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RISK PERCEPTION MODELING BASED ON PHYSIOLOGICAL AND 

EMOTIONAL RESPONSES 

ABSTRACT 

Risk perception refers to how individuals perceive objective risks. Although it initially 

emerged in social sciences, it has become a crucial aspect of safety science due to its 

significance in understanding unsafe behaviors. It can help safety managers develop a 

comprehensive understanding of risk based on traditional engineering risk assessment 

principles, facilitating the transition from the Safety I to Safety II paradigm. Therefore, 

accurate risk perception has become vital. This research aims to develop models for 

objectively assessing perceived risk. Previous studies have employed machine learning 

techniques to classify high and low-risk situations based on physiological responses. 

However, the performance of these algorithms in situations with closely comparable risk 

magnitudes remains uncertain. This issue is crucial as it directly impacts their practicality 

and generalization. To address this concern, four driving clips were selected as stimuli, 

including relatively low (1.87) and high (3.97) risk levels, as well as two clips with slight 

variations in their degree of riskiness (2.45 and 2.85, respectively). Fifty-five subjects 

were recruited to synchronously measure their physiological signals, including 

Electrodermal Activity (EDA), Heart Rate Variability (HRV), Pupil Diameter (PD), and 

Skin Temperature (ST). A Pleasure-Arousal-Dominance (PAD) model was used to 

induced and expressed mixed emotions. Subsequently, statistical analyses were 

performed to identify indicators that showed significant differences. These results varied 

significantly, including three emotional dimensions, two skin conductance indicators 

(EDR and EDL), and several ECG indicators (such as HF, LF/HF and A++) reflecting 

short-time changes. As the perceived risk level increased, subjects’ emotions experienced 

more negative, arousal and a diminished sense of control. In terms of physiological 

changes, there was an increase in sympathetic activity and a concurrent decline in the 
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vagus nerve at a macro-level. However, the changes that resulted from consecutive 

heartbeats were characterized by rapid and erratic variations at a micro-level. 

Additionally, these observed significant differences were primarily attributed to 

variations in risk levels, rather than personal differences. In terms of feature importance, 

physiological and emotional indicators that showed significant differences or greater 

fluctuations demonstrated greater sensitivity. Finally, three base models, Artificial Neural 

Network (ANN), Random Forest (RF), Support Vector Classification (SVC), and two 

integrated models were trained to classify perceived risk using higher sensitivity features. 

The ANN demonstrated superior ability in distinguishing low and high-risk levels. 

However, when risk degrees were closely matched, the integrated model with weight 

adjustments based on base models outperformed ANN. To validate the research findings, 

a second experiment was conducted in a construction scenario, still utilizing two clips 

with closely matched risk degrees. It was demonstrated that the primary results derived 

from statistical analysis and machine learning modelling were remarkably consistent, 

thereby confirming the effectiveness and generalization of the proposed weight 

adjustment algorithm, particularly in situations with closely matched risk levels. 

Keywords: Risk Perception, Physiological Responses, PAD Model, Statistical 

Analysis, Machine Learning. 
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PEMODELAN PERSEPSI RISIKO BERDASARKAN TINDAK BALAS 

FISIOLOGI DAN EMOSI 

ABSTRAK 

Persepsi risiko merujuk kepada bagaimana individu mengenal pasti risiko objektif. 

Walaupun ia pada mulanya muncul dalam sains sosial, ia telah menjadi aspek penting 

dalam sains keselamatan kerana kepentingannya dalam memahami perilaku tidak selamat. 

Ia boleh membantu pengurus keselamatan membangunkan pemahaman menyeluruh 

tentang risiko berdasarkan prinsip penilaian risiko kejuruteraan tradisional, memudahkan 

peralihan dari paradigma Keselamatan I kepada Keselamatan II. Persepsi risiko yang 

tepat telah menjadi penting. Penyelidikan ini bertujuan untuk membangunkan model 

untuk menilai risiko yang dirasai secara objektif. Kajian terdahulu telah menggunakan 

teknik pembelajaran mesin untuk mengelasifikasi situasi risiko tinggi dan rendah 

berdasarkan respons fisiologi. Walau bagaimanapun, tidak pasti sama ada algoritma ini 

berfungsi dengan baik dalam kes di mana magnitud risiko adalah relatif hampir. Isu ini 

adalah penting kerana ia memberi kesan secara langsung kepada praktikaliti dan amalan 

umum. Untuk mengatasi kebimbangan ini, empat klip pemanduan telah dipilih sebagai 

stimuli, termasuk tahap risiko yang rendah (1.87) dan tinggi (3.97), serta dua klip dengan 

variasi kecil dalam darjah risiko mereka (masing-masing 2.45 dan 2.85). Lima puluh lima 

subjek telah diambil untuk mengukur secara serentak isyarat fisiologi mereka, termasuk 

Aktiviti Elektrodermal (EDA), Variabiliti Denyut Jantung (HRV), Diameter Pupil (PD), 

dan Suhu Kulit (ST). Perasaan bercampur telah diinduksi dan dinyatakan dengan 

menggunakan model Kesenangan-Pengegaran-Ketuan (PAD). Seterusnya, analisis 

statistik telah dijalankan untuk mengenal pasti petunjuk yang menunjukkan perbezaan 

yang signifikan. Keputusan-keputusan ini berbeza secara ketara, termasuk tiga dimensi 

emosi, dua petunjuk pengaliran kulit (EDR dan EDL), dan beberapa petunjuk EKG 

(seperti HF, LF/HF, dan A++) yang mencerminkan perubahan dalam jangka masa pendek. 
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Apabila tahap risiko yang dirasakan meningkat, emosi subjek mengalami lebih banyak 

negatif, rangsangan, dan penurunan rasa kawalan. Dari segi perubahan fisiologi, terdapat 

peningkatan dalam aktiviti simpatetik dan penurunan serentak dalam saraf vagus pada 

tahap makro. Walau bagaimanapun, perubahan yang dihasilkan daripada degupan jantung 

berturut-turut dicirikan oleh variasi pantas dan tidak menentu pada tahap mikro. Selain 

itu, perbezaan ketara yang diperhatikan ini terutama disebabkan oleh variasi dalam tahap 

risiko, bukannya perbezaan peribadi. Dari segi kepentingan ciri, penunjuk fisiologi dan 

emosi yang menunjukkan perbezaan ketara atau turun naik yang lebih besar menunjukkan 

sensitiviti yang lebih tinggi. Akhirnya, tiga model asas, Rangkaian Neural Buatan (ANN), 

Hutan Rawak (RF), Pengelasan Vektor Sokongan (SVC), dan dua model bersepadu telah 

dilatih untuk mengklasifikasikan risiko yang dirasakan menggunakan ciri-ciri dengan 

sensitiviti yang lebih tinggi. ANN menunjukkan keupayaan unggul dalam membezakan 

tahap risiko rendah dan tinggi. Walau bagaimanapun, apabila tahap risiko hampir sama, 

model bersepadu dengan pelarasan berat berdasarkan model asas mengatasi prestasi ANN. 

Untuk mengesahkan penemuan penyelidikan, eksperimen kedua dijalankan dalam 

senario pembinaan, masih menggunakan dua klip dengan tahap risiko yang hampir sama. 

Ia menunjukkan bahawa hasil utama yang diperoleh daripada analisis statistik dan 

pemodelan pembelajaran mesin adalah sangat konsisten, sekali gus mengesahkan 

keberkesanan dan generalisasi algoritma pelarasan berat yang dicadangkan, terutamanya 

dalam situasi dengan tahap risiko yang hampir sama. 

Kata Kunci: Persepsi Risiko, Tindak Balas Fisiologi, Model PAD, Analisis Statistik, 

Pembelajaran Mesin. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Human factors have been a central focus of research in various industries since the late 

1980s. They are recognized as the primary cause of accidents (Bellamy et al., 2008). 

Notably, statistical analysis of accidents has shown that unsafe human behaviors 

contribute to at least 66% and, in some cases, over 90% of incidents across various 

industries (Azadeh & Zarrin, 2016). The concept of unsafe human behaviors emerged 

from the interaction between workers' decision-making processes and hazardous work 

conditions (Wang et al., 2016). However, preceding unsafe human behaviors and 

decisions is the individual's perception of risk (Chan et al., 2022; Hill et al., 1997; Sitkin 

& Weingart, 1995; Tixier et al., 2014; Weber et al., 2002). The viewpoint that defects in 

risk perception were recognized as crucial cause of accidents dates back to as early as 

1992 (Rundmo, 1992b). 

1.1.1 The Emergence of Risk Perception in Social Science 

The concept of risk perception emerged in the 1960s within the policy domain (Sjöberg 

et al., 2004). It refers to individuals' recognition and understanding of various objective 

risks within their environment (Botterill & Mazur, 2004; Slovic, 1988; Slovic et al., 1982; 

Veland & Aven, 2013). A significant gap was found between risk assessments made by 

experts and those held by the public. For example, experts may consider living near a 

nuclear facility to be less risky than ordinary activities such as drinking or driving, but 

society does not share this perspective. This inconsistency has encouraged prompt 

exploration in social science and psychology to explore the underlying reasons (Wilson 

et al., 2019). In recent years, divergent public perceptions of the same risk have continued 

to exist in the context of both the COVID-19 pandemic (Dryhurst et al., 2022) and the 

Fukushima nuclear leakage incident (Morioka, 2014). This disparity significantly 
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influences the development of policies and strategies for risk communication in risk 

management (Loewenstein et al., 2001; Sjöberg et al., 2004; Slovic et al., 2004).  

Additionally, extensive research has been conducted on influencing factors. For 

example, gender, age, prior knowledge, and life experiences can all impact an individual's 

subjective risk perception (Shou & Olney, 2021; Wachinger et al., 2013). In particular, 

George F. Loewenstein and his team (Loewenstein et al., 2001) delved deeper by 

introducing the "Risk as Feelings" hypothesis, which emphasized the role of emotions in 

risk perception. 

1.1.2 The Development of Risk Perception in Safety Science  

Risk perception was introduced and systematically studied, gaining significant 

recognition in safety science in the 1990s (Flin & Mearns, 1994; Okrent, 1998; Rundmo, 

1992a, 1992b, 1996). A series of studies have provided supporting evidence of the impact 

of risk perception on decision-making and behavior across various domains, including 

construction (B. Choi et al., 2019; B. G. Lee et al., 2021), transportation (Harbeck & 

Glendon, 2018; Herrero-Fernandez et al., 2016; Sohail et al., 2023; Stülpnagel et al., 

2022), aviation (Ji et al., 2011), natural disaster (Ng, 2023; Paton et al., 2000), emergency 

evacuation and preparedness (Choi et al., 2016; Riad et al., 1999). It implies that accurate 

risk perception is essential for making informed decisions and conducting appropriate 

behaviors (Rundmo, 1996; Taylor & Snyder, 2017).  

In the industrial sector, biases in perceived risk can also arise. These differences may 

arise from disparities between beliefs about risks and the outcomes of traditional 

technological risk assessments (Aven, 2018; Aven & Kristensen, 2005; Aven & Renn, 

2010), or they may result from differing risk perceptions among various personnel groups 

within the same organization, such as management and frontline operators (Hon et al., 

2023; Mearns & Flin, 1995), and even among different employee groups (De Salvo et al., 

2022; Gürcanlı et al., 2015; Hon et al., 2023). Any of these discrepancies can lead to 

Univ
ers

iti 
Mala

ya



3 

inaccurate decision-making (Loewenstein et al., 2001; Slovic et al., 2004) and behaviors 

(Taylor, 1964; Wilde, 2014), ultimately undermining system reliability (Zhang et al., 

2022). For example, when individuals perceive potential harm as high, they are more 

inclined to be cautious and engage in proactive and appropriate behaviors to reduce risk. 

Conversely, if they perceive them as low, they may disregard the hazard and engage in 

unsafe actions (B. G. Lee et al., 2021).  

Biases in perceiving risk can offer valuable insight for safety managers and 

professionals. The variations are considered significant from the current perspective 

(Brown, 2014). Incorrect or inappropriate risk perception from the individual level can 

provide safety managers with an entirely different perspective on risk information. Many 

safety measures aimed at risk reduction are predominantly based on the outcomes of 

expert or traditional engineering risk assessments. However, when the reduced risk level 

is higher than the perceived risk at the individual level, the risk may still be perceived as 

exceeding the individual's acceptable threshold from a personal perspective. So, 

understanding risk from an individual perceiving perspective can complement the 

existing risk assessment. Consequently, accurate assessment of individual risk 

perceptions becomes essential. 

1.1.3 The Assessment of Perceived Risk 

Numerous areas have developed methods to measure perceived risk. In social science, 

the psychometric paradigm was used to quantitatively assess risk in the 1980s and 1990s 

(Slovic, 1990). This assessment scale could identify and quantify the similarities and 

differences in risk cognition and attitudes among groups, but its effectiveness at the 

individual level was limited (Sjöberg et al., 2004). 

Additionally, the inherent subjectivity sets it apart from traditional or engineering risk 

assessment in safety sciences. The former frequently utilize combinations of probability 

and consequences to qualitatively or quantitatively depict risk carried out by safety 
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experts or engineering (Aven & Kristensen, 2005; Marhavilas et al., 2011). However, it 

is vitally important to note that these methods often prioritize hazards to machinery and 

the environment, frequently overlooking potential risks to human factors (Mearns & Flin, 

1995; Pasman et al., 2013). More specifically, the risk perception of individuals directly 

involved in risky situations is often disregarded (Aven, 2018; Siegrist & Árvai, 2020).  

Risk perception was regarded as an influencing factor of human reliability in the 

human-machine system. A series of studies, including Human Reliability Analysis (HRA), 

Human Error Analysis (HEA), Human Performance Assessment (HPA), and Human 

Cognitive Assessment (HCA), have been conducted. HRA, proposed in the early 1980s, 

evaluates the contribution of operators to system safety performance (La Fata et al., 2021). 

Both safety science and ergonomics assessment methods rely on accident historical 

data and expert experience in system operations, providing insights into objective risks 

(Chang et al., 2016; Liu et al., 2018). Therefore, it becomes evident that these two 

approaches are inadequate for quantifying risk perception. Moreover, both directions 

carried an underlying assumption that individuals who demonstrated reliability in 

standard work conditions would also perform effectively in risky situations. Nevertheless, 

it is essential  to consider that a person's mental workload during emergencies can be 

twice as high (Connelly, 1997), compounded by the urgent and critical nature of risk 

scenarios (Woodcock & Au, 2013) and the presence of time pressure (Coeugnet et al., 

2013). Consequently, perceiving risk was inevitably influenced, and the likelihood of 

human errors or unsafe behaviors was significantly increased in real-world scenarios. 

In recent years, a new paradigm has emerged for assessing subjective risk perception, 

driven by advancements in psychophysiological measurement and machine learning (B. 

Choi et al., 2019; B. G. Lee et al., 2021). Initially, physiological response data associated 

with the risk perception process were obtained through measurements of physiological 

signals. Subsequently, these data were utilized as inputs to train machine learning models, 
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with the output representing the perceived level of risk. This approach brings about a 

novel opportunity to objectively evaluate perception-based risks that are inherently 

subjective and concealed.  

1.2 Problem Statement 

In industrial practices, risk assessment is the cornerstone of risk management systems 

(Manuele, 2021), guiding the development of safety decisions and strategies for risk 

mitigation. However, traditional engineering risk assessment methods predominantly 

present a particular challenge: the assessment conducted by professionals differs from the 

risk perceived by workers involved in risk situations (Arezes & Miguel, 2008). Moreover, 

perceived risk is highly subjective and concealed, challenging the traditional reliance on 

pure "numeric trust" (Krige, 1997). Hence, a scientific and objective assessment of their 

risk perception, complementing engineering risk assessment,  is crucial for effective risk 

management (Manar et al., 2019; Namian et al., 2018) and the transition from Safety 

Management I to Safety Management II (Aven. & Terje., 2022). 

1.3 Research Objective 

The primary objectives of the research are to develop a suitable model to assess 

subjective perceived risk from the perspective of physiology and emotional responses, 

which corresponds closely to the risk level in humans. To achieve this goal, the following 

objectives have been established: 

Objective 1: To characterize the physiological and emotional changes that arise in 

response to various risky situations, employing statistical methods for analysis. 

Objective 2: To develop machine learning models to assess perceived risk levels based 

on physiological and emotional responses.  

Objective 3: To validate the performance of the proposed machine learning model in 

assessing perceived risk levels. 
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1.4 Research Scope  

The categorization of risk in risk perception varies between social science and safety 

science. In social science, the term ‘risk’ includes natural, environmental, infectious 

diseases and technological risks that extend beyond the scopes of production enterprises. 

Conversely, in safety science, the risk primarily refers to technological risks associated 

with the production process within an enterprise. This study specifically aims to 

investigate safety risks within the domain of safety science and focus on modeling 

perceived risk using machine learning technique based on physiological and emotional 

responses. 

1.5 Thesis Structure 

The thesis consists of seven chapters. The present chapter, Chapter 1, mainly 

introduces the research background. It provides an overview of risk perception and its 

importance in accident prevention. The discussion on research progress and limitations 

in risk perception leads to the formulation of the research objectives in this thesis. 

Chapter 2 provides a literature review on risk perception, possessing an 

interdisciplinary nature, which covers sociology, safety science and ergonomics. 

Consequently, Chapter 2 introduces its concept, origins, primary research findings and 

limitations within these three domains. Given that this study employs physiological and 

emotional responses to represent risk perception, the following sections explore these 

responses in risky situations, potential individual differences and the application of 

machine learning in risk assessment. Finally, an overview of research gaps is provided. 

Chapter 3 presents the complete experimental design and the subsequent data analysis 

methods, covering stimulus and participant screening, physiological and emotional 

measurement methods, experiment equipment, procedure, statistical analysis methods 

and the selection of machine learning algorithms. Additionally, this chapter also includes 

experimental validation. 
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Chapter 4 provides the statistical analysis of physiological and emotional data for the 

first experiment. It examines the differences in physiological and emotional responses 

induced at different risk levels. Subsequently, the source of significant differences is 

analyzed based on risk levels or individual factors. It aids in gaining initial insights into 

the patterns of response variations and the underlying neural regulatory mechanism across 

different risk situations. 

Chapter 5 presents the process of detecting feature sensitivity and eliminating 

collinearity features, then using the new features as input vectors for classifying risk. 

Three basic models and two integrated models are developed. Finally, their performance 

is assessed and compared to select the optimal model. 

Chapter 6 presents the application paradigm of risk perception assessment. 

Subsequently, experiment is conducted based on this framework in a new scenario. It 

validates the findings obtained from the initial study, including the statistical analysis 

results, feature importance and the optimal model. The aim is to confirm the 

generalization capacity of the optimal risk perception model in different scenarios. 

Chapter 7 provides the conclusion and recommendations. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction  

While risk perception initially emerged in social science research, it has shown to be 

invaluable in the field of industry safety, as demonstrated by a well-known incident in the 

2010 explosion and sinking of the Deepwater Horizon, resulting in the world’s worst 

offshore oil spill (Reader & O’Connor, 2014). The investigation into this accident 

revealed that operational personnel failed to detect abnormalities in pressure readings and 

fluid quantities during negative pressure testing and oil well monitoring of oil and gas 

into the well (Bly, 2011). The primary reasons for these lapses in both job roles were their 

flawed risk perception, sometimes leading to unintentional disregard of hazards in 

complex and highly uncertain situations (Manar et al., 2019). This delayed and inaccurate 

risk perception represented a classical hazard that traditional risk assessment methods 

struggled to identify, particularly when applied in environments marked by deep 

uncertainty and complexity. 

Given the importance of risk perception, achieving a comprehensive and profound 

understanding is crucial. Therefore, this chapter briefs on an overview of key research 

findings on risk perception from sociology, safety science, and ergonomics. Subsequently, 

building upon the established research findings, we seek to pinpoint areas where further 

research is needed. Moreover, exploration into the potential application of physiological 

and emotional measurements, along with machine learning algorithms, is undertaken in 

this study, offering relevant introductions.  

2.2 Risk Perception 

2.2.1 The definition of Risk Perception 

Before delving into the concept of ‘risk perception’, it is essential to understand the 

term ‘risk’ itself. The concept of ‘risk’ emerged in academic literature as early as the 

1980s (Marshall, 2020). Risk was typically defined as a combination of the probability or 
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frequency of a defined hazard occurring and the magnitude of the consequences resulting 

from the occurrence in the engineering industry (Aven & Kristensen, 2005; P.K. 

Marhavilas, 2011). However, the definition of risk in social science research differed from 

the engineering perspective. Social science recognizes that ‘risk’ is multidimensional and 

shaped by various factors, including personal and cultural influences, as well as the 

inherent characteristics of the risk itself  (Pidgeon, 1998). For example, the risk of 

‘catastrophic potential’ is more significant in the context of nuclear and chemical 

technology risks but less so in automobile travel (Gardner & Gould, 1989). Social science 

introduced the concept of ‘risk perception’ to express the multidimensional characteristics 

of risk. This term encapsulates the subjective understanding of risk held by humans in 

response to a wide range of hazards. 

Risk perception generally refers to an individual's subjective judgment and evaluation 

of risks in situations involving danger or emergencies (Fung et al., 2010; Hallowell, 2010; 

Rundmo, 2000). According to Deery's study (Deery, 1999), the concept was mentioned 

in various theoretical models. For example, in an information-processing model proposed 

by Wickens, Hollands, Banbury, and Parasuraman (Wickens et al., 2015), risk perception, 

along with sensory processing, response selection, and response execution, played an 

important role in collecting relevant information and forming a perceived risk. Similarly, 

the Situation Awareness (SA) model (Endsley, 1995) emphasized the importance of 

perceiving elements in the environment as the first step, followed by developing a 

comprehensive understanding of the current situation and making predictions about future 

conditions. 

2.2.2 The Process of Perceiving Risk 

In the process of risk perception, Choi and Lee (2018) considered risk perception as 

the initial step, followed by risk assessment and safety behavior. Another perspective on 

risk perception and behavioral decision-maki ng was provided by the dual-processing 
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theory (Chaiken & Trope, 1999), which suggests that the human brain operates in two 

modes when perceiving risk and making a decision: System 1 and System 2. The former 

is a fast, unconscious, instinctive, emotional and automatic mode of thinking that allows 

individuals to make conclusions with little effort (Aven, 2018). Conversely, System 2 

entails slow, conscious, and deliberate thinking, demanding substantial mental effort 

(Janoff-Bulman, 2001; Smith & DeCoster, 2000). It is further supported by physiological 

experiments that have confirmed the existence of System 1 and System 2. 

Electroencephalogram (EEG) analysis identified two stages: the detection stage (marked 

by P200) and the evaluation stage (marked by LPP). The former was characterized by 

rapid, affective, and intuitive responses, while the latter was characterized by rationality 

and logic (Ma et al., 2014). It aligned with the earlier description of System 1 and System 

2 in the risk perception process. Additionally, it was consistent with the descriptions of 

the ‘analytic system’ and ‘experiential system’ in cognitive psychology and neuroscience 

(Slovic et al., 2004).  

This dichotomy has been closely associated with risk analysis, emphasizing that the 

seemingly contradictory dual analytical modes are essential for understanding risk, and 

their roles are complementary. For instance, during the risk perception process, System 1 

operated automatically and continuously provided information to System 2. System 2, as 

a rule, embraced the information provided by System 1 and consistently adjusted to the 

result of risk perception. Consequently, acknowledging both systems are widely 

recognized as essential for a comprehensive understanding of the risk perception process 

(Aven, 2018). In emergency or potential risk situations, System 1 (i.e., automatic 

activation) may assume a pivotal role in risk perception, as risk perception represents an 

immediate response to potential hazards encountered (B. G. Lee et al., 2021; Loewenstein 

et al., 2001). Even complex studies by neuroscientists reinforced this perspective 
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(Damasio, 1994), indicating that logical argumentation and analytical reasoning were 

rendered ineffective unless guided by emotion and affect. 

Based on the definition of risk perception and the two underlying processes involved 

in perceiving risk, it can be deduced that risk perception refers to an individual's 

subjective sensing and understanding of various external objective risks (Sitkin & Pablo, 

1992; Van der Velde et al., 1992). Due to its perception process occurring internally 

within the human body, it has remained challenging to observe and detect, thus possessing 

a high degree of concealment. It has presented significant challenges in assessing the 

perceived risk. 

2.3 Assessment of Perceived Risk 

Risk perception significantly influences decision-making and behavioral responses in 

dangerous or emergencies. An accurate perception and assessment of potential risks are 

crucial to an ensure effective and timely emergency response to prevent accidents, 

minimize harm, and reduce accident losses. It is the last line of defense in safeguarding 

against accidents (Woodcock & Au, 2013). Researchers from various academic fields, 

such as sociology, safety science, and ergonomics, have been increasingly focused on this 

issue. In this overview, we will highlight key findings from these perspectives. 

2.3.1 Risk Perception in Social Science 

The research on risk perception in social science can track back to the 1960s and 1970s, 

and the origins were the identification of a disconnect between public perceptions of risk 

and technical assessments of risk (Wilson et al., 2019), then focused on its influence on 

decision-making and actions (Rundmo, 1995; Slovic, 1987; Slovic et al., 1982). Slovic 

and his research team made significant contributions to risk perception.  

2.3.1.1 The existences and determinants of risk perception 

Social science initially focused on the existence of risk perception. It emerged as a 

leading area of research in the 1980s (N. Pidgeon, 1992). Scholars predominantly directed 
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their attention to various types of risks perceived by individuals in their daily lives (e.g., 

tourism (Cui et al., 2016), smoking (Liu & Hsieh, 1995), food safety (Hansen et al., 2003), 

natural disasters (Gierlach et al., 2010; Ho et al., 2008; Västfjäll et al., 2008), 

environmental risks (Marris et al., 1996; Steg & Sievers, 2000), as well as industrial risks 

(B. Choi et al., 2019; Earle & Lindell, 1984; Lopez Vazquez, 2001). It is worth noting 

that within the industrial risks, such as explosions and toxic substance leaks, there is a 

particular interest when these incidents extend beyond the factory premises and 

significantly impact the surrounding residents, a type of risk studied in the social science 

field. Research findings indicated that intuitive risk perception emphasized the 

characteristics of potential consequences rather than the likelihood of experiencing those 

consequences (Wilson et al., 2019).It could be the possible reason for the bias of risk 

perception. 

Various factors can influence the process and final assessment result of perceived risk. 

Perceived risk, distinct from the ‘real risk’, often exhibits a combination of being 

frightening and unknown (Slovic et al., 1985), and correlates with emotions, such as fear 

and anger (Sandman, 1989). These observations suggested a closer relationship between 

the perceived "risk" and subjective interpretative modes (Michalsen, 2003). It was 

precisely due to the dual primary dimensions of risk perception - cognitive and emotional 

dimensions- that people's perceptions of risk were susceptible to influence by various 

factors (Michalsen, 2003), including culture (Knuth et al., 2014), gender (Harris & 

Jenkins, 2006; Herrero-Fernandez et al., 2016), knowledge (Johnson, 1993), emotion 

(Sjöberg, 2007), experience (Ho et al., 2008), and social media (Agyeiwaah et al., 2021; 

Dyer & Kolic, 2020). For example, the public tended to underestimate risks in familiar, 

everyday situations, but there were occasions when they overestimated risks under the 

influence of emotions (Haluik, 2016). Factors influencing risk perception have long been 

a central focus of research, as both risk perception and related behaviors have the potential 
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to magnify the social, political, and economic impacts of risks beyond their immediate 

consequences (Burns & Slovic, 2012). 

2.3.1.2 The assessment paradigm of risk perception 

Given the significance of risk perception, achieving an accurate assessment of 

perceived risk becomes a critical endeavor. Currently, the most popular and widely 

employed approach is survey-based measurement. The psychometric paradigm, serving 

as a quintessential representative for quantifying perceived risks through questionnaire-

based assessments, was widely applied (Marris et al., 1998; Slovic, 1990).  

The psychometric paradigm played a significant role in numerous studies that 

quantitatively assess and compare risk perception (Alrawad et al., 2022; Bronfman et al., 

2008; Cha, 2000; McCourt, 1999; Siegrist et al., 2005; Sjöberg, 2006; Slovic, 1992; Wong 

& Yang, 2023). It can measure human responses when confronting risk with the help of 

appropriate design of survey instruments. Furthermore, it employed numerical rating 

scales to represent their natural feelings for each question. Two essential assumptions in 

this approach were that risk was inherently subjective and people could provide 

meaningful answers to questions included in the questionnaire (Slovic, 1990). The 

advantage of the psychometric paradigm was that it placed a greater importance on 

subjective judgment (Renn, 1992). However, the simplistic attitude or questionnaire 

techniques to explicitly predict the dimensions of risk perception differences may be 

feasible at a public level but are limited to individual-level measurement and comparison 

(Pidgeon, 1998). 

These findings in social science provide a strong foundation for effective risk 

communication, decision-making, policy formulation, and social-level risk management. 

Additionally, they have arguably prompted individuals to transition from a narrow view 

of risk, solely defined as the probability of an event occurring, toward a more 
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comprehensive framework. This framework facilitates a deeper understanding of how 

social dynamics depict, communicate, and influence risks (Pidgeon, 1998). 

2.3.2 Risk Perception in Safety Science  

In the field of safety science, human factors were considered a crucial component of 

systems, assessed from a system theory perspective. This assessment naturally included 

the consideration of risk perception. In safety science, the primary focus of risk centered 

around understanding human interactions with technological hazards (Marshall, 2020). 

However, another aspect of risk assessment is the subjective risk perceptions carried by 

workers directly involved in hazardous situations (Mearns & Flin, 1995).  

2.3.2.1 The existence of risk perception in safety science 

As early as the 1990s, scholars conducted dedicated research on risk perception and 

published their findings in the Journal of Safety Science (Flin & Mearns, 1994; Okrent, 

1998; Rundmo, 1992a, 1992b, 1996). These studies initially confirmed the existence of 

risk perception. Risk perception was regarded as an individual’s subjective assessment of 

objective risk sources (Committee, 1980; Rundmo, 1992b). For example, subjectivity was 

evident as individuals tended to weigh the consequences more heavily and be less 

influenced by probabilities in their risk perception (Mearns & Flin, 1995). Simultaneously, 

the connection between risk perception and system safety has been extensively studied in 

various fields, such as construction (B. Choi et al., 2019; Hasanzadeh et al., 2018; B. G. 

Lee et al., 2021), traffic (Cristea & Delhomme, 2016; Harbeck & Glendon, 2018; Herrero-

Fernandez et al., 2016; Lu et al., 2013), and aviation (Ji et al., 2011).  

Related studies have recognized the relationship between risk perception and safety-

related actions. In the early 1990s, research identified that defects in risk perception were 

causal factors in occupational accidents. Furthermore, analyzing possible reasons for 

defects has revealed two main factors: the incorrect estimation of objective risk and over-

estimation of one’s own abilities (Rundmo, 1992b, 1996). In the subsequent studies, the 
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relationship between risk perception and safety behavior was evidenced (Fyhri & Phillips, 

2013; Tixier et al., 2014; Xia et al., 2017). Even in questionnaire-based research within a 

construction context, rational assessment was found to have a limited impact on safety 

behavior (Xia et al., 2017). For instance, research conducted to explore the effects of not 

wearing helmets (Fyhri & Phillips, 2013) found that individuals who frequently wear 

helmets decreased in cycling speed when not wearing helmets. As for infrequent users, 

they showed no significant change in behavior. Within the construction context, when 

workers underestimate risks, they are inclined to conduct risk-taking behaviors, such as 

operating equipment without securing seatbelts or walking below the suspended loads 

(Patel & Jha, 2015; Tixier et al., 2014). In addition, drivers with a better ability to perceive 

risk showed a lower likelihood of crashing (Horswill et al., 2017). These studies inferred 

a direct relationship between risk perception and behavior. It can be said that the rationale 

for investigating biases in risk perception lies in the scholarly recognition of risk 

perception as a significant intrinsic factor influencing safety behaviors (Wang et al., 2016; 

Xia et al., 2017). 

2.3.2.2 The biases and influence factors of risk perception in safety science 

Just as perceived risk biases existed in the social sciences, similar biases were also 

found in the industrial domain. The divergence in perceived risk was observed among 

individuals at different levels within an organization and among the employees. For 

example, when it came to slipping hazards, drilling personnel often saw a higher level of 

risk during their operations, whereas management personnel tended to view this risk as 

negligible (Mearns & Flin, 1995). Additionally, research has demonstrated that, in 

general, employees were more aware of the risks they encountered in the workplace. 

These perceptions tended to align more accurately with quantitative risk assessment 

calculations and accident statistics compared to assessments made by managers. A similar 

pattern was observed in another study, where employees were more likely than managers 
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to consider their workplace as "somewhat unsafe". This difference was statistically 

significant (Hon et al., 2023). This discrepancy has also been observed among personnel 

who have experienced an accident and those who have not (Rundmo, 1995). These biases, 

observed in workers when perceiving risks, were recognized as contributing factors to 

accidents and often fell under the category of psychosocial risks. 

Researchers explored factors influencing risk perception, including some unique to 

particular industrial fields. Alongside the well-documented factors like gender, age, 

education, and cultural differences, discipline-specific characteristics emerged. As early 

as 1992, a study employed a questionnaire survey to explore the affected factors to risk 

perception on offshore petroleum. Three dimensions- evaluations of disasters and major 

accidents, ordinary occupational accidents and post-accident measures displayed a direct 

connection with perceived risk. For example, more confident workers of post-accident 

measures often displayed lower risk for potential hazards. As further research progresses, 

an increasing number of influential factors have been discovered. For instance, one such 

factor was Inattentional Blindness (IB), where an individual’s fails to notice or recognize 

a visual object or event due to a lack of active attention in a given situation. Studies 

showed that IB accounted for a significant 50% of errors in risk perception (Park et al., 

2022). The level of risk perception was also closely tied to safety awareness and 

knowledge of the employees (Liu et al., 2021). A positive attitude enhances the 

effectiveness of safety knowledge (Jiang et al., 2015; Rundmo, 1992b). This positive 

safety culture extends to organizational culture, where a positive culture has been 

correlated with improved hazard recognition and risk perception among empoyees 

(Mohamed, 2002; Pandit et al., 2019). Additionally, individuals with higher scientific 

reasoning abilities (Siegrist & Árvai, 2020), injury experiences (Shin et al., 2014) and 

less distraction (Namian et al., 2018) tended to have better risk perception skills. 
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Regarding personal characteristics, individuals with higher emotional stability or lower 

anxiety levels (Bouyer et al., 2001) tend to perceive risks as lower (Chauvin et al., 2007). 

2.3.2.3 The significance of risk perception in safety management 

The existence of risk perception has been confirmed in safety science. The crucial 

significance of risk perception for system safety is the assumption that a ‘correct’ 

perception of risk can effectively prevent accidents (Committee, 1980). In other words, 

when an individual’s subjective estimation aligns with the “real” risky situation, 

appropriate and correct human behaviors are taken to eliminate or mitigate risk, ultimately 

preventing accidents. Conversely, when the subjective evaluation of potential risk sources 

does not correspond to the actual situation, an accident is more likely to occur (B. Choi 

et al., 2019; Byungjoo Choi, Gaang Lee, et al., 2019; B. G. Lee et al., 2021; Rundmo, 

1992b, 1996). The conceptual framework depicting the process of risk perception in 

accident prevention is shown in Figure 2.1. 

 

Figure 2.1：Conceptual safety management process (Namian et al., 2016) 

Like proper hazard recognition and assessment, accurate risk perception is also 

regarded as fundamental to risk management. Therefore, the assessment of perceived 

risks should be integrated into the safety management system. 

Risk perception exerts influence on the effective implementation of safety 

management regulations and measures (Flin & Mearns, 1994; Rundmo, 1992b). A safety 

regime focused on reducing risks should be sensitive to differences in risk perception 

(Nicholas, 2006). As workers are responsible for implementing safety management 
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regulations. If workers subjectively perceive that the risk associated with a particular job 

is low, even though it may be high, they may view management systems as an additional 

operational burden. Consequently, they may be unwilling to comply with these 

regulations. In such circumstances, the system essentially becomes a mere formality. 

Similarly, when workers underestimate the risk, it becomes challenging to adhere to 

safety practices (Zhang et al., 2015). 

Risk perception plays a prominent role in risk identification, personnel selection, 

safety training and other aspects. The bias in risk perception can offer safety managers a 

more comprehensive understanding of risk information. For instance, a biased perception 

of risk can lead to misjudgments of potentially hazardous risk sources, resulting in 

inappropriate decisions and actions in everyday occupational accidents and catastrophic 

events (Rundmo, 1996). A study (Jing et al., 2023) revealed that risk perception can 

predict risky driving behaviors. Moreover, those workers who estimate risks as low are 

likely to have high accident rates (HSC, 1993). Therefore, identifying individuals or 

specific occupational settings with biased risk perception aided safety professionals in 

uncovering unforeseen risks and provided a foundation for revising existing safety 

procedures (Gürcanlı et al., 2015). Identifying individuals with accurate risk perception 

can facilitate the selection of more suitable candidates for high-risk job positions. 

Additionally, recognizing individuals with biased risk perception, and subsequent causal 

investigations into the causes can assist managers in tailoring more targeted safety 

training programs. 

2.3.2.4 The assessment of perceived risk in safety science 

Limited research focused on quantifying an individual’s risk perception, even though 

it has become increasingly important in safety science. Traditionally, engineering risk 

assessment used the combination of probability and consequence to depict specific 

scenario risks (Aven & Kristensen, 2005). These methods assumed the existence of 
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objective risks and were used as tools to estimate these objective risks (Aven & 

Kristensen, 2005). These approaches formed the foundation of safety management , with 

countermeasures developed based on these assessments to enhance overall system safety 

(Aven & Kristensen, 2005). 

(a) The commonly used engineering risk assessment methods 

Risk assessment as a cornerstone of safety management practices can date back to the 

1970s and 1980s (Aven, 2016; MacDonald, 2006). These methods were commonly 

regarded as quantitative methods. They involved several statistical and probabilistic tools, 

including Failure Mode and Effects Analysis (FMEA) (developed in the 1940s) and 

Hazard and Operability Analysis (HAZOP) (developed in 1963) (Swuste et al., 2014), 

Fault Tree Analysis (FTA) (Stamatelatos et al., 2002), Event Tree Analysis (ETA), and 

Bayesian networks (Curtis, 2012) to quantify risk (Waring, 2015). These techniques were 

commonly utilized in diverse industrial sectors. For example, FTA was conducted to 

analyze fall-from-height accidents in construction (Zermane et al., 2022), considering 

factors like an improper position for the task, improper placement and inadequate or 

improper Personal Protective Equipment (PPE). The proportion of unsafe behaviors in 

accident causation could be determined through statistical data, e.g., an 85.93% incidence 

rate of not wearing personal protective equipment. Results from these assessment 

methods were often presented numerically. Safety professionals could then compare these 

results with the expected or acceptable risk level and decide on appropriate measures, 

such as avoidance, reduction, transfer, or retention (Aven, 2016; La Fata et al., 2021). 

Data used for risk assessment generally came from machine operations during the 

production process or historical accident records (Fung et al., 2010). However, the rarity 

of accidents posed challenges for data collection (Zio, 2018). Ensuring the accuracy of 

assessment results requires high-reliability, comprehensive, and necessary data (Li, 2014). 

For over 40 years, probabilistic analysis has been the basis for quantifying risk (Rechard, 
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1999, 2000).  Another qualitative method for risk assessment involved likelihood using 

categories such as extreme, major, moderate, minor, and incidental, while the impact scale 

ranged from frequent, likely, possible, and unlikely to rare. For example, the ‘extreme’ 

impact meant significant injuries or fatalities to employees or third parties. In contrast, 

the ‘likely’ level of likelihood refers to an occurrence once every 2 to 25 years (Curtis, 

2012). However, the choice of which scale to represent actual risk was subjective and 

situation-dependent. Experts frequently furnished assessment results grounded in their 

expertise and understanding of a specific area (Fung et al., 2010).  

Traditional risk assessment often prioritized the dangers posed by machines over 

human factors (Pasman et al., 2013) despite the significant contribution of risk perception 

to accidents. One possible explanation is that complex and variable nature of humans 

made it challenging (Moura et al., 2017). Besides, many parameters of technical 

assessment models were typically estimated using historical data or expert opinions. 

Historical data about humans may suffer from inadequacies or unavailability (Gürcanli & 

Müngen, 2009). 

(b) The differences between engineering risk and perceived risk assessment 

The assessing paradigms of engineering methods and perceived risk were 

fundamentally different and could not be applied to each other's methodologies. Risk 

perception known as System 1 thinking, which involves automatic, rapid, instinctual, and 

emotion-influenced risk assessment, has often been overlooked in these assessments 

(Aven, 2018; Okrent, 1998). The traditional engineering risk assessment methods are 

based on what is known as System 2 or “analytical system” thinking, characterized by a 

slower, more logical, and deliberative approach to evaluation (Epstein, 1994). The 

different characteristics of risk make it a matter of perception rather than anything 

equating to a measure (MacDonald, 2006). They were exact opposite ways to qualify risk. 

That was because the entities responsible for conducting risk assessments and the 
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processes involved differed significantly. Safety professionals and engineering experts 

typically conduct engineering risk assessments, following established paradigms and 

leveraging specialized knowledge. Conversely, the process of risk perception focuses on 

an individual level in hazardous contexts, reflecting their intuitive perceptions and 

comprehension of various objective risks according to their knowledge and experience 

(Flin & Mearns, 1994). It inherently incorporated subjectivity (Pidgeon et al., 1992) and 

was highly susceptible to various internal and external influences (Flin & Mearns, 1994; 

Inouye, 2014; Liu et al., 2023; Okrent, 1998) rendering it prone to biases. 

(c) The application of survey-based methods in assessing perceived risk 

Additionally, survey-based methods were utilized to measure perceived risk based on 

System 1 thinking (Carriço et al., 2015; Flin & Mearns, 1994; Man et al., 2020; Zsido et 

al., 2020). These methods involved administering questionnaires to participants after they 

had experienced simulated hazardous situations, aiming to gather scores that reflected 

their subjective feelings. For instance, a questionnaire was used to measure risk 

perception in risky situations, with questions such as "I feel that I would be able to stay 

calm and capable of acting even in the middle of a panicking crowd" and "In an 

emergency, I can easily exclude disturbing stimuli"  (Zsido et al., 2020). However, the 

answers to these questions may not correspond accurately with participants' actual 

responses in real emergencies. Moreover, relying on post-hoc measurements can hinder 

participants' poor memory, leading to a degradation in objectivity and reliability (B. G. 

Lee et al., 2021). Therefore, it was worth noting that the assessment methods for System 

1 still depended on surveys or questionnaires, a common practice in social sciences, and 

continued to involve retrospective data collection. 

Hence, there is a critical need to move beyond the technical-centric approach of 

engineering risk assessment and instead redirect our focus toward creating a fresh 

paradigm for risk perception. This new paradigm should revolve around operational 
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personnel’s perceived risk and form the foundational basis for developing safety 

technologies and management measures (Krige, 1997). Such approaches can facilitate a 

transformation of existing safety management models and strategies, transitioning from a 

reliance solely on assessments conducted by technical experts to a more integrated risk 

assessment that combines the insights of both technical experts and frontline workers 

(Aven, 2018; Renn, 1998; Skjong & Wentworth, 2001). This transformation expanded 

the scope of risk assessment, providing a more comprehensive perspective and abundant 

decision-supporting information. It seamlessly aligned with the principles of Safety II, 

which considered humans as essential resources in ensuring system safety and 

emphasized the dynamic interdependence of humans-machines-environment within the 

system (Aven. & Terje., 2022; Provan et al., 2020; Wahl et al., 2020). It is fundamentally 

different from the engineering risk assessment paradigm of 'Safety I' which minimize 

system variability for risk control (Aven. & Terje., 2022; Hollnagel, 2018; Provan et al., 

2020). 

2.3.3 The Significant Role of Risk Perception in Emergency 

The primary driving force behind the growing interest in risk perception lies in its 

profound impact on decision-making and behavior in emergency. Figure 2.2 illustrates 

the general process of risk perception. It should be noted that the entire process, from the 

influencing factors of risk perception to the final behaviors, is limited to individuals 

within the production system of safety science. It does not encompass research within the 

field of social sciences involving the public. Therefore, some influencing factors, such as 

culture, nationality, or social media, are not considered. 
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Figure 2.2: The process of how humans deal with emergency situations 

Based on Figure 2.2, it was evident that the final box represented observable behaviors, 

and the ability to exhibit correct behavioral responses in emergencies depended on the 

accuracy, effectiveness, and timeliness of those behaviors (Xu et al., 2018), which were 

determined by the preceding step of decision-making. However, the decision-making was 

determined by the speed and accuracy of the decision (Flin et al., 2008), which, in turn, 

was influenced by perceived risk (Villa et al., 2016). If the perceived risk exceeds 

expectations, it may induce personal panic and hinder the ability to make appropriate 

decisions and take practical actions. Conversely, if the perceived risk fell within an 

individual's acceptable range, they would likely have more confidence in coping with the 

risk and making correct decisions and actions to mitigate or eliminate it. The perception 

of risk was influenced by situational awareness, a critical cognitive skill that significantly 

impacts success in emergencies at the "sharp end" (Bagley et al., 2023).  

The perception process can vary among individuals, and these differences may stem 

from certain personal factors that can be considered as the underlying sources of 

performance variations. As depicted in Figure 2.2, personal factors were further 

categorized into two classes. The first type comprises innate individual differences, such 

as personality traits, which were generally difficult to change by environmental factors. 

For example, individuals with a disposition for fear tended to make relatively pessimistic 
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risk assessments (Lerner & Keltner, 2000), while highly anxious individuals tended to 

overestimate risks . The second type includes individual differences that can be improved 

or modified through training and experience, such as cognitive abilities, knowledge and 

understanding of risks (Jennings, 2020), and the confidence and skills required to manage 

risks. For instance, experienced drivers exhibited a stronger sense of control during the 

risk perception process (Windsor et al., 2008). These factors interacted with each other, 

collectively influencing risk perception and ultimately impacting an individual's 

performance in abnormal situations (Byungjoo Choi, Gaang Lee, et al., 2019). 

The significant role of risk perception set its importance as a precursor to decision-

making and subsequent behavioral responses. It can be regarded as the final psychological 

trigger behind the decision (Manar et al., 2019). Therefore, conducting comprehensive 

research on risk perception is essential to enhance suitable outcomes, especially in risk 

and emergency situations. However, it can also be inferred that various factors affecting 

perceived risk exist, thus presenting significant challenges in researching risk perception. 

2.3.4 Risk Perception in Ergonomics 

In the field of ergonomics, the primary goal is to enhance the interaction between 

systems and humans (Kazemi & Lee, 2023). Human factors, a central component, were 

usually assessed through cognition and reliability evaluations rather than focusing on 

describing, quantifying, and mitigating their impact on system safety, as was common in 

safety science. The former focused on intrinsic aspects of human cognition, aiming to 

improve human performance by elevating cognitive abilities (Fista et al., 2019). 

Conversely, the latter emphasized observing external behaviors and manifestations of 

individuals, seeking to enhance workforce reliability (Kirwan, 1992). Both disciplines 

shared the goal of enabling individuals to perform their tasks effectively while ensuring 

safety and well-being. 
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2.3.4.1 Cognitive assessment and its comparison with risk perception 

Self-reported questionnaires and objective physiological evaluations were usually 

used to assess cognitive ability. Cognitive processes served as essential determinants of 

subsequent behavioral performance (Choi & Seong, 2020), a correlation consistently 

validated by several related research (Bagley et al., 2023; Gonzalez et al., 2005; Irwin et 

al., 2023). The practice of assessing cognitive ability dates back to 1987, as discussed in 

the book "Risk and Decisions" on pages 87-107 (Singleton & Hovden, 1987). However, 

its execution has always been challenging due to the complicated cognitive processes and 

influenced factors like moods, emotions, and motivations.  

Currently, two primary methodologies are used to assess cognitive ability: subjective 

self-reported questionnaire (Fista et al., 2019) and objective physiological evaluation 

(Bačić & Henry, 2022; Digiesi et al., 2020; Minkley et al., 2021). Subjective methods 

commonly used questionnaires, such as NASA-TLX and subjective workload assessment 

(Digiesi et al., 2020; Widyanti et al., 2017; Zimmer et al., 2019). For physiologic 

measurements, indicators such as Electrodermal Activity (EDA) (Armougum et al., 2020; 

Baldauf et al., 2009; Golmohammadi et al., 2022), Heart Rate Variability (HRV) (Digiesi 

et al., 2020; Grassmann et al., 2017; Tjolleng et al., 2017; Zhu et al., 2022), eye-tracking 

(Biondi et al., 2023; Čegovnik et al., 2018; Dehais et al., 2012; Devlin et al., 2022) and 

EEG (Bernhardt et al., 2019; Morton et al., 2022; Xu et al., 2023) were often employed 

to assess cognitive process or workload. This approach involved collecting and tracking 

individuals' neurophysiological signals to reflect underlying cognitive processes (Bačić 

& Henry, 2022).  

While cognitive assessment in safety science has traditionally focused on human 

factors rather than risk perception, these two shared connections and distinctions. 

Similarities existed in that cognitive assessment and risk perception centered around 

individuals, relying on cognitive processes and closely intertwining with decision-making. 
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However, their primary focuses diverged. Cognitive assessment primarily delved into 

individuals' cognitive processes and workload across various tasks, aiming to align 

human-machine interface designs more effectively with human cognitive capabilities. On 

the other hand, risk perception is concerned with how individuals perceive and evaluate 

potential risks in urgent or risky situations, providing a foundation for subsequent 

decision-making and actions. The physiological measurement of cognitive assessment 

provided a new perspective for evaluating perceived risk. 

2.3.4.2 Human reliability assessment and its comparison with risk perception 

Human Reliability Assessment (HRA) strengthened the identification of specific 

instances of human errors and their contribution to accidents. Traditional approaches for 

dealing with human errors involved HRA techniques (Iqbal et al., 2020). HRA aimed to 

improve system performance by identifying, predicting, and reducing human errors 

(Kirwan, 1994; Kirwan & James, 1989). The earliest studies on HRA were conducted in 

the 1970s in Nuclear Power Plants (NPPs) (La Fata et al., 2023). The first classification 

and description of HRA methods was provided by Bell and Holroyd (Bell & Holroyd, 

2009), who summarized 72 potential tools related to human reliability. Current studies 

have developed three generations of human error calculation models. 

(a) Three generation models of HRA 

In the first-generation models (e.g., Technique for Human Error Rate Prediction - 

THERP and Success Likelihood Index Method - SLIM) (Embrey et al., 1984; Swain & 

Guttmann, 1983), humans were treated as elements similar to machines, and human error 

probabilities and operational human errors calculated based on their actual work or 

simulated data (Munger et al., 1962). 

In the second-generation models (e.g., Cognitive Reliability and Error Analysis 

Method-CREAM and the Standardized Plant Analysis Risk Human Reliability Analysis 

- SPAR-H) (Gertman et al., 2005; Hollnagel, 1998), humans were no longer viewed as 
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simple elements similar to a machine. More attention was given to their subjectivity, 

organizational influences, and cognitive processes, focusing on the root causes of human 

error, such as perception, thinking, memory, decision-making, and action strategy before 

human errors occur (Hollnagel, 1998). Cognitive skills and technical knowledge were 

considered vital for safe and effective work performance (Irwin et al., 2023). In the 

absence of objective failure data, expert judgment was often used to predict human error 

probabilities (Deacon et al., 2010; DiMattia et al., 2005), but these approaches relied on 

subjective estimates rather than objective measurement of cognitive behaviors 

(Kodappully et al., 2016). 

The third-generation models, known as Dynamic HRA methods, incorporated the 

variability of human behavior across different periods, task stages, and work 

environments. These models treated individuals' states and behaviors as dynamic 

processes, enabling the modelling and prediction of human reliability in diverse contexts. 

However, biases that arise during risk assessment workshops can lead to underestimating 

the level of risk, which can be hazardous and challenging to prevent or mitigate (Bagley 

et al., 2023). Currently, or more precisely, since 2005, the interrelationships and 

dependencies of human performance factors (Bevilacqua & Ciarapica, 2018), the specific 

contexts in which human errors occur, and the demands on human factors under dynamic 

or abnormal conditions have become research topics (Woodcock & Au, 2013). 

Regardless of the specific model employed, the data used for calculating human errors 

depends predominantly on historical data collection, expert assessments, or simulations 

(Pate-Cornell & Murphy, 1996). Moreover, the dynamic characteristic of humans has 

paid more focus. 

(b) The differences between HRA and risk perception 

The assessment of human reliability and risk perception exhibits distinctions and 

interrelations. Firstly, a primary disparity lies in their respective focal points. Human 
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reliability assessment primarily centers on the reliability and consistency of individuals 

in their work or tasks. In contrast, risk perception focuses on how individuals perceive 

and evaluate potential risks or hazardous situations. Secondly, their objectives diverge as 

well. Human reliability assessment aims to ensure that individuals can perform tasks as 

expected to reduce errors and accidents. Conversely, risk perception aims to ensure 

individuals correctly identify potential risks, preparing them for decision-making and 

action. However, certain connections exist between the two, such as the fact that an 

individual's reliability can impact their perception of potential risks and ability to respond 

effectively. In simpler terms, both shared the same aim to realize system safety in 

different realization ways. 

2.3.5 Comparison of Different Risk Perception Assessment Paradigms 

Although the psychometric paradigm and survey-based methods have been widely 

employed to assess subjective risk, it is essential to recognize their potential limitations, 

including recall bias, subjectivity and predictive capabilities. Furthermore, employing 

engineering risk assessment to represent perceived risk is constrained by the behaviors of 

machines and external factors. As a result, measuring risk perception, with its subjective 

and opaque nature, presents significant challenges in developing an objective and non-

intrusive measurement to assess them. However, the physiological measurements of the 

cognitive process provide a new perspective to measure perceived risk. 

Bio-signals offered a better way to measure the risk perception process, specifically 

System 1 responses. Utilizing physiological measurements has advantages in evaluating 

subjective risk assessment. First, physiological measurements are non-invasive and do 

not cause significant psychological discomfort or resistance in subjects (Zhai & Barreto, 

2006). Second, the currently prevalent physiological measurement methods, such as 

wristbands or wireless biosensors, do not interfere with the subjects' perception of risk (B. 

G. Lee et al., 2021). Third, physiological signals are generated concurrently with the 
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subject's risk perception process. It means that the risk subjects perceive triggers 

physiological fluctuations, which are synchronously transmitted and recorded. Therefore, 

the natural physiological responses in the human body during perceiving risk bring 

excellent facilitation and feasibility for assessing perceived risk (Byungjoo Choi, Gaang 

Lee, et al., 2019; B. G. Lee et al., 2021).  

There has been limited research on detecting variations among risk situations with 

slight divergences in their degree of riskiness. However, significant changes in 

physiological signals during the perception of different risk situations hold significant 

potential. These changes include increased cardiovascular system activity, alterations in 

sweat gland nerve control, and temperature regulation (Budidha & Kyriacou, 2019; 

Dettmers et al., 1993; Nitzan et al., 1998). Multiple studies have investigated the 

fluctuations in physiological signals across various risk scenarios, uncovering notable 

disparities. For instance, the strength of P200 and LPP components in EEG recordings 

have been found to increase in higher-risk situations. Other physiological indicators, such 

as Heart Rate (HR)  (Rendon-Velez et al., 2016), EDA (Barnard & Chapman, 2016; 

Tagliabue & Sarlo, 2015), pupil size, and the number of saccades (Charlton et al., 2014) 

have also shown increases with higher levels of perceived risk. Indeed, most of these 

significant disparities in physiological signals have been observed between high and low 

situations. These findings suggested the potential utilization of individuals' physiological 

responses to evaluate risk at the personal level(B. Choi et al., 2019). However, further 

research is necessary to determine whether significant differences exist among risk levels 

that are more closely related, because these differences are essential for the subsequent 

and successful application of physiological responses.  

Further research was needed to explore the hidden neuroregulatory mechanisms within 

physiological changes during the risk perception process. This effort can 

comprehensively understand the physiological responses when individuals perceive risk. 

Univ
ers

iti 
Mala

ya



30 

As mentioned earlier, the process of risk perception arises from the interaction between 

an individual's cognition, the external environment, and task operations. An individual's 

automatic and unconscious response to danger (referred to as the System 1 response) 

triggers the Sympathetic Nervous System (SNS) of the Autonomic Nervous System 

(ANS). SNS usually showed an increased change in risk situations. However, there is also 

the possibility that individuals perceive a high level of risk that exceeds their coping 

capacity. It may activate the Parasympathetic Nervous System (PNS) of ANS and 

decrease it, resulting in a psychological need for self-protection and avoidance of harm. 

These represented the current consensus on neuro-regulation in human risk perception. 

However, it remained unclear whether the SNS and PNS continued to exhibit 

enhancement and attenuation in situations where risk magnitude closely matched.  

Research aimed at establishing models for identifying perceived risk based on 

physiological responses still needs to be completed. However, there are ongoing efforts 

in this area. One study assessed drivers' perceived risk  (Ping et al., 2018), while another 

two focused on construction workers (Byungjoo Choi, Gaang Lee, et al., 2019; B. G. Lee 

et al., 2021). They were all in the context of technological risk.  

2.4 Physiological and Emotional Responses in Risk Perception 

By capturing an individual's real-time physiological responses to hazards, wearable 

devices offer a promising means to gain more accurate insights into personal risk 

perception (B. Choi et al., 2019). Comprehending the synchronous accompanying 

physiological and psychological changes and the mechanisms underlying physiological 

activation is essential. Therefore, the following section provides a detailed introduction 

to several commonly utilized physiological signals and their changes in the process of 

perceived risk. 

Univ
ers

iti 
Mala

ya



31 

2.4.1 Electrodermal Responses 

2.4.1.1 The commonly used indicators of EDA 

EDA was defined as the fluctuations in the electrical properties of the skin that result 

from sweat secretion (Benedek & Kaernbach, 2010). It was measured non-invasively by 

continuously monitoring changes in skin conductance or potential via two electrodes that 

applied a low, constant voltage to the skin (Lee et al., 2020). Electrodermal sensors are 

typically positioned at the areas of the highest sweat gland density, such as the hands and 

feet (Yang & Liu, 2014). The signal can be decomposed into a tonic, slow-changing 

component (i.e., electrodermal level-EDL) and a phasic, rapid changing component (i.e., 

electrodermal response-EDR) (Braithwaite et al., 2013; B. Choi et al., 2019; Greco et al., 

2016; Irwin et al., 2023). The tonic component includes slow drift of the baseline skin 

conductance, and the phasic component reflects short-time and immediate responses to 

external stimuli (Greco et al., 2016; Lee et al., 2020). 

2.4.1.2 The changes of EDA during risk perception 

EDA has been widely recognized as an important biomarker for assessing risk 

perception (B. Choi et al., 2019). Two key factors bolster this assertion. Firstly, prior 

research has demonstrated the equivalence of skin conductance changes in simulated and 

real-world settings, possibly attributable to the similar emotional responses elicited by 

risk factors in both conditions (Watts & Quimby, 1979). Secondly, EDA distinguishes 

itself by exclusively reflecting the sympathetic branch of the autonomic nervous system  

(Boucsein et al., 2012; Braithwaite et al., 2013; Picard et al., 2016), remaining unaffected 

by PNS. When individuals perceive risk, external stimuli activate SNS, subsequently 

triggering postganglionic sudomotor fibers that innervate the sweat glands (Nishiyama et 

al., 2001). The sweat secreted by these sweat glands can lead to changes in the skin 

surface resistance, which can be measured using skin conductance sensors (Boucsein et 

al., 2012). 
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EDR, compared with EDL, is more sensitive to representing perceived risk. EDR 

consistently exhibits statistically significant increases in high-risk contexts, possibly 

because its amplitude reflects arousal levels (Dawson, 2007). This phenomenon has been 

corroborated across various risk scenarios, including construction, traffic driving (Liang 

& Lin, 2018), and aviation safety (Gao & Wang, 2020). Furthermore, irrespective of the 

specific nature of the high-risk situation, whether it involves hazardous working 

conditions (Byungjoo Choi, Gaang Lee, et al., 2019), varying levels of accident risk 

(Distefano et al., 2022), or stages of heightened danger presentation (Barnard & Chapman, 

2016), EDR consistently showed an increasing trend (Barnard & Chapman, 2016; B. Choi 

et al., 2019; Gao & Wang, 2020; Liang & Lin, 2018). However, concerning EDL, one 

study indicated that it exhibited a growth trend but no significant variation in both high 

and low-risk contexts (B. Choi et al., 2019), while much of the research exclusively 

analyzed EDR and neglected EDL (Giagloglou et al., 2019; Liang & Lin, 2018). 

2.4.2 Cardiac Responses 

The electrocardiogram (ECG) is a method used to monitor the activity of the heart 

(Ahmed et al., 2022). It is also non-invasive and involves placing small electrodes on the 

skin of the chest, arms, and legs to detect the electrical impulses generated by the heart 

during each heartbeat (Magnon et al., 2022; Shaffer et al., 2014; Sztajzel, 2004). The 

neural regulation of the heart is more complex than that of EDA because it is 

simultaneously regulated by both SNS and PNS, which have antagonistic effects within 

ANS (Berntson & Cacioppo, 1999; Berntson et al., 1997; Malik, 1996; Sztajzel, 2004). 

Importantly, the PNS takes less time (<1s) to exert its effect compared to the SNS, which 

takes more time (>5s) (Nunan et al., 2010). Furthermore, PNS stimulation only affects 

one or two heartbeats after its onset, while the effects of SNS stimulation can last for 5-

10 seconds and continue to affect heart activities (Shaffer et al., 2014).  
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2.4.2.1 The commonly used indicators of HRV 

Heart rate variability (HRV) has been widely used for quantifying the activity of the 

autonomic nervous system. HRV can be typically decomposed into three categories: time-

domain, frequency-domain and nonlinear indicators. Time-domain indicators include 

Heart Rate (HR), Inter-Beat Interval (IBI), and others. Frequency-domain indicators 

include ultra-low-frequency (ULF, below 0.0033Hz), very-low-frequency (VLF, 0.0033 

and 0.04Hz), low frequency (LF, 0.04 and 0.15Hz), high frequency (HF, 0.15 to 0.4Hz) 

bands and LF/HF ratio. The nonlinear indicators, such as SD1, SD2, A++ and B--, can be 

obtained by The Poincare plot. This plot is a visual tool to represent changes between RR 

intervals to assess the state of the heart (Kanjo et al., 2018), and the shape of the RR 

interval distribution typically shows an elliptical pattern (Makivic & Bauer, 2017). 

Different physiological indices usually represent various information about SNS and PNS. 

The definition and physiological significance of HRV indicators are detailed in Table 2.1. 

2.4.2.2 The changes of HRV during risk perception 

HRV is also commonly used to represent risk perception, since it is frequently 

considered a measure of neurocardiac function that reflects heart-brain interactions and 

ANS dynamics (Kikuta et al., 2023; Perello-March et al., 2022; Shaffer et al., 2014). 

When an individual perceives a potential risk, the sympathetic division of their ANS is 

activated, while the parasympathetic division diminishes, thereby causing changes in 

heart-related activity. Previous research has also demonstrated a significant correlation 

between these metrics and individuals' risk perception (as evidenced by studies on HR, 

HRV, etc.) (Herrero-Fernandez et al., 2016; Mesken et al., 2007; Powers et al., 2008; 

Rubaltelli et al., 2018). Additionally, human cardiac and electrodermal measures were 

highly correlated in risk situations (Wilson, 2002). However, the heart rate has lower 

temporal sensitivity and is less suitable for assessing the effect of scenarios. Specifically, 
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the mean inter-beat interval is 0.75 s, and it takes at least several beats to detect a change 

in heart rate (Jorna, 1992; Rowe et al., 1998).  

Heart activity is simultaneously regulated by both SNS and PNS, leading to some 

inconsistent findings when exploring the relationship between HRV and risk perception. 

For example, HR was found to be higher in more hazardous conditions (Doorley et al., 

2015; Kikuta et al., 2023; Park, 2009; Prell et al., 2020; Tagliabue & Sarlo, 2015), but it 

showed a decline in driving crashes (Barnard & Chapman, 2016). Similar decreased 

results of the time domain index SDNN of HRV in elderly drivers were found with the 

rise of risk level (Xiong & Guo, 2021). Further studies should be conducted to validate 

the changes in HRV and their correlation with perceived risk. 

2.4.3 Eye Tracking Behaviors 

The non-invasive and relatively simple installation and use of eye trackers make them 

appropriate for monitoring cognitive state (Matos, 2010). Eye movements have been 

recognized as a valuable measurement of cognitive processes since Javal's discovery in 

1878 that they could reflect internal cognitive processes (Wade & Tatler, 2009). 

Specifically, Javal found that during reading, eye movements occur in a sequence of 

discrete pauses called fixations, separated by jumps called saccades. Fixations are 

believed to be associated with visual information processing, while vision is essentially 

suppressed during saccades(Wade & Tatler, 2009). Eye movements are widely regarded 

as a real-time window into cognition, based on the "eye-mind" hypothesis, and are 

therefore capable of providing dynamic information about human cognitive behavior 

(Cooke, 2005).  

2.4.3.1 The basic eye-tracking indicators 

Eye tracking technology has advanced significantly in recent years, with the 

development of non-intrusive, accurate, and readily available eye trackers such as Tobii, 

SR Research, and SMI (Kodappully et al., 2016). These devices typically use an infrared 
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light source directed towards the eye, with a camera recording reflection from the eyes. 

The resulting data is processed to extract information about pupil size, fixation, and 

saccades, among other parameters (Kodappully et al., 2016). To ensure accuracy, many 

studies using non-invasive eye-tracking methods follow a nine-point calibration process, 

where participants are asked to focus on a red dot appearing at predetermined screen 

points (Kodappully et al., 2016). Following calibration and measurements, a series of eye 

movement indices can be extracted through data preprocessing and algorithms 

(Kodappully et al., 2016). These indices can provide insights into various cognitive and 

perceptual processes, including attention, visual processing, decision-making and 

memory.  For instance, pupil size is the changes in pupil size that can be indicative of 

changes in cognitive workload or arousal levels. Related indices commonly used are listed 

in Table 2.1. 

2.4.3.2 The application of eye-tracking during risk perception 

The application of eye-tracking behavior on risk perception mainly focused on two 

aspects. One is to research the relationship between risk perception and gaze behavior. 

For example, subjects would emphasize areas perceived as more dangerous during urban 

cycling (Schmidt & von Stülpnagel, 2018). Similarly, experienced drivers fixated on 

predefined regions with concealed risks (Pradhan et al., 2006). The other is utilizing eye-

tracking technology to assist in uncovering issues in workers' risk perception processes. 

In the construction site context, scan paths and attention maps generated using eye-

tracking technology can effectively demonstrate the risk recognition process to 

construction workers, aiding them in identifying previously unnoticed risks through 

subsequent analysis (Jeelani et al., 2018). In another study, wearable eye-tracking 

technology was used to analyze and compare the eye-tracking data of experts and novices 

in the electrical field, including metrics such as gaze fixation, count, and average fixation 
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duration. The analysis revealed that experts exhibited more concise risk perception 

trajectories and shorter total attention time (S. Li et al., 2022). 

2.4.4 Skin Temperature Changes 

Changes in microvascular blood volumes have been shown to affect peripheral skin 

temperature (ST) (Aryal et al., 2017; Garbey et al., 2007). Therefore, ST can indicate 

cardiac activities triggered by the stimulated sympathetic nervous system (Dias & Cunha, 

2018; Kim et al., 2004). It was utilized as an input variable in the assessment of perceived 

risk in construction areas (B. G. Lee et al., 2021). For temperature measurements, its mean 

value is sufficient.  

Varied changes in physiological indicators stemming from bio-signals convey 

different physiological significance and reflect internal human processes. Consequently, 

Table 2.1 provides a list of commonly used indicators for physiological measurement 

signals, along with their respective meanings. 

Table 2.1: The common physiological indicators and their meanings 

No. Measurement Meaning Interpretation 
EDA 

1 EDL/𝜇𝑠 

A slow changing 
component and slow 
drift of the baseline 
skin conductance. 

It is considered to show 
the long-term stress trend 
in sympathetic activity 
(Braithwaite et al., 2013; 
B. Choi et al., 2019; Poh 
et al., 2010). 

2 EDR/𝜇𝑠 
A short-time and 
immediate responses 
to external stimuli. 

It can well reflect the 
short-term sympathetic 
response to an external 
stimulus (B. Choi et al., 
2019; Byungjoo Choi, 
Gaang Lee, et al., 2019). 

ECG 

3 Heart Rate 
(HR) /bpm 

The number of times a 
normal person's heart 
beats per minute at rest 
(beats per minute). 

It can reflect the relative 
activity of the sympathetic 
and parasympathetic 
systems (Sztajzel, 2004). 
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Table 2.1, continued 

No. Measurement Meaning Interpretation 

4 MeanRR/ms 

The time interval 
between two 
consecutive 
heartbeats, also 
known as the R-R 
interval. 

The longer the NN 
interval, the slower the 
heart rate (more HRV). 
Conversely, the shorter 
the R-R interval, the faster 
the heart rate (less HRV). 
Higher resting heart rate 
and lower resting HRV 
usually reflect a 
compromised 
physiological state (Kemp 
et al., 2017). 

5 SDNN/ms 

The standard deviation 
of the heart rate-
corrected N-N 
intervals for all beats 
in 24-h recordings 
(Shaffer et al., 2014). 

It can be used to assess 
the overall size of HRV, 
reflecting the slow 
changes in heart rate and 
it is a sensitive indicator 
for evaluating 
sympathetic nervous 
system function 
(Sztajzel, 2004). 

6 SDANN/ms 

The standard deviation 
of the average NN 
intervals (mean heart 
rate) for each of the 5-
min segments during a 
24-h recording 
(Shaffer et al., 2014). 

It reflects the balance of 
short-term regulation 
between the 
sympathetic and 
parasympathetic 
nervous systems. It is 
correlated with the 
SDNN (Shaffer et al., 
2014). 

7 SDSD/ms 

Standard deviation of 
differences between 
successive NN 
intervals (Ahmed et 
al., 2022). 

Higher SDSD value 
indicates greater 
variability between 
adjacent heartbeats, 
which is generally 
considered as a 
reflection of the balance 
between sympathetic 
and parasympathetic 
nervous system control 
(Sztajzel, 2004). 

8 RMSSD/ms 

The root mean 
square of the 
differences between 
consecutive IBI 
intervals for all beats 
(Shaffer et al., 2014). 

It is the short-term 
sensitive indicator to 
assess PNS function and 
correlated with HF power 
(Kleiger et al., 2005). 
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Table 2.1, continued 

No. Measurement Meaning Interpretation 

9 ULF 

The percentage of 
ultra-low-frequency 
energy in the total 
energy (Ahmed et 
al., 2022). 

The increase in ULF 
component may be 
related to long-term 
regulation of the 
sympathetic and 
parasympathetic 
nervous systems 
(Kleiger et al., 2005). 

10 VLF 

The percentage of 
very-low-frequency 
energy in the total 
energy. Power in the 
very low frequency 
range(Ahmed et al., 
2022) 

It reflects the long-term 
regulatory effects of the 
sympathetic and 
parasympathetic nervous 
systems (Armour, 2003). 

11 LF 

The percentage of low-
frequency energy in 
the total energy 
(Ahmed et al., 2022). 

It usually reflects the 
activation information of 
the sympathetic nervous 
system, but it seems to be 
also influenced by 
parasympathetic activity 
(Hayano & Yuda, 2019). 

12 HF 

The percentage of 
high-frequency energy 
in the total energy 
(Ahmed et al., 2022). 

It usually reflects the 
activation information of 
the parasympathetic 
nervous systems (Kemp et 
al., 2017). 

13 LF/HF 

The ratio of low-
frequency to high-
frequency energy 
(Ahmed et al., 2022). 

It usually reflects the 
balanced control of the 
autonomic nervous 
system, depends on the 
recording condition in 
which data is collected; 
it can reflect vagal, 
sympathetic and 
baroreflex mechanisms 
(Kemp et al., 2017). 

14 SD1/ 𝑚𝑠! 

The standard 
deviation of the 
shaort axis of the 
ellipse in a Poincaré 
plot. 

It is a measure of rapid 
changes in the N-N 
interval and is therefore 
considered a 
parasympathetic index 
of sinus node control. 
Correlates highly with 
RMSSD and HF 
measures (Kemp et al., 
2017; Rajendra Acharya 
et al., 2006).  
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Table 2.1, continued 

No. Measurement Meaning Interpretation 

15 SD2/ 𝑚𝑠! 

The standard 
deviation of the long 
axis of the ellipse in 
a Poincaré plot. 

It represents long-term 
variability and is more 
strongly associated with 
sympathetic nervous 
system activity than 
with parasympathetic 
nervous system activity. 
Specifically, when SD2 
decreases, sympathetic 
nervous system activity 
decrease (Kemp et al., 
2017; Kemp & 
Quintana, 2013). 

16 A++ 
The points in the first 
quadrant of a scatter 
plot. 

Indicate an increase in 
the interval between two 
consecutive heartbeats 
and a decrease in heart 
rate, representing 
parasympathetic 
nervous system activity 
(Moharreri et al., 2018; 
Network, 2023). 

17 B-- 
The points in the 
third quadrant of a 
scatter plot. 

Indicate a decrease in 
the interval between 
two consecutive 
heartbeats and an 
increase in heart rate, 
representing 
sympathetic nervous 
system activity 
(Moharreri et al., 2018; 
Network, 2023). 

Eye tracking 

18 Fixation 
duration 

The length of time 
the eyes remain fixed 
on a particular area 
of interest. 

Longer fixation 
durations may indicate 
increased attention or 
cognitive effort 
(Bjørneseth et al., 
2014). 

19 Saccade length 

Rapid eye 
movements that 
occur between 
fixations. 

The length of these 
movements can provide 
information about the 
efficiency of visual 
processing (Yan et al., 
2019). 

Univ
ers

iti 
Mala

ya



40 

Table 2.1, continued 

No. Measurement Meaning Interpretation 

20 Pupil size The changes in pupil 
size 

It can be indicative of 
changes in cognitive 
workload or arousal 
levels (Schmidt et al., 
2017; Srinivasan et al., 
2019). 

21 Gaze duration 

The total time spent 
fixating on a 
particular area of 
interest. 

It can provide insight 
into the amount of 
attention paid to a 
particular stimulus 
(Martinez-Marquez et 
al., 2021). 

22 Number of 
fixations 

The number of times 
the eyes fixate on a 
particular area of 
interest. 

It can provide 
information about the 
salience of a particular 
stimulus (Atik & 
Arslan, 2019). 

23 Blink rate 
The average number 
of blinks per unit of 
time. 

Changes in blink rate 
can be indicative of 
changes in cognitive 
workload, fatigue or 
arousal levels (Atik & 
Arslan, 2019; Wang et 
al., 2013). 

2.4.5 Emotional Responses 

The study of emotional influence on risk perception originated in 1978 (Fischhoff et 

al., 1978). Subsequently, other scholars advanced the notions of "risk as feels" 

(Loewenstein et al., 2001) and the “affect heuristic” (Finucane et al., 2000). As for 

emotional reactions, discrete types of emotions, such as fear (Lerner & Keltner, 2000; 

Longin et al., 2013), anxiety (Janelle et al., 1992), and anger (Deffenbacher et al., 2003; 

Mesken et al., 2007) were often studied. Related research mainly focused on the 

influences of different emotions on risk perception (Drače & Ric, 2012; Herrero-

Fernández et al., 2020; Jeon & Zhang, 2013; Lu et al., 2013; Parrott, 2017; Rundmo, 1996; 

Slovic & Peters, 2006; Yang & Chu, 2018). For example, anger reduces risk perception, 

whereas fear increases it (Lu et al., 2013). In these studies, emotions were first induced, 

followed by an examination of their impact on risk perception. However, the present study 
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focused on the naturally induced emotions during the risk perception process (Agyeiwaah 

et al., 2021; Dyer & Kolic, 2020; Klemm et al., 2019; Tixier et al., 2014). 

2.4.5.1 The induced complicated emotions during risk perception 

The presence of induced affects by risky situations has been researched mostly, but 

they were highly complex. When individuals were involved in urgent or dangerous 

situations, the evoked emotions were often not singular but rather complex, potentially 

encompassing fear, worry, anxiety, despair, and excitement (Hasanzadeh & De La Garza, 

2020; Loewenstein et al., 2001; Slovic et al., 2004). Moreover, these emotions were 

dynamic and fluctuated depending on the situation’s progression, such as the 

effectiveness of actions taken and the severity of the risk. The complexity and dynamics 

of these emotions pose significant challenges in their representation.  

The induced complicated emotions played a pivotal role in risk perception. The initial 

perception of risk triggered emotions, subsequently guiding the development of more 

comprehensive and refined appraisals (Sjöberg, 2007). According to the risk-as-feelings 

hypothesis, feelings, particularly autonomic and immediate responses, played a 

significant role in risk perception (B. Choi et al., 2019; B. G. Lee et al., 2021; Slovic et 

al., 2004). Moreover, behavioral evidence (Loewenstein et al., 2001) suggested that 

emotional responses and cognitive evaluations were somewhat separate in the risk 

perception process, with emotions often influencing the outcome of risk assessments. 

Emotional responses guided reactions during the system 1 stage and continued to impact 

assessment outcomes in subsequent cognitive evaluation stages through conditioned 

reflexes and memory as bodily markers. Even in seemingly objective risk situations, 

affective reactions still hold considerable influence (Slovic & Weber, 2013).  

2.4.5.2 The expression of induced emotions  

Given that emotions naturally arise with risk perception, they could be as informative 

for risk perception as physiological responses. Unfortunately, it is regrettable that there 
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is currently limited research incorporating risk-induced emotions. The issue may lie in 

the expression of complex emotions. Fortunately, the Pleasure-Arousal-Dominance (PAD) 

emotional model may be introduced to express emotions. Specifically, emotions can be 

represented as points in a three-dimensional space defined by valence (the degree of 

positivity or negativity of an emotion), arousal (the intensity or activity level of an 

emotion), and dominance (the perceived level of control or power a person feels in the 

situation), as proposed by Wundt in 1922 (Wundt, 1922). The successful application of 

PAD (Ding, Ghazilla, et al., 2022) provides great confidence for this research. 

Importantly, the perception of risk is influenced by controllability, where individuals tend 

to perceive less risk in situations they control (Brun, 1994). Considering the meaning of 

the dominance dimension, it may be more appropriate for describing the feeling of 

whether a person can control the situation or is being controlled by emergency or risky 

circumstances.  

2.4.6 Discussion of Physiological and Emotional Responses 

Existing research has investigated the relationship between risk perception and 

accompanying physiological responses. Variations in risk situations lead to distinct 

physiological changes, often exhibiting statistically significant differences. It provides a 

robust foundation for further developing models to classify risk levels.  

Furthermore, the utilization of multiple physiological signals to predict perceived risk 

may prove to be more effective. When assessing cognitive load, researchers have 

employed a combination of EDA and ECG (Shayesteh et al., 2023), integrated EEG, PPG, 

and EDA (Alrefaie et al., 2019), and combined ECG, EEG and pupil diameter (Orlandi 

& Brooks, 2018), all of which have yielded promising results. Likewise, in assessing 

construction workers’ perceived risk, a combination of EDA, ECG and skin temperature 

(ST) was employed (B. G. Lee et al., 2021). For drivers’ risk identification, a combined 

bio-signals of EDA, ECG, Respiration (RESP) and pupil diameter  (Ding, Ghazilla, et al., 
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2022) or driving actions (Ding, Raja Ghazilla, et al., 2022) were used as input data to train 

ML models. Perhaps the integration of multiple physiological signals can provide more 

comprehensive insights into the body’s response in specific contexts. 

2.5 Application of Machine Learning  

With the emergence of Industry 4.0 in 2011(Adem et al., 2020; Rosi et al., 2018), a 

series of new technologies have a chance to develop. Artificial intelligence (AI) is one of 

the central methods, considered a system consisting of software and hardware to imitate 

intelligent human behavior for decision-making (Erol, 2019). AI, or more precisely, 

machine learning, is gradually permeating the research field of risk assessment.  

2.5.1 Application of Machine Learning on Risk Assessment 

Despite approximately thirty different risk assessment technologies, the performance 

of traditional methods is limited due to a lack of dynamic and real-time analysis (Hegde 

& Rokseth, 2020). In recent years, the methods of risk assessment have transformed 

Emerging machine learning (ML) methods, driven by data entirely, are rapidly 

developing in this field. There are dedicated review papers discussing the application of 

machine learning on risk assessment. Next, a brief introduction will be provided on the 

application of machine learning in risk assessment. 

2.5.1.1 Application phase for ML 

According to the International Organization for Standardization, risk assessment is 

separated into three phases: risk identification, risk analysis and risk evaluation (Hutchins, 

2018). From the meanings of these three stages (detailed in Table 2.2), it can be observed 

that each subsequent stage builds upon the previous stage. Risk identification involves 

the identification or recognition of existing hazards. Risk analysis entails a qualitative or 

quantitative assessment of the magnitude of each risk based on the identified hazards. 

This assessment can be expressed through qualitative ratings or a combination of 

quantitative probabilities and consequences. Risk evaluation involves comparing the 
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evaluation results with the acceptable risk level established during the risk analysis stage. 

If the evaluation results exceed the acceptable level, the risk is considered unacceptable, 

and measures must be implemented to mitigate the risk. 

The goals differ across three assessing stages, and the machine learning methods vary 

slightly. For instance, in the context of risk analysis and evaluation, it is imperative to 

quantify the probability of potential accidents where machine learning algorithms, such 

as Bayesian networks and logistic regression, can be deliberately selected. The typical 

examples for different phases are also listed in Table 2.2. 

Table 2.2: ML application for different phases of risk assessment 

No. Risk assessment phase Definition Typical application 

1 Risk identification The process of identifying 
potential risk factors. 

Hazard prediction for 
enterprise 
workplaces(Wang et 
al., 2018) 

2 Risk analysis 

The process of 
comprehending the nature 
and determine the level of 
risk. 

Maritime Traffic 
Probabilistic 
prediction (Xiao et al., 
2017) 

3 Risk evaluation 

The process of comparing the 
results of risk analysis with 
risk criteria to determine 
whether the risk and/or its 
magnitude is acceptable 

Evaluation the risk of 
crashing a car into the 
vehicle in front(Curiel-
Ramirez et al., 2019) 

In the review paper (Hegde & Rokseth, 2020), the number of published papers for the 

three risk assessment phases are summarized in Figure 2.3. 

 

Figure 2.3: The number of papers concerning the three risk assessment phases 
(Hegde & Rokseth, 2020) 
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2.5.1.2 Data sources for ML 

Three primary sources of data are used to train ML models for risk assessment: 

historical data, real-time data, and a combination of both. The proportions of these data 

in risk assessment can be seen in Figure 2.4. Historical data primarily consists of data 

collected from system workers, machinery, and environmental aspects. Numerical data is 

more common in this category, but there are also textual data sources, such as accident 

investigation reports. For example, 5298 raw accident reports were used as input 

indicators to identify the attribute combinations contributing to construction industry 

injuries by employing natural language processing (NLP) (Tixier et al., 2017). Real-time 

data, on the other hand, is collected synchronously during work and operational processes. 

Common examples include real-time data on human physiological and psychological 

states, including output data from mechanical equipment. Such as vehicle information 

was used as input data to conduct a real-time highway traffic condition assessment using 

SVM (Support Vector Machine) (Ma et al., 2009).  

 

Figure 2.4: The three types of data sources to build the model (Hegde & Rokseth, 
2020) 
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2.5.1.3 The frequency of method usage 

In applying machine learning in risk assessment, the most intriguing questions would 

be which algorithm is the most used and which algorithm yields the best results. The 

answers to these two questions have also been provided. Examining the frequency of 

algorithm usage, as illustrated in Figure 2.5, reveals that Artificial Neural Network (ANN), 

Support Vector Machine (SVM), and Decision Tree (DT) are the three most frequently 

used algorithms. Among these, ANN, stands out due to its strong capability to capture 

nonlinear relationships (Bevilacqua et al., 2010) and the advantage of requiring less 

formal statistical training (Tu, 1996), making it the most widely used algorithm.  

 

Figure 2.5: Ten frequently used machine learning methods in risk assessment 
(Hegde & Rokseth, 2020) 

2.5.2 Application of Machine Learning on Human Factors 

The application of ML to human factors focuses primarily on identifying aspects 

related to human inner processes or external behaviors. The rapid development and 

widespread application of machine learning algorithms (Ayodele, 2010) have introduced 

new solutions to these challenges. For instance, various issues, including sleepiness 

assessment (Watling et al., 2021), fatigue detection (Antwi-Afari et al., 2023; Nasirzadeh 
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et al., 2020), stress recognition (Jebelli et al., 2018), activity recognition (Bhat et al., 2018; 

Dovgalecs et al., 2010; Ma & Ghasemzadeh, 2019), personality traits detection (Evin et 

al., 2022) and decision-making (Evin et al., 2022), have all employed different  ML 

algorisms to address them. Notably, the use of ML in assessing perceived risk was also 

observed (B. G. Lee et al., 2021). Several typical applications of ML in human factors are 

listed in Table 2.3.  

Table 2.3: Description of published papers using machine learning to analyze 
human factors 

Citation Purpose(s) Subjects Metrics ML Model of better 
performance 

(Liang et 
al., 2007) 

Driver 
Cognitive 
Distraction 

10 

eye 
moveme
nts and 
perform
ance 
data. 

SVM 

logistic 
regression 
models  

SVM: accuracy 

0.961 

(Lethaus et 
al., 2013) 

Driver intent 
prediction 10 gaze 

data 

Artificial 
Neural 
Networks 
(ANNs), 

Bayesian 
Networks 
(BNs), 

Naive 
Bayes 
Classifiers 
(NBCs) 

Bayesian 
Networks (BNs) 
(according to 
time window 
length) 

(Momeni et 
al., 2019) 

Cognitive 
Workload 
Classification 

24 

respirati
on, 
ECG, 
PPG, 
ST 

K-NN 
SVM 
DT 

eXtreme 
Gradient 
Boosting 
(XGB):0.86 

(Kumtepe 
et al., 2016) 

Driver 
aggressiveness 
detection 

83 
driving 
sessions 

visual 
and 
sensor 
features 

SVM SVM :0.822 
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Table 2.3, continued 

Citation Purpose(s) Subjects Metrics ML Model of better 
performance 

(Li et al., 
2020) 

Driver Mental 
fatigue(multi-
level) 

6 eye-
tracking 

Support 
Vector 

Machine 
(SVM), 

Decision 
tree, 

Boosted 
tree, 

KNN 

LDA 

SVM 

(accuracy: 
0.795-0.85) 

(Evin et 
al., 2022) Personality trait 69 

EDA 

eye-
tracking 
data 

Behavio
ral data 

ECG 

Decision 
tree (C45)  

Naïve 
Bayes (NB) 

Random 
Forest (RF) 

Support 
Vector 
Machine 
(SVM) 

The Neural 
Networks 
(NN) 

RF 

(Xiong et 
al., 2023) 

Separation 
errors for air 
traffic 
controllers 

10 
ECG 

EEG 

Encoder-
decoder 
LSTM 
network, 
Convolutio
nal Neural  

Network 
(CNN), 
Gated 
Recurrent 
Unit 
(GRU), and 
classic 
LSTM 

Encoder-decoder 
LSTM 
network:0.93 
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Table 2.3, continued 

Citation Purpose(s) Subjects Metrics ML Model of better 
performance 

(Fan et al., 
2018) 

Driving 
behavior 

(multi-
classification) 

50 Eye 
tracking  

Convolutio
nal Neural 
Network 
(CNN)  

Long Short 
Term 
Memory 
(LSTM) 
network, 

SVM 

Decision 
Tree, 
Random 
Forest 

LSTM:0.87 

(B. G. 
Lee et al., 
2021) 

Perceived risk 
classification 
(low and high 
risk level)-
construction 

8 
EDA, 
PPG and 
ST 

Gaussian 
SVM, K-
Nearest 
Neighbors, 
Decision 
Tree, 
Bagging 
Tree 

GSVM 

Low :F1 score, 
0.819 

High: F1 score, 
0.805 

Accuracy = 
0.812 

(Christo
pher & 
alias 
Balamurug
an, 2014) 

Predicting 
warning level  

 

Not 
mentione
d 

aircraft 
dataset 

DT, KNN, 
SVM, NN 
and NB 

DT: 
accuracy:0.9768 

(F. Li et 
al., 2022) 

Vigilance levels 
assessment 14 Eye 

tracking 

A shallow 
artificial 
neural 
network 
(SANN) 
SANN 
Linear 
regression 
Decision 
tree 
Support 
vector 
machine 
Bagged 
trees 

A shallow 
artificial neural: 
0.792(MSE) 
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Table 2.3, continued 

Citation Purpose(s) Subj
ects Metrics ML Model of better 

performance 

(Goh et al., 
2018) 

evaluate relative 
importance of 
different 
cognitive 
factors 

80 
unsafe 
behavior 
checklists 

Decision 
Tree 
(DT)Artific
ial Neural 
Network 
(ANN) 

Random 
Forest DT 
(RF) 
K-Nearest 
Neighbor 
(KNN) 
Support 
Vector 
Machine 
(SVM) 
Logistic 
(Regression
) 

Naïve 
Bayes (NB) 

DT: 
AUC0.976 

(Ding et al., 
2016) 

Predicting 
driver’s stop-or-
run behavior 

Not 
men
tion
ed 

high-
resolution 
loop detector 
data 

gradient 
boosting 
logit model 
(GBLM) 
statistical 
logit model 

GBLM 
(0.889,0.952,

0.901for 
different 
situations) 

(Xinran 
Zhang & 
Yan, 2023) 

Predicting 
collision (binary 
classification)-
driving 

32 

EEG metrics, 
only driving 
behavior and 
combined 
EEG metrics 
with driving 
behavior 

Multi-layer 
perceptron 
(MLP),Logi
stic  
regression 
(LR) 
Random 
forest (RF) 

single time 
point:0.729 
multi-time point: 
LR(0.880) 

(Jebelli et 
al., 2018) 

Stress 
recognition 
(high and low 
stress) 

Not 
men
tion
ed 

EEG SVM SVM:0.711 

(Aiello et 
al., 2022) 

workers’ 
movements 

Not 
men
tion
ed 

The vibration 
signals 

K-Nearest 
Neighbor 
(KNN) 

Accuracy:0.97-
0.98 
Precision:0.94-
0.96 
F-score:0.97-
0.98 
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Table 2.3 shows that the most used algorithms in human factors research were general 

machine learning, such as SVM, RF, and others, with relatively fewer instances of deep 

learning applications. Moreover, single or combined variables were frequently utilized as 

algorithm input vectors. These variables often consisted of combinations such as multiple 

physiological signals or integrating physiological data with survey questionnaires and 

behavioral data. This practice was common for both classification and regression tasks.  

For example, hierarchical clustering analysis, an unsupervised machine-learning 

technique, was employed to evaluate operator fitness-for-duty (FFD) (Choi & Seong, 

2020). This study used eye movement data and subjective fatigue ratings to perform 

clustering tasks. In another study, the combination of EDA, PPG and ST achieved higher 

accuracy (81.2%) than only using EDA or PPG for distinguishing between low and high 

levels of perceived risk. Moreover, SVM with Gaussian kernel function performed better 

than DT, KNN and Bagging Tree (B. G. Lee et al., 2021). However, the integrated metrics 

only sometimes obtained better results. For example, EEG and behavioral variables were 

utilized to identify unsafe drivers. Multilayer Neural Networks (MLP), one representing 

the algorithm of ANN, reached better prediction effectiveness compared with Logistic 

regression (LR) and Random Forest (RF) (Zhang & Yan, 2023). However, a single EEG 

performed better than a combination of EEG and behavior variables.  

There is a trend in utilizing multi-physiological signals to address various issues in 

human factors (Awais et al., 2017; Fan et al., 2020; Zhou et al., 2018). This aimed to 

tackle facets of the problem, compensate for individual method limitations, and ultimately 

achieve enhanced performance (Choi & Seong, 2020). 

2.5.3 Application of Machine Learning on Perceived Risk 

The statistical analysis of physiological response data has significantly enhanced our 

understanding of workers' risk perception. For instance, ANOVA is used to detect 

significant differences in EDL and EDR between high and low-risk situations in 
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construction (B. Choi et al., 2019) and to analyze perceived risk tolerance under different 

conditions in construction, such as no, slight and dense smoke (Fu et al., 2021), as well 

as during various accident stages, including control, precursor, and outcome periods 

(Barnard & Chapman, 2016). Nevertheless, statistical analysis is inadequate to explore 

the exceedingly complex nonlinear relationship between physiological changes and 

perceived risk. The advancements in machine learning and their successful application in 

the field of human factors provide exciting potential for identifying perceived risk. 

2.5.3.1 The application of ML for assessing perceived risk in social science 

In the context of risk perception, ML techniques have the potential to identify 

perceived risk in social science. Machine learning techniques, particularly deep learning, 

have been employed to assess public risk perception. Social media platforms provide a 

rich source of data on how people perceive risks, as individuals often discuss and share 

their thoughts and feelings about various risks on social media (Guan & Chen, 2014; Gui 

et al., 2017; Wu & Cui, 2018). In addition, the word distribution structure in natural 

language data was utilized to discover rich representations of numerous naturalistic risk 

sources (Bhatia, 2019). However, the input vectors in these studies primarily focused on 

external factors, such as website search and social information, rather than physiological 

signals (Lawless, 2022; Tang et al., 2022; Weber, 2017; Xie & Xue, 2022).  

2.5.3.2 The application of ML for assessing perceived safety risk 

In terms of safety risk perception, the four most related research have shown their 

contribution to the application of ML in assessing risk perception. One focused on the 

drivers' perceived risk (Ding, Ghazilla, et al., 2022; Ding, Raja Ghazilla, et al., 2022; Ping 

et al., 2018), while the other three examined the perceived risk among construction 

workers (B. Choi et al., 2019; Byungjoo Choi, Gaang Lee, et al., 2019; Jeon & Cai, 2021; 

B. G. Lee et al., 2021). The findings of these studies have instilled significant confidence 
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in the development of a fully data-driven perceived risk assessment model. Therefore, the 

following section will provide a detailed analysis of these findings. 

(a) The lack of emotional responses as input vectors 

In terms of input vectors, emotional responses are rarely considered. The most used 

indicators were personal operational data and physiological signals. For instance, the 

study incorporated vehicle parameters, such as steering angle, brake pedal position, gas 

pedal position, longitudinal acceleration, and presence of parked vehicles, pedestrians, 

and bicycles, as well as road characteristics (including curves, uncontrolled and 

controlled intersections) (Ping et al., 2018). These data were collected during the subjects' 

real driving experiences and treated as time series data to represent the process of risk 

perception. However, for construction workers' subjective risk assessment, wearable 

sensors were employed to collect workers’ physiological signals during their regular tasks 

in the field. One exclusively used Electrodermal Activity (EDA) (Byungjoo Choi, Gaang 

Lee, et al., 2019), or EEG (Jeon & Cai, 2021) as the input vectors, while the other 

employed a combination of physiological signals, including EDA, 

Photoplethysmography (PPG), and Skin Temperature (ST) (B. G. Lee et al., 2021). The 

same research team conducted the two studies. Unfortunately, emotional indicators were 

not included as input vectors to classify perceived risk since induced emotion during 

human perceiving risk had significantly influenced the assessment process and results. It 

can be seen from the separation of System 1 and System 2. 

(b) The employment of different ML algorisms 

Regarding algorithms, basic ML algorithms have exhibited exciting results. For 

drivers’ risk perception (Ping et al., 2018), the performance of a long short-term memory-

based method (LSTM) demonstrated superior performance compared to other algorithms 

like Neural Networks (NN) and Support Vector Machines (SVM) due to its ability to 

effectively handle time series data. The two studies focusing on construction workers 

Univ
ers

iti 
Mala

ya



54 

evaluated the different algorithms by classification index, such as accuracy, precision and 

F1 score. Among these algorithms, K-Nearest Neighbors (KNN) showed the best 

performance, surpassing Decision Trees (DT), Logistic Regression (LR), Gaussian 

Support Vector Machine (GSVM), Subspace KNN (SKNN), and Bagging Tree (BT). 

KNN achieved an accuracy of 76.9% in classifying high and low-risk levels using 

electrodermal activity (EDA) as input indicators (B. Choi et al., 2019). Another study 

demonstrated that the Gaussian SVM was a better classifier for classifying high- and low-

level risk by employing the combination of physiological indicators, compared with KNN, 

DT, and BT (B. G. Lee et al., 2021). So, it can be inferred that the basic machine learning 

models can effectively capture the relationship between physiological data and risk 

situations with significantly different levels of risk. 

(c) The deficiency in classifying situations with close risk degrees 

ML models for classifying risk situations with closely matched risk degrees still 

require future research, even though they have demonstrated better performance in 

predicting high and low-risk levels. In a study on drivers' risk perception (Ping et al., 

2018), risk levels ranged from no feeling of risk to an extreme sense of risk, as ranked by 

participants while watching videos. While the study considered three scenarios beyond 

significant risk disparities: slight, moderate, and intense feelings of risk, the input data 

did not include physiological signals, preventing an evaluation of their predictive ability. 

In the case of construction workers' risk perception (B. Choi et al., 2019; Byungjoo Choi, 

Gaang Lee, et al., 2019; B. G. Lee et al., 2021), typical binary classification tasks were 

performed, focusing solely on high and low-risk levels. They were determined by the 

authors based on video-recorded workers' activities. The three research primarily utilized 

EDA or the combination of three physiological signals to classify risk levels. However, 

they did not consider risk degrees that were closely matched. Only when physiological 

responses can accurately identify risk situations with minimal differences in risk degree 
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can the significant potential of machine learning models in subjective risk assessment be 

fully applied. 

2.5.4 Discussion of Machine Learning Application 

Based on the above content, it can be concluded that people experience physiological 

and emotional changes regulated by the autonomic nervous system in risky situations. 

These changes are dynamic, multidimensional, and highly complex. Establishing a model 

to recognize the relationship between these changes and perceived risk levels is not a 

simple task. However, machine learning offers several advantages over traditional 

statistical analysis methods. For example, it requires fewer assumptions about the data 

distribution. It can handle multidimensional variables or wide data (where the number of 

input variables exceeds the number of samples) and has strong nonlinear fitting 

capabilities. Clearly, these advantages highlight the feasibility of machine learning in 

assessing perceived risk. The main points were discussed regarding the consensus on the 

application of machine learning in risk assessment.  

Broad applicability: Machine learning has been applied in various stages of risk 

assessment, including risk identification, risk analysis, and risk evaluation. This 

widespread utilization indicates a consensus that machine learning can effectively address 

various aspects of risk assessment. 

Performance and validation: Certain machine learning algorithms, such as Artificial 

Neural Networks (ANN), Support Vector Machines (SVM), Decision Trees (DT), and 

Random Forest (RF), have been consistently demonstrated to deliver satisfactory 

performance in risk assessment tasks. The validation of these algorithms across multiple 

studies strengthens the consensus on their effectiveness. 

Exploration of human factors: The specific research on human factors using 

machine learning differs from the traditional approach of utilizing historical data on 

human operations. Instead, it utilizes diverse data sources such as real-time 
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multidimensional physiological indicators, the fusion of different physiological indicators, 

behavioral measurements, and environmental parameters, even complex images or real-

time videos. Machine learning goals vary from predicting or classifying cognitive biases, 

fatigue, alertness, and stress to certain unsafe behaviors. It indicates a consensus on the 

potential of machine learning to provide valuable contributions to understanding and 

managing human factors in risk assessment. 

Opportunities for perceived risk: There is limited research specifically focused on 

the application of machine learning in subjective risk perception assessment. 

Nevertheless, some studies have started exploring data-driven assessment models based 

on human physiological and psychological responses under different risk levels. Machine 

learning techniques provide an excellent opportunity for this inherently subjective and 

implicit risk perception assessment. However, machine learning algorithms must 

continue to perform well only when there is a minimal disparity in the magnitude of 

perceived risk, thus ensuring the prospective application of machine learning. 

2.5.5  The Comparison of ML with Other Methods 

It can be concluded that questionnaire originated in social science and engineering risk 

assessment started with safety science were methods commonly used to evaluate risk.  

ML, with the rapid development of AI and data accumulation, had been a new way to 

assess risk and shown great power.  ML would be used in this research to assess risk. To 

display its suitability, the comparison of ML with other methods used in risk perception 

assessment was listed in Table 2.4. 
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Table 2.4: The comparison of ML with other methods used in risk perception 

No. Questionnaire Engineering risk 
assessment 

ML 

Application areas Social science 
Engineering areas 

Engineering areas Social science 
Engineering areas 

 
 
 
 
 
 
Advantages 

It was simple to 
collect data.  
The data collected 
was subjective and 
biased.  
It was easy to be 
conducted. 

The assessed results 
were often regarded 
as objective and can 
reflect the real level 
of risk. 

It required fewer 
assumptions about 
data distribution. 
It can handle 
multidimensional 
variables or wide 
data. 
It had strong 
nonlinear fitting 
capabilities. 
The results of the 
assessment were 
close to the 
subjective perceived 
risk. 

 
 
 
 
Drawbacks 

The assessment 
results were often 
considered with 
subjectivity and 
bias. 

Its application 
needed specialized 
engineering.  
It was hard to 
evaluate the 
subjective and 
perceived risk 
which generated in 
humans’ brain, not 
existed in machines 
or environments.  

The collection of part 
data was difficult and 
may cost more time. 
The progress of 
model training may 
be long, especially 
for big data. 
The quality of data 
had impaction on 
model performance. 

 

2.6 Individual Differences of Risk Perception 

The variability in individuals’ risk perception of a given hazardous situation arises 

from its inherently subjective nature and the impact of influencing factors. As 

physiological signals can reflect the process of risk perception, individual differences can 

be reflected in the physiological signals accompanying the process of risk perception. 

However, there is limited research on this specific issue. Encouragingly, recent studies 

have begun exploring the potential individual differences that may exist in risk perception. 

These studies span multiple disciplinary areas, with safety, human factors, and 

ergonomics being the most prominent among them (Bagley et al., 2023). 
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Firstly, various research has highlighted the personal differences in risk perception, 

which is a highly personal process based on an individual’s understanding of risk (Brown, 

2014). These differences were observed in some studies. For instance, research on pilots 

showed that those with better safety performance exhibited more stable inter-beat 

intervals (IBI) and higher skin conductivity levels (SCL) during hazardous scenarios (Gao 

& Wang, 2020). Another study explored participants’ route choices in different levels of 

stimulated smoke using immersive virtual reality (VR) and found that individuals with a 

high tolerance were more inclined to take a dangerous shortcut. However, an individual's 

attitude towards risk can be dynamic, and their everyday risk preference in a low-risk 

context may not necessarily align with their decision-making in high-risk situations (Fu 

et al., 2021). While these studies described individual differences, they did not offer a 

scientific perspective.  

Significantly, one research focused on resolving this issue (B. Choi et al., 2019). This 

research used skin conductance to assess construction workers’ risk perception. It 

observed differences in skin conductance responses between high and low risk levels and 

determined that these differences were partially attributed to distinct individuals. 

Hierarchical Linear Modeling (HLM) was employed to determine its existence. Therefore, 

there is preliminary experimental evidence indicating the existence of personal 

differences in risk perception. Nevertheless, further research is needed to confirm these 

findings. 

The existence of individual differences in risk perception during risk assessment is of 

paramount importance, as it has been demonstrated that significant variations in 

physiological responses associated with the risk perception process exist. However, 

further investigation is required to ascertain whether the origin of these differences lies in 

individual variations or different risk situations. 
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2.7 Gap Summary 

Figure 2.6 organizes the principal findings and limitations identified in the literature 

review to present the research problems related to risk perception. 

Risk perception originated in the social sciences, but its direct impact on decision-

making and behavior has rendered it a significant research issue within the field of safety 

science. Risk perception and engineering risk assessment methods represent two 

fundamentally distinct paradigms for quantifying risk. In particular, safety behaviors 

mainly rely on emotional perception rather than rational calculations of risk. 

Consequently, there is a pressing need for new assessment paradigms for human-

perceived risk. The rapid advancements in wearable physiological and emotional 

measurement technologies within the field of ergonomics provide a promising 

opportunity for advancing research on risk perception. So, the primary objective of this 

research is to develop machine learning models that predict perceived risk level using a 

combination of physiological and emotional indicators as input data. These indicators can 

be obtained in different risk and experimental scenarios. According to the main 

foundlings of the literature review, the following research gaps and their corresponding 

issues were summarized. 

Firstly, it is widely recognized that specific physiological signals display significant 

differences between high and low risk situations. However, whether these observed 

differences hold statistical significance in situations with only minor risk variations 

remains uncertain, underscoring the necessity for further investigation. Additionally, 

there is a need to study the representation, and evolving patterns of emotions induced by 

risk situations. Meanwhile, exploring the more comprehensive and abundant 

neuromodulation mechanisms and possible individual differences associated with risk 

perception is warranted. 

Secondly, progress has been made in establishing machine learning models to classify  
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high and low-risk scenarios based on physiological responses. However, further research 

is required to determine whether such models can still perform well in classifying risk 

situations with modest differences in their degree of riskiness. It will further substantiate 

the successful utility of machine learning applications. In addition, it has been 

demonstrated that a combination of multidimensional physiological indicators can 

differentiate risk situations. However, there is limited research regarding which specific 

indicators are more sensitive for classifying risk within the classification process. 

 

Figure 2.6: Formulation of research problems based on the literature review 

Thirdly, it is essential to validate the performance of the proposed machine learning 

model for classifying risk perception across diverse risk scenarios, as this confirmation 

can demonstrate its generalization capability. Moreover, this validation will establish the 

stability of the inherent relationship between physiological, emotional responses and risk 

levels, confirming that the model's classification capability remains consistent across 

different scenarios and individuals. 
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CHAPTER 3: METHODOLOGIES 

3.1 Introduction 

This chapter is to design experiments that collect human response data in various risk 

situations, focusing on situations with closer risk degrees. The field of driving has 

consistently been a popular choice for studying risk perception. Consequently, the initial 

experiment was conducted within a driving scenario. The subsequent validated 

experiment, explicitly simulating a construction site, was undertaken to confirm the 

robustness of findings from the initial experiment. 

Furthermore, this chapter elucidates statistical analysis methods used to analyze the 

experimental data. Additionally, it elaborates upon the standard procedures of machine 

learning algorithms. 

3.2 The Comprehensive Research Design 

Based on the literature review, six research problems were identified and depicted in 

Figure 2.6. Correspondingly, three primary objectives were formulated in alignment with 

the identified research problems. Figure 3.1 depicts a comprehensive flow chart for 

achieving these goals. The initial and validated experimental scenarios, limited to driving 

and construction sites, shared similar their design processes. Subsequent steps were 

conducted to acquire physiological and emotional data. These steps included screening 

appropriate stimuli, recruiting subjects, determining physiological measurements, 

designing the experiment process and selecting physiological sensors, which were 

conducted to acquire physiological and emotional data.  

The first and second objectives were achieved through the analysis of data from the 

driving experiment. These findings were validated by analyzing the experimental data 

obtained after changing to the construction experiment scenario. In this way, the third 

objective was also accomplished. 
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A detailed explanation of the research design will be provided in the following section 

of this chapter. 

 

Figure 3.1: The comprehensive research flow chart 

3.3 Stimulus 

There was no doubt that measuring physiological and psychological signals in risk 

situations was challenging to perform in real-world settings (Brookhuis & de Waard, 

2010). A laboratory setting can provide a choice. Videos were often considered adequate 

inducing specific situations (DASDEMİR et al., 2017). Besides, virtual reality (VR) was 

often regarded as a more effective way to simulate real scenarios (Perlman et al., 2014). 

However, in Australia, risk perception measurement for individuals applying for a driver's 
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license was conducted through driving videos (Hill et al., 2019). So, videos, as stimuli 

causing a physiological or psychological response (Minhad et al., 2017), were also 

utilized in this research.  

Seven driving videos were downloaded from the internet, which portrayed risky 

situations from the driver's perspective. Three criteria were applied to select suitable 

videos. Firstly, the clips depicted the perceived likelihood of an accident occurring 

(probability judgments) and its consequences (severity judgments) (Christian et al., 2009). 

In other words, the entire process of presenting the danger, the occurrence of the accident, 

and its consequences should be comprehensively included. Secondly, each clip only 

depicts a single key event (Iqbal et al., 2016), which help subjects pay attention to specific 

risk situation. Thirdly, the duration of the videos should be similar, considering the effect 

of time. The duration of the seven videos was approximately two and a half minutes, with 

differences of less than 10 seconds. Subsequently, 100 college students with driving 

experience were recruited during the preparation stage of the experiment to assess the 

effectiveness of situational induction. Participants used a scale from 1 to 10 to rate the 

authenticity of each video based on their own driving experiences: the higher the score, 

the closer the video resembled real driving situations.  

Since risk perception was considered a spectrum rather than a binary concept, it 

fluctuated across various risk levels, from no risk to significantly high-risk levels (Sitkin 

& Pablo, 1992). Additionally, similar video clips' content has been removed. Finally, four 

videos were ultimately selected. One of the clips depicted no unexpected incidents and 

was used as a baseline for comparison with the others. The details and some screenshots 

representing essential events of the selected videos are described in Table 3.1. 
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Table 3.1: A simple description of four driving clips 

No. Description 

1 

The driver was leisurely driving and saw teachers and children passing 
through the zebra crossing. He stopped ahead of time until they finished 
crossing. There was no abnormal situation. 

   

2 

While driving, the driver failed to perceive the oncoming cyclists ahead 
of time. He had to brake hastily to avoid hitting them. Thankfully, the 
car stopped in time, and no one was injured. However, the driver 
seemed scared. 

      

3 

During rush hour, the driver almost collided with the car in front. 
Fortunately, he braked sharply in time to avoid a rear-end collision. 
However, he still appeared frightened and took a long breath. 

   

4 

Suddenly, a car turning a corner crashed into another car coming from 
the side direction. The front windshield of the car was shattered, and 
glass shards were scattered. Unfortunately, the driver was bleeding and 
the car window was stained with blood. Obviously, there were severe 
consequences. 

   
The risk levels of the selected clips needed to be ranked. 123 students with driving 

experience were recruited to give the risk scores for each clip on a scale from 1 to 5, with 

higher numbers indicating an increase in risk. Two clips had similar risk rankings, scoring 

2.45 and 2.85, respectively. Despite the different situations depicted in the clips, the risk 

scores assigned by the students were very close, indicating similar risk levels. The first 

clip was considered less hazardous, scoring 1.87, and served as a suitable baseline 

measurement. Conversely, the last clip, scoring 3.97, was the most dangerous among the 
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clips. However, it still fell within the students' acceptable range, and no apparent 

discomfort was observed. 

3.4 Participants 

In related research, eight workers were recruited to participate in experiment 

(Byungjoo Choi, Houtan Jebelli, et al., 2019; G. Lee et al., 2021). Their physiological 

data were collected during high and low risk situations. The number of data used to train 

ML models were 232 and 224, respectively. Considering there were four clips, 60 subjects 

are suitable to record their response data. This will result in 240 samples for training 

models. The number of samples is similar to that in related research. 

Regarding the selected standards, previous studies have demonstrated that risk 

perception in driving situations was influenced by driving experience and became more 

sensitive over time (Tanida et al., 2018). Consequently, we recruited 60 student 

volunteers with three years of driving experience, ensuring that experience-related 

implications were addressed. The age of participants ranged from 21 to 23 (mean: 22.4; 

SD: 1.35), with ten females and fifty males. Notably, the subjects had not seen the clips 

yet at the selecting stage. The order of their participation during the experimental 

measurement periods was randomized, and all subjects had normal vision or corrected-

to-normal vision. Prior to the commencement of the experiment, participants were 

instructed that situations exceeding their mental capacity were strictly prohibited. All 

participants provided informed consent and engaged in practice trials to familiarize 

themselves with the experimental procedures and the presentation of stimuli. Furthermore, 

they were required to have a good night's sleep before the testing session. 

3.5 Measurements 

3.5.1 Physiological Measurements 

Based on fundamental considerations for physiological measurement, it is believed 

that combining various physiological signals would be more effective in identifying risk 
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(B. G. Lee et al., 2021). Hence, multiple physiological measurements were employed in 

the present research. According to the previous literature review, electrocardiogram (ECG) 

(Panicker & Gayathri, 2019), electrodermal activity (EDA) (Kreibig, 2010), and pupillary 

response (Gajardo et al., 2019) were popular methods for measuring risk and were utilized 

in this study. Additionally, skin temperature (ST) was introduced at the construction site 

to assess perceived risk (B. G. Lee et al., 2021), and it was included as well. It was 

important to emphasize that these physiological signals were obtained while subjects 

were watching video clips, and the data were synchronized with the timeline of the clips. 

3.5.2 Emotion Measurements 

The PAD emotion model may be a viable choice due to the complication and 

fluctuation of emotional responses in risky situations. It assigns numerical values ranging 

from 1 to 9 to represent the continuous emotions across three dimensions: pleasure, 

arousal, and dominance. This model maps emotion onto three distinct spaces, allowing 

for the quantification of subjective emotions and facilitating comparisons between 

different situations. Moreover, this approach to labeling emotions helps circumvent the 

difficulties in dissecting highly fused emotions. 

Combining the three dimensions of pleasure, arousal, and dominance gives a more 

comprehensive understanding of how individuals experience emotions in response to 

various risk scenarios. This approach provides a holistic perspective on the emotional 

experiences of individuals in different risk-related situations. 

The process of scoring emotional experiences is easy to follow. Participants assign a 

score to represent their real feelings based on the Self-Assessment Manikin (SAM) 

images. The three Self-Assessment Manikin (SAM) images are shown in Figure 3.2. 
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These instructions and explanations aimed to facilitate participants in accurately 

scoring the three dimensions based on their personal emotional experiences, ensuring the 

data's reliability and validity. 

3.6 Procedure  

Firstly, the experimental procedures were explained to the participants, including the 

stimulus materials used and the identification of the participants after the survey period. 

Detailed instructions and illustrations were provided on how to rate the P (Pleasure), A 

(Arousal), and D (Dominance) scores. 

Secondly, the participants were informed that they would be watching four driving 

clips from the driver's point of view. They were instructed to imagine themselves as the 

driver and to remain seated still throughout the entire experiment. The clips were 

displayed on monitors, and the participants were asked to observe each clip. 

Thirdly, the participants were equipped with physiological sensors and were seated in 

a comfortable position. They were given practice trials to familiarize themselves with the 

experimental process and stimulus display. 

Fourth, once all the preparations were completed, the formal experiment commenced. 

Each participant was given five minutes of relaxation before watching the four video clips 

from the driver's perspective. They were instructed to watch the clips as if they were the 

driver and to remain still throughout the experiment. It was important to note that the 

baseline clip was shown after the relaxation segment, and the playback order of the 

remaining three clips was randomized. A one-minute interval was introduced between 

each video clip to ensure that the previous clip did not influence participants' 

physiological state. The order of stimulus exposure was randomly determined for each 

participant. 

Finally, at the end of the experiment, a five-minute relaxation period was allocated to 

each participant. Following the experiment, the apparatus used for physiological 
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measurement was removed, and PAD values were given. It completed one trial and 

repeated the process for each subsequent participant. The overall process is illustrated in 

Figure 3.3. 

 

Figure 3.3: Diagram of experimental procedure 

3.7 Apparatus  

Experimental equipment is essential for displaying stimuli and simultaneously 

measuring multiple bio-signals to record data and analyze the effects of the stimulus on 

the subjects. The ErgoLAB ergonomic equipment is suitable for fulfilling this 

requirement as it enables synchronous transfer and recording of multi-parameter 

physiological data through connected USB devices in real time. The measuring system 

consists of two main components: software and hardware. 
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3.7.1 Software of ErgoLAB  

Designing the experiment procedure and entering basic information about the 

participants can be accomplished during the preparation stage using the provided software. 

The software enables the presentation of stimuli, acquisition of data from physiological 

sensors, and recording of the obtained data during the experiment. Once the data 

collection phase is completed, the software also offers functionalities for data 

preprocessing, calculation of physiological indices, and data export. 

Due to their unique characteristics, it is important to note that different physiological 

signals require specific preprocessing methods. The software provides predefined 

preprocessing techniques tailored to each physiological signal. These methods are 

outlined in the tables below, which offer a comprehensive guide for preprocessing and 

extracting indices based on the characteristics of the physiological signals. 

The preprocessing methods of EDA and specific values are shown in Table 3.2. 

Table 3.2: Parameters of EDA signal preprocessing methods 

No. Method Parameters Values 

1 Filter: Gauss window size/ms 5 

2 Low pass Cut off /Hz 5 

3 SCR 
extraction 

Peak detection sensitivity Middle 

Maximum rise time/s 4 

Maximum half decay 
time/s 

4 

Maximum SCR 
amplitude/𝜇s 

0.03 

Window size/ms 100 

The preprocessing methods of ECG and corresponding values are described in Table 

3.3. 
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Table 3.3: Parameters of ECG signal preprocessing methods 

No. Method Parameters Values 

1 Filter: Wavelet 
denoise 

Intensity medium 

2 Amplitude 
normalization 

Intensity middle 

3 High pass Cut off /Hz 1 

4 Low pass Cut off /Hz 100 

5 Band stop Cut off /Hz 50 

6 R-peak extraction 
Maximum heart rate/bpm 120 

R-peak mark 
threshold/bpm% 

70 

7 Ectopic detection Median/samples 4 

8 Ectopic correction 
Method median 

Window size/samples 5 

Eye-tracking data preprocessing methods and parameter settings are listed in Table 

3.4. 

Table 3.4: Parameters of eye tracking raw data preprocessing methods 

No. Method Parameters Values 

1 Noise reduction 
Method Moving Median 

filter 
Window size/ms 3 

2 Discard short 
fixations 

Minimum fixation 
duration/ms 

60 

3 Pupils process 
Method Linear 

Minimum pupil diameter 
/mm 

2 

By utilizing the software, researchers can efficiently handle the entire experimental 

process, from designing the procedure and collecting data to preprocessing and analyzing 

the acquired physiological signals. This integrated approach streamlines the data 

processing workflow and ensures the accuracy and reliability of the results. 

3.7.2 Hardware of ErgoLAB 

The system's hardware components consist of a computer host and a Light Emitting 

Diode (LED) monitor, as depicted in Figure 3.4. The computer host is equipped with the 
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software mentioned above system installed. The LED monitor is 18 inches long and is 

used for displaying stimuli during the experiment. 

 

Figure 3.4: The image of computer host and LED monitor 

Additionally, various physiological sensors are used to measure different variables, as 

shown in Figure 3.5. Numerous sensor straps helping to fix the sensor and the charger are 

displayed.  

 

Figure 3.5: The different physiological measurement sensors 

To measure ECG, three electrodes are attached to the participants' chest (showed in 

Figure 3.6).  
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After calculation, there are a total of 17 indicators, including two EDA indicators (EDL 

and EDR), four ECG temporal indicators (HR, SDNN, RMSSD and SDSD), five ECG 

frequency indicators (ULF, VLF, LF, HF and LF/HF), four ECG nonlinear indicators 

(SD1, SD2, A++ and B--), one skin temperature (ST), and one pupil diameter (PD).  

3.8 Validation Experiment 

A similar experiment was designed to confirm the analysis results, maintaining the 

same overall paradigm while shifting the risky situations to construction sites. Therefore, 

this section will primarily elaborate on the stimulus presented in the video clips. The video 

clips were downloaded and selected using the same criteria as before, and their risk levels 

were rated on a scale from 1 to 5. The clips were presented in an animated format. Four 

clips were chosen as stimuli, each for approximately three and a half minutes. Similar to 

the previous experiment, one clip was designated as a baseline measurement. 

To ensure the acceptability of the video plots, a survey questionnaire was conducted 

to gauge participants' reactions. The responses indicated that the video plots were within 

an acceptable range and did not elicit significantly uncomfortable feelings. The 

descriptions of the video plots are provided in Table 3.5. The first scene, representing a 

relatively benign scenario, served as the baseline with the lowest risk rank of 1.83. The 

fourth scene had the highest risk score at 3.85. The risk values for the two middle scenes 

were close, with scores of 2.55 and 2.69, respectively. Comparing the risk values, the risk 

levels of the three videos portraying negative consequences in the construction scenario 

were relatively similar in contrast to the driving scenarios. 
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Table 3.5: A simple description of four construction clips 

No. Description 

1 

This clip mainly introduces the usage method of safety harnesses. It is the most 
used personal protective equipment in construction sites. The video covers its 
appearance check, usage scenarios, method, and precautions. 
 

    

2 

It depicts a construction site safety officer performing a safety inspection and 
discovering that the scaffolding was not constructed according to the relevant 
technical requirements. The workers at the site stated that they would rectify the 
situation within two days, but in practice, they needed to reinforce it as required. 
As a result, the formwork collapsed, causing the entire completed section of the 
building to collapse, and a large amount of dust rose on the scene. The clip shows 
that there are no personnel injured in the incident. 
 

    

3 

The video clip showed a construction worker removing the protective paper from 
the window frame and cleaning the frame. After taking the elevator to a high 
floor, he walked to the window, stood directly on the frame without wearing a 
safety harness, and began removing the protective paper. The worker's footing 
slipped during the task, causing him to fall from the high place. The entire process 
of the person falling and the blood on the ground after the fall were captured in 
the video. 
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Table 3.5, continued 

No. Description 

4 

Three workers dismantled the scaffold poles and transported them from the upper 
floor to the ground via an elevator. However, they thought it was the weekend, 
and nobody was working at the construction site, so one worker decided to go 
upstairs and throw the poles down from a height while the other two workers 
waited on the ground to collect the thrown poles. During the operation, one of 
the workers sleeping on the unfinished first floor was awakened by the sound of 
the pole falling to the ground. He came out to see what happened but did not 
notice the pole falling from a height and was hit in the head, causing him to fall 
to the ground. 
 

   

60 college students with essential construction knowledge were recruited to participate 

in this experiment. Their ages ranged from 21 to 23, with ten females and fifty males. 

3.9 Data Analysis  

3.9.1 Statistical Analysis 

The nature and distribution of the data can influence the choice of statistical methods. 

Therefore, in this study, different statistical methods were employed to analyze discrete 

emotion indicators and continuous physiological indicators.  

3.9.1.1 Discrete analysis of PAD emotions 

The P, A, and D values range from 1 to 9, allowing only nine discrete integers. As a 

result, the three-dimensional emotion variables are categorical. The data for these 

variables in the two scenarios, including four situations, did not follow a normal 

distribution. Therefore, the non-parametric Kruskal-Wallis rank sum test was employed. 

If significant differences were observed for a variable, further analysis using the non-

parametric Mann-Whitney U test was conducted to identify which two groups differed 

significantly.  
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The calculation progress of Kruskal-Wallis test is shown as follows. 

 Rank all the data: Combine all groups' data into a single list and assign ranks to each 

data point. If there are ties, assign the average rank to the tied values. 

Calculate the sum of ranks for each group: Sum the ranks for the data points in each 

group. 

Compute the H statistic: Use the following formula. 

𝐻 = & "!
#(#%")

∑ '!
"

(!
)
*+" ( − 3(𝑁 + 1)                                                                          (3.1) 

where: 

N is the total number of observations across all groups. 

k is the number of groups. 

𝑅* is the sum of ranks for the i-th group. 

𝑛* is he number of observations in the i-th group. 

Convert the 𝐻 statistic to an 𝜂! value: This can be done using the following formula: 

𝜂! = ,-)%"
(-)

                                                                                                              (3.2) 

Convert 𝜂! to Cohen's 𝑓: The effect size of Cohen's 𝑓 is related to 𝜂!, and can be done 

using the following equation. 

Cohen's 𝑓=4 ."

"-."
																																																																																			                 (3.3)  

The statistical analysis for this study was conducted using SPSSPRO, a free online 

platform. This choice was based on its capability to directly calculate effect sizes for 

pairwise comparisons (SPSSPRO, 2021). 

Effect size is commonly employed to assess the magnitude of difference between 

variables in statistical analyses. A larger effect size indicates a more significant difference 

or relationship between variables, while a smaller effect size suggests a weaker 

association. In the case of the Kruskal-Wallis test, SPSSPRO utilizes Cohen's f value to 

represent the effect size, with critical points of 0.1, 0.25, and 0.40 denoting small, medium, 

Univ
ers

iti 
Mala

ya



79 

and large effect sizes, respectively. Similarly, Cohen's d value is used to gauge the effect 

size of pairwise comparisons, with critical points of 0.2, 0.5, and 0.8 indicating small, 

medium, and large effect sizes, respectively. 

3.9.1.2 Continuous analysis of physiological responses 

Since physiological indicators (dependent variables) are all numerical data, one-way 

(risk level) repeated-measures ANOVA is used for difference analysis. This research is 

conducted within subjects’ analysis to investigate the differences in individual’ 

physiological signals- EDA, ECG, PD and ST under different risk levels. Specifically, 

EDL and EDR are indicators derived from EDA. HRV includes time-domain indicators 

such as HR (Heart Rate), SDNN (Standard Deviation of NN Intervals), RMSSD (Root 

Mean Square of Successive Differences), SDSD (Standard Deviation of Successive 

Differences), frequency-domain indicators of HRV such as ULF (Ultra Low Frequency), 

VLF (Very Low Frequency), LF (Low Frequency), HF (High Frequency), and LF/HF 

ratio. Nonlinear indicators in HRV include SD1, SD2, A++, and B--. There are 17 

indicators together with Eye movement indicators, including PD (Pupil Diameter) and ST 

(Skin Temperature). 

For various physiological indicators, non-parametric testing methods are used if the 

data approximately follows a normal distribution and passes the Sphericity tests. If the 

data does not meet the above conditions, test results are adjusted using the Greenhouse-

Geisser correction. Furthermore, if there are significant differences at different levels, 

Bonferroni post hoc tests are used.  

The effect size indicating the degree of difference in one-way repeated measures 

ANOVA (η²) and post hoc tests (t-test) (Cohen’s d) can be used to measure the effect size 

of pairwise comparisons. They can be calculated by the two formulas. 

𝜂! = //#$$#%&
//#$$#%&%//#''('

                                                                                               (3.4) 

𝑆𝑆011023 is the sum of squares for the effect (within-subjects factor). 
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𝑆𝑆011023	is the sum of squares for the error term associated with the effect. 

Cohen’s d=4)-4"
/*
"                                                                                                      (3.5) 

𝑋8" and 𝑋8!are the means of the two conditions being compared. 

𝑆6is the standard deviation of the differences between paired values. 

η² and Cohen’s d can be directly obtained in the free software JASP (Version 0.17.1) 

(JASP, 2023). Therefore, this software is used to analyze differences in physiological 

indicators. 

The whole process of statistical analysis for PAD and physiological response data is 

shown in Figure 3.10. 

 

Figure 3.10: The statistical analysis process 
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3.9.1.3 Personal difference  

One-way repeated Analysis of Variance was conducted to examine the effects of risk 

levels on emotional and physiological responses. ANOVA can determine whether the 

majority of the variation in a metric is due to between-group factors (risk level) or within-

group factors (different subjects). If the former is significantly larger enough than the 

latter, it can be concluded that the differences are mainly caused by between-group factors 

(also known as controlled variables). However, this method cannot determine whether 

there are differences within groups. Therefore, a 2-step Hierarchical Linear Modeling 

(HLM) is employed to investigate individual differences. This method has demonstrated 

successful application in examining significant individual variations in Electrodermal 

Activity (EDA) while controlling for risk levels in the construction field (B. Choi et al., 

2019). Besides, it was also utilized to ascertain the effects of trait dominance on risk-

proneness, except for the gender factor (Demaree et al., 2009). HLM is suitable for 

analyzing data with a hierarchical structure (Suraji et al., 2001). In the data structure of 

this study, the dependent variables were emotional and physiological response indicators, 

and the influencing factors were risk level and individual differences. Everyone’s data 

would be recorded at four risk levels so that the data points can be defined as Level 1(each 

risk level) and Level 2 (each subject). Thus, a two-level HLM model can be used to 

determine whether there was individual difference. According to the calculation steps 

(Heck et al., 2013), the initial independent variables are included in the regression model, 

and the subsequent variables are added to the variables previously included in the 

previous step. Therefore, the essence of this method is to construct the regression model 

by gradually adding independent variables and observing the effect of each new variable 

on the dependent variable. Suppose this effect, i.e., the explained variance of the 

dependent variable, increases significantly after adding the new independent variable. In 
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that case, the new independent variable can significantly affect the dependent variable. In 

other words, the new variable significantly contributes to the variation-dependent variable.  

3.9.2 Machine Learning 

The results of statistical differences in physiological and emotional reactions reflecting 

perceived risk may not directly apply to determining an individual's perceived risk (B. G. 

Lee et al., 2021). So, it is necessary to mine deep relationships between reactions and 

perceived risk. The ability of ML is considered to recognize patterns hidden in data 

(Carleo et al., 2019). Moreover, unlike conventional statistical analysis models, machine 

learning demonstrates superior effectiveness when dealing with collected data under 

minimal assumptions and complicated nonlinear interactions (Ij, 2018). Several 

commonly used supervised machine learning models are trained and validated to achieve 

the research objectives using a broad range of features extracted from EDA, HRV, ST 

and PD to recognize cognitive risk. Figure 3.11 displays the process of machine learning. 
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Figure 3.11: The machine learning process for classifying perceived risk levels 
and determining feature importance 

3.9.2.1 Scaled raw dataset 

In machine learning, the input data may have inconsistent scales, such as the range of 

emotion dimension being 1-9, EDR ranging from 0.1 to 1.2, and HR ranging from 55 to 

115. Therefore, it is necessary to transform all data to a range of -1 to 1 by MinMaxScaler. 
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3.9.2.2 Collinearity detection and feature importance 

20 indicators, including 17 physiological and 3 emotional indices, were input vectors. 

In order to assess the sensitivity of each indicator in the classification process, feature 

importance provided by RF can be employed. A higher value indicated greater importance, 

while a lower value suggests lesser importance. Feature importance reduced within the 

field of feature engineering in machine learning. It is calculated based on the influence of 

a particular indicator on the output results during the RF model computation process. It 

can be considered an ancillary output of the RF model construction process.  

However, it is important to note that a prerequisite for calculating feature importance 

is that the variables involved must be mutually independent. Multicollinearity among 

variables can significantly affect the calculation result, potentially resulting in outcomes 

that deviate significantly from reality (Chan et al., 2022; Rawal & Ahmad, 2021). So, the 

initial step involves detecting collinearity among the 20 variables. It can be achieved by 

calculating the correlation coefficient of paired vectors to assess the correlation between 

variables. Therefore, before using RF to compute feature importance, it is essential to 

qualitatively assess the correlations among indicators through the correlation matrix and 

quantitatively diagnose multicollinearity.  

Feature selection involves identifying and eliminating irrelevant and redundant 

features as much as possible (Yu & Liu, 2004). Furthermore, it helps mitigate the 

overfitting problem by simplifying and generalizing the model, thereby enhancing its 

accuracy (Sarker et al., 2020). Recent developments in machine learning and optimization 

have shown better results than conventional statistical methods (Chan et al., 2022). 

Recursive feature elimination (RFE), a popular technique based on machine learning, is 

used for selecting independent features. RFE iteratively removes the weakest feature 

during model fitting until the specified number of features is reached. This gradual 
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elimination reduce dependencies and collinearity (Pedregosa et al., 2011). Subsequently, 

the importance of the selected feature is calculated. 

After selecting features, Mean Decrease Impurity (MDI) and Permutation Importance 

(PI) were used to represent feature importance in this study. They can be calculated with 

RF during classification. Specially, Gini importance is a common measure of MDI. It 

quantified the reduction in the Gini index when each feature is used to split the samples 

in a decision tree. The Gini index reflects the sample impurity level, so the Gini 

importance assesses how each feature contributes to impurity reduction. Permutation 

Importance (PI) measures feature importance differently. It involves randomly shuffling 

each feather and assessing the resulting change in model prediction accuracy. If a feature 

significantly affects performance, it is considered necessary; otherwise, it is deemed less 

critical (scikit-learn, 2023). MDI and PI yield larger values for more important features, 

indicating their higher significance. 

3.9.2.3 Split Dataset  

  The two datasets are randomly divided into three subsets: one for model training, one 

for model validation, and the last one for model testing. Typically, the training set 

comprises 70% or 80% of the data, while the testing set consists of 30% or 20%. However, 

physiological and emotional reacting data have unique characteristics where most 

indicators do not follow a non-normal distribution. It poses significant challenges in 

parameter optimization, as accurate prediction results heavily rely on the precondition 

that training and test data share the same distribution. 

The two datasets were separated using two approaches to address this issue. The first 

approach involved allocating 70% of the data for training, 15% for validation, and 15% 

for testing. The second approach allocated 50% for training, 25% for validation, and 25% 

for testing. By evaluating the results of the same model on these two datasets, it becomes 
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possible to assess the impact of inconsistent distributions and further analyze their 

influences. 

3.9.2.4 Model selection  

Figure 2.5 presents an overview of the three most widely employed machine learning 

algorithms, namely ANN, SVM, and RT, for analyzing physiological signals within the 

human factor domain. Additionally, in a study using machine learning to classify 

perceived risk (B. G. Lee et al., 2021), SVM with the Gaussian kernel function 

demonstrated superior performance compared to the K-Nearest Neighbors (KNN) and 

DT models. The study utilized a combination of physiological signals to classify 

perceived risk. So, the three algorithms were selected in this research. It is important to 

note that the input vectors consist of 18 physiological and three emotion dimensions, 

while the output results correspond to four risk levels (1 to 4). This setup clearly indicates 

a typical classification problem, which necessitates the use of these three algorithms for 

classification purposes. Support Vector Classification (SVC) was then employed for 

classification, replacing the traditional SVM. The kernel function of SVC included ‘ploy’ 

and ‘sigmoid’ besides ‘rbf’ (representing Gaussian function) in the present study.  

Additionally, Random Forest (RF) can be seen as an ensemble learning algorithm of 

decision trees, and in this case, it is used as a substitute for Decision Tree (DT). 

3.9.2.5 Classification 

Parameter optimization: RF, SVC, and ANN were selected to utilize the training 

dataset for model training. This process optimizes the parameters of each model, ensuring 

improved accuracy on the training dataset. For machine learning algorithms, 

hyperparameters cannot be obtained through model training. Standard methods for 

determining hyperparameters include grid search, random search, and automated 

parameter optimization. Grid search and random search can often get trapped in local 

optima due to their search strategies. Therefore, this study used Hyperopt, a Python 
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library, for automatic hyperparameter optimization. It is designed for hyperparameter 

optimization. It uses Bayesian optimization to adjust parameters and allows obtaining the 

best parameters for a given model. It can optimize models with hundreds of parameters 

within a relatively large range. So, it is introduced to conduct parameter optimization. 

The performance of the three models was also assessed using the validation dataset. 

Figure 3.11 indicates the parameters to be optimized for each model.  

Evaluation fitting performance: The fitting performance of each model needs to be 

evaluated initially, ensuring that neither overfitting nor underfitting occurs. Overfitting 

indicates that the trained model performs perfectly on the training dataset but poorly on 

the validation data. On the other hand, underfitting suggests that the trained model must 

be able to accurately predict the output or capture the underlying relationship between 

input vectors and risk levels. Both scenarios are undesirable and require evaluation before 

assessing the models. Excellent fitting performance is characterized by increasing 

accuracy in both the training and validation datasets as the training progresses, with the 

gap between them gradually decreasing or remaining stable. 

Model performance assessment: This research aims to address a classification 

problem and evaluate or compare the performance of different models using two 

approaches to find the best model. 

Firstly, the models were evaluated on a test set using a confusion matrix, precision, 

accuracy, recall, and F1 score. These metrics are derived from the confusion matrix, but 

the visual representation of the confusion matrix is more effective in providing a 

comprehensive understanding of classification performance. Furthermore, these metrics 

provide insights into the performance of the models from different perspectives, with 

higher values indicating better performance. 

Secondly, Receiver Operating Characteristic (ROC) curves were utilized. Since the 

problem is multi-class, ROC curves are generated by comparing each class against the 
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rest, and the corresponding area under the curve (AUC) values are calculated. Generally, 

a ROC curve closer to the upper-left corner of the coordinate system and a higher AUC 

value indicate better model performance. 

3.9.2.6 Integration of trained models 

It is important to emphasize that the first and last situations observed in driving and 

confirmed experiments display significant differences. The former is relatively safe, 

while the latter represents the highest level of risk. However, the two middle situations 

share similar risk levels, posing a significant challenge for machine learning models in 

accurately classifying them. Nevertheless, the size of available datasets limits the 

utilization of deep learning. Therefore, the model integration is approached from two 

different perspectives. 

In the first approach, the output is obtained by inputting a 15% proportion of the 

validation data to the three pre-trained models. The term Pij is used to represent the output 

probability, where ‘i’ corresponds to the model (ranging from 1 to 3), and ‘j’ denotes the 

category index (ranging from 1 to 4).  Essentially, Pij signifies the probability of the i-th 

model classifying a sample into the j-th category. When Pij exceeds 0.5 for a particular 

category, the sample is classified accordingly. This process, Following Formula 3-1, this 

process accumulates to yield nij, representing the count of samples assigned to the j-th 

category by the i-th model. In total, for the three models and four classes, a matrix Nij is 

obtained with dimensions 3×4.  

                                                                         (3.6) 

Next, the weight coefficients of the i-th model in the j-th category are calculated 

according to Formula 3-7. 

                                                                                                        (3.7) 
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Finally, 15% of the test data is input into the three pre-trained models, applying the 

same processing method as the validation set, yielding corresponding results denoted as 

Mij. According to Formula 3-8 the probability values of the test set for the j-th class are 

calculated as Pj. The classification result, as described in Formula 3.9, is determined by 

selecting the ‘j’ value corresponding to the maximum probability.  

                                                                                                        (3.8) 

                                                                                                    (3.9) 

In such cases, combining three trained models becomes valuable, allowing us to 

maximize the strengths of each model across different classes. This may significantly 

improve the recognition ability of each category, especially for risk situations with 

minimal variations. A graphical representation is presented in Figure 3.12 to clarify the 

computational procedure described above. 

 

 

Figure 3.12: The integration of the computational process of trained models 
through weights calculation for different categories 

In the second approach, the validation dataset is fed into the three pre-trained 

algorithms to obtain probability values for each class, following the same weight 

adjustment. Subsequently, these output results serve as new input data for training an 

additional Random Forest (RF) model. The reasons why choosing random forest in the 
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stacking technique was its robustness and stability, diverse decision boundaries and 

reduced overfitting (Breiman, 2001; Zhou, 2012). In essence, a new model is stacked on 

top of the existing three, employing the concept of stacking. Finally, the test data is input 

into the newly trained RF model and compared its predictions with the other algorithms. 

This computational process is visualized in Figure 3.13. 

 

Figure 3.13: The integration of the computational process of trained models 
through the stacking technique 

Both approaches are based on the three pre-trained base models, aiming to maximize 

the classification advantages of different models across various classes. The objective is 

to enhance the performance of model combinations, particularly in cases where 

classification is more challenging. However, these approaches differ in their methods: 

one involves increasing the weights of models that correctly classify specific categories, 

while the other leverages the stacking concept to enhance the overall performance of the 

classification models. 

3.10 Summary 

This chapter explains the whole experimental design, detailed implementation process, 

and data analysis methods.  

Considering the first objective, four driving scenarios were selected as experimental 

stimuli, measuring physiological and emotional responses associated with risk perception 

through EDA, ECG, pupil diameter, skin temperature, and the PAD emotional model. 

Subsequently, statistical analysis methods were employed to examine physiological and 

emotional responses. The objective was to discern whether these differences stemmed 

from individual differences or contextual risks. Notably, this study deliberately included 
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two risk scenarios with closely matched risk levels, allowing for a more nuanced analysis 

compared to previous research. 

For the second objective, we applied machine learning algorithms, building upon the 

foundation of statistical analysis, to construct models for uncovering patterns of variation 

in physiological and emotional responses to risk levels. We utilized three individual 

learning algorithms (RF, SVC, and ANN), alone with the combinations of these three 

algorithms, to identify the optimal machine learning models. 

Finally, an experiment in a confirmed construction setting was designed to validate the 

research outcomes for both objectives, employing a similar experimental procedure and 

data analysis methods. It allowed for a comparison of the results of statistical analysis and 

machine learning classification between the initial and confirmed experiments. 

 

Univ
ers

iti 
Mala

ya



92 

CHAPTER 4: STATISTICAL ANALYSIS OF PHYSIOLOGICAL AND 

EMOTIONAL RESPONSES 

4.1 Introduction 

The experimental design elicited the subjects’ physiological and emotional responses 

based on driving stimuli. It was aimed to explore the neural regulatory mechanisms of the 

human body in risky situations. Statistical methods were conducted to analyze these 

responses comprehensively and identify indicators with significant differences. 

The analysis had two primary objectives: firstly, to determine if there were statistical 

variances in specific emotional and physiological parameters, and secondly, to determine 

instances of significant differences in measurement indicators and whether these 

variances were linked to varying risk levels or individual dissimilarities. 

4.2 Statistical Analysis of PAD  

In the initial experiment, 60 subjects participated, but the physiological data of 6 

participants still needed to be excluded. Consequently, an analysis was performed using 

data from 54 samples in driving situations. Table 4.1 displays the medians, 25th and 75th 

quartiles of P, A, and D, along with the key findings from the Kruskal-Wallis test. 

Table 4.1: Non-parameter test and pair comparison results of P, A, and D in 
driving 

Variables P A D 
Group 1 2 3 4 1 2 3 4 1 2 3 4 
Media 5 7 7 9 5 4 3 1 7 5 5 1 
25% 5 6 7 9 4 3 2 1 5 4 3 1 
75% 6 7 8 9 5 4 4 1 7 6 5 2 
H 79.674** 82.984** 97.397** 
Cohen’s f 0.073 0.077 0.094 

Pair 
comparison 

(Mann-
Whitney U 
test)  

test Cohen’
s d test Cohen’s 

d test Cohen’s 
d 

1-4, 
t=363.5** 1.47 

1-4, 
t=2655*
* 

1.89 
1-4, 
t=2795*
* 

2.68 

2-4, 
t=329** 1.24 

2-4, 
t=2591*
* 

1.47 
2-4, 
t=2682*
* 

2.11 
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significant differences in all three dimensions between the relatively safe context (1) and 

the risky context (4), between the near-loss contexts (2 and 3) and the risky context (4), 

and between the safe context (1) and the near-loss context (3). Moreover, all of these 

effect sizes exceeded 0.8, indicating large effect sizes, except for the effect size of A (0.62) 

between contexts 1 and 3, which falls within the medium effect size range. When the 

difference in risk degrees was slight, such as between contexts 2 and 3, there were no 

significant differences for A and D. At the same time, P exhibited a small effect size 

difference (0.41) between these two scenarios. 

4.3 Statistical Analysis of Physiological Data 

4.3.1 Statistical analysis of EDA 

EDR, as the momentary skin conductance response, showed a continuously increasing 

trend with the rise of risk level, ranging from 0.16 to 0.34. In construct, EDL, as the 

baseline skin conductance, exhibited a pattern of first decreasing and then increasing at 

the highest level of risk. Both indicators did not follow a normal distribution and violated 

the assumption of sphericity ( =28.605, P<0.001 for EDL, and =17.074, P=0.004 

for EDR). Because of the result of the correction coefficient (Epsilon =0.575<0.75 for 

EDL, Epsilon =0.613<0.75 for EDR), the Greenhouse-Geisser corrections were applied 

to adjust the degrees of freedom. According to the test statistics (EDL: F (2.411,127.786) 

=3.991, p=0.015, 𝜼𝟐=0.070), EDL showed significant differences in risk levels. EDR 

were also significantly different (EDR: F (2.481,131.471) =17.143, p<0.001,𝜼𝟐=0.244) 

though the same analyzing process with EDL.  

Furthermore, the results of post-hoc analysis of Bonferroni showed EDL was 

significantly larger in high-risk level (4) than low-risk (3) with P <0.05, whereas no 

significant differences manifested among other risk levels. The post hoc test with a 

Bonferroni correction applied for EDR demonstrated that there were significant 

differences among the four pairs of risk levels (1-3, 1-4, 2-3, 2-4), and the effect size was 
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largest between risk levels 1 and 4 (Cohens’d=-0.636). Conversely, the degree of 

difference between risk levels 2 and 3 (Cohens’d = -0.384) was the smallest. The 

magnitude of differences between the other two pairs fell between the mentioned above, 

with Cohens’d values of -0.499 (1-3) and -0.521 (2-4), respectively.  

Table 4.2: Description and repeated-measure ANOVA analysis results of EDA 
in driving 

Variables EDL/𝜇𝑠 EDR/	𝜇𝑠 
Group 1 2 3 4 1 2 3 4 
Mean 0.26 0.23 0.18 0.33 0.16 0.19 0.30 0.34 
Std. 0.69 0.60 0.55 0.65 0.17 0.31 0.34 0.28 
Test of 
Sphericity =28.605，P<0.001 =17.074，P=0.004 
Within Subjects 
Effects 

F (2.411,127.786) =3.991, 
p=0.015 

F (2.481,131.471) =17.143，
p<0.001 

𝜂! 0.070 0.244 

Post Hoc 
Comparisons 

T test Cohens’d T test Cohens’d 

3-4, -0.15* -0.247 

1-3, -0.14* -0.499 
 1-4, -0.18** -0.636 
2-3, 0.11* -0.384 
2-4, -0.15* -0.521 

Notes: *, p<0.05, **, p<0.01 

4.3.2 Statistical analysis of HRV 

The original ECG data underwent preprocessing using the methods and parameters 

outlined in Table 3.3. This preprocessing involved filtering, noise removal, and R-peak 

extraction. Subsequently, ErogLAB software was utilized to compute time-domain, 

frequency-domain, and nonlinear indices from the processed data. 

The time-domain indicators of HRV mainly included HR, SDNN, RMSSD, and SDSD. 

The mean and standard deviation of the four indicators are listed in Table 4.3. The 

indicators did not consistently increase or decrease as the risk level increased. This 

inconsistency may be attributed to the changes in their values observed in the third 

scenario, which deviated from the original trend. An interesting observation was that in 

the context of the highest risk, the values of these four time-domain indices were nearly 

the lowest besides SDNN.  
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The within-subjects test did not reveal significant differences for SDNN, RMSSD and 

SDSD. However, significant differences were shown for HR. HR data followed a normal 

distribution and passed the sphericity test. A repeated measures analysis of variance 

confirmed the presence of a significant difference. Post hoc tests revealed a significant 

difference between 1 and 4, indicating that HR under the highest risk level was 

significantly lower than the relatively safe condition. HR in near-loss situation 2 was 3.89 

less than the HR value in the safe scenario 1, which was statistically significant. 

Table 4.3: Description and repeated-measure ANOVA analysis results of HRV 
time-domain indicators in driving 

Variables HR/bpm SDNN/ms 
Group  1 2 3 4 1 2 3 4 
Mean 79.57 75.69 76.00 74.83 98.12 61.65 69.72 68.35 
Std. 14.99 14.51 16.63 14.38 258.80 100.27 131.45 105.18 

Test of Sphericity =7.334， P=0.197 =151.618，P<0.001 
Within Subjects 
Effects 

F (3,159) =6.038, 
p<0.001 

F (1.336,70.796) =0.835，
p=0.396 

𝜂! 0.102  

Post Hoc 
Comparisons 

T test Cohens’d T test Cohens’d 
1-2, 3.89* 0.273   
1-4, 0.85** 0.333   

Variables RMSSD/ms SDSD/ms 
Group  1 2 3 4 1 2 3 4 
Mean 117.61 73.75 86.32 67.62 119.12 76.47 90.89 68.81 
Std. 379.19 170.79 196.08 112.66 385.25 179.67 208.56 113.61 
Test of 

Sphericity =138.450，P<0.001 =128.100，P<0.001 
Within 

Subjects Effects 
F (1.325,70.208) =0.736, 

p=0.430 
F (1.359,72.009) =0.692，

p=0.451 
Note: *, p<0.05, **, p<0.01 

There are five indices in the frequency-domain analysis of HRV. Five frequency-

domain indices were obtained after preprocessing the original data and performing a fast 

Fourier transform (FFT) on the time-domain signal (ULF, VLF, LF, HF and LF/HF). The 

description and statistical results of the five indicators are listed in Table 4.4. 
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Table 4.4: Description and repeated-measure ANOVA analysis results of HRV 
frequency-domain indicators in driving 

Variables ULF VLF 
Group  1 2 3 4 1 2 3 4 
Mean 0.87 0.46 0.38 0.51 17.60 7.74 5.96 8.48 
Std. 0.94 0.48 0.37 0.49 14.03 6.59 4.81 6.82 

Test of Sphericity =36.463，P<0.001 =41.814，P<0.001 

Within Subjects Effects F (1.994,105.670) 
=7.026, p=0.001 

F (1.909,101.189) 
=20.720, p<0.001 

𝜂! 0.117 0.281 

Post Hoc Comparisons 

T test Cohens’d T test Cohens’d 
1-2, 

0.41* 0.676 1-2, 
9.90** 1.124 

1-3, 
0.49** 0.806 1-3, 

11.68** 1.326 

1-4, 
0.37* 0.602 1-4, 

9.16** 1.041 

Variables LF HF 
Group  1 2 3 4 1 2 3 4 
Mean 39.71 38.93 35.42 40.50 41.77 52.87 58.23 50.52 
Std. 21.10 24.10 20.91 20.79 25.46 29.06 23.96 25.41 

Test of Sphericity =1.017，P=0.961 =1.215，P<0.001 

Within Subjects Effects F (3,159) =0.895, 
p=0.445 

F (3,159) =5.745, 
p<0.001 

𝜂!  0.098 

Post Hoc 
Comparisons 

T test Cohens’d T-test Cohens’d 

 1-2, -11.09* -0.426 
1-3,-16.46** -0.632 

Variables LF/HF 

 

Group  1 2 3 4 
Mean 2.17 1.71 0.98 1.46 
Std. 3.39 2.38 1.07 1.63 

Test of Sphericity =32.784，P<0.001 

Within Subjects Effects F(2.130,112.874)=2.73
9, p=0.062 

    Notes: *, p<0.05, **, p<0.01 

To facilitate the visualization of the trends in the data changes, the mean values of 

these indicators concerning changes in risk level were plotted in Figure 4.2.  

Firstly, HF and LF had the highest proportion, accounting for approximately 40% to 

60%. Secondly, all other frequency-domain indicators, except for HF, showed a gradual 
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Table 4.5, continued 

Variables A++ B-- 
Group  1 2 3 4 1 2 3 4 
Mean 2.87 3.93 2.69 4.19 2.44 3.06 2.70 3.37 
Std. 1.32 2.27 1.48 2.04 1.21 1.40 1.77 2.01 

Test of Sphericity =21.389, P<0.001 =7.453, P<0.189 
Within Subjects 
Effects 

F (2.429,128.762) 
=11.740, p<0.001 F (3,159) =5.651, p=0.001 

𝜂! 0.181 0.096 

Post Hoc 
Comparisons 

T test Cohens’d T test Cohens’d 
1-2, -1.06* -0.606 1-4, -0.93** -0.615 
1-4, -1.32** -0.744 3-4, -0.67* -0.437 
2-3, 1.24** 0.732  3-4, -1.50** -0.861 

Notes: *, p<0.05, **, p<0.01 

SD1 and SD2 were statistical indicators that reflect heart rate variability. SD1 was 

usually used for representing the short-term variability of heart rate during the respiratory 

cycle, mainly reflecting the variability in the high-frequency range (0.15-0.4 Hz). The 

larger the value, the more sympathetic and parasympathetic nervous system regulation is 

balanced. SD2 represented the overall heart rate variability over a long period, mainly 

reflecting the variability in the low-frequency range (0.04-0.15 Hz) (Kemp et al., 2017). 

The larger the value, the more regulation between SNS and PNS is coordinated.  

The nonlinear physiological analysis of HRV can be summarized as follows. In usual 

situations, the values of SD1 and SD2 were relatively higher (84.23 and 106.75, 

respectively) than in any other dangerous situations. However, in situations where the 

danger had already occurred but did not result in negative consequences (situations 2 and 

3), both SD1 and SD2 values were lower than in safe scenes. When the risk reached its 

highest level, meaning the presence of danger and the consequence of injury to 

individuals, SD1 decreased (from 64.27 to 48.66), while SD2 increased (from 70.48 to 

82.19). However, both SD1 and SD2 indicators did not show statistically significant 

differences. 
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Table 4.6: Description and repeated-measure ANOVA analysis results of PD 
and ST in driving 

Variables PD ST  
Group  1 2 3 4 1 2 3 4 
Mean 4.30 4.10 4.12 4.18 33.78 34.23 33.89 34.39 
Std. 0.69 0.60 0.65 0.69 1.72 1.47 1.72 2.73 
Test of 
Sphericity =23.172, P<0.001 =27.348., P<0.001 
Within 
Subjects 
Effects 

F (2.332,123.614) 
=0.735, p=0.061 

F (2.193,116.225) =1.073, 
p=0.350 

4.4 Discussion of Emotional and Physiological Responses 

The study of subjective risk perception from the perspective of individuals' intrinsic 

physiological responses has emerged as a new trend. Furthermore, when considering the 

interrelation and mutual influences between psychological and physiological systems, it 

becomes evident that these changes can provide valuable information for understanding 

the process of perceived risk. 

4.4.1 Discussion of Emotional Responses 

P, A and D are necessary and sufficient for the description of any emotional state . 

Since it enables the representation of emotional states of an intelligent entity in a three-

dimensional space (Rincon et al., 2017), it has been used successfully in several relevant 

emotion expression areas, such as advertising effect assessment (Morris & McMullen, 

1994), consumer choice (Platania et al., 2016), web design (Verkijika & De Wet, 2019) 

and emotion recognition (Häring et al., 2011; Hartmann et al., 2013).  

4.4.1.1 Emotional state changes  

As the level of risk increased from relative safety to higher risk, individuals underwent 

an emotional transition characterized by a shift from a neutral and calm state to a state of 

unhappiness, from a sense of normalcy to heightened arousal, and from a feeling of 

control to a perception of losing control. When the risk level peaked, the three experiences 

reached their maximum intensity. It was through the combined contribution of the three 
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dimensions that emotional responses under dangerous scenarios can transform into 

valuable information (Rincon et al., 2017). 

Notably, the dominance dimension showed a negative relationship with risk perception. 

This finding was consistent with survey results conducted in a chemical factory and 

nuclear power plant (Mbaye & Kouabenan, 2013). Additionally, the observations were 

aligned with the assumption proposed by Megias et al. (2018). In other words, risk 

perception was not limited to low and high situations but exhibited multi-level 

distinctions based on the magnitude of risk. 

4.4.1.2 Differentiation ability among three dimensions 

Although the three emotional dimensions showed significant differences across four 

levels of risk in driving scenarios, their ability to differentiate risk varies was different. 

In the driving context, D exhibited the highest value regarding Cohens’d, followed by A 

and P. So, the performance of D should not be underestimated. The possible reason maybe 

that the subjective judgement of risk relied on the controlling degrees of their involved 

environment (Flin & Mearns, 1994). In a study on the influencing factors of adventurous 

behavior, D demonstrated a remarkable capacity to accurately predict individuals' 

inclination toward taking risks (Demaree et al., 2009). As one dimension of emotional 

space, D was widely recognized as an essential component that aided in the categorization 

of emotions (Ozel et al., 2019).  

4.4.2 Discussion of Physiological Responses 

4.4.2.1 The changes of EDA 

EDR increased when individuals became aware of the presence of danger. This finding 

was consistent with previous research. For example, studies have shown that EDR 

exhibits higher values in hazardous situations (such as crashes or near misses) than in safe 

driving conditions (Tagliabue et al., 2019). In other driving situations, it increased in the 

presence of danger compared to normal driving conditions (Barnard & Chapman, 2016; 
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Perello-March et al., 2022). Similarly, pilots have been found to have higher EDR values 

during incident phases compared to regular flight phases  (Lutnyk et al., 2023). 

Furthermore, EDR usually increases as the perceived risk become greater or the risk level 

rises. For example, in driving scenarios, higher-risk situations such as navigating 

roundabouts have been associated with more significant EDR responses, likely due to the 

activation of heightened arousal levels, which can also be observed through decreased 

driving speed (Distefano et al., 2022). 

Although the effect size of the EDL component was lower compared to EDR, it can 

still reflect the baseline level of arousal in different situations. In a measuring EDA 

experiment conducted on construction sites, EDL showed no significant difference 

between high and low-risk activities (B. Choi et al., 2019), which seemed different from 

the present research. A meticulous analysis revealed that the disparities in EDL observed 

in this study stemmed from high-risk situations 3 and 4 rather than low-risk situation 1 

and the other three hazardous scenarios. Viewed in this light, the conclusions drawn from 

both studies were, in fact, congruent. It was evident that the variations in EDL differed 

from EDR, as individuals exhibited significant differences in their physiological arousal 

levels only when exposed to distinct risk situations, thereby reflecting divergent 

physiological preparedness in response to risk situations. 

EDR is a more sensitive marker to distinguish different risky situations than EDL. 

Given that the effect size of EDR (0.244) exceeded that of EDL (0.070), EDR not only 

functioned as a physiological marker for discriminating between low-risk and high-risk 

situations but also demonstrated a more robust and consistent capability to differentiate 

various levels of risk, even in situations encompassing both threat presentation and 

adverse outcomes. Because statistically significant differences in EDR were observed in 

driving scenarios that involved near-miss incidents (scenarios 2 and 3) due to different 

causes, these findings not only confirmed the well-established ability of EDR to 
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differentiate between high-risk and low-risk or safe situations but also suggested its 

potential for distinguishing between scenarios with less variation in risk levels. Therefore, 

EDR, as a robust marker of bodily arousal and expression of emotion, holds significant 

potential for mapping cognitive perceptions of risk levels (Horn et al., 2020).   

The EDR sensitivity can be explained by its mechanism. When an external stimulus 

occurs, as long as it elicits emotional arousal in the subjects, the brain sends signals to 

activate the eccrine sweat glands through the sympathetic branch of the autonomic 

nervous system (Dawson et al., 2007; Larkin, 2006). These glands secrete sweat, leading 

to an increase in skin conductance. Consequently, the skin conductance value goes up. 

This entire process happens within a few seconds: the rise in skin conductance starts 1 to 

4 seconds after exposure to the stimulus and lasts for 1 to 3 seconds  (Dawson et al., 2011; 

Measures et al., 2012). Therefore, the crucial factor here is that the sympathetic nervous 

system controls skin conductance and responds rapidly, which explains why it is a 

sensitive indicator. 

4.4.2.2 The changes of ECG 

The greater complexity observed in ECG variations compared to EDA may arise from 

their simultaneous regulation by both branches of the autonomic nervous system, namely 

the sympathetic (SNS) and parasympathetic (PNS) systems. The main findings of HRV 

can be summarized as follows: 

(a) Analysis of time-domain indicators 

The values of HR (79.57), SDNN (98.12), RMSSD (117.61) and SDSD (119.12) were 

highest in the safer situation (1), indicating a prevailing dominance of the parasympathetic 

nervous system (PNS), which is characterized by a relatively calm and relaxed state. It 

was consistent with the common understanding that both components of the ANS 

influence heart rate, but the PNS had a faster and more predominant effect on resting 

HRV (Berntson et al., 1997).  
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When hazards began to occur, even at a low level, HR, influenced by both the PNS 

and SNS, showed a subtle change during the short-term measurement period within 3 

minutes. However, the SDNN (61.65-69.72 for driving) and RMSSD (73.75-86.62 for 

driving) exhibited more considerable variations but were still lower than the baseline. The 

primary source of the variation of SDNN was parasympathetically-mediated RSA 

(Shaffer et al., 2014) and RMSSD was usually considered as a primary measure to 

estimate the vagally mediated changes (Penttilä et al., 2001; Saboul et al., 2013). These 

changes indicated that the balance of SNS and PNS in safer situations was disrupted. 

Additionally, there was a degradation of PNS and an increased activation of SNS 

happened for two moderately risky situations.  

During high-risk situations, the values of HR (74.83), SDNN (68.35), RMSSD (67.62) 

and SDSD (68.81) were the lowest. Based on the balance disruption in low-risk situations, 

the degree of ANS imbalance continued to intensify. For instance, RMSSD, a primary 

time-domain measure in HRV, reflected beat-to-beat variations in heart rate. It indicated 

changes modulated by the vagus nerve (Shaffer et al., 2014). According to the polyvagal 

theory (Porges, 1995, 1997, 2001, 2003a, 2003b, 2007, 2009), the vagus nerve was 

divided into myelinated and unmyelinated branches. The older unmyelinated branch 

collaborates with the sympathetic nervous system (SNS) in situations of danger or life 

threat. It enables the organism to respond effectively to challenges (Kemp & Quintana, 

2013).  

(b) Analysis of frequency-domain indicators 

In terms of measuring heart rate variability (HRV), there are two main components to 

consider: HF and LF. HF was seen as a sensitive indicator of PNS (Holzman & Bridgett, 

2017). In the initial clips, HF had the lowest value, while RMSSD, another PNS-sensitive 

indicator, had the highest value in safety situations. It might appear contradictory, but it 

could be because HF was influenced by breathing patterns (Shaffer et al., 2014). It aligned 
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with the finding that the PNS was less active, as indicated by time-domain measures. 

Even though there was no significant difference in HF across all four situations, it tended 

to be lower in the highest-risk situations compared to near-loss situations. It could be 

because HF decreased during cognitive regulation of negative emotional stimuli (Kemp 

et al., 2017). It reflected the inhibitory effect of negative emotions on cognition, consistent 

with the reduced activity of the vagus nerve function. Compared to HF, LF has a more 

complex mechanism. Its changes follow a complex pattern. LF is typically thought to be 

influenced by the vagus nerve, the sympathetic nervous system, and pressure reflex 

mechanisms all at once (Berntson & Cacioppo, 1999). The interaction between the 

sympathetic and parasympathetic nervous systems seemed intricate in generating LF 

power (Shaffer et al., 2014). This complexity could explain the erratic fluctuations in LF 

indicators.  

ULF and VLF are not the main components of the frequency domain and are not 

commonly used indicators for short-term measurements. They were generally utilized in 

measurement conditions spanning 24 hours (Kleiger et al., 2005). So, the diurnal rhythm 

oscillation of heart rate is the main source of ULF power. However, it's worth noting that 

in some studies, during short-term recordings with a stressor present, the activation of the 

SNS can push the heart rate into the lower part of the low-frequency band, resulting in 

the emergence of very-low-frequency (VLF) components (Shaffer et al., 2014). It aligned 

with the findings in this study. VLF was observed to be higher in the most dangerous 

situation (4) than in the moderate danger situations (2 and 3). It further confirmed the 

activation of the SNS and the occurrence of emergency responses in the body during 

hazardous situations. 

LF may be influenced by the vagus nerve, sympathetic nervous system, and stress 

reflex mechanisms, while HF power is generated by efferent vagal nerve activity induced 

by respiratory activity (Shaffer et al., 2014). Therefore, a low LF/HF ratio typically 
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reflects more excellent activity of the PNS relative to SNS activity (Taylor, 2006). It can 

be observed when individuals cope with challenges requiring effort and increased 

sympathetic nervous system activation. In this study, the LF/HF ratio showed different 

values in risky situations (2, 3, and 4) compared to safe situations, generally indicating 

lower values in risky situations. It suggested that individuals perceived the presence of 

risk, activated their SNS, and exhibited lower PNS activity, keeping their bodies ready to 

face the environmental challenge. The magnitude of the perceived risk varies, and the 

extent of this challenge also differs. In relatively safe situations (1), however, the LF/HF 

ratio was higher, indicating a normal state of the body. However, it should be noted that 

the variation of this indicator did not follow a strict linear relationship with increasing 

levels of risk due to the complex physiological regulatory mechanisms of LF/HF. Some 

stress studies can also observe a similar change (Ahmed et al., 2022). In stressful 

environments, whether the stress originates from extreme physical conditions externally 

or is internally perceived, individuals instinctively adjust their physiological state to better 

cope with the challenges posed by stress. 

(c) Analysis of nonlinear indicators 

The Poincaré plot was a powerful tool for understanding HRV due to its ability to 

capture non-linear dynamics (Tulppo et al., 1996). While time and frequency domain 

indicators were commonly used to assess the ANS, these linear measures offered limited 

insights into HRV (Huikuri et al., 2003). The Poincaré plot represented the nonlinear 

dynamics of a phenomenon and unveiled hidden correlation patterns in a time series 

signal  (Karmakar et al., 2010). It simplified consecutive heartbeat intervals into a visual 

representation on a cartesian plane (Brennan et al., 2001). Over time, these points formed 

a curve or trajectory that describes the system's evolution (Hoshi et al., 2013). The short 

axis of the ellipse represented the standard deviation (SD1) of instantaneous RR interval 

variability, while the long axis represented the standard deviation (SD2) of continuous 
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long-term RR interval variability. These two indicators were commonly used to assess 

the dynamic characteristics of HRV (Hoshi et al., 2013). SD1 was considered a 

parasympathetic index of sinus node control because the influence of the vagus nerve on 

the sinus node was quicker than sympathetic effects (Mourot, Bouhaddi, Perrey, Cappelle, 

et al., 2004; Mourot, Bouhaddi, Perrey, Rouillon, et al., 2004). In contrast, SD2 was 

influenced by parasympathetic and sympathetic tones (De Vito et al., 2002). These two 

indicators did not simply increase with higher levels of risk and tended to be higher during 

safe conditions and smaller when exposed to risk. In particular, SD1 decreased when risk 

was at its highest, while SD2 increased. The same pattern can be observed in individual 

who frequently use helmets; when riding without a helmet, they face higher risk (Fyhri & 

Phillips, 2013). Additionally, both indicators exhibited significant standard deviations. In 

conjunction with their physiological significance, it became evident that similar to the 

neural regulatory mechanisms revealed by time and frequency domain indicators, an 

enhanced sympathetic response and a weakened parasympathetic response occurred when 

facing risk. This trend was even more pronounced when risk was at its peak. Furthermore, 

the substantial standard deviations observed in each context reflected that the variability 

of heart rate fluctuations among different individuals was notably high. 

A++ and B-- reflected more complex, dynamic and nonlinear changes during risky 

situations. The non-linear indicator A++ had its highest value in the most dangerous 

situations, reflecting increased PNS activity. However, indicator B-- also reached its 

highest, reflecting increased SNS activity. These two indicators lead to two contradictory 

results. Combining the analysis of HRV time and frequency domain indicators suggested 

that SNS was activated strongly and PNS activity was lower in the most dangerous 

situations. It implied that we could not simply consider sympathetic and parasympathetic 

nerves as branches having opposite effects simultaneously on the heart, meaning an 

increase in the activity of one does not necessarily correspond to a decrease in the other. 
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Current research on the physiological regulatory mechanisms of HRV has confirmed that 

the relationship between the two branches was complex and nonlinear. The increased 

PNS activity may be associated with a decrease, increase, or no change in SNS activity 

(Shaffer & Ginsberg, 2017). After aerobic exercise, the PNS was reactivated while the 

SNS remained elevated (Billman, 2013; Billman et al., 2015; Shaffer & Ginsberg, 2017). 

The theory known as the "free-energy principle," proposed by Friston, K. (Friston, 2009), 

suggested that perception, behavior, and cognitive processes can be seen as means for 

biological systems to reduce free energy through active inference. In specific contexts, 

the brain constructed models to predict external states. It then gradually adjusted its 

internal models based on external cues and visceral feedback until the prediction matched 

the actual outcome more closely. This process allowed the biological system to adapt to 

the environment, anticipate the future, and achieve goals more effectively. Consequently, 

this adjustment process was ongoing and required a continuous exchange of information 

between the viscera and the brain. The significant fluctuations in the A++ and B-- 

indicators between consecutive heartbeats represented this adjustment process in the heart 

organ.  

 In the present study, the seemingly opposite meanings of A++ and B-- indicated that 

both SNS and PNS activities were enhanced in risky situations, and these enhancements 

exhibited intense changes. While the overall trend showed a stronger SNS dominance 

over PNS at the micro-level of individual heartbeats, both systems exhibited rapid and 

drastic fluctuations. It can be called parasympathetic rebound, and it may occur following 

high levels of stress (Nada et al., 2001; Shaffer & Ginsberg, 2017). The reactivation and 

sustained activation of the PNS may be an instinct in dangerous situations, as it may 

indicate individuals' desire to protect themselves and escape from the hazardous 

environment, reflecting physiological "fight or flight" responses (Wehrwein et al., 2016). 
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Alternatively, it could be a natural inclination of individuals to calm themselves down to 

deal with critical situations, which was achieved through the strong activation of the PNS. 

Furthermore, these changes reached significant levels not only in relatively safe 

Scenario 1 and risky scenarios 2, 3, and 4 but also across different levels of risk within 

each scenario. Significant differences were observed in pairs such as 2 and 3, 2 and 4. 

These differences were particularly pronounced in more dangerous scenarios. Moreover, 

even though the occurrence of danger in the risky scenarios and the occurrence of accident 

consequences account for only a tiny fraction of time, there were statistically significant 

differences in the variability of successive heartbeats during these brief periods. Clearly, 

the two indicators were more sensitive than HR and HF. 

4.4.2.3 The changes of PD and ST 

Although pupil dilation was usually suggested as an indicator of perceived risk (He et 

al., 2022), pupil diameter (PD) did not show significant differences in either of the 

scenarios. Therefore, it can play a role as supplemental information. It was reported that 

more than 90% of the information was received through vision (Moharreri et al., 2018) 

and pupil diameter showed significant changes in different conditions. For example, PD 

decreased as participants became more familiar with the stimulus scenarios (Zhang et al., 

2022) and increased while driving with haptic feedback due to higher cognitive 

engagement (Pakdamanian et al., 2018). It also displayed sensitivity for measuring 

changes in cognitive demand in auditory–verbal–vocal tasks (Niezgoda et al., 2015). In 

the present experiment, PD tended to increase approximately as the level of risk rose, 

indicating the increased activation of SNS. The higher value observed in the riskiest 

situation may imply that the activities of the SNS were stronger, and at the same time, the 

arousal level was higher (Bradley et al., 2008). However, this change was not statistically 

significant. The possible reason may be that three out of the four scenarios with risks 
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resulted in a relatively similar cognitive load during perceiving, identifying, and assessing 

risk. This similarity in cognitive load led to no significant difference in PD.  

Regarding the ST, it also exhibited a higher value in the last situation, indicating 

predominant SNS activation. However, these differences were not statistically significant. 

In a related experiment that investigated risk responses in construction works, a 

combination of various physiological signals, such as EDA, PPG, and ST, was employed. 

Unfortunately, this study did not analyze the changes in different physiological signals in 

high and low-risk situations, which hinders our understanding of whether temperature as 

a variable underwent significant change. The short-term measurement may not be enough 

for subjects to mediate their temperature. 

4.5 Personal Differences 

A two-level HLM is employed to analyze personal differences, which is given and 

explained in Section 3.8. To simplify the result, we only included indicators with personal 

differences. 

4.5.1 Personal difference of PAD 

Three dimensions of emotional reactions were analyzed using the HLM model in the 

driving situation, and the crucial results are listed in Table 4.8.  

Table 4.7: Result of hierarchical linear modeling for PAD in driving 

Variable P A D 
Model1 Model2 Model1 Model2 Model1 Model2 

Step1 Risk 
level 0.813 0.813 -1.011 -1.011 -1.337 -1.337 

Step2 Personal  -0.015  -0.005  -0.008 
F 78.979** 42.892** 184.32** 74.777** 155.132** 78.079** 
𝑅! 0.27 0.287 0.283 0.284 0.42 0.423 
∆𝑅! 0.27 0.018 0.283 0.001 0.42 0.003 

Notes: *, p<0.05, **, p<0.01 

The three dimensions exhibited significant differences in both risk levels and 

individual characteristics. Taking P as an example, a detailed explanation was given. 

When the first control variable, risk level, was introduced into the linear regression model 

(referred to as model 1), it yielded statistically significant (F (1,216) = 78.979, P<0.01). 
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Risk level alone contributed to 27% of the variability in 𝑅!. Then, moving to model 2, a 

new personal variable, was added on the basis of model 1. The new model 2 with two 

independent variables was still significant (F (2,215) =42.892, P<0.01), and the combined 

contributions of risk level and personnel to the variability in 𝑅!  increased to 28.7%, 

which was 1.7% higher than that of model 1. It meant the personal difference in the 

Pleasure dimension accounted for 1.7% of the total variances. 

Regarding variable A, it exhibited a similar pattern to variable P. The "risk level" factor 

accounted for 28.4% of the variability in A, showing a slight increase of 0.1% compared 

to Model 1. On the other hand, for variable D, the contribution of "risk level" was 42%, 

while the personal difference accounted for 0.3%. 

Based on these findings, it can be inferred that there was a genuine personal difference 

in emotional response, although the magnitude of this difference was relatively small. 

4.5.2 Personal difference of EDA 

The two indices for electrodermal activity (EDA) yielded different results. EDL 

showed no significant differences in either risk level (model1, F(1, 216) =0.138，

P=0.710) or individual differences (model2, F(2, 215) =1.898，P=0.152). On the other 

hand, individual differences did contribute to the variability in EDR. In model 2 (F (2, 

215) =15.984, P<0.01), compared to model 1 (F (1, 216)=14.261, P<0.01), individual 

differences accounted for 3.1% of the variability in EDR.  

Table 4.8: Result of hierarchical linear modeling for EDR in driving 

Variable EDR 
Model1 Model2 

Step1 Risk level 0.066 0.066 
Step2 Personal   -0.005 
 F 14.261** 15.984** 
 𝑅! 0.062 0.093 
 ∆𝑅! 0.062 0.031 

Notes: *, p<0.05, **, p<0.01 
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4.5.3 Personal difference of HRV  

No significant individual differences were observed in the HRV time domain 

indicators analysis, except LF/HF and A++, for which model 1 showed statistical 

significance. However, when an individual difference variable was added in model 2, the 

previous statistical significance was no longer observed. Despite this, the variable 

contributed 0.4% to the variability in B--. 

Table 4.9: Result of hierarchical linear modeling for HRV in driving 

Variable A++ B-- LF/HF 
Model1 Model2 Model1 Model2 Model1 Model2 

Step1 Risk 
level  0.266 0.266 0.272 0.272 -0.284 -0.284 

Step2 Personal  0.002  0.006  0.014 
 F 5.713* 2.881 8.044* 4.46* 4.126* 2.994 
 𝑅! 0.026 0.026 0.036 0.04 0.019 0.027 
 ∆𝑅! 0.026 0.00 0.036 0.004 0.019 0.008 

Notes: *, p<0.05, **, p<0.01 

4.5.4 Discussion of Personal Difference 

In physiological and psychological experiments involving humans, it is typically not 

feasible to directly compare indicators across different stimuli in a cross-sectional manner. 

However, analysis of the change patterns for these indicators is still possible. 

The results of the HLM analysis in this study indicated that individual factors 

accounted for the highest proportion of variability in the EDR indicator, followed by P. 

Variations in the remaining indicators were primarily attributed to different risk levels, 

with individual factors contributing only a minimal portion to the observed variations. 

The sensitivity of EDR in distinguishing individuals was consistent with previous studies. 

For example, novice drivers undergoing their first driving simulation training exhibited 

significant differences in EDA, indicating variations in arousal levels (Schnittker, 2012). 

Safety-oriented drivers showed higher EDA than those inclined toward risk (Liang & Lin, 

2018). The EDR variations among construction workers engaged in high-risk activities 

also showed differences at the individual level, while EDL did not (B. Choi et al., 2019). 
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Regarding HRV, only B-- displayed personal differences, but the proportion was minimal. 

The related study analyzed that variations in HRV may be influenced by factors, such as 

sex, age and personality traits (Di Simplicio et al., 2012). 

These results indicated that changes in physiological and emotional responses were 

mainly caused by different risk levels, possibly resulting from controlled subject factors. 

It also implied that machine learning models established on this dataset would not be 

influenced by personal differences and purely rely on risk levels. Participants were all in 

good physical health, with similar ages and shared background knowledge. These 

conditions can minimize the impact of individual factors on the experimental results. The 

results of HLM provided further evidence that the observed variations were primarily due 

to the risk levels. 

4.6 Summary 

The statistical analysis deepens our understanding of the recognition of perceived risk 

under different risk levels, especially under indistinct risk situations. Compared to direct 

measurements of self-report, the combination of multiple physiological and emotional 

measures, as an indirect approach, is regulated by a neuroendocrine system that modulates 

perceived responses to risk situations. Several conclusions can be drawn from the analysis 

results of the situations ranging from relatively safe to moderate risk and finally to the 

highest risk.  

As a low-cost, simple, and feasible approach, the emotion PAD model played a 

significant role in the emotional assessment of risk situations. These three dimensions 

demonstrated a gradual transition of emotional states, becoming increasingly unhappy, 

with higher arousal levels and a stronger sense of losing dominance as risk increases. 

Especially for risk situations with similar risk levels, where negative emotions dominate, 

the arousal and dominance dimensions showed excellent discriminative ability. 
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During perceiving risk, individuals naturally experience physiological changes of 

varying magnitudes. Among them, the EDR component of EDA and multiple indicators 

in HRV, such as HR, HF, A++, and B--, showed significant differences. Remarkably, the 

nonlinear indicators A++ and B-- demonstrated good sensitivity even in situations with 

approximate risk levels. The existence and magnitude of differences in physiological data 

were determined by the perceived differences between the extremes of risk (Megias et al., 

2018). 

The relationship between neural regulatory and risk situations was explored during 

perceiving risk. HRV was significantly inhibited, indicating enhanced cardiac 

sympathetic activity and weakened vagus nerve activity. However, it was crucial to 

emphasize that the changes in the two branches of the ANS, which have antagonistic 

effects, did not strictly follow a simple and linear pattern of increase or decrease. 

Additionally, from the perspective of sequential heartbeats or micro-level, both the 

sympathetic and parasympathetic nervous systems exhibited significant increases and 

fluctuations in response to the presentation of danger and the consequences. This 

illustrated the rapid and chaotic changes happening in both branches of the human 

nervous system, even though the sympathetic nervous system dominates at the macro-

level, especially in the highest-risk situations. These observations suggest that humans 

have a coping mechanism where they swiftly mobilize their internal resources to deal 

with the challenges of risky situations.  

The main cause of significant differences in physiological and emotional responses 

was the factor of risk level, not personal factor. This implied that the risk classification 

models established on such a dataset in the next step would not be interfered by different 

individual factor. 
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Table 4.10: The main outcomes and limitations obtained from statistical 
analysis 

No. Main outcomes and insights Limitations 

1 

When individuals are in a risky situation, 
they continuously gather external 
information and adjust their risk perception 
based on their personal coping abilities. As 
perceived risk increases, both the 
sympathetic and parasympathetic nervous 
systems become more activated, with the 
sympathetic nervous system showing a 
higher level of activity. 

1) Although the risk levels of 
the two situations in the 
experimental design are 
quite similar, the specific 
threshold at which the 
autonomic nervous 
regulation mechanism fails 
to differentiate between 
them, resulting in identical 
emotional and physiological 
responses, remains 
undetermined in the current 
study.  
2) The autonomic nervous 
regulation mechanism is 
highly complex and may 
vary with changes in the risk 
situation. The duration 
required for these changes to 
be reflected in emotional and 
physiological signals is 
another issue that this study 
could not address. 

2 

When individuals face risky situation, they 
emotions tend to become more negative, 
aroused and they may lose control of the 
scenario. Since the situations involve risk, 
negative emotions are predominant. The 
levels of arousal and control can indicate the 
perceived magnitude of the risk 

3 

The changes of autonomic nervous system 
can also be reflected in various physiological 
indicators simultaneously. Among these 
indicators, different measures vary in their 
sensitivity to the complex changes.   
Specifically, electrodermal activity and heart 
rate variability (both instantaneous and 
frequency-domain indicators) are 
particularly sensitive and can effectively 
capture this intricate internal neural dynamic. 

In summary, the statistical analysis has provided us with a deeper understanding of the 

physiological and psychological responses elicited in risk situations, particularly at 

closely comparable risk situations. It was precisely the existence of these differences that 

laid the foundation for the subsequent establishment of risk classification models. 
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CHAPTER 5: MACHINE LEARNING FOR PERCEIVED RISK ASSESSMENT 

5.1 Introduction 

Understanding the physiological and psychological changes in risk situations marks 

the initial stage of risk perception research. Building upon this groundwork, it is crucial 

to use them as input variables to delve deeper into the concealed correlation between the 

numerical changes in these indicators and risk levels, and to establish models fitting this 

relationship. 

Previous studies have explored this domain. However, the developed models were 

typical binary classifiers, able only to categorize risk situations as either low or high, 

overlooking scenarios where risk ratings were close. Furthermore, these models solely 

utilized physiological signals as input vectors, neglecting the inclusion of emotionally 

generated responses in emergencies (B. G. Lee et al., 2021). The two aspects are the focal 

points of this study. 

5.2 Feature Importance 

Twenty variables were used as input data to train ML models. If there were correlations 

among these indicators, the performance of ML algorisms could be adversely affected. 

Therefore, it’s necessary to detect and eliminate multicollinearity. The calculation of 

feature importance can provide a promising method to address this issue. 

5.2.1 Correlation of input variables 

The heatmap of the correlation matrix of twenty input variables is shown in Figure 5.1. 

There were two areas with significant correlation coefficients. The first one involved three 

dimensions of emotions, and the second included specific indicators of HRV. It indicated 

the presence of multicollinearity among these 20 variables.  

Before determining the importance of these indicators, measures should be taken to 

eliminate the impact of multicollinearity. Recursive Feature Elimination (RFE) can be 
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used to select indicators or features. Through an optimization process, RFE can mitigate 

the effects of multicollinearity, thereby obtaining the best combination of indicators. 

 

Figure 5.1: The heatmap of twenty input features in driving 

5.2.2 Recursive Feature Elimination (RFE) to select variables 

RFE was employed to select variables, and the trained RF was utilized as the base 

model. The process of RFE was distributed as follows. 

i. Import the relevant third-party libraries. 

ii. Import and scale the dataset using the StandardScaler method to compress them. 

iii. Instantiate the RF model and set it as the standard model.  

iv. Conduct a 5-fold cross-validation approach to progressively calculate the 

importance of indicators using RFE based on accuracy. 

v. Retrieve the column names of the optimal features and visualize the changes in 

cross-validation accuracy with the number of indicators. 

Finally, it was discovered from Figure 5.2 that RF achieved the highest accuracy when 

retaining eight features. These features are P, A, D, EDR, A++, B--, ULF, and VLF. 
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existed in specific parameters and hyperparameters among the three algorithms. For 

example, in RF, common parameters include the number of estimators, minimum samples 

of leaf and minimum samples of split. SVC involved parameters such as the kernel 

function and the values of degree and gamma. Typically, the value of C served as its 

hyperparameter. Regarding ANN, parameters included the number of layers, dropout 

layers and the activation function, with the number of epochs serving as its 

hyperparameter. 

The implementation process is detailed below: 

i. Import necessary third-party libraries, including commonly used ones: numpy, 

pandas, sklearn.preprocessing, sklearn.model selection, and tensorflow.keras. 

ii. Eliminate features with higher collinearity, then load the dataset with less features 

and classification labels. 

iii. Define a function to scale the data using the minmaxScaler method, compressing 

it within the range of -1 to 1. 

iv. Split the dataset into training, validation, and testing sets based on two scenarios. 

The splitting ratios are 0.7:0.15:0.15 and 0.5:0.25:0.25, respectively. 

v. Define parameters and hyperparameters, along with their respective variation 

ranges for different models.  

vi. Create and initialize the machine learning models (RF, SVC, or ANN). 

vii. Train the models using the training dataset. The iteration criterion was the 

negative classification accuracy, aiming to discover optimal parameter combination for 

achieving the highest classification accuracy. Hyperopt was employed for automatic 

hyperparameter optimization.  

viii. Utilize the obtained optimal parameters to calculate diverse evaluation metrics for 

the model, such as the confusion matrix and classification report, the false positive rate 
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(FPR) and true positive rate (TPR) for a specific class in the ROC curve, and the area 

under the ROC curve (AUC) for the training, validation, and testing sets. 

 

Figure 5.5: The implementation process for three basic machine learning 
models 
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The optimized parameters of ANN were listed in table 5.4. 

Table 5.4: The optimized parameters of ANN 

No. parameters values of optimized parameters 
0.7:0.15:0.15 0.5:0.25:0.25 

1 number of layers 3 3 
2 number of neurons 15 17 
3 activation function relu relu 
4 dropout layers 1 1 

The learning curves of RF, SVC, and ANN demonstrated no underfitting or overfitting, 

indicating that the models fit the data appropriately. 

5.4.2 Based Model Performance 

The test dataset results were conducted and tested to evaluate the models' performances. 

Figure 5.12 displayed the confusion matrix and result reports, while Figure 5.13 showed 

the ROC curve and the corresponding AUC values. It is important to note that both figures 

presented the same testing results in different formats: data and curves. 

Figure 5.12 displayed that the ANN mode, trained with 50% of the data, outperformed 

both RF and SVC models in precision, accuracy and recall. Moreover, the classification 

performance metrics of the ANN consistently surpassed those of RF and SVC across all 

four risk situations. Regardless of the model employed, the classification performance 

was optimal for the highest-risk level. Situation 4 had the highest risk score, followed by 

situation 1. In contrast, situations 2 and 3 exhibited closely aligned risk scores, resulting 

in a relatively lower performance.  

F1 scores for different models and classes were employed to illustrate the findings. For 

instance, the F1 score for situation 4 reached 0.71, while the F1 score for risk level 1 was 

0.63. Specifically, for classes 2 and 3 in RF, with a model trained using 70% of the data, 

the F1 scores were only 0.62 and 0.35, respectively. Simultaneously, SVC demonstrated 

similar changes in F1 score, with the only difference in the numerical values. On the 

contrary, the ANN model, trained with 50% of the data, achieved the highest F1 score 

across all risk levels. Specifically, this model excelled in classifying situations 4 and 1, 
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achieving F1 scores of 0.87 and 0.85, respectively. The significance lay in its robust 

performance in the more challenging situations 2 and 3, achieving F1 scores of 0.81 and 

0.61, respectively. 

 

                    RF                                          SVC                                         ANN 

 

                    RF                                          SVC                                         ANN 

Figure 5.12: Confusion matrix and result reports of three models with two 
ratios split for training, validation, and test datasets in driving 

The ROC curves of the three models are shown in Figure 5.13. It was observed that 

class 4 consistently appeared closer to the top-left corner, irrespective of the model and 

splitting ratio. It indicated that class 4 exhibited the highest accuracy and the lowest 

classification difficulty. Conversely, class 1 was inferior to Class 4 in accuracy and 

classification difficulty. Furthermore, class 2 and class 3 consistently presented higher 

classification difficulty and demonstrated lower accuracy than class 1 and class 4. They 

posed an increased challenge across all three models. Notably, even in the ANN model 

trained with 70% of the data, the ability to classify class 2 and class 3 was nearly 

equivalent to random guessing. Thirdly, when considering the AUC values, the ANN 
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model trained with 50% of the data outperformed the other models, achieving an AUC of 

0.90, indicating superior performance. 

 

                     RF                                          SVC                                         ANN 

 

                     RF                                          SVC                                         ANN 

Figure 5.13: The ROC curves and AUC values of three models with two ratios 
split for training, validation, and test datasets in driving 

5.4.3 Integrated Models Performance 

In Section 3.9.2, two approaches for integrating three trained models were discussed. 

The first involved the computation of weight coefficients for different models and 

categories. The second employed the stacking technique to introduce an additional RF 

model on top of the existing three models, and this RF model was trained using the outputs 

of the initial three models. The results of the test data for both approaches are illustrated 

in Figure 5.14. 

From the perspective of the confusion matrix and result reports of the integrated model, 

both approaches showed improvements in the model's performance across each 

classification. When compared to the best-performing model of ANN, the weight 

coefficient integration method increased the accuracy from 0.80 to 0.88, while the 
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stacking technique integration method raised it to 0.85. Notably, for the challenging-to-

distinguish classes 2 and 3, the F1 scores improved from ANN's 0.81 and 0.61 to 0.91 

and 0.75 (for the weight coefficient integration model), respectively, and to 0.73 and 0.80 

(for the stacking technique integration model). However, there was a recurring issue in 

both ANN and the two integration models where the precision values for classes 2 and 3 

were higher than the recall values. The combination of high precision and low recall 

indicated that the models were somewhat cautious when identifying positive instances, 

ensuring their predictions of positive instances were almost always correct. However, it 

may need to include some positive samples. 

 

 

                 (a) weight adjustments                                   (b) stacking technique 

Figure 5.14: Confusion matrix and result reports of integrated model 

When adjusting model output using the weight coefficient computation method, it was 

only possible to calculate the confusion matrix and results, such as accuracy and precision 

for the test data. However, with the utilization of the stacking technique, a new RF model 

was introduced into the training process, allowing for the computation of ROC curves 

and AUC values for the test data. This outcome was illustrated in Figure 5.15, where the 

AUC value was 0.98, surpassing the AUC of ANN, which was 0.90.  

 

 

 

precision recall f1-score support
1 0 90 1 00 0 95 9
2 1 00 0 83 0 91 6
3 0 86 0 67 0 75 9
4 0 82 1 00 0 90 9

accuracy 0 88 33
macro avg 0 89 0 88 0 88 33
weighted
avg 0 88 0 88 0 87 33

precision recall f1-score support
1 0 90 1 00 0 95 9
2 0 80 0 67 0 73 6
3 1 00 0 67 0 80 9
4 0 75 1 00 0 86 9

accuracy 0 85 33
macro avg 0 86 0 83 0 83 33
weighted
avg

0 87 0 85 0 84 33
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results highlighted the significance of emotional reactions induced by risk situations as 

crucial internal risk perception sensitivity indicators.  

Physiological indicators representing short-term heart rate variations demonstrated 

remarkable performance distinguishing risk levels. For example, the instantaneous heart 

rate nonlinearity indices A++ and B-- and the HRV frequency domain features VLF, ULF, 

and EDR showed notable importance. The previous studies (B. G. Lee et al., 2021) have 

compared EDA, PPG, and the combination of all data (EDA, PPG, and ST) to 

demonstrate the importance of EDA and PPG in predicting subjective risk. At the same 

time, it did not further specify which indicators within EDA and PPG were important. 

However, this study utilized two methods for calculating feature importance (Gini index 

and Permutation index) after adopting RFE to eliminate collinearity, yielding relatively 

consistent and comprehensive results. 

RF, SVC, ANN and two integrated machine learning models were used to classify risk 

levels using eight features. The input vectors included physiological signals and 

emotional reactions. Furthermore, this study not only considered low and high-risk 

situations. It involved situations where the risk degrees were relatively close. The close 

degrees significantly increased the classification difficulty for machine learning.  

ANN surpassed RF and SVC for four risk levels. Its F1 score achieved 0.85 and 0.87 

for low and high-risk scenarios; for risk levels 2 and 3, the F1 score was 0.81 and 0.61, 

respectively. The overall accuracy for the four classes reached 0.80. Notably, all these 

indices to evaluate the classification performance of ANN were higher than those of RF 

and SVC, demonstrating the superior nonlinear fitting capability of ANN over them. It 

should be emphasized that these results were obtained under the precondition that ANN 

utilized training sets with similar distributions across different classifications. Compared 

to specifically related studies (B. G. Lee et al., 2021), this research developed a binary 

classification model to differentiate low (relatively safe) and high-risk (dangerous) 
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scenarios. However, the input vectors used were different. This study contained a 

combination of on-site collected worker bio-signals, including EDA, ST, and PPG. 

Moreover, the F1 score of the optimal Gaussian SVM model achieved 0.82 for low and 

0.81 for high-risk level, which was smaller than the scores of 0.85 and 0.87 obtained by 

ANN for low and high-risk scenarios, respectively.  

The performance of integrated models exceeded that of ANN, especially in situations 

with subtle differences in risk degree. Regardless of the weight adjustment or stacking 

technique models, they had higher accuracies, precisions and F1scores than ANN. For 

example, the F1 score of situations 2 and 3 reached 0.91 and 0.75 in the weight-adjusting 

model and 0.73 and 0.80 in the stacking model. However, the values of the best single 

model, ANN, were 0.81 and 0.67. For low and high-risk levels (1 and 4), F1 was 0.95 and 

0.90 for the weight adjustment model, 0.90 and 0.86 for the stacking model, whereas the 

F1 score of ANN was 0.85 and 0.87. 

5.6 Summary 

The main findings and results are summarized in Table 5.5. 

Table 5.5: The main outcomes and limitations obtained from modeling 

No. Main outcomes and insights Limitations 

1 

When classifying perceived risk based on emotional 
and physiological changes, indicators with larger 
ranges of variation and greater independence from 
other metrics contribute more significantly to the 
classification. 

Although the risk 
levels of the two 
scenarios in the 
experimental design 
are quite similar, the 
specific threshold at 
which simple 
machine learning 
models lose their 
ability to classify 
them remains 
undetermined in this 
study. 

2 

The stronger the emotional and physiological changes 
induced by the risk scenario, the easier and more 
accurate the classification becomes. Simple models 
are sufficient to meet classification requirements in 
these cases.  

3 

When individuals perceive only minor differences in 
risk levels between scenarios, classification becomes 
much more challenging. Conventional models may 
fail to differentiate effectively, necessitating the use of 
ensemble techniques to enhance classification 
performance. 

Features that exhibit significant differences and do not correlate strongly with other 

indicators are more likely to be retained. Additionally, the PAD emotion model can 
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effectively represent emotional reactions induced by risk scenarios and exhibits high 

feature importance in the classification model. Additionally, indicators representing 

instantaneous heart rate variability demonstrate elevated feature importance. Moreover, 

two feature importance calculating approaches yield similar results, albeit in different 

ways. 

For any machine learning model, the riskiest scenario demonstrates the highest 

accuracy and the slightest difficulty in classifying among the four situations. The 

relatively safer situation ranks below the highest risk in accuracy and classification 

difficulty. However, situations that fall into the intermediate risk level present lower 

accuracy and more incredible classification difficulty. 

Integrated models demonstrate a superior capability in distinguishing risks with 

relatively subtle differences in risk degrees. This classification proficiency further 

substantiates its potential applications, feasibility and generalization of machine learning 

algorithms in risk perception. Specifically, for situations with substantial differences in 

risk magnitude, ANN suffice. However, in cases where the disparities in risk are minimal, 

the use of ANN alone fails to yield satisfactory classification results. It is where integrated 

models come into play. In other words, without the necessity of employing more intricate 

deep learning algorithms, a straightforward approach of model integration using weighted 

methods over the base models exhibits discriminative power, allowing the capture of 

subtle physiological and emotional distinctions induced by minor variations in risk levels. 
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CHAPTER 6: VALIDATION FOR GENERALIZED CAPABILITY OF 

MACHINE LEARNING 

6.1 Introduction 

The application of machine learning technology for assessing perceived risk has 

yielded significant results, particularly in situations characterized by a comparable degree 

of risk. The effective utilization of physiological and emotional responses played a crucial 

and positive role in this context. This chapter aimed to elucidate the application paradigm 

of this assessment method. Additionally, a new construction scenario was introduced as 

a case study to validate the generalized ability of this evaluation mode. 

6.2 The Application Paradigm of Risk Perception Assessment 

The method of assessing risk perception has been successfully applied in a driving 

context to categorize perceived risk, utilizing physiological and emotional changes as 

input data. This process differs from the traditional engineering risk methods. It is 

essential to extract the generic paradigm for risk assessment. Furthermore, to validate the 

paradigm, an alternative application context is proposed. Previous studies have primarily 

centered on construction sites, designating it as the second context. The application 

paradigm for evaluating perceived risk will be summarized. Subsequently, the new trial 

serves as a case study to confirm the proposed assessment paradigm. 

The application paradigm for assessing perceived risk through physiological and 

emotional responses is displayed in Figure 6.1. 

i. Determine risk situations. Situations characterized by a high probability, or severe 

consequences can be determined as investigation objectives. Workers in such contexts 

may exhibit deficiencies in risk perception, highlighting the need to identify hazard 

factors and then take measures to reduce risk. These situations could be visually presented 

in video to illustrate the entire process. 

 

Univ
ers

iti 
Mala

ya



136 

 

Figure 6.1: The application paradigm for assessing perceived risk through 
physiological and emotional responses 

ii. Choose relevant workers. Personnel required to operate in risk situations could 

serve as experimental subjects, especially in high-risk work environments or positions, 

where all available candidates are considered relevant personnel. 

iii. Offer instructions. Instructions should be provided before the entire measurement 

process. Some key points, such as relaxation before measuring and maintenance focus 

during the measurement procedure, should be emphasized to the participants.  

iv. Measure and record physiological data. Workers wear physiological sensors. 

These responses can be measured and recorded synchronously while workers observe risk 

situations. Then, the raw data can be preprocessed by ErogLAB and physiological 

indicators can also be calculated through ErogLAB software.  

v. Record emotional responses. SAM is utilized to obtain values from three 

emotional dimensions, helping workers express their emotional reactions. 

vi. Eliminate features that exhibit high collinearity with other indicators, naturally 

retaining a small number of indicators that carry important information as input data. 
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vii. Train machine learning models. The combination of physiological and emotional 

indicators is split into training, validating and testing data. The training data are used as 

input vectors to train three standard and two integrated models. The validation data are 

used to assess fitting performance. The prediction of test data, including the confusion 

matrix and result reports, is used to compare the performance of different models.  

viii. Compare perceived risk with engineering-assessed risk. 

If the perceived risk level is lower than the engineering-assessed risk, there is a risk of 

underestimation. Possible reasons may include individual insufficient risk awareness or 

overconfidence. Another possibility is that engineering methods identify a higher risk 

level. Enhancing individuals' safety awareness through personalized safety training, 

reducing overconfidence through effective communication, and reassessing or correcting 

existing engineering risk assessment results are all part of implementing successful safety 

measures. 

If the perceived risk level is higher than the engineering-assessed risk, there is a risk 

of overestimation. Possible causes may include an individual's insufficient specialized 

knowledge or skills and inadequate risk control measures. Similarly, safety managers 

should provide additional safety training and education to enhance their cognition and 

understanding of the specific risk, potentially reducing their perceived risk to a normal 

level. Alternatively, safety professionals need to reanalyze current management and 

control actions and implement additional technical measures to mitigate the risk.  

In summary, this comparison can assist safety managers in identifying individuals with 

flawed risk perceptions or situations with potential hazards. Additionally, the final 

assessment result may need to be calibrated based on a combination of engineering 

assessment results and workers’ risk perception. 
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6.3 Validation for Statistical Analysis Results 

The validation experiment was carried out in accordance with the procedures outlined 

in Figure 3.1. Statistical and machine learning methods were employed to analyze the 

physiological and emotional data. The findings from the construction scenario will be 

compared and discussed alongside the results from the driving context. 

6.3.1 Validating PAD Analysis Results 

60 subjects were recruited in this experiment, but 7 lost their physiological data. So, 

there were 53 groups of data P, A and D would be analyzed. Similarly, the results for each 

situation are listed in the Table 6.1. 

Table 6.1: Non-parameter test and pair comparison results of P, A, and D in 
construction 

Variables P A D 
Group 1 2 3 4 1 2 3 4 1 2 3 4 
Media 6 7 7 8 6 5 4 2 6 6 5 3 
25% 5 5 6 8 5 3 3 1 4 4 2 1 
75% 7 7 8 9 7 6 4 3 7 7 6 4 
H 67.839** 90.033** 40.871** 
Cohen’s f 0.075 0.09 0.061 

Pair 
comparison 
(Mann-
Whitney U 
test) 

test Cohe
n’s d 

test Cohen
’s d 

test Cohen
’s d 

1-4, 
t=346.5
** 

1.65 
1-4, 
t=2626*
* 

2.33  
1-4, 
t=2301.5
** 

1.32 

2-4, 
t=323** 1.62 

2-4, 
t=2456.5
** 

1.66 
2-4, 
t=2228*
* 

1.18 

3-4, 
t=561.5
** 

1.16 
3-4, 
t=2331.5
** 

1.32 
3-4, 
t=1892.5
* 

0.66 

1-3, 
t=925.5
* 

0.66 
1-3, 
t=2246.5
** 

1.14 
1-3, 
t=1828*
* 

0.56 

2-3, 
t=1050* 0.46 

1-2, 
t=1944*
* 

0.65 
2-3, 
t=1747 
P=0.059 

 

1-2, 
t=1243.
5 
P=0.612 

 
2-3, 
t=1773.5
* 

0.45 
1-2, 
t=1495.5 
P=1.126 

 

Note: *, p<0.05, **, p<0.01 
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scenarios where the risk levels were very close (1-2 and 2-3). When comparing 1 and 2, 

the effect size was 0.65, indicating a medium-level difference. Similarly, the effect size 

was 0.45 when comparing 2 and 3, indicating a subtle difference. However, dimension P 

showed differences between 2-3 with an effect size of 0.46, while dimension D did not 

show significant differences in either of these scenarios. 

6.3.2 Validating Physiological Analysis Results  

6.3.2.1 Statistical analysis of EDA 

The EDL data from Table 6.2 exhibited minor variations within the range of 7 to 8.5, 

with the highest value observed in the fourth situation, which had the highest risk level. 

The data for this indicator approximately followed a normal distribution but did not meet 

the assumption of sphericity ( =65.414, p<0.001). After applying the Greenhouse-

Geisser correction, significant differences were found (F (1.661, 86.386) = 15.584, 

p<0.001). Similarly, the EDR data displayed a similar pattern of changes, with the highest 

value observed in the fourth situation. However, this indicator approximately followed a 

normal distribution and met the assumption of sphericity. Repeated-measure ANOVA 

revealed significant differences as well. 

When comparing the effect sizes, it was found that EDL (η²=0.231) showed a 

significant effect size than EDR (η²=0.188), which differed from the findings in driving. 

Considering post hoc comparisons, EDL only showed significant differences in driving 

between situations 3 and 4. However, it exhibited significant differences between 

situations 4 and 1, as well as 4 and 2. In contrast, the post hoc comparisons for EDR were 

similar to those observed in driving, indicating substantial differences between situations 

4 and 1, as well as 4 and 2. EDR still demonstrated significant differences between 

situations 1 and 3, particularly notable in the closely related risk levels between situations 

2 and 3. Furthermore, when assessing the magnitude of these differences using Cohen's d 

2c
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values, the highest values were observed in the comparison between situations 1 and 4, 

regardless of whether it was EDL (-0.325) or EDR (-0.679). 

Table 6.2: Description and repeated-measure ANOVA results of EDA in 
construction 

Variables EDL EDR 
Group 1 2 3 4 1 2 3 4 
Mean 7.01 7.49 7.40 8.50 0.22 0.23 0.33 0.38 
Std.  4.31 4.47 4.58 4.97 0.20 0.19 0.27 0.29 
Test of 
Sphericity =65.414, P<0.001 =7.221, P=0.205 

Within 
Subjects 
Effects 

F (1.661,86.386) =15.584, 
p<0.001 

F (3,156) =12.010, 
p<0.001 

η² 0.231 0.188 

Post Hoc 
Comparisons 

T test Cohens’d T test Cohens’d 
1-4, -1.49** -0.325 1-3, -0.11* -0.439 
2-4, -1.01** -0.220 1-4, -0.16** -0.679 
3-4, -1.10** -0.240 2-3, -0.09* -0.383 

 2-4, -0.15** -0.625 

         Notes: *, p<0.05, **, p<0.01 

6.3.2.2 Statistical analysis of HRV 

The four time-domain indicators of HRV did not show a sustained trend of decline or 

increase; the third and fourth situations primarily influenced their fluctuations. 

Additionally, most indicators reached their minimum values in the highest-risk situation. 

Furthermore, except for the HR indicator (F (1.935,100.620) =12.690, p<0.001), 

statistical analysis did not reveal significant differences among the other indicators. These 

findings were consistent with those observed in the driving scenario.  

When conducting post hoc comparisons of HR, we observed significant differences 

between the safe situations 1 and 2 and between 1 and 4. Additionally, there were 

significant differences observed between situations 1 and 3. Consequently, the effect size 

of HR in the construction scenario (η²=0.196) was higher than that observed in the driving 

(η²=0.102). 
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Table 6.3: Description and repeated-measure ANOVA results of HRV time-
domain indicators in construction 

Variables HR/bpm SDNN/ms 
Group  1 2 3 4 1 2 3 4 
Mean 78.19 75.74 75.51 76.40 65.39 66.06 81.48 65.70 

Table 6.3, continued 

Variables HR/bpm SDNN/ms 
Group  1 2 3 4 1 2 3 4 
Std. 10.18 9.96 10.59 9.94 52.48 51.57 119.16 48.12 

Test of 
Sphericity =42.087, P<0.001 =147.722, P<0.001 

Within 
Subjects 
Effects 

F (1.935,100.620) =12.690, 
p<0.001 

F (1.217,63.293) =1.047, p=0.325 

η² 0.196  
Post Hoc 

Comparisons 
T test Cohens’d  

1-2, 2.45** 0.241 
1-3, 2.68** 0.263 
1-4, 1.79* 0.176 

Variables RMSSD/ms SDSD/ms 
Group  1 2 3 4 1 2 3 4 
Mean 69.30 63.21 90.59 63.57 69.54 63.40 90.32 63.71 
Std. 76.27 74.63 166.11 71.19 76.53 74.85 166.72 71.36 

Test of 
Sphericity =143.017, P<0.001 =143.173, P<0.001 

Within 
Subjects 
Effects 

F (1.237,64.341) =1.407, 
p=0.246 F (1.237,64.320) =1.405, p=0.246 

Notes: *, p<0.05, **, p<0.01 

The frequency indicators of HRV, descriptions, and statistical results are presented in 

Table 6.4. The five indicators were analyzed using the same analytical approach as in the 

driving experiment. To facilitate the observation of trends, the values of these indicators 

are plotted in Figure 6.3. 
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Table 6.4: Description and repeated-measure ANOVA results of HRV 
frequency-domain indicators in construction 

Variables ULF VLF 
Group  1 2 3 4 1 2 3 4 
Mean 2.14 2.43 2.23 2.84 24.42 26.37 24.63 28.36 
Std. 1.40 1.46 1.42 1.56 11.55 12.79 11.96 11.69 

Test of 
Sphericity =4.452, P=0.486 =2.465, P=0.782 

Within 
Subjects 
Effects 

F (3,156) =3.584, p=0.015 F (3,156) =2.024, p=0.113 

η² 0.064  
Post Hoc 
Comparisons 

T test Cohens’d  

1-4, -0.69* -0.474 

Variables LF HF 

Group  1 2 3 4 1 2 3 4 

Mean 37.79 39.29 37.17 38.31 35.65 31.92 35.98 30.50 

Std. 14.92 13.08 14.12 11.04 18.81 16.83 17.09 14.21 
Test of 

Sphericity =5.327, P=0.377 =4.130, P=0.531 
Test of 

Sphericity =5.327, P=0.377 =4.130, P=0.531 
Within 

Subjects 
Effects 

F (3,156) =0.558, p=0.644 F (3,156) =3.776, p=0.012 

η²  0.068 
Post Hoc 

Comparisons  T test Cohens’d 
3-4, 5.48* 0.326 

Variables LF/HF  
Group  1 2 3 4 

 

Mean 1.96 1.98 1.55 1.65 
Std. 2.80 1.98 1.44 1.06 

Test of 
Sphericity =53.894, P<0.001 

Within 
Subjects 
Effects 

F (1.886,98.062) =1.495, 
p=0.230 

Notes: *, p<0.05, **, p<0.01 

Similar to the driving situations, the LF and HF components dominated the frequency 

domain of HRV, accounting for 30%-40% of the total. However, there was a difference 

in the second-highest proportion, where the VLF component accounted for 20%-30%, 

higher than in the first experiment. In contrast to the first experiment, where ULF, VLF, 
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Table 6.5: Description and repeated-measure ANOVA analysis results of HRV 
nonlinear indicators in construction 

Variables SD1/ms SD2/ms 
Group  1 2 3 4 1 2 3 4 
Mean 49.17 44.83 63.87 45.05 76.23 79.92 93.46 79.44 
Std. 54.12 52.92 117.88 50.46 53.93 53.41 112.38 48.83 

Test of 
Sphericity =143.174, P<0.001 =145.245,p<0.001 

Within 
Subjects 
Effects 

F (1.237,64.320) =1.405, p=0.246 F (1.226,63.770) =0.925, p=0.359 

Variables A++ B-- 
Group  1 2 3 4 1 2 3 4 
Mean 38.42 43.98 50.88 55.49 30.74 36.76 40.26 45.28 
Std. 11.09 11.81 14.49 15.41 11.22 12.06 12.84 14.27 

Test of 
Sphericity =12.757, P=0.026 =16.674, P=0.005 

Within 
Subjects 
Effects 

F (2.625,136.501) =79.934, 
p<0.001 

F (2.556,132.895) =69.062, 
p<0.001 

η² 0.606 0.570 

Post Hoc 
Compariso
ns 

T test Cohens’d T test Cohens’d 
1-2, -5.57** -0.418 1-2, -6.02** -0.476 
1-3, -12.47** -0.936 1-3, -9.53** -0.753 
1-4, -17.08** -1.282 1-4, -14.55** -1.150 

T test Cohens’d T test Cohens’d 
2-3, -6.91** -0.518 2-3, -3.51** -0.277 
2-4, -11.51** -0.864 2-4, -8.53** -0.674 
3-4, -4.60** -0.346 3-4, -5.02** -0.397 

Notes: *, p<0.05, **, p<0.01 

6.3.2.3 Statistical of PD and ST 

The variations in both the PD and ST indicators were relatively small. PD showed a 

gradual increase with the rise in risk level. ST also exhibited its highest value in the 

riskiest situations. These results were consistent with the findings of the first experiment.  

Furthermore, the data for both indicators satisfied the normal distribution assumptions 

and variance homogeneity. Hence, an ANOVA test was conducted, revealing no 

significant differences in either indicator across the different risk levels. This consistency 

with the findings from the driving suggested similar patterns in the present study. 
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Table 6.6: Description and repeated-measure ANOVA analysis results of PD 
and ST in construction 

Variables PD ST  
Group  1 2 3 4 1 2 3 4 
Mean 3.71 3.73 3.84 3.89 33.55 33.73 33.66 34.90 
Std. 1.11 1.07 1.23 1.15 2.80 3.76 3.37 3.51 
Test of 
Sphericity =1.584, P=0.903 =1.972, P=0.853 
Within 
Subjects 
Effects 

F (3,156) =0.326, 
p=0.806 

F (3,156) =1.872, 
p=0.137 

6.3.3 Discussion and Comparison with Previous Statistical Findings 

6.3.3.1 Discussion and comparison with emotional responses 

(a) Changes in emotional state  

The temporal evolution of emotional states paralleled driving scenarios, transitioning 

from calmness in safety to a gradual shift towards negativity, arousal, and a sense of 

losing control as risk escalates. Moreover, this composite emotional intensity becomes 

more pronounced at the peak of risk.  

(b) Differentiation ability among the three dimensions 

The three emotional dimensions also showed significant differences across four levels 

of risk in construction scenarios, and the magnitude of differences was larger in risk levels 

with significant disparities and lower in situations with closer risk proximity. These 

findings were the same as the driving scenario. However, their differentiation abilities 

varied according to Cohen’s f. D exhibited the highest value, followed by A and P in the 

driving context. Conversely, A demonstrates better discriminatory ability, followed by P 

and D in the confirmation experiment. This inconsistency may be attributed to the driving 

and construction scenarios. In driving, situations 2 and 3 represented unsuccessful 

accidents, while in the construction scenario, both situations involved hazards and 

casualties, triggering unpleasant emotions. However, the level of arousal varied 

significantly based on the degree of danger and the consequences of the accidents. In 

simple terms, the ability of dimension P to distinguish negative emotions decreased, 
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which aligned with previous research findings on the relationship between emotions and 

purchasing behavior. It suggested that the ability of P to express subtle differences in an 

unhappy environment is limited.  

The discriminative ability of D in construction was reduced compared to driving. 

When comparing the risk disparity between the driving and construction scenarios, the 

gap in risk between 1 and 4 narrowed, and the risk scores between 2 and 3 were also 

closer. 

6.3.3.2 Discussion and comparison with physiological responses 

While the primary changing patterns on construction sites paralleled those seen in 

driving, including similar shifts in emotional states and a more vital ability to differentiate 

risk levels based on significantly different indicators, there were also changes in the 

activity of the SNS. At the same time, the PNS decreased as risk rose at a macro-level 

perspective, with both exhibiting extreme oscillations at the micro-level. Despite these 

parallels, there were still specific distinct differences. In this context, we will further 

explore these disparities. 

Looking at EDA as a starting point, EDL and EDR displayed significant differences 

when exposed to driving and constructional stimuli. Notably, EDL showed a greater 

degree of differentiation in the latter scenario. This difference may be attributed to the 

risk level of the final clip in the driving scenario, which was more dangerous than the risk 

situations depicted in the construction site scene. It potentially triggered an instantaneous 

and higher identifiable arousal response due to a more potent stimulus (Horn et al., 2020), 

resulting in a significant change in EDR. Conversely, in the construction scene, all three 

video clips (2, 3, and 4) depicted accident consequences, leading to a slower and overall 

higher level of tonic arousal, which induced a greater EDL (Boucsein et al., 2012). 

In terms of HRV, only ULF and HF under risk construction situations showed 

significant statistical differences. This disparity could be attributed to the relatively 
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similar levels of risk (2.55, 2.69 for risk situations 2, 3) observed compared to the driving 

scenarios (2.45, 2.85 for the close two risk situations). The average value of risk in 

construction was higher than driving. This factor resulted in A++ and B-- displaying 

greater fluctuation and oscillation and showing significant differences when comparing 

within-group variances.  

Consistently, the results for PD and ST showed no significant differences. It further 

supported the notion that cognitive load similarity existed across different risk situations 

for PD, and short-term measurement did not provide enough time for neural mediation of 

body temperature. 

6.3.4 Confirmation of Personal Difference Results 

6.3.4.1  Personal difference of PAD  

Similar to the driving scenario, all three dimensions (P, A, and D) showed significant 

individual differences. The contribution of individual differences to the variability of P, 

A, and D was found to be 4.6%, 0.9%, and 1.4%, respectively. Moreover, it was observed 

that P had the highest contribution, while A had the lowest. These findings aligned with 

the driving situation. 

Table 6.7: Result of hierarchical linear modeling for PAD in construction 

Variable P A D 
Model1 Model2 Model1 Model2 Model1 odel2 

Step1 Risk level 0.809 0.809 -1.154 -1.154 -0.885 -0.885 
Step2 Personal  -0.024  0.013  -0.018 

 F 79.104** 49.091** 144.59** 74.777** 46.772** 25.46** 
 𝑅! 0.274 0.32 0.408 0.417 0.182 0.196 
 ∆𝑅! 0.274 0.046 0.408 0.009 0.182 0.014 

 Notes: *, p<0.05, **, p<0.01 

6.3.4.2 Personal difference of EDA  

EDL, as a fundamental and tonic component of EDA, displayed no significant 

difference in risk level (F (1, 212) =2.435, P=0.120) and also showed no variation related 

to personal factor (F (2, 211) =1.831, P=0.163). In contrast, EDR presented individual 

differences when comparing model 2 (F (2, 211) =8.79, P<0.0.01) and model 1(F (1, 212) 
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=15.75, P<0.0.01), with personal factor contributing only 0.8%. These findings were 

consistent with those observed in the driving scenarios, albeit with different contribution 

percentages for EDR.  

Table 6.8:  Result of hierarchical linear modeling for EDR in construction 

Variable EDR 
Model1 Model2 

Step1 Risk level .058 0.058 
Step2 Personal   0.001 

 F 15.75** 8.79** 
 𝑅! 0.07 0.078 
 ∆𝑅! 0.07 0.008 

Notes: *, p<0.05, **, p<0.01 

6.3.4.3 Personal difference of HRV  

LF/HF showed differences only on risk level in the driving experiment but 

significantly differed on personal factors. Individuals can explain a 2.4% variation for 

LF/HF. Both A++ and B-- had personal differences, which accounted for 1.7% and 8% 

for the variation of A++ and B--.  

Table 6.9: Result of hierarchical linear modeling for HRV in construction 

Variable  LF/HF A++ B-- 
Model1 Model2 Model1 Model2 Model1 Model2 

Step1 Risk 
level  -0.135 -0.135 5.81 5.81 4.72 4.72 

Step2 Personal  0.02  0.12  0.26 
 F 1.30 3.24* 50.88** 28.037** 37.09** 31.67** 
 𝑅! 0.006 0.030 0.195 0.212 0.15 0.23 
 ∆𝑅! 0.006 0.024 0.195 0.017 0.15 0.08 

Notes: *, p<0.05, **, p<0.01 

6.3.4.4 Discussion and Comparison with Personal Difference 

The main findings were consistent with those observed in driving. For instance, the 

same indicators of three dimensions of emotion (P, A and D) and EDR, B++ demonstrated 

personal differences. Furthermore, their contributions for variable variations were also 

relatively lower when compared to the impact of the risk factor. However, A-- displayed 

individual differences under the latter stimuli. It may be attributed to the higher averaged 
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risk scores, which aligned with EDL having a higher effect size and A++ and B-- showing 

more significant oscillations.  

6.4 Validation for Machine Learning Performance 

The process of calculating feature importance and training three machine learning 

models of RF, SVC and ANN remained consistent with the previous experiment, 

including the integrated models. However, the data were altered to reflect different 

situations, transitioning from driving to construction. Similarly, data were split into 

training, validation, and test sets using two techniques, with ratios of 0.7:0.15:0.15 and 

0.5:0.25:0.25, respectively, as previously employed. 

6.4.1 Comparison of Feature Importance 

6.4.1.1 Correlation of input variables 

The correlation heatmap of different input vectors is shown in Figure 6.4. Similarly, 

three emotional dimensions of P, A and D, and several indicators of HRV, such as 

RMSSD and SDSD, SD1, SD2 and SDNN, HF and LF/HF, EDR and EDL, had higher 

correlation relationships. These indicated that the collinear issue of input vectors should 

be considered before conducting feature importance. 

 

Figure 6.4: The heatmap of twenty input features in construction 
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6.4.1.2 RFE to select variables 

The combination of RF and RFE was still employed to eliminate of redundant features. 

As shown in Figure 6.5, ten indicator combinations had been identified as the optimal 

subset of features, including A, D, EDR, HR, A++, B--, LF/HF, LF, SD2, and VLF, which 

was more than the driving situations. Additionally, the accuracy decreased as the number 

of features continually increased. 

 

Figure 6.5: Feature selection results of RFE cross-validation in construction 

6.4.1.3 Feature importance 

When calculating the importance of selected features using the Gini and Permutation 

index, the ranking of the top ten features can be observed from Figures 6.6 and 6.7, and 

they were not entirely identical but primarily differed by one or two positions. The best 

five indicators were consistent, involving two emotional dimensions, A and D, and three 

HRV indicators, A++, B--, and HR. 
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6.4.3 Comparison of Based Model Performance 

Based on the analysis of confusion matrices and result reports, including accuracy, 

recall, and F1 scores derived from the test sets of the three models, certain consistent 

conclusions can be drawn despite the utilization of different datasets in the construction 

set. Firstly, RF and SVC performed better when trained with an enormous amount of data 

or when dealing with imbalanced data among the four classes. In contrast, the 

performance of ANN depended more on the distribution of data within each category. 

Secondly, the ANN model trained with 50% of the data exhibited the best performance, 

achieving an overall accuracy of 0.77, surpassing RF (0.53) and SVC (0.52). Thirdly, the 

highest-performing class was still the fourth risk level, with an F1 score of 0.85, followed 

by class 1 with an F1 score of 0.83. Fourthly, classes 2 and 3, which had relatively closer 

risk scores, continued to show lower classification performance, with F1 scores of 0.72 

and 0.61, respectively. 

 

Figure 6.14: Confusion matrix and result reports of three models with two 
ratios split for training, validation, and test datasets in construction 

In the ROC curves of the three models (Figure 6.15), it can be observed that for classes 

4 and 1, except for the ANN model trained with 70% of the data, they were all located 
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closest to the upper-left corner of the graph. It indicated that higher True Positive Rates 

(TPR) and lower False Positive Rates (FPR), i.e., higher sensitivity and lower 

misclassification rate, resulted in better classification performance. On the other hand, 

classes 2 and 3, particularly class 3, were closer to the diagonal line y=x. The closer the 

points were to this line, the worse the classification results, approaching the random 

guessing result of 0.5. 

The AUC value of the ANN model trained with the data ratio 0.5:0.25:0.25 reached 

the highest among all the models, with a value of 0.83. It indicated that the model 

distinguished between positive and negative instances well. However, for the ANN model 

trained with the imbalanced class data ratio of 0.7:0.15:0.15, the AUC value was the 

lowest at 0.43. The poor performance can be attributed to the severe class imbalance, 

where the model struggled to classify the minority classes effectively. The AUC value 

being even smaller than the result of random guessing (0.5) further highlighted the 

model's inadequate ability to make meaningful predictions. 

 

Figure 6.15: The ROC curves and AUC values of three models with two ratios 
split for training, validation, and test datasets in construction 
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6.4.4 Comparison Integrated Models Performance 

Similar to the driving scenario experiments, both integration models demonstrated 

improved performance compared to the ANN model. For example, the weight 

computation method enhanced the overall model accuracy from 0.77 to 0.91, while the 

stacking method increased it to 0.88. Furthermore, for the challenging-to-classify classes 

2 and 3, the weight computation method yielded higher F1 scores than ANN, with values 

of 0.83 and 0.88, respectively, as opposed to ANN's 0.72 and 0.61. Applying the stacking 

technique also increased F1 scores for classes 2 and 3, reaching 0.80 and 0.88. The weight 

computation method exhibited a slightly better improvement in model classification 

performance over the stacking technique, consistent with the results obtained in the first 

experiment. Additionally, for the more challenging classes 2 and 3, the classification 

results with high precision and low recall reappeared in the construction scene, as 

observed in the driving scenario. 

 

 

 

 

 

 

(a) weight adjustments                            (b) stacking technique 

Figure 6.16: Confusion matrix and result reports of integrated model in 
constructing 

Similarly, in the validation experiment, the AUC value under the stacking approach 

was 0.95, surpassing the AUC of ANN, which was 0.83. It also indicated that the 

integrated model outperformed the performance of an individual best-performing model. 

 

 

precision recall f1-score support
1 0.80 1.00 0.89 8
2 0.83 0.83 0.83 6
3 1.00 0.78 0.88 9
4 1.00 1.00 1.00 9

accuracy 0.91 32
macro avg 0.91 0.90 0.90 32
weighted
avg 0.92 0.91 0.91 32

precision recall f1-score support
1 0.67 1 0.8 8
2 1 0.67 0.8 6
3 1 0.78 0.88 9
4 1 1 1 9

accuracy 0.88 32
macro avg 0.92 0.86 0.87 32
weighted
avg 0.92 0.88 0.88 32
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was evident not only in classifying high and low-risk instances but also in situations 

involving closer risk degrees, such as situations 2 and 3. Furthermore, the ANN classifier 

outperformed a comparable study in high and low-risk classification (B. G. Lee et al., 

2021). The F1 scores for low (0.83) and high-risk (0.85) exceeded those reported in the 

related research (0.819 for low-risk and 0.805 for high-risk). Naturally, the two integrated 

algorithms were also better than the previously trained model. 

Thirdly, the two experiments yielded slightly inconsistent results when using RFE to 

select the optimal feature combinations. The former scenario identified 8 features, while 

the latter identified 10 features. This consistent observation was that the remaining 

features mostly showed significant differences among the four risk levels. However, the 

discrepancy could be attributed to the fact that in the latter scenario, risk scores for 

situations 2 and 3 were closer, making the classification more challenging and 

necessitating the retention of more features. Moreover, when comparing the selected 

features between the two scenarios, it was observed that ULF did not appear in the 

construction scenario. The correlation matrix heatmap indicated a strong positive 

correlation between ULF and VLF. While retaining VLF, the highly correlated feature 

ULF was discarded. P did not appear in the validation scenario, possibly due to its reduced 

significance in a scenario with a slightly higher average risk score. In addition, in the 

second scenario, additional HRV-related indicators, namely HR, LF/HF, LF, and SD2, 

were included. It suggested the vital value of heart rate-related indicators in more complex 

and challenging scenarios. This observation was further supported by the comparative 

analysis of the selected features in the two experiments, where besides emotional response 

and skin conductance-related features, all other features were HRV-related indicators. 

6.6  Summary 

The paradigm of assessing risk perception has been extracted and applied in a different 

scenario. The main finds and sights were summarized in Table 6.13.  
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Table 6.13: The main outcomes and limitations obtained from comparing the 
first and validated experimental analysis results 

No. Main outcomes and insights Limitations 

1 

When the experimental scenario was 
changed from driving to construction, a 
comparative analysis of the data 
collected from these two distinct 
environments provided preliminary 
insights into the feasibility of using 
physiological and emotional response 
data to grade perceived risk. 

1) Although both experiments 
were designed with scenarios of 
similar risk levels, the precise 
threshold at which risk levels are 
considered similar remains 
unresolved. 
2) The risk perception assessment 
model proposed in this study 
heavily relies on changes in 
emotional and physiological 
indicators. If the risk scenarios are 
too similar, leading to subtle 
changes in these indicators, it 
significantly impacts the 
classification ability of machine 
learning models. 
3) The model developed in this 
study can distinguish between 
different risk scenarios, but it only 
provides results in the form of 
discrete grades rather than 
continuous numerical values. 

2 

The comparison between statistical 
analysis and machine learning modeling 
showed some discrepancies. However, 
the results were consistent on key issues, 
such as trends in emotional and 
physiological changes, the regulation 
mechanisms of the autonomic nervous 
system, the sensitivity of different 
indicators, and the performance of 
various models. This consistency 
strongly supports the feasibility of using 
emotional and physiological changes as 
a basis for risk perception. 

Statistical analysis confirmed the main consistent findings when comparing the 

construction and driving experiments, including similarities in emotional experiences, 

physiological changes and natural mediation. There were several dominating consensuses 

were emphasized again. As the risk level escalated from relative safety to higher degrees 

of risk, the elicited emotions transited from calm and tranquil to progressively negative. 

In response to risky situations, the body experiences an immediate increase in 

fundamental arousal levels, accompanied by a heightened sensation of powerlessness. 

Concurrent physiological responses further corroborated the elevation in arousal levels, 

evidenced by pronounced heart rate fluctuations between successive heartbeats. While 

the overarching pattern suggested enhanced SNS activity and a gradual decline in PNS 

activity, at a micro-level, both the SNS and PNS experienced augmentation, with the 

degree of SNS enhancement surpassing that of the PNS. It reflected the brain's continuous 

perception of external environmental changes and the ongoing adjustment of individual 
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risk perception during information assimilation. Simultaneously, the brain continually 

fine-tuned the heart's functioning to adapt to shifts in the external environment. Indeed, 

there were also some inconsistencies in the findings. For example, VLF did not exhibit 

significant differences in the construction scenario, and the discriminative ability of D 

within the construction setting was slightly diminished. These disparities primarily arose 

from variations in the magnitude of risk values across the four risk contexts in the two 

scenarios. Importantly, these differences did not affect the critical conclusions mentioned 

above. 

Furthermore, features with significant differences or weak correlations with other 

features are more likely to remain. Additionally, the PAD emotion model can be 

employed to represent the emotions induced by risk situations quantitatively, and the roles 

of the three dimensions must be considered when evaluating subjective risk. As for 

physiological indicators, those capable of reflecting instantaneous changes play a more 

crucial role in classification. Considering time efficiency and computational costs, 

specific indicators, such as HRV in the time domain, skin temperature, and pupil diameter, 

can be omitted. 

Finally, the weighted adjustment integrated algorithm outperforms ANN in evaluating 

inherent and subjective risk characteristics. ANN surpasses RF and SVC and performs 

well in high and low-risk situations. However, the weighted adjustment integrated 

algorithm excels in classifying risk situations with closer risk levels. Therefore, the 

comparative analysis of the two experiments demonstrates the excellent generalization 

ability of the weighted adjustment integrated technique, making it a more valuable tool 

for transfer and utilization in various scenarios. 
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CHAPTER 7: CONCLUSION AND RECOMMENDATION 

7.1 Conclusions 

The process of assessing individual perceived risk occurs within the human brain and 

is characterized by subjectivity, opacity, and inherent nature. The risk perception process 

is influenced by two fundamentally different modes: intuition and analysis, which exert 

varying proportions of impact on risk perception. Hence, this study adopts a paradigm 

that diverges from traditional engineering risk assessment methodology to quantify 

perceived risk. The research findings, confirmed through two similar experiments, can be 

summarized into three key points.  

7.1.1 Characterization of physiological and emotional changes in risky situations 

As the risk level increases, individuals experience intensified discomfort, heightened 

arousal, and a stronger feeling of losing control over the danger. These three dimensions- 

pleasure, arousal and dominance- can distinguish various risk situations. However, the 

effectiveness of their discriminative power depends on the extent of differences in risk 

degrees. All three dimensions demonstrate distinguishing capabilities in situations with a 

significant difference in risk levels, such as between safe and risky situations. Conversely, 

when moderate risk level differences exist, dominance (D) and arousal (A) exhibit more 

substantial discriminative power. In cases where the risk levels are relatively close, A and 

P demonstrate better discriminative ability than D. 

Physiological responses during the risk perception process resemble emotional 

fluctuations. As the perceived risk intensifies, skin conductance response increases, heart 

rate decreases, and there are significant fluctuations in instantaneous heart rate. Although 

changes in eye activity and skin temperature also occur, they do not reach statistical 

significance. Similarly, physiological metrics exhibit more substantial value differences 

when risk disparities are significant. However, as the risk levels become closer, the 

magnitude of physiological changes decreases. Nevertheless, some indicators still reflect 
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short-term physiological changes, such as EDR, HR, LF/HF, A++, and B--, which 

consistently demonstrate exceptional discriminative power. These metrics can be 

considered sensitive indicators of risk perception.  

The statistical differences in emotional or physiological responses in the present study 

are primarily attributed to varying risk levels, with individual differences accounting for 

a minor proportion. This phenomenon may be attributed to the fact that the participants 

recruited for the two experiments exhibit proximity regarding age, knowledge, experience, 

and skills. 

The statistical analysis of physiological indicators like skin conductance, heart rate 

variability, pupil diameter, and skin temperature allow us to understand the underlying 

physiological mechanisms during a risk perception process. In a relatively safe situations, 

the sympathetic and parasympathetic nervous systems are in relative balance. As the risk 

level increases, this balance is disrupted, leading to enhanced sympathetic activity and 

reduced parasympathetic activity. At the highest level, both systems exhibit peak activity. 

These changes aim to motivate humans to escape or deal with risky situations. However, 

it is essential to note that the two antagonistic branches of the autonomic nervous system 

are simultaneously active, and the magnitude of changes in sympathetic and 

parasympathetic activity does not strictly follow a linear relationship with the growth of 

risk levels. According to the Free-Energy Principle, reciprocal information exchange 

occurs between the visceral organs and the brain at the micro-level. The brain 

continuously adjusts its risk perception assessment based on the information from the 

internal organs and the external environment. During this process, both sympathetic and 

parasympathetic activities increase and undergo rapid changes, but overall, the increase 

in sympathetic activity is more pronounced than that of the parasympathetic nervous 

system. These physiological changes reflect the complex and dynamic nature of the inner 

risk perception process, where the body's responses to risk are influenced by intricate 
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interactions of various physiological factors rather than adhering to superficial linear 

relationships. 

7.1.2 Machine learning model to assess subjective perceived risk 

Using ANN effectively classifies situations with substantial differences in risk levels, 

such as between high and low-risk. However, when risk degree differences are minimal, 

the nonlinear fitting capability of ANN falls short of the requirements. In such cases, there 

is no need for highly complex deep learning algorithms. Instead, an integration technique 

based on adjusting the weight coefficients of three base models can address this challenge. 

The fundamental concept is to increase the weights of base models that correctly classify 

while reducing the weights of those that classify incorrectly. This concept, while 

straightforward, offers a solution to a challenging problem. 

Features with statistical differences or more considerable variations in a short-time are 

more likely to be retained. In particular, the roles of these three dimensions (P, A and D) 

deserve attention when classifying perceived risks. At the same time, the instantaneous 

physiological responses associated with risk perception often exhibit favorable feature 

importance. 

7.1.3 Validate the performance of the proposed machine learning model 

The experimental findings confirming construction scenarios are fundamentally 

congruent with driving experiments, even though the data analysis results exhibit some 

discrepancies in terms of statistical outcomes, specific performance metrics, chosen 

indicators, and feature importance. For instance, emotional and physiological response 

indicators demonstrated different discriminative abilities across various risk scenarios, 

yet they reaffirmed the presence of the exact neuromodulation mechanisms. Similarly, 

the dissimilarities for these indicators with significant differences are primarily attributed 

to variations in risk situations, with individual differences playing a minor role. 

Furthermore, the integrated model, adjusting class weights on the base model, 
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demonstrates superior classification performance in situations where risk degrees are 

closely aligned. Meanwhile, the ANN shows enough ability to distinguish risk situations 

with significant disparities. Both of these conclusions were confirmed during the 

validation experiments. Additionally, physiological indicators with no significant 

differences and minor variations are more likely to be removed during the feature 

selection. Additionally, the consistent observation of the relatively high importance of 

emotional and instantaneous physiological response features underscores the agreement 

among these findings. 

7.2 Significance of Study 

7.2.1 Significance of Knowledge 

The present research provides a new perspective to understand risk perception deeply 

through the application of physiological and emotional measurement techniques. The 

simultaneous physiological and emotional reactions served as a direct and scientific 

approach to reflect the internal process associated with perceiving risk. The underlying 

central nervous mediation mechanisms are revealed by capturing and analysing emotional 

and physiological data across diverse risk conditions. These findings contribute to the 

advancement of our comprehension of risk psychology and neuroscience. More 

importantly, this study further refines the paradigm of assessing perceived risk through 

machine learning algorithms using physiological and emotional responses. 

7.2.2 Significance of Application 

In the practical domain, the present study demonstrates that the machine learning 

model perform well in assessing perceived risk from the individual aspect. It provides a 

tool that allows workers to ensure that their true feelings about risk are taken into account. 

They will feel secure when they have strong confidence that the risk is under control. This 

valuable trained model can provide individuals in risky situations with objective and 

authentic insights into risk perception, enhancing safety management professionals' 
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understanding of risk scenarios beyond traditional engineering risk assessments. On one 

hand, this model can assist scientifically in identifying individuals with incorrect risk 

perception capabilities for high-risk positions. On the other hand, it assists safety 

managers in recognizing potential high-risk places within the workplace. 

Workers’ risk perception can enhance safety managers’ analyses. Regardless of 

whether the risk is overestimated or underestimated, safety professionals need to 

reevaluate risk, considering the combination of engineering risk and perceived risk. By 

synthesizing these two aspects, it becomes possible to discern whether the issue lies with 

individuals exhibiting risk perception biases or if there are genuine inaccuracies in the 

engineering risk assessment. The former case necessitates strengthening attitudes, 

knowledge, and skills through safety training interventions. In the latter, it calls for 

improvements in existing risk mitigation techniques to reduce risks to an acceptable level. 

In brief, the assessment of perceived risk, combined with engineering risk assessment 

results, facilitates the development of more effective risk management strategies and 

measures. It also paves the way for transitioning from Safety I to Safety II, with a greater 

emphasis on human factors within complex and dynamically changing contexts. 

7.3 Limitations 

The physiological and emotional responses variations across different risk-level 

contexts form the foundation of machine learning model performance. Nevertheless, 

individuals working frequently in high-risk positions may have become accustomed to 

high-risk work environments, potentially leading to minimal fluctuations in their 

physiological signals. This limitation constrains the classification capability of machine 

learning models. 
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7.4 Recommendations for Future Work  

(a) Recruiting Diverse Participants  

The proportion of individual differences in specific indicators of physiological and 

emotional measurements contributing to the overall variance is relatively small, 

potentially attributed to controlled subject selection during recruitment. Subsequent 

research endeavors may consider relaxing subject selection criteria by including 

participants with varying characteristics, such as personality, age, knowledge, and skills. 

This approach would facilitate investigations into the origins of differences in the studied 

indicators and the development of classification models. 

(b) Using virtual reality (VR) as a stimulus  

Virtual reality scenarios can be considered risk situations, as they offer a closer 

approximation to real-world contexts. This stimulus can lead to participants' 

physiological and emotional responses more aligned with actual experiences. 

(c)  Establishment of a universal database 

It is necessary to establish a universal database of physiological and emotional 

responses to develop assessment models that are both comparative and perform optimally 

using the same dataset. The data used in subjective risk assessments mostly come from 

researchers' experiments. Due to variations in specific risk situations and levels, the 

performance of assessment models needs to be more comparable across different 

scenarios, limiting the generalizability of the models. 

(d) Adding EEG measurement 

Nonlinear HRV indices have demonstrated pronounced fluctuations at the micro-level. 

It is necessary to add an EEG measurement. It is primarily due to the human brain's 

integral role in the autonomic nervous system and its superior temporal resolution, 

enabling further analysis of the underlying physiological mechanisms involved in risk 

perception at a microscopic or fine-grained level. Indeed, a high temporal and spatial 
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resolution of a signal generates a larger volume of data, posing challenges in selecting 

subsequent machine learning models.
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