossViT architecture incorporates a multi-scale attention mechanism that operates 

across multiple levels of feature maps. The architecture especially applies a hierarchical 

attention mechanism that attends to the feature maps' spatial and channel dimensions at 

different scales. The multi-scale attention mechanism is composed of two types of 

attention modules: i) cross-level attention (CLA) and ii) cross-scale attention (CSA). The 

CLA module attends to the channel dimension across different levels of feature maps, 

while the CSA module attends to both the spatial and channel dimensions at the same 

level of feature maps.  

The spine of the CrossViT architecture is typically a convolutional neural network that 

extracts features from the input image. The multi-scale feature maps are obtained by 

applying convolutional layers with different spatial resolutions and channel dimensions. 

The multi-scale attention modules then operate on these feature maps to attend to relevant 

and suppress irrelevant features. Finally, the classification output is produced based on 

the observed features.  

The CLA module takes input feature maps at different levels and computes the 

channel-wise attention weights for each level. It computes the pairwise similarity between 

the channels of different levels and uses these similarities to compute the channel-wise 

attention weights. The attention weights are then applied to the feature maps to obtain the 

attended feature maps.  

The CSA module takes as input the feature maps at the same level and computes the 

spatial and channel-wise attention weights. The module computes the pairwise similarity 

between the spatial locations and the channels and uses these similarities to compute the 

attention weights. The attention weights are then applied to the feature maps to obtain the 

attended feature maps.  
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The output feature maps are obtained by combining the attended features from 

different levels and scales. These attended feature maps are then passed through a set of 

fully connected layers to produce the classification output. 

2.3.1.17 AutoFormer 2021 

The AutoFormer is a novel deep-learning architecture for image classification tasks 

proposed in 2021. The architecture combines convolutional neural networks and 

transformers using self-attention mechanisms to capture long-range dependencies within 

images (Wu et al., 2021). The AutoFormer architecture consists of a backbone network 

of multiple blocks, each containing convolutional and transformer layers. The 

convolutional layers are used for feature extraction, while the transformer layers are used 

for modelling the relationships between features. The transformer layers in the 

AutoFormer architecture use multi-head self-attention to capture the relationships 

between features at multiple scales. Specifically, the self-attention mechanism is applied 

to different subsets of feature maps with different spatial resolutions (Wu et al., 2021). 

This enables the model to capture local and global context within the image. The 

AutoFormer architecture also includes a novel attention mechanism called “shifted 

window attention”, which reduces self-attention's computational complexity by limiting 

the attention range to a local region. The model focuses on relevant features while 

ignoring irrelevant ones, leading to improved performance.  

Each transformer block contains several layers, including multi-head self-attention, 

convolution, and normalisation layers. The multi-scale attention mechanism is achieved 

by applying self-attention to different subsets of feature maps with different spatial 

resolutions. The shifted window attention mechanism is also applied to limit the range of 

attention. In conclusion, the AutoFormer architecture shows promising results on various 
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image classification benchmarks, demonstrating the effectiveness of combining 

convolutional and transformer networks.  
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2.3.2 CNN Architecture Challenges and Limitations 

Table 2.2 describes the challenges and limitations of the existing CNN models. ResNet, 

a convolutional neural network, constructs networks by stacking residual blocks. ResNet 

has several variations, namely ResNet 50, ResNet 101, and ResNet 152. The performance 

was proven to be impressive, but it has certain drawbacks and difficulties. The 

computational density of ResNet 50 is comparable to MobileNets or EfficientNets, which 

require a disproportionately higher floating point operation per second (FLOPs) (Neural 

Magic, 2020). The computational density is the reason that ResNet 50 requires GPUs to 

process. ResNet 50 may suffer from vanishing or exploding gradients that hinder 

convergence during the training of the neural network (Kaushik, 2022). Accuracy 

becomes saturated as the depth increases and subsequently declines. Adding more layers 

to a suitable deep model resulted in a larger training area. The ResNet applied a bottleneck 

design to minimise the number of parameters and matrix multiplications, so each layer 

can be trained quickly. Nonetheless, ResNet might reduce the network’s capacity for 

representation (Zuk, 2020). Another CNN architecture that was inspired by ResNet and 

expanded by adding more dimensions was called ResNeXt. The expansion of the latter 

model was greater in depth and width, increasing the computational costs even further. 

Due to the high memory requirement, the ResNeXt model needed significant resources 

to store intermediate computations and parameters (Masters & Luschi, 2018). The model 

applied batch normalisation to improve classification performance and convergence 

speed (Park S. , 2021). However, the number of hyperparameters increases, causing a 

disparity in the input image’s performance between training and inference (Masters & 

Luschi, 2018). During training, the ResNeXt model applied mini-batch statistics to 

compute errors and update the model, which significantly affected the stability and 

convergence of the model (Brownlee, 2019). 
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Table 2.2: Challenges and Limitations of the Existing Models. 

No Sources Model Type Challenges and Limitations 
1 (Ardakani et 

al., 2020; 
Nguyen et al., 
2020; Gozes 
et al., 2020; 
He et al., 
2015) 

 

ResNet50 • Radiologists had difficulty 
ascertaining COVID-19 and other 
atypical and viral pneumonia images 
because they have similar symptoms. 

• Deep networks require significant 
computational resources and 
memory.  

• They are overfitting on small 
datasets or datasets with different 
characteristics from the training set. 

• When training intense networks, 
vanishing or exploding gradient 
problems might occur, even with 
skip connections (residual blocks). 

• The model is prone to overfitting 
when the dataset is insufficient.  

2 (Ardakani et 
al., 2020; 
Nguyen et al., 
2020; Narin et 
al., 2021; He 
et al., 2015) 

ResNet101 • Radiologists had difficulty 
ascertaining COVID-19 and other 
atypical and viral pneumonia images 
because they have similar symptoms. 

• Deeper models suffered from 
vanishing or exploding gradients. 

• Small datasets are challenging due to 
overfitting. 

3 (Ardakani et 
al., 2020; 
Nguyen et al., 
2020; Xie et 
al., 2017) 

ResNeXt101 • Radiologists had difficulty 
ascertaining COVID-19 and other 
atypical and viral pneumonia images 
because they have similar symptoms. 

• A large number of parameters 
required substantial computational 
resources. 

• The hyperparameter tuning for 
cardinality is time-consuming. 

4 (Ardakani et 
al., 2020; 
Nguyen et al., 
2020; Huang 
et al., 2017) 

DenseNet • Radiologists had difficulty 
ascertaining COVID-19 and other 
atypical and viral pneumonia images 
because they have similar symptoms. 

• A dense connectivity pattern resulted 
in high memory consumption during 
training. 

• Dense connectivity made the model 
computationally expensive.  
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Table 2.2: Continued. 
5 (Ardakani et 

al., 2020; 
Nguyen et al., 
2020; 
Szegedy et 
al., 2014) 

GoogleNet • Radiologists had difficulty 
ascertaining COVID-19 and other 
atypical and viral pneumonia images 
because they have similar symptoms. 

• The large number of parameters 
increases the memory and 
computational requirements. 

• The architecture is more complex, 
causing it to be more challenging 
during training and fine-tuning. 

• The auxiliary classifiers during 
training can introduce additional 
overhead. 

6 (Ardakani et 
al., 2020; 
Nguyen et al., 
2020; Cheng 
Jin et al., 
2020) 

ResNet152 • The challenges are similar to 
ResNet101 due to the increased 
depth. 

7 (Ardakani et 
al., 2020; 
Nguyen et al., 
2020; 
Krizhevsky et 
al., 2012) 

AlexNet • It is an older architecture compared 
to more modern models and has 
limitations in depth and complexity. 

8 (Ardakani et 
al., 2020; 
Simonyan & 
Zisserman, 
2015)  

VGG-16 • The architecture is shallow 
compared to more modern 
architecture. 

9 (Ardakani et 
al., 2020; 
Simonyan & 
Zisserman, 
2015)  

VGG-19 • It experienced similar challenges as 
VGG-16. 

10 (Ardakani et 
al., 2020; 
Iandola et al., 
2016)  

SqueezeNet • The application of aggressive 
compression techniques reduces the 
number of parameters, but it might 
cause a loss in performance.  

11 (Ardakani et 
al., 2020; 
Sandler et al., 
2019)  

MobileNet-V2 • The network is designed for efficient 
mobile and embedded device 
deployment but may cause lower 
accuracy than larger models. 
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Table 2.2: Continued. 
12 (Ardakani et 

al., 2020; 
Chollet, 2017)  

Xception • The complexity of the model 
increases the computational cost. 

 

2.4 Deterministic Implementation 

The deterministic algorithm in deep learning ensures that the results are reproducible 

and confirmable. The main goal of the algorithm is to achieve replicability (Nagarajan et 

al., 2018). The deterministic implementation ensures that the output equals any given 

input while operating under predetermined experimental conditions (Nagarajan et al., 

2018). Because it operates efficiently on machines and is the most used algorithm in DL 

research. Deterministic implementation is essential because it allows for reproducibility 

and consistency in the results. Deterministic implementation for CNN can be achieved by 

setting the seed value for the random number generator to ensure that the same initial 

conditions are used every time the model runs. However, some operations in the deep 

learning framework are non-deterministic, which means that each time the algorithm of 

the neural network runs, the results will always be different, even by providing the same 

inputs like batch normalisation and dropout. Hence, non-deterministic operations should 

be avoided.  

ResNets, GoogleNet, DenseNet, and ResNeXt models all apply deterministic 

implementation techniques (He et al., 2015) (Szegedy et al., 2014) (Xie et al., 2017) 

(Huang et al., 2017). Non-determinism often originates from GPUs as its source. 

Numerous GPU processes are non-deterministic by nature (Nagarajan et al., 2018). The 

advantages of deterministic implementation in CNN are reproducibility, consistency, and 

debugging. Deterministic implementation can reproduce the same output every time the 

model is generated and run using the same input. With deterministic implementation, the 
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model's performance will be consistent across different machines and environments, 

making it easier to debug and troubleshoot the model. However, the disadvantages of 

deterministic implementation are computational cost, lack of robustness, stability issues, 

and lack of diversity.  

2.5 Performance Evaluation 

The prediction algorithm is assessed during classification to gauge the effectiveness of 

the classification model. The performance evaluation determines if the training model 

and classifier can handle test data. Predictive accuracy is typically used as a baseline for 

evaluation, but the model's categorisation credibility cannot be solely determined by 

accuracy.  

A confusion matrix table was created to measure the classification model’s 

effectiveness, known as a classifier (Kevin Markham, 2014). The table can be divided 

into four categories for binary classifiers, i.e., true positive (TP), false positive (FP), true 

negative (TN), and false negative (FN), arranged in a 2 x 2 table. TP shows that the model 

was predicted and matched with the ‘normal’ label. TN was correctly predicted and 

matched with the ‘COVID-19 pneumonia’ label. The confusion matrix table shows the 

following evaluation indicators: accuracy, misclassification rate/error rate, true-positive 

rate/sensitivity/recall, false-positive rate, true-negative rate/specificity, precision, 

prevalence, and F1 Score. The evaluation metrics were computed in detail since accuracy 

alone could not determine the classifier’s performance. 

Performance evaluation assessed the model's ability to classify instances across several 

classes for multi-class classification. TP happens when the model predicts the correct 

target class, and TN happens when the model correctly predicts it as not the targeted class. 
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2.6 Summary 

The meta-analysis discovered that most COVID-19 CT features consist of GGO and 

consolidation at the bilateral lungs in a peripheral distribution and/or septal thickening to 

create a “crazy-paving” pattern (Bao et al., 2020; Simpson et al., 2020; Duzgun et al., 

2020). A multitude of distinct lung disorders may appear as longitudinal changes in 

conventional CT findings and uncommon findings such as air bronchograms, CT halo 

signals, and reverse halo signs. (Duzgun et al., 2020). The CT imaging features of 

COVID-19 pneumonia and their variations in different stages and severity will affect the 

morphology and, consequently, the quality of interpretation. Other viral pneumonias are 

found to have bilateral perihilar peribronchial thickening and interstitials that trap the air 

within the lungs (Weerakkody, 2022). Several nonviral infectious and inflammatory 

conditions share similarities with the imaging findings of viral pneumonia (Koo et al., 

2018). The aetiology of pneumonia is similar among viruses belonging to the same viral 

family, and there are clear differences in the imaging patterns (Koo et al., 2018). 

Several robust CNN models were developed using a voting combinations-based 

ensemble of fine-tuned CNN models, like VGGNet, ResNet, GoogLeNet, and Inception 

(Tasci, 2020) to classify chest CT images as positive or negative for COVID-19. Some 

methods were introduced to detect probable chest anomalies, but a few have addressed 

the usage of lightweight CNN models for the segmentation of chest CT images (Iyer et 

al., 2021). This research provides insights and the potential for the classification of 

COVID-19 chest CT images, and these architectures are still under development and 

further evaluation before they can be widely applied in public. 
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CHAPTER 3: METHODOLOGY 

3.1 Introduction 

The research develops a deep learning-based classification model to automate the 

binary and multi-class classification of ‘COVID-19 pneumonia’ vs. ‘normal’ and 

‘pneumonia’ CT images. There are three stages in executing the methodology. The first 

stage is a feasibility study using various DL algorithms to classify CT images. The second 

stage to train existing ImageNet models and a new model. The stage includes pre-

processing the CT image datasets to ensure the data are standardised, performing a 

transfer learning strategy to train the ImageNet models, and training the new model from 

scratch using the pre-processed dataset. The third stage is to evaluate the performance of 

all the trained models. 

3.2 Research Approach 

The method is based on supervised deep learning algorithms to conduct a multiclass 

classification of CT images of ‘COVID-19 pneumonia’ vs. ‘normal’ and ‘pneumonia’ CT 

images. Figure 3.1 shows the research workflow. The methodology was categorised into 

four phases: i) data preparation; ii) data augmentation; iii) design of the proposed model; 

and iv) result evaluation. 
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Figure 3.1: Research Workflow 

3.2.1 Materials and Tools 

The research used the PyTorch framework running in Jupyter Notebook. In addition, 

Google Colab and Kaggle were utilised for image training, validation, and testing. Google 

Colab is a cloud-based development environment provided by Google that uses a Jupyter 

Notebook interface. On the other hand, Kaggle is a popular online community platform 

• Data Collection (Yang et al., 
2020， Cohen, Morrison, & 
Dao, 2020， Gunraj et al., 
2020)  

• License: CC BY-NC-SA 4.0 
• Data Preprocessing 

Data Preparation 

Data Augmentation 

Design Proposed Model 

Result Evaluation 

• Colour Jitter 
• Random 

Perspective 
• Rotation 
• Random Affine 
• Horizontal Flip 
• Vertical Flip 

Transfer Learning 
with 
• ResNet 50 
• ResNet 101 
• ResNet 152 
• GoogLeNet 
• DenseNet 201 
• ResNeXt 101 

• Consist of stem block, convolutional 
block, identity block and reduction block 
– Objective 1 & 2 

• Binary Classification Evaluation 
• Multiclass Classification Evaluation 

- Objective 3 Univ
ers

iti 
Mala

ya



79 

for data science enthusiasts, machine learning practitioners, and AI researchers. It is an 

online platform that hosts data science competitions, provides datasets and tools for data 

analysis, and allows users to share and collaborate on data science projects. Table 3.1 

describes the summary of both the Google Colab and Kaggle hardware specifications. 

Table 3.1: Kaggle and Google Colab Hardware Specification (Kazemnejad, 
2019). 

No Parameter Kaggle Google Colab Pro 

1 GPU Nvidia P100 T4 

2 GPU Memory 16 GB 16GB 

3 GPU Memory Clock 1.32 GHz 1.59 GHz 

4 Performance 9.3 TFLOPS 8.1 TFLOPS 

5 Support Mixed Precision No Yes 

6 GPU Release Year 2016 2018 

7 Number of CPU Cores 2 2 

8 Available RAM 12 GB 26.75 GB 

9 Disk Space 20 GB 120 GB 

 

3.2.2 Hyperparameters 

The hyperparameters were trained to attain accuracy once the neural networks had 

been defined. The learning rate was set at 0.1, and a lengthy training period was necessary. 

The momentum was fixed at 0.9 to avoid oscillations. The settings controlled the training 

speed while allowing the network to adapt and recognise the next step from the prior 

training. The number of sub-samples provided to the network in each epoch is called the 

batch size. The training is terminated if the validation loss values show no improvement 

after 10 iterations. DL hyperparameter configurations are crucial to achieving optimal 

results.  Therefore, a few assays were conducted to determine the best epoch number. The 
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models were configured to run for 100 epochs at the beginning. However, the difference 

between the training and validation losses revealed that the models were underfitting and 

still had the potential to improve. Hence, for binary classification, 300 epochs were 

executed when the training and validation losses in the dataset acquired for binary 

classification were minimal. For multi-class classification, 100 epochs were executed to 

train and validate the models, as the dataset is larger than the binary classification process.  

The SGD optimiser minimises the loss function by training the network while updating 

the computed gradient parameter. Backpropagation calculated the gradients during 

training, and the optimizer learned using those gradients (Kevin Markham, 2014). The 

learning rate would decrease by 0.1 every nine epochs because of the weight decay 

specified at 0.1. The projected probability diverging from the actual label increased due 

to the cross-entropy loss, which decreased the loss and enhanced training.  

3.3 Data Acquisition 

The radiological imaging data source described in this section is for researchers to use 

as input data for CNN architectures. LeNet, AlexNet, GoogleNet, VGGNet, and ResNet 

are several CNN-based models that can be used to process high-dimensional radiology 

images like CT images (Nguyen et al., 2020). Table 3.2 describes the available data 

sources to use. 
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Table 3.2: Data Sources on COVID-19 CT images. 

No. Sources/Links License Code Data Type No. of Images 
1 (Gianluca 

Maguolo, 
2020) 
(Tartaglione et 
al., 2020) 
https://www.ka
ggle.com/bach
rr/covid-chest-
xray 

 

CC0 1.0 Public 
Domain 

Posterior-
anterior (PA), 
Anterior-
posterior (AP) 
lateral for X-
rays & Axial or 
Coronal for CT 
scans 

Normal images: 
1,576, 
Pneumonia ARDS 
images: 2, 
Viral Pneumonia 
images: 1,493, 
COVID-19 images: 
58, 
SARS images: 4, 
Bacterial 
Pneumonia images: 
2,772, 
Bacterial 
Streptococcus 
images: 5 

2 (Eurorad, 
2020) 
https://www.eu
rorad.org/adva
nced-
search?search=
COVID 

CC BY-NC-SA 4.0 COVID-19 CT 
images of the 
lungs for 
infants and 
children 

COVID-19 images: 
49 

3 (Yang et al., 
2020) 
https://github.c
om/UCSD-
AI4H/COVID-
CT 
 

Unknown 349 CT images 
containing 
clinical findings 
of COVID-19 
from 216 
patients,  

COVID-19 images: 
349, 
Non-COVID-19 
images: 397 

4 (Gunraj et al., 
2020) 
https://github.c
om/haydengun
raj/COVIDNet
-CT 

 

CNCB: CC BY 3.0 
CN DEED 
Attribution 3.0 
China Mainland 

CT Images in 
COVID-19 (TCIA): 
CC BY 4.0 DEED 
Attribution 4.0 
International 

COVID-19 CT 
Lung and Infection 
Segmentation 
Dataset: CC BY-
NC-SA 4.0 DEED 
Attribution-
NonCommercial-
ShareAlike 4.0 
International Data 

COVIDx CT-
3A and CT-3B 
datasets, 
comprising 
425,024 CT 
slices from 
5,312 patients 
and 431,205 CT 
slices from 
6,068 patients 

COVIDx CT-3A: 
Normal CT 
images: 71,488, 
Pneumonia CT 
images: 42,943, 
COVID-19 images: 
310,593 
COVIDx CT-3B: 
Normal CT 
images: 71,488, 
Pneumonia CT 
images: 42,943, 
COVID-19 images: 
316,774 
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from The Lung 
Image Database 
Consortium (LIDC) 
and Image Database 
Resource Initiative 
(IDRI): CC BY 3.0 
DEED Attribution 
3.0 Unported 

5 (Jenssen, 
2020) 
http://medicals
egmentation.co
m/covid19/ 

 

Unknown 100 axial CT 
images from 
more than 40 
patients with 
COVID-19 

COVID-19 images: 
100 

 

Data acquisition was the first step in developing and creating the algorithm for 

COVID-19 detection. There are existing large datasets for the public to utilise. The 

biggest obstacle to training and validating the proposed model is the availability of 

authentic, annotated, and class-balanced CT images. Most available open-sourced 

datasets are unorganised and highly biased towards a particular class. Moreover, the 

authenticity of the open-sourced website is often questionable. However, there was no 

collection of COVID-19 chest X-rays or CT scans designed for computational analysis 

until it was assembled from websites and publications. (Cohen et al., 2020). Due to 

privacy reasons, CT images are challenging to acquire, which is a tremendous obstacle 

towards AI-powered research and development. Initially, the data were acquired from 

GitHub (Yang, et al., 2020). The usage of the dataset was confirmed by a senior 

radiologist in Tongji Hospital, Wuhan, China, since the outbreak of the COVID-19 

pandemic in China (Yang et al., 2020). Hence, it was suitable to conduct experimental 

studies that further demonstrate the CT images' usefulness. However, the availability of 

the COVID-19 CT scan images was minimal and insufficient. Besides, based on the 

senior radiologist, it was stated that CT images could be utilised to determine if the patient 
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is infected with viral pneumonia. However, CT images cannot determine which virus is 

causing the pneumonia infection. 

Moreover, the CT images available on GitHub, the open-source platform, raise 

concerns about the usability of the dataset because the quality of the images is severely 

degraded, which may result in the diagnostic decisions being less accurate. The 

Hounsfield Unit (HU) values are lost, and the number of bits per pixel is reduced, causing 

the overall image's resolution to be reduced. On top of that, only a few critical slices of 

the original CT images were selected to be made available, which may also have negative 

implications for the diagnostics. Table 3.3 shows the total number of CT images available 

for computer analysis is 746, with 349 images labelled ‘COVID-19 pneumonia’ and 397 

CT images labelled ‘normal’. Training CNN models on such a small number of images 

will overfit the deep-learning algorithms. Hence, data augmentation was implemented to 

create more CT images by varying the existing limited images using techniques such as 

image rotation, sheering, panning, etc. More details regarding this are presented in the 

Data Pre-processing section.  

Table 3.3: The GitHub Dataset. 

Classes Datasets Training Set Validation Set Test Set 

COVID-19 

pneumonia 

349 280 35 34 

Normal 397 318 40 39 

 

The second dataset was collected from the COVID-Net Open Source Initiative 

(COVIDxCT -3), updated on June 2, 2022. Each CT image was associated with captions 

to differentiate between ‘COVID-CT pneumonia’, ‘normal’, and ‘pneumonia’. The data 

Univ
ers

iti 
Mala

ya



84 

were available on Kaggle, an online community platform for data scientists and machine 

learning practitioners to explore, compete, and collaborate on data science projects.  

The total number of COVID-19 pneumonia CT images is 425,024 slices from 5,312 

patients. The dataset was derived from CT imaging data collected by the China National 

Center for Bioinformation (CNCB) and cleaned with additional annotations to allow 

COVID-19 detection methods to be compared across standard datasets. It comprised CT 

images from different hospitals across China and consisted of three different infection 

types: ‘COVID-19 pneumonia’, ‘pneumonia’, and ‘normal’ CT images that acted as a 

control for the research. The CT images were selected with subtle visual differences 

between ‘COVID-19 pneumonia' and ‘pneumonia’ as they were marked as containing 

lung abnormalities. The CT images were standardised using an automatic cropping 

algorithm to crop the image. The background of the CT images had been removed to 

depict the segmented lung regions, as the contrast present in these images can lead to 

biases in the model during training, validation, and testing.  

The CT image datasets are not novel, and the authors that compiled the images together 

have cleaned the data and provided additional annotations to allow other researchers to 

compare COVID-19 deep learning detection models using standard sets of images 

(Gunraj et al., 2020). The CNCB data contained chest CT examinations from various 

hospital cohorts across China, consisting of three infection categories. Table 3.4 shows 

the distribution of the CT images in classes, training, validation, and test sets using the 

8:1:1 ratio. 
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Table 3.4: The Partial Kaggle Dataset. 

Classes Datasets Training Set Validation Set Test Set 

Normal 1,682 1,346 168 168 

Pneumonia 1,011 809 101 101 

COVID-19 

Pneumonia 

7,308 5,846 731 731 

Total 10,001 8,001 1000 1000 

 

Note that this proposed research only uses a portion of the whole dataset. The main 

reason is the hardware limitations of Google Colab and Kaggle. This limitations caused 

the change from using Google Colab to using Kaggle to train and test all the models using 

this new dataset. The following section in Data Pre-Processing elaborates on the greater 

length of this limitation. In summary, this small portion of the dataset already far exceeds 

the number of CT images in the previous dataset (10,001 CT images versus 746 CT 

images).  

3.4 Data Pre-Processing 

Data pre-processing is an essential step in deep learning that involves transforming 

unstructured data into a format that a neural network can effectively use. Data cleaning 

involves handling missing values, outliers, and noise in the input data. The data were 

collected from various studies; the images’ dimensions, contrast, and intensity needed 

consistency. Some images were unsuitable for pre-processing as the lung density 

appeared utterly black. Hence, smoothing and filtering the input data at the beginning is 

essential.  
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3.4.1 Binary Classification  

Firstly, data augmentation is performed on the GitHub dataset, with training, 

validation, and test CT images split into their own folder. Data augmentation is proper 

when working with limited training data like the one from GitHub. It can increase the 

quantity of the training samples using rotations, horizontal flips, vertical flips, translation, 

colour jitters, random perspective, random affine, and auto-augmentation in the x and y-

axis (PyTorch, 2017). The colour jitter arbitrarily alters the images' brightness, saturation, 

hues, contrasts, and other properties. The random perspective transform function allows 

the image’s perspective to be randomly distorted and scaled at different angles. The 

rotation transform function rotates the images within the range of 30° to 70°.  

It is important to note that the ratio between COVID-19 and non-COVID-19 images is 

maintained before and after augmentation (stratified augmentation). On top of that, care 

is taken so that these transformations maintain the quality of the image and do not hinder 

the radiologist’s ability to interpret. Table 3.5 and Figure 3.2 summarize all the data 

augmentation information explained. 

Table 3.5: The Number of GitHub Datasets after Data Pre-processing and 
Augmentation. 

Classes Datasets Training Set Validation Set Test Set 

COVID-19 (1) 2,094 1,680 210 204 

Non-COVID-19 (0) 2,382 1,908 240 234 

Total 4,476 3,588 450 438 
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Figure 3.2: Data Augmentation Techniques 

After data augmentation, standardisation is the final step in the data pre-processing of 

this binary classification dataset. Initially, the CT images were encoded into binary 

classes of ‘0’ and ‘1’ for non-COVID-19 and COVID-19 images, respectively. Next is to 

standardise the images after encoding the classes from string to integer. The integer 

representation is used instead of a string because of its ease of use in calculations and 

because it uses less memory.  

Firstly, the images had different dimensions and needed to be resized to 224 x 224 

pixels. This resolution was chosen because it is the original resolution used by most 

ImageNet models. During image resizing, the ratio aspects of the image remained to avoid 

compromising the details of the images. These images are first resized to 256 x 256 pixels 

before being centre-cropped to 224 x 224 pixels. The resize is done in two steps to “zoom 

in” to the lung instead of having many empty spaces with a simple single-step resize.  

Finally, the images were normalised using minimum-maximum normalisation 

techniques with a mean and standard deviation. The normalisation method eliminates the 

bias from the features and datasets within the range. To further elaborate, normalisation 
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can accelerate the training process and improve convergence to ensure that larger 

magnitudes do not dominate the learning process. The technique of sample-wise 

normalisation or instance-wise normalisation was applied, where each sample was scaled 

independently. The objective of this method was to ensure that each sample has a similar 

scale and range, which aids the convergence performance of deep learning models. 

Normalising the input images will prevent any bias arising from variations in the 

magnitude or range of different samples. Mathematically, the sample-wise normalisation 

for a single sample x can be represented as: 

𝒙𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒔𝒆𝒅 =
𝒙−𝝁

𝝈
          3.1 

Where 𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑  is the normalised version of sample x, 𝜇  is the mean of the 

sample’s values, and 𝜎 is the standard deviation of the sample’s value.  

Resizing, centre-cropping, and normalizing are implemented as PyTorch Transformers 

for ease of usage with the PyTorch data loader. The sample-wise normalisation applies 

independently to each dataset sample; the mean and standard deviation used for 

normalisation are calculated based on the values within the same sample, not across 

different samples. This technique was applied because the image data acquired exhibited 

significant variations in magnitude and scale. The normalisation method aided in the 

removal of sample-specific biases and ensured that the model treated each sample equally 

during training. 

3.4.2 Multi-class Classification 

Data augmentation is unnecessary for the Kaggle datasets as the number of CT images 

is more than sufficient. However, a custom PyTorch dataset must be implemented 

because the number of images is too numerous to manually split into the training, 

validation, and testing datasets. The custom dataset will only need to be instantiated once 

and will stay in the memory for usage through the Kaggle Jupyter Notebook session.  
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First, the custom dataset needs to override PyTorch Dataset functions such as 

“_getitem_” and “_len_”. Then, additional functions need to be implemented to handle 

reading the metadata of the Kaggle dataset to identify which classes an image belongs to. 

Much like the GitHub dataset, the Kaggle dataset classes are also represented by integers. 

They are also encoded into the multiclass categorisation of  ‘0’, 1, and 2 for standard lung 

CT images, pneumonia, and COVID-19. Finally, a function to perform stratified removal 

of images from the dataset is implemented. The purpose of this removal function is to 

provide the ability to set the maximum number of images this custom dataset will process.  

Once the custom dataset is implemented, it reads the Kaggle dataset by passing in the 

dataset folder path, the file that contains the metadata, and the maximum number of 

images this custom dataset will produce. In this research, the dataset is limited to a 

maximum of 10,000 images due to the hardware limitations of the Kaggle virtual 

machine. In this step, Kaggle was applied instead of Google Colab. The benefit is that the 

Kaggle dataset is available automatically in the Kaggle Jupyter Notebook without 

explicitly downloading it. The only requirement is that the dataset has to be hosted on 

Kaggle. 

Once the custom dataset reads the entire dataset, the “train_test_split” function from 

the ‘sklearn’ Python package splits the dataset into train, validation, and test. As stated in 

the previous section, 3.3 Data Acquisition, the split is performed in the ratio of “8: 1: 1” 

for “train: validation: test”, respectively. Note that, despite this split being random by 

default, the same seed used throughout this research is passed into the “train_test_split” 

function to ensure reproducibility.  

Finally, a wrapper dataset is implemented to wrap over the custom dataset. This 

wrapper dataset provides the ability to specify what transformations to perform on the 

Univ
ers

iti 
Mala

ya



90 

images and, optionally, even the class label. Another dedicated wrapper dataset is also 

written specifically to provide the ability to provide the file path to each of the images.  

The transformations are applied to the CT images using a wrapper dataset, i.e., convert 

the images to grayscale, resize to 512 x 512 pixels, and normalise. Note that despite the 

image being resized to 512 x 512 pixels, the final image size is determined by the 

bounding box size specified in the metadata of the Kaggle dataset. For the training dataset, 

additional image transformations are applied: random horizontal flip, random verticle 

flip, random rotation, which is limited to at most 10 degrees, colour jitter, random 

perspective, and random affine. These transformations are applied only to the training 

dataset to prevent the model from overfitting the training images. 

3.5 Proposed Model Architecture Design 

The critical consideration for neural networks is to determine the architecture of the 

overall network. The number of layers and how the layers are connected and arranged to 

form a structure are considered during the design of the proposed model. 

This research highlights the proposed neural network architecture and the 

hyperparameters. In this study, the ResNet and Inception models were the baseline for 

the proposed model. The proposed model was inspired by skipped connections and 

consisted of deep layers of CNN. The proposed network architecture is shown in Figure 
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Figure 3.3: Proposed Model Design 

The proposed model consists of modules combining a stem block, followed by 

repeated layers of convolutional, identity, and reduction blocks. The magnitude of the 

sets transform is its priority, rather than increasing the depth and width of the module.  
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Figure 3.4: Stem Block Design 

 Figure 3.4 describes the design of the stem block in the proposed model. It is the entry 

block of the proposed model at the beginning of the CNN architecture that initiates the 

flow of information through the network. The stem block performs initial pre-processing 

and feature extraction on the input data before passing through the next layer. It consists 

of a sequence of convolutional, pooling, and normalisation layers. The max pooling layers 

within the stem block reduce the spatial dimensions of the input to down-sample the 

feature maps.  

 

Figure 3.5: Convolutional Block Design 

Figure 3.5 describes the design of the convolution block. Each convolution sequence 

within the convolution block applied batch normalisation, leaky ReLU, and max pooling. 
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The proposed model technique configures several convolution sequences in parallel, 

effectively making a broader network to distribute the computational load across multiple 

processing units to increase computational efficiency. The capacity increase reduces 

overfitting in the neural network and enhances the network’s learning capacity. The wide 

neural network design allows the network to explore multiple perspectives and capture 

various feature aspects of the input data, creating more robust and generalised 

representations. 

To elaborate more on Figure 3.5, 32 channels are parallel against each other with the 

same structure using a 1 x 1 filter convolutional block, a 3 x 3 filter convolutional block, 

and another 1 x 1 filter convolutional block, also known as the filter-expansion layer, 

without activation. The filter expansion layer is needed to scale the filter's dimension to 

match the input's depth. Each channel can focus on capturing specific aspects or 

modalities of the data, allowing for more effective integration of information and 

improved representational learning. Introducing redundancies within the neural network 

will make it less likely to become overly specialised to the training data, resulting in better 

generalisation performance. The last step involves adding these 32 parallel paths, giving 

us a single output, before adding the initial input to create a residual connection.  

 

Figure 3.6: Identity Block Design 

Figure 3.6 describes the design of the identity block. The identity, also known as the 

residual blocks, addresses the vanishing gradient problem and effectively trains deep 
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neural networks. The convolutional layer with a 1 x 1 filter adjusts the number of channels 

and transforms the input presentation. The 3 x 3 filter convolutional layer captures 

intricate spatial patterns and features of the input data, and the final convolutional layer 

with a 1 x 1 filter size adjusts the number of channels in the feature maps to match the 

desired output. The activation function, such as Leaky ReLU, was applied to learn 

complex relationships. The skip connection in the identity block provided a residual 

connection, bypassing the convolutional layers and retaining the original information. 

The skip connection alleviates the problem of vanishing gradients and facilitates the 

learning process.  

 

Figure 3.7: Reduction Block Design 

Figure 3.7 describes the design of the reduction block. The purpose of this block is to 

reduce the spatial dimensions of the input feature maps while increasing the number of 

channels. It down-samples the feature maps and captures more abstract and higher-level 

features. The reduction block uses pooling operations to downscale spatial dimensions 

and uses convolutional layers to increase the number of channels. This downscaling 

process condenses spatial information while preserving essential features. The 

convolutional filter 1 x 1 is a pointwise convolution used to adjust the number of channels 

in the feature maps while maintaining the spatial dimension. It performs a linear 

transformation on the input data by computing the weighted sums of the input channels. 

When the number of channels is altered, the model can learn different feature 

combinations and capture higher-level representations. The convolutional filters 1 x 7 and 
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7 x 1 are depth-wise separable convos that reduce computational costs while capturing 

spatial and channel dimension information.  

3.6 Training and Validation 

During the training and validation process, the main architectural models were utilised 

based on the depth of the network and the width of each layer. A network with a hidden 

layer can be used for training the input dataset. The study utilises existing architecture 

models, which are deep neural networks. It used fewer units per layer and fewer 

parameters and generalised the classification when categorising the test set. Training and 

validation processes are conducted with constant trial and error to monitor the 

performance of training and validation set errors before officially running the test 

(Goodfellow et al., 2016). ResNet50, ResNet101, ResNet152, ResNeXt101, GoogleNet, 

and DenseNet201 were chosen for transfer learning based on their deep architectures and 

statistical reasons. We chose this deep learning model algorithm explicitly, stating our 

prior beliefs about what function the algorithm should learn. Hypothetically, the greater 

the depth, the better the result in generalising a comprehensive variety of tasks 

(Goodfellow et al., 2016; Bengio & LeCun, 2007; Bengio & Delalleau, 2009; Erhan et 

al., 2009; Cireşan et al., 2012; Krizhevsky et al., 2012; Sermanet et al., 2012; Farabet et 

al., 2013); (Couprie et al., 2013; Kahou et al., 2013; Goodfellow et al., 2013; Szegedy et 

al., 2016). 

3.6.1 Transfer Learning in Binary Classification 

Transfer learning for CNN refers to using a trained CNN in a dataset where the number 

of classes to be identified differs from the initial dataset because it has been applied to 

various tasks with varied datasets. The technique enhances the targeted domain by 

utilising knowledge from the source domain and learning challenges; this strategy 
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employs trained model knowledge to learn another dataset (Koval et al., 2023) (Marques 

et al., 2022).  

After processing the data and establishing the design of the proposed model, the next 

steps are training and validation. The binary classification dataset was acquired from 

GitHub (Yang et al., 2020). The dataset is publicly available and was collected to conduct 

deep learning classification. A senior radiologist at Tongji Hospital in Wuhan, China, 

who handled the medical treatment and diagnosis of many COVID-19 patients between 

January and April during the pandemic of this disease, has confirmed the applicability of 

the dataset (Yang et al., 2020).  

The dataset collection contains 397 CT images of non-COVID-19 and 349 CT images 

with clinical findings of COVID-19 from 216 patients (Yang et al., 2020). Since the 

cohort of patients was from different provinces of China, the characteristics of COVID-

19 infection observed in the chest CT images could not represent patients worldwide 

(Gunraj et al., 2020). Hence, the dataset size is tiny, and data augmentations were 

conducted to increase the dataset and introduce variations. The augmentation variants 

included rotations, horizontal and vertical flips, translations, colour jitters, random 

perspective, random affine, and auto-augmentative in the x and y-axis. The distribution 

of classes is balanced in terms of quantity. The dataset was separated using an 8:1:1 ratio 

for training, validation, and testing. The images were assigned to training, validation, and 

test folders for COVID-19 and non-COVID-19, respectively. The ‘torch’ data loader 

automatically categorises the images into classes based on the assigned folders. The 

images were resized to standardise the dimensions of the images. It was attached to a 

square template utilising Python’s “Pillow (PIL)” image processing package. 

During normalisation transformation, the image data were normalised with mean and 

standard deviation, with [0.485, 0.456, 0.406] representing the mean values of the three 
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colour channels (red, blue, and green) and [0.229, 0.224, 0.225] representing the standard 

deviation values for each colour channel. The image input model will be 224 x 224 x 3. 

The dataset has been manually segmented and labelled on GitHub, so annotation and 

labelling were unnecessary (Yang et al., 2020). The normalisation technique eliminates 

the bias from the features and the datasets inside the range.  

The ‘COVID-19 pneumonia’ and ‘normal’ pulmonary CT images were trained using 

the existing CNN models with pre-trained weights from ImageNet and then later fine-

tuned to suit the input data to achieve ideal results. The hyperparameters used for training 

the binary images using the existing models were the learning rate = 0.0001, momentum 

= 0.9, number of epochs = 300, batch size = 64, step size = 7, optimizer = stochastic 

gradient descent, and loss function = cross-entropy loss. 

3.6.2 Transfer Learning in Multi-class Classification 

After processing the data and establishing the design of the proposed model, the next 

steps are training and validation. The multi-class classification dataset was acquired from 

Kaggle (Gunraj et al., 2020). The dataset is publicly available and was collected to 

conduct deep learning classification. The original dataset consists of chest CT images 

collected by the China National Center for Bioinformation (CNCB) (Zhang et al., 2020). 

The COVID-19 CT-3A has many CT scans. The patient cohort increased in quantity and 

diversity because the original dataset was collected in different provinces of China. 

Hence, several patient cohorts worldwide were collected to achieve diverse, well-rounded 

neural network training (Gunraj et al., 2020).  

The COVIDx CT-3A dataset used stratified split, a common technique applied in 

machine learning and data analysis, mainly when dealing with imbalanced datasets or 

classification tasks. With stratified splitting, the dataset is divided into training, 

validation, and test sets while maintaining the proportion of classes in each subset similar 
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to the original dataset. The objective of the stratified split is to ensure that the class 

distribution remains constant between the training, validation, and test sets. 10,001 CT 

images of the 425,024 images were selected for training, validation and testing. However, 

even with the increased quantity of data, the ratio between the data classes was 

imbalanced. Hence, the stratified split method can mitigate biased model performance 

evaluations, even if we cannot represent the overall class distribution. The method ensures 

a fair evaluation of the model’s performance on all classes and helps prevent overfitting 

to the majority class in imbalanced datasets. Data augmentation was applied not to create 

additional samples but to introduce variations in the data for the model to become more 

robust and generalise unseen data to prevent overfitting. Data augmentation can 

adequately improve the model’s performance; it provides additional variations of the 

same class, allowing better class discrimination.  

During normalisation transformation, the image data were normalised with a mean and 

standard deviation of [0.5, 0.5, 0.5] representing the mean values of the three colour 

channels (red, blue, and green) and [0.5, 0.5, 0.5] representing the standard deviation 

values for each colour channel. The value of 0.5 for both mean and standard deviation 

ensured that the input data had a consistent and appropriate scale and distribution to 

stabilise the training process and improve convergence when training the model. The 

transformation shifts the pixel values to be centred within the range [-1, 1]. The 

transformation process also converted the colour images into grayscale images. The 

number of outputs was specified to have three channels where all three channels have the 

same value, effectively creating a grayscale version of the RGB image. The image input 

model was resized to 512 x 512 x 3. However, a bounding box zoomed into the relevant 

area of the CT images. 
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The CT images will be trained using the existing CNN models. The CT images were 

trained using existing models and subsequently trained using the proposed model. The 

hyperparameters used for training the images using the existing models are: learning rate 

= 0.1, momentum = 0.9, number of epochs = 100, batch size = 16, step size = 7, optimizer 

= stochastic gradient descent, and loss function = cross-entropy loss. Training and 

validation also utilised Automatic Mixed Precision (AMP) to accelerate model training 

and reduce memory consumption by leveraging a mix of low-precision numerical 

representations for various computation parts. The general idea of applying AMP is to 

use lower precision, where it is less likely to cause a significant loss of accuracy, while 

still utilizing higher precision, where it is necessary to maintain accuracy. 

3.6.3 Existing Models and Proposed CNN Models 

The study consists of a transfer learning strategy with deep learning CNN models, 

which requires significant data to prevent overfitting in a complex network. The research 

included deterministic implementation, where the pre-trained weights of the neural 

networks are fixed during the fine-tuning or transfer learning process. Throughout the 

process, the weights of the pre-trained model are not updated or modified based on the 

new dataset used as the input. The deterministic approach applied in transfer learning 

implemented the pre-trained model and fixed its feature extractor. The final layers are 

added or modified to the new tasks or dataset applied to the model. The pre-trained 

weights are learned representations that capture different CT images' standard features 

and patterns. Using fixed pre-trained weights can avoid overfitting, especially when the 

new dataset is small and insufficient for training from scratch.  

The existing CNN models, like DenseNet 201 and ResNet 101, occasionally have to 

explode gradients, where the gradients during the backpropagation process become 

extremely large. It resulted in unstable training and difficulties in converging to an 
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optimal solution, destabilising the learning process. The method we applied to solve this 

issue was gradient clipping. Gradient clipping is commonly used to clip the gradients to 

a predefined maximum value. A threshold was set and scaled down the gradient if the 

norm exceeded it. The method prevents the gradients from becoming too large and 

stabilises the training process.  

The proposed model was designed to overcome existing models' challenges and 

limitations. It trained the CT images from scratch. Unlike the existing models, the weights 

and hyperparameters of the proposed models were tuned accordingly to achieve optimal 

results. 
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CHAPTER 4: RESULTS AND DISCUSSIONS 

4.1 Results and Discussions 

4.1.1 Training Parameters and Time 

Table 4.1 describes the training parameters and time per epoch of all the trained neural 

networks.  

Table 4.1: Total Training Parameters for Preexisting and Proposed Models. 

CNN Architecture Number of Parameters 

DenseNet 201 18,098,691 

GoogLeNet 5,602,979 

ResNet 50 23,514,179 

ResNet 101 42,504,307 

ResNet 152 58,149,955 

ResNeXt101 86,748,483 

Proposed Model 7,724,523 

 

    According to Table 4.1, ResNeXt 101 has the highest number of 86,748,483. The 

number of parameters indicated that ResNeXt 101 is the most complex model among the 

CNN architectures, and it has the highest capacity to learn intricate patterns and 

relationships. However, if the number of data points provided to the model is small, a 

model with more parameters can also be more prone to overfitting. Many parameters also 

indicated that ResNeXt 101 could represent complex patterns in the data, allowing the 

model to capture fine-grained details and nuances of the CT images. However, ResNeXt 

101 requires the most extensive memory and computational requirements during training 

and inference. It requires more memory to store and update the information during 

training. They also require more computational resources to perform forward and 
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backward passes, which requires more training time to process. The number of parameters 

dictates the ability to generalise unseen data. A model with few parameters may not have 

enough capacity to capture complex relationships and cause underfitting. On the other 

hand, a model with too many parameters may overfit the training data by memorizing 

specific examples or noise in the data, leading to poor generalisation.  

4.1.2 Binary Classification 

Various pre-trained architectures were applied to train CT images, including ResNets, 

GoogLeNet, ResNeXt, and DenseNet. Three distinct depth layers of ResNet, including 

ResNet 50, ResNet 101, and ResNet 152, were used. ResNeXt 101, DenseNet, and the 

remaining GoogLeNet were processed. All of the results from the above-mentioned 

models were documented in this section. There are 3,588 images in each epoch, with a 

batch size of 64. The training and validation loop was evaluated. The validation loop were 

reviewed following each training session, and the cycle was then repeated until it reached 

the maximum epoch. Once the training and validation were completed, the models were 

evaluated for sensitivity, specificity, precision (PPV), negative predictive value (NPV), 

accuracy, precision, and F1-score. 
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Figure 4.1: DenseNet 201 Training and Validation Loss Binary Classification 

DenseNet 201 training loss values vary from 0 to 2, as shown in Figure 4.1. The range 

of validation loss values is 0 to 10. The best training and validation loss values were found 

by epoch 9.  

 

Figure 4.2: GoogLeNet Training and Validation Loss Binary Classification 

As shown in Figure 4.2, the training loss values ranged from 0 to 0.5. The range of 

validation loss values is 0.75 to 1.75. Epoch 230 yielded the optimum settings for training 

and validation loss. 
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Figure 4.3: ResNet 50 Training and Validation Loss Binary Classification 

Variations in training loss levels between 0 and 2 are shown in Figure 4.3. The range 

of validation loss values is 0 to 10. The best training and validation loss levels were 

attained by epoch 30. 

 

Figure 4.4: ResNet 101 Training and Validation Loss Binary Classification 

A training loss value ranging between 0 and 0.7 is shown in Figure 4.4. The values of 

validation loss vary between 0 and 1.2. Epoch 45 produced the optimal loss levels for 

both training and validation. 
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Figure 4.5: ResNet 152 Training and Validation Loss Binary Classification 

The training loss value varying between 0 and 10 is shown in Figure 4.5. Between 0 

and 110 is the range of validation loss values. The optimal parameters for training and 

validation loss were obtained using Epoch 10. 

 

Figure 4.6: ResNeXt 101 Training and Validation Loss Binary Classification 

The oscillating training loss value between 0 and 0.5 is shown in Figure 4.6. From 0 

to 0.7, the validation loss values vary. Training and validation loss levels were optimal 

for Epoch 221.  
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Figures 4.1, 4.2, 4.3, 4.4, 4.5, and 4.6 describe the training and validation losses during 

transfer learning for binary classification. The blue line in the graph represents the 

training loss value, and the orange line represents the validation loss value. The red line 

indicates the best epoch value. The x-axis represents the epochs that were set to 300. The 

y-axis represents the loss values. The scale of the y-axis varies based on the fluctuations' 

occurrence. The y-axis for the DenseNet and ResNet 50 scales is from 0 to10 because the 

highest fluctuation occurred within and slightly above 10. ResNet 152’s y-axis scale is 

from 0 to 100 because the fluctuations happened within, and the peak point happened 

slightly beyond 100. GoogleNet’s y-axis scale is from 0 to 1.75 because the fluctuations 

happened within and above 1.75. ResNet101’s y-axis is from 0 to 1.2 as the fluctuation 

happened within and slightly beyond 1.2; ResNeXt101’s y-axis is from 0 to 0.7 because 

the fluctuations occurred within the value 0.7.  

The graph fluctuation shown in Figures 4.1, 4.2, 4.3, 4.4, 4.5, and 4.6 illustrates how 

well the model captured the underlying pattern in the data. ResNeXt 101 was seen with 

the most negligible fluctuation. As the number of parameters increases, the 

interpretability of the model tends to decrease. ResNeXt 101 displayed the best results 

compared to the other CNN models. It has the highest number of training parameters and 

the best performance metrics in all categories. However, deep learning models with many 

parameters can be prone to overfitting, especially with limited data available for the 

model to learn. Figure 4.6 indicates ResNeXt 101 achieved the lowest fluctuations 

magnitude. Throughout the 300 epochs, all the fluctuation peaks occurred within 0.0 to 

0.8 average loss values. It depicted the least significant fluctuations, which suggested the 

model may effectively capture the underlying patterns in the data. There were no signs of 

overfitting from the graphs that described the models as generalising well to unseen data 

and memorising the training examples. Hence, it is also the most stable CNN model 

compared to the rest, as the graph converges towards the end. ResNet 101 and GoogLeNet 
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had insignificant fluctuations between 0 to 1.2 and 0 to 1.8 average loss values, 

respectively. It suggested that the models learned the underlying patterns in the training 

data, that their predictions became consistent, and that they converged to a steady state. 

ResNet 152 achieved the highest magnitude of fluctuations. It was significant because 

it exhibited large and abrupt changes in the performance metrics values. The abrupt 

fluctuations persisted over multiple epochs from 0 to 150, a substantial portion of the 

training process. DenseNet 201 and ResNet 50 also showed significant fluctuations, but 

not as abruptly as ResNet 152. DenseNet 201 has a few peaks of fluctuation that are 

considered sporadic or random, which are less concerning. ResNet 50 also had a few 

peaks shown within the graph but was inconsistent. 

The accuracy of the training and validation of the transfer learning models are depicted 

below: 

 

Figure 4.7: DenseNet 201 Training and Validation Accuracy Binary 
Classification 

Figure 4.7 describes the training accuracy values fluctuating from 50 to 100. The 

validation accuracy fluctuates from 50 to 100. Epoch 9 achieved the best training and 

validation accuracy values. 
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Figure 4.8: GoogLeNet Training and Validation Accuracy Binary Classification 

Figure 4.8 describes the training accuracy values fluctuating from 90 – 100. The 

validation accuracy values fluctuated from 65 to 85. Epoch 230 achieved the best training 

and validation accuracy values. 

 

Figure 4.9: ResNet 50 Training and Validation Accuracy Binary Classification 

Figure 4.9 shows the training accuracy values fluctuating from 55 to 100. The 

validation accuracy values fluctuated from 45 to 95. Epoch 30 achieved the best training 

and validation accuracy values. 
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Figure 4.10: ResNet 101 Training and Validation Accuracy Binary 
Classification 

Figure 4.10 indicates the training accuracy values fluctuating from 80 to 100. The 

validation accuracy values fluctuated from 70 to 98. Epoch 45 achieved the best training 

and validation accuracy values.  

 

 

Figure 4.11: ResNet 152 Training and Validation Accuracy Binary 
Classification 

Univ
ers

iti 
Mala

ya



110 

Figure 4.11 indicates the training accuracy fluctuating from 50 to 100. The validation 

accuracy fluctuated from 45 to 98. Epoch 10 achieved the best training and validation 

accuracy values. 

 

Figure 4.12: ResNeXt 101 Training and Validation Accuracy Binary Classification 

Figure 4.12 indicates the training accuracy fluctuating from 80 to 100. The validation 

accuracy fluctuated from 75 to 98. Epoch 221 achieved the best training and validation 

accuracy values. 

Figures 4.7, 4.8, 4.9, 4.10, 4.11, and 4.12 describe the training and validation accuracy 

during transfer learning for binary classification for DenseNet, GoogLeNet, ResNet 50, 

ResNet 101, ResNet 152, and ResNeXt 101. The blue line in the graph represents the 

training accuracy value, and the orange line represents the validation accuracy value. The 

red line indicates the best epoch value of the graph. The x-axis represents the epochs that 

were set to 300. The y-axis represents the accuracy values. 

The accuracy graphs were used to evaluate the trend of validation accuracy over 

epochs. As the model learns, the graph should gradually increase. ResNeXt101 showed 
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that there were low-accuracy discrepancies. The graph's training and validation accuracy 

are similar in pattern, and the gap is closer, which means the model performed well on 

the training and generalised unseen data. It described a rising accuracy, indicating that 

ResNeXt 101 is more proficient at correctly predicting the target classes. In Figure 4.12, 

ResNeXt 101 validation loss significantly decreased, and the validation accuracy 

increased. This indicated that the model continued to improve and eventually stabilise.  

Figure 4.8 also shows that GoogLeNet’s training accuracy is significantly higher than 

the validation accuracy. It indicated overfitting so that the model may perform well on 

the training data, but it struggled to generalise unseen data. The graph also showed erratic 

behaviour. It suggested that the model may have reached its performance limit or 

encountered difficulties capturing specific patterns.  

DenseNet 201, ResNet 50, and ResNet 152 showed that training and validation 

gradually increased, indicating that the models initially captured the patterns and 

improved their prediction. However, during training and validation, the models started to 

overfit and became too specialised in the training examples. It memorised specific details 

and noises present in the training set. As a result, the models’ performances on the 

validation set started to decline. The sudden drop present in the training and validation 

accuracies indicated that the models were memorising the training data too closely, 

leading to poor generalisation. During that period, the models could not effectively 

capture the underlying patterns and relationships in the data. After the dip, the models 

continued to improve, and the accuracy gradually increased. The phenomenon suggested 

that the model started to generalise better and learn more meaningful features from the 

data. It adjusted the effect to reduce the memorisation effect and focus on capturing more 

relevant information.  
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ResNet 101 training and validation accuracy depicted sharp and erratic fluctuations 

that suggested the model’s instability. The fluctuations indicated that the model struggled 

to capture the data. The graph showed that the training line slowly reduced its fluctuations 

and increased as it approached the end of the epoch. However, the validation line 

continued with sharp, erratic behaviour and gradually decreased. The phenomenon 

suggested that the model struggled to converge to an optimal solution. Hence, it became 

too special in the training data and failed to generalise unseen data.  

4.1.2.1 Confusion Matrix 

After completing the training and validation set, the confusion matrix was applied to 

each trained neural network, plotting Class 0 as ‘normal’ with 40 images and Class 1 as 

‘COVID-19 pneumonia’ with 35 images. The confusion matrix is a 2 x 2 table that 

summarizes the performance of a binary classification model on a test dataset. The test 

images were divided into the following prediction results: True Positives (TP) are the 

number of incidents that predict Class 1 correctly; True Negatives (TN) are the number 

of occurrences that correctly predict Class 0; False Positives (FP) are the number of 

instances that incorrectly predict Class 1 when the model should predict it as Class 0; and 

False Negatives (FN) are the number of instances that incorrectly categorise Class 0 when 

it actually should be categorised under Class 1. The values from the confusion matrix 

were calculated to perform performance metrics.  

Figure 4.13 describes the confusion matrix for DenseNet 201, GoogLeNet, ResNet 50, 

ResNet 101, ResNet 152, and ResNeXt 101.  
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DenseNet201 0 1 
 

GoogLeNet 0 1 

0 33 4 

 

0 28 11 

1 2 36 

 

1 7 29 

       
       

ResNet 50 0 1 
 

ResNet 101 0 1 

0 30 2 

 

0 31 0 

1 5 38 

 

1 4 40 

       
ResNet 152 0 1 

 
ResNeXt101 0 1 

0 33 1 

 

0 33 0 

1 2 39 

 

1 2 40 

 

Figure 4.13: Binary Classification Confusion Matrix 

Figure 4.13 shows that DenseNet 201 had two false positives indicating that the model 

incorrectly predicted two Class 1s, which should belong to Class 0s, and four false 

negatives indicating the CNN model mistakenly predicted four Class 0s, which should be 

Class 1s.  

GoogLeNet achieves eleven false positives indicating that the model incorrectly 

predicted eleven Class 1s, which should be under Class 0, and seven false negatives 

indicating that the model mistakenly predicted seven Class 0s, which should be 

categorised under Class 1. 

ResNet 50 obtains two false positives, indicating that the model identified two images 

under Class 1, which should be under Class 0. It also obtained five false negatives, 
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indicating that the model identified five images under Class 0, which should be under 

Class 1.  

ResNet 101 obtains zero false positives, indicating that the model correctly identified 

all Class 0 images. It also obtained four false negatives, indicating that the model 

identified four images under Class 0, which should be under Class 1. 

ResNet 152 obtains one false positive, indicating that the model categorises one image 

under Class 1, which should be under Class 0. It obtains two false negatives, indicating 

the model identified two images under Class 0, which should be under Class 1.  

ResNeXt 101 obtains zero false positives, indicating that the model correctly identified 

all Class 0 images. It also obtained two false negatives, indicating the model incorrectly 

identified two images under Class 0, which should be under Class 1. 

In short, ResNeXt 101 has two wrong classifications, ResNet 152 has three incorrect 

types, and ResNet 101 has four misclassifications. GoogLeNet had the most, with eleven 

misclassifications. 
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4.1.2.2 Performance Metrics 

After training and validation, the models were tested using an unseen dataset. The 

accuracy (ACC), sensitivity (TPR), specificity (TNR), PPV, NPV, and F1 scores were 

recorded. Table 4.2 shows the binary classification performance metrics for DenseNet 

201, GoogLeNet, ResNet 50, ResNet 101, ResNet 152, and ResNeXt 101. Figure 4.14 is 

the graph derived from Table 4.2. 

Table 4.2: Test Set Performance Metrics. 

CNN Models TPR (%)   TNR 

(%)   

 PPV 

(%) 

 NPV 

(%) 

ACC 

(%) 

F1 Score 

(%) 

DenseNet201 93.81 90.00 89.14 94.32 91.78 91.42 

GoogLeNet 80.95 72.50 72.03 81.31 76.44 76.23 

ResNet 50 86.19 95.83 94.76 88.80 91.33 90.27 

ResNet 101 88.57 99.58 99.47 90.88 94.44 93.70 

ResNet 152 90.00 98.33 97.93 91.83 94.44 93.80 

ResNeXt101 95.71 100.00 100.00 96.39 98.00 97.81 

 

Table 4.2, ResNeXt 101, showed a TPR of 95.71% with two misclassifications of 

‘COVID-19 pneumonia’ images. Whereas DenseNet 201 had a TPR of  93.81% and 

ResNet152 attained a TPR of 90%, both with two wrong COVID-19 images classified. 

ResNet 101 attained a TPR of 88.57% with four false classifications, and ResNet 50 

gained 86.19% with five incorrect categories of COVID-19 images. Lastly, GoogLeNet 

had a TPR of 80.95% with seven wrong COVID-19 image classifications.  

PPV, also known as precision, indicated how often the model predicted ‘COVID-19 

pneumonia’ was correct. PPV considered the models to be performing well. Suppose the 

precision value was not good despite the accuracy of the models. The models would not 
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be considered reasonable. ResNeXt 101 achieved 100% PPV, ResNet 101 achieved 

99.47%, followed by ResNet152, which achieved 97.93%. GoogLeNet achieved the 

lowest precision of 72.03%, with seven wrong classifications of ‘normal’. 

 

Figure 4.14: Binary Classification Performance Metrics Graph 

Figure 4.14 depicts ResNeXt 101 as having the highest performance metrics values, 

followed by ResNet 152 and ResNet 101. GoogLeNet achieved the lowest performance 

metrics values. 

Figure 4.14 describes the binary classification performance metrics graph, showing 

ResNeXt 101, ResNet 101, and ResNet 152 performed better in classifying non-COVID-

19 images. ResNeXt 101 had the highest accuracy and F1 score of 98% and 97.81%, 

followed by ResNet 152 with an accuracy of 94.44% and an F1 score of 93.80%. ResNet 

101 achieved an accuracy of 94.44% and an F1 score of 93.70%. DenseNet had 91.78% 

accuracy and a 91.42% F1 score. ResNet 50’s accuracy and F1 Score were 91.33% and 
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90.27%, and the lowest accuracy and F1 Score was GoogLeNet, with 76.44% and 

76.23%, respectively. 

4.1.3 Multi-class Classification 

The CT images were trained using existing CNN architectures: ResNets, GoogleNet, 

ResNeXt, and DenseNet. ResNet was performed thrice with different depth layers, such 

as ResNet 50, ResNet 101, and ResNet 152. The dataset was trained with the proposed 

model.  

Each epoch has 5,846 images with a batch size of 16. The batch size for multi-class 

classification is smaller than for binary classification. We used Google Colab Pro version 

2021 to train, validate, and test for binary classification. Google Colab provided users 

with access to 10 GB to 25 GB of GPU memory. However, Google Colab has created an 

additional tier called Google Colab Pro+, which is costly. Hence, we have switched to 

using Kaggle. Kaggle’s Video Random Access Memory (VRAM) is less than the Google 

Colab Pro 2021 version. Since the batch size determines the number of samples processed 

in each iteration during training, larger batch sizes require more memory to store the 

intermediate activations and gradients for backpropagation. With a larger batch size, the 

training process was more efficient, leading to faster convergence. However, in the study 

for multi-class classification, we applied a smaller batch size because the computational 

resources were limited. Once the training and validation were completed, the models were 

tested using the confusion matrix and performance metrics. Univ
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Figure 4.15: DenseNet 201 Training and Validation Loss Multi-class 
Classification 

Figure 4.15 DenseNet201 training loss values maintained constant from 0 to 10. The 

validation loss values fluctuate from 0 to 300. Epoch 75 obtained the best training and 

validation loss values.  

 

Figure 4.16: GoogLeNet Training and Validation Loss Multi-class Classification 

Figure 4.16 GoogLeNet training loss values maintained constant from 0 to 0.10. The 

validation loss values fluctuate from 0 to 0.35. Epoch 75 obtained the best training and 

validation loss values.  
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Figure 4.17: ResNet 50 Training and Validation Loss Multi-class Classification 

Figure 4.17 indicates the training loss values maintained constant from 0 to 1. The 

validation loss values fluctuate from 0 to 5. Epoch 69 obtained the best training and 

validation loss values.  

 

Figure 4.18: ResNet 101 Training and Validation Loss Multi-class Classification 

Figure 4.18 shows the training loss values maintained constant from 0 to 0.5. The 

validation loss values fluctuate from 0 to 3.5. Epoch 72 obtained the best training and 

validation loss values.  
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Figure 4.19: ResNet 152 Training and Validation Loss Multi-class Classification 

Figure 4.19 depicts the training loss values maintained constant from 0 to 0.1. The 

validation loss values fluctuate from 0 to 0.8. Epoch 100 obtained the best training and 

validation loss values.  

 

Figure 4.20: ResNeXt 101 Training and Validation Loss Multi-class 
Classification 
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Figure 4.20 shows that the training loss values maintained constant from 0 to 0.1. The 

validation loss values fluctuate from 0 to 0.5. Epoch 100 obtained the best training and 

validation loss values.  

 

Figure 4.21: Proposed Model Training and Validation Loss Multi-class 
Classification 

Figure 4.21 describes the training loss values maintained constant from 0 to 2. The 

validation loss values fluctuate from 0 to 12. Epoch 86 obtained the best training and 

validation loss values.  

Figures 4.15, 4.16, 4.17, 4.18, 4.19, 4.20, and 4.21 describe the training and validation 

losses during transfer learning for multi-class classification for DenseNet 201, 

GoogLeNet, ResNet 50, ResNet 101, ResNet 152, ResNeXt 101, and the proposed model. 

The blue line in the graph represents the training loss value, and the orange line represents 

the validation loss value. The red line indicates the best epoch value. The x-axis represents 

the epochs that were set to 100. The y-axis represents the loss values. The scale of the y-

axis varies based on the fluctuations' occurrence. The graphs provided insights into the 

performance of the multi-class classifications. The loss values represent the 

Proposed Model – Training and Validation Losses 
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dissimilarities between the predicted class probabilities and the true class labels 

throughout the training epochs. The x-axis represents the epoch number, while the y-axis 

represents the loss values. ResNeXt 101, GoogLeNet, and ResNet 152 showed similar 

validation loss patterns. 

Initially, the graphs exhibited fluctuations as the models started to learn. The 

fluctuations were insignificant, as the validation set may contain inherent noise or 

variation. As the models progressed, a steady decrease in the validation loss suggested 

that the models successfully generalised and made accurate predictions on unseen data. 

The steady decrease suggested that the models captured relevant features and patterns that 

were not specific to the training data. The models did not show signs of overfitting or 

underfitting. ResNet 50 showed a steady decrease in training and validation loss, which 

suggested that the model successfully generalised and made accurate predictions of 

unseen data. ResNet 101 and the proposed model initially exhibit fluctuations as the 

models were randomly initialised, and their predictions were inaccurate. As the training 

and validation progressed, a general decreasing trend in the validation loss occurred. All 

three models did not show any signs of overfitting. During the training process, DenseNet 

201 displayed significant fluctuations, with higher values in the first 20 epochs. The 

phenomenon indicated that the model’s parameters were randomly initialised and its 

predictions were inaccurate. As the training progressed, the model learned to capture the 

underlying patterns in the data, and a decreasing trend in validation loss occurred.  
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Figure 4.22: DenseNet201 Training and Validation Accuracy Multi-class 
Classification 

Figure 4.22 describes the training accuracy values maintained constant from 95 to 100. 

The validation accuracy values fluctuate from 85 to 100. Epoch 75 obtained the best 

training and validation accuracy values. 

 

Figure 4.23: GoogLeNet Training and Validation Accuracy Multi-class 
Classification 

Figure 4.23 describes the training accuracy values maintained constant from 96 to 100. 

The validation accuracy values fluctuate from 86 to 100. Epoch 75 obtained the best 

training and validation accuracy values. 
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Figure 4.24: ResNet 50 Training and Validation Accuracy Multi-class 
Classification 

Figure 4.24 describes the training accuracy values maintained constant from 95 to 100. 

The validation accuracy values fluctuate from 85 to 100. Epoch 69 obtained the best 

training and validation accuracy values. 

 

Figure 4.25: ResNet 101 Training and Validation Accuracy Multi-class 
Classification 

Figure 4.25 describes the training accuracy values maintained constant from 85 to 100. 

The validation accuracy values fluctuate from 50 to 100. Epoch 72 obtained the best 

training and validation accuracy values. 
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Figure 4.26: ResNet 152 Training and Validation Accuracy Multi-class 
Classification 

Figure 4.26 describes the training accuracy values maintained constant from 90 to 100. 

The validation accuracy values fluctuate from 70 to 100. Epoch 100 obtained the best 

training and validation accuracy values. 

 

Figure 4.27: ResNeXt Training and Validation Accuracy Multi-class 
Classification 

Figure 4.27 describes the training accuracy values maintained constant from 96 to 100. 

The validation accuracy values fluctuate from 86 to 100. Epoch 100 obtained the best 

training and validation accuracy values. 
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Figure 4.28: Proposed Model Training and Validation Accuracy Multi-class 
Classification 

Figure 4.28 describes the training accuracy values maintained constant from 80 to 100. 

The validation accuracy values fluctuate from 60 to 100. Epoch 86 obtained the best 

training and validation accuracy values. 

Figures 4.22, 4.23, 4.24, 4.25, 4.26, 4.27, and 4.28 indicate the training and validation 

accuracies during transfer learning for multi-class classification for DenseNet 201, 

GoogLeNet, ResNet 50, ResNet 101, ResNet 152, ResNeXt 101, and the proposed model. 

The blue line in the graph represents the training accuracy value, and the orange line 

represents the validation accuracy value. The red line indicates the best epoch value. The 

x-axis represents the epochs that were set to 100. The y-axis represents the accuracy 

values. The scale of the y-axis varies based on the fluctuations' occurrence. The training 

accuracy graph represented the proportion of correctly classified data samples from the 

training set. The x-axis represents the epoch number, while the y-axis represents the 

accuracy values. Initially, the training accuracy started with relatively low values as the 

parameters began to be initialised. The graph shows a gradual increase in training 

accuracy as the training progresses. The phenomenon indicated that the models learned 

and captured underlying patterns in the training data.  

Proposed Model – Training and Validation Accuracy 
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Figure 4.27 and Figure 4.23 show that ResNeXt 101 and GoogLeNet performed the 

best in training and validation accuracy. Both models also described similar validation 

accuracy patterns. ResNeXt 101 and GoogLeNet’s validation accuracy started low with 

insignificant fluctuations as the models’ parameters were randomly initialised. The 

validation graph progressed as their accuracies continued to increase, which means the 

models managed to generalise well and make accurate predictions. It also suggested that 

relevant features and patterns not specific to the training set were accurately recognised. 

The fluctuations in the validation graphs were minimal, and the graph did not stagnate or 

decrease, while the training accuracy increase indicated that the models successfully 

generalised new and unseen data.  

Figures 4.22, 4.24, 4.25, 4.26 and 4.28 show that DenseNet 201, ResNet 50, ResNet 

101, ResNet 152, and the proposed model were observed with more prominent 

fluctuations throughout the validation accuracy. At the initial stage of the validation 

accuracy graph, DenseNet 201 showed that the fluctuations were erratic, but the accuracy 

values did not show sharp drops. However, the fluctuations often occurred throughout the 

epoch and intensified towards the end of the graph. The phenomenon indicated that the 

model lacks stability, and the model’s performance varies significantly across different 

evaluation samples or even between consecutive epochs.   

ResNet 50, ResNet 101, and ResNet 152 showed that although there were sudden 

fluctuations initially, the validation accuracy increased and stabilised throughout the 

epoch. Small fluctuations in the validation accuracy are expected, as the validation set 

may contain noise or variation. Therefore, the fluctuations overall were insignificant to 

consider as signs of the model overfitting.  

The validation accuracy of the proposed model displayed sharp and erratic fluctuations 

during the early stages of the graph. The sharp drops and erratic patterns happened during 
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the first 30 epochs of the graph. The phenomenon is considered normal as the dataset may 

contain inherent noise or variations. As the validation accuracy progressed, it gradually 

increased and stabilised with very few fluctuations, which showed that it could generalise 

underlying patterns and unseen data.  

4.1.3.1 Confusion Matrix 

Once the training and validation were completed, the study tested the images with the 

existing and proposed models. For multi-class classification, confusion matrices were 

used for validation and testing. The elaboration of the confusion matrix for multi-class 

classification requires a comprehensive explanation of different components and metrics 

obtained from the confusion matrix. The classes were categorised into ‘0’ for normal lung 

conditions’ CT images, ‘1’ for pneumonia patients’ CT images, and ‘2’ for COVID-19 

patients’ CT images.  

Figures 4.29, 4.30, 4.31, 4.32, 4.33, 4.34, and 4.35 are the validation set confusion 

matrix results. The figures indicate that the diagonal elements of the confusion matrix 

represent the instances that the model correctly predicted for each class. For Class 0, the 

value in the (0, 0) position represents the number of instances that belong to Class 0 and 

are correctly identified as Class 0. For Class 1, the value in the (1, 1) position represents 

the number of times the model predicted the images belong to Class 1 and are correctly 

predicted. For Class 2, the value in the (2, 2) position represents the number of times the 

model predicted the images belong to Class 2 and are correctly predicted.  

The off-diagonal entries are the false positives and false negatives; they represent the 

number of instances in the model of misclassified images. For Class 0, the values in the 

(0, 1) and (0, 2) positions represent the number of instances that belong to Class 0 but 

were predicted as Class 1 and Class 2, respectively. For Class 1, the values in the (1, 0) 

and (1, 2) positions represent the number of times that belong to Class 1 but were 

Univ
ers

iti 
Mala

ya



129 

categorised as Class 0 and Class 2, respectively. For Class 2, the values in the (2, 0) and 

(2, 1) positions represent the number of times that belong to Class 2 but were identified 

as Class 0 and Class 1 instead. 

 

DenseNet201 0 1 2 

0 (Normal) 168 0 0 

1 (Pneumonia) 1 99 1 

2 (Covid-19) 0 1 731 

 

 Figure 4.29: DenseNet 201 Validation Set Confusion Matrix 

 Figure 4.29 indicates that the model identified Class 0 perfectly without 

misclassification. It misclassified one image of Class 1 as Class 0 and another as Class 1 

as Class 2. It also misclassified one image of Class 2 as Class 1. It made a total of three 

misclassifications. 

GoogLeNet 0 1 2 

0 (Normal) 168 0 0 

1 (Pneumonia) 1 100 0 

2 (Covid-19) 0 0 732 

 

Figure 4.30: GoogLeNet Validation Set Confusion Matrix 
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Figure 4.30 indicates that the model identified Class 0 perfectly without 

misclassification. It misclassified one image of Class 1 as Class 0. It also correctly 

classified all Class 2 images, making a total of one misclassification. 

 

ResNet 50 0 1 2 

0 (Normal) 168 0 0 

1 (Pneumonia) 0 101 0 

2 (Covid-19) 0 1 731 

 

Figure 4.31: ResNet 50 Validation Set Confusion Matrix 

Figure 4.31 indicates that the model identified Class 0 perfectly without 

misclassification. It correctly classified all images of Class 1. It also misclassified one 

image of Class 2 as Class 1. It made a total of one misclassification. 

ResNet 101 0 1 2 

0 (Normal) 168 0 0 

1 (Pneumonia) 0 100 1 

2 (Covid-19) 0 0 732 

 

Figure 4.32: ResNet 101 Validation Set Confusion Matrix 

Figure 4.32 indicates that the model identified Class 0 perfectly without 

misclassification. It misclassified one image of Class 1 as Class 2. It also correctly 

classified all images in Class 2. It made a total of one misclassification. 
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ResNet 152 0 1 2 

0 (Normal) 168 0 0 

1 (Pneumonia) 0 100 1 

2 (Covid-19) 0 0 732 

 

Figure 4.33: ResNet 152 Validation Set Confusion Matrix 

Figure 4.33 indicates that the model identified Class 0 perfectly without 

misclassification. It misclassified one image of Class 1 as Class 2. It also correctly 

classified all images of Class 2. It made a total of one misclassification. 

ResNeXt101 0 1 2 

0 (Normal) 168 0 0 

1 (Pneumonia) 0 101 0 

2 (Covid-19) 0 0 732 

 

Figure 4.34: ResNeXt 101 Validation Set Confusion Matrix 

Figure 4.34 indicates that the model identified Class 0 perfectly without 

misclassification. It correctly classified all images of Class 1. It also correctly classified 

all images of Class 2. No misclassifications were made. 
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Proposed 
Model 0 1 2 

0 (Normal) 168 0 0 

1 (Pneumonia) 0 100 1 

2 (Covid-19) 1 0 731 

 

Figure 4.35: Proposed Model’s Validation Set Confusion Matrix 

Figure 4.35 indicates that the model identified Class 0 perfectly without 

misclassification. It misclassified one image of Class 1 as Class 2. It also misclassified 

one image of Class 2 as Class 0. It made a total of two misclassifications. 

Figures 4.36, 4.37, 4.38, 4.39, 4.40, 4.41 and 4.42 indicate the test set confusion matrix 

results. 
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DenseNet201 0 1 2 

0 (Normal) 168 0 0 

1 (Pneumonia) 3 98 0 

2 (Covid-19) 0 0 732 

 

Figure 4.36: DenseNet 201 Test Set Confusion Matrix 

Figure 4.36 indicates that the model identified Class 0 perfectly without 

misclassification. It misclassified three images of Class 1 as Class 0. It correctly classified 

all images of Class 2. It made a total of three misclassifications. 

GoogLeNet 0 1 2 

0 (Normal) 168 0 0 

1 (Pneumonia) 2 99 0 

2 (Covid-19) 0 0 732 

 

Figure 4.37: GoogLeNet Test Set Confusion Matrix 

Figure 4.37 indicates that the model identified Class 0 perfectly without 

misclassification. It misclassified two images of Class 1 as Class 0. It correctly classified 

all images of Class 2. It made a total of two misclassifications. 
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ResNet 50 0 1 2 

0 (Normal) 168 0 0 

1 (Pneumonia) 0 101 0 

2 (Covid-19) 0 0 732 

 

Figure 4.38: ResNet 50 Test Set Confusion Matrix 

Figure 4.38 indicates that the model identified Class 0 perfectly without 

misclassification. It correctly classified all images of Class 1. It also correctly classified 

all images of Class 2. No misclassification was made. 

ResNet 101 0 1 2 

0 (Normal) 168 0 0 

1 (Pneumonia) 2 99 0 

2 (Covid-19) 0 0 732 

 

Figure 4.39: ResNet 101 Test Set Confusion Matrix 

Figure 4.39 indicates that the model identified Class 0 perfectly without 

misclassification. It misclassified two images of Class 1 as Class 0. It correctly classified 

all images of Class 2. It made a total of two misclassifications. 
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ResNet 152 0 1 2 

0 (Normal) 168 0 0 

1 (Pneumonia) 1 98 2 

2 (Covid-19) 0 0 732 

 

Figure 4.40: ResNet 152 Test Set Confusion Matrix 

Figure 4.40 indicates that the model identified Class 0 perfectly without 

misclassification. It misclassified one image of Class 1 as Class 0 and two of Class 1 as 

Class 2. It correctly classified all images of Class 2. It made a total of three 

misclassifications. 

ResNeXt101 0 1 2 

0 (Normal) 168 0 0 

1 (Pneumonia) 2 99 0 

2 (Covid-19) 0 0 732 

 

Figure 4.41: ResNeXt 101 Test Set Confusion Matrix 

Figure 4.41 indicates that the model identified Class 0 perfectly without 

misclassification. It misclassified two images of Class 1 as Class 0. It correctly classified 

all images of Class 2. It made a total of two misclassifications. 
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Proposed 
Model 0 1 2 

0 (Normal) 168 0 0 

1 (Pneumonia) 2 99 0 

2 (Covid-19) 0 0 732 

 

Figure 4.42: Proposed Model’s Test Set Confusion Matrix 

Figure 4.42 indicates that the model identified Class 0 perfectly without 

misclassification. It misclassified two images of Class 1 as Class 0. It correctly classified 

all images in Class 2. It had a total of two misclassifications. 

The multi-class confusion matrix does not have positive or negative classes. Therefore, 

it was confusing to determine the performance metrics compared to binary classification. 

However, we can calculate and measure the other classes. The approach was to identify 

the positive and negative classes within the multi-class classification and break them into 

binary problems using one-to-one or one-to-all. The method used in the study is one-to-

all, where Class 0 is considered the positive label and the rest are negative labels. Using 

the one-to-all strategy lowers the computational costs because only one class was 

considered positive and the rest were negative labels. 
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4.1.3.2 Performance Metrics 

The multiclass classification performance metrics were harder to achieve. The method 

used was the one-to-all strategy to convert multiclass problems into a series of binary 

tasks for each class in the target. Hence, classifying the CT image types can be binarised 

into 4 tasks: 1) ‘normal’ CT images versus ‘pneumonia’ and COVID-19,; 2) ‘pneumonia’ 

CT images versus ‘normal’ and ‘COVID-19 pneumonia’,; and 3) ‘COVID-19 

pneumonia’ CT images versus ‘normal’ and ‘pneumonia’. The metrics required for each 

class are precision, F1-score, macro-average, and weighted average. These provided 

valuable insights into each model’s characteristics and identified areas for improvement 

to make informative decisions for model refinement and optimisation.  

Tables 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, and 4.9 describe the performance metrics for 

DenseNet 201, GoogLeNet, ResNet 50, ResNet 101, ResNet 152, and ResNeXt 101 and 

the proposed model. Table 4.10 compares the precision values of the CNN architecture 

models, including the proposed model. Table 4.11 compares the recall of all the CNN 

architectures and proposed models. Finally, Table 4.12 compares the F1-score of the 

existing CNN architecture models and the proposed model.  
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Table 4.3: DenseNet 201 Performance Metrics. 

 DenseNet201    

 precision recall f1-score support 

Normal 0.9825 1.0000 0.9912 168 

Pneumonia 1.0000 0.9703 0.9849 101 

COVID-19 1.0000 1.0000 1.0000 732 

accuracy 0.9970 

macro avg 0.9942 0.9901 0.9920 1001 

weighted avg 0.9971 0.9970 0.9970 1001 

 

Table 4.3 presents DenseNet 201 performance metrics for multiclass classification 

tasks involving ‘normal’, ‘COVID-19 pneumonia’, and ‘pneumonia’ lung CT. The 

metrics include precision, recall, accuracy, and F1-score for each class and the weighted 

and macro average values.  

The DenseNet 201 model demonstrates high precision and recall for detecting 

‘normal’ lung CT with values of 0.9825 and 1.0000, respectively. The F1-score is 0.9912. 

The model achieved a precision of 1.0000 and a recall of 0.9703 for ‘pneumonia’. The 

F1-score is 0.9849. The model also indicates high precision and recall for ‘COVID-19 

pneumonia’ lung CT, with a precision value of 1.0000 and a recall value of 1.0000. The 

F1-score is 1.0000. DenseNet 201’s accuracy is 0.9970. 

DenseNet 201 also demonstrates a macro-average precision value of 0.9942, a recall 

value of 0.9901, and an F1-score of 0.9920. The model indicates a weighted average 

precision, recall, and F1-score value of 0.9970. 

The table above presents metrics that provide insights into the model’s performance 

for each class and its overall effectiveness in the multi-class classification. 
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Table 4.4: GoogLeNet Performance Metrics.  

 
GoogLeNet    

 precision recall f1-score support 

Normal 0.9882 1.0000 0.9941 168 

Pneumonia 1.0000 0.9802 0.9900 101 

COVID-19 1.0000 1.0000 1.0000 732 

accuracy 0.9980 

macro avg 0.9961 0.9934 0.9947 1001 

weighted avg 0.9980 0.9980 0.9980 1001 

 

Table 4.4 presents the GoogLeNet model's high precision and recall for ‘normal’ lung 

CT of 0.9882 and 1.0000, respectively. It achieved an F1-score of 0.9941. The model 

achieved a precision of 1.0000 and a recall of 0.9802 for ‘pneumonia’. The F1-score is 

0.9900. The model also indicates high precision and recall for ‘COVID-19 pneumonia’ 

lung CT, with a precision value of 1.0000 and a recall value of 1.0000. The F1-score is 

1.0000. GoogLeNet accuracy is 0.9980. 

GoogLeNet also demonstrates the macro average precision value of 0.9961, recall 

value of 0.9934, and F1-score of 0.9947. The model indicates a weighted average 

precision, recall, and F1-score value of 0.9980. 

Table 4.5: ResNet 50 Performance Metrics. 

 ResNet 50    

 precision recall f1-score support 

Normal 1.0000 1.0000 1.0000 168 

Pneumonia 1.0000 1.0000 1.0000 101 

COVID-19 1.0000 1.0000 1.0000 732 

accuracy 1.0000 

macro avg 1.0000 1.0000 1.0000 1001 

weighted avg 1.0000 1.0000 1.0000 1001 

 

Table 4.5 indicates that the ResNet 50 model achieved 1.0000 for all the metrics in all 

categories. 
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Table 4.6: ResNet 101 Performance Metrics. 

 ResNet 101    

 precision recall f1-score support 

Normal 0.9882 1.0000 0.9941 168 

Pneumonia 1.0000 0.9802 0.9900 101 

COVID-19 1.0000 1.0000 1.0000 732 

accuracy 0.9980 

macro avg 0.9961 0.9934 0.9947 1001 

weighted avg 0.9980 0.9980 0.9980 1001 

 

Table 4.6 presents the ResNet 101 model’s precision and recall values for ‘normal’ 

lung CT of 0.9882 and 1.0000, respectively. It obtained an F1-score of 0.9941. The model 

achieved a precision of 1.0000 and a recall of 0.9802 for ‘pneumonia’. The F1-score is 

0.9900. The model also indicates high precision and recall for ‘COVID-19 pneumonia’ 

lung CT, with a precision value of 1.0000 and a recall value of 1.0000. The F1-score is 

1.0000. ResNet101’s accuracy is 0.9980. 

ResNet 101 also demonstrates a macro-average precision value of 0.9961, a recall 

value of 0.9934, and an F1-score of 0.9947. The model indicates a weighted average 

precision, recall, and F1-score value of 0.9980. 

Table 4.7: ResNet 152 Performance Metrics. 

 ResNet 152    

 precision recall f1-score support 

Normal 0.9941 1.0000 0.9970 168 

Pneumonia 1.0000 0.9703 0.9849 101 

COVID-19 0.9973 1.0000 0.9986 732 

accuracy 0.9970 

macro avg 0.9971 0.9901 0.9935 1001 

weighted avg 0.9970 0.9970 0.9970 1001 

 

Table 4.7 indicates the ResNet 152 model’s precision and recall values for normal lung 

CT are 0.9941 and 1.0000, respectively. The F1-score is 0.9970. The model achieved a 
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precision of 1.0000 and a recall of 0.9703 for ‘pneumonia’. The F1-score is 0.9849. The 

model also indicates ‘COVID-19 pneumonia’ lung CT with a precision value of 0.9973 

and a recall value of 1.0000. The F1-score is 0.9986. ResNet 152’s accuracy is 0.9970. 

ResNet 152 also demonstrates a macro-average precision value of 0.9971, a recall 

value of 0.9901, and an F1-score of 0.9935. The model indicates a weighted average 

precision, recall, and F1-score value of 0.9970. 

Table 4.8: ResNeXt 101 Performance Metrics. 

 ResNeXt101    

 precision recall f1-score support 

Normal 0.9882 1.0000 0.9941 168 

Pneumonia 1.0000 0.9802 0.9900 101 

COVID-19 1.0000 1.0000 1.0000 732 

accuracy 0.9980 

macro avg 0.9961 0.9934 0.9947 1001 

weighted avg 0.9980 0.9980 0.9980 1001 

 

Table 4.8 demonstrates ResNeXt 101 precision and recall values for ‘normal’ lung CT 

of 0.9882 and 1.0000, respectively. It achieved an F1-score of 0.9941. The precision and 

recall values for ‘pneumonia’ lung CT are 1.0000 and 0.9802. The F1-score is 0.9900. 

The model also obtained 1.0000 for all precision, recall, and F1-score values for ‘COVID-

19 pneumonia’ lung CT. The accuracy of the model is 0.9980. The macro average 

precision, recall, and F1-score values are 0.9961, 0.9934, and 0.9947. The weighted 

average precision, recall, and F1-score values are all 0.9980. 
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Table 4.9: Proposed Model Performance Metrics. 

 
Proposed 

Model 
   

 precision recall f1-score support 

Normal 0.9882 1.0000 0.9941 168 

Pneumonia 1.0000 0.9802 0.9900 101 

COVID-19 1.0000 1.0000 1.0000 732 

accuracy 0.9980 

macro avg 0.9961 0.9934 0.9947 1001 

weighted avg 0.9980 0.9980 0.9980 1001 

 

Table 4.9 demonstrates the proposed model precision, recall and F1-score values for 

‘normal’ lung CT of 0.9882, 1.0000, and 0.9941, respectively. It obtained 1.0000, 0.9802, 

and 0.9900 for ‘pneumonia’ lung CT’s precision, recall, and F1-score values. It also 

achieved 1.0000 for all ‘COVID-19 pneumonia’ lung CT’s precision, recall, and F1-

score, and an accuracy of 0.9980. The macro average precision, recall, and F1-score are 

0.9961, 0.9934, and 0.9947. The weighted average precision, recall, and F1-score values 

are all 0.9980. 
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Table 4.10: Precision in Performance Metrics. 

Precision Normal Pneumonia 
COVID-

19 
Acc 

macro 
avg 

weighted 
avg 

       

DenseNet201 0.9825 1.0000 1.0000 0.9970 0.9942 0.9971 

GoogLeNet 0.9882 1.0000 1.0000 0.9980 0.9961 0.9980 

ResNet50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

ResNet101 0.9882 1.0000 1.0000 0.9980 0.9961 0.9980 

ResNet152 0.9941 1.0000 0.9973 0.9970 0.9971 0.9970 

ResNeXt101 0.9882 1.0000 1.0000 0.9980 0.9961 0.9980 

Proposed 
Model 0.9882 1.0000 1.0000 0.9980 0.9961 0.9980 

 

Table 4.10 compares precision values between DenseNet 201, GoogLeNet, ResNet 50, 

ResNet 101, ResNet 152 and the proposed model. ResNet 50 achieved 1.0000, the highest 

value in all three classes: accuracy, macro, and weighted average. GoogLeNet, ResNet 

101, ResNeXt 101, and the proposed model obtained the same precision values of 0.9882, 

1.0000, 1.0000, 0.9980, 0.9961, and 0.9980 for all three classes: accuracy, macro, and 

weighted average, respectively. ResNet152 achieved a precision value of 0.9941, 1.0000, 

and 0.9973 for ‘normal’, ‘pneumonia’, and ‘COVID-19 pneumonia’ lung CTs. It also 

obtained 0.9970, 0.9971, and 0.9970 for accuracy, macro, and weighted average. 

DenseNet201 acquired 0.9825, 1.0000, and 1.0000 for ‘normal’, ‘pneumonia’, and 

‘COVID-19 pneumonia’ lung CTs. It also obtained 0.9970, 0.9942, and 0.9971 for 

accuracy, macro, and weighted average. 

Precision is an essential metric in multiclass classification. It measures the architecture 

models’ capability to predict positive instances for each class correctly. Table 4.10 shows 

that all of the existing architecture models and the proposed model obtained high 

precision, indicating that the models had a low rate of false positives for all categories of 

‘normal’, ‘pneumonia’, and ‘COVID-19 pneumonia’ CT images. It means that when the 

model predicted a sample of the CT image, it correctly identified that the image belonged 
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to a particular class. It is a desirable trait as it reflects the model’s accuracy in 

identification. ResNet 50 showed that its precision surpassed the existing and proposed 

models with a value of 1.0 for identifying normal, pneumonia, and COVID-19 CT images. 

This was followed by ResNet 152 with a precision value of 0.9941 for ‘normal’ and 1.0 

for ‘pneumonia’, and 0.9973 for ‘COVID-19 pneumonia’ CT images. Subsequently, 

GoogLeNet, ResNet 101, ResNeXt 101, and the proposed model obtained a precision 

value of 0.9882 for ‘normal’ CT images and a 1.0 for both ‘pneumonia’ and ‘COVID-19 

pneumonia’ CT images. DenseNet 201 obtained the most negligible precision value of 

0.9825 for ‘normal’ CT images and 1.0 precision value for both ‘pneumonia’ and 

‘COVID-19 pneumonia’ CT images. The precision value in multiclass classification was 

calculated separately for each class. Hence, ResNet 50, with the highest precision value, 

indicated that the model performed well in distinguishing classes from other architecture 

models. The other existing and proposed models also performed well, obtaining high 

precision scores for individual classes. 
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Table 4.11: Recall in Performance Metrics. 

Recall Normal Pneumonia 
COVID-

19 
Acc 

macro 
avg 

weighted 
avg 

       

DenseNet201 1.0000 0.9703 1.0000 0.9970 0.9901 0.9970 

GoogLeNet 1.0000 0.9802 1.0000 0.9980 0.9934 0.9980 

ResNet50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

ResNet101 1.0000 0.9802 1.0000 0.9980 0.9934 0.9980 

ResNet152 1.0000 0.9703 1.0000 0.9970 0.9901 0.9970 

ResNeXt101 1.0000 0.9802 1.0000 0.9980 0.9934 0.9980 

Proposed 
Model 1.0000 0.9802 1.0000 0.9980 0.9934 0.9980 

 

Table 4.11 compares the recall values between DenseNet 201, GoogLeNet, ResNet 

50, ResNet 101, ResNet 152 and the proposed model. ResNet 50 obtained 1.0000 for all 

classes, accuracy, macro, and weighted average. The GoogLeNet, ResNet 101, ResNeXt 

101 and the proposed model obtained performance metrics values of 1.0000, 0.9802, 

1.0000, 0.9980, 0.9934, and 0.9980 for all classes, accuracy, macro, and weighted 

average. ResNet152 and DenseNet 201 achieved 1.0000, 0.9703, and 1.0000 for ‘normal’, 

‘pneumonia’, and ‘COVID-19 pneumonia’ lung CTs respectively. The accuracy, macro, 

and weighted average values are 0.9970, 0.9901, and 0.9970.  

Recall, also known as sensitivity or the actual positive rate, it measures the proportion 

of correctly predicted samples for a specific class out of all the samples that belong to that 

class. Recall provides insights into the architecture models’ ability to identify positive 

instances correctly. ResNet 50 obtained the highest and most consistent recall value of 

1.0 for all classes. All the models obtained a recall value of 1.0 for ‘normal’ and ‘COVID-

19 pneumonia’ CT images, but the result varied for ‘pneumonia’, with 0.9802 for 

GoogLeNet, ResNet 101, ResNeXt 101, and the proposed model. Lastly, DenseNet 201 

and ResNet 152 obtained 1.0 for ‘normal’ and ‘COVID-19 pneumonia’ CT image recall 
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values but achieved 0.9703 for ‘pneumonia’ CT images. ResNet 50 had the best recall 

values in all the classes. 

Table 4.12: F1-Score in Performance Metrics. 

F1-Score Normal Pneumonia 
COVID-

19 
Acc 

macro 
avg 

weighted 
avg 

       

DenseNet201 0.9912 0.9849 1.0000 0.9970 0.9920 0.9970 

GoogLeNet 0.9941 0.9900 1.0000 0.9980 0.9947 0.9980 

ResNet50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

ResNet101 0.9941 0.9900 1.0000 0.9980 0.9947 0.9980 

ResNet152 0.9970 0.9849 0.9986 0.9970 0.9935 0.9970 

ResNeXt101 0.9941 0.9900 1.0000 0.9980 0.9947 0.9980 

Proposed 
Model 0.9941 0.9900 1.0000 0.9980 0.9947 0.9980 

 

Table 4.12 compares the F1-score values between DenseNet 201, GoogLeNet, ResNet 

50, ResNet 101, ResNet 152, ResNeXt 101 and the proposed model. ResNet 50 achieved 

1.0000 on all classes, accuracy, macro, and weighted average. GoogLeNet, ResNet 101, 

ResNeXt 101 and the proposed model achieved performance metrics values of 0.9941, 

0.9900,  and 1.0000 for ‘normal’, ‘pneumonia’, and ‘COVID-19 pneumonia’ lung CT. It 

obtained 0.9980, 0.9947, and 0.9980 accuracy, macro, and weighted average, 

respectively. ResNet152 shows the ‘normal’, ‘pneumonia’, and ‘COVID-19 pneumonia’ 

lung CT achieved 0.9970, 0.9849, and 0.9986, respectively. The accuracy, macro, and 

weighted average are 0.9970, 0.9935, and 0.9970. DenseNet201 indicates the ‘normal’, 

‘pneumonia’, and ‘COVID-19 pneumonia’ lung CT values to be 0.9912, 0.9849, and 

1.0000, respectively. It also achieved an accuracy, macro, and weighted average of 

0.9970, 0.9920, and 0.9970, respectively. 

Table 4.12 shows the F1-score of the existing and proposed models. It combines 

precision and recall into a single value and balances the two metrics during classification. 

ResNet 50 obtained the highest F1-score value of 1.0 for all classes. This was followed 
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by GoogLeNet, ResNet 101, ResNeXt 101, and the proposed model with the F1-Score 

for ‘pneumonia’ CT images of 0.9900, ‘normal’ CT images of 0.9941, and 1.0 for 

‘COVID-19 pneumonia’ CT images. ResNet 152 obtained an F1-score of 0.9970 for 

‘normal’ lung CT images, 0.9986 for ‘COVID-19 pneumonia’ CT images, and 0.9849 for 

‘pneumonia’ CT images. DenseNet 201 achieved the lowest F1-score for ‘normal’ lung 

CT images with 0.9912, 0.9849 for ‘pneumonia’, and 1.0 for ‘COVID-19 pneumonia’ CT 

images. Overall, ResNet 50 was the model that achieved the best results. The proposed 

model performed reasonably well and matched evenly with ResNeXt 101, ResNet 101, 

and GoogLeNet.  

4.1.4 Summary 

The multi-class classification study consisted of many more datasets than the binary 

classification. Hence, data augmentation was not performed on the labelled images. The 

multi-class classification showed that ResNet 50 performed the best among the rest of the 

CNN architecture. Although the proposed model was not the best among the CNN 

architectures, the results were on par with ResNeXt 101, ResNet 101, and GoogLeNet. 

Table 4.1 describes ResNeXt 101 as having the highest training parameters, 86,748,483, 

indicating that the architecture requires the highest resources to run the model. The 

proposed model with 7,724,523 training parameters, 11 times less than ResNeXt 101, 

achieved similar accuracy. 
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4.2 Research Limitation 

The research applied small datasets to train the CNN architectures for binary 

classification, resulting in a total of 746 images. The existing and proposed models are 

intricate, with small data as input data; the models will either overfit or underfit. The 

quantity of the dataset was further reduced when it was divided into three categories to 

train, validate, and test the neural networks. The problem of data scarcity is often 

responsible for poor performance, which results in incomplete projects.  

Six different data augmentation methods were performed on the training and validation 

datasets to compensate for the lack of quantity of the dataset and train the neural network 

to be more robust and versatile in classifying ‘COVID-19 pneumonia’ and ‘normal’ CT 

images. However, based on the training and validation curves, the validation loss 

described that the neural network models picked up noises that caused overfitting. 

Overfitting in the validation loss indicates that more training examples are required to 

improve the model performance on the unseen data. The batch normalisation technique 

had been utilised but produced a slight regularisation effect. Therefore, Figure 4.1 shows 

the fluctuation of peaks in DenseNet 201. Dropout can be used to increase the 

regularisation effect. The research also conducted cropping and rotation of the images as 

data augmentation operations to create more data for the algorithm to learn from. The 

algorithm overcropped the images, which, combined with rotation, exacerbated the loss 

of essential clues in the images. Hence, the algorithm created arbitrary images that 

excluded important information required to learn and classified them as ‘COVID-19 

pneumonia’ or ‘normal’ CT images. Cross-validation can be applied to increase the 

amount of training data. The learning rate of the algorithm can be lowered to improve the 

performance of the graph in Figure 4.1. The CNN optimisers can be improved instead of 

stochastic gradient descent (SGD) with momentum; ADAM can improve the algorithm.  
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Deep learning models require significant hardware and computational costs to train 

them efficiently. Although Google Colab Pro provides enhanced resources, it has limited 

memory and runtime duration. Complex deep-learning models or large-scale datasets 

exceed the available resources, requiring alternative infrastructure. Due to limitations, 

Google Collaboration is a free online GPU that cannot cover neural networks. It restricts 

users from conducting long-running tasks, especially if the models have to run with large 

datasets. 

Unlike binary classification, multi-class classification overcame the dataset's scarcity 

by acquiring 10,001 CT images. Hence, data augmentation was not required to increase 

the images' variation. Multi-class classification experienced class imbalance, where the 

‘normal’, ‘pneumonia’, and ‘COVID-19’ classes ratios were 2:1:7, respectively, causing 

it to have disproportionately small numbers for ‘normal’ and ‘pneumonia’ samples. As 

the number of classes increased, the complexity of the model and the computational 

requirements also increased. The deep learning models with more classes required 

extensive training and larger datasets to perform well. 

The selection of appropriate evaluation metrics for multi-class classification was 

challenging because accuracy alone cannot provide the complete picture. Multi-class 

datasets might have instances with ambiguity or mislabeled samples, introducing noise 

and complexity in the learning process. The model's performance heavily depended on 

the quality and relevance of the selected features. Sometimes, certain essential features in 

the input may be missing, leading to suboptimal performance. CNN architectures often 

rely on the availability and quantity of labelled training data. The binary classification 

study had dataset limitations, but the data were balanced between the classes. Multi-class 

classification had wide ranges of datasets, but the availability of specific datasets for 

certain classes, like ‘normal’ lung CT images and ‘pneumonia’ lung CT images, was 
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limited, causing the classes to be imbalanced. Hence, limited access to such resources can 

hinder the development and training of complex deep-learning models.  

Kaggle contains a wide range of datasets, but the availability of specific datasets within 

the classes was limited. Certain domains or datasets categorised according to classes were 

unavailable for the platform. Kaggle provides pre-configured environments and 

restrictions on the usage of specific libraries or resources, which limits the flexibility and 

customization options for researchers who require specific software versions, packages, 

or hardware configurations.  
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CHAPTER 5: CONCLUSION AND FUTURE WORKS 

5.1 Conclusion 

The research provided a thorough understanding of the deep learning application for 

this multiclass classification task and the distinct opportunities and problems associated 

with each image class. The proposed model design prioritises deployability and 

lightweight characteristics, ensuring it can be easily integrated into clinical settings 

without imposing excessive computational or storage demands. The proposed model 

achieved an accuracy, F1-score, recall, and precision of 0.9980 despite not being pre-

trained with the ImageNet dataset. All the objectives were achieved. 

This binary classification study between ‘COVID-19 pneumonia’ and ‘normal’ CT 

images applied various transfer learning models and comprehensive analysis to 

automatically distinguish the images by machines. Firstly, the images were divided into 

training, validation, and testing. The images, divided into training and validation 

categories, were augmented to increase the datasets. The images in the testing category 

were not augmented. Then, the binary classification of the augmented dataset was 

implemented on ten different pre-trained models. The results have shown that ResNeXt 

101 consists of the highest number of parameters, which is 86,746,434, achieving the 

highest accuracy of 98%. ResNeXt 101 demonstrated robustness, achieving high 

accuracy and generalisation on unseen data. GoogLeNet, on the other hand, had the most 

minor training parameters, with 5,601,954, but it had the lowest accuracy of 76.44%.  

The multi-class classification involved the study of ‘normal’, ‘pneumonia’, and 

‘COVID-19 pneumonia’ CT images applied to various transfer learning models. A 

proposed model was designed and analysed to distinguish the images automatically. 

Firstly, the CT images were divided into training, validation, and testing. The amount of 

data was sufficient, so data augmentation was unnecessary. However, this study dealt 
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with imbalanced datasets, where some class ‘COVID-19 pneumonia’ CT images have 

significantly more samples than others. The study has shown that ResNet 50 achieved the 

best results with 100% precision, F1-score, recall, and accuracy, followed by the proposed 

model, GoogLeNet, ResNet 101, and ResNeXt 101. The proposed model, GoogLeNet, 

ResNet 101, and ResNeXt 101, had achieved a 0.9980 weighted average and a 0.9961 

macro average. ResNet 152 achieved a macro average of 0.9971 and a weighted average 

of 0.9970. DenseNet 201 achieved the worst result, with a macro average of 0.9942 and 

a weighted average of 0.9971. ResNet 50 achieved 100% accuracy in multiclass 

classification as it was pre-trained on ImageNet. Therefore, it has the potential to achieve 

100% accuracy in three (3) multiclass classifications. 

The research introduced a novel framework that ResNeXt and Inception inspired to 

create a synergistic effect. The intention of the research is solely on the deployability of 

the model in the future. The proposed model is designed to be as lightweight as possible 

while performing at par with the best ImageNet models. The proposed model has 

7,724,523 parameters, 11 times less than ResNeXt 101 while having similar accuracy. It 

makes the model lightweight and less intricate in its width and depth. The lightweight 

proposed model paves the way for deployment of the model for inference even in low-

power devices such as embedded medical devices.   

5.2 Limitations and Future Works 

It is essential to acknowledge that deep learning is not without limitations. One of the 

challenges encountered during this binary classification was data scarcity and 

interpretability. These limitations remain an active area of research, and further 

advancements are needed to enhance the interpretability, efficiency, and generalisation of 

deep learning models using small data.  
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Despite the advantages of the proposed model mentioned during the discussion, the 

model is not yet optimised to be deployed for production. More work still needs to be 

done to ensure the model can be trained, make inferences faster, and specialise in the real-

world use case. The proposed model should undergo training on the ImageNet platform 

to ensure its adaptability for deployment on chest CT images and diverse images available 

within the ImageNet platform. A lightweight model with fewer parameters certainly helps 

in this aspect. Additionally, it should be possible to fine-tune or adjust the model to get 

the same or better performance compared to ResNet 50 and classify CT images with more 

than three (3) classifications. 

For future work, the proposed model required further and continuous refinement to 

integrate the algorithm for adaptation of multi-data modalities, such as combining chest 

CT images with various clinical data or laboratory results to improve diagnostic 

capabilities. The proposed model required further testing and adaptation to account for 

chest CT image acquisition protocols and equipment variations. The proposed model can 

then be integrated into the national electronic healthcare records, picture archiving, and 

communication systems. Subsequently, the proposed model is required to meet data 

privacy and security regulatory standards to facilitate the model's adoption in medical 

settings. By reducing data transfer and making the model workable in resource-

constrained places, the possibility of implementing and integrating the suggested model 

on the edge of computing empowers healthcare systems and institutions to manage and 

utilise medical pictures promptly, utilising local image analysis. 

Additionally, medical practitioners may successfully use and comprehend the model 

by designing user-friendly interfaces. The proposed model's research findings must be 

openly shared through science and medical journals. Partnerships with research 

institutions, healthcare organisations, and AI developers are essential to creating open-
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source resources and benchmark datasets. The proposed model can be further refined and 

integrate with explainable artificial intelligence (XAI) to enhance the proposed model’s 

interpretability and transparency and ensure that the classification and detection of chest 

CT images can be explained to healthcare professionals and stakeholders. These 

programmes promote continuous progress in the field and improve our understanding of 

COVID-19 CT image analysis. Through the contribution of the proposed model, early 

diagnosis and containment of infectious diseases are facilitated by the model’s 

implementation in public health initiatives through collaboration with governments and 

public health groups.  
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