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COMMUTING ADDITIVE MAPS AND SOME RELATED

MAPS ON TRIANGULAR MATRICES

ABSTRACT

Let F be a ring with identity and let n ⩾ 2 be an integer. Denote by Tn(F) the ring of n×n

upper triangular matrices over F with centre Z(Tn(F)) and unity In. Let 1 ⩽ i ⩽ j ⩽ n

be integers and letEij ∈ Tn(F) denote the standard matrix unit whose (i, j)th entry is one

and zero elsewhere. In this thesis, the following results have been obtained:

Let 1 < k ⩽ n be an integer and letF be a field. We characterise commuting additivemaps

ψ : Tn(F) → Tn(F) on rank k matrices, i.e., additive maps ψ satisfying ψ(A)A = Aψ(A)

for all rank k matrices A ∈ Tn(F) and show that

• when either k < n or |F| ⩾ 3, there exist λ, α ∈ F and an additive map µ : Tn(F) →

F such that

ψ(A) = λA+ µ(A)In + α(a11 + ann)E1n

for all A = (aij) ∈ Tn(F), where α 6= 0 only if k = n and |F| = 3,

• when k = n ⩾ 4 and |F| = 2, there exist λ, α, β1, β2 ∈ F, H,K ∈ Tn(F) and

X1, . . . , Xn ∈ Tn(F) satisfying X1 + · · ·+Xn = 0 such that

ψ(A) = λA+ tr (H tA)In + tr (KtA)E1n +Ψα,β1,β2(A) +
n∑

i=1

aiiXi

for all A = (aij) ∈ Tn(F), where tr (A) and At are the trace and the transpose of A

respectively, and Ψα,β1,β2 : Tn(F) → Tn(F) is the additive map defined by

Ψα,β1,β2(A) = (αa12 + β1(an−1,n + ann))E1,n−1 + (αan−1,n + β2(a11 + a12))E2n

for all A = (aij) ∈ Tn(F),

iii

Univ
ers

iti 
Mala

ya



• when k = n = 3 and |F| = 2, there exist λ, α, β, γ ∈ F, H,K ∈ T3(F) and

X1, X2, X3 ∈ T3(F) satisfying X1 +X2 +X3 = 0 such that

ψ(A) = λA+ tr (H tA)I3 + tr (KtA)E13 +Ψα,β(A) + Φγ(A) +
3∑

i=1

aiiXi

for all A = (aij) ∈ T3(F), where Ψα,β : T3(F) → T3(F) and Φγ : T3(F) → T3(F)

are the additive maps defined by

Ψα,β(A) = α(a23 + a33)E12 + β(a11 + a12)E23,

Φγ(A) = γ((a12 + a22)E22 + (a11 + a12 + a23 + a33)E33 + a13(E12 + E23))

for all A = (aij) ∈ T3(F), and

• when k = n = 2 and |F| = 2, there exist λ1, λ2 ∈ F and X1, X2 ∈ T2(F) such that

ψ(A) = (a11 + a12)X1 + (a22 + a12)X2 + λ1a12I2 + λ2a12E12

for all A = (aij) ∈ T2(F).

Let F be a division ring. We classify centralizing additive maps ψ : Tn(F) → Tn(F)

on rank one matrices, i.e., additive maps ψ satisfying ψ(A)A − Aψ(A) ∈ Z(Tn(F))

for all rank one matrices A ∈ Tn(F). We show that centralizing additive maps on rank

one upper triangular matrices are equivalent to commuting additive maps on rank one

upper triangular matrices over division rings. The structure of commuting additive maps

on rank one upper triangular matrices over noncommutative division rings is relatively

simpler than the corresponding result on commuting additive maps on rank one upper

triangular matrices over fields. Let F2 denote the Galois field of two elements. We obtain

a complete description of 2­power commuting additive maps ψ : Tn(F2) → Tn(F2) on

ranknmatrices, i.e., additivemapsψ satisfyingψ(A)A2 = A2ψ(A) for all ranknmatrices

A ∈ Tn(F2).

Keywords: commuting additive maps, upper triangular matrices, ranks, functional iden­

tities, linear preserver problems.
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PEMETAAN KALIS TUKAR TERTIB BERDAYA TAMBAH DAN BEBERAPA

PEMETAAN YANG BERKAITAN PADA MATRIKS SEGITIGA

ABSTRAK

Biar F suatu gelanggang dengan identiti dan biar n ⩾ 2 suatu integer. Tandakan Tn(F)

gelanggang bagi matriks segitiga atas n×n terhadapF dengan pusatZ(Tn(F)) dan identiti

In. Biar 1 ⩽ i ⩽ j ⩽ n merupakan integer dan biar Eij ∈ Tn(F) menandakan unit

matriks piawai yang masukan (i, j) ialah satu dan sifar bagi yang lain. Dalam tesis ini,

hasil berikut telah diperolehi:

Biar 1 < k ⩽ n suatu integer dan biarF suatumedan. Kamimencirikan pemetaan berdaya

tambah kalis tukar tertib ψ : Tn(F) → Tn(F) pada matriksA ∈ Tn(F) berpangkat k, iaitu,

pemetaan berdaya tambah ψ memenuhi ψ(A)A = Aψ(A) bagi semua matriksA ∈ Tn(F)

berpangkat k dan membuktikan bahawa

• apabila k < n atau |F| ⩾ 3, wujudnya λ, α ∈ F dan suatu pemetaan berdaya tambah

µ : Tn(F) → F supaya

ψ(A) = λA+ µ(A)In + α(a11 + ann)E1n

bagi semua A = (aij) ∈ Tn(F), di mana α 6= 0 hanya jika k = n dan |F| = 3,

• apabila k = n ⩾ 4 dan |F| = 2, wujudnya λ, α, β1, β2 ∈ F, H,K ∈ Tn(F) dan

X1, . . . , Xn ∈ Tn(F) yang memenuhi X1 + · · ·+Xn = 0 supaya

ψ(A) = λA+ tr (H tA)In + tr (KtA)E1n +Ψα,β1,β2(A) +
n∑

i=1

aiiXi

bagi semua A = (aij) ∈ Tn(F), di mana tr (A) and At ialah surihan dan transposisi

bagi A, masing­masing, dan Ψα,β1,β2 : Tn(F) → Tn(F) ialah pemetaan berdaya

tambah yang ditakrifkan sebagai

Ψα,β1,β2(A) = (αa12 + β1(an−1,n + ann))E1,n−1 + (αan−1,n + β2(a11 + a12))E2n

bagi semua A = (aij) ∈ Tn(F),
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• apabila k = n = 3 dan |F| = 2, wujudnya λ, α, β, γ ∈ F, H,K ∈ T3(F) dan

X1, X2, X3 ∈ T3(F) yang memenuhi X1 +X2 +X3 = 0 supaya

ψ(A) = λA+ tr (H tA)I3 + tr (KtA)E13 +Ψα,β(A) + Φγ(A) +
3∑

i=1

aiiXi

bagi semua A = (aij) ∈ T3(F), di mana Ψα,β : T3(F) → T3(F) dan Φγ : T3(F) →

T3(F) adalah pemetaan berdaya tambah yang ditakrifkan sebagai

Ψα,β(A) = α(a23 + a33)E12 + β(a11 + a12)E23,

Φγ(A) = γ((a12 + a22)E22 + (a11 + a12 + a23 + a33)E33 + a13(E12 + E23))

bagi semua A = (aij) ∈ T3(F), dan

• apabila k = n = 2 dan |F| = 2, wujudnya λ1, λ2 ∈ F dan X1, X2 ∈ T2(F) supaya

ψ(A) = (a11 + a12)X1 + (a22 + a12)X2 + λ1a12I2 + λ2a12E12

bagi semua A = (aij) ∈ T2(F).

Biar F suatu gelanggang pembahagian. Kami mencirikan pemetaan berdaya tambah me­

musat ψ : Tn(F) → Tn(F) pada matriks berpangkat satu, iaitu, pemetaan berdaya tambah

ψ yang memenuhi ψ(A)A − Aψ(A) ∈ Z(Tn(F)) bagi semua matriks A ∈ Tn(F) ber­

pangkat satu. Kami membuktikan bahawa pemetaan berdaya tambah memusat pada ma­

triks segitiga atas berpangkat satu adalah setara dengan pemetaan berdaya tambah kalis

tukar tertib pada matriks segitiga atas berpangkat satu terhadap gelanggang pembahagi­

an. Struktur pemetaan berdaya tambah kalis tukar tertib pada matriks segitiga atas ber­

pangkat satu terhadap gelanggang pembahagian tak kalis tukar tertib adalah lebih ringkas

berbanding dengan pemetaan berdaya tambah kalis tukar tertib pada matriks segitiga atas

berpangkat satu terhadap medan. Biar F2 menandakan medan dengan dua unsur. Kami

memperolehi suatu pemerihalan lengkap bagi pemetaan berdaya tambah kalis tukar ter­

tib 2­kuasa ψ : Tn(F2) → Tn(F2) pada matriks berpangkat n, iaitu, pemetaan berdaya

tambah ψ memenuhi ψ(A)A2 = A2ψ(A) bagi semua matriks A ∈ Tn(F2) berpangkat n.

Kata kunci: pemetaan berdaya tambah kalis tukar tertib, matriks segitiga atas, pangkat,

identiti fungsian, masalah pengekal linear.
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CHAPTER 1: INTRODUCTION

1.1 Background of the study

Linear preserver problems represent one of the very active research areas in matrix the­

ory concerning the characterisation of linear maps that leave certain properties, relations

or subsets invariant. This research subject has a long history in linear algebra which traces

back to Frobenius (1897) on determinant preserving linear maps on matrix spaces. Over

the past few decades, the study of linear preserver problems is prospering into a fruitful

ground of discovery for many researchers and yet there are still many open problems and

interactions of linear algebra with other research areas in functional identities, geome­

try of matrices, operator algebras, etc. Recently, linear preserver problems on triangular

matrices have received substantial attention. The results of linear preserver problems on

triangular matrices often have much complicated and different structures compared to the

corresponding result on other matrices. For a survey of linear preserver problems and its

developments, we refer the reader to the special survey issue of Linear and Multilinear

Algebra (volume 33, no.1­2 (1992), pp.1­119) in Pierce et al. (1992) and C.­K. Li and

Pierce (2001).

LetR be a ringwith centreZ(R) and letS be a nonempty subset ofR. Amapψ : R →

R is called commuting on S if [ψ(x), x] = 0 for all x ∈ S , ψ is said to be centralizing on

S if [ψ(x), x] ∈ Z(R) for all x ∈ S , and ψ ism­power commuting on S if [ψ(x), xm] = 0

for all x ∈ S , where [x, y] = xy − yx is the commutator of x, y ∈ R, and m ⩾ 2 is an

integer. In 1993, Brešar (1993a) obtained the structural result of commuting additivemaps

ψ : R → R on a prime ring R. His works have actuated the development of the theory

of functional identities. Moreover, since such a problem has a wealth of applications,

there have been much research activities on commuting maps, centralizing maps, power

commuting maps on various rings, algebras and linear spaces. For a survey of the subject

and its historical developments, we refer the reader to the book “Functional Identities”

by Brešar, Chebotar and Martindale 3rd and the survey paper by Brešar, see Brešar et

al. (2007) and Brešar (2004). More recently, inspired by the study of linear preserver

problems on sets of matrices that are not closed under addition, Franca (2012, 2013a)
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initiated the study of commuting additive maps on invertible, singular and rank k square

matrices. He deduced the results from the classical result of Brešar (1993a). His work

has advanced the study of functional identities to the set of matrices that are not closed

under addition, which leads to many open problems in this area.

1.2 Objective of the study

Motivated by the research on linear preserver problems on rank k matrices, Franca

(2013a) initiated the study of functional identities on rank k square matrices, which has

inspired a new line of research in this research area. Many works have been done, see for

example commuting additive maps in Franca (2017); Franca and Louza (2017); Xu and

Yi (2014), centralizing additive maps in C.­K. Liu (2014a), power commuting additive

maps in Chou and Liu (2021); C.­K. Liu and Yang (2017),m­commuting additive maps in

Franca and Louza (2019), strong commutativity preserving maps in C.­K. Liu (2014b); C.­

K. Liu et al. (2018), commuting traces maps in Franca (2013b) and additivity preserving

maps in Chooi and Kwa (2019); Xu and Liu (2017); Xu et al. (2016).

Let n ⩾ 2 and 1 ⩽ k ⩽ n be integers. Let Tn(F) denote the ring of n × n upper

triangular matrices over a ring F. The main objective of this thesis is to obtain complete

descriptions of commuting additive maps ψ : Tn(F) → Tn(F) and some related additive

maps on rank k matrices. More precisely, we characterise the following additive maps:

(a) commuting additive maps ψ : Tn(F) → Tn(F) on rank k matrices, where F is a

field with |F| ⩾ 3 and 1 < k ⩽ n is a fixed integer,

(b) commuting additive maps ψ : Tn(F) → Tn(F) for all invertible matrices, where F

is the Galois field of two elements,

(c) centralizing additive maps ψ : Tn(F) → Tn(F) for all rank one matrices, where F

is a division ring,

(d) 2­power commuting additive maps ψ : Tn(F) → Tn(F) for all invertible matrices,

where F is the Galois field of two elements.

2
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1.3 Significance of the study

Let n ⩾ 2 and 1 ⩽ k ⩽ n be integers. This thesis is devoted to the study of functional

identities on rank k upper triangular matrices which is motivated by the study of linear

preserver problems on sets of matrices that are not closed under addition. This new line

of research has advanced the study of linear preserver problems of functional identities

on matrix rings (the ring of square matrices and the ring of upper triangular matrices).

Moreover, this study has also established an interesting mathematical interaction between

linear preserver problems and functional identities on rank k matrices.

1.4 Organisation of the thesis

This thesis is divided into eight chapters. In Chapter 1, we begin with a background of

the study and a general introduction of our main themes. We state the research objectives

and the significance of the study. This is followed by a brief overview of each chapter in

the organisation of the thesis.

In Chapter 2, we start by introducing some preliminary results that are needed in this

thesis. Next we give a brief introduction of linear preserver problems on matrices. We

then proceed with a literature review of the study of functional identities in commuting

maps, centralizing maps, power commuting maps and some related maps. Finally, the

research methodology employed in the research will be given.

Chapter 3 is devoted to the study of commuting additive maps ψ : Tn(F) → Tn(F) on

rank k matrices, where n ⩾ 2 and 1 < k ⩽ n are integers and F is a field with |F| ⩾ 3.

We assert a few technical lemmas by adapting known techniques from matrix theory and

obtain a characterisation of such additive maps.

Chapter 4 is primarily concerning the study of commuting additive mapsψ : Tn(F2) →

Tn(F2) on rank n matrices, where n ⩾ 2 is an integer and F2 is the Galois field of two

elements. Some irregular nonstandard forms of commuting additive maps on rank n upper

triangular matrices will be illustrated. We obtain a complete description of commuting

additive maps ψ : Tn(F2) → Tn(F2) on rank n upper triangular matrices for n ⩾ 2. As a

by­product, we give a classification for commuting additive maps on 2× 2 invertible full

matrices.

3
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In Chapter 5, we study commuting additive maps on rank one upper triangular matrices

over fields. We start with some intriguing irregular forms of commuting additive maps,

and then we continue to present a complete characterisation of commuting additive maps

on rank one upper triangular matrices over fields.

In Chapter 6, we investigate the structure of centralizing additive maps on rank one

upper triangular matrices over division rings. We show that centralizing additive maps

and commuting additive maps on rank one upper triangular matrices over division rings

are equivalent. We give a characterisation of centralizing additive maps on rank one upper

triangular matrices over noncommutative division rings. As a side remark, the structure of

centralizing additive maps on rank one upper triangular matrices over fields is much more

fertile and complex than the corresponding result on noncommutative division rings.

Chapter 7 is devoted to the study of 2­power commuting additive maps on invertible

upper triangular matrices over the Galois field of two elements. We give some interesting

examples of the maps which are of nonstandard forms and we prove the main results.

In Chapter 8, we provide a summary of the overall findings in this study and suggest

some potential open problems that would be possible for future research work.

4

Univ
ers

iti 
Mala

ya



CHAPTER 2: LITERATURE REVIEW ANDMETHODOLOGY

This chapter starts with some preliminary results which will be employed in the forth­

coming chapters. We will give a brief introduction of linear preserver problems on ma­

trices. We then proceed with a literature review of the study of functional identities in

commuting maps, centralizing maps, power commuting maps and some related maps.

We end this chapter with a brief discussion of the methodology used in this research.

2.1 Preliminary results

Let F be a field and let n ⩾ 1 be an integer. Recall that Tn(F) is the ring of all n× n

upper triangular matrices over F and Eij ∈ Tn(F) is the standard matrix unit whose (i, j)­

th entry is one and zero elsewhere.

We start with the following lemma proved in (Chooi & Lim, 1998, Lemma 4.1).

Lemma 2.1.1. (Chooi & Lim, 1998, Lemma 4.1). Let F be a field and let n ⩾ 1 and

1 ⩽ k ⩽ n be integers. Then A ∈ Tn(F) is of rank k if and only if there exist invertible

matrices P,Q ∈ Tn(F) such that

A = P

(
k∑

i=1

Esi,ti

)
Q

for some integers 1 ⩽ si ⩽ ti ⩽ n for i = 1, . . . , k with s1 < · · · < sk and ti 6= tj

whenever 1 ⩽ i 6= j ⩽ k.

LetMn(F) be the ring of all n × n matrices over F. Given A ∈ Tn(F), we denote by

A+ = JnA
tJn ∈ Tn(F), where At is the transpose of A and Jn ∈Mn(F) with one on the

minor diagonal and zero elsewhere. We now prove a technical lemma that will be used in

the study of commuting additive maps on rank k upper triangular matrices.

Lemma 2.1.2. Let F be a field with at least three elements and let n ⩾ 3 be an integer.

Suppose that 1 < k < n is a fixed integer. Then each rank one or rank two matrix in

Tn(F) can be represented as a sum of three rank k matrices in Tn(F) among which the

sum of any two is of rank k.

5
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Proof. Let A ∈ Tn(F). First, consider A is of rank one. By Lemma 2.1.1, we assume

without loss of generality that A = Eij for some integers 1 ⩽ i ⩽ j ⩽ n.

Case I: i = j. When 1 ⩽ i < n, we select distinct integers s1, . . . , sk−1 ∈ {1, . . . , n−

1}\{i} and α ∈ F\{0, 1}. Let

Xi = Eii + (α− 1)Ei,i+1 +
k−1∑
j=1

(α− 1)Esj ,sj+1,

Yi = Ei,i+1 +
k−1∑
j=1

Esj ,sj+1 and Zi = −αYi.

ThenXi, Yi, Zi ∈ Tn(F) are of rank k such that Eii = Xi + Yi +Zi and among which the

sum of any two is of rank k. When i = n, sinceEnn = E+
11, we haveEnn = X+

1 +Y
+
1 +Z+

1

as required.

Case II: i < j. We select distinct integers s1, . . . , sk−1 ∈ {1, . . . , n}\{i} and α ∈

F\{0, 1}. We set

X = Eij + (α− 1)Eii +
k−1∑
j=1

(α− 1)Esj ,sj ,

Y = Eii +
k−1∑
j=1

Esj ,sj and Z = −αY.

Then Eij = X + Y + Z is the sum of three rank k matrices X,Y, Z ∈ Tn(F) among

which the sum of any two is of rank k.

Consider now A is of rank two. By Lemma 2.1.1, we may assume A = Eij + Epq

for some integers 1 ⩽ i ⩽ j ⩽ n, 1 ⩽ p ⩽ q ⩽ n, i < p and j 6= q. We argue in the

following cases.

Case A: i = j and p = q. When i = 1 and p = n, we select distinct integers

s1, . . . , sk−2 ∈ {2, . . . , n− 2} and α ∈ F\{0, 1}. Let

X = E11 + (α− 1)E12 + Enn + (α− 1)En−1,n +
k−2∑
j=1

(α− 1)Esj ,sj+1,

Y = E12 + En−1,n +
k−2∑
j=1

Esj ,sj+1 and Z = −αY.

Then E11 + Enn = X + Y + Z is the sum of three rank k matrices X,Y, Z ∈ Tn(F)

among which the sum of any two is of rank k.
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When 1 ⩽ i < p < n, we select distinct integers s1, . . . , sk−2 ∈ {1, . . . , n− 1}\{i, p}

and α ∈ F\{0, 1}. Set

Xip = Eii + (α− 1)Ei,i+1 + Epp + (α− 1)Ep,p+1 +
k−2∑
j=1

(α− 1)Esj ,sj+1,

Yip = Ei,i+1 + Ep,p+1 +
k−2∑
j=1

Esj ,sj+1 and Zip = −αYip.

ThenEii+Epp = Xip+Yip+Zip is the sum of three rank k matricesXip, Yip, Zip ∈ Tn(F)

among which the sum of any two is of rank k.

When 1 < i < p = n, sinceEii+Enn = (E11+En+1−i, n+1−i)
+, we haveEii+Enn =

X+
1,n+1−i + Y +

1,n+1−i + Z+
1,n+1−i as desired.

Case B: i = j or p = q. When i = j and p < q, we have 1 ⩽ i < p < q ⩽ n. We

select distinct integers s1, . . . , sk−2 ∈ {1, . . . , n}\{i, p, q} and α ∈ F\{0, 1}. Set

Xipq = Eii + (α− 1)Eip + Epq + (α− 1)Eqq +
k−2∑
j=1

(α− 1)Esj ,sj ,

Yipq = Eip + Eqq +
k−2∑
j=1

Esj ,sj and Zipq = −αYipq.

Then Eii+Epq = Xipq +Yipq +Zipq is the sum of three rank k matricesXipq, Yipq, Zipq ∈

Tn(F) among which the sum of any two is of rank k.

When i < j and p = q, we have either 1 ⩽ i < j < p ⩽ n or 1 ⩽ i < p < j ⩽ n.

Consider the case 1 ⩽ i < j < p ⩽ n. Note that Eij + Epp = (Ehh + Est)
+, where

h = n + 1 − p, s = n + 1 − j and t = n + 1 − i, with 1 ⩽ h < s < t ⩽ n. It follows

that Eij +Epp = X+
hst+Y +

hst+Z+
hst is the sum of three rank k matricesXhst, Yhst, Zhst ∈

Tn(F) among which the sum of any two is of rank k as required. Consider now the case

1 ⩽ i < p < j ⩽ n. We select distinct integers s1, . . . , sk−2 ∈ {1, . . . , n}\{i, p, j} and

α ∈ F\{0, 1}. Let

X = Epp + Eij + (α− 1)Eip + (α− 1)Ejj +
k−2∑
j=1

(α− 1)Esj ,sj ,

Y = Eip + Ejj +
k−2∑
j=1

Esj ,sj and Z = −αY.
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ThenEpp+Eij = X+Y +Z is the sum of three rank k matricesX,Y, Z ∈ Tn(F) among

which the sum of any two is of rank k.

Case C: i < j and p < q. We select distinct integers s1, . . . , sk−2 ∈ {1, . . . , n}\{i, p}

and α ∈ F\{0, 1}. Let

X = Eij + (α− 1)Eii + Epq + (α− 1)Epp +
k−2∑
j=1

(α− 1)Esj ,sj ,

Y = Eii + Epp +
k−2∑
j=1

Esj ,sj and Z = −αY.

ThenEij+Epq = X+Y +Z is the sum of three rank k matricesX,Y, Z ∈ Tn(F) among

which the sum of any two is of rank k. We are done.

Lemma 2.1.3. Let F be a field. If A ∈ Tn(F) is such that [A,Eij] = 0 for all 1 ⩽ i ⩽

j ⩽ n, then A = λIn for some λ ∈ F. In particular, the centre Z of Tn(F) is FIn.

Proof. Let A = (aij) ∈ Tn(F). Note that AEst = EstA leads to

Ekk(AEst) = Ekk(EstA) ⇒ aksEkt = δksEktA

for every integer 1 ⩽ k ⩽ s ⩽ t ⩽ n, where δks is the Kronecker symbol. In particular,

aksEst = 0 when k < s. Hence A is diagonal. Thus EktA = akkEkt, and so att = akk for

all 1 ⩽ k ⩽ t ⩽ n. So A = λIn for some λ ∈ F. Hence Z(Tn(F)) = FIn.

Next, we establish two lemmas that will be employed in the study of commuting addi­

tive maps on invertible upper triangular matrices. In what follows, let n ⩾ 2 be an integer

and let F2 denote the Galois field of two elements. In view of Lemma 2.1.3, we note that

the centre of Tn(F2) is Z(Tn(F2)) = F2In. For each integer 0 ⩽ ℓ ⩽ n− 1, we denote

Dℓ =
n−ℓ∑
i=1

Ei,i+ℓ ∈ Tn(F2). (2.1)

In particular, D0 = In and Dn−1 = E1n.

Let A = (aij) ∈ Tn(F2) and let 1 ⩽ s ⩽ n − ℓ be an integer. Notice that AEs,s+ℓ =∑s
i=1 aisEi,s+ℓ and Es,s+ℓA =

∑n
j=s+ℓ as+ℓ,jEsj . It follows from (2.1) that

ADℓ =
n−ℓ∑
s=1

(
s∑

t=1

atsEt,ℓ+s

)
=

n−ℓ−1∑
s=0

n−ℓ−s∑
i=1

ai, i+sEi, i+ℓ+s,
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DℓA =
n−ℓ∑
s=1

(
n∑

t=ℓ+s

aℓ+s,tEst

)
=

n−ℓ−1∑
s=0

n−ℓ−s∑
i=1

ai+ℓ, i+ℓ+sEi, i+ℓ+s.

In particular, for any integers 0 ⩽ s, t ⩽ n− 1, we have

DsDt =


∑n−(s+t)

i=1 Ei, i+s+t when s+ t < n,

0 when s+ t ⩾ n.

Then DsDt = Ds+t when s+ t < n. Furthermore, since Ds = (D1)
s, we have

DsDt = Ds+t = (D1)
s+t

when s+ t < n, and DsDt = 0 = (D1)
s+t when s+ t ⩾ n. Consequently, [Ds, Dt] = 0

for every integer 0 ⩽ s, t ⩽ n − 1, where [X,Y ] is the commutator of X,Y ∈ Tn(F2).

This proves the following result.

Let A =
∑n−1

i=0 αiDi and B =
∑n−1

i=0 βiDi be upper triangular Toeplitz matrices for

some αi, βi ∈ F2. By the bilinearity of [ · , · ], we obtain

[A,B] =
n−1∑
i=0

n−1∑
j=0

αiβj[Di, Dj] = 0.

We summarise the observation as a lemma.

Lemma 2.1.4. Let A =
∑n−1

i=0 αiDi and B =
∑n−1

i=0 βiDi be Toeplitz matrices in Tn(F2).

Then [A,B] = 0.

Lemma 2.1.5. Let B = D1 + αDℓ for some integer 1 < ℓ < n and let α ∈ F2. If

A ∈ Tn(F2) satisfies [A,B] = 0, then A =
∑n−1

i=0 λiDi for some λ0, . . . , λn−1 ∈ F2.

Proof. When n = 2, the result is clear since B = E12 ∈ T2(F2). We now consider n ⩾ 3.

Recall that 1 < ℓ < n and α ∈ F2 are fixed. Let A = (aij) ∈ Tn(F2). Note that

[A,D1] =
n−2∑
s=0

n−1−s∑
i=1

(ai, i+s + ai+1, i+1+s)Ei, i+1+s,
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[A,Dℓ] =
n−ℓ−1∑
s=0

n−ℓ−s∑
i=1

(ai, i+s + ai+ℓ, i+ℓ+s)Ei, i+ℓ+s

=
n−2∑

s=ℓ−1

n−1−s∑
i=1

(ai, i−ℓ+1+s + ai+ℓ, i+1+s)Ei, i+1+s.

Since [A,B] = 0, it follows that [A,D1] = α[Dℓ, A]. We thus obtain

ℓ−2∑
s=0

n−1−s∑
i=1

(ai,i+s + ai+1, i+1+s)Ei,i+1+s

+
n−2∑

s=ℓ−1

n−1−s∑
i=1

((ai, i+s + ai+1, i+1+s) + α(ai, i−ℓ+1+s + ai+ℓ, i+1+s))Ei, i+1+s = 0.

It follows that
∑ℓ−2

s=0

∑n−1−s
i=1 (ai+1, i+1+s + ai,i+s)Ei,i+1+s = 0, which leads to

ai,i+s = ai+1, i+1+s. (2.2)

It follows that for every integer 0 ⩽ s ⩽ ℓ− 2 and 1 ⩽ i ⩽ n− 1− s,

n−2∑
s=ℓ−1

n−1−s∑
i=1

((ai, i+s + ai+1, i+1+s) + α(ai, i−ℓ+1+s + ai+ℓ, i+1+s))Ei, i+1+s = 0. (2.3)

Consider s = ℓ− 1. By the result of (2.2), i.e., aii = ai+1,i+1 for i = 1, . . . , n− 1, we get

ai, i−ℓ+1+s = aii = ai+ℓ, i+ℓ = ai+ℓ, i+1+s

for every i = 1, . . . , n− 1− s. In view of (2.3), for s = ℓ− 1, we obtain

ai, i+s = ai+1, i+1+s (2.4)

for every i = 1, . . . , n− 1− s. Consequently, Equation (2.3) is reduced to

n−2∑
s=ℓ

n−s−1∑
i=1

((ai, i+s + ai+1, i+1+s) + α(ai, i−ℓ+1+s + ai+ℓ, i+1+s))Ei, i+1+s = 0. (2.5)

We now consider s = ℓ. By the result of (2.2) or (2.4), i.e., ai,i+1 = ai+1,i+2 for i =

1, . . . , n− 2, we obtain

ai, i−ℓ+1+s = ai,i+1 = ai+ℓ, i+ℓ+1 = ai+ℓ, i+1+s
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for every i = 1, . . . , n− 1− s. In view of (2.5), for s = ℓ, we get

ai, i+s = ai+1, i+1+s

for every i = 1, . . . , n− 1− s. Hence Equation (2.5) is reduced to

n−2∑
s=ℓ+1

n−s−1∑
i=1

((ai, i+s + ai+1, i+1+s) + α(ai, i−ℓ+1+s + ai+ℓ, i+1+s))Ei, i+1+s = 0. (2.6)

Continuing this process in (2.6), we thus obtain ai, i+s = ai+1, i+1+s for all integers 0 ⩽

s ⩽ n−1 and 1 ⩽ i ⩽ n−1−s. ThereforeA =
∑n−1

i=0 λiDi for some λ0, . . . , λn−1 ∈ F2.

The lemma is proved.

2.2 Literature review

2.2.1 Linear preserver problems on matrices

Linear preserver problems on matrices represent an active and continuing research sub­

ject in matrix theory that deals with the characterisation of linear maps onmatrices leaving

certain properties or relation of subsets invariant. The formulation of linear preserver prob­

lems is natural and simple. The study often gives a deeper understanding of the matrix

functions, relations or identities under consideration. LetM be a linear space of matrices.

The study of linear preserver problems usually falls into some of the following typical

problems.

(i) Type I: Suppose that ϕ is a scalar­valued, vector­valued, or set­valued function on

M. The aim of this type of problem is to characterise linear maps ψ : M → M

preserving the function ϕ, i.e.,

ϕ(ψ(A))) = ϕ(A)

for all A ∈ M. One of the classical examples in this type of linear preserver prob­

lems is the result of Frobenius (1897) which characterised bijective linear operators

on complex matrices that preserve the determinant. Let ψ : Mn(C) → Mn(C) be

11

Univ
ers

iti 
Mala

ya



an invertible linear map satisfying det(ψ(A)) = det(A) for all A ∈Mn(C). Frobe­

nius (1897) proved that there exist invertible matrices P and Q in Mn(C) with

det(PQ) = 1 such that either

ψ(A) = PAQ (2.7)

for all A ∈Mn(C), or

ψ(A) = PAtQ (2.8)

for all A ∈ Mn(C). For more examples of this type of linear preserver problems,

see, for example Botta (1967); Chooi et al. (2017); Huang et al. (2016).

(ii) Type II:LetS be a nonempty subset ofM. In this type of linear preserver problems,

the aim is to determine the structure of linear maps ψ : M → M leaving the subset

S invariant, i.e.,

ψ(S) ⊆ S.

Let 1 ⩽ k ⩽ n be an integer and let Rk denote the totality of rank k complex matri­

ces ofMn(C). Marcus and Moyls (1959) characterised linear maps ψ : Mn(C) →

Mn(C) that preserve rank k matrices, i.e., ψ(Rk) ⊆ Rk. They showed that there

exist invertible matrices P and Q inMn(C) such that either

ψ(A) = PAQ

for all A ∈Mn(C), or

ψ(A) = PAtQ

for all A ∈ Mn(C). For more examples of Type II linear preserver problems, see,

for instance Costara (2020); Marcus and Purves (1959); Omladič and Šemrl (1998);

Song et al. (2016).

(iii) Type III: Suppose that∼ is a relation onM. The aim of this type of linear preserver

problems is to classify linear maps ψ : M → M satisfying the following relation:

ψ(A) ∼ ψ(B) whenever A ∼ B inM,
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or

ψ(A) ∼ ψ(B) if and only if A ∼ B inM.

Pierce and Watkins (1978) classified invertible linear maps ψ : Mn(F) → Mn(F)

preserving commutativity, i.e., ψ(A)ψ(B) = ψ(B)ψ(A) whenever AB = BA for

all A,B ∈ Mn(F). They proved that there exists an invertible matrix P inMn(F),

λ ∈ F and a linear functional f onMn(F) such that either

ψ(A) = λP−1AP + f(A)In (2.9)

for all A ∈Mn(F), or

ψ(A) = λP−1AtP + f(A)In (2.10)

for all A ∈ Mn(F). More examples of Type III linear preserver problems can be

referred to the works, for example Chebotar et al. (2003); Hiai (1987); Petek and

Radic̀ (2020).

(iv) Type IV: Let G : M → M be a matrix function. The aim of this type of linear

preserver problems is to study the structure of linear maps ψ : M → M that

commute with the matrix function G, i.e.,

G(ψ(A)) = ψ(G(A))

for all A ∈ M. Let G(A) = adjA, the classical adjoint of A ∈ Mn(C). Sinkhorn

(1982) initiated the study of classical adjoint­commuting linear mapsψ :Mn(C) →

Mn(C) satisfying ψ(adj(A)) = adj(ψ(A)) for all A ∈ Mn(C). He showed that

there exists an invertible matrix P inMn(C) and λ ∈ C with λn−2 = 1 such that

either

ψ(A) = λPAP−1

for all A ∈Mn(C), or

ψ(A) = λPAtP−1
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for all A ∈ Mn(C). For more examples of this type of linear preserver problems,

the reader may referred to see, for instance Chan and Lim (1992); Chooi and Ng

(2010); Khachorncharoenkul et al. (2020).

The literature on linear preserver problems is vast and rich. For an extensive expository

survey of the subject and its developments, we refer the reader to the papers in Linear and

Multilinear Algebra (volume 33, no.1­2 (1992), pp.1­119) in Pierce et al. (1992), or to

the expository papers in Guterman et al. (2000); C.­K. Li and Pierce (2001); C.­K. Li

and Tsing (1992); Mbekhta (2012), or to the books/book chapter in Molnár (2007); Šemrl

(2014); Zhang et al. (2007) and references therein. Many works have been done in linear

preserver problems related to the theory of functional identities. For works in this area,

see, for example Beidar et al. (2002), (Brešar et al., 2007, Chapter 7) and (Brešar, 2004,

Section 5.3).

It is worth mentioning that linear preservers ψ : M → M of the form (2.7), (2.8),

(2.9) or (2.10) are said to be of the standard form in the study of linear preserver prob­

lems. Nevertheless, in some situations, it is interesting to discover linear preservers which

are of irregular form or nonstandard form. Chooi and Lim (1998) studied some linear pre­

servers on upper triangular matrices and discovered that the structure of linear preservers

on upper triangular matrices is more fertile and complex than the corresponding result on

full matrices. A subspaceH of Tn(F) is a called a rank one subspace ifA ∈ H implies that

eitherA = 0 orA is of rank one. They classified linear maps ψ : Tn(F) → Tn(F) preserv­

ing rank one upper triangular matrices and showed that either Im ψ is an n­dimensional

rank one subspace, or there exist invertible matrices P,Q ∈ Tn(F) such that

ψ(A) = PAQ

for all A ∈ Tn(F), or

ψ(A) = PA+Q

for all A ∈ Tn(F). Here, A+ = JnA
tJn and Jn ∈ Mn(F) is the matrix with one on

the minor diagonal and zero elsewhere. In the paper, they characterised linear maps ψ :

Tn(F) → Tn(F) that preserve determinant and showed that there exists a permutation σ
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of degree n and nonzero scalars λ1, . . . , λn ∈ F with λ1 · · ·λn = 1 such that

[ψ(A)]ss = λsaσ(s),σ(s), s = 1, . . . , n

for allA = (aij) ∈ Tn(F). Molnár and Šemrl (1998) studied bijective linear maps preserv­

ing rank one idempotents, linear maps preserving commutativity in both directions and

bijective linear maps preserving commutativity, on upper triangular matrices. Bell and

Sourour (2000) characterised surjective additive maps preserving rank one block upper

triangular matrices as well as additive maps preserving rank one matrices in both direc­

tions on block upper triangular matrices. Since then, there has been considerable interest

in studying linear preservers on Tn(F), see, for example rank one nonincreasing linear

maps in Chooi and Lim (2001), linear maps preserving numerical range in C.­K. Li et

al. (2001), linear maps preserving generalised numerical ranges in Cheung and Li (2001)

and coherence invariant maps in Chooi and Lim (2002). The study of linear preservers

on Tn(F) is more challenging and the structures are usually more complicated than the

corresponding result onMn(F).

2.2.2 Functional identities

A functional identity on a ring R is an identical relation holding for all elements in

R which involves some functions on R. The goal in the study of functional identities

is to determine the form of functions satisfying certain identities, or, when this is not

possible, to describe the structure of the ring admitting the functional identity in question.

The theory of functional identities is a relatively new subject whose roots lie in the Ph.D.

thesis of Brešar in the year 1990.

LetR be a ring and let f, g : R → R be maps such that

f(x)y + g(y)x = 0 (2.11)

for all x, y ∈ R. This is a very basic example of a functional identity. A trivial solution

when (2.11) is fulfilled is when f = g = 0. IfR is commutative, then nontrivial solutions

when (2.11) holds are f is the identity function and g = −f . Let D be a division ring.
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Brešar (1995b) proved the following theorem.

Theorem 2.2.1. (Brešar, 1995b, Lemma 4.5) If f1, f2, f3, f4 : D → D are additive maps

satisfying

f1(x)y + xf2(y) + f3(y)x+ yf4(x) = 0 (2.12)

for all x, y ∈ D, then there exist additive maps µ, η : D → Z(D) and a, b ∈ D such that

f1(x) = −xa+ µ(x),

f2(x) = ax− η(x),

f3(x) = −xb+ η(x),

f4(x) = bx− µ(x)

(2.13)

for all x ∈ D.

For more studies on functional identities, see, for example Brešar (1995a, 2016, 2020);

Brešar et al. (2015); Brešar and Špenko (2014, 2015); Catalano (2018); Cezayirlioğlu and

Demir (2021); Dar and Jing (2022); Han (2017); T.­K. Lee (2019); Wang (2013). Also,

the study of functional identities on triangular matrix rings can be found in, for example

Beidar et al. (2000); Eremita (2013, 2015, 2016); Wang (2015, 2016b, 2019); Yuan and

Chen (2020). For a full account on functional identities and its historical developments,

we refer the reader to the book ‘Functional Identities’ by Brešar, Chebotar and Martindale

3rd in Brešar et al. (2007) and the survey paper in Brešar (2000).

The theory of functional identities is closely related to the study of commuting maps,

centralizing maps and power commuting maps on rings. One of the earliest results in the

study of commuting maps is Posner’s theorem (Posner, 1957, Theorem 2) which states

that a prime ring admitting a nonzero commuting derivation must be commutative. In

1993, Brešar first described the structures of commuting additive maps on a prime ring

and centralizing additive maps on a prime ring of characteristic not two. He proved the

following results.

Theorem 2.2.2. (Brešar, 1993a, Theorem 3.2) Let R be a prime ring. Suppose that an

additive mapping ψ : R 7→ R is commuting on R. Then there exists an additive map
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µ : R → C and an element λ in the extended centroid C ofR such that

ψ(A) = λA+ µ(A) (2.14)

for all A ∈ R.

Theorem 2.2.3. (Brešar, 1993a, Theorem A) LetR be a prime ring of characteristic not

two. If an additive map ψ : R 7→ R is centralizing on R, then there exists an additive

map µ : R → C and an element λ in the extended centroid C ofR such that

ψ(A) = λA+ µ(A) (2.15)

for all A ∈ R.

The form as described in (2.14) or (2.15) is called the standard form. These results

have been generalised in several directions, see, for example commuting maps in Beidar

(1998); Brešar and Miers (1995); Costara (2021); Lapuangkham and Leerawat (2021);

P.­H. Lee and Lee (1997); T.­K. Lee and Lee (1996); Xiao and Wei (2010), and central­

izing and related maps in Ara and Mathieu (1993); Brešar et al. (1993); P.­H. Lee and

Wang (2009); T.­C. Lee (1998); T.­K. Lee (1997); Y. Li and Wei (2012); Qi (2016); Wang

(2016b). For a full account on commuting maps and its historical developments, we refer

the reader to the survey paper by Brešar (2004). The study of commuting additive maps

on triangular algebras was initiated by Cheung (2001). He showed that the structure of

commuting linear maps on triangular algebras is of the standard form (2.14). Beidar et al.

(2000) studied commuting linear maps on upper triangular matrices over fields. Eremita

(2017) investigated commuting additive maps on upper triangular matrices over unital

rings. On the other hand, Brešar’s structural results are extremely influential and have

stimulated considerable study in some related maps on various algebras, rings and matrix

spaces such as: m­power commuting maps in Ahmed (2019); Beidar et al. (1997); Brešar

and Hvala (1995); Chacron (2021); Chacron and Lee (2019); Franca and Louza (2021);

Inceboz et al. (2016); T.­K. Lee et al. (2004); Qi (2016); Słowik and Ahmed (2021), skew­

commuting maps in Brešar (1993c); Fošner (2015); Park and Jung (2002),m­commuting
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maps in Brešar (1992, 1996); Du and Wang (2012); Y. Li et al. (2019); C.­K. Liu (2020);

C.­K. Liu and Pu (2021); Qi and Hou (2015); Xiao and Yang (2021), strong commutativ­

ity preserving maps in Brešar and Miers (1994); Chen and Zhao (2021); T.­K. Lee and

Wong (2012); Qi and Hou (2012) and commuting traces maps in Benkovič and Eremita

(2004); Brešar (1993b); Brešar and Šemrl (2003); Eremita (2017); Franca (2015, 2016);

Franca and Louza (2018); P.­H. Lee et al. (1997); Wang (2016a).

In 2012, inspired by the study of linear preserver problems on sets of matrices that are

not closed under addition and the structural result in (Brešar, 1993a, Theorem 3.2), Franca

(2012) initiated the study of commuting additive maps ψ : Mn(F) → Mn(F) on invert­

ible (respectively, singular) n×nmatrices over a field F. He showed ψ is of the standard

form (2.14). This result has been generalised by Franca (2013a) and Xu and Yi (2014) for

commuting additive maps ψ : Mn(F) → Mn(F) on rank k matrices for some fixed inte­

ger 1 < k ⩽ n. Subsequently, the description of commuting additive maps on rank one

matrices over fields and on rank one matrices over noncommutative division rings was

obtained in Franca (2017); Franca and Louza (2017), respectively. Extending Franca’s

results, C.­K. Liu (2014a) studied centralizing additive maps on the set of singular and

invertible matrices. Chooi, Mutalib, and Tan (2021) characterised centralizing additive

maps on rank k block triangular matrices over fields. C.­K. Liu (2014b); C.­K. Liu et al.

(2018) advanced the study of strong commutativity preserving maps to rank k matrices.

Chooi and Wong (2021) gave a characterisation of commuting additive maps on tensor

products of matrix algebras over fields. More recently, Chooi and Tan (2021) successfully

described commuting additive maps on rank k symmetric matrices over a field of char­

acteristic not two. Many interesting results have been obtained, see, for example Chooi

and Kwa (2019, 2020); Franca (2013b); Franca and Louza (2019); H. Liu and Xu (2017);

Xu and Liu (2017); Xu et al. (2016); Xu and Zhu (2018). Lately, m­power commuting

additive maps have been generalised to set of matrices that are not closed under addition

in C.­K. Liu and Yang (2017) and Chou and Liu (2021).

2.3 Methodology

Our approaches of research methodology comprises of three components.
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The first component is preliminary background review to identify essential research

problems. We study and understand specific matrix theoretic techniques and ideas em­

ployed in determining the commuting maps on fixed­rank square matrices. We then iden­

tify suitable research problems on commuting additive maps on fixed­rank triangular ma­

trices over certain underlying rings for further investigation.

The second component involves mathematical calculations and analysis. We perform a

series of careful algebraic calculation via basis constructive approach. This is followed by

an analysis of trait and pattern of the computation to derive useful information in planning

the sequence of our proof.

The last component is characterisation and refinement of maps. We formulate theo­

rems and prove the structural results with rigorous and valid mathematical arguments. By

factorising the additive group generators, we scrutinise and refine the commuting additive

map obtained to ensure its form is the simplest and ultimate.
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CHAPTER 3: COMMUTING ADDITIVE MAPS ON RANK k UPPER
TRIANGULAR MATRICES OVER FIELDS

3.1 Introduction

LetR be a ring with centreZ(R) and let S be a nonempty subset ofR. Letψ : R → R

be a map. Recall that a map ψ is commuting on S if [ψ(A), A] = 0 for all A ∈ S , where

[X,Y ] is the commutator of X,Y ∈ R. The study of commuting additive maps was

recently extended to subsets of matrices that are not closed under addition. Let n ⩾ 2

be an integer and let Mn(F) denote the ring of all n × n matrices over a field F with

unity In. Franca (2012) proved that if ψ : Mn(F) → Mn(F) is an additive map that

satisfies [ψ(A), A] = 0 for all invertible (singular) matrices A ∈Mn(F), then there exists

a scalar λ ∈ F and an additive map µ : Mn(F) → F, such that ψ is of the standard

form ψ(A) = λA + µ(A)In for all A ∈ Mn(F), except when F = F2, the Galois field

of two elements. Let n ⩾ 3 be an integer. Fix an integer 2 ⩽ k ⩽ n − 1. Under the

assumption char F = 0 or char F > 3, Franca (2013a) proved that commuting additive

mapsψ :Mn(F) →Mn(F) on all rank kmatrices are of the standard form (2.14) i.e. there

exists λ ∈ F and an additive map µ :Mn(F) → F such that ψ(A) = λA+ µ(A)In for all

A ∈ Mn(F). Improving Franca’s result (Franca, 2013a, Theorem 3), Xu and Yi (2014)

gave a new proof for commuting additive maps ψ :Mn(F) →Mn(F) on rank k matrices,

for fixed integers 2 ⩽ k ⩽ n, by getting rid of the assumption char F 6= 2, 3. Recall

that Tn(F) is the ring of n×n upper triangular matrices over F with centre Z(Tn(F)) and

unity In. Inspired by the aforementioned results, in this chapter, we successfully address

the question of describing the form of commuting additive maps ψ : Tn(F) → Tn(F) on

rank k matrices with |F| ⩾ 3 and 2 ⩽ k ⩽ n a fixed integer. The result highlights that ψ

is ”almost” of the standard form (2.14) when |F| = 3 and k = n.

3.2 Irregular nonstandard examples

We characterise commuting additive maps on rank k, 2 ⩽ k ⩽ n, upper triangular

matrices over fields of at least three elements. Surprisingly, unlike the case of commuting

additive maps of Mn(F) on rank k matrices, it turns out that ψ is not necessarily of the

standard form (2.14) when k = n and F is the Galois field of three elements. For instance,
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consider the additive map φ : Tn(F) → Tn(F) is defined to be

φ(A) = (a11 + ann)E1n

for every A = (aij) ∈ Tn(F). Here, Eij ∈ Tn(F) denotes the standard matrix unit whose

(i, j)­th entry is one and zero elsewhere. Let A = (aij) ∈ Tn(F) be invertible. Then

a11, ann 6= 0. If |F| = 3, then a11+ann = 0 whenever a11 6= ann. Thus (a11+ann)ann =

a11(a11 + ann), and so

φ(A)A = (a11 + ann)E1nA

= (a11 + ann)annE1n

= a11(a11 + ann)E1n

= A(a11 + ann)E1n

= Aφ(A).

Hence φ is a commuting additive map on rank n triangular matrices when |F| = 3.

We now give some examples to show the indispensability of the conditions k ⩾ 2 and

|F| ⩾ 3 in Theorem 3.3.1.

Example 3.2.1. Let F be a field and let n ⩾ 3 be an integer. Let ψi : Tn(F) → Tn(F),

i = 1, 2, be the additive maps defined by

ψ1(A) = apqE1n

for all A = (aij) ∈ Tn(F), where p and q are fixed integers satisfying 1 < p ⩽ q < n;

and

ψ2(A) = a22E13 + a33E24 + · · ·+ an−1,n−1En−2,n

for all A = (aij) ∈ Tn(F). We show that each additive map ψi is commuting on rank one

matrices. Let X = (xij) ∈ Tn(F) be of rank one. As we see in Lemma 2.1.1, there exist

invertible matrices P,Q ∈ Tn(F) such thatX = PEstQ for some integers 1 ⩽ s ⩽ t ⩽ n.

Since P andQ are invertible upper triangular matrices, it follows that when (s, t) = (h, h)
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for some 1 ⩽ h ⩽ n, we have xhh 6= 0, xij = 0 for every 1 ⩽ i ⩽ j < h and xij = 0 for

every h < i ⩽ j ⩽ n.

Consider first the additive mapψ1. When (s, t) ∈ {(1, 1), (n, n)}, we haveψ1(X) = 0,

and so [ψ1(X), X] = 0. When (s, t) /∈ {(1, 1), (n, n)}, we have x11 = xnn = 0. Thus

ψ1(X)X = (xpqE1n)X = 0 = X(xpqE1n) = Xψ1(X).

Next, we consider the additive map ψ2. When (s, t) ∈ {(1, 1), (n, n)} or 1 ⩽ s < t ⩽ n,

we have ψ2(X) = 0, so [ψ2(X), X] = 0. When (s, t) = (ℓ, ℓ) for some 1 < ℓ < n, we

have ψ2(X) = xℓℓEℓ−1,ℓ+1. Since Eℓ−1,ℓ+1PEℓℓ = 0 and EℓℓQEℓ−1,ℓ+1 = 0, it follows

that

ψ2(X)X = xℓℓ(Eℓ−1,ℓ+1PEℓℓ)Q = 0 = xℓℓP (EℓℓQEℓ−1,ℓ+1) = Xψ2(X).

Consequently, both ψ1 and ψ2 are commuting additive maps on rank one matrices.

Example 3.2.2. Let |F| = 2 and let n ⩾ 3 be an integer. Let ψ : Tn(F) → Tn(F) be the

additive map defined by

ψ(A) = a11E2n + a12E1n

for all A = (aij) ∈ Tn(F). Let X = (xij) ∈ Tn(F) be of rank one. Then there exist

invertible matrices P,Q ∈ Tn(F) such thatX = PEstQ for some integers 1 ⩽ s ⩽ t ⩽ n.

When (s, t) /∈ {(1, 1), (1, 2), (2, 2)}, we have x11 = x12 = 0, and so [ψ(X), X] = 0.

When (s, t) = (1, 1), we have xij = 0 for all 2 ⩽ i ⩽ j ⩽ n. Thus

ψ(X)X = (x11E2n+x12E1n)X = 0 = 2(x11x12)E1n = X(x11E2n+x12E1n) = Xψ(X).

When (s, t) ∈ {(1, 2), (2, 2)}, we get x11 = 0 = xnn. Then

ψ(X)X = (x12E1n)X = 0 = X(x12E1n) = Xψ(X).

Hence ψ is a commuting additive map on rank one matrices.
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The following example shows that the commuting additive map ψ : Tn(F) → Tn(F)

on rank k matrices is not of the form given in (3.1) when |F| = 2 and k = n.

Example 3.2.3. Let |F| = 2 and let ψ : T2(F) → T2(F) be the additive map defined by

ψ(A) = a12(E11 + E12 + E22)

for all A = (aij) ∈ T2(F). Note that A1 = E11 +E22 and A2 = E11 +E22 +E12 are the

only rank two matrices in T2(F), and ψ(A1)A1 = 0 = A1ψ(A1) and ψ(A2)A2 = A1 =

A2ψ(A2). Then ψ is a commuting additive map on rank two matrices.

3.3 Main results

We obtain a complete description of commuting additive maps ψ : Tn(F) → Tn(F) on

rank k matrices for |F| ⩾ 3 and 2 ⩽ k ⩽ n which highlights that ψ are “almost” of the

standard form as given in (3.1) when |F| = 3 and k = n.

Theorem 3.3.1. Let 2 ⩽ k ⩽ n be an integer and let F be a field with |F| ⩾ 3. Let Tn(F)

be the ring of n × n upper triangular matrices over F with centre Z(Tn(F)) and unity

In. Then ψ : Tn(F) → Tn(F) is an additive map satisfying [ψ(A), A] = 0 for all rank

k matrices A ∈ Tn(F) if and only if there exists an additive map µ : Tn(F) → F and

λ, α ∈ F in which α = 0 when |F| > 3 or k < n such that

ψ(A) = λA+ µ(A)In + α(a11 + ann)E1n (3.1)

for all A = (aij) ∈ Tn(F).

Recall that a map ψ : Tn(F) → Tn(F) is centralizing on rank k matrices if [ψ(A), A] ∈

Z(Tn(F)) for all rank k matrices A ∈ Tn(F). The following result can be found in Chooi,

Mutalib, and Tan (2021).

Lemma 3.3.2. (Chooi, Mutalib, & Tan, 2021, Theorem 3.8) Let F be a field and let n ⩾ 2

be an integer. Let 1 < r ⩽ n be a fixed integer such that r 6= n when |F| = 2. Then

ψ : Tn(F) → Tn(F) is a centralizing additive map on rank r matrices if and only if there
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exist scalars λ, α ∈ F and an additive map µ : Tn(F) → F such that

ψ(A) = λA+ µ(A)In + α(a11 + ann)E1n

for every A = (aij) ∈ Tn(F), where α 6= 0 only if r = n and |F| = 3.

Invoking Theorem 3.3.1 and Lemma 3.3.2, we deduce a structural characterisation of

commuting additive maps ψ : Tn(F) → Tn(F) on rank r matrices over a field F, where

1 < r ⩽ n is an integer such that r 6= n when |F| = 2.

Theorem 3.3.3. Let F be a field and let n ⩾ 2 be an integer. Let 1 < r ⩽ n be a fixed

integer. Then ψ : Tn(F) → Tn(F) is a commuting additive map on rank r matrices if

and only if when r < n or |F| 6= 2, there exist scalars λ, α ∈ F and an additive map

µ : Tn(F) → F such that

ψ(A) = λA+ µ(A)In + α(a11 + ann)E1n

for all A = (aij) ∈ Tn(F), where α 6= 0 only if r = n and |F| = 3.

3.4 Proofs

Throughout this section, unless stated otherwise, let n ⩾ 2 be an integer and let F be a

field. Recall that [A,B] is the commutator of A,B ∈Mn(F). Our discussion begins with

the following lemma by adopting an idea of (Xu & Yi, 2014, Lemma 2.5).

Lemma 3.4.1. Let 1 ⩽ k ⩽ n be an integer and let F be a subset ofMn(F) closed under

addition. Let ψ : F → F be a commuting additive map on rank k matrices. If A ∈ F

is a sum of three rank k matrices in F among which the sum of any two is of rank k, then

[ψ(A), A] = 0.

Proof. Let A = X1 + X2 + X3 for some rank k matrices Xi’s in F such that Xi + Xj

is of rank k for each pair of distinct integers 1 ⩽ i, j ⩽ 3. For each 1 ⩽ i 6= j ⩽

3, since [ψ(Xi + Xj), Xi + Xj] = 0, [ψ(Xi), Xi] = 0 and [ψ(Xj), Xj] = 0, we get
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[ψ(Xj), Xi] + [ψ(Xi), Xj] = 0. Thus

[ψ(A), A] = [ψ(X1) + ψ(X2) + ψ(X3), X1 +X2 +X3]

=
3∑

i=1

[ψ(Xi), Xi] +
∑

1⩽i<j⩽3

([ψ(Xj), Xi] + [ψ(Xi), Xj]) = 0

as desired.

Lemma 3.4.2. Let F be a field with |F| ⩾ 3 and let ψ : Tn(F) → Tn(F) be a commuting

additive map on rank n matrices. Then there exists a unique additive map τ : F → F

such that

ψ(λIn) + τ(λ)E1n ∈ Z(Tn(F))

for every λ ∈ F. Moreover, τ = 0 when |F| > 3.

Proof. Let λ ∈ F. The result clearly holds when λ = 0. Consider λ 6= 0. Since |F| ⩾ 3,

there exists a nonzero α ∈ F such that α 6= λ. Let 1 ⩽ i < j ⩽ n and B = Eij − αIn.

ThenB and λIn+B are of rank n. Since [ψ(λIn), λIn] = 0, [ψ(B), B] = 0 and [ψ(λIn+

B), λIn + B] = 0, we get [ψ(λIn), B] + [ψ(B), λIn] = 0. Since [ψ(B), λIn] = 0, it

follows that

0 = [ψ(λIn), B] = ψ(λIn)(Eij −αIn)− (Eij −αIn)ψ(λIn) = ψ(λIn)Eij −Eijψ(λIn).

Then ψ(λIn)Eij = Eijψ(λIn) for all 1 ⩽ i < j ⩽ n. Note that α and α − λ are distinct

nonzero scalars. When |F| > 3, there exists a nonzero β ∈ F\{α, α− λ}. Let 1 ⩽ i ⩽ n.

We take C = βEii − αIn ∈ Tn(F). Clearly, C and λIn + C = (λ − α)In + βEii

are of rank n. Since [ψ(C), λIn] = 0, it follow that [ψ(λIn + C), λIn + C] = 0 yields

[ψ(λIn), C] = 0. Therefore ψ(λIn)Eii = Eiiψ(λIn) for all 1 ⩽ i ⩽ n. By Lemma 2.1.3,

we have ψ(λIn) ∈ Z(Tn(F)) = FIn. Consequently, the result follows with τ the zero

map on F.

Consider now |F| = 3. Suppose that ψ(λIn) = (aij). By virtue of ψ(λIn)Eij =

Eijψ(λIn) for every 1 ⩽ i < j ⩽ n, we have Ekkψ(λIn)Eij = EkkEijψ(λIn) for every
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1 ⩽ k ⩽ i < j ⩽ n. Hence

akiEkj = δkiEkjψ(λIn)

for all 1 ⩽ k ⩽ i < j ⩽ n. So aki = 0 for 1 ⩽ k < i < n. When k = i, for each

1 ⩽ i < j ⩽ n,

aiiEij = Eijψ(λIn)

= Eij

(
n∑

s=1

assEss +
n−1∑
s=1

asnEsn

)

=


ajjEij + ajnEin if 1 < j < n,

annEin if j = n.

Then ain = 0 for all 1 < i < n, and aii = ajj for all 1 ⩽ i 6= j ⩽ n. So ψ(λIn) =

a11In + a1nE1n. Consequently, there exist maps τ, η : F → F such that

ψ(λIn) + τ(λ)E1n = η(λ)In ∈ Z(Tn(F))

for every λ ∈ F. By the additivity of ψ and the linear independence of In and E1n, it can

be verified that τ and η are additive maps which are uniquely determined by ψ.

Lemma 3.4.3. Let F be the Galois field of three elements and let ψ : Tn(F) → Tn(F) be

a commuting additive map on rank n matrices. If φ : Tn(F) → Tn(F) is the map defined

by

φ(A) = ψ(A)− τ(a11 + ann)E1n

for all A = (aij) ∈ Tn(F), where τ : F → F is the additive map uniquely determined by

ψ as described in Lemma 3.4.2, then φ is a commuting additive map on rank n matrices

such that φ(Z(Tn(F))) ⊆ Z(Tn(F)).

Proof. Note that φ is additive by the additivity of ψ and τ . We now claim that φ is

commuting on rank n triangular matrices. Let A = (aij) ∈ Tn(F) be of rank n. Then

[ψ(A), A] = 0 and

[φ(A), A] = Aτ(a11 + ann)E1n − τ(a11 + ann)E1nA
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= (a11τ(a11 + ann)− τ(a11 + ann)ann)E1n

= (a11 − ann)τ(a11 + ann)E1n.

Clearly, [φ(A), A] = 0 when a11 = ann. Consider a11 6= ann. Since A is invertible,

a11, ann 6= 0. Thus a11 + ann = 0 by virtue of |F| = 3. Hence [φ(A), A] = 0 for all rank

n matrices A ∈ Tn(F).

Let X = λIn ∈ Z(Tn(F)) for some λ ∈ F. Then φ(X) = ψ(λIn) − τ(λ + λ)E1n =

ψ(λIn) + τ(λ)E1n − τ(λ + λ + λ)E1n = ψ(λIn) + τ(λ)E1n since |F| = 3. It follows

from Lemma 3.4.2 that φ(X) ∈ Z(Tn(F)). Hence φ(Z(Tn(F))) ⊆ Z(Tn(F)).

Let 2 ⩽ k ⩽ n be fixed integers and let F be a field with |F| ⩾ 3. Using some ideas

from Franca (2012); Xu and Yi (2014), we now prove Theorem 3.3.1.

Proof of Theorem 3.3.1. The sufficiency is trivial when |F| > 3 or k < n. When |F| = 3

and k = n, the result follows immediately from Lemma 3.4.3.

Consider the necessity. Let A = (aij) ∈ Tn(F). Then

[ψ(A), A] =
∑

1⩽i⩽j⩽n

[ψ(aijEij), aijEij] +
∑

(i,j)̸=(s,t)

[ψ(aijEij), astEst]. (3.2)

To prove [ψ(A), A] = 0, it suffices to claim

[ψ(aijEij), aijEij] = 0 and [ψ(aijEij), astEst] + [ψ(astEst), aijEij] = 0

for all 1 ⩽ i ⩽ j ⩽ n and 1 ⩽ s ⩽ t ⩽ n with (i, j) 6= (s, t). We argue in the following

two cases.

Case I: 1 < k < n. Then n ⩾ 3. Let A = (aij) ∈ Tn(F). For any 1 ⩽ i ⩽ j ⩽ n and

1 ⩽ s ⩽ t ⩽ n with (i, j) 6= (s, t), the rank of aijEij + astEst is at most two. By Lemma

2.1.2, if aijEij + astEst is nonzero, then it can be expressed as a sum of three rank k

matrices in Tn(F) among which the sum of any two is of rank k. It follows from Lemma

3.4.1 that [ψ(aijEij + astEst), aijEij + astEst] = 0. Likewise, [ψ(aijEij), aijEij] =

0 = [ψ(astEst), astEst]. Hence [ψ(aijEij), astEst] + [ψ(astEst), aijEij] = 0. By (3.2),

[ψ(A), A] = 0 for all A ∈ Tn(F).
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Case II: k = n. Let φ : Tn(F) → Tn(F) be the map defined by

φ(A) =


ψ(A)− τ(a11 + ann)E1n when |F| = 3,

ψ(A) when |F| > 3

for every A = (aij) ∈ Tn(F), where τ : F → F is the additive map uniquely determined

byψ as described in Lemma 3.4.2. Thenφ is a commuting additivemap of ranknmatrices

such that φ(Z(Tn(F))) ⊆ Z(Tn(F)) by Lemmas 3.4.2 and 3.4.3.

Let A = (aij) ∈ Tn(F). We first claim that

[φ(aijEij), aijEij] = 0 (3.3)

for every 1 ⩽ i ⩽ j ⩽ n. Consider aij 6= 0. Since |F| ⩾ 3, there exists α ∈ F\{0}

such that aijEij +αIn is of rank n. By virtue of [φ(aijEij +αIn), aijEij +αIn] = 0 and

φ(Z(Tn(F))) ⊆ Z(Tn(F)), the claim is proved.

Next, we claim that

[φ(aijEij), astEst] + [φ(astEst), aijEij] = 0 (3.4)

for every 1 ⩽ i ⩽ j ⩽ n and 1 ⩽ s ⩽ t ⩽ nwith (i, j) 6= (s, t). Note that if i < j or s < t

or |F| > 3, then there exists a β ∈ F\{0} such that aijEij + astEst+βIn is of rank n. By

virtue of [φ(aijEij+astEst+βIn), aijEij+astEst+βIn] = 0, φ(Z(Tn(F))) ⊆ Z(Tn(F))

and (3.3), the claim is proved. We now consider i = j, s = t and |F| = 3. Note first that

[φ(Eii), Ess] + [φ(Ess), Eii] = 0 (3.5)

due to the fact that Eii + Ess + γIn is of rank n for some nonzero γ ∈ F. Note that φ is

linear when |F| = 3. It follows from (3.5) that

[φ(aiiEii), assEss] + [φ(assEss), aiiEii] = aiiass ([φ(Eii), Ess] + [φ(Ess), Eii])

= 0.
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Therefore the claim (3.4) is proved. Together with the results (3.3) and (3.4), we conclude

that φ is an additive map satisfying φ(A)A = Aφ(A) for all A ∈ Tn(F).

It follows from (Eremita, 2015, Corollary 3.1) or (Eremita, 2017, Proposition 3.1) that

there exists an additive map µ : Tn(F) → F and λ ∈ F such that

ψ(A) = λA+ µ(A)In + τ(a11 + ann)E1n

for all A ∈ Tn(F), where τ = 0 when |F| > 3 or 1 < k < n. Furthermore, when

F = {0, 1,−1} is the Galois field of three elements and k = n, the additivity of τ implies

linearity of τ . Then either τ = 0 or τ is bijective. We thus have τ = 0, τ is the identity,

or

τ(0) = 0, τ(1) = −1 and τ(−1) = 1.

Consequently, there exists a scalar α ∈ F such that τ(x) = αx for every a ∈ F. This

completes the proof.

Remark: The results in this chapter have been published in Chooi et al. (2020).
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CHAPTER 4: COMMUTING ADDITIVE MAPS ON INVERTIBLE UPPER
TRIANGULARMATRICES OVER THE GALOIS FIELD OF TWO ELEMENTS

4.1 Introduction

Let n ⩾ 2 be an integer and let F2 be the Galois field of two elements. Let Tn(F2) be

the ring of n×n upper triangular matrices over F2 with centre Z(Tn(F2)) and unity In. In

Franca (2012), an example of a nonstandard commuting additive map on invertible 2× 2

matrices over F2 was illustrated. Motivated by this example and Theorem 3.3.3, in this

chapter we give a complete description of commuting additive mapsψ : Tn(F2) → Tn(F2)

on invertible matrices, i.e., additive maps ψ satisfying [ψ(A), A] = 0 for every invertible

matrix A ∈ Tn(F2), in Theorems 4.3.1, 4.3.2 and 4.3.3 for n ⩾ 4, n = 3 and n = 2,

respectively, where [X,Y ] is the commutator of X,Y ∈ Tn(F2). Surprisingly, unlike

the situation in commuting additive maps on invertible square matrices, the structure of

commuting additive maps ψ : Tn(F2) → Tn(F2) on invertible matrices is much more

complex and fertile. Since the set of commuting additive maps ψ : Tn(F2) → Tn(F2)

on invertible matrices is an additive group, it is plausible to start our discussion in the

upcoming section by presenting some of the generators or basic maps that are not of the

standard form (2.14).

4.2 Irregular nonstandard examples

For the sake of simplicity, we adopt a − b = a + b for a, b ∈ F2 throughout our

discussion. For each pair of integers 1 ⩽ i, j ⩽ n, let Eij ∈ Tn(F2) be the standard

matrix unit whose (i, j)th entry is one and zero elsewhere.

Example 4.2.1. Let n ⩾ 2 be an integer and let H = (hij) ∈ Tn(F2) be a fixed matrix.

Let ς : Tn(F2) → Tn(F2) be the map defined by

ς(A) = tr (H tA)E1n =
∑

1⩽i⩽j⩽n

aijhijE1n

for all A = (aij) ∈ Tn(F2), where tr (A) is the trace of A. Then ς is an additive map on
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Tn(F2). Let A = (aij) ∈ Tn(F2) be invertible. Then aii = 1 for i = 1, . . . , n. Thus

Aς(A) =
∑

1⩽i⩽j⩽n

hijaijE1n = ς(A)A.

Hence ς is a commuting additive map on invertible matrices. For example,

A 7→ tr (A)E1n and A 7→ Σ(A)E1n

are commuting additive maps on invertible matrices of this type. Here, Σ(A) denotes the

sum of all entries of A.

Example 4.2.2. Let n ⩾ 2 be an integer and let α, β1, β2 ∈ F2 be some fixed scalars. Let

Ψα,β1,β2 : Tn(F2) → Tn(F2) be the map defined by

Ψα,β1,β2(A) = (αa12 + β1(an−1,n + ann))E1,n−1 + (αan−1,n + β2(a11 + a12))E2n

for all A = (aij) ∈ Tn(F2). Then Ψα,β1,β2 is an additive map on Tn(F2). We now verify

that [A,Ψα,β1,β2(A)] = 0 for all invertible matrices A ∈ Tn(F2). Let A = (aij) ∈ Tn(F2)

be invertible. ThenA = In+U whereU =
∑

1⩽i<j⩽n aijEij . Since [In,Ψα,β1,β2(A)] = 0,

it follows that [A,Ψα,β1,β2(A)] = [U,Ψα,β1,β2(A)]. Therefore

UΨα,β1,β2(A) = a12E12(αan−1,n + β2(1 + a12))E2n = αa12an−1,nE1n

because a12(1 + a12) = 0, and

Ψα,β1,β2(A)U = (αa12 + β1(an−1,n + 1))E1,n−1(an−1,nEn−1,n) = αa12an−1,nE1n

because (an−1,n+1)an−1,n = 0. ThenΨα,β1,β2 is a commuting additive map on invertible
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matrices. For instance, the following maps



a11 a12 a13 a14

0 a22 a23 a24

0 0 a33 a34

0 0 0 a44


7→



0 0 a12 0

0 0 0 a34

0 0 0 0

0 0 0 0


,



a11 a12 a13 a14

0 a22 a23 a24

0 0 a33 a34

0 0 0 a44


7→



0 0 a34 + a44 0

0 0 0 0

0 0 0 0

0 0 0 0


,



a11 a12 a13 a14

0 a22 a23 a24

0 0 a33 a34

0 0 0 a44


7→



0 0 0 0

0 0 0 a11 + a12

0 0 0 0

0 0 0 0


are commuting additive maps on invertible matrices of this type.

Example 4.2.3. Let n ⩾ 2 be an integer and let X1, . . . , Xn ∈ Tn(F2) be some fixed

matrices such that X1 + · · ·+Xn = 0. Let ϕ : Tn(F2) → Tn(F2) be the map defined by

ϕ(A) =
n∑

i=1

aiiXi

for all A = (aij) ∈ Tn(F2). Notice that ϕ is additive and ϕ(A) = 0 whenever A is

invertible. Then ϕ is a commuting additive map on invertible matrices which vanishes on

invertible matrices. For instance, the following

a11 a12

0 a22

 7→

a11 + a22 0

0 0

 ,
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

a11 a12 a13 a14

0 a22 a23 a24

0 0 a33 a34

0 0 0 a44


7→



0 a22 + a33 0 0

0 0 0 0

0 0 0 a11 + a22 + a33 + a44

0 0 0 0


,



a11 a12 · · · a1n

0 a22 · · · a2n

0 0
. . . ...

0 0 0 ann


7→



a11 + a22 0 · · · 0

0 a22 + a33 · · · 0

0 0
. . . ...

0 0 0 ann + a11


are commuting additivemaps on invertiblematrices of this typewhich vanish on invertible

matrices.

4.3 Main results

Recall that Tn(F2) is the ring of n × n upper triangular matrices over F2 with centre

Z(Tn(F2)) and unity In. We obtain the following characterisations of commuting additive

maps on invertible upper triangular matrices over the Galois field of two elements.

Theorem 4.3.1. Let n ⩾ 4 be an integer. Then ψ : Tn(F2) → Tn(F2) is a commuting

additive map on invertible matrices if and only if there exist scalars λ, α, β1, β2 ∈ F2,

matrices H,K ∈ Tn(F2) and X1, . . . , Xn ∈ Tn(F2) satisfying X1 + · · · +Xn = 0 such

that

ψ(A) = λA+ tr (H tA)In + tr (KtA)E1n +Ψα,β1,β2(A) +
n∑

i=1

aiiXi

for all A = (aij) ∈ Tn(F2) whereΨα,β1,β2 : Tn(F2) → Tn(F2) is the additive map defined

by

Ψα,β1,β2(A) = (αa12 + β1(an−1,n + ann))E1,n−1 + (αan−1,n + β2(a11 + a12))E2n

for all A = (aij) ∈ Tn(F2).

Theorem 4.3.2. ψ : T3(F2) → T3(F2) is a commuting additive map on invertible ma­

trices if and only if there exist scalars λ, α, β, γ ∈ F2, matrices H,K ∈ T3(F2) and
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X1, X2, X3 ∈ T3(F2) satisfying X1 +X2 +X3 = 0 such that

ψ(A) = λA+ tr (H tA)I3 + tr (KtA)E13 +Ψ0,α,β(A) + Φγ(A) +
3∑

i=1

aiiXi

for every A = (aij) ∈ T3(F2), where Ψ0,α,β : T3(F2) → T3(F2) is the additive map

defined in (4.4) and Φγ : T3(F2) → T3(F2) is defined by

Φγ(A) = γ((a12 + a22)E22 + (a11 + a12 + a23 + a33)E33 + a13(E12 + E23))

for every A = (aij) ∈ T3(F2).

Theorem 4.3.3. ψ : T2(F2) → T2(F2) is a commuting additive map on invertible matrices

if and only if there exist some scalars λ1, λ2 ∈ F2 and matrices X1, X2 ∈ T2(F2) such

that

ψ(A) = (a11 + a12)X1 + (a22 + a12)X2 + λ1a12I2 + λ2a12E12

for every A = (aij) ∈ T2(F2).

We remark that Example 3.2.3 can be derived from Theorem 4.3.3 by setting X1 =

X2 = 0 and λ1 = λ2 = 1.

Remark 4.3.4. In view of Theorem 4.3.3, we have the following observation.

(i) Let λ ∈ F2 be a fixed scalar. If X1 = λE11, X2 = λE22 and λ1 = λ2 = λ, then

ψ(A) = λA for every A ∈ T2(F2).

(ii) Let ϵ1, ϵ2, ϵ3 ∈ F2 be fixed scalars. IfX1 = ϵ1I2,X2 = ϵ2I2, λ1 = ϵ1 + ϵ2 + ϵ3 and

λ2 = 0, then

ψ(A) = (ϵ1a11 + ϵ2a22 + ϵ3a12)I2 for every A = (aij) ∈ T2(F2).

(iii) Let π1, π2, π3 ∈ F2 be fixed scalars. If X1 = π1E12, X2 = π2E12, λ1 = 0 and

λ2 = π1 + π2 + π3, then

ψ(A) = (π1a11 + π2a22 + π3a12)E12 for every A = (aij) ∈ T2(F2).
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(iv) Let X ∈ T2(F2) be a fixed matrix. If X1 = X2 = X and λ1 = λ2 = 0, then

X1 +X2 = 0 and

ψ(A) = a11X1 + a22X2 for every A = (aij) ∈ T2(F2).

(v) Let α, β1, β2 ∈ F2 be fixed scalars. If X1 = β2E22, X2 = β1E11, λ1 = α and

λ2 = 0, then

ψ(A) = (αa12 + β1(a12 + a22))E11 + (αa12 + β2(a11 + a12))E22 = Ψα,β1,β2(A)

for every A = (aij) ∈ T2(F2).

Together with Theorem 3.3.3 in Chapter 3, Theorems 4.3.1, 4.3.2 and 4.3.3, we obtain

a complete structural characterisation of commuting additive maps ψ : Tn(F) → Tn(F)

on rank r matrices over an arbitrary field F, where 1 < r ⩽ n is a fixed integer.

Theorem 4.3.5. Let F be a field and let n ⩾ 2 be an integer. Let 1 < r ⩽ n be a fixed

integer. Then ψ : Tn(F) → Tn(F) is a commuting additive map on rank r matrices if and

only if

• when r < n or |F| 6= 2, there exist scalars λ, α ∈ F and an additive map µ :

Tn(F) → F such that

ψ(A) = λA+ µ(A)In + α(a11 + ann)E1n

for all A = (aij) ∈ Tn(F), where α 6= 0 only if r = n and |F| = 3,

• when r = n ⩾ 4 and |F| = 2, there exist scalars λ, α, β1, β2 ∈ F, matrices

H,K ∈ Tn(F) and X1, . . . , Xn ∈ Tn(F) satisfying X1 + · · ·+Xn = 0 such that

ψ(A) = λA+ tr (H tA)In + tr (KtA)E1n +Ψα,β1,β2(A) +
n∑

i=1

aiiXi

for all A = (aij) ∈ Tn(F), where Ψα,β1,β2 : Tn(F) → Tn(F) is the additive map
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defined by

Ψα,β1,β2(A) = (αa12 + β1(an−1,n + ann))E1,n−1 + (αan−1,n + β2(a11 + a12))E2n

for all A = (aij) ∈ Tn(F),

• when r = n = 3 and |F| = 2, there exist scalars λ, α, β, γ ∈ F, matrices H,K ∈

T3(F) and X1, X2, X3 ∈ T3(F) satisfying X1 +X2 +X3 = 0 such that

ψ(A) = λA+ tr (H tA)I3 + tr (KtA)E13 +Ψα,β(A) + Φγ(A) +
3∑

i=1

aiiXi

for all A = (aij) ∈ T3(F), where Ψα,β : T3(F) → T3(F) and Φγ : T3(F) → T3(F)

are the additive maps defined by

Ψα,β(A) = (α(a23 + a33))E12 + (β(a11 + a12))E23,

Φγ(A) = γ((a12 + a22)E22 + (a11 + a12 + a23 + a33)E33 + a13(E12 + E23))

for all A = (aij) ∈ T3(F), and

• when r = n = 2 and |F| = 2, there exist scalars λ1, λ2 ∈ F and matricesX1, X2 ∈

T2(F) such that

ψ(A) = (a11 + a12)X1 + (a22 + a12)X2 + λ1a12I2 + λ2a12E12

for all A = (aij) ∈ T2(F).

4.4 Proofs

Throughout this section, unless stated otherwise, let n ⩾ 2 be an integer and let F2 be

the Galois field of two elements.

Lemma 4.4.1. Let n ⩾ 3 be an integer and let ψ : Tn(F2) → Tn(F2) be a commuting

additive map on invertible matrices. Then the following assertions hold.

(i) For each integer 1 < i < n and α ∈ F2, there exist αi0, . . . , αi,n−1 ∈ F2 such that

ψ(In +D1 + αDi) =
∑n−1

j=0 αijDj .
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(ii) For each integer 1 < i < n, there exist λi0, . . . , λi,n−1 ∈ F2 such that ψ(Di) =∑n−1
j=0 λijDj .

(iii) [ψ(In), D1] = [ψ(D1), D1] and [ψ(In), Di] = [ψ(D1), Di] = 0 for every i =

2, . . . , n− 1.

(iv) For each i ∈ {0, 1}, there exist αi0, . . . , αi,n−3, ai, bi1, bi2, ci ∈ F2 such that

ψ(Di) =

(
n−3∑
j=0

αijDj

)
+ (αi,n−3 + ai)E2,n−1 + bi1E1,n−1 + bi2E2n + ciE1n

with α0,n−3 + α1,n−3 = a0 + a1 and b01 + b11 = b02 + b12.

Proof. (i) Let α ∈ F2 and let 1 < i < n be an integer. Since [ψ(In+D1+αDi), In+D1+

αDi] = 0 and [ψ(In +D1 + αDi), In] = 0, we get [ψ(In +D1 + αDi), D1 + αDi] = 0.

The result readily follows from Lemma 2.1.5.

(ii) Let 1 < i < n be an integer. By (i) and the additivity of ψ, we obtain

ψ(Di) = ψ(In +D1 +Di) + ψ(In +D1) =
n−1∑
j=0

λijDj

for some λi0, . . . , λi,n−1 ∈ F2.

(iii) Let 1 ⩽ i < n be an integer. By (i) and Lemma 2.1.4, [ψ(In + D1), Di] = 0.

Then [ψ(In), Di] = [ψ(D1), Di]. For 1 < i < n, we note that [ψ(In + Di), Di] = 0.

So [ψ(In), Di] = [ψ(Di), Di]. Moreover, [ψ(Di), Di] = 0 by (ii) and Lemma 2.1.4.

Consequently, [ψ(D1), Di] = [ψ(In), Di] = 0 for every i = 2, . . . , n− 1 as desired.

(iv) Denote ψ(In) = (aij) ∈ Tn(F2). Since [ψ(In), D2] = 0, it follows that for each

integer 0 ⩽ ℓ ⩽ n− 3,

ai, i+ℓ = ai+2, i+2+ℓ for every i = 1, . . . , n− ℓ− 2. (4.1)

Moreover, for n ⩾ 4, [ψ(In), D3] = 0 implies that for each 0 ⩽ ℓ ⩽ n− 4,

ai, i+ℓ = ai+3, i+3+ℓ for every i = 1, . . . , n− ℓ− 3. (4.2)
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By (4.1) and (4.2), we obtain

ψ(In) =

(
n−3∑
j=0

α0jDj

)
+ (α0,n−3 + a0)E2,n−1 + b01E1,n−1 + b02E2n + c0E1n (4.3)

for some scalars α00, . . . , α0,n−3, a0, b01, b02, c0 ∈ F2 as required.

Notice that [ψ(In) + ψ(D1), D1] = 0 by (iii). It follows from Lemma 2.1.5 and (4.3)

that

ψ(D1) =

(
n−3∑
j=0

α1jDj

)
+ (α1,n−3 + a1)E2,n−1 + b11E1,n−1 + b12E2n + c1E1n

for some scalars α10, . . . , α1,n−3, a1, b11, b12, c1 ∈ F2 such that α0,n−3 + α1,n−3 = a0 + a1

and b01 + b11 = b02 + b12.

Lemma 4.4.2. Let n ⩾ 3 be an integer and let ψ : Tn(F2) → Tn(F2) be a commuting

additive map on invertible matrices. Then the following assertions hold.

(i) [ψ(In), Eij] = [ψ(Eij), Eij] for all integers 1 ⩽ i < j ⩽ n.
(ii) [ψ(D1), Eij] = [ψ(Eij), D1] for all integers 1 ⩽ i < j ⩽ n.
(iii) [ψ(Eij), Est] = [ψ(Est), Eij] for all integers 1 ⩽ i < j ⩽ n and 1 ⩽ s < t ⩽ n.

Proof. (i) Let 1 ⩽ i < j ⩽ n be integers. Since [ψ(In + Eij), In + Eij] = 0 and

[ψ(In + Eij), In] = 0, it follows that [ψ(In) + ψ(Eij), Eij] = 0. Thus [ψ(In), Eij] =

[ψ(Eij), Eij] as desired.

(ii) Let 1 ⩽ i < j ⩽ n be integers. Note that [ψ(In +D1 + Eij), In +D1 + Eij] = 0

implies that [ψ(In) + ψ(D1) + ψ(Eij), D1 + Eij] = 0. Since [ψ(In), D1] = [ψ(D1), D1]

and [ψ(In), Eij] = [ψ(Eij), Eij], it follows that [ψ(D1), Eij] = [ψ(Eij), D1].

(iii) Let 1 ⩽ i < j ⩽ n and 1 ⩽ s < t ⩽ n be integers. Then [ψ(In + Eij +

Est), In + Eij + Est] = 0 yields [ψ(In) + ψ(Eij) + ψ(Est), Eij + Est] = 0. Since

[ψ(In)+ψ(Eij), Eij] = 0 and [ψ(In)+ψ(Est), Est] = 0 by (i), we obtain [ψ(Eij), Est] =

[ψ(Est), Eij].

Lemma 4.4.3. Let n ⩾ 4 be an integer and let ψ : Tn(F2) → Tn(F2) be a commuting

additive map on invertible matrices. Then there exist λ, α, β1, β2 ∈ F2 and additive maps
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µ : Tn(F2) → F2 and τ : Tn(F2) → F2 such that

ψ(A) = λA+ µ(A)In + τ(A)E1n +Ψα,β1,β2(A)

for every strictly upper triangular matrix A ∈ Tn(F2) and A = In, where Ψα,β1,β2 :

Tn(F2) → Tn(F2) is the additive map defined by

Ψα,β1,β2(A) = (αa12 + β1(an−1,n + ann))E1,n−1 + (αan−1,n + β2(a11 + a12))E2n (4.4)

for all A = (aij) ∈ Tn(F2).

Proof. By Lemma 4.4.1 (i), (ii) and (iv), we have

ψ(In) =

(
n−3∑
i=0

αiDi

)
+ (αn−3 + a)E2,n−1 + bE1,n−1 + cE2n + dE1n

for some α0, . . . , αn−3, a, b, c, d ∈ F2, and

ψ(D1) =

(
n−3∑
i=0

(αi + γi)Di

)
+ (αn−3 + a)E2,n−1 + (b+ γn−2)E1,n−1

+ (c+ γn−2)E2n + (d+ γn−1)E1n

for some γ0, . . . , γn−1 ∈ F2. For each integer 1 ⩽ p < q ⩽ n, we let ψ(Epq) = (a
(p,q)
ij ) ∈

Tn(F2) where a
(p,q)
ij ∈ F2 for all integers 1 ⩽ i ⩽ j ⩽ n. Note first that

[ψ(Epq), D1] =
n−2∑
j=0

n−1−j∑
i=1

(a
(p,q)
i, i+j + a

(p,q)
i+1, i+1+j)Ei, i+1+j,

[ψ(Epq), Epq] = (a(p,q)pp + a(p,q)qq )Epq +

n−q∑
i=1

a
(p,q)
q,q+iEp,q+i +

p−1∑
i=1

a
(p,q)
p−i,pEp−i,q,

[ψ(In), Epq] =



aE1,n−1 + cE1n +
∑n−4

i=1 αiE1,2+i if (p, q) = (1, 2),

aE2n + bE1n +
∑n−4

i=1 αiEn−1−i,n if (p, q) = (n− 1, n),

∑n−q
i=1 αiEp,q+i +

∑p−1
i=1 αiEp−i,q otherwise,

.

and
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[ψ(D1), Epq]=



(a+ γn−3)E1,n−1+ (c+ γn−2)E1n

+
∑n−4

i=1 (αi + γi)E1,2+i if (p, q) = (1, 2),

(a+ γn−3)E2n+ (b+ γn−2)E1n

+
∑n−4

i=1 (αi + γi)En−1−i,n if (p, q) = (n− 1, n),

∑n−q
i=1 (αi + γi)Ep,q+i +

∑p−1
i=1 (αi + γi)Ep−i,q otherwise.

.

We first consider ψ(E12) = (a
(1,2)
ij ). By [ψ(E12), D1] = [ψ(D1), E12], we have

n−2∑
j=0

n−1−j∑
i=1

(a
(1,2)
i, i+j + a

(1,2)
i+1, i+1+j)Ei, i+1+j

= (a+ γn−3)E1,n−1+ (c+ γn−2)E1n +
n−4∑
i=1

(αi + γi)E1,2+i.

Then

a
(1,2)
ii = a

(1,2)
11 for i = 2, . . . , n, (4.5)

a
(1,2)
i,i+n−3 = a

(1,2)
1,n−2 + a+ γn−3 for i = 2, 3, (4.6)

a
(1,2)
2n = a

(1,2)
1,n−1 + c+ γn−2, (4.7)

and when n ⩾ 5, we get

a
(1,2)
i,i+j = a

(1,2)
1,j+1 + αj + γj (4.8)

for j = 1, . . . , n − 4 and i = 2, . . . , n − j. By virtue of [ψ(In), E12] = [ψ(E12), E12],

together with (4.5)–(4.8), we obtain

aE1,n−1 + cE1n +
n−4∑
i=1

αiE1,2+i

= (a
(1,2)
1,n−2 + a+ γn−3)E1,n−1 + (a

(1,2)
1,n−1 + c+ γn−2)E1n

+
n−4∑
i=1

(a
(1,2)
1,i+1 + αi + γi)E1,2+i.

We thus have

a
(1,2)
1,i+1 = γi for i = 1, . . . , n− 2. (4.9)
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It follows from (4.6)–(4.8) that

a
(1,2)
i,i+n−3 = a for i = 2, 3, (4.10)

a
(1,2)
2n = c, (4.11)

and when n ⩾ 5, we have

a
(1,2)
i,i+j = αj (4.12)

for j = 1, . . . , n− 4 and i = 2, . . . , n− j.

Consider now ψ(E23) = (a
(2,3)
ij ). By virtue of [ψ(E23), D1] = [ψ(D1), E23], we have

n−2∑
j=0

n−1−j∑
i=1

(a
(2,3)
i, i+j + a

(2,3)
i+1, i+1+j)Ei, i+1+j = (α1 + γ1)E13 +

n−3∑
i=1

(αi + γi)E2,3+i.

Then

a
(2,3)
ii = a

(2,3)
11 for i = 2, . . . , n, (4.13)

a
(2,3)
23 = a

(2,3)
12 + α1 + γ1 and a

(2,3)
i,i+1 = a

(2,3)
12 for i = 3, . . . , n− 1, (4.14)

a
(2,3)
24 = a

(2,3)
13 and a

(2,3)
2n = a

(2,3)
1,n−1, (4.15)

and when n ⩾ 5, we get

a
(2,3)
2,j+2 = a

(2,3)
1,j+1 and a

(2,3)
i,i+j = a

(2,3)
1,j+1 + αj + γj (4.16)

for j = 2, . . . , n−3 and i = 3, . . . , n− j. By [ψ(In), E23] = [ψ(E23), E23], together with

(4.13), (4.14) and (4.16) yield

α1E13 +
n−3∑
i=1

αiE2,3+i = a
(2,3)
12 E13 + a

(23)
12 E24 +

n−3∑
i=2

(a
(2,3)
1,i+1 + αi + γi)E2,3+i.

We thus obtain

a
(2,3)
12 = α1, (4.17)
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and when n ⩾ 5, we have

a
(2,3)
1,i+1 = γi for i = 2, . . . , n− 3. (4.18)

It follows from (4.14) and (4.17) that

a
(2,3)
23 = γ1 and a

(2,3)
i,i+1 = α1 for i = 3, . . . , n− 1. (4.19)

By (4.16) and (4.18), we get

a
(2,3)
2,j+2 = γj and a

(2,3)
i,i+j = αj (4.20)

for j = 2, . . . , n− 3 and i = 3, . . . , n− j when n ⩾ 5.

In view of (4.5), (4.9), (4.10) and (4.12), we see that

[ψ(E12), E23] = γ1E13 + aE2n +
n−4∑
i=1

αiE2,3+i.

Next, by (4.13), (4.15), (4.19) and (4.20), we obtain

[ψ(E23), E12] = a
(2,3)
1,n−1E1n +

n−3∑
i=1

γiE1,2+i.

It follows from [ψ(E12), E23] = [ψ(E23), E12] that

a = 0,

and when n ⩾ 5, we have
αi = 0 and γj = 0

for i = 1, . . . , n− 4 and j = 2, . . . , n− 3. We thus obtain

ψ(In) = α0In + αn−3(E1,n−2 + E3n) + bE1,n−1 + cE2n + dE1n, (4.21)

ψ(D1) = (α0 + γ0)In + γ1D1 + αn−3(E1,n−2 + E3n) +X, (4.22)
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where X = (b + γn−2)E1,n−1 + (c + γn−2)E2n + (d + γn−1)E1n. Together with (4.5),

(4.9), (4.10), (4.11) and (4.12), we obtain

ψ(E12) = a
(1,2)
11 In + γ1E12 + γn−2E1,n−1 + cE2n + a

(1,2)
1n E1n. (4.23)

We next claim that αn−3 = 0. Consider ψ(E13) = (a
(1,3)
ij ). From [ψ(E13), D1] =

[ψ(D1), E13], we obtain

n−2∑
j=0

n−1−j∑
i=1

(a
(1,3)
i, i+j + a

(1,3)
i+1, i+1+j)Ei, i+1+j =

n−3∑
i=1

(αi + γi)E1,3+i = γ1E14 + αn−3E1n.

Then

a
(1,3)
ii = a

(1,3)
11 for i = 2, . . . , n, (4.24)

a
(1,3)
i,i+1 = a

(1,3)
12 for i = 2, . . . , n− 1; (4.25)

when n = 4, we obtain

a
(1,3)
24 = a

(1,3)
13 + γ1 + αn−3; (4.26)

when n ⩾ 5, we get

a
(1,3)
i,i+2 = a

(1,3)
13 + γ1 for i = 2, . . . , n− 2, (4.27)

a
(1,3)
2n = a

(1,3)
1,n−1 + αn−3, (4.28)

and when n ⩾ 6,
a
(1,3)
i,i+j = a

(1,3)
1,j+1 (4.29)

for j = 3, . . . , n − 3 and i = 2, . . . , n − j. By virtue of [ψ(In), E13] = [ψ(E13), E13],

together with (4.21), (4.24), (4.25), (4.27) and (4.29), we get

αn−3E1n =


a
(1,3)
12 E14 if n = 4,

a
(1,3)
12 E14 + (a

(1,3)
13 + γ1)E15 +

∑n−3
i=3 a

(1,3)
1,i+1E1,i+3 if n ⩾ 5.

.
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It follows that

αn−3 =



a
(1,3)
12 if n = 4,

a
(1,3)
13 + γ1 if n = 5,

a
(1,3)
1,n−2 if n ⩾ 6.

(4.30)

By (4.23), we have [ψ(E12), E13] = 0. From [ψ(E12), E13] = [ψ(E13), E12], together

with (4.24)–(4.29), we obtain

0 =



a
(1,3)
12 E13 + (a

(1,3)
13 + γ1 + αn−3)E14 if n = 4,

a
(1,3)
12 E13 + (a

(1,3)
13 + γ1)E14 + (a

(1,3)
14 + αn−3)E15 if n = 5,

a
(1,3)
12 E13 + (a

(1,3)
13 + γ1)E14 + (a

(1,3)
1,n−1 + αn−3)E1n

+
∑n−2

i=4 a
(1,3)
1i E1,i+1 if n ⩾ 6.

(4.31)

In view of (4.30) and (4.31), we conclude that αn−3 = 0 as claimed. By (4.21) and (4.22),

we obtain

ψ(In) = α0In + bE1,n−1 + cE2n + dE1n, (4.32)

ψ(D1) = (α0+γ0)In+γ1D1+(b+γn−2)E1,n−1+(c+γn−2)E2n+(d+γn−1)E1n. (4.33)

We now considerψ(En−1,n) = (a
(n−1,n)
ij ). By (4.33), [ψ(En−1,n), D1]=[ψ(D1), En−1,n]

yields

n−2∑
j=0

n−1−j∑
i=1

(a
(n−1,n)
i,i+j + a

(n−1,n)
i+1,i+1+j)Ei,i+1+j = (b+ γn−2)E1n + γ1En−2,n.

Then

a
(n−1,n)
ii = a

(n−1,n)
11 for i = 2, . . . , n,

a
(n−1,n)
n−1,n = a

(n−1,n)
12 + γ1 and a

(n−1,n)
i,i+1 = a

(n−1,n)
12 for i = 2, . . . , n− 2,

a
(n−1,n)
2n = a

(n−1,n)
1,n−1 + b+ γn−2,

44

Univ
ers

iti 
Mala

ya



and when n ⩾ 5, we have

a
(n−1,n)
i,i+j = a

(n−1,n)
1,1+j

for j = 2, . . . , n−3 and i = 2, . . . , n−j. Likewise, by [ψ(In), En−1,n]=[ψ(En−1,n), En−1,n]

and (4.32), we get

bE1n = (a
(n−1,n)
n−1,n−1 + a(n−1,n)

nn )En−1,n +
n−2∑
i=1

a
(n−1,n)
n−1−i,n−1En−1−i,n.

Then a(n−1,n)
1,n−1 = b and a(n−1,n)

i,n−1 = 0 for i = 2, . . . , n− 2. We thus obtain

ψ(En−1,n) = a
(n−1,n)
11 In + γ1En−1,n + bE1,n−1 + γn−2E2n + a

(n−1,n)
1n E1n. (4.34)

Next, consider ψ(E1n) = (a
(1,n)
ij ). By applying (4.33) in [ψ(E1n), D1] = [ψ(D1), E1n],

we obtain
n−2∑
j=0

n−1−j∑
i=1

(a
(1,n)
i, i+j + a

(1,n)
i+1, i+1+j)Ei, i+1+j = 0.

Then ψ(E1n) =
∑n−1

i=0 a
(1,n)
1,i+1Di. By using (4.23) and [ψ(E1n), E12] = [ψ(E12), E1n], we

get
n−1∑
i=2

a
(1,n)
1i E1,i+1 = 0.

Then a(1,n)1i = 0 for i = 2, . . . , n− 1. We thus obtain

ψ(E1n) = a
(1,n)
11 In + a

(1,n)
1n E1n. (4.35)

Finally, consider ψ(Epq) = (a
(p,q)
ij ) for 1 ⩽ p < q ⩽ n with (p, q) /∈ {(1, 2), (n −

1, n), (1, n)}. Since p 6= n − 1, n and q 6= 1, 2, by applying (4.33) in [ψ(Epq), D1] =

[ψ(D1), Epq], we obtain

n−2∑
j=0

n−1−j∑
i=1

(a
(p,q)
i, i+j + a

(p,q)
i+1, i+1+j)Ei, i+1+j =



γ1E1,q+1 if p = 1 and q < n,

γ1Ep−1,n if q = n and p > 1,

γ1Ep−1,q + γ1Ep,q+1 otherwise.
(4.36)
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When p = 1 and q < n, we get

a
(1,q)
1+i,q+i = γ1 + a

(1,q)
1q for i = 1, . . . , n− q,

a
(1,q)
1+i,1+i+j = a

(1,q)
1,1+j

for j = 0, . . . , q − 2, q, . . . , n− 2 and i = 1, . . . , n− 1− j. When q = n and p > 1, we

obtain

a(p,n)pn = γ1 + a
(p,n)
1,n−p+1 and a

(p,n)
i,n−p+i = a

(p,n)
1,n−p+1 for i = 2, . . . , p− 1,

a
(p,n)
1+i,1+i+j = a

(p,n)
1,1+j

for j = 0, . . . , n− p− 1, n− p+1, . . . , n− 2 and i = 1, . . . , n− 1− j. When p 6= 1 and

q 6= n,

a
(p,q)
1+i,1+i+j = a

(p,q)
1,1+j

for j = 0, . . . , q − p− 1, q − p+ 1, . . . , n− 2 and i = 1, . . . , n− 1− j,

a
(p,q)
1+i,1+q−p+i = a

(p,q)
1,1+q−p for i = 1, . . . , p− 2,

a(p,q)pq = γ1 + a
(p,q)
1,1+q−p and a

(p,q)
p+1,q+1 = a

(p,q)
1,1+q−p,

a
(p,q)
1+i,1+q−p+i = a

(p,q)
1,1+q−p for i = p+ 1, . . . , n− 1− q + p.

Consequently, we obtain

ψ(Epq) =


∑n−q

i=1 γ1Ei+1,q+i +
∑n−1

i=0 a
(1,q)
1,i+1Di if p = 1,

γ1Epq +
∑n−1

i=0 a
(p,q)
1,i+1Di if p 6= 1.

(4.37)

We claim that

ψ(Epq) = a
(p,q)
11 In + γ1Epq + a

(p,q)
1n E1n. (4.38)

We distinguish our argument between two cases:
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Case I: p = 1. By (4.23), we have ψ(E12) = a
(1,2)
11 In + γ1E12 + γn−2E1,n−1 + cE2n +

a
(1,2)
1n E1n. Then [ψ(E12), E1q] = 0 as q 6= 1, 2. By (4.37),

[ψ(E1q), E12] = (a
(1,q)
1q + γ1)E1,q+1 +

n−1∑
i=2,i̸=q

a
(1,q)
1i E1,i+1.

Then [ψ(E1q), E12] = [ψ(E12), E1q] yields a
(1q)
1q = γ1 and a

(1q)
1i = 0 for all 1 < i < nwith

i 6= q. Claim (4.38) follows immediately from (4.37).

Case II: p 6= 1. Since p 6= 1, n− 1, n and q 6= 1, 2, it follows from (4.23) that

[ψ(E12), Epq] =


γ1E1q if p = 2,

0 if p > 2.

By (4.37), we have ψ(Epq) = γ1Epq +
∑n−1

i=0 a
(p,q)
1,i+1Di. Since q 6= 1, we get ψ(Epq)E12 =

a
(p,q)
11 E12. Therefore

[ψ(Epq), E12] =


γ1E1q +

∑n−1
i=2 a

(2,q)
1i E1,i+1 if p = 2,

∑n−1
i=2 a

(p,q)
1i E1,i+1 if p > 2.

By virtue of [ψ(Epq), E12] = [ψ(E12), Epq], we obtain
∑n−1

i=2 a
(p,q)
1i E1,i+1 = 0, and thus

a
(p,q)
1i = 0 for i = 2, . . . , n− 1. It follows from (4.37) that claim (4.38) is proved.

It follows from the results of (4.23), (4.32), (4.34), (4.35) and (4.38) that we let µ :

Tn(F2) → F2 be any linear map such that µ(In) = α0 + γ1 and

µ(Eij) = a
(i,j)
11

for every integer 1 ⩽ i < j ⩽ n, and let τ : Tn(F2) → F2 be any linear map such that

τ(In) = d, τ(E1n) = γ1 + a
(1,n)
1n and

τ(Eij) = a
(i,j)
1n

for every integer 1 ⩽ i < j ⩽ n with (i, j) 6= (1, n). We define the map ζ : Tn(F2) →

Tn(F2) by

ζ(A) = γ1A+ µ(A)In + τ(A)E1n +Ψγn−2,b,c(A)
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for every A ∈ Tn(F2) where Ψγn−2,b,c : Tn(F2) → Tn(F2) is the additive map defined

in (4.4). Notice that ζ is a commuting additive map on invertible matrices by Examples

4.2.1 and 4.2.2. Moreover, since ζ(Eij) = ψ(Eij) for all integers 1 ⩽ i < j ⩽ n, and

Ψγn−2,b,c(In) = bE1,n−1 + cE2n, we have

ζ(In) = γ1In + µ(In)In + τ(In)E1n +Ψγn−2,b,c(In)

= γ1In + (α0 + γ1)In + dE1n + bE1,n−1 + cE2n

= α0In + bE1,n−1 + cE2n + dE1n

= ψ(In).

Since ψ is linear, it follows that ψ(A) = ζ(A) for all strictly upper triangular matrices

A ∈ Tn(F2) and A = In. The proof is complete.

We next prove the following particularly interesting results.

Lemma 4.4.4. Let n ⩾ 2 be an integer and let ψ : Tn(F2) → Tn(F2) be an additive map.

Then the following are equivalent.

(i) ψ is a commuting map on invertible matrices that vanishes on invertible matrices.
(ii) ψ(In) = 0 and ψ(Eij) = 0 for all integers 1 ⩽ i < j ⩽ n.
(iii) There exist matricesX1, . . . , Xn ∈ Tn(F2) satisfyingX1 + · · ·+Xn = 0 such that

ψ(A) =
n∑

i=1

aiiXi

for all A = (aij) ∈ Tn(F2).

Proof. (i)=⇒ (ii). Let 1 ⩽ i < j ⩽ n be integers. Then ψ(Eij) = ψ(In+Eij)+ψ(In) =

0.

(ii) =⇒ (iii). Let Xi = ψ(Eii) ∈ Tn(F2) for i = 1, . . . , n. Then X1 + · · · + Xn =

ψ(In) = 0 and

ψ(Eij) =


0 when 1 ⩽ i < j ⩽ n,

Xi when 1 ⩽ i = j ⩽ n.

It follows from the linearity of ψ that ψ(A) =
∑n

i=1 aiiXi for every A = (aij) ∈ Tn(F2).
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(iii) =⇒ (i). Let A = (aij) ∈ Tn(F2) be invertible. Then aii = 1 for i = 1, . . . , n, and

thus ψ(A) =
∑n

i=1Xi = 0. Consequently, ψ(A)A = 0 = Aψ(A) as required.

Lemma 4.4.5. Let F be a field and let V be an n­dimensional linear space over F. Let

{e1, . . . , en} be a basis of V . Then τ : V → F is linear if and only if there exist unique

scalars τ1, . . . , τn ∈ F such that

τ(u) =
n∑

i=1

τiui

for every u =
∑n

i=1 uiei ∈ V .

Proof. The sufficiency is clear. For the necessity, let τ(ei) = τi ∈ F for every 1 ⩽

i ⩽ n. For each u =
∑n

i=1 uiei ∈ V , it follows from the linearity of τ that τ(u) =∑n
i=1 uiτ(ei) =

∑n
i=1 τiui.

For the uniqueness, suppose there exist scalars α1, . . . , αn ∈ F such that τ(u) =∑n
i=1 αiui for every u =

∑n
i=1 uiei. Then

∑n
i=1(αi − τi)ui = 0 for every u =

∑n
i=1 uiei.

Choosing u = ei, we thus obtain αi = τi for all 1 ⩽ i ⩽ n as desired.

Let n be a positive integer and let τ : Tn(F2) → F2 be an additive map. Then τ is

linear. Considering the standard basis of Tn(F2), it follows from Lemma 4.4.5 that there

exists a matrix H = (hij) ∈ Tn(F2) such that

τ(A) =
∑

1⩽i⩽j⩽n

hijaij = tr (H tA) (4.39)

for all A = (aij) ∈ Tn(F2). Notice that tr (H tA) is the sum of all entries of H ◦ A =

(hijaij), the Hadamard product of H and A.

As a side remark, a result that is similar to (4.39) for symmetric matrices has been

obtained in (Orel, 2019, Lemma 3.4).

We are now ready to prove our main results. We start with the proof of Theorem 4.3.1.

Let n ⩾ 4 be an integer.

Proof of Theorem 4.3.1. By Examples 4.2.1–4.2.3 and Lemma 4.4.4, the sufficiency holds.

For the necessity, in view of Lemma 4.4.3, there exist scalars λ, α, β1, β2 ∈ F2 and addi­
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tive maps µ : Tn(F2) → F2 and τ : Tn(F2) → F2 such that

ψ(A) = λA+ µ(A)In + τ(A)E1n +Ψα,β1,β2(A)

for all strictly upper triangular matrices A ∈ Tn(F2) and A = In where Ψα,β1,β2 is the

additive map defined in (4.4). Let φ : Tn(F2) → Tn(F2) be the map defined by

φ(A) = ψ(A) + λA+ µ(A)In + τ(A)E1n +Ψα,β1,β2(A)

for all A ∈ Tn(F2). Then φ(Eij) = 0 for every integer 1 ⩽ i < j ⩽ n and φ(In) = 0. By

Lemma 4.4.4, there exist matrices X1, . . . , Xn ∈ Tn(F2) satisfying X1 + · · · + Xn = 0

such that φ(A) =
∑n

i=1 aiiXi for every A = (aij) ∈ Tn(F2). We thus obtain

ψ(A) = λA+ µ(A)In + τ(A)E1n +Ψα,β1,β2(A) +
n∑

i=1

aiiXi

for all A = (aij) ∈ Tn(F2). It follows that µ : Tn(F2) → F2. By (4.39), there exist

matrices H,K ∈ Tn(F2) such that

µ(A) = tr (H tA) and τ(A) = tr (KtA)

for every A ∈ Tn(F2). This completes the proof.

Next we prove Theorem 4.3.2.

Proof of Theorem 4.3.2. We first claim that Φγ is a commuting additive map on invertible

matrices. Evidently, Φγ is additive. Let A = (aij) ∈ T3(F2) be invertible. Then A =

I3 + U where U = a12E12 + a23E23 + a13E13, and thus [A,Φγ(A)] = [U,Φγ(A)]. Note

that

UΦγ(A) = γU ((a12 + 1)E22 + (a12 + a23)E33 + a13(E12 + E23))

= γ(a12E12(a12 + 1)E22 + (a13E13 + a23E23)(a12 + a23)E33 + (a12E12)a13E23)

= γ(a13(a12 + a23)E13 + a23(a12 + a23)E23 + a12a13E13)

= γ(a13a23E13 + a23a12E23 + a23E23)
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since a12(a12 + 1) = 0 and a223 = a23. On the other hand, we see that

Φγ(A)U = γ ((a12 + 1)E22 + (a12 + a23)E33 + a13(E12 + E23))U

= γ((a12 + 1)E22(a23E23) + a13E12(a23E23))

= γ(a12a23E23 + a23E23 + a13a23E13).

Hence Φγ is a commuting additive map on invertible matrices. Moreover, by Examples

4.2.1–4.2.3 and Lemma 4.4.4, the sufficiency is proved.

For the necessity, in view of Lemma 4.4.1 (i), (ii) and (iv), we have

ψ(I3) = α0(E11 + E33) + aE22 + bE12 + cE23 + dE13, (4.40)

ψ(D1) = (α0+γ0)(E11+E33)+ (a+γ0)E22+(b+γ1)E12+(c+γ1)E23+(d+γ2)E13

for some scalars a, b, c, d, α0, γ0, γ1, γ2 ∈ F2. Let ψ(E12) = (pij) ∈ T3(F2). By

[ψ(E12), D1] = [ψ(D1), E12], we have p33 = p22 = p11 + a+ α0 and p23 = p12 + c+ γ1.

By [ψ(I3), E12] = [ψ(E12), E12], we obtain p12 = γ1, and so p23 = c. Then

ψ(E12) = p11E11 + (p11 + a+ α0)(E22 + E33) + γ1E12 + cE23 + p13E13. (4.41)

Let ψ(E23) = (qij) ∈ T3(F2). Likewise, by [ψ(E23), D1] = [ψ(D1), E23], we obtain

q22 = q11, q33 = q11 + a + α0 and q23 = q12 + b + γ1. It follows from [ψ(I3), E23] =

[ψ(E23), E23] that q12 = b, and thus q23 = γ1. Therefore

ψ(E23) = q11(E11 + E22) + (q11 + a+ α0)E33 + bE12 + γ1E23 + q13E13. (4.42)

Let ψ(E13) = (rij) ∈ T3(F2). By [ψ(E13), D1] = [ψ(D1), E13], we obtain r11 =

r22 = r33 and r23 = r12. Hence ψ(E13) = r11I3 + r12(E12 + E23) + r13E13. Next,

by [ψ(E13), E12] = [ψ(E12), E13], we obtain r12 = a+ α0. Then

ψ(E13) = r11I3 + (a+ α0)(E12 + E23) + r13E13. (4.43)
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We set λ = γ1, x = α0 + λ and γ = a+ α0. In view of (4.40)–(4.43), we obtain

ψ(I3) = λI3 + xI3 + (bE12 + cE23) + γE22 + dE13, (4.44)

ψ(E12) = λE12 + p11I3 + (0E12 + cE23) + γ(E22 + E33) + p13E13, (4.45)

ψ(E23) = λE23 + q11I3 + (bE12 + 0E23) + γE33 + q13E13, (4.46)

ψ(E13) = λE13 + r11I3 + γ(E12 + E23) + (r13 + λ)E13. (4.47)

By virtue of (4.44)–(4.47), we let µ : T3(F2) → F2 be any linear map such that µ(I3) = x

and

µ(E12) = p11, µ(E23) = q11, µ(E13) = r11,

let τ : T3(F2) → F2 be any linear map such that τ(I3) = d and

τ(E12) = p13, τ(E23) = q13, τ(E13) = r13 + λ,

and let Φγ : T3(F2) → T3(F2) be the linear map defined by

Φγ(A) = γ((a12 + a22)E22 + (a11 + a12 + a23 + a33)E33 + a13(E12 + E23))

for every A = (aij) ∈ T3(F2). We next define the map ξ : T3(F2) → T3(F2) by

ξ(A) = λA+ µ(A)I3 + τ(A)E13 +Ψ0,b,c(A) + Φγ(A) (4.48)

for every A ∈ T3(F2) where Ψ0,b,c is the additive map defined in (4.4). Clearly, ξ is a

commuting additive map on invertible matrices. By (4.45)–(4.48), we have ξ(Eij) =

ψ(Eij) for every integer 1 ⩽ i < j ⩽ 3. In view of (4.44) and (4.48), we obtain ξ(I3) =

ψ(I3) by virtue of Ψ0,b,c(I3) = bE12 + cE23 and Φγ(I3) = γE22.

Let ϑ : T3(F2) → T3(F2) be the map defined by

ϑ(A) = ψ(A) + ξ(A)
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for every A ∈ T3(F2). Since ϑ(I3) = 0 and ϑ(Eij) = 0 for every 1 ⩽ i < j ⩽ 3,

it follows from Lemma 4.4.4 that ϑ is a commuting additive map on invertible matrices

which vanishes on invertible matrices. Then there exist matrices X1, X2, X3 ∈ T3(F2)

satisfyingX1+X2+X3 = 0 such that ϑ(A) =
∑3

i=1 aiiXi for everyA = (aij) ∈ T3(F2).

By virtue of (4.39) and (4.48), there exist matrices H,K ∈ T3(F2) such that

ψ(A) = λA+ tr (H tA)I3 + tr (KtA)E13 +Ψ0,α,β(A) + Φγ(A) +
3∑

i=1

aiiXi

for every A = (aij) ∈ T3(F2). This completes the proof.

We now prove Theorem 4.3.3.

Proof of Theorem 4.3.3. For the sufficiency, we first see that ψ is additive. LetA ∈ T2(F2)

be invertible. Then either A = I2 or A = I2 + E12. Clearly, ψ(A)A = Aψ(A) when

A = I2. Consider A = I2 + E12. Then

ψ(A)A = (λ1I2 + λ2E12)(I2 + E12) = (I2 + E12)(λ1I2 + λ2E12) = Aψ(A).

For the necessity, we notice that [ψ(I2+E12), I2+E12] = 0 and [ψ(I2+E12), I2] = 0

yield [ψ(I2+E12), E12] = 0. By Lemma 2.1.5, we obtain ψ(I2+E12) = λ1I2+λ2E12 for

some scalars λ1, λ2 ∈ F2. LetXi = ψ(Eii) ∈ T2(F2) for i = 1, 2. Then ψ(I2) = X1+X2

and ψ(E12) = ψ(I2) + ψ(I2 +E12) = X1 +X2 + λ1I2 + λ2E12. Consequently, we have

ψ(E11) = X1, ψ(E22) = X2 and ψ(E12) = X1 +X2 + λ1I2 + λ2E12.

Let υ : T2(F2) → T2(F2) be the additive map defined by

υ(A) = (a11 + a12)X1 + (a22 + a12)X2 + λ1a12I2 + λ2a12E12

for every A = (aij) ∈ T2(F2). Then υ(Eij) = ψ(Eij) for every 1 ⩽ i ⩽ j ⩽ 2, and so

ψ(A) = υ(A) for every A ∈ T2(F2) as desired.

Let M2(F2) denote the ring of 2 × 2 matrices over F2 and let Eij ∈ M2(F2) be the
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standard matrix unit whose (i, j)th entry is one and zero elsewhere. We end the discussion

with a characterisation of commuting additive maps ψ :M2(F2) →M2(F2) on invertible

matrices, i.e., additive maps ψ satisfying [ψ(A), A] = 0 for all invertible matrices A ∈

M2(F2).

Theorem 4.4.6. ψ : M2(F2) → M2(F2) is a commuting additive map on invertible ma­

trices if and only if there exist scalars α, β, λ ∈ F2 and a matrix H ∈ M2(F2) such

that

ψ(A) = λA+ tr (H tA)I2 + Γα,β(A)

for all A ∈M2(F2). Here, Γα,β :M2(F2) →M2(F2) is the additive map defined by

Γα,β(A) = αa11Q+ (αa22 + β(a12 + a21 + a22))R

for all A = (aij) ∈M2(F2) where Q = E11 + E12 + E21 and R = I2 +Q.

Proof. LetA1 = I2,A2 = I2+E12,A3 = I2+E21,A4 = Q,A5 = R andA6 = E12+E21.

Notice that A1, . . . , A6, are the only invertible matrices inM2(F2), and

Γα,β(A2) = αI2, Γα,β(A3) = αI2, Γα,β(A4) = αA4, Γα,β(A5) = (α+β)A5, Γα,β(A6) = 0.

Therefore [Γα,β(Ai), Ai] = 0 for i = 1, . . . , 6. Hence ψ is a commuting additive map on

invertible matrices ofM2(F2) as required.

For the necessity, let ψ(Ai) = (a
(i)
st ) ∈M2(F2) for i = 1, 2, 3, 4. From [ψ(Ai), Ai] = 0

for i = 2, 3, 4, we obtain

ψ(A2) =

a(2)11 a
(2)
12

0 a
(2)
11

 , ψ(A3) =

a(3)11 0

a
(3)
21 a

(3)
11

 , ψ(A4) =

a(4)11 a
(4)
12

a
(4)
12 a

(4)
11 + a

(4)
12

 .

Then
ψ(E11) = ψ(A2) + ψ(A3) + ψ(A4)

=

a(2)11 + a
(3)
11 + a

(4)
11 a

(2)
12 + a

(4)
12

a
(3)
21 + a

(4)
12 a

(2)
11 + a

(3)
11 + a

(4)
11 + a

(4)
12

 ,
(4.49)
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ψ(E12) = ψ(A1) + ψ(A2) =

a(1)11 + a
(2)
11 a

(1)
12 + a

(2)
12

a
(1)
21 a

(1)
22 + a

(2)
11

 , (4.50)

ψ(E21) = ψ(A1) + ψ(A3) =

a(1)11 + a
(3)
11 a

(1)
12

a
(1)
21 + a

(3)
21 a

(1)
22 + a

(3)
11

 , (4.51)

ψ(E22) = ψ(A1) + ψ(E11)

=

a(1)11 + a
(2)
11 + a

(3)
11 + a

(4)
11 a

(1)
12 + a

(2)
12 + a

(4)
12

a
(1)
21 + a

(3)
21 + a

(4)
12 a

(1)
22 + a

(2)
11 + a

(3)
11 + a

(4)
11 + a

(4)
12

 .
(4.52)

Since A5 = E12 + E21 + E22, it follows from 0 = [ψ(A5), A5] = [ψ(E12) + ψ(E21) +

ψ(E22), A5] that

a
(1)
21 = a

(1)
12 and a

(1)
22 = a

(1)
11 + a

(1)
12 . (4.53)

Likewise, since A6 = E12 + E21, it follows from [ψ(A6), A6] = 0 that

a
(3)
21 = a

(2)
12 . (4.54)

Let λ = a
(2)
12 and let h11 = a

(2)
11 + a

(3)
11 + a

(4)
11 + a

(4)
12 , h12 = a

(1)
11 + a

(2)
11 , h21 = a

(1)
11 + a

(3)
11

and h22 = a
(1)
11 + a

(2)
11 + a

(3)
11 + a

(4)
11 . It follows from (4.49)–(4.54) that

ψ(E11) = λE11 + h11I2 +

a(2)12 + a
(4)
12 a

(2)
12 + a

(4)
12

a
(2)
12 + a

(4)
12 0

 , (4.55)

ψ(E12) = λE12 + h12I2 +

 0 a
(1)
12

a
(1)
12 a

(1)
12

 , (4.56)

ψ(E21) = λE21 + h21I2 +

 0 a
(1)
12

a
(1)
12 a

(1)
12

 , (4.57)

ψ(E22) = λE22 + h22I2 +

 0 a
(2)
12 + a

(4)
12 + a

(1)
12

a
(2)
12 + a

(4)
12 + a

(1)
12 a

(2)
12 + a

(4)
12 + a

(1)
12

 . (4.58)

Let µ :M2(F2) → F2 be the linear map defined by
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µ(Eij) = hij (4.59)

for every integer 1 ⩽ i, j ⩽ 2, and let ξ :M2(F2) →M2(F2) be the map defined by

ξ(A) = λA+ µ(A)I2 (4.60)

for every A ∈ M2(F2). Then ξ and ψ + ξ are commuting additive maps on invertible

matrices ofM2(F2). Letting α = a
(2)
12 + a

(4)
12 and β = a

(1)
12 , by (4.55)–(4.60), we get

(ψ + ξ)(A) = αa11Q+ (αa22 + β(a12 + a21 + a22))R

for all A = (aij) ∈ M2(F2). It follows from Lemma 4.4.5 that there exists a matrix

H ∈M2(F2) such that

ψ(A) = λA+ tr (H tA)I2 + Γα,β(A)

for all A ∈M2(F2). This completes our proof.

We remark that Example 1 in Franca (2012) can be derived from Theorem 4.4.6 by

setting λ = 0, H = E12 + E21 and α = β = 1.

Remark: The results in this chapter have been published in Chooi et al. (2019).
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CHAPTER 5: COMMUTING ADDITIVE MAPS ON RANK ONE UPPER
TRIANGULAR MATRICES OVER FIELDS

5.1 Introduction

Motivated by an example of nonstandard commuting map on rank one matrices over

fields when n ⩾ 3 in Franca (2013a), Franca (2017) studied commuting additive maps

ψ : Mn(F) → Mn(F) on rank one matrices and discovered that the structure is much

more complicated and quite different from the standard form (2.14). Let Tn(F) be the

ring of all n × n matrices over the field F with centre Z(Tn(F)) and unity In. In view

of Theorem 4.3.5 and with the aim to complete the study for commuting additive maps

for all rank k upper triangular matrices, with 1 ⩽ k ⩽ n being a fixed integer, in this

chapter we obtain a characterisation of commuting additive maps ψ : Tn(F) → Tn(F) on

rank one matrices. It is worth pointing out that the structure of commuting additive maps

ψ : Tn(F) → Tn(F) on rank one matrices is much more fertile. Surprisingly we obtain

some irregular forms of commuting additive maps on rank one triangular matrices over

fields in which their structures are considerably more complex and astonishing.

5.2 Irregular nonstandard examples

We start our discussion with some irregular nonstandard examples of commuting ad­

ditive maps on rank one upper triangular matrices over fields. Throughout this section,

unless stated otherwise, let n ⩾ 2 be an integer and let F be a field. We recall from Lemma

2.1.1 that a matrix A ∈ Tn(F) is of rank one if and only if there exist a pair of positive

integers 1 ⩽ s ⩽ t ⩽ n and invertible matrices P,Q ∈ Tn(F) such that

A = PEstQ. (5.1)

Here, Eij ∈ Tn(F) is the standard matrix unit whose (i, j)th entry is one and zero else­

where.

57

Univ
ers

iti 
Mala

ya



Example 5.2.1. Let n ⩾ 3 be an integer and let χ = (τij) ∈ Tn(F) be a strictly upper

triangular matrix. Suppose that ψχ : Tn(F) → Tn(F) is the linear map defined by

ψχ(A) =



x1 −τ12a12 −τ13a13 · · · −τ1na1n

0 x2 −τ23a23 · · · −τ2na2n

0 0 x3 · · · −τ3na3n
...

...
... . . . ...

0 0 0 · · · xn


for all A = (aij) ∈ Tn(F), where

xh =



∑n
i=2 τ1iaii if h = 1,

∑h−1
i=1 τih aii +

∑n
i=h+1 τhi aii if 2 ⩽ h ⩽ n− 1,

∑n−1
i=1 τinaii if h = n.

Let 1 ⩽ s ⩽ t ⩽ n be integers. It is not difficult to see that

ψχ(aEst) =



∑n
i=2 τ1iaEii if s = t = 1,

∑s−1
i=1 τisaEii +

∑n
i=s+1 τsiaEii if 1 < s = t < n,

∑n−1
i=1 τinaEii if s = t = n,

−τstaEst if s < t

for all a ∈ F. For simplicity of notation, we write

ψχ(aEst) =


∑s−1

i=1 τisaEii +
∑n

i=s+1 τsiaEii if s = t,

−τstaEst if s < t

(5.2)

for all a ∈ F and integers 1 ⩽ s ⩽ t ⩽ n, where it is understood that
∑s−1

i=1 τisaEii = 0

when s = 1, and
∑n

i=s+1 τsiaEii = 0 when s = n.

We show that ψχ is commuting on rank one upper triangular matrices. Let A =
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(aij) ∈ Tn(F) be of rank one. By (5.1), there exist integers 1 ⩽ s ⩽ t ⩽ n and scalars

λ1, . . . , λs ∈ F such that

A =
s∑

i=1

λi(astEit + · · ·+ asnEin)

with ast 6= 0 and λs = 1. We argue in the following two cases:

Case 1: s < t. Then aii = 0 for i = 1, . . . , n, and so

ψχ(A) = −
s∑

i=1

(τit(λiast)Eit + · · ·+ τin(λiasn)Ein).

Since s < t, it follows that Aψχ(A) = 0 and ψχ(A)A = 0.

Case 2: s = t. When s = 1, we haveA =
∑n

i=1 λ1a1iE1i andψχ(A)=
∑n

i=2 τ1iλ1a11Eii−∑n
i=2 τ1iλ1a1iE1i. So ψχ(A)A = 0 and Aψχ(A) =

∑n
i=2 λ1a1iτ1iλ1a11E1i −∑n

i=2 λ1a11τ1iλ1a1iE1i = 0. When s = n, we get A =
∑n

i=1 λiannEin and ψχ(A) =∑n−1
i=1 τinλnannEii −

∑n−1
i=1 τinλiannEin. Then Aψχ(A) = 0 and

ψχ(A)A =
∑n−1

i=1 τinλnannλiannEin −
∑n−1

i=1 τinλiannλnannEin = 0. We now consider

1 < s < n. Then A =
∑s

i=1

∑n
j=s λiasjEij and

ψχ(A) =
s−1∑
i=1

τisλsassEii +
n∑

i=s+1

τsiλsassEii −
s−1∑
i=1

(τis(λiass)Eis + · · ·+ τin(λiasn)Ein)

− (τs,s+1λsas,s+1Es,s+1 + · · ·+ τsnλsasnEsn).

We see that

Aψχ(A) =
n∑

j=s+1

(
s∑

i=1

λiasjEij

)
(τsjλsassEjj)−

(
s∑

i=1

λiassEis

)(
n∑

j=s+1

τsjλsasjEsj

)

=
n∑

j=s+1

s∑
i=1

λiasjτsjλsassEij −
s∑

i=1

n∑
j=s+1

λiassτsjλsasjEij = 0,

and

ψχ(A)A =
s−1∑
i=1

(τisλsassEii)

(
n∑

j=s

λiasjEij

)
−

(
s−1∑
i=1

τisλiassEis

)(
n∑

j=s

λsasjEsj

)

=
s−1∑
i=1

n∑
j=s

τisλsassλiasjEij −
s−1∑
i=1

n∑
j=s

τisλiassλsasjEij = 0.
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Hence [ψχ(A), A] = 0 for all rank one matrices A ∈ Tn(F) as required. As a side remark,

(Chooi, Mutalib, & Tan, 2021, Example 3.10) is a commuting linear map on rank one

triangular matrices of this type.

Example 5.2.2. (Chooi, Mutalib, & Tan, 2021, Example 3.10) Let F be a field and let

ψ : T3(F) → T3(F) be the additive map defined by

ψ(A) = a33E22 + a22E33 − a23E23

for all A = (aij) ∈ T3(F). It is not difficult to see that ψ(A)A = 0 = Aψ(A) for all rank

one matrices A ∈ T3(F).

Example 5.2.3. Let n ⩾ 3 be an integer and let

F =
∪

1<s⩽t<n

{ϕ(s,t)
ij : F → F : 1 ⩽ i < s and t < j ⩽ n}

be a set of additive maps on F. We define the additive map ψF : Tn(F) → Tn(F) by

ψF (A) =
∑

1<s⩽t<n

(
s−1∑
i=1

n∑
j=t+1

ϕ
(s,t)
ij (ast)Eij

)

for all A = (aij) ∈ Tn(F). Let 1 ⩽ p ⩽ q ⩽ n be integers. We see that

ψF (aEpq) =


0 if p = 1 or q = n,

∑p−1
i=1

∑n
j=q+1 ϕ

(p,q)
ij (a)Eij if 1 < p ⩽ q < n

(5.3)

for all a ∈ F. We now show that ψF (A)A = 0 = AψF (A) for all rank one matrices

A ∈ Tn(F). Let A = (aij) ∈ Tn(F) be of rank one. By (5.1), there exist integers

1 ⩽ p ⩽ q ⩽ n such that

A =

p∑
i=1

n∑
j=q

aijEij,

where apq 6= 0 and (aiq, . . . , ain), (apq, . . . , apn) are linearly dependent for i = 1, . . . , p−1.

Note that when p = 1, we have A =
∑n

j=q a1jE1j , and thus ψF (A) = 0 by (5.3). The

claim is proved. Likewise, the result holds when q = n. We now consider 2 ⩽ p ⩽ q ⩽
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n− 1. Notice that

ψF (A) =

p∑
s=2

n−1∑
t=q

ψst(ast),

where, for each pair of integers 2 ⩽ s ⩽ p and q ⩽ t ⩽ n − 1, ψst : F → Tn(F) is the

additive map given by

ψst(a) =
s−1∑
i=1

n∑
j=t+1

ϕ
(s,t)
ij (a)Eij

for all a ∈ F. We have

Aψst(ast) =

(
p∑

i=1

n∑
j=q

aijEij

)(
s−1∑
i=1

n∑
j=t+1

ϕ
(s,t)
ij (ast)Eij

)
= 0

because s− 1 < p ⩽ q, and

ψst(ast)A =

(
s−1∑
i=1

n∑
j=t+1

ϕ
(s,t)
ij (ast)Eij

)(
p∑

i=1

n∑
j=q

aijEij

)
= 0

because p ⩽ q < t + 1. Hence Aψst(ast) = 0 = ψst(ast)A for all 2 ⩽ s ⩽ p and

q ⩽ t ⩽ n − 1. It follows that AψF (A) = 0 = ψF (A)A for all rank one matrices

A ∈ Tn(F). We notice that (Chooi, Mutalib, & Tan, 2021, Examples 3.11, 3.12) are

commuting additive maps on rank one triangular matrices of this type.

Example 5.2.4. (Chooi, Mutalib, & Tan, 2021, Example 3.11) Let F be a field and let

f, g : F → F be additive maps. Let ψ : T4(F) → T4(F) be the additive map defined by

ψ(A) = f(a22)E13 + g(a33)E24

for all A = (aij) ∈ T4(F). It can be checked that ψ(A)A = 0 = Aψ(A) for all rank one

matrices A ∈ T4(F).

Example 5.2.5. (Chooi, Mutalib, & Tan, 2021, Example 3.12) Let F be a field and let

n ⩾ 3 be an integer. Let ψ : Tn(F) → Tn(F) be the additive map defined by

ψ(A) = (µ(a22) + η(an−1,n−1))E1n
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for all A = (aij) ∈ Tn(F), where µ, η : F → F are additive maps. Then ψ(A)A = 0 =

Aψ(A) for all rank one matrices A ∈ Tn(F).

Let n ⩾ 3 and let∇n = {(i, j) ∈ N×N : 1 ⩽ i ⩽ j ⩽ n}\{(1, n− 1), (1, n), (2, n−

1), (2, n)}.

Example 5.2.6. Let n ⩾ 3 be an integer and let

Λ =
∪

(s,t)∈∇n

{
λ
(s,t)
ij ∈ F : 1 ⩽ i < j < s or t < i < j ⩽ n

}

be a set of scalars. Let ψΛ : Tn(F) → Tn(F) be the linear map defined by

ψΛ(A) =
∑

(s,t)∈∇n

Ψst(A) + Φst(A)

for all A = (aij) ∈ Tn(F), where for each (s, t) ∈ ∇n,

Ψst(A) =


0 if 1 ⩽ s ⩽ 2,(∑

1⩽i<j<s λ
(s,t)
ij Eij

)(∑s−1
h=1 astEhh − ahtEhs

)
if 3 ⩽ s ⩽ n,

(5.4)

Φst(A) =


(
∑n

h=t+1 astEhh − ashEth)
(∑

t<i<j⩽n λ
(s,t)
ij Eij

)
if 1 ⩽ t ⩽ n− 2,

0 if n− 1 ⩽ t ⩽ n

(5.5)

for all A = (aij) ∈ Tn(F). It can be shown that for each integer 1 ⩽ p ⩽ n,

ψΛ(aEpp) =
∑

1⩽i<j<p

λ
(p,p)
ij aEij +

∑
p<i<j⩽n

λ
(p,p)
ij aEij (5.6)

for all a ∈ F, where
∑

1⩽i<j<pλ
(p,p)
ij Eij = 0 when p = 1, 2, and

∑
p<i<j⩽nλ

(p,p)
ij Eij = 0

when p = n− 1, n; and that for each pair of integers 1 ⩽ p < q ⩽ n,

ψΛ(aEpq) =
∑

1⩽i<j<p

λ
(p,q)
ij aEij−

p−1∑
i=1

q∑
j=p+1

λ
(j,q)
ip aEij+

∑
q<i<j⩽n

λ
(p,q)
ij aEij−

q−1∑
i=p

n∑
j=q+1

λ
(p,i)
qj aEij

(5.7)
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for all a ∈ F, where
∑

1⩽i<j<p λ
(p,q)
ij Eij = 0 when p = 1, 2,

∑p−1
i=1

∑q
j=p+1 λ

(j,q)
ip Eij = 0

when p = 1,
∑

q<i<j⩽n λ
(p,q)
ij Eij = 0 when q = n− 1, n, and

∑q−1
i=p

∑n
j=q+1 λ

(p,i)
qj Eij = 0

when q = n.

We first claim (5.6). Let 1 ⩽ p ⩽ n be an integer and let a ∈ F. First, note

that Ψst(aEpp) = 0 = Φst(aEpp) whenever (s, t) 6= (p, p). When p = 1, 2, we have

Ψpp(aEpp) = 0 by (5.4), and

ψΛ(aEpp) = Φpp(aEpp) =

(
n∑

h=p+1

aEhh

)( ∑
p<i<j⩽n

λ
(p,p)
ij Eij

)
=
∑

p<i<j⩽n

λ
(p,p)
ij aEij.

When p = n− 1, n, we get Φpp(aEpp) = 0 by (5.5), and

ψΛ(aEpp) = Ψpp(aEpp) =

( ∑
1⩽i<j<p

λ
(p,p)
ij Eij

)(
p−1∑
h=1

aEhh

)
=
∑

1⩽i<j<p

λ
(p,p)
ij aEij.

Consider now 2 < p < n− 1. So

ψΛ(aEpp) = Ψpp(aEpp) + Φpp(aEpp) =
∑

1⩽i<j<p

λ
(p,p)
ij aEij +

∑
p<i<j⩽n

λ
(p,p)
ij aEij.

Hence (5.6) is proved.

We next prove (5.7). Let 1 ⩽ p < q ⩽ n be integers and let a ∈ F. By (5.4) and

(5.5), we notice that Ψst(aEpq) = 0 whenever t 6= q, Ψst(aEpq) = 0 whenever p > s,

Φst(aEpq) = 0 whenever s 6= p, and Φst(aEpq) = 0 whenever q < t. We thus obtain

ψΛ(aEpq) = Ψpq(aEpq) +

q∑
j=p+1

Ψjq(aEpq) + Φpq(aEpq) +

q−1∑
i=p

Φpi(aEpq). (5.8)

In view of (5.4), Ψpq(aEpq) = 0 when p = 1, 2. When p ⩾ 3, we have

Ψpq(aEpq) =

( ∑
1⩽i<j<p

λ
(p,q)
ij Eij

)(
p−1∑
h=1

aEhh

)
=

∑
1⩽i<j<p

λ
(p,q)
ij aEij. (5.9)

Next, in view of (5.4), sinceΨjq(aEpq) = 0, j = p+1, . . . , q, when p = 1, it follows that

q∑
j=2

Ψjq(aE1q) = 0. (5.10)
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When p ⩾ 2, we have

q∑
j=p+1

Ψjq(aEpq) =

q∑
j=p+1

( ∑
1⩽i<ℓ<j

λ
(j,q)
iℓ Eiℓ

)
(−aEpj) =

q∑
j=p+1

(∑
1⩽i<p

−λ(j,q)ip aEij

)

and thus
q∑

j=p+1

Ψjq(aEpq) = −
p−1∑
i=1

q∑
j=p+1

λ
(j,q)
ip aEij. (5.11)

Likewise, in view of (5.5), we have Φpq(aEpq) = 0 when q = n− 1, n. When q ⩽ n− 2,

we get

Φpq(aEpq) =

(
n∑

h=q+1

aEhh

)( ∑
q<i<j⩽n

λ
(p,q)
ij Eij

)
=

∑
q<i<j⩽n

λ
(p,q)
ij aEij. (5.12)

By (5.5), since Φpi(aEpq) = 0, i = p, . . . , q − 1, when q = n, it follows that

n−1∑
i=p

Φpi(aEpn) = 0. (5.13)

When q ⩽ n− 1, we have

q−1∑
i=p

Φpi(aEpq) =

q−1∑
i=p

(−aEiq)

( ∑
i<ℓ<j⩽n

λ
(p,i)
ℓj Eℓj

)
=

q−1∑
i=p

( ∑
q<j⩽n

−aλ(p,i)qj Eij

)

and thus
q−1∑
i=p

Φpi(aEpq) =

q−1∑
i=p

n∑
j=q+1

−λ(p,i)qj aEij. (5.14)

Consequently, in view of (5.8)–(5.14), this completes the proof of (5.7).

We next show that ψΛ is commuting on rank one upper triangular matrices. Let A =

(aij) ∈ Tn(F) be of rank one. By (5.1), there exist integers 1 ⩽ p ⩽ q ⩽ n such that

A =

p∑
i=1

n∑
j=q

aijEij, (5.15)

where apq 6= 0, {(aiq, . . . , ain), (ajq, . . . , ajn)} is linearly dependent for every 1 ⩽ i, j ⩽

p, and {(a1i, . . . , api), (a1j, . . . , apj)} is linearly dependent for every q ⩽ i, j ⩽ n.

We first claim that

Ψst(A)A = 0 = AΨst(A) (5.16)
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for every (s, t) ∈ ∇n. Let (s, t) ∈ ∇n. Clearly, (5.16) holds when s = 1, 2. Consider

now s ⩾ 3. By (5.15), since aij = 0 for all 1 ⩽ i ⩽ n and 1 ⩽ j < q, it follows that

s−1∑
h=1

astEhhA =
s−1∑
h=1

ast(ahqEhq + · · ·+ ahnEhn),

s−1∑
h=1

ahtEhsA =
s−1∑
h=1

aht(asqEhq + · · ·+ asnEhn).

If ast = 0, then either (a1t, . . . , ant) = 0 or (as1, . . . , asn) = 0 since A is of rank one.

Hence Ψst(A)A = 0 by (5.4). If ast 6= 0, then s ⩽ p and t ⩾ q by (5.15). Thus, for

each 1 ⩽ h < s, there exists αh ∈ F such that (ahq, . . . , ahn) = αh(asq, . . . , asn) and

aht = αhast. Consequently,

Ψst(A)A =

( ∑
1⩽i<j<s

λ
(s,t)
ij Eij

)(
s−1∑
h=1

astEhhA−
s−1∑
h=1

ahtEhsA

)
= 0.

We now proceed to claim AΨst(A) = 0. By (5.4), we notice that

Ψst(A) =
s−2∑
i=1

s−1∑
j=i+1

λ
(s,t)
ij astEij −

s−2∑
i=1

(
s−1∑

j=i+1

λ
(s,t)
ij ajt

)
Eis

because
∑

1⩽i<j⩽s−1λ
(s,t)
ij Eij =

∑s−2
i=1

∑s−1
j=i+1 λ

(s,t)
ij Eij . If p = 1, then ast = 0 and

ajt = 0 for j = 2, . . . , s − 1, and so Ψst(A) = 0. Therefore Claim (5.16) is proved.

Consider now p ⩾ 2. Suppose that ast = 0. By (5.15), since the j­th column vector of A

is zero for j = 1, . . . , q − 1, it follows that

AEij = 0 for i = 1, . . . , q − 1 and j = 1, . . . , n. (5.17)

We argue in two cases:

Case I: p ⩾ s− 1. By (5.17), we obtain

AΨst(A) = −
s−2∑
i=1

(
s−1∑

j=i+1

λ
(s,t)
ij ajt

)
AEis = 0.
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Case II: p < s− 1. Then ajt = 0 for j = p+ 1, . . . , s− 1 by (5.15). We thus have

AΨst(A) = −
p−1∑
i=1

(
p∑

j=i+1

λ
(s,t)
ij ajt

)
AEis = 0

by (5.17). Consider now ast 6= 0. Then s ⩽ p because aij = 0 for all i > p by (5.15). It

follows from (5.17) that

AΨst(A) =
s−2∑
i=1

s−1∑
j=i+1

λ
(s,t)
ij astAEij −

s−2∑
i=1

(
s−1∑

j=i+1

λ
(s,t)
ij ajt

)
AEis = 0

as required. Consequently, Claim (5.16) is proved.

We now proceed to show

Φst(A)A = 0 = AΦst(A) (5.18)

for all (s, t) ∈ ∇n. Let (s, t) ∈ ∇n. Claim (5.18) is proved when t = n− 1, n. Consider

t ⩽ n− 2. By (5.15), since aij = 0 for all p < i ⩽ n and 1 ⩽ j ⩽ n, it follows that

n∑
h=t+1

astAEhh =
n∑

h=t+1

ast(a1hE1h + · · ·+ aphEph),

n∑
h=t+1

ashAEth =
n∑

h=t+1

ash(a1tE1h + · · ·+ aptEph).

If ast = 0, then either (a1t, . . . , ant) = 0 or (as1, . . . , asn) = 0. Thus AΦst(A) = 0 by

(5.5). If ast 6= 0, then s ⩽ p and t ⩾ q. For each t < h ⩽ n, there exists βh ∈ F such that

(a1h, . . . , aph) = βh(a1t, . . . , apt) and ash = βhast. Hence AΦst(A) = 0. We now claim

Φst(A)A = 0. By (5.5), we note that

Φst(A) =
n∑

j=t+2

j−1∑
i=t+1

astλ
(s,t)
ij Eij −

n∑
j=t+2

(
j−1∑

i=t+1

asiλ
(s,t)
ij

)
Etj

because
∑

t<i<j⩽n λ
(s,t)
ij Eij =

∑n
j=t+2

∑j−1
i=t+1 λ

(s,t)
ij Eij . If q = n, then ast = 0 and

asi = 0 for i = t + 1, . . . , n − 1, and thus Φst(A) = 0. Hence the claim is proved.

Consider now q ⩽ n− 1. Suppose that ast = 0. Since the i­th row vector of A is zero for
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i = p+ 1, . . . , n, we have

EijA = 0 for j = p+ 1, . . . , n and i = 1, . . . , n. (5.19)

If q ⩽ t+ 1, then, by virtue of (5.19), we have

Φst(A)A = −
n∑

j=t+2

(
j−1∑

i=t+1

asiλ
(s,t)
ij

)
EtjA = 0.

If q > t+ 1, then asi = 0 for i = t+ 1, . . . , q − 1 by (5.15). We thus have

Φst(A)A = −
n∑

j=q+1

(
j−1∑
i=q

asiλ
(s,t)
ij

)
EtjA = 0

by (5.19). Consider now ast 6= 0. Then t ⩾ q. It follows from (5.19) that

Φst(A)A =
n∑

j=t+2

j−1∑
i=t+1

astλ
(s,t)
ij EijA−

n∑
j=t+2

(
j−1∑

i=t+1

asiλ
(s,t)
ij

)
EtjA = 0.

Claim (5.18) is proved. Therefore ψΛ(A)A = 0 = AψΛ(A) for all rank one matrices

A ∈ Tn(F). We remark that Example 3.2.2 is a commuting additive map on rank one

triangular matrices of this type.

5.3 Main results

We obtain a characterisation of commuting additive maps ψ : Tn(F) → Tn(F) on rank

one triangular matrices over an arbitrary field F in the following two results.

Theorem 5.3.1. Let F be a field. Then ψ : T2(F) → T2(F) is a commuting additive

map on rank one matrices if and only if there exists a scalar λ ∈ F and an additive map

µ : T2(F) → F such that

ψ(A) = λA+ µ(A)I2

for every A ∈ T2(F).

Let n ⩾ 3 be an integer and let F be a field. We now give a complete characterisation

of commuting additive maps ψ : Tn(F) → Tn(F) on rank one triangular matrices. Recall
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that∇n = {(i, j) ∈ N× N : 1 ⩽ i ⩽ j ⩽ n}\{(1, n− 1), (1, n), (2, n− 1), (2, n)}.

Theorem 5.3.2. Let F be a field and let n ⩾ 3 be an integer. Then ψ : Tn(F) → Tn(F) is

a commuting additive map on rank one matrices if and only if there exists a scalar λ ∈ F,

an additive map µ : Tn(F) → F, a strictly upper triangular matrix χ = (τij) ∈ Tn(F), a

set of additive maps F =
∪

1<s⩽t<n{ϕ
(s,t)
ij : F → F : 1 ⩽ i < s and t < j ⩽ n} and a

set of scalars Λ =
∪

(s,t)∈∇n

{
λ
(s,t)
ij ∈ F : 1 ⩽ i < j < s or t < i < j ⩽ n

}
such that

ψ(A) = λA+ µ(A)In + ψχ(A) + ψF (A) + ψΛ(A)

for all A = (aij) ∈ Tn(F). Here, ψχ : Tn(F) → Tn(F) is the linear map defined by

ψχ(A) =



x1 −τ12a12 −τ13a13 · · · −τ1na1n

0 x2 −τ23a23 · · · −τ2na2n

0 0 x3 · · · −τ3na3n
...

...
... . . . ...

0 0 0 · · · xn


(5.20)

for all A = (aij) ∈ Tn(F), where

xh =



∑n
i=2 τ1iaii if h = 1,

∑h−1
i=1 τih aii +

∑n
i=h+1 τhi aii if 2 ⩽ h ⩽ n− 1,

∑n−1
i=1 τinaii if h = n,

and ψF : Tn(F) → Tn(F) is the additive map defined by

ψF (A) =
∑

1<s⩽t<n

(
s−1∑
i=1

n∑
j=t+1

ϕ
(s,t)
ij (ast)Eij

)
(5.21)

for all A = (aij) ∈ Tn(F), and ψΛ : Tn(F) → Tn(F) is the linear map defined by

ψΛ(A) =
∑

(s,t)∈∇n

Ψst(A) + Φst(A) (5.22)
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for all A = (aij) ∈ Tn(F), where for each (s, t) ∈ ∇n,

Ψst(A) =


0 if 1 ⩽ s ⩽ 2,(∑

1⩽i<j<s λ
(s,t)
ij Eij

)(∑s−1
h=1 astEhh − ahtEhs

)
if 3 ⩽ s ⩽ n,

Φst(A) =


(
∑n

h=t+1 astEhh − ashEth)
(∑

t<i<j⩽n λ
(s,t)
ij Eij

)
if 1 ⩽ t ⩽ n− 2,

0 if n− 1 ⩽ t ⩽ n

for all A = (aij) ∈ Tn(F).

5.4 Proofs

Let n = 2 and let F be a field. We first prove Theorem 5.3.1.

Proof of Theorem 5.3.1. The sufficiency is clear. We now consider the necessity. For each

pair of integers 1 ⩽ i ⩽ j ⩽ 2, there exist additive maps fij, gij, hij : F → F such that

ψ(aEij) =

fij(a) hij(a)

0 gij(a)


for all a ∈ F. Since 0 = [ψ(aEij), aEij] = ψ(aEij)aEij − aEijψ(aEij) for all a ∈ F

and 1 ⩽ i ⩽ j ⩽ 2, it follows that h11 = h22 = 0 and g12 = f12. Next, 0 = [ψ(aE11 +

bE12), aE11 + bE12] = ψ(aE11 + bE12)(aE11 + bE12) − (aE11 + bE12)ψ(aE11 + bE12)

for all a, b ∈ F implies that

ah12(b) + b(g11(a)− f11(a)) = 0 (5.23)

for all a, b ∈ F. Taking a = 1 in (5.23), we get h12(b) = λb for all b ∈ F where

λ = f11(1) − g11(1). Setting b = 1 in (5.23), we obtain f11(a) = g11(a) + λa for all

a ∈ F. Likewise, considering [ψ(bE12 + aE22), bE12 + aE22] = 0 for all a, b ∈ F, we

obtain g22(a) = f22(a)+λa for all a ∈ F. Let µ : T2(F) → F be the additive map defined

by

µ(A) = g11(a11) + g12(a12) + f22(a22)
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for all A = (aij) ∈ T2(F). Then ψ(A) = λA+ µ(A)I2 for all A ∈ T2(F) as desired.

In what follows, let n ⩾ 3 be an integer and let F be a field. Recall that∇n = {(i, j) ∈

N × N : 1 ⩽ i ⩽ j ⩽ n}\{(1, n − 1), (1, n), (2, n − 1), (2, n)}. We are now ready to

prove Theorem 5.3.2.

Proof of Theorem 5.3.2. It is easily seen that A 7→ λA+ µ(A)In is a commuting additive

map on rank one matrices A ∈ Tn(F). Together with Examples 5.2.1, 5.2.3 and 5.2.6, the

sufficiency is proved. We now proceed to show the necessity. For each pair of integers

1 ⩽ s ⩽ t ⩽ n, there are additive maps ϕ(s,t)
ij : F → F, i, j = 1, . . . , n, such that

ψ(aEst) =
∑

1⩽i⩽j⩽n

ϕ
(s,t)
ij (a)Eij (5.24)

for all a ∈ F. Since [ψ(aEst), aEst] = 0 for all a ∈ F, it follows from (5.24) that

( ∑
1⩽i⩽j⩽n

ϕ
(s,t)
ij (a)Eij

)
aEst − aEst

( ∑
1⩽i⩽j⩽n

aϕ
(s,t)
ij (a)Eij

)
= 0

for all a ∈ F. Since EijEst = δjsEit for any 1 ⩽ i, j, s, t ⩽ n, it follows that

( ∑
1⩽i⩽j⩽n

ϕ
(s,t)
ij (a)a(δjsEit)

)
−

( ∑
1⩽i⩽j⩽n

aϕ
(s,t)
ij (a)(δtiEsj)

)
= 0

for all a ∈ F, where δij is the Kronecker delta. We thus obtain

a(ϕ(s,t)
ss (a)− ϕ

(s,t)
tt (a))Est +

s−1∑
i=1

aϕ
(s,t)
is (a)Eit −

n∑
j=t+1

aϕ
(s,t)
tj (a)Esj = 0

for all a ∈ F and integers 1 ⩽ s ⩽ t ⩽ n. Then for every 1 ⩽ s ⩽ t ⩽ n,

ϕ
(s,t)
is = 0 for i = 1, . . . , s− 1, (5.25)

ϕ
(s,t)
tj = 0 for j = t+ 1, . . . , n, (5.26)

ϕ(s,t)
ss = ϕ

(s,t)
tt . (5.27)
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When s = t, it follows from (5.25) and (5.26) that for each 1 ⩽ s ⩽ n,

ϕ
(s,s)
is = 0 for i = 1, . . . , s− 1, (5.28)

ϕ
(s,s)
sj = 0 for j = s+ 1, . . . , n. (5.29)

We first study the structure of ψ(aEss) for every 1 ⩽ s ⩽ n and a ∈ F. Let 1 ⩽

s < t ⩽ n be integers and let a, b ∈ F. By virtue of [ψ(X), X] = 0 for all X ∈

{aEss + bEst, aEss, bEst}, we obtain [ψ(aEss), bEst] + [ψ(bEst), aEss] = 0. It follows

from (5.24) that

s∑
i=1

ϕ
(s,s)
is (a)bEit−

n∑
j=t

ϕ
(s,s)
tj (a)bEsj +

s∑
i=1

ϕ
(s,t)
is (b)aEis−

n∑
j=s

ϕ
(s,t)
sj (b)aEsj = 0. (5.30)

Since s < t, it follows from (5.30) that

(ϕ(s,s)
ss (a)b −ϕ

(s,s)
tt (a)b− ϕ

(s,t)
st (b)a)Est +

s−1∑
i=1

ϕ
(s,s)
is (a)bEit −

n∑
j=t+1

ϕ
(s,s)
tj (a)bEsj

+ ϕ(s,t)
ss (b)aEss +

s−1∑
i=1

ϕ
(s,t)
is (b)aEis

− ϕ(s,t)
ss (b)aEss −

t−1∑
j=s+1

ϕ
(s,t)
sj (b)aEsj −

n∑
j=t+1

ϕ
(s,t)
sj (b)aEsj = 0

for all a, b ∈ F. By (5.25) and (5.28), we see that ϕ(s,s)
is = 0 = ϕ

(s,t)
is for i = 1, . . . , s− 1.

Then

(ϕ(s,s)
ss (a)b − ϕ

(s,s)
tt (a)b− ϕ

(s,t)
st (b)a)Est

−
t−1∑

j=s+1

ϕ
(s,t)
sj (b)aEsj −

n∑
j=t+1

(ϕ
(s,t)
sj (b)a+ ϕ

(s,s)
tj (a)b)Esj = 0

for all a, b ∈ F and integers 1 ⩽ s < t ⩽ n. Consequently, for every 1 ⩽ s < t ⩽ n,

ϕ(s,s)
ss (a)b = ϕ

(s,s)
tt (a)b+ ϕ

(s,t)
st (b)a for all a, b ∈ F, (5.31)

ϕ
(s,t)
sj (b)a = −ϕ(s,s)

tj (a)b for all a, b ∈ F, j = t+ 1, . . . , n, (5.32)

ϕ
(s,t)
sj = 0 for j = s+ 1, . . . , t− 1. (5.33)
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By (5.31) and (5.32), we get ϕ(s,t)
st and ϕ(s,t)

sj , ϕ
(s,s)
tj , j = t + 1, . . . , n, are linear maps on

F. Therefore, for each pair of integers 1 ⩽ s < t ⩽ n, there exist scalars τst, λ
(s,s)
tj ∈ F,

j = t+ 1, . . . , n, such that

ϕ
(s,t)
st (a) = −τsta for all a ∈ F, (5.34)

ϕ
(s,s)
tt (a) = ϕ(s,s)

ss (a) + τsta for all a ∈ F, (5.35)

ϕ
(s,s)
tj (a) = λ

(s,s)
tj a = −ϕ(s,t)

sj (a) for all a ∈ F, j = t+ 1, . . . , n. (5.36)

Likewise, let 1 ⩽ r < s ⩽ n be integers and let a, b ∈ F. By [ψ(X), X] = 0 for every

X ∈ {aEss + bErs, aEss, bErs}, we obtain [ψ(aEss), bErs] + [ψ(bErs), aEss] = 0. By

(5.24), we get

r∑
i=1

ϕ
(s,s)
ir (a)bEis−

n∑
j=s

ϕ
(s,s)
sj (a)bErj+

s∑
i=1

ϕ
(r,s)
is (b)aEis−

n∑
j=s

ϕ
(r,s)
sj (b)aEsj = 0. (5.37)

Since r < s, it follows from (5.37) that

(ϕ(s,s)
rr (a)b − ϕ(s,s)

ss (a)b+ ϕ(r,s)
rs (b)a)Ers

+
r−1∑
i=1

ϕ
(s,s)
ir (a)bEis −

n∑
j=s+1

ϕ
(s,s)
sj (a)bErj

+
r−1∑
i=1

ϕ
(r,s)
is (b)aEis +

s−1∑
i=r+1

ϕ
(r,s)
is (b)aEis −

n∑
j=s+1

ϕ
(r,s)
sj (b)aEsj = 0

for all a, b ∈ F. By (5.26) and (5.29), we obtain

(ϕ(s,s)
rr (a)b − ϕ(s,s)

ss (a)b+ ϕ(r,s)
rs (b)a)Ers

+
r−1∑
i=1

(ϕ
(s,s)
ir (a)b+ ϕ

(r,s)
is (b)a)Eis +

s−1∑
i=r+1

ϕ
(r,s)
is (b)aEis = 0

for all a, b ∈ F and integers 1 ⩽ r < s ⩽ n. Hence for every 1 ⩽ r < s ⩽ n,

ϕ(s,s)
ss (a)b = ϕ(s,s)

rr (a)b+ ϕ(r,s)
rs (b)a for all a, b ∈ F, (5.38)

ϕ
(r,s)
is (b)a = −ϕ(s,s)

ir (a)b for all a, b ∈ F, i = 1, . . . , r − 1, (5.39)
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ϕ
(r,s)
is = 0 for all i = r + 1, . . . , s− 1. (5.40)

In view of (5.34), we see that ϕ(r,s)
rs (b) = −τrsb for all b ∈ F. By (5.39), we have

ϕ
(r,s)
is , ϕ

(s,s)
ir , i = 1, . . . , r − 1, are linear maps. Then for each r = 1, . . . , s − 1, there

exist scalars λ(s,s)ir ∈ F, i = 1, . . . , r − 1, such that

ϕ(s,s)
rr (a) = ϕ(s,s)

ss (a) + τrsa for all a ∈ F, (5.41)

ϕ
(s,s)
ir (a) = λ

(s,s)
ir a = −ϕ(r,s)

is (a) for all a ∈ F, i = 1, . . . , r − 1. (5.42)

By (5.35) and (5.41), for each 1 ⩽ s ⩽ n,

n∑
i=1

ϕ
(s,s)
ii (a)Eii = ϕ(s,s)

ss (a)In +
s−1∑
i=1

τisaEii +
n∑

i=s+1

τsiaEii (5.43)

for all a ∈ F, where
∑s−1

i=1 τisaEii = 0 when s = 1, and
∑n

s+1 τsiaEii = 0 when s = n.

By virtue of (5.28), (5.29), (5.36) and (5.42), for each 1 ⩽ s ⩽ n,

∑
1⩽i<j⩽n

ϕ
(s,s)
ij (a)Eij =

∑
1⩽i<j<s

λ
(s,s)
ij aEij +

∑
s<i<j⩽n

λ
(s,s)
ij aEij +

s−1∑
i=1

n∑
j=s+1

ϕ
(s,s)
ij (a)Eij

(5.44)

for all a ∈ F. Here,
∑

1⩽i<j<sλ
(s,s)
ij aEij = 0 when s ∈ {1, 2},

∑
s<i<j⩽nλ

(s,s)
ij aEij = 0

when s ∈ {n − 1, n} and
∑s−1

i=1

∑n
j=s+1ϕ

(s,s)
ij (a)Eij = 0 when s ∈ {1, n}. By (5.24),

(5.43) and (5.44), for each 1 ⩽ s ⩽ n,

ψ(aEss) = ϕ(s,s)
ss (a)In +

s−1∑
i=1

τisaEii +
n∑

i=s+1

τsiaEii +
∑

1⩽i<j<s

λ
(s,s)
ij aEij

+
∑

s<i<j⩽n

λ
(s,s)
ij aEij +

s−1∑
i=1

n∑
j=s+1

ϕ
(s,s)
ij (a)Eij (5.45)

for all a ∈ F.

We now continue to study the structure of ψ(aEst) for every 1 ⩽ s < t ⩽ n and a ∈ F.

Let 1 ⩽ s < t ⩽ n and 1 ⩽ p < t be integers such that p 6= s. Let a, b ∈ F. Since

[ψ(X), X] = 0 for everyX ∈ {aEst+ bEpt, aEst, bEpt}, it follows that [ψ(aEst), bEpt]+
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[ψ(bEpt), aEst] = 0. By (5.24), we obtain

p∑
i=1

ϕ
(s,t)
ip (a)bEit−

n∑
j=t

ϕ
(s,t)
tj (a)bEpj +

s∑
i=1

ϕ
(p,t)
is (b)aEit−

n∑
j=t

ϕ
(p,t)
tj (b)aEsj = 0. (5.46)

First consider 1 ⩽ p < s. It follows from (5.46) that

(ϕ(s,t)
pp (a)b − ϕ

(s,t)
tt (a)b+ ϕ(p,t)

ps (b)a)Ept + (ϕ(p,t)
ss (b)a− ϕ

(p,t)
tt (b)a)Est

+

p−1∑
i=1

(ϕ
(s,t)
ip (a)b+ ϕ

(p,t)
is (b)a)Eit +

s−1∑
i=p+1

ϕ
(p,t)
is (b)aEit

−
n∑

j=t+1

ϕ
(s,t)
tj (a)bEpj −

n∑
j=t+1

ϕ
(p,t)
tj (b)aEsj = 0.

Since ϕ(s,t)
tj = 0 = ϕ

(p,t)
tj for all t < j ⩽ n by (5.26), and ϕ(p,t)

pj = 0 for all p < j < t by

(5.33), we get

(ϕ(s,t)
pp (a)b − ϕ

(s,t)
tt (a)b)Ept + (ϕ(p,t)

ss (b)a− ϕ
(p,t)
tt (b)a)Est

+

p−1∑
i=1

(ϕ
(s,t)
ip (a)b+ ϕ

(p,t)
is (b)a)Eit +

s−1∑
i=p+1

ϕ
(p,t)
is (b)aEit = 0

for all a, b ∈ F and integers 1 ⩽ p < s < t ⩽ n. Thus for every 1 ⩽ p < s < t ⩽ n,

ϕ(s,t)
pp = ϕ

(s,t)
tt , (5.47)

ϕ
(s,t)
ip (a)b = −ϕ(p,t)

is (b)a for all a, b ∈ F, i = 1, . . . , p− 1. (5.48)

By (5.48), we see that ϕ(s,t)
ip , ϕ(p,t)

is , i = 1, . . . , p− 1, are linear maps on F. Then for every

integer 1 < p < s < t ⩽ n, there exist scalars λ(s,t)ip ∈ F, i = 1, . . . , p− 1, such that

ϕ
(s,t)
ip (a) = λ

(s,t)
ip a = −ϕ(p,t)

is (a) for all a ∈ F. (5.49)

In view of (5.27), (5.47) and (5.49), we conclude that for every 1 ⩽ s < t ⩽ n,

ϕ
(s,t)
ii = ϕ

(s,t)
tt for i = 1, . . . , s, (5.50)
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ϕ
(s,t)
ij (a) = λ

(s,t)
ij a, a ∈ F, for all integers 1 ⩽ i < j < s. (5.51)

Consider now s < p < t. It follows from (6.35) that

(ϕ(p,t)
ss (b)a − ϕ

(p,t)
tt (b)a+ ϕ(s,t)

sp (a)b)Est + (ϕ(s,t)
pp (a)b− ϕ

(s,t)
tt (a)b)Ept

+
s−1∑
i=1

(ϕ
(s,t)
ip (a)b+ ϕ

(p,t)
is (b)a)Eit +

p−1∑
i=s+1

ϕ
(s,t)
ip (a)bEit

−
n∑

j=t+1

ϕ
(s,t)
tj (a)bEpj −

n∑
j=t+1

ϕ
(p,t)
tj (b)aEsj = 0

for all a, b ∈ F. Since ϕ(s,t)
tj = 0 = ϕ

(p,t)
tj for all t < j ⩽ n by (5.26), and ϕ(s,t)

sj = 0 for all

s < j < t by (5.33), it follows that

(ϕ(p,t)
ss (b)a − ϕ

(p,t)
tt (b)a)Est + (ϕ(s,t)

pp (a)b− ϕ
(s,t)
tt (a)b)Ept

+
s−1∑
i=1

(ϕ
(s,t)
ip (a)b+ ϕ

(p,t)
is (b)a)Eit +

p−1∑
i=s+1

ϕ
(s,t)
ip (a)bEit = 0

for all a, b ∈ F and integers 1 ⩽ s < p < t ⩽ n. Hence for every 1 ⩽ s < p < t ⩽ n,

ϕ(s,t)
pp = ϕ

(s,t)
tt , (5.52)

ϕ
(s,t)
ip = 0 for i = s+ 1, . . . , p− 1, (5.53)

ϕ
(s,t)
ip (a)b = −ϕ(p,t)

is (b)a for all a, b ∈ F, i = 1, . . . , s− 1. (5.54)

By (5.50) and (5.52), we have

ϕ
(s,t)
ii = ϕ

(s,t)
tt for i = 1, . . . , t− 1. (5.55)

We conclude from (5.53) that for every 1 ⩽ s < t ⩽ n,

ϕ
(s,t)
ij = 0 for all s < i < j < t. (5.56)

By (5.54), ϕ(s,t)
ip , ϕ(p,t)

is , i = 1, . . . , s − 1, are linear maps on F. Moreover, for each

1 ⩽ s < p < t ⩽ n, it follows from (5.51) that ϕ(p,t)
is (a) = λ

(p,t)
is a for all a ∈ F,
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i = 1, . . . , s− 1. Consequently, for every 1 ⩽ s < t ⩽ n,

ϕ
(s,t)
ij (a) = −λ(j,t)is a, a ∈ F, for all integers 1 ⩽ i < s and s < j < t. (5.57)

We proceed to consider integers 1 ⩽ s < t ⩽ n and s < q ⩽ n such that q 6= t. Let

a, b ∈ F. Since [ψ(X), X] = 0 for all X ∈ {aEst + bEsq, aEst, bEsq}, it follows that

[ψ(aEst), bEsq] + [ψ(bEsq), aEst] = 0. By virtue of (5.24), we obtain

s∑
i=1

ϕ
(s,t)
is (a)bEiq−

n∑
j=q

ϕ
(s,t)
qj (a)bEsj +

s∑
i=1

ϕ
(s,q)
is (b)aEit−

n∑
j=t

ϕ
(s,q)
tj (b)aEsj = 0, (5.58)

We first consider t < q ⩽ n. It follows from (5.58) that

(ϕ(s,t)
ss (a)b − ϕ(s,t)

qq (a)b− ϕ
(s,q)
tq (b)a)Esq + (ϕ(s,q)

ss (b)a− ϕ
(s,q)
tt (b)a)Est

−
n∑

j=q+1

(ϕ
(s,t)
qj (a)b+ ϕ

(s,q)
tj (b)a)Esj +

s−1∑
i=1

ϕ
(s,q)
is (b)aEit

+
s−1∑
i=1

ϕ
(s,t)
is (a)bEiq −

q−1∑
j=t+1

ϕ
(s,q)
tj (b)aEsj = 0

for all a, b ∈ F. Since ϕ(s,q)
iq = 0 for all s < i < q by (5.40), ϕ(s,t)

is = 0 = ϕ
(s,q)
is for all

1 ⩽ i < s by (5.25), and ϕ(s,q)
tj = 0 for all s < t < j < q by (5.56), it follows that

(ϕ(s,t)
ss (a)b− ϕ(s,t)

qq (a)b)Esq + (ϕ(s,q)
ss (b)a− ϕ

(s,q)
tt (b)a)Est

−
n∑

j=q+1

(ϕ
(s,t)
qj (a)b+ ϕ

(s,q)
tj (b)a)Esj = 0

for all a, b ∈ F and integers 1 ⩽ s < t < q ⩽ n. Therefore for every 1 ⩽ s < t < q ⩽ n,

ϕ(s,t)
qq = ϕ(s,t)

ss , (5.59)

ϕ
(s,t)
qj (a)b = −ϕ(s,q)

tj (b)a for all a, b ∈ F, j = q + 1, . . . , n. (5.60)

In view of (5.27), (5.55) and (5.59), we conclude that for every 1 ⩽ s < t ⩽ n,

ϕ
(s,t)
ii = ϕ(s,t)

ss for all i = 1, . . . , n. (5.61)
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By (5.60), we see that ϕ(s,t)
qj , ϕ(s,q)

tj , j = q + 1, . . . , n, are linear maps on F. Therefore for

every 1 ⩽ s < t < q ⩽ n, there exist scalars λ(s,t)qj ∈ F, j = q + 1, . . . , n, such that

ϕ
(s,t)
qj (a) = λ

(s,t)
qj a = −ϕ(s,q)

tj (a) for all a ∈ F. (5.62)

We conclude from (5.62) that for every 1 ⩽ s < t ⩽ n,

ϕ
(s,t)
ij (a) = λ

(s,t)
ij a, a ∈ F, for all integers t < i < j ⩽ n. (5.63)

Next, we consider s < q < t. It follows from (5.58) that

(ϕ(s,t)
ss (a)b − ϕ(s,t)

qq (a)b)Esq + (ϕ(s,q)
ss (b)a− ϕ

(s,q)
tt (b)a− ϕ

(s,t)
qt (a)b)Est

+
s−1∑
i=1

ϕ
(s,t)
is (a)bEiq +

s−1∑
i=1

ϕ
(s,q)
is (b)aEit

−
t−1∑

j=q+1

ϕ
(s,t)
qj (a)bEsj −

n∑
j=t+1

(ϕ
(s,t)
qj (a)b+ ϕ

(s,q)
tj (b)a)Esj = 0

for all a, b ∈ F. By virtue of (5.25), (5.40), (5.56) and (5.61), we obtain

n∑
j=t+1

(ϕ
(s,t)
qj (a)b+ ϕ

(s,q)
tj (b)a)Esj = 0

for all a, b ∈ F and integers 1 ⩽ s < q < t ⩽ n. Thus for every 1 ⩽ s < q < t ⩽ n,

ϕ
(s,t)
qj (a)b = −ϕ(s,q)

tj (b)a for all a, b ∈ F, j = t+ 1, . . . , n. (5.64)

By (5.64), ϕ(s,t)
qj , ϕ(s,q)

tj , j = q + 1, . . . , n, are linear maps on F. Moreover, for every

integer 1 ⩽ s < q < t ⩽ n, it follows from (5.63) that ϕ(s,q)
tj (a) = λ

(s,q)
tj a for all a ∈ F,

j = t+ 1, . . . , n. We conclude from (5.64) that for every 1 ⩽ s < t ⩽ n,

ϕ
(s,t)
ij (a) = −λ(s,i)tj a, a ∈ F, for all integers s < i < t and t < j ⩽ n. (5.65)

We are now ready to classify the structure of ψ(aEst) for all integers 1 ⩽ s < t ⩽ n

and a ∈ F. To see this, let 1 ⩽ s < t ⩽ n be integers. Since ϕ(s,t)
is = 0 for i = 1, . . . , s−1
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by (5.25), and ϕ(s,t)
it = −λ(t,t)is for i = 1, . . . , s − 1 by (5.42), it follows from (5.51) and

(5.57) that

∑
1⩽i<j⩽s

ϕ
(s,t)
ij (a)Eij +

s−1∑
i=1

t∑
j=s+1

ϕ
(s,t)
ij (a)Eij =

∑
1⩽i<j<s

λ
(s,t)
ij aEij −

s−1∑
i=1

t∑
j=s+1

λ
(j,t)
is aEij

(5.66)

for all a ∈ F, where it is understood that
∑

1⩽i<j⩽s ϕ
(s,t)
ij (a)Eij = 0 =

∑
1⩽i<j<s λ

(s,t)
ij aEij

when s ∈ {1, 2}, and
∑s−1

i=1

∑t
j=s+1 ϕ

(s,t)
ij (a)Eij = 0 =

∑s−1
i=1

∑t
j=s+1 λ

(j,t)
is aEij when

s = 1. Likewise, since ϕ(s,t)
tj = 0 for j = t + 1, . . . , n by (5.26), and ϕ(s,t)

sj = −λ(s,s)tj for

j = t+ 1, . . . , n by (5.36), it follows from (5.63) and (5.65) that

∑
t⩽i<j⩽n

ϕ
(s,t)
ij (a)Eij +

t−1∑
i=s

n∑
j=t+1

ϕ
(s,t)
ij (a)Eij =

∑
t<i<j⩽n

λ
(s,t)
ij aEij −

t−1∑
i=s

n∑
j=t+1

λ
(s,i)
tj aEij

(5.67)

for all a ∈ F, where
∑

t⩽i<j⩽n ϕ
(s,t)
ij (a)Eij = 0 =

∑
t<i<j⩽n λ

(s,t)
ij aEij = 0 when t ∈

{n − 1, n}, and
∑t−1

i=s

∑n
j=t+1 ϕ

(s,t)
ij (a)Eij = 0 =

∑t−1
i=s

∑n
j=t+1 λ

(s,i)
tj aEij when t = n.

Next, since ϕ(s,t)
sj = 0 for j = s+1, . . . , t− 1 by (5.33), ϕ(s,t)

it = 0 for i = s+1, . . . , t− 1

by (5.40), and ϕ(s,t)
ij = 0 for all s < i < j < t by (5.56), it follows from (5.34) that

∑
s⩽i<j⩽t

ϕ
(s,t)
ij (a)Eij = −τstaEst (5.68)

for all a ∈ F. Since

∑
1⩽i<j⩽n

ϕ
(s,t)
ij (a)Eij =

∑
1⩽i<j⩽s

ϕ
(s,t)
ij (a)Eij +

s−1∑
i=1

t∑
j=s+1

ϕ
(s,t)
ij (a)Eij +

s−1∑
i=1

n∑
j=t+1

ϕ
(s,t)
ij (a)Eij

+
∑

s⩽i<j⩽t

ϕ
(s,t)
ij (a)Eij +

t−1∑
i=s

n∑
j=t+1

ϕ
(s,t)
ij (a)Eij +

∑
t⩽i<j⩽n

ϕ
(s,t)
ij (a)Eij

for all a ∈ F, it follows from (5.66)–(5.68) that

∑
1⩽i<j⩽n

ϕ
(s,t)
ij (a)Eij =

∑
1⩽i<j<s

λ
(s,t)
ij aEij −

s−1∑
i=1

t∑
j=s+1

λ
(j,t)
is aEij +

s−1∑
i=1

n∑
j=t+1

ϕ
(s,t)
ij (a)Eij

−τstaEst +
∑

t<i<j⩽n

λ
(s,t)
ij aEij −

t−1∑
i=s

n∑
j=t+1

λ
(s,i)
tj aEij (5.69)
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for all a ∈ F, where
∑s−1

i=1

∑n
j=t+1 ϕ

(s,t)
ij (a)Eij = 0when either s = 1 or t = n. Moreover,

by virtue of (5.61), for each pair of integers 1 ⩽ s < t ⩽ n,

n∑
i=1

ϕ
(s,t)
ii (a)Eii = ϕ(s,t)

ss (a)In (5.70)

for all a ∈ F. Consequently, by (5.24), (5.69) and (5.70), for each pair of integers 1 ⩽

s < t ⩽ n,

ψ(aEst) = ϕ(s,t)
ss (a)In − τstaEst +

s−1∑
i=1

n∑
j=t+1

ϕ
(s,t)
ij (a)Eij

+
∑

1⩽i<j<s

λ
(s,t)
ij aEij −

s−1∑
i=1

t∑
j=s+1

λ
(j,t)
is aEij

+
∑

t<i<j⩽n

λ
(s,t)
ij aEij −

t−1∑
i=s

n∑
j=t+1

λ
(s,i)
tj aEij (5.71)

for all a ∈ F.

Let µ : Tn(F) → F be the additive map defined by

µ(A) =
∑

1⩽s⩽t⩽n

ϕ(s,t)
ss (ast) (5.72)

for all A = (aij) ∈ Tn(F). Let ψχ : Tn(F) → Tn(F) and ψΛ : Tn(F) → Tn(F) be the

linear maps defined in (5.20) and (5.22), respectively, and let ψF : Tn(F) → Tn(F) be

the additive map defined in (5.21), where χ = (τij) ∈ Tn(F) is a strictly upper triangular

matrix, and

F =
∪

1<s⩽t<n

{ϕ(s,t)
ij : F → F : 1 ⩽ i ⩽ s− 1 and t+ 1 ⩽ j ⩽ n},

Λ =
∪

(s,t)∈∇n

{
λ
(s,t)
ij ∈ F : 1 ⩽ i < j < s or t < i < j ⩽ n

}
.

In view of (5.45) and (5.71), together with (5.2), (5.3), (5.6), (5.7) and (5.72), we see that

ψ(aEst) = µ(aEst)In + ψχ(aEst) + ψΛ(aEst) + ψF (aEst) (5.73)
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for all integers 1 ⩽ s ⩽ t ⩽ n and a ∈ F. By (5.73) and the additivity of ψ, µ, ψχ, ψΛ

and ψF , we obtain

ψ(A) =
∑

1⩽s⩽t⩽n

ψ(astEst)

=
∑

1⩽s⩽t⩽n

µ(astEst)In + ψχ(astEst) + ψΛ(astEst) + ψF (astEst)

= µ(A)In + ψχ(A) + ψΛ(A) + ψF (A)

= λA+ µ(A)In + ψχ(A) + ψΛ(A) + ψF (A)

for all A = (aij) ∈ Tn(F), where λ = 0 ∈ F. This completes the proof.

Remark 5.4.1. Let F be a field and let ψ : T3(F) → T3(F) be the commuting additive

map defined by

ψ(A) = µ(A)I3 +


τ12a22 + τ13a33 −τ12a12 −τ13a13

0 τ12a11 + τ23a33 −τ23a23

0 0 τ13a11 + τ23a22

 (5.74)

for all A = (aij) ∈ T3(F), where τij , 1 ⩽ i < j ⩽ 3, are scalars in F and µ : T3(F) → F

is an additive map. Given any λ ∈ F, it is not difficult to note that the additive map ψ in

(5.74) can be reformed as follows:

ψ(A) = λA+ η(A)I3 +


ς12a22 + ς13a33 −ς12a12 −ς13a13

0 ς12a11 + ς23a33 −ς23a23

0 0 ς13a11 + ς23a22


for all A = (aij) ∈ T3(F). Here, ςij = τij + λ ∈ F for all 1 ⩽ i < j ⩽ 3, and

η : T3(F) → F is the additive map defined by

η(A) = µ(A)− λ(a11 + a22 + a33)

for all A = (aij) ∈ T3(F).

Remark: The results in this chapter have been published in Chooi, Mutalib, and Tan,
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L. Y. (2021).

81

Univ
ers

iti 
Mala

ya



CHAPTER 6: CENTRALIZING ADDITIVE MAPS ON RANK ONE UPPER
TRIANGULAR MATRICES OVER DIVISION RINGS

6.1 Introduction

LetR be a ring with centreZ(R) and let S be a nonempty subset ofR. Letψ : R → R

be a map. Recall that a map ψ is centralizing on S if [ψ(A), A] ∈ Z(R) for all A ∈ S ,

where [X,Y ] is the commutator of X,Y ∈ R. Extending Franca’s results, C.­K. Liu

(2014a) developed the study of centralizing additive maps to subsets of matrices that are

not closed under addition. Let n ⩾ 2 be an integer and let D be a division ring. Recall

thatMn(D) is the ring of all n × n matrices over D with centre Z(Mn(D)) and unity In.

C.­K. Liu (2014a) showed that if ψ : Mn(D) → Mn(D) is an additive map satisfying

[ψ(A), A] ∈ Z(Mn(D)) for all invertible A ∈Mn(D), then there exists λ ∈ Z(D) and an

additive map µ :Mn(D) → Z(D) such thatψ(A) = λA+µ(A)In, unless |D| = 2. Franca

and Louza (2017) studied commuting additive maps ψ : Mn(D) → Mn(D) on rank one

matrices over a noncommutative division ring D and it turns out that ψ is of the standard

form (2.14), which is unexpectedly simple compared to Franca (2017) when D is a field.

Let n ⩾ 2 be an integer. Recall that Tn(D) is the ring of all n×n upper triangular matrices

over a division ringDwith centreZ(Tn(D)). Inspired by the aforementioned result, in this

chapter we study and characterise centralizing additive map ψ : Tn(D) → Tn(D) (i.e. ψ

satisfying [ψ(A), A] ∈ Z(Tn(D))) for all rank one matrices A ∈ Tn(D). We then deduce

from this result a complete description of commuting additive maps ψ : Tn(D) → Tn(D)

on rank one matrices over a noncommutative division ring D. We show that the concept

of centralizing and commuting are equivalent in rank one upper triangular matrices over

division rings. As we see from Theorem 6.2.2, it is worth mentioning that the structure of

ψ is relatively simple compared with the corresponding result in Theorem 5.3.2 when D

is a field, but ψ is not of the standard form.

6.2 Main results

Let n ⩾ 3 be an integer. Let ∇n = {(i, j) ∈ N × N : 1 ⩽ i ⩽ j ⩽ n}\{(1, n −

1), (1, n), (2, n − 1), (2, n)}. Recall that Eij ∈ Tn(D) is the standard matrix unit whose

(i, j)th entry is one and zero elsewhere.
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Theorem 6.2.1. Let n ⩾ 2 be an integer and let D be a division ring with centre Z(D).

Suppose that ψ : Tn(D) → Tn(D) is a map. Then the following statements are equivalent:

(i) ψ is a centralizing additive map on rank one matrices.

(ii) ψ is a commuting additive map on rank one matrices.

(iii) There exists λ ∈ Z(D), an additive map µ : Tn(D) → Z(D), a strictly upper

triangular matrix χ = (τij) ∈ Tn(D), a set of elements Λ =
∪

(s,t)∈∇n
{λ(s,t)ij ∈ D :

1 ⩽ i < j < s or t < i < j ⩽ n} and a set of additive mapsF =
∪

1<s⩽t<n{ϕ
(s,t)
ij :

D → D : 1 ⩽ i ⩽ s− 1 and t+ 1 ⩽ j ⩽ n} such that

ψ(A) = λA+ µ(A)In + ψχ(A) + ψF (A) + ψΛ(A)

for all A ∈ Tn(D), where ψχ : Tn(D) → Tn(D) is the linear map defined by

ψχ(A) =



x1 −τ12a12 −τ13a13 · · · −τ1na1n

0 x2 −τ23a23 · · · −τ2na2n

0 0 x3 · · · −τ3na3n
...

...
... . . . ...

0 0 0 · · · xn


for all A = (aij) ∈ Tn(D), where

xh =



∑n
i=2 τ1iaii if h = 1,

∑h−1
i=1 τih aii +

∑n
i=h+1 τhi aii if 2 ⩽ h ⩽ n− 1,

∑n−1
i=1 τinaii if h = n,

ψF : Tn(D) → Tn(D) is the additive map defined by

ψF (A) =
∑

1<s⩽t<n

(
s−1∑
i=1

n∑
j=t+1

ϕ
(s,t)
ij (ast)Eij

)
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for all A = (aij) ∈ Tn(D), and ψΛ : Tn(D) → Tn(D) is the linear map defined by

ψΛ(A) =
∑

(s,t)∈∇n

Ψst(A) + Φst(A)

for all A ∈ Tn(D), where for each (s, t) ∈ ∇n,

Ψst(A) =


0 if 1 ⩽ s ⩽ 2,(∑

1⩽i<j<s λ
(s,t)
ij Eij

)(∑s−1
h=1 astEhh − ahtEhs

)
if 3 ⩽ s ⩽ n,

Φst(A) =


(∑n

h=t+1 astEhh − ashEth

)(∑
t<i<j⩽n λ

(s,t)
ij Eij

)
if 1 ⩽ t ⩽ n− 2,

0 if n− 1 ⩽ t ⩽ n

for all A = (aij) ∈ Tn(D). Here, ψF = 0 when n = 2, and ψχ = 0 and ψΛ = 0

when either n = 2 or D is noncommutative.

As an immediate consequence of Theorem 6.2.1, we deduce the following result.

Theorem 6.2.2. Let n ⩾ 2 be an integer and let D be a noncommutative division ring

with centre Z(D). Then ψ : Tn(D) → Tn(D) is a commuting additive map on rank one

matrices if and only if there exists an element λ ∈ Z(D), an additive map µ : Tn(D) →

Z(D) and a set of additive maps F =
∪

1<s⩽t<n{ϕ
(s,t)
ij : D → D : 1 ⩽ i ⩽ s− 1 and t+

1 ⩽ j ⩽ n} such that

ψ(A) = λA+ µ(A)In + ψF (A)

for all A ∈ Tn(D), where ψF : Tn(D) → Tn(D) is the additive map defined by

ψF (A) =
∑

1<s⩽t<n

(
s−1∑
i=1

n∑
j=t+1

ϕ
(s,t)
ij (ast)Eij

)

for all A = (aij) ∈ Tn(D) and ψF = 0 when n = 2.

6.3 Proofs

Throughout this section, unless stated otherwise, let n ⩾ 2 be an integer and let D

denote a division ring with centreZ(D). LetA ∈Mn(D). The row (respectively, column)
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space of A is the left (respectively, right) vector space over D generated by the n rows

(respectively, n columns) of A. The row rank (respectively, column rank) of A is the

dimension of the row (respectively, column) space of A. The rank of A, denoted by rank

A, is the common value of the row rank and column rank of A. See, for instance (Wan,

1996, Corollary 1.18).

The following lemma generalises (Chooi &Lim, 1998, Lemma 4.1) over division rings,

where the lemma holds true when the division ring is a field.

Lemma 6.3.1. Let D be a division ring and let n ⩾ 1 and 1 ⩽ k ⩽ n be integers. Then

A ∈ Tn(D) is of rank k if and only if there exist invertible matrices P,Q ∈ Tn(D) such

that

A = P

(
k∑

i=1

Esi,ti

)
Q

for some integers 1 ⩽ si ⩽ ti ⩽ n for i = 1, . . . , k with s1 < · · · < sk and ti 6= tj

whenever 1 ⩽ i 6= j ⩽ k.

Proof. The sufficiency is clear. We prove the necessity. Let A = (aij) ∈ Tn(D) be of

rank k ⩾ 1. The result is clear when n = 1. Consider n ⩾ 2. We denote by Ri and Ci

the i­th row and the i­th column of A, respectively. Let Rp1 be the nonzero row of A in

which Ri = 0 for i = p1 + 1, . . . , n, and let ap1,q1 be the first nonzero entry from the left

of Rp1 . We left multiply Rp1 by a−1
p1,q1

and obtain ap1,q1 = 1. Then, for each 1 ⩽ i < p1

and q1 < j ⩽ n, we apply the following elementary row and column operations on A:

Ri → Ri − ai,q1Rp1 and Cj → Cj − Cq1ap1,j. (6.1)

Then, by (Hungerford, 1974, Chapter VII, Theorem 2.8) and (6.1), there exist invertible

matrices H1, K1 ∈ Tn(D) such that

H1AK1 = Ep1,q1 +B, (6.2)

where Ep1,q1 , B ∈ Tn(D). If B = 0, then the lemma is proved. Suppose that B = (bij) 6=

0. In view of the elementary operations performed in (6.1), we see that bi,q1 = 0 for

i = 1, . . . , n, and bij = 0 for all p1 ⩽ i ⩽ n and 1 ⩽ j ⩽ n. We repeat a similar process
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for B. Then there exist integers 1 ⩽ p2 ⩽ q2 ⩽ n, with p2 < p1 and q2 6= q1, and

invertible matrices H2, K2 ∈ Tn(D) such that

H2BK2 = Ep2,q2 + C and H2Ep1,q1K2 = Ep1,q1

for some C ∈ Tn(D). It follows from (6.2) that (H2H1)A(K1K2) = Ep1,q1 +Ep2,q2 + C.

If C = 0, then we are done; otherwise, we continue this process, since A is of rank k, and

finally reach to the desired result.

Lemma 6.3.2. (C.­K. Liu et al., 2018, Lemma 2.1) Let D be a division ring. Let a, b ∈ D

be such that ax = xb for all nonzero x ∈ D. Then a = b ∈ Z(D).

Proof. Taking x = 1 ∈ D, we get a = b. It follows that ax = xa for all all nonzero

x ∈ D. Hence a = b ∈ Z(D).

Lemma 6.3.3. Let n ⩾ 2 be an integer. Then the centre of Tn(D) is Z(Tn(D)) = Z(D)In.

Proof. We first show that Z(D)In ⊆ Z(Tn(D)). Let X ∈ Z(D)In. Then X = λIn

for some λ ∈ Z(D). Let A ∈ Tn(D). Since λ ∈ Z(D), we get λA = Aλ. Then

AX = A(λIn) = (Aλ)In = (λA)In = λ(AIn) = λ(InA) = (λIn)A = XA. Therefore

AX = XA for all A ∈ Tn(D), and so X ∈ Z(Tn(D)). Hence Z(D)In ⊆ Z(Tn(D)).

Consider A = (aij) ∈ Z(Tn(D)). Let 1 ⩽ s ⩽ t ⩽ n be integers and let d ∈ D be

nonzero. Since A(dEst) = (dEst)A, it follows that Ekk(A(dEst)) = Ekk((dEst)A), and

so

aksdEkt = δksdEktA (6.3)

for every integer 1 ⩽ k ⩽ s, where δks is the Kronecker symbol. In particular, aksdEst =

0 when k < s. Then A is diagonal. We note that EstA = attEst. By (6.3), assdEst =

dattEst for every nonzero d ∈ D and 1 ⩽ s ⩽ t ⩽ n. Then ass = att ∈ Z(D) for all

1 ⩽ s ⩽ t ⩽ n by Lemma 6.3.2. Consequently, A = aIn for some a ∈ Z(D). Hence

Z(Tn(D)) = Z(D)In.

We remark that Lemma 6.3.3 extends Lemma 2.1.3 over division rings.
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Lemma 6.3.4. Let D be a noncommutative division ring. If f, g : D → D are additive

maps satisfying either xf(y) + yg(x) = 0 for all x, y ∈ D, or f(x)y + g(y)x = 0 for all

x, y ∈ D, then f = g = 0.

Proof. The case xf(y) + yg(x) = 0 has been shown in (C.­K. Liu, 2014a, Lemma 2.7).

We consider the case

f(x)y + g(y)x = 0. (6.4)

Taking x = 1 in (6.4), we see that g(y) = −f(1)y. Likewise taking y = 1 in (6.4), we

have f(x) = −g(1)x. Letting x = y = 1 in (6.4), we get g(1) = −f(1). Hence

0 = f(x)y + g(y)x = −g(1)xy − f(1)yx = f(1)xy − f(1)yx = f(1)(xy − yx).

It follows from the noncommutativity ofD that f(1) = 0. We thus obtain f = g = 0.

Lemma 6.3.5. Let D be a noncommutative division ring with centre Z(D) and let f, g :

D → D be additive maps. If f(x)x = xg(x) for all x ∈ D, then there exists λ ∈ Z(D)

and an additive map µ : D → Z(D) such that f(x) = g(x) = λx+ µ(x) for all x ∈ D.

Proof. Setting f1 = f , f2 = f3 = 0 and f4 = −g in Theorem 2.2.1, we get f(x)x −

xg(x) = 0 for all x ∈ D. By Theorem 2.2.1, there exists an additive map µ : D → Z(D)

and a, b ∈ D such that f(x) = −xa + µ(x), −g(x) = bx − µ(x) and ax = xb for all

x ∈ D. By Lemma 6.3.2, a = b ∈ Z(D). Then f(x) = g(x) = λx + µ(x) for all x ∈ D,

where λ = −a ∈ Z(D). We are done.

Lemma 6.3.6. LetD be a noncommutative division ring with centre Z(D) and let f, g, h :

D → D be additive maps.

(i) If f(x)y+xg(y)+yh(x) = 0 for all x, y ∈ D and f(x) = λx+µ(x) for all x ∈ D,

where λ ∈ Z(D) and µ : D → Z(D) is an additive map, then g(x) = −λx and

h(x) = −µ(x) for all x ∈ D.
(ii) If f(x)y+g(y)x+yh(x) = 0 for all x, y ∈ D and h(x) = λx+µ(x) for all x ∈ D,

where λ ∈ Z(D) and µ : D → Z(D) is an additive map, then f(x) = −µ(x) and

g(x) = −λx for all x ∈ D.
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Proof. (i) Setting f1 = f , f2 = g, f3 = 0 and f4 = h in Theorem 2.2.1, we get f(x)y +

xg(y) + yh(x) = 0 for all x, y ∈ D. Then there exist a, b ∈ D and additive maps

α, β : D → Z(D) such that

f(x) = −xa+ α(x), g(x) = ax− β(x), 0 = −xb+ β(x) and h(x) = bx− α(x)

for all x ∈ D. Note that λx+ µ(x) = −xa+ α(x) yields x(λ+ a) = α(x)− µ(x) for all

x ∈ D. Then λ + a = α(1)− µ(1) ∈ Z(D). Therefore yx(λ + a) = y(α(x)− µ(x)) =

(α(x)−µ(x))y = (x(λ+a))y = xy(λ+a) for all x, y ∈ D. By the noncommutativity of

D, we have a = −λ, and hence α = µ. Moreover, since β(x) = xb and β(x) ∈ Z(D) for

all x ∈ D, it follows that yxb = yβ(x) = β(x)y = xby for all x, y ∈ D. By taking x = 1,

we get yb = by for all y ∈ D, so b ∈ Z(D). Then yxb = xyb for all x, y ∈ D. Again, by

the noncommutativity of D, b = 0, and so β = 0. We thus conclude that g(x) = −λx and

h(x) = −µ(x) for all x ∈ D.

(ii) Setting f1 = f , f2 = 0, f3 = g and f4 = h in Theorem 2.2.1, we get f(x)y+g(y)x+

yh(x) = 0 for all x, y ∈ D. Then there exist a, b ∈ D and additive maps α, β : D → Z(D)

such that

f(x) = −xa+ α(x), 0 = ax− β(x), g(x) = −xb+ β(x) and h(x) = bx− α(x)

for all x ∈ D. Note that λx + µ(x) = bx − α(x) yields (b − λ)x = α(x) + µ(x) for all

x ∈ D. Then b − λ = α(1) + µ(1) ∈ Z(D). Therefore (b − λ)xy = (α(x) + µ(x))y =

y(α(x) + µ(x)) = y(b− λ)x = (b− λ)yx for all x, y ∈ D. By the noncommutativity of

D, we have b = λ, and hence α = −µ. Moreover, since β(x) = ax and β(x) ∈ Z(D) for

all x ∈ D, it follows that axy = β(x)y = yβ(x) = yax for all x, y ∈ D. By taking x = 1,

we get ay = ya for all y ∈ D, so a ∈ Z(D). Then axy = ayx for all x, y ∈ D. Again, by

the noncommutativity of D, a = 0, and so β = 0. We thus conclude that f(x) = −µ(x)

and g(x) = −λx for all x ∈ D.

Lemma 6.3.7. Let n ⩾ 2 be an integer and let P,Q ∈ Tn(D). If A ∈ Tn(D) is of rank

one such that PA− AQ ∈ Z(Tn(D)), then PA = AQ.

88

Univ
ers

iti 
Mala

ya



Proof. We write PA = (pij) and AQ = (qij) to be matrices in Tn(D). By Lemma 6.3.1,

there exist invertible matrices H,K ∈ Tn(D) such that A = HEstK for some integers

1 ⩽ s ⩽ t ⩽ n. Then PA = P ′EstK and AQ = HEstQ
′, with P ′ = PH and Q′ = KQ

in Tn(D). It follows that pij = qij = 0 for all 1 ⩽ i ⩽ j < t, and pij = qij = 0 for all

s < i ⩽ j ⩽ n. Consequently, PA−AQ has at most one nonzero diagonal entry. On the

other hand, by the hypothesis and Lemma 6.3.3, PA − AQ = αIn for some α ∈ D. We

infer that α = 0, and so PA = AQ as required.

Let n ⩾ 2 be an integer and let D be a division ring with centre Z(D). Recall that

Tn(D) is the ring of all n×n upper triangular matrices over a division ring D with centre

Z(Tn(D)) and unity In We are now ready to prove Theorem 6.2.1.

Proof of Theorem 6.2.1. (i) ⇒ (ii). Let A ∈ Tn(D) be of rank one. By the hypothesis

ψ(A)A − Aψ(A) ∈ Z(Tn(D)), it follows from Lemma 6.3.7 that ψ(A)A = Aψ(A).

Hence ψ is a commuting additive map on rank one matrices.

(iii) ⇒ (i) Trivially, A 7→ λA + µ(A)In is a centralizing additive map on rank one

matrices A ∈ Tn(D). When n ⩾ 3, we infer by a similar argument in the proof of

Examples 5.2.1, 5.2.3 and 5.2.6 that ψχ, ψF and ψΛ are centralizing additive maps on

rank one matrices. The result follows.

(ii) ⇒ (iii) In view of Theorems 5.3.1 and 5.3.2, we need only consider D being a

noncommutative division ring. First consider n = 2. For each pair of integers 1 ⩽ i ⩽

j ⩽ 2, there exist additive maps fij, gij, hij : D → D such that

ψ(aEij) =

 fij(a) hij(a)

0 gij(a)


for all a ∈ F. Since [ψ(aEij), aEij] = 0 for all a ∈ D and 1 ⩽ i ⩽ j ⩽ 2, it follows that

h11 = h22 = 0, and f12(a)a = ag12(a), f11(a)a = af11(a) and g22(a)a = ag22(a) for all

a ∈ D. By Lemma 6.3.5, we have

f12 = g12, (6.5)

89

Univ
ers

iti 
Mala

ya



and there exist λ, λ1 ∈ Z(D) and additive maps µ1, µ2 : D → Z(D) such that

f11(a) = λa+ µ1(a), (6.6)

g22(a) = λ1a+ µ2(a) (6.7)

for all a ∈ D. Since [ψ(aE11 + bE12), aE11 + bE12] = 0 for all a, b ∈ D, we thus obtain

f12(b)a = af12(b) (6.8)

for all a, b ∈ D, and

f11(a)b− ah12(b)− bg11(a) = 0 (6.9)

for all a, b ∈ D. By (6.5) and (6.8), we conclude that f12(a) = g12(a) ∈ Z(D) for all

a ∈ D. Letting f = f11, g = −h12, h = −g11 in Lemma 6.3.6(i), we obtain (6.9). By

Lemma 6.3.6(i) and (6.6), we conclude that h12(a) = λa and g11(a) = µ1(a) for all a ∈ D.

Next, by virtue of [ψ(aE22 + bE12), aE22 + bE12] = 0 for all a, b ∈ D, we have

f22(a)b+ λba− bg22(a) = 0 (6.10)

for all a, b ∈ D. Taking f = f22, g(b) = λb for b ∈ D and h = −g22 in Lemma 6.3.6(ii),

we get (6.10). By Lemma 6.3.6(ii) and (6.7), we thus obtain λ1 = λ and f22(a) = µ2(a)

for all a ∈ D. Let µ : T2(D) → Z(D) be the additive map defined by

µ(A) = µ1(a11) + f12(a12) + µ2(a22)

for all A = (aij) ∈ T2(D). Then ψ(A) = λA+ µ(A)I2 for all A ∈ T2(D) as desired.

We now proceed to n ⩾ 3. For each pair of integers 1 ⩽ s ⩽ t ⩽ n, there exist

additive maps ϕ(s,t)
ij : D → D, i, j = 1, . . . , n, such that

ψ(aEst) =
∑

1⩽i⩽j⩽n

ϕ
(s,t)
ij (a)Eij (6.11)

for all a ∈ D. Let 1 ⩽ i, j ⩽ n be integers. Note that [ψ(aEst), aEst] = 0 for all a ∈ D.
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By (6.11) and using the fact that EijEst = δjsEit for every 1 ⩽ i, j ⩽ n, we obtain

∑
1⩽i⩽j⩽n

ϕ
(s,t)
ij (a)a(δjsEit)−

∑
1⩽i⩽j⩽n

aϕ
(s,t)
ij (a)(δtiEsj) = 0

for all a ∈ D, where δij is the Kronecker delta. Consequently, for every 1 ⩽ s ⩽ t ⩽ n,

(ϕ(s,t)
ss (a)a− aϕ

(s,t)
tt (a))Est +

s−1∑
i=1

ϕ
(s,t)
is (a)aEit −

n∑
j=t+1

aϕ
(s,t)
tj (a)Esj = 0

for all a ∈ D. By the linear independence of Eij , 1 ⩽ i ⩽ j ⩽ n, we infer that for every

1 ⩽ s ⩽ t ⩽ n,

ϕ
(s,t)
is = 0, i = 1, . . . , s− 1, (6.12)

ϕ
(s,t)
tj = 0, j = t+ 1, . . . , n, (6.13)

ϕ(s,t)
ss (a)a = aϕ

(s,t)
tt (a) (6.14)

for all a ∈ D. It follows from (6.14) and Lemma 6.3.5 that for each pair of integers

1 ⩽ s ⩽ t ⩽ n, there exists λst ∈ Z(D) and an additive map µst : D → Z(D) such that

ϕ(s,t)
ss (a) = ϕ

(s,t)
tt (a) = λsta+ µst(a) (6.15)

for all a ∈ D. We first claim that there exists λ ∈ Z(D) such that for each integer

1 ⩽ s ⩽ n,

ψ(aEss) = λaEss + µss(a)In +
s−1∑
i=1

n∑
j=s+1

ϕ
(s,s)
ij (a)Eij (6.16)

for all a ∈ D, where
∑s−1

i=1

∑n
j=s+1 ϕ

(s,s)
ij (a)Eij = 0 when s = 1, n. Let 1 ⩽ s < t ⩽ n

be integers and let a, b ∈ D. Since [ψ(A), A] = 0 for A ∈ {aEss, bEst, aEss + bEst}, it

follows that

ψ(aEss)bEst − bEstψ(aEss) + ψ(bEst)aEss − aEssψ(bEst) = 0.
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Using (6.11), we obtain

s∑
i=1

ϕ
(s,s)
is (a)bEit −

n∑
j=t

bϕ
(s,s)
tj (a)Esj +

s∑
i=1

ϕ
(s,t)
is (b)aEis −

n∑
j=s

aϕ
(s,t)
sj (b)Esj = 0.

Since ϕ(s,s)
is = 0 = ϕ

(s,t)
is for i = 1, . . . , s− 1 by (6.12), it follows that for every 1 ⩽ s <

t ⩽ n,

(ϕ(s,s)
ss (a)b− bϕ

(s,s)
tt (a) − aϕ

(s,t)
st (b))Est + (ϕ(s,t)

ss (b)a− aϕ(s,t)
ss (b))Ess

−
t−1∑

j=s+1

aϕ
(s,t)
sj (b)Esj −

n∑
j=t+1

(aϕ
(s,t)
sj (b) + bϕ

(s,s)
tj (a))Esj = 0

for all a, b ∈ D. Then for each pair of integers 1 ⩽ s < t ⩽ n,

ϕ
(s,t)
sj = 0, j = s+ 1, . . . , t− 1, (6.17)

ϕ(s,t)
ss (b)a = aϕ(s,t)

ss (b) (6.18)

for all a, b ∈ D,

aϕ
(s,t)
sj (b) + bϕ

(s,s)
tj (a) = 0, j = t+ 1, . . . , n, (6.19)

for all a, b ∈ D, and

ϕ(s,s)
ss (a)b− aϕ

(s,t)
st (b)− bϕ

(s,s)
tt (a) = 0 (6.20)

for all a, b ∈ D. By (6.15) and (6.18), for every 1 ⩽ s < t ⩽ n, (λstb + µst(b))a =

a(λstb + µst(b)), and so λstab = λstba for all a, b ∈ D. By the noncommutativity of D,

λst = 0 for any 1 ⩽ s < t ⩽ n. Together with (6.15), we thus conclude that for every

1 ⩽ s < t ⩽ n,

ϕ(s,t)
ss (a) = ϕ

(s,t)
tt (a) = µst(a) ∈ Z(D) (6.21)

for all a ∈ D. In view of (6.19) and Lemma 6.3.4, for every 1 ⩽ s < t ⩽ n,

ϕ
(s,s)
tj = ϕ

(s,t)
sj = 0, j = t+ 1, . . . , n. (6.22)

Now, taking f = ϕ
(s,s)
ss , g = −ϕ(s,t)

st and h = −ϕ(s,s)
tt in Lemma 6.3.6(i), we obtain (6.20).
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Together with (6.15), we conclude from Lemma 6.3.6(i) that for every 1 ⩽ s < t ⩽ n,

ϕ
(s,t)
st (a) = λssa (6.23)

for all a ∈ D, and

ϕ
(s,s)
tt (a) = µss(a) (6.24)

for all a ∈ D. Next, let 1 ⩽ r < s ⩽ n be integers and let a, b ∈ D. By virtue of

[ψ(A), A] = 0 for A ∈ {aEss, bErs, aEss+ bErs}, we get ψ(aEss)bErs− bErsψ(aEss)+

ψ(bErs)aEss − aEssψ(bErs) = 0. It follows from (6.11) that

r∑
i=1

ϕ
(s,s)
ir (a)bEis −

n∑
j=s

bϕ
(s,s)
sj (a)Erj +

s∑
i=1

ϕ
(r,s)
is (b)aEis −

n∑
j=s

aϕ
(r,s)
sj (b)Esj = 0.

We further obtain

(ϕ(s,s)
rr (a)b + ϕ(r,s)

rs (b)a− bϕ(s,s)
ss (a))Ers + (ϕ(r,s)

ss (b)a− aϕ(r,s)
ss (b))Ess

+
r−1∑
i=1

(ϕ
(s,s)
ir (a)b+ ϕ

(r,s)
is (b)a)Eis −

n∑
j=s+1

bϕ
(s,s)
sj (a)Erj

+
s−1∑

i=r+1

ϕ
(r,s)
is (b)aEis −

n∑
j=s+1

aϕ
(r,s)
sj (b)Esj = 0.

Since ϕ(r,s)
sj = 0 = ϕ

(s,s)
sj for j = s + 1, . . . , n by (6.13), and ϕ(r,s)

ss (a) = µrs(a) ∈ Z(D)

for all a ∈ D by (6.21), it follows that for every 1 ⩽ r < s ⩽ n,

(ϕ(s,s)
rr (a)b+ϕ(r,s)

rs (b)a−bϕ(s,s)
ss (a))Ers+

r−1∑
i=1

(ϕ
(s,s)
ir (a)b+ϕ

(r,s)
is (b)a)Eis+

s−1∑
i=r+1

ϕ
(r,s)
is (b)aEis = 0

for all a, b ∈ D. Then for every 1 ⩽ r < s ⩽ n,

ϕ
(r,s)
is = 0, i = r + 1, . . . , s− 1, (6.25)

ϕ
(s,s)
ir (a)b+ ϕ

(r,s)
is (b)a = 0, i = 1, . . . , r − 1, (6.26)

for all a, b ∈ D, and

ϕ(s,s)
rr (a)b+ ϕ(r,s)

rs (b)a− bϕ(s,s)
ss (a) = 0 (6.27)
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for all a, b ∈ D. By (6.26) and Lemma 6.3.4, for every 1 ⩽ r < s ⩽ n,

ϕ
(s,s)
ir = ϕ

(r,s)
is = 0, i = 1, . . . , r − 1. (6.28)

Letting f = ϕ
(s,s)
rr , g = ϕ

(r,s)
rs and h = −ϕ(s,s)

ss in Lemma 6.3.6(ii), we obtain (6.27).

Together with ϕ(s,s)
ss (a) = λssa + µss(a) for all a ∈ D in (6.15), and ϕ(r,s)

rs (a) = λrra for

all a ∈ D in (6.23), we conclude from Lemma 6.3.6(ii) that for every 1 ⩽ r < s ⩽ n,

λrr = λss, (6.29)

ϕ(s,s)
rr (a) = µss(a) (6.30)

for all a ∈ D. From (6.29), we get λ11 = · · · = λnn. We set λ = λ11. By (6.15), (6.24)

and (6.30), for each integer 1 ⩽ s ⩽ n,

n∑
i=1

ϕ
(s,s)
ii (a)Eii = λaEss + µss(a)In (6.31)

for all a ∈ D. We note that for each 1 ⩽ s ⩽ n,

∑
1⩽i<s

ϕ
(s,s)
is (a)Eis = 0 and

∑
1⩽i<j<s

ϕ
(s,s)
ij (a)Eij = 0 (6.32)

for all a ∈ D by (6.12) and (6.28), and

∑
s<j⩽n

ϕ
(s,s)
sj (a)Esj = 0 and

∑
s<i<j⩽n

ϕ
(s,s)
ij (a)Eij = 0 (6.33)

for all a ∈ D by (6.13) and (6.22). It follows from (6.32) and (6.33) that for each 1 ⩽ s ⩽

n,

∑
1⩽i<j⩽n

ϕ
(s,s)
ij (a)Eij =

∑
1⩽i<j<s

ϕ
(s,s)
ij (a)Eij +

∑
1⩽i<s

ϕ
(s,s)
is (a)Eis +

s−1∑
i=1

n∑
j=s+1

ϕ
(s,s)
ij (a)Eij

+
∑

s<j⩽n

ϕ
(s,s)
sj (a)Esj +

∑
s<i<j⩽n

ϕ
(s,s)
ij (a)Eij

=
s−1∑
i=1

n∑
j=s+1

ϕ
(s,s)
ij (a)Eij
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for all a ∈ D. Then, together with (6.31), for each integer 1 ⩽ s ⩽ n,

ψ(aEss) =
n∑

i=1

ϕ
(s,s)
ii (a)Eii+

∑
1⩽i<j⩽n

ϕ
(s,s)
ij (a)Eij = λaEss+µss(a)In+

s−1∑
i=1

n∑
j=s+1

ϕ
(s,s)
ij (a)Eij

for all a ∈ D. Consequently, Claim (6.16) is proved.

We next claim that for each pair of integers 1 ⩽ s < t ⩽ n,

ψ(aEst) = λaEst + µst(a)In +
s−1∑
i=1

n∑
j=t+1

ϕ
(s,t)
ij (a)Eij (6.34)

for every a ∈ D, where
∑s−1

i=1

∑n
j=t+1 ϕ

(s,t)
ij (a)Eij = 0 when s = 1 or t = n. Let a, b ∈ D

and let 1 ⩽ s < t ⩽ n and 1 ⩽ p ⩽ n be integers such that p 6= s, t. The proof will be

divided into two parts.

Part I: 1 ⩽ p < t with p 6= s. From [ψ(A), A] = 0 for A ∈ {aEst, bEpt, aEst + bEpt},

we infer from (6.11) that

p∑
i=1

ϕ
(s,t)
ip (a)bEit−

n∑
j=t

bϕ
(s,t)
tj (a)Epj +

s∑
i=1

ϕ
(p,t)
is (b)aEit−

n∑
j=t

aϕ
(p,t)
tj (b)Esj = 0. (6.35)

First consider 1 ⩽ p < s. By (6.35), we obtain

(ϕ(s,t)
pp (a)b − bϕ

(s,t)
tt (a) + ϕ(p,t)

ps (b)a)Ept + (ϕ(p,t)
ss (b)a− aϕ

(p,t)
tt (b))Est

+

p−1∑
i=1

(ϕ
(s,t)
ip (a)b+ ϕ

(p,t)
is (b)a)Eit +

s−1∑
i=p+1

ϕ
(p,t)
is (b)aEit

−
n∑

j=t+1

bϕ
(s,t)
tj (a)Epj −

n∑
j=t+1

aϕ
(p,t)
tj (b)Esj = 0.

Note that ϕ(s,t)
tj = 0 = ϕ

(p,t)
tj for j = t+1, . . . , n by (6.13), and ϕ(p,t)

ps = 0 by (6.17). Then

for every 1 ⩽ p < s < t ⩽ n,

(ϕ(s,t)
pp (a)b − bϕ

(s,t)
tt (a))Ept + (ϕ(p,t)

ss (b)a− aϕ
(p,t)
tt (b))Est

+

p−1∑
i=1

(ϕ
(s,t)
ip (a)b+ ϕ

(p,t)
is (b)a)Eit +

s−1∑
i=p+1

ϕ
(p,t)
is (b)aEit = 0
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for all a, b ∈ D. Consequently, for every 1 ⩽ p < s < t ⩽ n,

ϕ(s,t)
pp (a)b− bϕ

(s,t)
tt (a) = 0 (6.36)

for all a, b ∈ D,
ϕ
(s,t)
ip (a)b+ ϕ

(p,t)
is (b)a = 0, i = 1, . . . , p− 1, (6.37)

for all a, b ∈ D. Because ϕ(s,t)
tt (a) = µst(a) ∈ Z(D) for all a ∈ D by (6.21), we infer

from (6.36) that for every 1 < s < t ⩽ n,

ϕ
(s,t)
ii (a) = µst(a), i = 1, . . . , s− 1, (6.38)

for all a ∈ D. From (6.37), together with Lemma 6.3.4, we see that for every 1 ⩽ p < s <

t ⩽ n, ϕ(s,t)
ip = 0 for i = 1, . . . , p−1. One sees immediately that for every 1 < s < t ⩽ n,

ϕ
(s,t)
ij = 0 (6.39)

for all integers 1 ⩽ i < j < s. We next consider s < p < t. It follows from (6.35) that

(ϕ(p,t)
ss (b)a − aϕ

(p,t)
tt (b) + ϕ(s,t)

sp (a)b)Est + (ϕ(s,t)
pp (a)b− bϕ

(s,t)
tt (a))Ept

+
s−1∑
i=1

(ϕ
(s,t)
ip (a)b+ ϕ

(p,t)
is (b)a)Eit +

p−1∑
i=s+1

ϕ
(s,t)
ip (a)bEit

−
n∑

j=t+1

bϕ
(s,t)
tj (a)Epj −

n∑
j=t+1

aϕ
(p,t)
tj (b)Esj = 0.

Note that ϕ(s,t)
tj = 0 = ϕ

(p,t)
tj for j = t + 1, . . . , n by (6.13), and ϕ(s,t)

sp = 0 by (6.17). It

follows that for every 1 ⩽ s < p < t ⩽ n,

(ϕ(p,t)
ss (b)a − aϕ

(p,t)
tt (b))Est + (ϕ(s,t)

pp (a)b− bϕ
(s,t)
tt (a))Ept

+
s−1∑
i=1

(ϕ
(s,t)
ip (a)b+ ϕ

(p,t)
is (b)a)Eit +

p−1∑
i=s+1

ϕ
(s,t)
ip (a)bEit = 0

for all a, b ∈ D. Then for every 1 ⩽ s < p < t ⩽ n,

ϕ
(s,t)
ip = 0, i = s+ 1, . . . , p− 1, (6.40)
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ϕ(s,t)
pp (a)b− bϕ

(s,t)
tt (a) = 0 (6.41)

for all a, b ∈ D, and

ϕ
(s,t)
ip (a)b+ ϕ

(p,t)
is (b)a = 0, i = 1, . . . , s− 1, (6.42)

for all a, b ∈ D. From (6.40), we conclude that for every 1 ⩽ s < t ⩽ n,

ϕ
(s,t)
ij = 0 (6.43)

for all integers s < i < j < t. In view of (6.41), since ϕ(s,t)
tt (a) = µst(a) ∈ Z(D) for

a ∈ D, it follows that for every 1 ⩽ s < t ⩽ n,

ϕ
(s,t)
ii (a) = µst(a), i = s+ 1, . . . , t− 1, (6.44)

for all a ∈ D. By (6.42) and Lemma 6.3.4, we see that for every 1 ⩽ s < p < t ⩽ n,

ϕ
(s,t)
ip = 0 for i = 1, . . . , s− 1. One sees immediately that for every 1 ⩽ s < t ⩽ n,

ϕ
(s,t)
ij = 0 (6.45)

for all integers 1 ⩽ i < s and s < j < t.

Part II: s < p ⩽ nwith p 6= t. Since [ψ(A), A] = 0 forA ∈ {aEst, bEsp, aEst+bEsp},

it follows from (6.11) that

s∑
i=1

ϕ
(s,t)
is (a)bEip−

n∑
j=p

bϕ
(s,t)
pj (a)Esj+

s∑
i=1

ϕ
(s,p)
is (b)aEit−

n∑
j=t

aϕ
(s,p)
tj (b)Esj = 0. (6.46)

Consider t < p ⩽ n. By (6.46), we see that

(ϕ(s,t)
ss (a)b − bϕ(s,t)

pp (a)− aϕ
(s,p)
tp (b))Esp + (ϕ(s,p)

ss (b)a− aϕ
(s,p)
tt (b))Est

−
n∑

j=p+1

(bϕ
(s,t)
pj (a) + aϕ

(s,p)
tj (b))Esj +

s−1∑
i=1

ϕ
(s,p)
is (b)aEit

+
s−1∑
i=1

ϕ
(s,t)
is (a)bEip −

p−1∑
j=t+1

aϕ
(s,p)
tj (b)Esj = 0.
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Since ϕ(s,p)
tp = 0 by (6.25), ϕ(s,t)

is = 0 = ϕ
(s,p)
is for i = 1, . . . , s−1 by (6.12), and ϕ(s,p)

tj = 0

for j = t+ 1, . . . , p− 1 by (6.43), it follows that for every 1 ⩽ s < t < p ⩽ n,

(ϕ(s,t)
ss (a)b− bϕ(s,t)

pp (a))Esp + (ϕ(s,p)
ss (b)a− aϕ

(s,p)
tt (b))Est

−
n∑

j=p+1

(bϕ
(s,t)
pj (a) + aϕ

(s,p)
tj (b))Esj = 0

for all a, b ∈ D. Then for every 1 ⩽ s < t < p ⩽ n,

ϕ(s,t)
ss (a)b− bϕ(s,t)

pp (a) = 0 (6.47)

for all a, b ∈ D, and

bϕ
(s,t)
pj (a) + aϕ

(s,p)
tj (b) = 0, j = p+ 1, . . . , n, (6.48)

for all a, b ∈ D. From (6.47), since ϕ(s,t)
ss (a) = µst(a) ∈ Z(D) for a ∈ D, we infer that

for every 1 ⩽ s < t ⩽ n,

ϕ
(s,t)
ii (a) = µst(a), i = t+ 1, . . . , n, (6.49)

for all a ∈ D. By (6.48) and Lemma 6.3.4, we see that for every 1 ⩽ s < t < p ⩽ n,

ϕ
(s,t)
pj = 0 for j = p+ 1, . . . , n. From this, we conclude that for every 1 ⩽ s < t ⩽ n,

ϕ
(s,t)
ij = 0 (6.50)

for all integers t < i < j ⩽ n. Next consider s < p < t. From (6.46), we infer that

(ϕ(s,t)
ss (a)b − bϕ(s,t)

pp (a))Esp + (ϕ(s,p)
ss (b)a− aϕ

(s,p)
tt (b)− bϕ

(s,t)
pt (a))Est

+
s−1∑
i=1

ϕ
(s,t)
is (a)bEip +

s−1∑
i=1

ϕ
(s,p)
is (b)aEit

−
t−1∑

j=p+1

bϕ
(s,t)
pj (a)Esj −

n∑
j=t+1

(bϕ
(s,t)
pj (a) + aϕ

(s,p)
tj (b))Esj = 0.
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Since ϕ(s,t)
ss = ϕ

(s,t)
pp and ϕ(s,p)

ss = ϕ
(s,p)
tt by (6.21), (6.44) and (6.49), ϕ(s,t)

pt = 0 by (6.25),

ϕ
(s,t)
is = 0 = ϕ

(s,p)
is for i = 1, . . . , s − 1 by (6.12), and ϕ(s,t)

pj = 0 for j = p + 1, . . . , t − 1

by (6.43), it follows that for every 1 ⩽ s < p < t ⩽ n,

n∑
j=t+1

(bϕ
(s,t)
pj (a) + aϕ

(s,p)
tj (b))Esj = 0

for all a, b ∈ D. Then for every 1 ⩽ s < p < t ⩽ n, we have bϕ(s,t)
pj (a) + aϕ

(s,p)
tj (b) = 0

for all a, b ∈ D and j = t + 1, . . . , n. It follows from Lemma 6.3.4 that for every

1 ⩽ s < p < t ⩽ n, ϕ(s,t)
pj = 0 for j = t + 1, . . . , n. One sees immediately that for

every 1 ⩽ s < t ⩽ n,

ϕ
(s,t)
ij = 0 (6.51)

for all integers s < i < t and t < j ⩽ n.

Now we are in the position to prove Claim (6.34). Let 1 ⩽ s < t ⩽ n be integers and

let a ∈ D. By (6.21), (6.38), (6.44) and (6.49), we have

n∑
i=1

ϕ
(s,t)
ii (a)Eii = µst(a)In. (6.52)

Note also that

∑
1⩽i<j⩽n

ϕ
(s,t)
ij (a)Eij =

∑
1⩽i<j⩽s

ϕ
(s,t)
ij (a)Eij +

s−1∑
i=1

t∑
j=s+1

ϕ
(s,t)
ij (a)Eij +

s−1∑
i=1

n∑
j=t+1

ϕ
(s,t)
ij (a)Eij

+
∑

s⩽i<j⩽t

ϕ
(s,t)
ij (a)Eij +

t−1∑
i=s

n∑
j=t+1

ϕ
(s,t)
ij (a)Eij +

∑
t⩽i<j⩽n

ϕ
(s,t)
ij (a)Eij.

In view of ϕ(s,t)
st (a) = λa by (6.23) and (6.29), and ϕ(s,t)

ij = 0 for all s ⩽ i < j ⩽ t except

(i, j) = (s, t) by (6.17), (6.25) and (6.43), we obtain

∑
s⩽i<j⩽t

ϕ
(s,t)
ij (a)Eij = λaEst.

It is straightforward from (6.12) and (6.39) as well as (6.13) and (6.50) that∑
1⩽i<j⩽s

ϕ
(s,t)
ij (a)Eij = 0 and

∑
t⩽i<j⩽n

ϕ
(s,t)
ij (a)Eij = 0.
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Likewise, one sees immediately from (6.28) and (6.45) as well as (6.22) and (6.51) that

s−1∑
i=1

t∑
j=s+1

ϕ
(s,t)
ij (a)Eij = 0 and

t−1∑
i=s

n∑
j=t+1

ϕ
(s,t)
ij (a)Eij = 0.

Consequently, we deduce that∑
1⩽i<j⩽n

ϕ
(s,t)
ij (a)Eij = λaEst +

s−1∑
i=1

n∑
j=t+1

ϕ
(s,t)
ij (a)Eij. (6.53)

It follows from (6.52) and (6.53) that for every 1 ⩽ s < t ⩽ n,

ψ(aEst) = λaEst + µst(a)In +
s−1∑
i=1

n∑
j=t+1

ϕ
(s,t)
ij (a)Eij

for all a ∈ D, which is the desired conclusion.

Let µ : Tn(D) → Z(D) be the additive map defined by

µ(A) =
∑

1⩽s⩽t⩽n

µst(ast) (6.54)

for all A = (ast) ∈ Tn(D), and let ψF : Tn(D) → Tn(D) be the additive map defined by

ψF (A) =
∑

1<s⩽t<n

(
s−1∑
i=1

n∑
j=t+1

ϕ
(s,t)
ij (ast)Eij

)
(6.55)

for all A = (aij) ∈ Tn(D), where F =
∪

1<s⩽t<n{ϕ
(s,t)
ij : D → D : 1 ⩽ i ⩽ s−1 and t+

1 ⩽ j ⩽ n}. It follows from (6.16), (6.34), (6.54) and (6.55) that

ψ(A) =
∑

1⩽s⩽t⩽n

ψ(astEst)

=
∑

1⩽s⩽t⩽n

λastEst +
∑

1⩽s⩽t⩽n

µst(ast)In +
∑

1<s⩽t<n

(
s−1∑
i=1

n∑
j=t+1

ϕ
(s,t)
ij (ast)Eij

)
= λA+ µ(A)In + ψF (A)

for all A = (ast) ∈ Tn(D). This completes the proof.

Remark: The results in this chapter have been submitted for publication in Chooi and

Tan, L. Y. (2022).
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CHAPTER 7: 2­POWER COMMUTING ADDITIVE MAPS ON INVERTIBLE
UPPER TRIANGULAR MATRICES OVER THE GALOIS FIELD OF TWO

ELEMENTS

7.1 Introduction

Let R be a ring with centre Z(R) and let m ⩾ 2 be an integer. Recall that a map

ψ : R → R is said to be m­power commuting if [ψ(x), xm] = 0 for all x ∈ R, where

[x, y] is the commutator of x, y ∈ R. Let R be a prime ring with charR 6= 2. Brešar and

Hvala (1995) proved that 2­power commuting additivemapsψ : R → R is of the standard

form (2.14). Let m ⩾ 1 be an integer. Later, Beidar et al. (1997) extended this result to

m­power commuting additive maps and proved that everym­power commuting additive

map on a prime ring R with char R = 0 or char R > m is of the standard form (2.14).

Let n ⩾ 2 be an integer. Recall thatMn(F) is the ring of all n × n matrices over a field

F with centre Z(Mn(F)) and unity In. Recently, C.­K. Liu and Yang (2017) generalised

the result of Beidar et al. (1997) to subsets of matrices that are not closed under addition

and proved that when char F = 0 or char F > m, them­power commuting additive maps

ψ :Mn(F) →Mn(F) for all invertible matrices A ∈Mn(F) are of the standard form, i.e.

there exists λ ∈ F and an additive map µ : Mn(F) → F such that ψ(A) = λA + µ(A)In

for all A ∈ Mn(F). In the same paper, an analogous result was obtained for m­power

commuting additive maps on singular matrices over fields, unless n = 2 and char F = 2.

Let D be a division ring and let n ⩾ 3 be an integer. Later, Chou and Liu (2021) asserted

that additive maps ψ : Mn(D) → Mn(D) satisfying [ψ(x), xm(x)] = 0 for all rank k,

1 < k < n matrices x ∈ Mn(D) are of the standard form (2.14), where m(x) ⩾ 1 is an

integer depending on x. Let n ⩾ 2 be an integer. Recall that Tn(F2) is the ring of all n×n

upper triangular matrices over the Galois field of two elements with centre Z(Tn(F2))

and unity In. Inspired by the aforesaid results, in this chapter we study and obtain a

complete structural characterisation of additive map ψ : Tn(F2) → Tn(F2) that satisfies

[ψ(A), A2] = 0 on all invertible matrices A ∈ Tn(F2). Unexpectedly, the structure of ψ

is different from the standard form (2.14).
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7.2 Irregular nonstandard examples

Throughout this section, unless stated otherwise, let F2 denote the Galois field of two

elements. We begin our discussion with the following irregular examples of 2­power

commuting additive maps on invertible upper triangular matrices over F2.

Example 7.2.1. Let λ(1,1)11 , λ
(1,1)
22 , λ

(1,1)
12 , λ

(1,2)
11 , λ

(1,2)
22 ∈ F2. Suppose that ς : T2(F2) →

T2(F2) is the additive map defined by

ς(A) = (λ
(1,2)
11 + λ

(1,2)
22 )a12E11 + (λ

(1,1)
11 + λ

(1,1)
22 )a11E22 + λ

(1,1)
12 a11E12 (7.1)

for all A = (aij) ∈ T2(F2). We show that ς is a 2­power commuting additive map on

invertible matrices A ∈ T2(F2). Let A = (aij) ∈ T2(F2) be invertible. Then A ∈

{I2, I2 + E12} and A2 = I2. Clearly [ς(A), A2] = [ς(A), I2] = 0.

Example 7.2.2. Let 1 ⩽ i < j ⩽ 3 and 1 ⩽ s < t ⩽ 3 be integers. Let λ, λ(1,1)ss , λ
(1,1)
st ,

λ
(i,j)
ss , λ

(i,j)
st ∈ F2. Suppose that ϕ : T3(F2) → T3(F2) is the additive map defined by

ϕ(A) = ((λ
(1,1)
11 + λ

(1,1)
22 )a11 + (λ

(1,2)
11 + λ

(1,2)
22 )a12 + (λ

(2,3)
11 + λ

(2,3)
22 )a23

+ (λ
(1,3)
11 + λ

(1,3)
22 )a13)E22

+ (λ
(1,1)
12 a11 + (λ+ λ)a12 + λ

(1,3)
12 a13 + λ

(2,3)
12 a23)E12

+ (λ
(1,1)
13 a11 + λ

(1,2)
13 a12 + (λ

(1,3)
13 + λ)a13 + λ

(2,3)
13 a23)E13

+ (λ
(1,1)
23 a11 + λ

(1,2)
23 a12 + λ

(1,3)
23 a13 + (λ

(2,3)
23 + λ)a23)E23.

(7.2)

for all A = (aij) ∈ T3(F2). We show that ϕ is a 2­power commuting additive map on

invertible matrices A ∈ T3(F2). Let A ∈ T3(F2) be invertible and let B = A2 = (bij) ∈

T3(F2). Since A ∈ T3(F2) is invertible, then A = I3 + U , where U =
∑

1⩽i<j⩽3 aijEij .

ThenB = A2 = (I3+U)(I3+U) = I3+U
2. By Lemma 7.4.1, we have bi,i+1 = 0 for all

i = 1, 2. Then U2 = b13E13. By [ϕ(A), I3] = 0, we see that [ϕ(A), A2] = [ϕ(A), U2] = 0,

because

ϕ(A)U2 =

(
((λ

(1,1)
11 + λ

(1,1)
22 )a11 + (λ

(1,2)
11 + λ

(1,2)
22 )a12

+(λ
(2,3)
11 + λ

(2,3)
22 )a23 + (λ

(1,3)
11 + λ

(1,3)
22 )a13)E22
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+(λ
(1,1)
12 a11 + (λ+ λ)a12 + λ

(1,3)
12 a13 + λ

(2,3)
12 a23)E12

+(λ
(1,1)
13 a11 + λ

(1,2)
13 a12 + (λ

(1,3)
13 + λ)a13 + λ

(2,3)
13 a23)E13

+(λ
(1,1)
23 a11 + λ

(1,2)
23 a12 + λ

(1,3)
23 a13 + (λ

(2,3)
23 + λ)a23)E23

)
b13E13

= 0

and
U2ϕ(A) = b13E13

(
((λ

(1,1)
11 + λ

(1,1)
22 )a11 + (λ

(1,2)
11 + λ

(1,2)
22 )a12

+(λ
(2,3)
11 + λ

(2,3)
22 )a23 + (λ

(1,3)
11 + λ

(1,3)
22 )a13)E22

+(λ
(1,1)
12 a11 + (λ+ λ)a12 + λ

(1,3)
12 a13 + λ

(2,3)
12 a23)E12

+(λ
(1,1)
13 a11 + λ

(1,2)
13 a12 + (λ

(1,3)
13 + λ)a13 + λ

(2,3)
13 a23)E13

+(λ
(1,1)
23 a11 + λ

(1,2)
23 a12 + λ

(1,3)
23 a13 + (λ

(2,3)
23 + λ)a23)E23

)
= 0.

For instance, the following maps


a11 a12 a13

0 a22 a23

0 0 a33

 7→


0 a13 0

0 a12 0

0 0 0



a11 a12 a13

0 a22 a23

0 0 a33

 7→


0 0 a12

0 a23 a13

0 0 0


are 2­power commuting additive maps on invertible matrices in T3(F2) of this type.

Example 7.2.3. Let γ ∈ F2 and let ψγ(A) : T4(F2) → T4(F2) be the additive map defined

by

ψγ(A) = γ(a23a34E22 + a23E44 + a13E12 + a24E34) (7.3)

for all A = (aij) ∈ T4(F2). We show that ψγ is a 2­power commuting additive map

on invertible matrices A ∈ T4(F2). Let A = (aij) ∈ T4(F2) be invertible. Then A =

I4 + a12E12 + a13E13 + a14E14 + a23E23 + a24E24 + a34E34 and A2 = I4 + B, where
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B = a12a23E13 + (a12a24 + a13a34)E14 + a23a34E24. By

ψγ(A)B = γ(a23a34E22 + a23E44 + a13E12 + a24E34)(a12a23E13

+(a12a24 + a13a34)E14 + a23a34E24)

= γ(a23a23a34a34E24 + a13a23a34E14)

and

Bψγ(A) = γ(a12a23E13 + (a12a24 + a13a34)E14 + a23a34E24)(a23a34E22

+a23E44 + a13E12 + a24E34)

= γ(a12a23a24E14 + (a12a23a24 + a13a23a34)E14 + a23a23a34)E24)

= γ(a13a23a34E14 + a23a23a34E24),

we get ψγ(A)B − Bψγ(A) = γa23a23a34(a34 + 1)E24 = 0 because a34(a34 + 1) = 0. It

follows from [ψγ, I4] = 0 that [ψγ(A), A
2] = [ψγ(A), I4 + B] = [ψγ(A), B] = 0. For

instance, the following maps



a11 a12 a13 a14

0 a22 a23 a24

0 0 a33 a34

0 0 0 a44


7→



0 0 0 0

0 a23a34 0 0

0 0 0 0

0 0 0 a23




a11 a12 a13 a14

0 a22 a23 a24

0 0 a33 a34

0 0 0 a44


7→



0 a13 0 0

0 0 0 0

0 0 0 a24

0 0 0 0


are 2­power commuting additive maps on invertible matrices in T4(F2) of this type.

Example 7.2.4. Letn ⩾ 4 be an integer. Denote θn = {(1, n−1), (1, n), (2, n−1), (2, n)}.

Let Θ =
∪

(s,t)∈θn{λ
(i,j)
st ∈ F2 : 1 ⩽ i < j ⩽ n} be a set of scalars on F2. Let λ, λ

(1,1)
st ∈
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F2 for (s, t) ∈ θn. Suppose that ψΘ : Tn(F2) → Tn(F2) is the additive map defined by

ψΘ(A) =

(
λ
(1,1)
1,n−1a11 + λa1,n−1 +

∑
1⩽i<j⩽n

λ
(i,j)
1,n−1aij

)
E1,n−1

+

(
λ
(1,1)
1n a11 + λa1n +

∑
1⩽i<j⩽n

λ
(i,j)
1n aij

)
E1n

+

(
λ
(1,1)
2,n−1a11 + λa2,n−1 +

∑
1⩽i<j⩽n

λ
(i,j)
2,n−1aij

)
E2,n−1

+

(
λ
(1,1)
2n a11 + λa2n +

∑
1⩽i<j⩽n

λ
(i,j)
2n aij

)
E2n

(7.4)

for all A = (aij) ∈ Tn(F2). We show that ψΘ is a 2­power commuting additive map on

invertible matrices A ∈ Tn(F2). Let A ∈ Tn(F2) be invertible and let B = A2 = (bij) ∈

Tn(F2). Since A ∈ Tn(F2) is invertible, then A = In + U , where U =
∑

1⩽i<j⩽n aijEij .

Then B = A2 = (In + U)(In + U) = In + U2. By Lemma 7.4.1, we have bi,i+1 = 0 for

all i = 1, . . . , n− 1. Then

U2 = b13E13 + · · ·+ b1nE1n + b24E24 + · · ·+ b2nE2n + · · ·

+bn−3,n−1En−3,n−1 + bn−3,nEn−3,n + bn−2,nEn−2,n.

By [ψΘ(A), In] = 0, we see that [ψΘ(A), A
2] = [ψΘ(A), U

2] = 0, because

ψΘ(A)U
2 =

((
λ
(1,1)
1,n−1a11 + λa1,n−1 +

∑
1⩽i<j⩽n

λ
(i,j)
1,n−1aij

)
E1,n−1

+

(
λ
(1,1)
1n a11 + λa1n +

∑
1⩽i<j⩽n

λ
(i,j)
1n aij

)
E1n

+

(
λ
(1,1)
2,n−1a11 + λa2,n−1 +

∑
1⩽i<j⩽n

λ
(i,j)
2,n−1aij

)
E2,n−1

+

(
λ
(1,1)
2n a11 + λa2n +

∑
1⩽i<j⩽n

λ
(i,j)
2n aij

)
E2n

)
(
b13E13 + · · ·+ b1nE1n + b24E24 + · · ·+ b2nE2n + · · ·

+bn−3,n−1En−3,n−1 + bn−3,nEn−3,n + bn−2,nEn−2,n

)
= 0
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and

U2ψΘ(A) = (b13E13 + · · ·+ b1nE1n + b24E24 + · · ·+ b2nE2n + · · ·

+bn−3,n−1En−3,n−1 + bn−3,nEn−3,n + bn−2,nEn−2,n)((
λ
(1,1)
1,n−1a11 + λa1,n−1 +

∑
1⩽i<j⩽n

λ
(i,j)
1,n−1aij

)
E1,n−1

+

(
λ
(1,1)
1n a11 + λa1n +

∑
1⩽i<j⩽n

λ
(i,j)
1n aij

)
E1n

+

(
λ
(1,1)
2,n−1a11 + λa2,n−1 +

∑
1⩽i<j⩽n

λ
(i,j)
2,n−1aij

)
E2,n−1

+

(
λ
(1,1)
2n a11 + λa2n +

∑
1⩽i<j⩽n

λ
(i,j)
2n aij

)
E2n

)
= 0.

For instance, the following maps



a11 a12 a13 a14

0 a22 a23 a24

0 0 a33 a34

0 0 0 a44


7→



0 0 a24 0

0 0 a12 a23

0 0 0 0

0 0 0 0




a11 a12 a13 a14

0 a22 a23 a24

0 0 a33 a34

0 0 0 a44


7→



0 0 a12 a11

0 0 a24 a34

0 0 0 0

0 0 0 0


are 2­power commuting additive maps on invertible matrices in Tn(F2) of this type.

7.3 Main results

Theorem 7.3.1. ψ : T2(F2) → T2(F2) is a 2­power commuting additive map on invertible

matrices if and only if there exists λ ∈ F2 and an additive map µ : T2(F2) → F2 such that

ψ(A) = λA+ µ(A)I2 + ς(A)

for all A ∈ T2(F2), where ς : T2(F2) → T2(F2) is the additive map defined in (7.1).
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Theorem 7.3.2. ψ : T3(F2) → T3(F2) is a 2­power commuting additive map on invertible

matrices if and only if there exists λ ∈ F2 and an additive map µ : T3(F2) → F2 such that

ψ(A) = λA+ µ(A)I3 + ϕ(A)

for all A ∈ T3(F2), where ϕ : T3(F2) → T3(F2) is the additive map defined in (7.2).

Theorem 7.3.3. Let θ4 = {(1, 3), (1, 4), (2, 3), (2, 4)} and let Θ =
∪

(s,t)∈θ4{λ
(i,j)
st ∈ F2 :

1 ⩽ i < j ⩽ 4} be a set of scalars on F2. Then ψ : T4(F2) → T4(F2) is a 2­power

commuting additive map on invertible matrices if and only if there exists λ ∈ F2 and an

additive map µ : T4(F2) → F2 such that

ψ(A) = λA+ µ(A)I4 + ψγ(A) + ψΘ(A)

for all A ∈ T4(F2), where ψγ : T4(F2) → T4(F2) and ψΘ : T4(F2) → T4(F2) are additive

maps defined in (7.3) and (7.4), respectively.

Theorem 7.3.4. Let n ⩾ 5 be an integer. Let θn = {(1, n− 1), (1, n), (2, n− 1), (2, n)}

and let Θ =
∪

(s,t)∈θn{λ
(i,j)
st ∈ F2 : 1 ⩽ i < j ⩽ n} be a set of scalars on F2. Then

ψ : Tn(F2) → Tn(F2) is a 2­power commuting additive map on invertible matrices if and

only if there exists λ ∈ F2 and an additive map µ : Tn(F2) → F2 such that

ψ(A) = λA+ µ(A)In + ψΘ(A)

for all A ∈ Tn(F2). Here, ψΘ : Tn(F2) → Tn(F2) is the additive map defined in (7.4).

7.4 Proofs

Lemma 7.4.1. Let F2 be the Galois field of two elements and let n ⩾ 2 be an integer. Let

A ∈ Tn(F2) and A2 = (bij). If A is invertible, then bi,i+1 = 0 for i = 1, . . . , n− 1.

Proof. We first see that the result holds for n = 2 since the only invertible matrices in

T2(F2) are I2 and I2 + E12, where I22 = (I2 + E12)
2 = I2. We now consider n ⩾ 3. Let

A ∈ Tn(F2) be invertible with A2 = (bij) ∈ Tn(F2). Since A ∈ Tn(F2) is invertible, then
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A = In +U , where U =
∑

1⩽i<j⩽n aijEij . Note that A2 = (In +U)(In +U) = In +U2,

where

U2 =

( ∑
1⩽i<j⩽n

aijEij

)( ∑
1⩽i<j⩽n

aijEij

)

=

( n∑
j=2

a1jE1j +
n∑

j=3

a2jE2j + · · ·+ an−2,n−1En−2,n−1 + an−2,nEn−2,n

+an−1,nEn−1,n

)
( n∑

j=2

a1jE1j +
n∑

j=3

a2jE2j + · · ·+ an−2,n−1En−2,n−1 + an−2,nEn−2,n

+an−1,nEn−1,n

)
= a12a23E13 +

( 3∑
j=2

a14aj4

)
E14 + · · ·+

( n−1∑
j=2

a1jajn

)
E1n

+a24a34E24 +

( 4∑
j=3

a24aj4

)
E25 + · · ·+

( n−1∑
j=3

a2jajn

)
E2n

+
...

+an−3,n−2an−2,n−1En−3,n−1 + (an−3,n−2an−2,n + an−3,n−1an−1,n)En−3,n

+an−2,n−1an−1,nEn−2,n. (7.5)

By (7.5), we see that bi,i+1 = 0 for i = 1, . . . , n− 1. We are done.

We first prove Theorem 7.3.1.

Proof of Theorem 7.3.1. It is easily seen that A 7→ λA+ µ(A)I2 is a 2­power commuting

additive map on invertible matrices A ∈ T2(F2). Together with Example 7.2.1, the suffi­

ciency is proved. Consider the necessity. For each pair of integers 1 ⩽ p < q ⩽ 2, we

let

ψ(Epq) = (a
(p,q)
ij ) ∈ T2(F2) (7.6)

and let

ψ(I2) = (a
(1,1)
ij ) ∈ T2(F2) (7.7)
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for all integers 1 ⩽ i ⩽ j ⩽ 2. Let A = (aij) ∈ T2(F2) be invertible. Then A ∈

{I2, I2 + E12} and A2 = I2. By [ψ(A), A2] = [ψ(A), I2] = 0, we get

ψ(I2) =

a(1,1)11 a
(1,1)
12

0 a
(1,1)
22

 = a
(1,2)
12 I2 + (a

(1,1)
11 + a

(1,2)
12 )I2 +

0 a
(1,1)
12

0 a
(1,1)
11 + a

(1,1)
22

 , (7.8)

ψ(E12) =

a(1,2)11 a
(1,2)
12

0 a
(1,2)
22

 = a
(1,2)
12 E12 + a

(1,2)
22 I2 +

a(1,2)11 + a
(1,2)
22 0

0 0

 . (7.9)

Let λ = λ
(1,2)
12 ∈ F2. Let µ : T2(F2) → F2 be an additive map such that µ(I2) =

a
(1,1)
11 + a

(1,2)
12 and µ(E12) = a

(1,2)
22 . Let λ(1,1)11 + λ

(1,1)
22 = a

(1,1)
11 + a

(1,1)
22 , λ(1,1)12 = a

(1,1)
12 and

λ
(1,2)
11 + λ

(1,2)
22 = a

(1,2)
11 + a

(1,2)
22 . In view of (7.8) and (7.9), we see that

ψ(A) = λA+ µ(A)I2 + ς(A)

for all A ∈ T2(F2), where ς : T2(F2) → T2(F2) is the additive map defined in (7.1). We

are done.

We then prove Theorem 7.3.2.

Proof of Theorem 7.3.2. It is easily seen that A 7→ λA+ µ(A)I3 is a 2­power commuting

additive map on invertible matrices A ∈ T3(F2). Together with Example 7.2.2, the suffi­

ciency is proved. Consider the necessity. For each pair of integers 1 ⩽ p < q ⩽ 3, we

let

ψ(Epq) = (a
(p,q)
ij ) ∈ T3(F2) (7.10)

and let

ψ(I3) = (a
(1,1)
ij ) ∈ T3(F2) (7.11)

for all integers 1 ⩽ i ⩽ j ⩽ 3. Let A = (aij) ∈ T3(F2) be invertible. Then A = A1 ∪A2,

whereA1 = {I3+E12+E23, I3+E12+E13+E23} andA2 = {I3, I3+E12, I3+E13, I3+
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E23, I3 + E12 + E13, I3 + E13 + E23}. Note that

A2 =


I3 + E13 if A ∈ A1,

I3 if A ∈ A2.

(7.12)

Hence we only need to considerA = I3+E12+E23 andA = I3+E12+E13+E23. Since

(I3+E12+E23)
2 = I3+E13 and [ψ(I3+E12+E23), I3] = 0, by [ψ(I3+E12+E23), E13] =

0, (7.10) and (7.11), we get

a
(2,3)
33 = a

(2,3)
11 + a

(1,1)
11 + a

(1,1)
33 + a

(1,2)
11 + a

(1,2)
33 . (7.13)

Since (I3 + E12 + E13 + E23)
2 = I3 + E13 and [ψ(I3 + E12 + E13 + E23), I3] = 0, by

[ψ(I3 + E12 + E13 + E23), E13] = 0, (7.10) and (7.11), we obtain

a
(1,3)
33 = a

(1,3)
11 + a

(1,1)
11 + a

(1,1)
33 + a

(1,2)
11 + a

(1,2)
33 + a

(2,3)
11 + a

(2,3)
33 . (7.14)

Taking (7.13) into (7.14),

a
(1,3)
11 = a

(1,3)
33 . (7.15)

We are now ready to classify the structures of ψ(I3) and ψ(Eij) for all 1 ⩽ i < j ⩽ 3.

It follows from (7.11) that

ψ(I3) =


a
(1,1)
11 a

(1,1)
12 a

(1,1)
13

0 a
(1,1)
22 a

(1,1)
23

0 0 a
(1,1)
23


= a

(1,2)
12 I3 + (a

(1,1)
11 + a

(1,2)
12 )I3

+


0 a

(1,1)
12 a

(1,1)
13

0 a
(1,1)
11 + a

(1,1)
22 a

(1,1)
23

0 0 a
(1,1)
11 + a

(1,1)
33

 . (7.16)
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It follows from (7.10) that

ψ(E12) =


a
(1,2)
11 a

(1,2)
12 a

(1,2)
13

0 a
(1,2)
13 a

(1,2)
22

0 0 a
(1,2)
33



= a
(1,2)
12 E12 + a

(1,2)
11 I3 +


0 a

(1,2)
12 + a

(1,2)
12 a

(1,2)
13

0 a
(1,2)
11 + a

(1,2)
22 a

(1,2)
23

0 0 a
(1,2)
11 + a

(1,2)
33

 . (7.17)

By virtue of (7.10) and (7.13),

ψ(E23) =


a
(2,3)
11 a

(2,3)
12 a

(2,3)
13

0 a
(2,3)
22 a

(2,3)
23

0 0 a
(2,3)
11 + a

(1,1)
11 + a

(1,1)
33 + a

(1,2)
11 + a

(1,2)
33


= a

(1,2)
12 E23 + a

(2,3)
11 I3

+


0 a

(2,3)
12 a

(2,3)
13

0 a
(2,3)
11 + a

(2,3)
22 a

(2,3)
23 + a

(1,2)
12

0 0 a
(1,1)
11 + a

(1,1)
33 + a

(1,2)
11 + a

(1,2)
33

 . (7.18)

By virtue of (7.10) and (7.15),

ψ(E13) =


a
(1,3)
11 a

(1,3)
12 a

(1,3)
13

0 a
(1,3)
22 a

(1,3)
23

0 0 a
(1,3)
11



= a
(1,2)
12 E13 + a

(1,3)
11 I3 +


0 a

(1,3)
12 a

(1,3)
13 + a

(1,2)
12

0 a
(1,3)
11 + a

(1,3)
22 a

(1,3)
23

0 0 0

 . (7.19)

Let λ = a
(1,2)
12 ∈ F2. Let µ : T3(F2) → F2 be an additive map such that µ(I3) = a

(1,1)
11 and

µ(Eij) = a
(i,j)
11 for every pair of integers 1 ⩽ i < j ⩽ 3. Let λ(1,1)ss = a

(1,1)
ss , λ(1,1)st = a

(1,1)
st ,

λ
(i,j)
ss = a

(i,j)
ss and λ(i,j)st = a

(i,j)
st , where 1 ⩽ s < t ⩽ 3 are integers. In view of (7.16)–
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(7.19), we see that

ψ(A) = λA+ µ(A)I3 + ϕ(A)

for all A ∈ T3(F2), where ϕ : T3(F2) → T3(F2) is the additive map defined in (7.2). This

completes the proof.

Next we prove Theorem 7.3.3.

Proof of Theorem 7.3.3. It is easily seen that A 7→ λA+ µ(A)I4 is a 2­power commuting

additive map on invertible matricesA ∈ T4(F2). Together with Examples 7.2.3 and 7.2.4,

the sufficiency is proved. Consider the necessity. For each pair of integers 1 ⩽ p < q ⩽ 4,

we let

ψ(Epq) = (a
(p,q)
ij ) ∈ T4(F2) (7.20)

and let

ψ(I4) = (a
(1,1)
ij ) ∈ T4(F2) (7.21)

for all integers 1 ⩽ i ⩽ j ⩽ 4. Let A = (aij) ∈ T4(F2) be invertible. Note that if

A = I4 + Eij for some 1 ⩽ i < j ⩽ 4, then A2 = (I4 + Eij)(I4 + Eij) = I4 + Eij +

Eij + EijEij = I4, for all 1 ⩽ i < j ⩽ 4. Thus [ψ(A), A2] = [ψ(I4 + Eij), I4] =

ψ(A) − ψ(A) = 0. Hence we first consider A2 = I4 + Esq for 1 ⩽ s < t < q ⩽ 4. Let

A = I4 + Est + Etq for integers 1 ⩽ s < t < q ⩽ 4. Then A2 = (I4 + Est + Etq)(I4 +

Est + Etq) = I4 + Est + Etq + Est + EstEtq + Etq = I4 + Esq. Since [ψ(A), I4] = 0,

hence 0 = [ψ(A), A2] = [ψ(A), I4 + Esq] = [ψ(A), Esq] = [ψ(I4 + Est + Etq), Esq]. By

[ψ(I4 + E12 + E23), E13] = 0, (7.20) and (7.21), we have

a
(2,3)
33 = a

(2,3)
11 + a

(1,1)
11 + a

(1,1)
33 + a

(1,2)
11 + a

(1,2)
33 , (7.22)

a
(2,3)
34 = a

(1,1)
34 + a

(1,2)
34 . (7.23)

Since (I4 +E12 +E23 +E13)
2 = (I4 +E12 +E23 +E14)

2 = I4 +E13, by [ψ(I4 +E12 +

E23 + Euv), E13] = 0, for every (u, v) ∈ {(1, 3), (1, 4)}, we get

a
(u,v)
11 = a

(u,v)
33 + a

(2,3)
11 + a

(2,3)
33 + a

(1,1)
11 + a

(1,1)
33 + a

(1,2)
11 + a

(1,2)
33 , (7.24)
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a
(u,v)
34 = a

(1,1)
34 + a

(1,2)
34 + a

(2,3)
34 . (7.25)

Taking (7.22) into (7.24) and (7.23) into (7.25) with (u, v) ∈ {(1, 3), (1, 4)} respectively,

we obtain

a
(1,3)
11 = a

(1,3)
33 , (7.26)

a
(1,4)
11 = a

(1,4)
33 , (7.27)

a
(1,3)
34 = 0, (7.28)

a
(1,4)
34 = 0. (7.29)

By [ψ(I4 + E23 + E34), E24] = 0, we have

a
(3,4)
22 = a

(3,4)
44 + a

(1,1)
22 + a

(1,1)
44 + a

(2,3)
22 + a

(2,3)
44 , (7.30)

a
(3,4)
12 = a

(1,1)
12 + a

(2,3)
12 . (7.31)

Since (I4 +E23 +E34 +E14)
2 = (I4 +E23 +E34 +E24)

2 = I4 +E24, by [ψ(I4 +E23 +

E34 + Euv), E24] = 0 for every (u, v) ∈ {(1, 4), (2, 4)}, we get

a
(u,v)
22 = a

(u,v)
44 + a

(2,3)
22 + a

(2,3)
44 + a

(1,1)
22 + a

(1,1)
44 + a

(3,4)
22 + a

(3,4)
44 , (7.32)

a
(u,v)
12 = a

(1,1)
12 + a

(2,3)
12 + a

(3,4)
12 , (7.33)

for every (u, v) ∈ {(1, 4), (2, 4)}. Taking (7.30) into (7.32) and (7.31) into (7.33) with

(u, v) ∈ {(1, 4), (2, 4)} respectively,

a
(2,4)
22 = a

(2,4)
44 , (7.34)

a
(1,4)
22 = a

(1,4)
44 , (7.35)

a
(1,4)
12 = 0, (7.36)

a
(2,4)
12 = 0. (7.37)
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By [ψ(I4 + E12 + E24), E14] = 0, we have

a
(1,1)
11 + a

(1,1)
44 + a

(1,2)
11 + a

(1,2)
44 + a

(2,4)
11 + a

(2,4)
44 = 0. (7.38)

Since (I4 +E12 +E24 +E13)
2 = (I4 +E12 +E24 +E14)

2 = (I4 +E12 +E24 +E34)
2 =

I4+E14, by [ψ(I4+E12+E24+Euv), E14] = 0 for every (u, v) ∈ {(1, 3), (1, 4), (3, 4)},

we get

a
(u,v)
11 = a

(u,v)
44 + a

(1,1)
11 + a

(1,1)
44 + a

(1,2)
11 + a

(1,2)
44 + a

(2,4)
11 + a

(2,4)
44 (7.39)

for every (u, v) ∈ {(1, 3), (1, 4), (3, 4)}. Taking (7.38) into (7.39) for every (u, v) ∈

{(1, 3), (1, 4), (3, 4)},

a
(1,3)
11 = a

(1,3)
44 , (7.40)

a
(1,4)
11 = a

(1,4)
44 , (7.41)

a
(3,4)
11 = a

(3,4)
44 . (7.42)

It follows from (7.27), (7.35) and (7.41) that

a
(1,4)
11 = a

(1,4)
22 = a

(1,4)
33 = a

(1,4)
44 . (7.43)

By [ψ(I4 + E13 + E34), E14] = 0, we have

a
(1,1)
11 + a

(1,1)
44 + a

(1,3)
11 + a

(1,3)
44 + a

(3,4)
11 + a

(3,4)
44 = 0. (7.44)

Taking (7.40) and (7.42) into (7.44),

a
(1,1)
11 = a

(1,1)
44 . (7.45)

Taking (7.34) and (7.45) into (7.38),

a
(2,4)
22 = a

(2,4)
11 + a

(1,2)
11 + a

(1,2)
44 . (7.46)
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Taking (7.42) and (7.45) into (7.30),

a
(3,4)
22 = a

(3,4)
11 + a

(1,1)
11 + a

(1,1)
22 + a

(2,3)
22 + a

(2,3)
44 . (7.47)

Since (I4 + E13 + E34 + E12)
2 = I4 + E14, by [ψ(I4 + E13 + E34 + E12), E14] = 0, we

have

a
(1,2)
11 = a

(1,2)
44 + a

(1,1)
11 + a

(1,1)
44 + a

(1,3)
11 + a

(1,3)
44 + a

(3,4)
11 + a

(3,4)
44 . (7.48)

Taking (7.44) into (7.48),

a
(1,2)
11 = a

(1,2)
44 . (7.49)

Taking (7.49) into (7.46),

a
(2,4)
11 = a

(2,4)
22 . (7.50)

We now consider A2 = I4 + Est + Esq for 1 ⩽ s < t < q ⩽ 4. Since (I4 + E12 +

E23 + E24)
2 = I4 + E13 + E14, by [ψ(I4 + E12 + E23 + E24), E13 + E14] = 0, we have

a
(1,1)
11 + a

(1,2)
11 + a

(2,3)
11 + a

(2,4)
11 = a

(1,1)
33 + a

(1,2)
33 + a

(2,3)
33 + a

(2,4)
33 , (7.51)

a
(1,1)
34 + a

(1,2)
34 + a

(2,3)
34 + a

(2,4)
34

= a
(1,1)
11 + a

(1,2)
11 + a

(2,3)
11 + a

(2,4)
11 + a

(1,1)
44 + a

(1,2)
44 + a

(2,3)
44 + a

(2,4)
44 .

(7.52)

Taking (7.23) and (7.38) into (7.52),

a
(2,4)
34 = a

(2,3)
11 + a

(2,3)
44 . (7.53)

Taking (7.22) into (7.51),

a
(2,4)
11 = a

(2,4)
33 . (7.54)

It follows from (7.34), (7.50) and (7.54) that

a
(2,4)
11 = a

(2,4)
22 = a

(2,4)
33 = a

(2,4)
44 . (7.55)

We next consider A2 = I4 + Est + Ept for 1 ⩽ s < p < t ⩽ 4. Since (I4 + E13 + E23 +
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E34)
2 = I4 + E14 + E24, by [ψ(I4 + E13 + E23 + E34), E14 + E24] = 0, we have

a
(1,1)
12 + a

(1,3)
12 + a

(2,3)
12 + a

(3,4)
12 = a

(1,1)
11 + a

(1,3)
11 + a

(2,3)
11 + a

(3,4)
11

+ a
(1,1)
44 + a

(1,3)
44 + a

(2,3)
44 + a

(3,4)
44 ,

(7.56)

a
(1,1)
22 + a

(1,3)
22 + a

(2,3)
22 + a

(3,4)
22 = a

(1,1)
44 + a

(1,3)
44 + a

(2,3)
44 + a

(3,4)
44 . (7.57)

Taking (7.31) and (7.44) into (7.56),

a
(1,3)
12 = a

(2,3)
11 + a

(2,3)
44 . (7.58)

Taking (7.30) and (7.40) into (7.57),

a
(1,3)
11 = a

(1,3)
22 . (7.59)

It follows from (7.26), (7.40) and (7.59) that

a
(1,3)
11 = a

(1,3)
22 = a

(1,3)
33 = a

(1,3)
44 . (7.60)

We now consider A2 = I4 + Est + Epq for 1 ⩽ s < p < t < q ⩽ 4. Since (I4 + E12 +

E23 + E34)
2 = I4 + E13 + E24, by [ψ(I4 + E12 + E23 + E34), E13 + E24] = 0, we have

a
(1,1)
11 + a

(1,2)
11 + a

(2,3)
11 + a

(3,4)
11 = a

(1,1)
33 + a

(1,2)
33 + a

(2,3)
33 + a

(3,4)
33 , (7.61)

a
(1,1)
12 + a

(1,2)
12 + a

(2,3)
12 + a

(3,4)
12 = a

(1,1)
34 + a

(1,2)
34 + a

(2,3)
34 + a

(3,4)
34 , (7.62)

a
(1,1)
22 + a

(1,2)
22 + a

(2,3)
22 + a

(3,4)
22 = a

(1,1)
44 + a

(1,2)
44 + a

(2,3)
44 + a

(3,4)
44 . (7.63)

Taking (7.22) into (7.61),

a
(3,4)
11 = a

(3,4)
33 . (7.64)

It follows from (7.42) and (7.64) that

a
(3,4)
11 = a

(3,4)
33 = a

(3,4)
44 . (7.65)
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Taking (7.23) and (7.31) into (7.62),

a
(3,4)
34 = a

(1,2)
12 . (7.66)

Taking (7.30) and (7.49) into (7.63),

a
(1,2)
11 = a

(1,2)
22 . (7.67)

It follows from (7.49) and (7.67) that

a
(1,2)
11 = a

(1,2)
22 = a

(1,2)
44 . (7.68)

We are now ready to classify the structures of ψ(I4) and ψ(Eij) for all 1 ⩽ i < j ⩽ 4.

We first classify ψ(I4). Since a
(1,1)
11 = a

(1,1)
44 by (7.45), it follows from (7.21) that

ψ(I4) =



a
(1,1)
11 a

(1,1)
12 a

(1,1)
13 a

(1,1)
14

0 a
(1,1)
22 a

(1,1)
23 a

(1,1)
24

0 0 a
(1,1)
33 a

(1,1)
34

0 0 0 a
(1,1)
11


= a

(1,2)
12 I4 + (a

(1,1)
11 + a

(1,2)
12 )I4

+



0 a
(1,1)
12 a

(1,1)
13 a

(1,1)
14

0 a
(1,1)
11 + a

(1,1)
22 a

(1,1)
23 a

(1,1)
24

0 0 a
(1,1)
11 + a

(1,1)
33 a

(1,1)
34

0 0 0 0


. (7.69)

Secondly, we classify ψ(E12). Since a(1,2)11 = a
(1,2)
22 = a

(1,2)
44 by (7.68), it follows from

(7.20) that

ψ(E12) =



a
(1,2)
11 a

(1,2)
12 a

(1,2)
13 a

(1,2)
14

0 a
(1,2)
11 a

(1,2)
23 a

(1,2)
24

0 0 a
(1,2)
33 a

(1,2)
34

0 0 0 a
(1,2)
11


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= a
(1,2)
12 E12 + a

(1,2)
11 I4 +



0 0 a
(1,2)
13 a

(1,2)
14

0 0 a
(1,2)
23 a

(1,2)
24

0 0 a
(1,2)
11 + a

(1,2)
33 a

(1,2)
34

0 0 0 0


. (7.70)

Thirdly, we classify ψ(E23). Since a
(2,3)
33 = a

(2,3)
11 +a

(1,1)
11 +a

(1,1)
33 +a

(1,2)
11 +a

(1,2)
33 by (7.22)

and a(2,3)34 = a
(1,1)
34 + a

(1,2)
34 by (7.23), it follows from (7.20) that

ψ(E23) =



a
(2,3)
11 a

(2,3)
12 a

(2,3)
13 a

(2,3)
14

0 a
(2,3)
22 a

(2,3)
23 a

(2,3)
24

0 0 a
(2,3)
11 + a

(1,1)
11 + a

(1,1)
33 + a

(1,2)
11 + a

(1,2)
33 a

(1,1)
34 + a

(1,2)
34

0 0 0 a
(2,3)
44


= a

(1,2)
12 E23 + a

(2,3)
11 I4

+



0 a
(2,3)
12 a

(2,3)
13 a

(2,3)
14

0 a
(2,3)
11 + a

(2,3)
22 a

(2,3)
23 + a

(1,2)
12 a

(2,3)
24

0 0 a
(1,1)
11 + a

(1,1)
33 + a

(1,2)
11 + a

(1,2)
33 a

(1,1)
34 + a

(1,2)
34

0 0 0 a
(2,3)
11 + a

(2,3)
44


.(7.71)

Subsequently, we classify ψ(E34). Since a
(3,4)
12 = a

(1,1)
12 + a

(2,3)
12 by (7.31), a(3,4)22 = a

(3,4)
11 +

a
(1,1)
11 + a

(1,1)
22 + a

(2,3)
22 + a

(2,3)
44 by (7.47), a(3,4)11 = a

(3,4)
33 = a

(3,4)
44 by (7.65) and a(3,4)34 = a

(1,2)
12

by (7.66), it follows from (7.20) that

ψ(E34) =



a
(3,4)
11 a

(1,1)
12 + a

(2,3)
12 a

(3,4)
13 a

(3,4)
14

0 a
(3,4)
11 + a

(1,1)
11 + a

(1,1)
22 + a

(2,3)
22 + a

(2,3)
44 a

(3,4)
23 a

(3,4)
24

0 0 a
(3,4)
11 a

(1,2)
12

0 0 0 a
(3,4)
11


= a

(1,2)
12 E34 + a

(3,4)
11 I4

+



0 a
(1,1)
12 + a

(2,3)
12 a

(3,4)
13 a

(3,4)
14

0 a
(1,1)
11 + a

(1,1)
22 + a

(2,3)
22 + a

(2,3)
44 a

(3,4)
23 a

(3,4)
24

0 0 0 0

0 0 0 0


. (7.72)
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Next, we classify ψ(E13). Since a
(1,3)
34 = 0 by (7.28), a(1,3)12 = a

(2,3)
11 + a

(2,3)
44 by (7.58) and

a
(1,3)
11 = a

(1,3)
22 = a

(1,3)
33 = a

(1,3)
44 by (7.60), it follows from (7.20) that

ψ(E13) =



a
(1,3)
11 a

(2,3)
11 + a

(2,3)
44 a

(1,3)
13 a

(1,3)
14

0 a
(1,3)
11 a

(1,3)
23 a

(1,3)
24

0 0 a
(1,3)
11 0

0 0 0 a
(1,3)
11


= a

(1,2)
12 E13 + a

(1,3)
11 I4

+



0 a
(2,3)
11 + a

(2,3)
44 a

(1,3)
13 + a

(1,2)
12 a

(1,3)
14

0 0 a
(1,3)
23 a

(1,3)
24

0 0 0 0

0 0 0 0


. (7.73)

Then, we classify ψ(E24). Since a
(2,4)
12 = 0 by (7.37), a(2,4)34 = a

(2,3)
11 + a

(2,3)
44 by (7.53) and

a
(2,4)
11 = a

(2,4)
22 = a

(2,4)
33 = a

(2,4)
44 by (7.55), it follows from (7.20) that

ψ(E24) =



a
(2,4)
11 0 a

(2,4)
13 a

(2,4)
14

0 a
(2,4)
11 a

(2,4)
23 a

(2,4)
24

0 0 a
(2,4)
11 a

(2,3)
11 + a

(2,3)
44

0 0 0 a
(2,4)
11



= a
(1,2)
12 E24 + a

(2,4)
11 I4 +



0 0 a
(2,4)
13 a

(2,4)
14

0 0 a
(2,4)
23 a

(2,4)
24 + a

(1,2)
12

0 0 0 a
(2,3)
11 + a

(2,3)
44

0 0 0 0


. (7.74)

Finally, we classify ψ(E14). Since a
(1,4)
34 = 0 by (7.29), a(1,4)12 = 0 by (7.36) and a(1,4)11 =
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a
(1,4)
22 = a

(1,4)
33 = a

(1,4)
44 by (7.43), it follows from (7.20) that

ψ(E14) =



a
(1,4)
11 0 a

(1,4)
13 a

(1,4)
14

0 a
(1,4)
11 a

(1,4)
23 a

(1,4)
24

0 0 a
(1,4)
11 0

0 0 0 a
(1,4)
11



= a
(1,2)
12 E14 + a

(1,4)
11 I4 +



0 0 a
(1,4)
13 a

(1,4)
14 + a

(1,2)
12

0 0 a
(1,4)
23 a

(1,4)
24

0 0 0 0

0 0 0 0


. (7.75)

Let λ = a
(1,2)
12 ∈ F2 and γ = a

(2,3)
11 + a

(2,3)
44 ∈ F2. Let µ : T4(F2) → F2 be an

additive map such that µ(I4) = a
(1,1)
11 + a

(1,2)
12 and µ(Eij) = a

(i,j)
11 for each 1 ⩽ i < j ⩽ 4.

Let θ4 = {(1, 3), (1, 4), (2, 3), (2, 4)}. Let λ(i,j)st = a
(i,j)
st and λ(1,1)st = a

(1,1)
st , for each

1 ⩽ i < j ⩽ 4 and (s, t) ∈ θ4. In view of (7.69)–(7.75), we see that

ψ(A) = λA+ µ(A)I4 + ψγ(A) + ψΘ(A)

for all A ∈ T4(F2), where λ ∈ F2 and ψγ and ψΘ are the additive maps defined in (7.3)

and (7.4) respectively. This completes the proof.

Finally we prove Theorem 7.3.4.

Proof of Theorem 7.3.4. Throughout the proof, unless otherwise specified, let n ⩾ 5 be

an integer. It is easily seen that A 7→ λA+µ(A)In is a 2­power commuting additive map

on invertible matrices A ∈ Tn(F2). Together with Example 7.4, the sufficiency is proved.

We now prove the necessity. We divide our proof into the following two cases:

Case I: n = 5. For each pair of integers 1 ⩽ p < q ⩽ 5, we let

ψ(Epq) = (a
(p,q)
ij ) ∈ T5(F2) (7.76)
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and let

ψ(I5) = (a
(1,1)
ij ) ∈ T5(F2) (7.77)

for all integers 1 ⩽ i ⩽ j ⩽ 5. In what follows, it is understood that (7.76) and (7.77) are

used in [ψ(I5 + Est + Etq), Esq] = 0 for 1 ⩽ s < t < q ⩽ 5. Let A = (aij) ∈ T5(F2)

be invertible. If A = I5 + Eij for some 1 ⩽ i < j ⩽ 5, then A2 = I5 + Eij + Eij = I5.

Thus [ψ(A), A2] = [ψ(I5 + Eij), I5] = 0. Hence we first consider A2 = I5 + Esq

for integers 1 ⩽ s < t < q ⩽ 5. Note that A2 6= I5 + Es,s+1 for all 1 ⩽ s ⩽ 4

since q 6= s + 1. Let A = I5 + Est + Etq for integers 1 ⩽ s < t < q ⩽ 5. Then

A2 = I5 + Esq, where (s, q) 6= (i, i + 1) for all integers i = 1, . . . , 4, by Lemma 7.4.1.

By [ψ(I5 + Est + Etq), Esq] = 0, (7.76) and (7.77), for every 1 ⩽ s < t < q ⩽ 5,

( ∑
1⩽i⩽j⩽5

(a
(1,1)
ij + a

(s,t)
ij + a

(t,q)
ij )Eij

)
Esq −Esq

( ∑
1⩽i⩽j⩽5

(a
(1,1)
ij + a

(s,t)
ij + a

(t,q)
ij )Eij

)
= 0.

Then

∑
1⩽i⩽s

(a
(1,1)
is + a

(s,t)
is + a

(t,q)
is )Eiq −

∑
q⩽j⩽5

(a
(1,1)
qj + a

(s,t)
qj + a

(t,q)
qj )Esj = 0.

Thus

(a(1,1)ss + a(s,t)ss + a(t,q)ss + a(1,1)qq + a(s,t)qq + a(t,q)qq )Esq

+
∑

1⩽i⩽s−1

(a
(1,1)
is + a

(s,t)
is + a

(t,q)
is )Eiq −

∑
q+1⩽j⩽5

(a
(1,1)
qj + a

(s,t)
qj + a

(t,q)
qj )Esj = 0.

Hence for every 1 ⩽ s < t < q ⩽ 5, we obtain

a(1,1)ss + a(1,1)qq + a(s,t)ss + a(s,t)qq + a(t,q)ss + a(t,q)qq = 0, (7.78)

a
(1,1)
is + a

(s,t)
is + a

(t,q)
is = 0 for i = 1, . . . , s− 1, (7.79)

a
(1,1)
qj + a

(s,t)
qj + a

(t,q)
qj = 0 for j = q + 1, . . . , 5. (7.80)
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Setting (s, t, q) = (3, 4, 5) and i ∈ {1, 2} in (7.79) respectively,

a
(4,5)
13 = a

(1,1)
13 + a

(3,4)
13 , (7.81)

a
(4,5)
23 = a

(1,1)
23 + a

(3,4)
23 . (7.82)

Setting (s, t, q) = (1, 2, 3) and j ∈ {4, 5} in (7.80) respectively,

a
(2,3)
34 = a

(1,1)
34 + a

(1,2)
34 , (7.83)

a
(2,3)
35 = a

(1,1)
35 + a

(1,2)
35 . (7.84)

Let 1 ⩽ s < t < q ⩽ 5 be integers. For each pair of integers 1 ⩽ u < v ⩽ 5 such

that u 6= t, q and v 6= s, t, we note that (I5 + Est + Etq + Euv)
2 = I5 + Esq. Since

[ψ(I5 + Est + Etq + Euv), I5] = 0, by [ψ(I5 + Est + Etq + Euv), Esq] = 0, for every

1 ⩽ u < v ⩽ 5 such that u 6= t, q and v 6= s, t,

a(u,v)qq = a(u,v)ss + a(1,1)ss + a(1,1)qq + a(s,t)ss + a(s,t)qq + a(t,q)ss + a(t,q)qq , (7.85)

a
(u,v)
is = a

(1,1)
is + a

(s,t)
is + a

(t,q)
is for i = 1, . . . , s− 1, (7.86)

a
(u,v)
qj = a

(1,1)
qj + a

(s,t)
qj + a

(t,q)
qj for j = q + 1, . . . , 5. (7.87)

For every 1 ⩽ s < t < q ⩽ 5, taking (7.78) into (7.85), (7.79) into (7.86), and (7.80) into

(7.87) respectively, for 1 ⩽ u < v ⩽ 5, u 6= t, q and v 6= s, t,

a(u,v)qq = a(u,v)ss , (7.88)

a
(u,v)
is = 0 for i = 1, . . . , s− 1, (7.89)

a
(u,v)
qj = 0 for j = q + 1, . . . , 5. (7.90)

Note that equations (7.88) and (7.90) give

(i) the 3rd row of ψ(Euv) for each pair of integers 1 ⩽ u < v ⩽ 5 satisfying u 6= 2, 3
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and (u, v) 6= (1, 2).
(ii) the 4th row of ψ(Euv) for each pair of integers 1 ⩽ u < v ⩽ 5 satisfying u 6= 4

and (u, v) 6= (2, 3).
(iii) the 5th row of ψ(Euv) for each pair of integers 1 ⩽ u < v ⩽ 5 satisfying u 6= 5.

In particular, when s = 1, equations (7.88) and (7.90) respectively become

a
(u,v)
11 = a(u,v)qq for q = 3, 4, 5, (7.91)

a
(u,v)
qj = 0 for j = q + 1, . . . , 5. (7.92)

• When q = 3, then t = 2. By (7.91) and (7.92), we obtain the 3rd row of ψ(Euv)

for every pair of integers 1 ⩽ u < v ⩽ 5 where u 6= 2, 3 and (u, v) 6= (1, 2). This

is because we get u = 1, 4 and v = 3, 4, 5, where u 6= 2, 3 and v 6= 1, 2, satisfying

1 ⩽ u < v ⩽ 5. Hence

a
(u,v)
11 = a

(u,v)
33 , (7.93)

a
(u,v)
34 = a

(u,v)
35 = 0 (7.94)

for all (u, v) ∈ {(1, 3), (1, 4), (1, 5), (4, 5)}.

• When q = 4, then t ∈ {2, 3}. By (7.91) and (7.92), we obtain the 4th row of

ψ(Euv) where u 6= 4 and (u, v) 6= (2, 3). This is because when (t, q) = (2, 4), we

get u = 1, 3 and v = 3, 4, 5, where u 6= 2, 4 and v 6= 1, 2, satisfying 1 ⩽ u < v ⩽ 5

and; when (t, q) = (3, 4), we get u = 1, 2 and v = 2, 4, 5, where u 6= 3, 4 and

v 6= 1, 3, satisfying 1 ⩽ u < v ⩽ 5. Hence

a
(u,v)
11 = a

(u,v)
44 , (7.95)

a
(u,v)
45 = 0 (7.96)

for all (u, v) ∈ {(1, 2), (1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)}.

• When q = 5 and t ∈ {2, 3, 4}, by (7.91) and (7.92), we get the 5th row of ψ(Euv)

for each pair of integers 1 ⩽ u < v ⩽ 5 where u 6= 5. This is because when

t = 2, we get u = 1, 3, 4 and v = 3, 4, 5, where u 6= 2, 5 and v 6= 1, 2, satisfying
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1 ⩽ u < v ⩽ 5; when t = 3, we get u = 1, 2 and v = 2, 4, 5, where u 6= 3, 5 and

v 6= 1, 3, satisfying 1 ⩽ u < v ⩽ 5 and; when t = 4, we get (u, v) = (2, 3). Hence

a
(u,v)
11 = a

(u,v)
55 (7.97)

for (u, v) = (i, j) for each pair of integers 1 ⩽ i < j ⩽ 5.

Note that equations (7.88) and (7.89) give

(i) the 2nd column of ψ(Euv) for each pair of integers 1 ⩽ u < v ⩽ 5 satisfying v 6= 2

and (u, v) 6= (3, 4).
(ii) the 3rd column of ψ(Euv) for each pair of integers 1 ⩽ u < v ⩽ 5 satisfying

v 6= 3, 4 and (u, v) 6= (4, 5).

For every 2 ⩽ s ⩽ 3, equations (7.88) and (7.89) respectively become

a(u,v)ss = a(u,v)qq for q = s+ 2, . . . , 5, (7.98)

a
(u,v)
is = 0 for i = 1, . . . , s− 1. (7.99)

• For s = 2 with t ∈ {3, 4} and q ∈ {4, 5}, by (7.98) and (7.99), we obtain the 2nd

column of ψ(Euv) for each pair of integers 1 ⩽ u < v ⩽ 5 where v 6= 2, and

(u, v) 6= (3, 4). This is because:

– when (t, q) = (3, 4), we get u = 1, 2 and v = 4, 5, where u 6= 3, 4 and

v 6= 2, 3, satisfying 1 ⩽ u < v ⩽ 5. Hence

a
(u,v)
22 = a

(u,v)
44 , (7.100)

a
(u,v)
12 = 0 (7.101)

for all (u, v) ∈ {(1, 4), (1, 5), (2, 4), (2, 5)};

– when (t, q) = (3, 5), we get (u, v) = (4, 5), where u 6= 3, 5 and v 6= 2, 3,

satisfying 1 ⩽ u < v ⩽ 5. Hence

a
(4,5)
22 = a

(4,5)
55 , (7.102)
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a
(4,5)
12 = 0; (7.103)

– when (t, q) = (4, 5), we get u = 1, 2, 3 and v = 3, 5, where u 6= 4, 5 and

v 6= 2, 4, satisfying 1 ⩽ u < v ⩽ 5. Hence

a
(u,v)
22 = a

(u,v)
55 , (7.104)

a
(u,v)
12 = 0 (7.105)

for all (u, v) ∈ {(1, 3), (2, 3), (3, 5)}.

• Finally, for s = 3, by (7.98) and (7.99), we obtain the 3rd column of ψ(Euv) for

each pair of integers 1 ⩽ u < v ⩽ 5 where v 6= 3, 4, and (u, v) 6= (4, 5), because

when (t, q) = (4, 5), we get u = 1, 2, 3 and v = 2, 5, where u 6= 4, 5 and v 6= 3, 4,

satisfying 1 ⩽ u < v ⩽ 5. Hence

a
(u,v)
33 = a

(u,v)
55 , (7.106)

a
(u,v)
13 = a

(u,v)
23 = 0 (7.107)

for all (u, v) ∈ {(1, 2), (1, 5), (2, 5), (3, 5)}.

It follows from (7.95), (7.97) and (7.100) that

a
(2,4)
11 = a

(2,4)
22 = a

(2,4)
44 = a

(2,4)
55 . (7.108)

It follows from (7.97) and (7.104) that

a
(2,3)
11 = a

(2,3)
22 = a

(2,3)
55 . (7.109)

It follows from (7.95) and (7.97) that

a
(3,4)
11 = a

(3,4)
44 = a

(3,4)
55 . (7.110)
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It follows from (7.95), (7.97) and (7.106) that

a
(1,2)
11 = a

(1,2)
33 = a

(1,2)
44 = a

(1,2)
55 . (7.111)

It follows from (7.93), (7.97) and (7.102) that

a
(4,5)
11 = a

(4,5)
22 = a

(4,5)
33 = a

(4,5)
55 . (7.112)

It follows from (7.93), (7.95), (7.97) and (7.104) that

a
(1,3)
11 = a

(1,3)
ii for i = 2, . . . , 5. (7.113)

It follows from (7.93), (7.95), (7.97) and (7.100) that

a
(1,4)
11 = a

(1,4)
ii for i = 2, . . . , 5, (7.114)

a
(1,5)
11 = a

(1,5)
ii for i = 2, . . . , 5. (7.115)

It follows from (7.95), (7.97), (7.100) and (7.106) that

a
(2,5)
11 = a

(2,5)
ii for i = 2, . . . , 5. (7.116)

It follows from (7.95), (7.97), (7.104) and (7.106) that

a
(3,5)
11 = a

(3,5)
ii for i = 2, . . . , 5. (7.117)

Next, by [ψ(I5 + E12 + E2q), E1q] = 0 for every 3 ⩽ q ⩽ 5, we get

a(2,q)qq = a
(2,q)
11 + a

(1,1)
11 + a(1,1)qq + a

(1,2)
11 + a(1,2)qq (7.118)

for every 3 ⩽ q ⩽ 5. Taking (7.108), (7.111) and (7.116) into (7.118), for every 4 ⩽ q ⩽

5,

a
(1,1)
11 = a(1,1)qq . (7.119)
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Setting q = 3 in (7.118),

a
(2,3)
33 = a

(2,3)
11 + a

(1,1)
11 + a

(1,1)
33 + a

(1,2)
11 + a

(1,2)
33 . (7.120)

Taking (7.111) into (7.120),

a
(2,3)
33 = a

(2,3)
11 + a

(1,1)
11 + a

(1,1)
33 . (7.121)

By [ψ(I5 + E23 + E35), E25] = 0, we have

a
(3,5)
12 = a

(1,1)
12 + a

(2,3)
12 , (7.122)

a
(1,1)
22 = a

(1,1)
55 + a

(2,3)
22 + a

(2,3)
55 + a

(3,5)
22 + a

(3,5)
55 . (7.123)

It follows from (7.105) that

a
(2,3)
12 = a

(3,5)
12 = 0. (7.124)

Taking (7.124) into (7.122),

a
(1,1)
12 = 0. (7.125)

Taking (7.109) and (7.117) into (7.123),

a
(1,1)
22 = a

(1,1)
55 . (7.126)

It follows from (7.119) and (7.126) that

a
(1,1)
11 = a

(1,1)
22 = a

(1,1)
44 = a

(1,1)
55 . (7.127)

By [ψ(I5 + E12 + E2s), E1s] = 0 for every 3 ⩽ s < t ⩽ 5, we get

a
(1,1)
sj + a

(1,2)
sj + a

(2,s)
sj = 0 for j = s+ 1, . . . , t− 1, t+ 1, . . . , 5, (7.128)

a
(1,1)
st + a

(1,2)
st + a

(2,s)
st = 0, (7.129)
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for every 3 ⩽ s < t ⩽ 5. Setting (s, t) = (4, 5) in (7.129),

a
(1,1)
45 + a

(1,2)
45 + a

(2,4)
45 = 0. (7.130)

It follows from (7.96) that

a
(1,2)
45 = a

(2,4)
45 = 0. (7.131)

Taking (7.131) into (7.130),

a
(1,1)
45 = 0. (7.132)

On the other hand, by [ψ(I5 + E23 + E34), E24] = 0, we get

a
(3,4)
12 = a

(1,1)
12 + a

(2,3)
12 , (7.133)

a
(2,3)
45 = a

(1,1)
45 + a

(3,4)
45 . (7.134)

It follows from (7.105) that

a
(2,3)
12 = 0. (7.135)

Taking (7.125) and (7.135) into (7.133),

a
(3,4)
12 = 0. (7.136)

It follows from (7.96) that

a
(3,4)
45 = 0. (7.137)

Taking (7.132) and (7.137) into (7.134),

a
(2,3)
45 = 0. (7.138)

Let 1 ⩽ s < t ⩽ 5 be integers. Set

Xst =


a
(s,t)
14 E14 + a

(s,t)
15 E15 + a

(s,t)
24 E24 + a

(s,t)
25 E25 if 1 ⩽ s < t ⩽ 5,

a
(1,1)
14 E14 + a

(1,1)
15 E15 + a

(1,1)
24 E24 + a

(1,1)
25 E25 if s = t = 1.
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Up to this point, we obtain the partially completed maps as the following.

In view of (7.77), (7.81)–(7.84), (7.125), (7.127) and (7.132),

ψ(I5) = a
(1,1)
11 (E11 + E22 + E44 + E55) + a

(1,1)
33 E33 + a

(1,1)
13 E13 + a

(1,1)
23 E23

+ a
(1,1)
34 E34 + a

(1,1)
35 E35 +X11.

(7.139)

In view of (7.76), (7.83), (7.84), (7.109), (7.121), (7.124) and (7.138),

ψ(E23) = a
(2,3)
11 (E11 + E22 + E55) + (a

(2,3)
11 + a

(1,1)
11 + a

(1,1)
33 )E33 + a

(2,3)
44 E44

+ a
(2,3)
13 E13 + a

(2,3)
23 E23 + (a

(1,1)
34 + a

(1,2)
34 )E34

+ (a
(1,1)
35 + a

(1,2)
35 )E35 +X23.

(7.140)

In view of (7.76), (7.81), (7.82), (7.110), (7.136) and (7.137),

ψ(E34) = a
(3,4)
11 (E11 + E44 + E55) + a

(3,4)
22 E22 + a

(3,4)
33 E33 + a

(3,4)
34 E34

+ a
(3,4)
35 E35 + a

(3,4)
13 E13 + a

(3,4)
23 E23 +X34.

(7.141)

In view of (7.76), (7.101), (7.108) and (7.131),

ψ(E24) = a
(2,4)
11 (E11 + E22 + E44 + E55) + a

(2,4)
33 E33 + a

(2,4)
13 E13 + a

(2,4)
23 E23

+ a
(2,4)
34 E34 + a

(2,4)
35 E35 +X24.

(7.142)

In view of (7.76), (7.83), (7.84), (7.107), (7.111) and (7.131),

ψ(E12) = a
(1,2)
11 (E11 + E33 + E44 + E55) + a

(1,2)
22 E22 + a

(1,2)
12 E12 + a

(1,2)
34 E34

+ a
(1,2)
35 E35 +X12.

(7.143)

In view of (7.76), (7.94), (7.96), (7.101) and (7.114),

ψ(E14) = a
(1,4)
11 In + a

(1,4)
13 E13 + a

(1,4)
23 E23 +X14. (7.144)

In view of (7.76), (7.96), (7.101), (7.107) and (7.116),

ψ(E25) = a
(2,5)
11 I5 + a

(2,5)
34 E34 + a

(2,5)
35 E35 +X25. (7.145)
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In view of (7.76), (7.81), (7.82), (7.94), (7.103) and (7.112),

ψ(E45) = a
(4,5)
11 (E11 + E22 + E33 + E55) + a

(4,5)
44 E44 + a

(4,5)
45 E45

+ (a
(1,1)
13 + a

(3,4)
13 )E13 + (a

(1,1)
23 + a

(3,4)
23 )E23 +X45.

(7.146)

In view of (7.76), (7.96), (7.105), (7.107) and (7.117),

ψ(E35) = a
(3,5)
11 I5 + a

(3,5)
34 E34 + a

(3,5)
35 E35 +X35. (7.147)

In view of (7.76), (7.94), (7.96), (7.105) and (7.113),

ψ(E13) = a
(1,3)
11 I5 + a

(1,3)
13 E13 + a

(1,3)
23 E23 +X13. (7.148)

Finally, in view of (7.76), (7.94), (7.96), (7.101), (7.107) and (7.115),

ψ(E15) = a
(1,5)
11 I5 +X15. (7.149)

Remark that the map ψ(E15) in (7.149) is already ultimate.

We now consider A2 = I5 +Epq +Est for integers 1 ⩽ p < q ⩽ 5 and 1 ⩽ s < t ⩽ 5

and (p, q) 6= (s, t). By [ψ(I5 + E12 + E23 + E24), E13 + E14] = 0, we have

a
(1,1)
11 + a

(1,2)
11 + a

(2,3)
11 + a

(2,4)
11 = a

(1,1)
33 + a

(1,2)
33 + a

(2,3)
33 + a

(2,4)
33 , (7.150)

a
(1,1)
11 + a

(1,2)
11 + a

(2,3)
11 + a

(2,4)
11 + a

(1,1)
44 + a

(1,2)
44 + a

(2,3)
44 + a

(2,4)
44

= a
(1,1)
34 + a

(1,2)
34 + a

(2,3)
34 + a

(2,4)
34 ,

(7.151)

a
(1,1)
35 + a

(1,2)
35 + a

(2,3)
35 + a

(2,4)
35 = a

(1,1)
45 + a

(1,2)
45 + a

(2,3)
45 + a

(2,4)
45 . (7.152)

Taking (7.111) and (7.121) into (7.150),

a
(2,4)
11 = a

(2,4)
33 . (7.153)
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We conclude from (7.108) and (7.153) that

a
(2,4)
11 = a

(2,4)
ii for i = 2, . . . , 5. (7.154)

By [ψ(I5 + E12 + E23 + E25), E13 + E15] = 0, we have

a
(1,1)
34 + a

(1,2)
34 + a

(2,3)
34 + a

(2,5)
34 = 0, (7.155)

a
(1,1)
11 + a

(1,2)
11 + a

(2,3)
11 + a

(2,5)
11 + a

(1,1)
55 + a

(1,2)
55 + a

(2,3)
55 + a

(2,5)
55

= a
(1,1)
35 + a

(1,2)
35 + a

(2,3)
35 + a

(2,5)
35 .

(7.156)

By [ψ(I5 + E12 + E23), E13] = 0 for every 4 ⩽ j ⩽ 5, we get

a
(1,1)
3j + a

(1,2)
3j + a

(2,3)
3j = 0 (7.157)

for every 4 ⩽ j ⩽ 5. Taking (7.138), (7.157) with j = 5 and (7.130) into (7.152),

a
(2,4)
35 = 0. (7.158)

Taking (7.157) with j = 4 into (7.155),

a
(2,5)
34 = 0. (7.159)

Taking (7.108), (7.111), (7.127) and (7.157) with j = 4 into (7.151),

a
(2,4)
34 = a

(2,3)
11 + a

(2,3)
44 . (7.160)

Taking (7.109), (7.111), (7.116), (7.127) and (7.157) with j = 5 into (7.156),

a
(2,5)
35 = 0. (7.161)

Secondly, by [ψ(I5 + E12 + E2s + Est), E1s + E2t] = 0 for every 3 ⩽ s < t ⩽ 5, we
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have

a
(1,1)
11 + a

(1,2)
11 + a

(2,s)
11 + a

(s,t)
11 = a(1,1)ss + a(1,2)ss + a(2,s)ss + a(s,t)ss , (7.162)

a
(1,1)
12 + a

(1,2)
12 + a

(2,s)
12 + a

(s,t)
12 = a

(1,1)
st + a

(1,2)
st + a

(2,s)
st + a

(s,t)
st , (7.163)

a
(1,1)
22 + a

(1,2)
22 + a

(2,s)
22 + a

(s,t)
22 = a

(1,1)
tt + a

(1,2)
tt + a

(2,s)
tt + a

(s,t)
tt , (7.164)

a
(1,1)
sj + a

(1,2)
sj + a

(2,s)
sj + a

(s,t)
sj = 0 for j = s+ 1, . . . , t− 1, t+ 1, . . . , 5, (7.165)

for every 3 ⩽ s < t ⩽ 5. Taking (7.128) into (7.165), for every 3 ⩽ s < t ⩽ 5,

a
(s,t)
sj = 0 for j = s+ 1, . . . , t− 1, t+ 1, . . . , 5. (7.166)

By [ψ(I5 + E2s + Est), E2t] = 0 for every 3 ⩽ s < t ⩽ 5, we get

a
(1,1)
12 + a

(2,s)
12 + a

(s,t)
12 = 0 (7.167)

for every 3 ⩽ s < t ⩽ 5. Taking (7.129) and (7.167) into (7.163), for all 3 ⩽ s < t ⩽ 5,

a
(1,2)
12 = a

(s,t)
st . (7.168)

Setting (s, t) = (4, 5) in (7.162),

a
(1,1)
11 + a

(1,2)
11 + a

(2,4)
11 + a

(4,5)
11 = a

(1,1)
44 + a

(1,2)
44 + a

(2,4)
44 + a

(4,5)
44 . (7.169)

Taking (7.108), (7.111), (7.127) into (7.169),

a
(4,5)
11 = a

(4,5)
44 . (7.170)

We conclude from (7.112) and (7.170) that

a
(4,5)
11 = a

(4,5)
ii for i = 2, . . . , 5. (7.171)
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Setting (s, t) = (3, 4) in (7.162),

a
(1,1)
11 + a

(1,2)
11 + a

(2,3)
11 + a

(3,4)
11 = a

(1,1)
33 + a

(1,2)
33 + a

(2,3)
33 + a

(3,4)
33 . (7.172)

Taking (7.111) and (7.121) into (7.172),

a
(3,4)
11 = a

(3,4)
33 . (7.173)

It follows from (7.110) and (7.173) that

a
(3,4)
11 = a

(3,4)
33 = a

(3,4)
44 = a

(3,4)
55 . (7.174)

Setting (s, t) = (3, 4) in (7.164),

a
(1,1)
22 + a

(1,2)
22 + a

(2,3)
22 + a

(3,4)
22 = a

(1,1)
44 + a

(1,2)
44 + a

(2,3)
44 + a

(3,4)
44 . (7.175)

Taking (7.109), (7.111), (7.127) and (7.174) into (7.175),

a
(1,2)
11 + a

(2,3)
11 + a

(3,4)
11 = a

(1,2)
22 + a

(2,3)
44 + a

(3,4)
22 . (7.176)

Setting (s, t) = (3, 5) in (7.164),

a
(1,1)
22 + a

(1,2)
22 + a

(2,3)
22 + a

(3,5)
22 = a

(1,1)
55 + a

(1,2)
55 + a

(2,3)
55 + a

(3,5)
55 . (7.177)

Taking (7.109), (7.111), (7.117) and (7.127) into (7.177),

a
(1,2)
11 = a

(1,2)
22 . (7.178)

It follows from (7.111) and (7.178) that

a
(1,2)
11 = a

(1,2)
ii for i = 2, . . . , 5. (7.179)
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Taking (7.179) into (7.176),

a
(2,3)
11 + a

(3,4)
11 = a

(2,3)
44 + a

(3,4)
22 . (7.180)

Thirdly, by [ψ(I5 + E13 + E34 + E45), E14 + E35] = 0, we have

a
(1,1)
13 + a

(1,3)
13 + a

(3,4)
13 + a

(4,5)
13 = a

(1,1)
45 + a

(1,3)
45 + a

(3,4)
45 + a

(4,5)
45 , (7.181)

a
(1,1)
23 + a

(1,3)
23 + a

(3,4)
23 + a

(4,5)
23 = 0. (7.182)

By [ψ(I5 + E34 + E45), E35] = 0, we obtain

a
(1,1)
13 + a

(3,4)
13 + a

(4,5)
13 = 0, (7.183)

a
(1,1)
23 + a

(3,4)
23 + a

(4,5)
23 = 0, (7.184)

a
(1,1)
33 + a

(3,4)
33 + a

(4,5)
33 = a

(1,1)
55 + a

(3,4)
55 + a

(4,5)
55 . (7.185)

Taking (7.184) into (7.182),

a
(1,3)
23 = 0. (7.186)

Taking (7.171) and (7.174) into (7.185),

a
(1,1)
33 = a

(1,1)
55 . (7.187)

We conclude from (7.127) and (7.187) that

a
(1,1)
11 = a

(1,1)
ii for i = 2, . . . , 5. (7.188)

Taking (7.188) into (7.121),

a
(2,3)
11 = a

(2,3)
33 . (7.189)

By [ψ(I5 + E13 + E34), E14] = 0, we get

a
(1,1)
45 + a

(1,3)
45 + a

(3,4)
45 = 0. (7.190)
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Taking (7.183) and (7.190) into (7.181),

a
(1,3)
13 = a

(4,5)
45 . (7.191)

Next, by [ψ(I5 + E23 + E34 + E45), E24 + E35] = 0, we have

a
(1,1)
13 + a

(2,3)
13 + a

(3,4)
13 + a

(4,5)
13 = 0, (7.192)

a
(1,1)
23 + a

(2,3)
23 + a

(3,4)
23 + a

(4,5)
23 = a

(1,1)
45 + a

(2,3)
45 + a

(3,4)
45 + a

(4,5)
45 . (7.193)

Taking (7.183) into (7.192),

a
(2,3)
13 = 0. (7.194)

By [ψ(I5 + E23 + E34), E24] = 0, we get

a
(1,1)
45 + a

(2,3)
45 + a

(3,4)
45 = 0. (7.195)

Taking (7.184) and (7.195) into (7.193),

a
(2,3)
23 = a

(4,5)
45 . (7.196)

We conclude from (7.191) and (7.196) that for every 1 ⩽ r ⩽ 2,

a
(r,3)
r3 = a

(4,5)
45 . (7.197)

Setting (s, t) = (4, 5) in (7.168),

a
(1,2)
12 = a

(4,5)
45 . (7.198)

We conclude from (7.197) and (7.198) that for every 1 ⩽ r ⩽ 2,

a
(r,3)
r3 = a

(1,2)
12 . (7.199)
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We conclude from (7.168) and (7.199) that for every 1 ⩽ r ⩽ 2 < s < t ⩽ 5,

a
(1,2)
12 = a

(r,3)
r3 = a

(s,t)
st . (7.200)

By [ψ(I5 + E23 + E34 + E35), E24 + E25] = 0, we have

a
(1,1)
22 + a

(2,3)
22 + a

(3,4)
22 + a

(3,5)
22 + a

(1,1)
55 + a

(2,3)
55 + a

(3,4)
55 + a

(3,5)
55

= a
(1,1)
45 + a

(2,3)
45 + a

(3,4)
45 + a

(3,5)
45 .

(7.201)

It follows from (7.147) that

a
(3,5)
45 = 0. (7.202)

Taking (7.123), (7.195) and (7.202) into (7.201),

a
(3,4)
22 = a

(3,4)
55 . (7.203)

We conclude from (7.174) and (7.203) that

a
(3,4)
11 = a

(3,4)
ii for i = 2, . . . , 5. (7.204)

Taking (7.204) into (7.180),

a
(2,3)
11 = a

(2,3)
44 . (7.205)

We conclude from (7.109), (7.189) and (7.205) that

a
(2,3)
11 = a

(2,3)
ii for i = 2, . . . , 5. (7.206)

Taking (7.206) into (7.160),

a
(2,4)
34 = 0. (7.207)

Finally, by [ψ(I5 + E14 + E34 + E45), E15 + E35] = 0, we have

a
(1,1)
11 + a

(1,4)
11 + a

(3,4)
11 + a

(4,5)
11 + a

(1,1)
55 + a

(1,4)
55 + a

(3,4)
55 + a

(4,5)
55

= a
(1,1)
13 + a

(1,4)
13 + a

(3,4)
13 + a

(4,5)
13 ,

(7.208)
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a
(1,1)
23 + a

(1,4)
23 + a

(3,4)
23 + a

(4,5)
23 = 0. (7.209)

Taking (7.184) into (7.209),

a
(1,4)
23 = 0. (7.210)

By [ψ(I5 + E14 + E45), E15] = 0, we get

a
(1,1)
11 + a

(1,4)
11 + a

(4,5)
11 + a

(1,1)
55 + a

(1,4)
55 + a

(4,5)
55 = 0. (7.211)

Taking (7.183), (7.204) and (7.211) into (7.208),

a
(1,4)
13 = 0. (7.212)

By [ψ(I5 + E24 + E34 + E45), E25 + E35] = 0, we obtain

a
(1,1)
12 + a

(2,4)
12 + a

(3,4)
12 + a

(4,5)
12 = a

(1,1)
13 + a

(2,4)
13 + a

(3,4)
13 + a

(4,5)
13 , (7.213)

a
(1,1)
22 + a

(2,4)
22 + a

(3,4)
22 + a

(4,5)
22 + a

(1,1)
55 + a

(2,4)
55 + a

(3,4)
55 + a

(4,5)
55

= a
(1,1)
23 + a

(2,4)
23 + a

(3,4)
23 + a

(4,5)
23 .

(7.214)

By [ψ(I5 + E24 + E45), E25] = 0, we have

a
(1,1)
22 + a

(2,4)
22 + a

(4,5)
22 + a

(1,1)
55 + a

(2,4)
55 + a

(4,5)
55 = 0. (7.215)

Taking (7.184), (7.204) and (7.215) into (7.214),

a
(2,4)
23 = 0. (7.216)

It follows from (7.141) that

a
(3,4)
12 = 0. (7.217)

Setting (s, t) = (4, 5) in (7.167),

a
(1,1)
12 + a

(2,4)
12 + a

(4,5)
12 = 0. (7.218)
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Taking (7.183), (7.217) and (7.218) into (7.213),

a
(2,4)
13 = 0. (7.219)

Consequently, using (7.139)–(7.149), we are ready to classify ψ(I5) and ψ(Eij) for

each pair of integers 1 ⩽ i < j ⩽ 5. By virtue of (7.139) and (7.188),

ψ(I5) = a
(1,1)
11 I5 + a

(1,1)
13 E13 + a

(1,1)
23 E23 + a

(1,1)
34 E34 + a

(1,1)
35 E35 +X11. (7.220)

By virtue of (7.143) and (7.179),

ψ(E12) = a
(1,2)
11 I5 + a

(1,2)
12 E12 + a

(1,2)
34 E34 + a

(1,2)
35 E35 +X12. (7.221)

By virtue of (7.146), (7.171) and (7.200),

ψ(E45) = a
(4,5)
11 I5 + a

(1,2)
12 E45 +(a

(1,1)
13 + a

(3,4)
13 )E13 +(a

(1,1)
23 + a

(3,4)
23 )E23 +X45. (7.222)

By virtue of (7.140), (7.188), (7.194), (7.200) and (7.206),

ψ(E23) = a
(2,3)
11 I5 + a

(1,2)
12 E23 +(a

(1,1)
34 + a

(1,2)
34 )E34 +(a

(1,1)
35 + a

(1,2)
35 )E35 +X23. (7.223)

By virtue of (7.141), (7.166), (7.200) and (7.204),

ψ(E34) = a
(3,4)
11 I5 + a

(1,2)
12 E34 + a

(3,4)
13 E13 + a

(3,4)
23 E23 +X34. (7.224)

It follows from (7.144), (7.210) and (7.212) that

ψ(E14) = a
(1,4)
11 I5 + a

(1,2)
12 E14 + (a

(1,2)
12 + a

(1,4)
14 )E14 + a

(1,4)
15 E15

+ a
(1,4)
2,4 E24 + a

(1,4)
25 E25.

(7.225)
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Since the map ψ(E15) in (7.149) is already ultimate, it follows from (7.149) that

ψ(E15) = a
(1,5)
11 In + a

(1,2)
12 E15 + a

(1,5)
14 E14 + (a

(1,2)
12 + a

(1,5)
15 )E15

+ a
(1,5)
24 E24 + a

(1,5)
25 E25.

(7.226)

By virtue of (7.142), (7.154), (7.158), (7.207), (7.216) and (7.219),

ψ(E24) = a
(2,4)
11 I5 + a

(1,2)
12 E24 + a

(2,4)
14 E14 + a

(2,4)
15 E15

+ (a
(1,2)
12 + a

(2,4)
24 )E24 + a

(2,4)
25 E25.

(7.227)

It follows from (7.145), (7.159) and (7.161) that

ψ(E25) = a
(2,5)
11 I5 + a

(1,2)
12 E25 + a

(2,5)
14 E14 + a

(2,5)
15 E15 + a

(2,5)
24 E24

+ (a
(1,2)
12 + a

(2,5)
25 )E25.

(7.228)

By virtue of (7.147), (7.166) and (7.200),

ψ(E35) = a
(3,5)
11 I5 + a

(1,2)
12 E35 +X35. (7.229)

By virtue of (7.148), (7.186) and (7.200),

ψ(E13) = a
(1,3)
11 I5 + a

(1,2)
12 E13 +X13. (7.230)

Let λ = a
(1,2)
12 ∈ F2. Let µ : T5(F2) → F2 be the additive map defined by

µ(A) = a
(1,1)
11 +

∑
1⩽i<j⩽5

a
(i,j)
11 (7.231)

for all A = (aij) ∈ T5(F2). Let θ5 = {(1, 4), (1, 5), (2, 4), (2, 5)}. Let λ(1,1)st = a
(1,1)
st and

λ
(i,j)
st = a

(i,j)
st , for each pair of integers 1 ⩽ i < j ⩽ 5 and (s, t) ∈ θ5. Let ψΘ : T5(F2) →

T5(F2) be the additive map defined in (7.4). In view of (7.220)–(7.231), together with the

additivity of ψ, µ and ψΘ, we obtain

ψ(A) =
∑

1⩽i⩽j⩽5

ψ(Eij)
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= ψ(I5) +
∑

1⩽i<j⩽5

ψ(Eij)

= λA+ µ(A)I5 + ψΘ(A)

for all A ∈ T5(F2), where λ ∈ F2. This completes the proof for n = 5.

Case I: n ⩾ 6. For each pair of integers 1 ⩽ p < q ⩽ n, we let

ψ(Epq) = (a
(p,q)
ij ) ∈ Tn(F2) (7.232)

and let

ψ(In) = (a
(1,1)
ij ) ∈ Tn(F2) (7.233)

for all integers 1 ⩽ i ⩽ j ⩽ n. In what follows, it is understood that (7.232) and

(7.233) are used in [ψ(In + Est + Etq), Esq] = 0 for 1 ⩽ s < t < q ⩽ n. Let A =

(aij) ∈ Tn(F2) be invertible. If A = In + Eij , then A2 = In + Eij + Eij = In. Thus

[ψ(A), A2] = [ψ(In + Eij), In] = 0. Hence we first consider A2 = In + Esq for integers

1 ⩽ s < t < q ⩽ n. Note thatA2 6= In+Es,s+1 for all 1 ⩽ s ⩽ n−1 since q 6= s+1. Let

A = In+Est+Etq for integers 1 ⩽ s < t < q ⩽ n. Then A2 = In+Esq, where (s, q) 6=

(i, i+ 1) for all i = 1, . . . , n− 1, by Lemma 7.4.1. Since [ψ(In +Est +Etq), In] = 0, by

[ψ(In + Est + Etq), Esq] = 0, (7.232) and (7.233), for every 1 ⩽ s < t < q ⩽ n,

( ∑
1⩽i⩽j⩽n

(a
(1,1)
ij + a

(s,t)
ij + a

(t,q)
ij )Eij

)
Esq −Esq

( ∑
1⩽i⩽j⩽n

(a
(1,1)
ij + a

(s,t)
ij + a

(t,q)
ij )Eij

)
= 0.

Then

∑
1⩽i⩽s

(a
(1,1)
is + a

(s,t)
is + a

(t,q)
is )Eiq −

∑
q⩽j⩽n

(a
(1,1)
qj + a

(s,t)
qj + a

(t,q)
qj )Esj = 0.

Thus

(a(1,1)ss + a(s,t)ss + a(t,q)ss − a(1,1)qq − a(s,t)qq − a(t,q)qq )Esq

+
∑

1⩽i⩽s−1

(a
(1,1)
is + a

(s,t)
is + a

(t,q)
is )Eiq −

∑
q+1⩽j⩽n

(a
(1,1)
qj + a

(s,t)
qj + a

(t,q)
qj )Esj = 0.
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Hence for every 1 ⩽ s < t < q ⩽ n, we obtain

a(1,1)ss + a(1,1)qq + a(s,t)ss + a(s,t)qq + a(t,q)ss + a(t,q)qq = 0, (7.234)

a
(1,1)
is + a

(s,t)
is + a

(t,q)
is = 0 for i = 1, . . . , s− 1, (7.235)

a
(1,1)
qj + a

(s,t)
qj + a

(t,q)
qj = 0 for j = q + 1, . . . , n. (7.236)

Setting (s, t, q) = (n− 2, n− 1, n) and i ∈ {1, 2} in (7.235) respectively,

a
(n−1,n)
1,n−2 = a

(1,1)
1,n−2 + a

(n−2,n−1)
1,n−2 , (7.237)

a
(n−1,n)
2,n−2 = a

(1,1)
2,n−2 + a

(n−2,n−1)
2,n−2 . (7.238)

Setting (s, t, q) = (1, 2, 3) and j ∈ {n− 1, n} in (7.236) respectively,

a
(2,3)
3,n−1 = a

(1,1)
3,n−1 + a

(1,2)
3,n−1, (7.239)

a
(2,3)
3n = a

(1,1)
3n + a

(1,2)
3n . (7.240)

Let 1 ⩽ s < t < q ⩽ n be integers. For each pair of integers 1 ⩽ u < v ⩽ n such

that u 6= t, q and v 6= s, t, we note that (In + Est + Etq + Euv)
2 = In + Esq. Since

[ψ(In + Est + Etq + Euv), In] = 0, by [ψ(In + Est + Etq + Euv), Esq] = 0, for every

1 ⩽ u < v ⩽ n such that u 6= t, q and v 6= s, t,

a(u,v)qq = a(u,v)ss + a(1,1)ss + a(1,1)qq + a(s,t)ss + a(s,t)qq + a(t,q)ss + a(t,q)qq , (7.241)

a
(u,v)
is = a

(1,1)
is + a

(s,t)
is + a

(t,q)
is for i = 1, . . . , s− 1, (7.242)

a
(u,v)
qj = a

(1,1)
qj + a

(s,t)
qj + a

(t,q)
qj for j = q + 1, . . . , n. (7.243)

For every 1 ⩽ s < t < q ⩽ n, taking (7.234) into (7.241), (7.235) into (7.242), and

(7.236) into (7.243) respectively, for 1 ⩽ u < v ⩽ n, u 6= t, q and v 6= s, t,

a(u,v)qq = a(u,v)ss , (7.244)
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a
(u,v)
is = 0 for i = 1, . . . , s− 1, (7.245)

a
(u,v)
qj = 0 for j = q + 1, . . . , n. (7.246)

Note that equations (7.244) and (7.246) give

(i) the 3rd row of ψ(Euv) for each pair of integers 1 ⩽ u < v ⩽ n satisfying u 6= 2, 3

and (u, v) 6= (1, 2).
(ii) the 4th row of ψ(Euv) for each pair of integers 1 ⩽ u < v ⩽ n satisfying u 6= 4

and (u, v) 6= (2, 3).
(iii) the qth row of ψ(Euv) for every integer 5 ⩽ q ⩽ n of each pair of integers 1 ⩽ u <

v ⩽ n satisfying u 6= q.

In particular, when s = 1, equations (7.244) and (7.246) respectively become

a
(u,v)
11 = a(u,v)qq for q = 3, . . . , n, (7.247)

a
(u,v)
qj = 0 for j = q + 1, . . . , n. (7.248)

• When q = 3, then t = 2. By (7.247) and (7.248), we obtain the 3rd row of ψ(Euv)

for every pair of integers 1 ⩽ u < v ⩽ n where u 6= 2, 3 and (u, v) 6= (1, 2).

This is because we get u = 1, 4, . . . , n − 1 and v = 3, . . . , n, where u 6= 2, 3 and

v 6= 1, 2, satisfying 1 ⩽ u < v ⩽ n.

• When q = 4, then t ∈ {2, 3} since 2 ⩽ t ⩽ q − 1. By (7.247) and (7.248), we

obtain the 4th row of ψ(Euv) where u 6= 4 and (u, v) 6= (2, 3). This is because

when (t, q) = (2, 4), we get u = 1, 3, 5, 6, . . . , n − 1 and v = 3, 4, . . . , n, where

u 6= 2, 4 and v 6= 1, 2, satisfying 1 ⩽ u < v ⩽ n and; when (t, q) = (3, 4), we

get u = 1, 2 and v = 2, 4, 5, 6, . . . , n, where u 6= 3, 4 and v 6= 1, 3, satisfying

1 ⩽ u < v ⩽ n.

• Continue in this way, for every 5 ⩽ q ⩽ n and t ∈ {2, 3, 4}, by (7.247) and

(7.248), we obtain the qth row of ψ(Euv) for each pair of integers 1 ⩽ u < v ⩽ n

where u 6= q. This is because when t = 2, we get u = 1, 3, 4, . . . , n − 1 and

v = 3, 4, . . . , n, where u 6= 2, q and v 6= 1, 2, satisfying 1 ⩽ u < v ⩽ n; when

t = 3, we get u = 1, 2 and v = 2, 4, 5, 6, . . . , n, where u 6= 3, q and v 6= 1, 3,

142

Univ
ers

iti 
Mala

ya



satisfying 1 ⩽ u < v ⩽ n and; when t = 4, we get u = 2, v = 3.

Note that equations (7.244) and (7.245) give

(i) the sth column of ψ(Euv) for every 2 ⩽ s ⩽ n−3 of each pair of integers 1 ⩽ u <

v ⩽ n satisfying v 6= s and (u, v) 6= (s+ 1, s+ 2) if n = s+ 3.
(ii) the (n− 2)th column of ψ(Euv) for each pair of integers 1 ⩽ u < v ⩽ n satisfying

v 6= n− 2, n− 1 and (u, v) 6= (n− 1, n).

For every 2 ⩽ s ⩽ n− 2, equations (7.244) and (7.245) respectively become

a(u,v)ss = a(u,v)qq for q = s+ 2, . . . , n, (7.249)

a
(u,v)
is = 0 for i = 1, . . . , s− 1. (7.250)

• For every 2 ⩽ s ⩽ n−4, with t ∈ {s+1, s+2, s+3} and q ∈ {s+2, s+3, s+4}, by

(7.249) and (7.250), we obtain the sth column of ψ(Euv), for every s = 2, . . . , n−4

of each pair of integers 1 ⩽ u < v ⩽ n, where v 6= s. This is because when (t, q) =

(s+1, s+2), we get u = 1, 2, . . . , n−1 and v = 2, 3, . . . , n, where u 6= s+1, s+2

and v 6= s, s + 1, satisfying 1 ⩽ u < v ⩽ n; when (t, q) = (s + 1, s + 3), we

get u = s + 2 and v = s + 3, . . . , n, where u 6= s + 1, s + 3 and v 6= s, s + 1,

satisfying 1 ⩽ u < v ⩽ n; when (t, q) = (s+2, s+3), we get u = 1, . . . , s+1 and

v = s+1, . . . , n, where u 6= s+2, s+3 and v 6= s, s+2, satisfying 1 ⩽ u < v ⩽ n;

when (t, q) = (s + 3, s + 4) if n ⩾ s + 4, we get (u, v) = (s + 1, s + 2), where

u 6= s+ 3, s+ 4 and v 6= s, s+ 3, satisfying 1 ⩽ u < v ⩽ n.

• Continue in this way, when s = n− 3 with t ∈ {n− 2, n− 1} and q ∈ {n− 1, n},

by (7.249) and (7.250), we obtain the (n− 3)th column of ψ(Euv) for each pair of

integers 1 ⩽ u < v ⩽ nwhere v 6= n−3 and (u, v) 6= (n−2, n−1). This is because

when (t, q) = (n−2, n−1), we get u = 1, . . . , n−3 and v = 2, . . . , n−4, n−1, n,

where u 6= n − 2, n − 1 and v 6= n − 3, n − 2, satisfying 1 ⩽ u < v ⩽ n; when

(t, q) = (n−2, n), we get (u, v) = (n−1, n), where u 6= n−2, n and v 6= n−3, n−2,

satisfying 1 ⩽ u < v ⩽ n; when (t, q) = (n− 1, n), we get u = 1, . . . , n− 2 and

v = n− 2, n, where u 6= n− 1, n and v 6= n− 3, n− 1, satisfying 1 ⩽ u < v ⩽ n.
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• Finally, when s = n − 2, by (7.249) and (7.250), we obtain the (n − 2)th column

of ψ(Euv) for each pair of integers 1 ⩽ u < v ⩽ n where v 6= n − 2, n − 1, and

(u, v) 6= (n − 1, n), because when (t, q) = (n − 1, n), we get u = 1, . . . , n − 2

and v = 2, . . . , n − 3, n, where u 6= n − 1, n and v 6= n − 2, n − 1, satisfying

1 ⩽ u < v ⩽ n.

It follows from (7.247) and (7.249) that for every 1 ⩽ p < q ⩽ n,

a
(1,2)
11 = a

(1,2)
ii for i = 3, . . . , n, (7.251)

a(n−1,n)
nn = a

(n−1,n)
ii for i = 1, . . . , n− 2, (7.252)

a
(2,3)
11 = a

(2,3)
22 = a

(2,3)
ii for i = 4, . . . , n, (7.253)

a(n−2,n−1)
nn = a

(n−2,n−1)
n−1,n−1 = a

(n−2,n−1)
ii for i = 1, . . . , n− 3, (7.254)

a
(p,q)
11 = a

(p,q)
ii for i = 2, . . . , n, (7.255)

for every (p, q) /∈ {(1, 2), (2, 3), (n− 1, n), (n− 2, n− 1)}.

By [ψ(In + E23 + E35), E25] = 0, we have,

a
(3,5)
55 = a

(3,5)
22 + a

(1,1)
22 + a

(1,1)
55 + a

(2,3)
22 + a

(2,3)
55 . (7.256)

Taking (7.253) and (7.255) with (p, q) = (3, 5) into (7.256),

a
(1,1)
22 = a

(1,1)
55 . (7.257)

By [ψ(In + E34 + E45), E35] = 0, we get

a
(4,5)
55 = a

(4,5)
33 + a

(1,1)
33 + a

(1,1)
55 + a

(3,4)
33 + a

(3,4)
55 . (7.258)

It follows from (7.255) with (p, q) ∈ {(3, 5), (4, 5)} that

a
(3,4)
33 = a

(3,4)
55 , (7.259)
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a
(4,5)
33 = a

(4,5)
55 . (7.260)

Taking (7.259) and (7.260) into (7.258),

a
(1,1)
33 = a

(1,1)
55 . (7.261)

By [ψ(In + E12 + E2q), E1q] = 0, for every 4 ⩽ q ⩽ n, we get

a(2,q)qq = a
(2,q)
11 + a

(1,1)
11 + a(1,1)qq + a

(1,2)
11 + a(1,2)qq . (7.262)

a
(2,p)
qj = a

(1,1)
qj + a

(1,2)
qj for j = q + 1, . . . , n. (7.263)

Taking (7.251) and (7.255) with p = 2 into (7.262), for every 4 ⩽ q ⩽ n,

a
(1,1)
11 = a(1,1)qq . (7.264)

We conclude from (7.257), (7.261) and (7.264) that

a
(1,1)
11 = a

(1,1)
ii for i = 2, . . . , n. (7.265)

By [ψ(In + E12 + E23), E13] = 0, we obtain

a
(2,3)
33 = a

(2,3)
11 + a

(1,1)
11 + a

(1,1)
33 + a

(1,2)
11 + a

(1,2)
33 , (7.266)

a
(2,3)
3,n−2 = a

(1,1)
3,n−2 + a

(1,2)
3,n−2. (7.267)

Taking (7.251) and (7.265) into (7.266),

a
(2,3)
11 = a

(2,3)
33 . (7.268)

It follows from (7.253) and (7.268) that

a
(2,3)
11 = a

(2,3)
ii for i = 2, . . . , n. (7.269)
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By [ψ(In + En−2,n−1 + En−1,n), En−2,n] = 0, we have

a(n−1,n)
nn = a

(n−1,n)
n−2,n−2 + a

(1,1)
n−2,n−2 + a(1,1)nn + a

(n−2,n−1)
n−2,n−2 + a(n−2,n−1)

nn . (7.270)

Taking (7.252) and (7.265) into (7.270),

a
(n−2,n−1)
n−2,n−2 = a(n−2,n−1)

nn . (7.271)

It follows from (7.254) and (7.271) that

a
(n−2,n−1)
11 = a

(n−2,n−1)
ii for i = 2, . . . , n. (7.272)

By [ψ(In+En−2,n−1+En−1,n), En−2,n] = 0 and [ψ(In+En−2,n−1+En−1,n+Eu,v), En−2,n] =

0, for (u, v) ∈ {(1, 2), (2, 3)}, we obtain

a
(1,2)
3,n−2 = 0, (7.273)

a
(2,3)
3,n−2 = 0. (7.274)

Taking (7.273) and (7.274) into (7.267),

a
(1,1)
3,n−2 = 0. (7.275)

By [ψ(In + E13 + E3q), E1q] = 0 and [ψ(In + E13 + E3q + Euv), E1q] = 0 for each

(u, v) ∈ {(2, q), (1, 2)}, where 4 ⩽ q ⩽ n, we obtain

a
(2,q)
qj = a

(1,2)
qj = 0 for j = q + 1, . . . , n. (7.276)

Taking (7.276) into (7.263), for every 4 ⩽ q ⩽ n,

a
(1,1)
qj = 0 for j = q + 1, . . . , n. (7.277)
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Setting q = 4 in (7.277), we get

a
(1,1)
4j = 0 for j = 5, . . . , n. (7.278)

By [ψ(In + E12 + E24), E14] = 0 and [ψ(In + E12 + E24 + E34), E14] = 0, we get

a
(3,4)
4j = 0 for j = 5, . . . , n. (7.279)

By [ψ(In + E23 + E34), E24] = 0, we have

a
(2,3)
4j = a

(1,1)
4j + a

(3,4)
4j for j = 5, . . . , n. (7.280)

Taking (7.278) and (7.279) into (7.280),

a
(2,3)
4j = 0 for j = 5, . . . , n. (7.281)

Next, by [ψ(In + Eq,q+1 + Eq+1,q+3), Eq,q+3] = 0 for every 2 ⩽ q ⩽ n− 3, we have

a
(q+1,q+3)
iq = a

(1,1)
iq + a

(q,q+1)
iq for i = 1, . . . , q − 1, (7.282)

for every 2 ⩽ q ⩽ n−3. By [ψ(In+Eq,q+2+Eq+2,q+3), Eq,q+3] = 0 and [ψ(In+Eq,q+2+

Eq+2,q+3 + Euv), Eq,q+3] = 0 for each (u, v) ∈ {(q, q + 1), (q + 1, q + 3)}, we get

a
(q,q+1)
iq = a

(q+1,q+3)
iq = 0 for i = 1, . . . , q − 1. (7.283)

Taking (7.283) into (7.282), for every 2 ⩽ q ⩽ n− 3,

a
(1,1)
iq = 0 for i = 1, . . . , q − 1. (7.284)

On the other hand, by [ψ(In + En−3,n−2 + En−2,n−1), En−3,n−1] = 0, we have

a
(n−2,n−1)
i,n−3 = a

(1,1)
i,n−3 + a

(n−3,n−2)
i,n−3 for i = 1, . . . , n− 4. (7.285)
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Setting q = n− 3 in (7.284),

a
(1,1)
i,n−3 = 0 for i = 1 . . . , n− 4. (7.286)

By [ψ(In + En−3,n−1 + En−1,n), En−3,n] = 0 and

[ψ(In + En−3,n−1 + En−1,n + En−3,n−2), En−3,n] = 0, we obtain

a
(n−3,n−2)
i,n−3 = 0 for i = 1, . . . , n− 4. (7.287)

Taking (7.286) and (7.287) into (7.285),

a
(n−2,n−1)
i,n−3 = 0 for i = 1 . . . , n− 4. (7.288)

Let 1 ⩽ s < t ⩽ n be integers. Set

Xst =


a
(s,t)
1,n−1E1,n−1 + a

(s,t)
1n E1n + a

(s,t)
2,n−1E2,n−1 + a

(s,t)
2n E2n if 1 ⩽ s < t ⩽ n,

a
(1,1)
1,n−1E1,n−1 + a

(1,1)
1n E1n + a

(1,1)
2,n−1E2,n−1 + a

(1,1)
2n E2n if s = t = 1.

Up to this point, we obtain the partially completed maps as the following. In view of

(7.233), (7.237)–(7.240), (7.265), (7.275), (7.277) and (7.284),

ψ(In) = a
(1,1)
11 In + a

(1,1)
1,n−2E1,n−2 + a

(1,1)
2,n−2E2,n−2 + a

(1,1)
3,n−1E3,n−1

+ a
(1,1)
3n E3n +X11.

(7.289)

Remark that the map ψ(In) in (7.289) is already ultimate. In view of (7.232), (7.239),

(7.240), (7.248), (7.250), (7.269) and (7.281),

ψ(E23) = a
(2,3)
11 In + a

(2,3)
13 E13 + a

(2,3)
23 E23 + (a

(1,1)
3,n−1 + a

(1,2)
3,n−1)E3,n−1

+ (a
(1,1)
3n + a

(1,2)
3n )E3n +X23.

(7.290)
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In view of (7.232), (7.248), (7.250) and (7.255) with (p, q) = (2, n− 1),

ψ(E2,n−1) = a
(2,n−1)
11 In + a

(2,n−1)
1,n−2 E1,n−2 + a

(2,n−1)
2,n−2 E2,n−2 + a

(2,n−1)
3,n−2 E3,n−2

+ a
(2,n−1)
3,n−1 E3,n−1 + a

(2,n−1)
3n E3n +X2,n−1.

(7.291)

In view of (7.232), (7.237), (7.238), (7.248), (7.250), (7.272) and (7.288),

ψ(En−2,n−1) = a
(n−2,n−1)
11 In + a

(n−2,n−1)
n−2,n−1 En−2,n−1 + a

(n−2,n−1)
n−2,n En−2,n

+ a
(n−2,n−1)
1,n−2 E1,n−2 + a

(n−2,n−1)
2,n−2 E2,n−2 +Xn−2,n−1.

(7.292)

In view of (7.232), (7.248), (7.250) and (7.255) with p = 2 and 4 ⩽ q ⩽ n− 2, for every

4 ⩽ t ⩽ n− 2,

ψ(E2t) = a
(2,t)
11 In + a

(2,t)
1t E1t + a

(2,t)
2t E2t + a

(2,t)
3t E3t + a

(2,t)
3,n−1E3,n−1

+ a
(2,t)
3n E3n +X2t.

(7.293)

In view of (7.232), (7.248), (7.250) and (7.255) with 3 ⩽ p ⩽ n − 3 and q = n − 1, for

every 3 ⩽ s ⩽ n− 3,

ψ(Es,n−1) = a
(s,n−1)
11 In + a

(s,n−1)
1,n−2 E1,n−2 + a

(s,n−1)
2,n−2 E2,n−2 + a

(s,n−1)
s,n−2 Es,n−2

+ a
(s,n−1)
s,n−1 Es,n−1 + a(s,n−1)

sn Esn +Xs,n−1.

(7.294)

In view of (7.232), (7.248), (7.250) and (7.255) with 3 ⩽ p < q ⩽ n − 2, for every

3 ⩽ p < q ⩽ n− 2,

ψ(Epq) = a
(p,q)
11 In + a

(p,q)
1q E1q + a

(p,q)
2q E2q + a(p,q)pq Epq + a

(p,q)
p,n−1Ep,n−1

+ a(p,q)pn Epn +Xpq.

(7.295)

In view of (7.232), (7.239), (7.240), (7.248), (7.250) and (7.251),

ψ(E12) = a
(1,2)
11

(
E11 +

n∑
i=3

Eii

)
+ a

(1,2)
22 E22 + a

(1,2)
12 E12 + a

(1,2)
3,n−1E3,n−1

+ a
(1,2)
3n E3n +X12.

(7.296)
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In view of (7.232), (7.248), (7.250) and (7.255) with (p, q) = (1, n− 1),

ψ(E1,n−1) = a
(1,n−1)
11 In + a

(1,n−1)
1,n−2 E1,n−2 + a

(1,n−1)
2,n−2 E2,n−2 +X1,n−1. (7.297)

In view of (7.232), (7.248), (7.250) and (7.255) with (p, q) = (2, n),

ψ(E2n) = a
(2,n)
11 In + a

(2,n)
3,n−1E3,n−1 + a

(2,n)
3n E3n +X2n. (7.298)

In view of (7.232), (7.237), (7.238), (7.248), (7.250) and (7.252),

ψ(En−1,n) = a
(n−1,n)
11

(
Enn +

n−2∑
i=1

Eii

)
+ a

(n−1,n)
n−1,n−1En−1,n−1

+ a
(n−1,n)
n−1,n En−1,n + (a

(1,1)
1,n−2 + a

(n−2,n−1)
1,n−2 )E1,n−2

+ (a
(1,1)
2,n−2 + a

(n−2,n−1)
2,n−2 )E2,n−2 +Xn−1,n.

(7.299)

In view of (7.232), (7.248), (7.250) and (7.255) with 3 ⩽ p ⩽ n− 2 and q = n, for every

3 ⩽ s ⩽ n− 2,

ψ(Esn) = a
(s,n)
11 In + a

(s,n)
s,n−1Es,n−1 + a(s,n)sn Esn +Xsn. (7.300)

In view of (7.232), (7.248), (7.250) and (7.255) with p = 1 and 3 ⩽ q ⩽ n− 2, for every

3 ⩽ t ⩽ n− 2,

ψ(E1t) = a
(1,t)
11 In + a

(1,t)
1t E1t + a

(1,t)
2t E2t +X1t. (7.301)

Finally, in view of (7.232), (7.248), (7.250) and (7.255) with (p, q) = (1, n), we get

ψ(E1n) = a
(1,n)
11 In +X1n. (7.302)

Remark that the map ψ(E1n) in (7.302) is already ultimate.

We now consider A2 = In+Epq +Est for integers 1 ⩽ p < q ⩽ n and 1 ⩽ s < t ⩽ n

and (p, q) 6= (s, t). By [ψ(In + E12 + E23 + E2t), E13 + E1t] = 0, for every 4 ⩽ t ⩽ n,

( ∑
1⩽i⩽j⩽n

(a
(1,1)
ij + a

(1,2)
ij + a

(2,3)
ij + a

(2,t)
ij )Eij

)
(E13 + E1t)
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− (E13 + E1t)

( ∑
1⩽i⩽j⩽n

(a
(1,1)
ij + a

(1,2)
ij + a

(2,3)
ij + a

(2,t)
ij )Eij

)
= 0.

Then

(a
(1,1)
11 + a

(1,2)
11 + a

(2,3)
11 + a

(2,t)
11 )(E13 + E1t)−

∑
3⩽j⩽n

(a
(1,1)
3j + a

(1,2)
3j + a

(2,3)
3j + a

(2,t)
3j )E1j

−
∑
t⩽j⩽n

(a
(1,1)
tj + a

(1,2)
tj + a

(2,3)
tj + a

(2,t)
tj )E1j = 0.

Thus

(a
(1,1)
11 + a

(1,2)
11 + a

(2,3)
11 + a

(2,t)
11 + a

(1,1)
33 + a

(1,2)
33 + a

(2,3)
33 + a

(2,t)
33 )E13

+ (a
(1,1)
11 + a

(1,2)
11 + a

(2,3)
11 + a

(2,t)
11 + a

(1,1)
tt + a

(1,2)
tt + a

(2,3)
tt + a

(2,t)
tt

+ a
(1,1)
3t + a

(1,2)
3t + a

(2,3)
3t + a

(2,t)
3t )E1t

−
∑

4⩽j⩽t−1
t+1⩽j⩽n

(a
(1,1)
3j + a

(1,2)
3j + a

(2,3)
3j + a

(2,t)
3j )E1j

−
∑

t+1⩽j⩽n

(a
(1,1)
tj + a

(1,2)
tj + a

(2,3)
tj + a

(2,t)
tj )E1j = 0.

(7.303)

Hence for every 4 ⩽ t ⩽ n, we have

a
(1,1)
11 + a

(1,2)
11 + a

(2,3)
11 + a

(2,t)
11 + a

(1,1)
tt + a

(1,2)
tt + a

(2,3)
tt + a

(2,t)
tt

= a
(1,1)
3t + a

(1,2)
3t + a

(2,3)
3t + a

(2,t)
3t ,

(7.304)

a
(1,1)
3j + a

(1,2)
3j + a

(2,3)
3j + a

(2,t)
3j = 0 for j = 4, . . . , t− 1, (7.305)

a
(1,1)
3j +a

(1,2)
3j +a

(2,3)
3j +a

(2,t)
3j = a

(1,1)
tj +a

(1,2)
tj +a

(2,3)
tj +a

(2,t)
tj for j = t+1, . . . , n. (7.306)

Taking (7.251), (7.255) with (p, q) = (2, t), (7.265) and (7.269) into (7.304), for every

4 ⩽ t ⩽ n,

a
(2,t)
3t = a

(1,1)
3t + a

(1,2)
3t + a

(2,3)
3t . (7.307)

By [ψ(In + E12 + E2s), E1s] = 0, for every 3 ⩽ s < t ⩽ n, we have

a
(1,1)
sj + a

(1,2)
sj + a

(2,s)
sj = 0 for j = s+ 1, . . . , t− 1, t+ 1, . . . , n, (7.308)
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a
(1,1)
st + a

(1,2)
st + a

(2,s)
st = 0. (7.309)

Taking (7.308) with s = 3 into (7.305), for every 4 ⩽ t ⩽ n,

a
(2,t)
3j = 0 for j = 4, . . . , t− 1. (7.310)

Taking (7.309) with s = 3 into (7.307), for every 4 ⩽ t ⩽ n,

a
(2,t)
3t = 0. (7.311)

By [ψ(In + E12 + E2t), E1t] = 0 for every 4 ⩽ t ⩽ n, we have

a
(1,1)
tj + a

(1,2)
tj + a

(2,t)
tj = 0 for j = t+ 1, . . . , n, (7.312)

for every 4 ⩽ t ⩽ n. It follows from (7.290) that for every 4 ⩽ t ⩽ n,

a
(2,3)
tj = 0 for j = t+ 1, . . . , n. (7.313)

Taking (7.308) with s = 3, (7.312) and (7.313) into (7.306), for every 4 ⩽ t ⩽ n,

a
(2,t)
3j = 0 for j = t+ 1, . . . , n. (7.314)

We conclude from (7.310) and (7.314) that for every 4 ⩽ t ⩽ n,

a
(2,t)
3j = 0 for j = 4, . . . , t− 1, t+ 1, . . . , n. (7.315)

Secondly, by [ψ(In + E12 + E2s + Est), E1s + E2t] = 0 for every 3 ⩽ s < t ⩽ n, we

have

a
(1,1)
11 + a

(1,2)
11 + a

(2,s)
11 + a

(s,t)
11 = a(1,1)ss + a(1,2)ss + a(2,s)ss + a(s,t)ss , (7.316)

a
(1,1)
12 + a

(1,2)
12 + a

(2,s)
12 + a

(s,t)
12 = a

(1,1)
st + a

(1,2)
st + a

(2,s)
st + a

(s,t)
st , (7.317)

a
(1,1)
22 + a

(1,2)
22 + a

(2,s)
22 + a

(s,t)
22 = a

(1,1)
tt + a

(1,2)
tt + a

(2,s)
tt + a

(s,t)
tt , (7.318)
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a
(1,1)
sj + a

(1,2)
sj + a

(2,s)
sj + a

(s,t)
sj = 0 for j = s+ 1, . . . , t− 1, t+ 1, . . . , n, (7.319)

for every 3 ⩽ s < t ⩽ n. Taking (7.308) into (7.319), for every 3 ⩽ s < t ⩽ n,

a
(s,t)
sj = 0 for j = s+ 1, . . . , t− 1, t+ 1, . . . , n. (7.320)

By [ψ(In + E2s + Est), E2t] = 0 for every 3 ⩽ s < t ⩽ n, we have

a
(1,1)
12 + a

(2,s)
12 + a

(s,t)
12 = 0 (7.321)

for every 3 ⩽ s < t ⩽ n. Taking (7.309) and (7.321) into (7.317), for every 3 ⩽ s < t ⩽

n,

a
(1,2)
12 = a

(s,t)
st . (7.322)

Setting (s, t) = (3, 4) in (7.318),

a
(1,1)
22 + a

(1,2)
22 + a

(2,3)
22 + a

(3,4)
22 = a

(1,1)
44 + a

(1,2)
44 + a

(2,3)
44 + a

(3,4)
44 . (7.323)

Taking (7.251), (7.255) with (p, q) = (3, 4), (7.265) and (7.269) into (7.323),

a
(1,2)
11 = a

(1,2)
22 . (7.324)

We conclude from (7.251) and (7.324) that

a
(1,2)
11 = a

(1,2)
ii for i = 2, . . . , n. (7.325)

Setting (s, t) = (n− 1, n) in (7.316),

a
(1,1)
11 +a

(1,2)
11 +a

(2,n−1)
11 +a

(n−1,n)
11 = a

(1,1)
n−1,n−1+a

(1,2)
n−1,n−1+a

(2,n−1)
n−1,n−1+a

(n−1,n)
n−1,n−1. (7.326)

Taking (7.255) with (p, q) = (2, n− 1), (7.265) and (7.325) into (7.326),

a
(n−1,n)
11 = a

(n−1,n)
n−1,n−1. (7.327)
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We conclude from (7.252) and (7.327) that

a
(n−1,n)
11 = a

(n−1,n)
ii for i = 2, . . . , n. (7.328)

Thirdly, by [ψ(In + Est + Et,t+1 + Et+1,t+2), Es,t+1 + Et,t+2] = 0 for every 1 ⩽ s <

t ⩽ n− 2, we have

( ∑
1⩽i⩽j⩽n

(a
(1,1)
ij + a

(s,t)
ij + a

(t,t+1)
ij + a

(t+1,t+2)
ij )Eij

)
(Es,t+1 + Et,t+2)

−(Es,t+1 + Et,t+2)

( ∑
1⩽i⩽j⩽n

(a
(1,1)
ij + a

(s,t)
ij + a

(t,t+1)
ij + a

(t+1,t+2)
ij )Eij

)
= 0.

Then

∑
1⩽i⩽s

(a
(1,1)
is + a

(s,t)
is + a

(t,t+1)
is + a

(t+1,t+2)
is )Ei,t+1

+
∑
1⩽i⩽t

(a
(1,1)
it + a

(s,t)
it + a

(t,t+1)
it + a

(t+1,t+2)
it )Ei,t+2

−
∑

t+1⩽j⩽n

(a
(1,1)
t+1,j + a

(s,t)
t+1,j + a

(t,t+1)
t+1,j + a

(t+1,t+2)
t+1,j )Esj

−
∑

t+2⩽j⩽n

(a
(1,1)
t+2,j + a

(s,t)
t+2,j + a

(t,t+1)
t+2,j + a

(t+1,t+2)
t+2,j )Etj = 0.
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Since 1 ⩽ s < t ⩽ n− 2,

(a(1,1)ss + a(s,t)ss + a(t,t+1)
ss + a(t+1,t+2)

ss

+ a
(1,1)
t+1,t+1 + a

(s,t)
t+1,t+1 + a

(t,t+1)
t+1,t+1 + a

(t+1,t+2)
t+1,t+1 )Es,t+1

+
∑

1⩽i⩽s−1

(a
(1,1)
is + a

(s,t)
is + a

(t,t+1)
is + a

(t+1,t+2)
is )Ei,t+1

+ (a
(1,1)
st + a

(s,t)
st + a

(t,t+1)
st + a

(t+1,t+2)
st

+ a
(1,1)
t+1,t+2 + a

(s,t)
t+1,t+2 + a

(t,t+1)
t+1,t+2 + a

(t+1,t+2)
t+1,t+2 )Es,t+2

+ (a
(1,1)
tt + a

(s,t)
tt + a

(t,t+1)
tt + a

(t+1,t+2)
tt

+ a
(1,1)
t+2,t+2 + a

(s,t)
t+2,t+2 + a

(t,t+1)
t+2,t+2 + a

(t+1,t+2)
t+2,t+2 )Et,t+2

+
∑

1⩽i⩽s−1
s+1⩽i⩽t−1

(a
(1,1)
it + a

(s,t)
it + a

(t,t+1)
it + a

(t+1,t+2)
it )Ei,t+2

−
∑

t+3⩽j⩽n

(a
(1,1)
t+1,j + a

(s,t)
t+1,j + a

(t,t+1)
t+1,j + a

(t+1,t+2)
t+1,j )Esj

−
∑

t+3⩽j⩽n

(a
(1,1)
t+2,j + a

(s,t)
t+2,j + a

(t,t+1)
t+2,j + a

(t+1,t+2)
t+2,j )Etj = 0.

(7.329)

Hence for every 1 ⩽ s < t ⩽ n− 2, we obtain

a
(1,1)
st + a

(s,t)
st + a

(t,t+1)
st + a

(t+1,t+2)
st = a

(1,1)
t+1,t+2 + a

(s,t)
t+1,t+2 + a

(t,t+1)
t+1,t+2 + a

(t+1,t+2)
t+1,t+2 , (7.330)

a
(1,1)
it + a

(s,t)
it + a

(t,t+1)
it + a

(t+1,t+2)
it = 0 for i = 1, . . . , s− 1, s+ 1, . . . , t− 1. (7.331)

By [ψ(In + Et,t+1 + Et+1,t+2), Et,t+2] = 0 for every 1 ⩽ s < t ⩽ n− 2, we have

a
(1,1)
st + a

(t,t+1)
st + a

(t+1,t+2)
st = 0, (7.332)

a
(1,1)
it + a

(t,t+1)
it + a

(t+1,t+2)
it = 0 for i = 1, . . . , s− 1, s+ 1, . . . , t− 1, (7.333)

for every 1 ⩽ s < t ⩽ n− 2. Taking (7.333) into (7.331), for every 1 ⩽ s < t ⩽ n− 2,

a
(s,t)
it = 0 for i = 1, . . . , s− 1, s+ 1, . . . , t− 1. (7.334)
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By [ψ(In + Est + Et,t+1), Es,t+1] = 0 for every 1 ⩽ s < t ⩽ n− 2, we get

a
(1,1)
t+1,t+2 + a

(s,t)
t+1,t+2 + a

(t,t+1)
t+1,t+2 = 0, (7.335)

for every 1 ⩽ s < t ⩽ n− 2. Taking (7.335) and (7.332) into (7.330), for every 1 ⩽ s <

t ⩽ n− 2,

a
(s,t)
st = a

(t+1,t+2)
t+1,t+2 . (7.336)

It follows from (7.322) that for every 3 ⩽ t ⩽ n− 2,

a
(t+1,t+2)
t+1,t+2 = a

(1,2)
1,2 . (7.337)

We conclude from (7.336) and (7.337) that for every 1 ⩽ s < t ⩽ n− 2,

a
(s,t)
st = a

(1,2)
1,2 . (7.338)

We conclude from (7.322) and (7.338) that for every 1 ⩽ s < t ⩽ n − 2 and every

3 ⩽ s < t ⩽ n,

a
(s,t)
st = a

(1,2)
1,2 . (7.339)

Finally, by [ψ(In + Es,n−1 + En−2,n−1 + En−1,n), Esn + En−2,n] = 0 for every 1 ⩽

s ⩽ n− 3, we have

( ∑
1⩽i⩽j⩽n

(a
(1,1)
ij + a

(s,n−1)
ij + a

(n−2,n−1)
ij + a

(n−1,n)
ij )Eij

)
(Esn + En−2,n)

−(Esn + En−2,n)

( ∑
1⩽i⩽j⩽n

(a
(1,1)
ij + a

(s,n−1)
ij + a

(n−2,n−1)
ij + a

(n−1,n)
ij )Eij

)
= 0.

Then ∑
1⩽i⩽s

(a
(1,1)
is + a

(s,n−1)
is + a

(n−2,n−1)
is + a

(n−1,n)
is )Ein

+
∑

1⩽i⩽n−2

(a
(1,1)
i,n−2 + a

(s,n−1)
i,n−2 + a

(n−2,n−1)
i,n−2 + a

(n−1,n)
i,n−2 )Ein

− (a(1,1)nn + a(s,n−1)
nn + a(n−2,n−1)

nn + a(n−1,n)
nn )Esn

− (a(1,1)nn + a(s,n−1)
nn + a(n−2,n−1)

nn + a(n−1,n)
nn )En−2,n = 0.
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Thus

(a(1,1)ss + a(s,n−1)
ss + a(n−2,n−1)

ss + a(n−1,n)
ss

+ a(1,1)nn + a(s,n−1)
nn + a(n−2,n−1)

nn + a(n−1,n)
nn )Esn

+ (a
(1,1)
n−2,n−2 + a

(s,n−1)
n−2,n−2 + a

(n−2,n−1)
n−2,n−2 + a

(n−1,n)
n−2,n−2

+ a(1,1)nn + a(s,n−1)
nn + a(n−2,n−1)

nn + a(n−1,n)
nn )En−2,n

+
∑

1⩽i⩽s−1

(a
(1,1)
is + a

(s,n−1)
is + a

(n−2,n−1)
is + a

(n−1,n)
is )Ein

+
∑

1⩽i⩽n−3

(a
(1,1)
i,n−2 + a

(s,n−1)
i,n−2 + a

(n−2,n−1)
i,n−2 + a

(n−1,n)
i,n−2 )Ein = 0.

(7.340)

Hence for every 1 ⩽ i ⩽ s− 1 with 1 ⩽ s ⩽ n− 3 or, for i = 1, . . . , s, . . . , n− 4,

a
(1,1)
is + a

(s,n−1)
is + a

(n−2,n−1)
is + a

(n−1,n)
is

+ a
(1,1)
i,n−2 + a

(s,n−1)
i,n−2 + a

(n−2,n−1)
i,n−2 + a

(n−1,n)
i,n−2 = 0.

(7.341)

By [ψ(In + Es,n−1 + En−1,n), Esn] = 0 for every 1 ⩽ s ⩽ n− 3, we have

a
(1,1)
is + a

(s,n−1)
is + a

(n−1,n)
is = 0 for i = 1, . . . , s− 1, (7.342)

for every 1 ⩽ s ⩽ n− 3. It follows from (7.292) that for 1 ⩽ s ⩽ n− 3,

a
(n−2,n−1)
is = 0 for i = 1, . . . , s− 1. (7.343)

By [ψ(In + En−2,n−1 + En−1,n), En−2,n] = 0, we have

a
(1,1)
i,n−2 + a

(n−2,n−1)
i,n−2 + a

(n−1,n)
i,n−2 = 0 for i = 1, . . . , n− 3. (7.344)

Taking (7.342), (7.343) and (7.344) into (7.341), for every 1 ⩽ s ⩽ n− 3,

a
(s,n−1)
i,n−2 = 0 for i = 1, . . . , s, . . . , n− 4. (7.345)

Consequently, using (7.289)–(7.302), we are ready to classify ψ(In) and ψ(Eij) for

each pair of integers 1 ⩽ i < j ⩽ n. Since ψ(In) in (7.289) is already ultimate, it follows
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from (7.289) that

ψ(In) = a
(1,1)
11 In+a

(1,1)
1,n−2E1,n−2+a

(1,1)
2,n−2E2,n−2+a

(1,1)
3,n−1E3,n−1+a

(1,1)
3n E3n+X11. (7.346)

It follows from (7.296) and (7.325) that

ψ(E12) = a
(1,2)
11 In + a

(1,2)
12 E12 + a

(1,2)
3,n−1E3,n−1 + a

(1,2)
3n E3n +X12. (7.347)

By virtue of (7.299), (7.328) and (7.339),

ψ(En−1,n) = a
(n−1,n)
11 In + a

(1,2)
12 En−1,n + (a

(1,1)
1,n−2 + a

(n−2,n−1)
1,n−2 )E1,n−2

+ (a
(1,1)
2,n−2 + a

(n−2,n−1)
2,n−2 )E2,n−2 +Xn−1,n.

(7.348)

By virtue of (7.290), (7.334) and (7.339),

ψ(E23) = a
(2,3)
11 In + a

(1,2)
12 E23 + (a

(1,1)
3,n−1 + a

(1,2)
3,n−1)E3,n−1 + (a

(1,1)
3n + a

(1,2)
3n )E3n +X23.

(7.349)

By virtue of (7.292), (7.320) and (7.339),

ψ(En−2,n−1) = a
(n−2,n−1)
11 In + a

(1,2)
12 En−2,n−1 + a

(n−2,n−1)
1,n−2 E1,n−2

+ a
(n−2,n−1)
2,n−2 E2,n−2 +Xn−2,n−1.

(7.350)

It follows from (7.297) and (7.345) that

ψ(E1,n−1) = a
(1,n−1)
11 In + a

(1,2)
12 E1,n−1 + (a

(1,2)
12 + a

(1,n−1)
1,n−1 )E1,n−1

+ a
(1,n−1)
1n E1n + a

(1,n−1)
2,n−1 E2,n−1 + a

(1,n−1)
2n E2n.

(7.351)

Since the map ψ(E1n) in (7.302) is already ultimate, it follows from (7.302) that

ψ(E1n) = a
(1,n)
11 In + a

(1,2)
12 E1n + a

(1,n)
1,n−1E1,n−1 + (a

(1,2)
12 + a

(1,n)
1n )E1n

+ a
(1,n)
2,n−1E2,n−1 + a

(1,n)
2n E2n.

(7.352)
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By virtue of (7.291), (7.311), (7.315) and (7.345),

ψ(E2,n−1) = a
(2,n−1)
11 In + a

(1,2)
12 E2,n−1 + a

(2,n−1)
1,n−1 E1,n−1 + a

(2,n−1)
1n E1n

+ (a
(1,2)
12 + a

(2,n−1)
2,n−1 )E2,n−1 + a

(2,n−1)
2n E2n.

(7.353)

It follows from (7.298), (7.311) and (7.315) that

ψ(E2n) = a
(2,n)
11 In + a

(1,2)
12 E2n + a

(2,n)
1,n−1E1,n−1 + a

(2,n)
1n E1n + a

(2,n)
2,n−1E2,n−1

+ (a
(1,2)
12 + a

(2,n)
2n )E2n.

(7.354)

By virtue of (7.294), (7.320), (7.339) and (7.345), for every 3 ⩽ s ⩽ n− 3,

ψ(Es,n−1) = a
(s,n−1)
11 In + a

(1,2)
12 Es,n−1 +Xs,n−1. (7.355)

By virtue of (7.293), (7.311), (7.315), (7.334) and (7.339), for every 4 ⩽ t ⩽ n− 2,

ψ(E2t) = a
(2,t)
11 In + a

(1,2)
12 E2t +X2t. (7.356)

By virtue of (7.300), (7.320) and (7.339), for every 3 ⩽ s ⩽ n− 2,

ψ(Esn) = a
(s,n)
11 In + a

(1,2)
12 Esn +Xsn. (7.357)

By virtue of (7.301), (7.334) and (7.339), for every 3 ⩽ t ⩽ n− 2,

ψ(E1t) = a
(1,t)
11 In + a

(1,2)
12 E1t +X1t. (7.358)

By virtue of (7.295), (7.320), (7.334) and (7.339), for every 3 ⩽ p < q ⩽ n− 2,

ψ(Epq) = a
(p,q)
11 In + a

(1,2)
12 Epq +Xpq. (7.359)

In view of (7.355)–(7.359), we conclude that

ψ(Epq) = a
(p,q)
11 In + a

(1,2)
12 Epq +Xpq (7.360)
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for every (p, q) /∈ θn ∪ {(1, 2), (2, 3), (n− 1, n), (n− 2, n − 1)}, where 1 ⩽ p < q ⩽ n

and θn = {(1, n− 1), (1, n), (2, n− 1), (2, n)}.

Let λ = a
(1,2)
12 ∈ F2. Let µ : Tn(F2) → F2 be the additive map defined by

µ(A) = a
(1,1)
11 +

∑
1⩽i<j⩽n

a
(i,j)
11 (7.361)

for all A = (aij) ∈ Tn(F2). Let θn = {(1, n− 1), (1, n), (2, n− 1), (2, n)}. Let λ(1,1)st =

a
(1,1)
st and λ(i,j)st = a

(i,j)
st , for each pair of integers 1 ⩽ i < j ⩽ n and (s, t) ∈ θn. Let

ψΘ : Tn(F2) → Tn(F2) be the additive map defined in (7.4). In view of (7.346)–(7.354),

(7.360) and (7.361), together with the additivity of ψ, µ and ψΘ, we obtain

ψ(A) =
∑

1⩽i⩽j⩽n

ψ(Eij)

= ψ(In) +
∑

1⩽i<j⩽n

ψ(Eij)

= λA+ µ(A)In + ψΘ(A)

for all A ∈ Tn(F2), where λ ∈ F2. This completes the proof.
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CHAPTER 8: CONCLUSIONS AND DISCUSSIONS

In this chapter, we summarise the main results in Chapters 3–7 for convenience. We

also propose some potential open problems related to the study in this thesis.

8.1 Main results in Chapters 3 and 4

Theorem 8.1.1. Let F be a field and let n ⩾ 2 be an integer. Let 1 < k ⩽ n be a fixed

integer. Then ψ : Tn(F) → Tn(F) is a commuting additive map on rank k matrices if and

only if

• when k < n or |F| ⩾ 3, there exist scalars λ, α ∈ F and an additive map µ :

Tn(F) → F such that

ψ(A) = λA+ µ(A)In + α(a11 + ann)E1n

for all A = (aij) ∈ Tn(F), where α 6= 0 only if k = n and |F| = 3,

• when k = n ⩾ 4 and |F| = 2, there exist scalars λ, α, β1, β2 ∈ F and matrices

H,K ∈ Tn(F) and X1, . . . , Xn ∈ Tn(F) satisfying X1 + · · ·+Xn = 0 such that

ψ(A) = λA+ tr (H tA)In + tr (KtA)E1n +Ψα,β1,β2(A) +
n∑

i=1

aiiXi

for all A = (aij) ∈ Tn(F), where tr (A) and At are the trace and the transpose of

A respectively, and Ψα,β1,β2 : Tn(F) → Tn(F) is the additive map defined by

Ψα,β1,β2(A) = (αa12 + β1(an−1,n + ann))E1,n−1 + (αan−1,n + β2(a11 + a12))E2n

for all A = (aij) ∈ Tn(F),

• when k = n = 3 and |F| = 2, there exist scalars λ, α, β, γ ∈ F and matrices

H,K ∈ T3(F) and X1, X2, X3 ∈ T3(F) satisfying X1 +X2 +X3 = 0 such that

ψ(A) = λA+ tr (H tA)I3 + tr (KtA)E13 +Ψα,β(A) + Φγ(A) +
3∑

i=1

aiiXi

for all A = (aij) ∈ T3(F), where Ψα,β : T3(F) → T3(F) and Φγ : T3(F) → T3(F)
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are the additive maps defined by

Ψα,β(A) = (α(a23 + a33))E12 + (β(a11 + a12))E23,

Φγ(A) = γ((a12 + a22)E22 + (a11 + a12 + a23 + a33)E33 + a13(E12 + E23))

for all A = (aij) ∈ T3(F), and

• when k = n = 2 and |F| = 2, there exist scalars λ1, λ2 ∈ F and matricesX1, X2 ∈

T2(F) such that

ψ(A) = (a11 + a12)X1 + (a22 + a12)X2 + λ1a12I2 + λ2a12E12

for all A = (aij) ∈ T2(F).

Theorem 8.1.2. ψ : M2(F2) → M2(F2) is a commuting additive map on invertible ma­

trices if and only if there exist scalars α, β, λ ∈ F2 and a matrix H ∈ M2(F2) such

that

ψ(A) = λA+ tr (H tA)I2 + Γα,β(A)

for all A ∈M2(F2). Here, Γα,β :M2(F2) →M2(F2) is the additive map defined by

Γα,β(A) = αa11Q+ (αa22 + β(a12 + a21 + a22))R

for all A = (aij) ∈M2(F2), where Q = E11 + E12 + E21 and R = I2 +Q.

8.2 Main results in Chapters 5 and 6

Theorem 8.2.1. Let n ⩾ 2 be an integer and let D be a division ring with centre Z(D).

Suppose that ψ : Tn(D) → Tn(D) is a map. Then the following statements are equivalent:

(i) ψ is a centralizing additive map on rank one matrices.

(ii) ψ is a commuting additive map on rank one matrices.

(iii) There exists λ ∈ Z(D), an additive map µ : Tn(D) → Z(D), a strictly upper

triangular matrix χ = (τij) ∈ Tn(D), a set of elements Λ =
∪

(s,t)∈∇n
{λ(s,t)ij ∈ D :

1 ⩽ i < j < s or t < i < j ⩽ n} and a set of additive mapsF =
∪

1<s⩽t<n{ϕ
(s,t)
ij :
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D → D : 1 ⩽ i ⩽ s− 1 and t+ 1 ⩽ j ⩽ n} such that

ψ(A) = λA+ µ(A)In + ψχ(A) + ψF (A) + ψΛ(A)

for all A ∈ Tn(D), where ψχ : Tn(D) → Tn(D) is the linear map defined by

ψχ(A) =



x1 −τ12a12 −τ13a13 · · · −τ1na1n

0 x2 −τ23a23 · · · −τ2na2n

0 0 x3 · · · −τ3na3n
...

...
... . . . ...

0 0 0 · · · xn


for all A = (aij) ∈ Tn(D), where

xh =



∑n
i=2 τ1iaii if h = 1,

∑h−1
i=1 τih aii +

∑n
i=h+1 τhi aii if 2 ⩽ h ⩽ n− 1,

∑n−1
i=1 τinaii if h = n,

ψF : Tn(D) → Tn(D) is the additive map defined by

ψF (A) =
∑

1<s⩽t<n

(
s−1∑
i=1

n∑
j=t+1

ϕ
(s,t)
ij (ast)Eij

)

for all A = (aij) ∈ Tn(D), and ψΛ : Tn(D) → Tn(D) is the linear map defined by

ψΛ(A) =
∑

(s,t)∈∇n

Ψst(A) + Φst(A)

for all A ∈ Tn(D), where for each (s, t) ∈ ∇n,

Ψst(A) =


0 if 1 ⩽ s ⩽ 2,(∑

1⩽i<j<s λ
(s,t)
ij Eij

)(∑s−1
h=1 astEhh − ahtEhs

)
if 3 ⩽ s ⩽ n,
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Φst(A) =


(∑n

h=t+1 astEhh − ashEth

)(∑
t<i<j⩽n λ

(s,t)
ij Eij

)
if 1 ⩽ t ⩽ n− 2,

0 if n− 1 ⩽ t ⩽ n

for all A = (aij) ∈ Tn(D). Here, ψχ = 0 and ψΛ = 0 when either n = 2 or D is

noncommutative, and ψF = 0 when n = 2.

Theorem 8.2.2. Let n ⩾ 2 be an integer and let D be a noncommutative division ring

with centre Z(D). Then ψ : Tn(D) → Tn(D) is a commuting additive map on rank one

matrices if and only if there exists an element λ ∈ Z(D), an additive map µ : Tn(D) →

Z(D) and a set of additive maps F =
∪

1<s⩽t<n{ϕ
(s,t)
ij : D → D : 1 ⩽ i ⩽ s− 1 and t+

1 ⩽ j ⩽ n} such that

ψ(A) = λA+ µ(A)In + ψF (A)

for all A ∈ Tn(D), where ψF : Tn(D) → Tn(D) is the additive map defined by

ψF (A) =
∑

1<s⩽t<n

(
s−1∑
i=1

n∑
j=t+1

ϕ
(s,t)
ij (ast)Eij

)

for all A = (aij) ∈ Tn(D) and ψF = 0 when n = 2.

8.3 Main results in Chapter 7

In view of Theorems 7.3.1–7.3.4, we obtain a complete characterisation of 2­power

commuting additive maps on invertible upper triangular matrices over the Galois field of

two elements.

Theorem 8.3.1. Let F2 be the Galois field of two elements and let n ⩾ 2 be an integer.

Then ψ : Tn(F2) → Tn(F2) is a 2­power commuting additive map on invertible matrices

A ∈ Tn(F2) if and only if

• when n ⩾ 5, let θn={(1, n− 1), (1, n), (2, n− 1), (2, n)}, there exist λ, λ(1,1)st ∈ F2

with (s, t) ∈ θn, a set of scalars Θ =
∪

(s,t)∈θn{λ
(i,j)
st ∈ F2 : 1 ⩽ i < j ⩽ n} and

an additive map µ : Tn(F2) → F2 such that

ψ(A) = λA+ µ(A)In + ψΘ(A)
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for all A ∈ Tn(F2). Here, ψΘ : Tn(F2) → Tn(F2) is the additive map defined by

ψΘ(A) =

(
λ
(1,1)
1,n−1a11 + λa1,n−1 +

∑
1⩽i<j⩽n

λ
(i,j)
1,n−1aij

)
E1,n−1

+

(
λ
(1,1)
1n a11 + λa1n +

∑
1⩽i<j⩽n

λ
(i,j)
1n aij

)
E1n

+

(
λ
(1,1)
2,n−1a11 + λa2,n−1 +

∑
1⩽i<j⩽n

λ
(i,j)
2,n−1aij

)
E2,n−1

+

(
λ
(1,1)
2n a11 + λa2n +

∑
1⩽i<j⩽n

λ
(i,j)
2n aij

)
E2n

for all A = (aij) ∈ Tn(F2),

• when n = 4, let θ4 = {(1, 3), (1, 4), (2, 3), (2, 4)}, there exist λ, λ(1,1)st ∈ F2 with

(s, t) ∈ θ4, a set of scalars Θ =
∪

(s,t)∈θ4{λ
(i,j)
st ∈ F2 : 1 ⩽ i < j ⩽ 4} and an

additive map µ : T4(F2) → F2 such that

ψ(A) = λA+ µ(A)I4 + ψγ(A) + ψΘ(A)

for all A ∈ T4(F2), where ψγ : T4(F2) → T4(F2) is the additive map defined by

ψγ(A) = γ(a23a34E22 + a23E44 + a13E12 + a24E34)

for all A = (aij) ∈ T4(F2); and ψΘ : T4(F2) → T4(F2) is the additive map defined

by

ψΘ(A) =

(
λ
(1,1)
13 a11 + λa13 +

∑
1⩽i<j⩽4

λ
(i,j)
13 aij

)
E13

+

(
λ
(1,1)
14 a11 + λa14 +

∑
1⩽i<j⩽4

λ
(i,j)
14 aij

)
E14

+

(
λ
(1,1)
23 a11 + λa23 +

∑
1⩽i<j⩽4

λ
(i,j)
23 aij

)
E23

+

(
λ
(1,1)
24 a11 + λa24 +

∑
1⩽i<j⩽4

λ
(i,j)
24 aij

)
E24

for all A = (aij) ∈ T4(F2),

• when n = 3, let 1 ⩽ i < j ⩽ 3 and 1 ⩽ s < t ⩽ 3 be integers, there exist
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λ, λ
(1,1)
ss , λ

(1,1)
st , λ

(i,j)
ss , λ

(i,j)
st ∈ F2 and an additive map µ : T3(F2) → F2 such that

ψ(A) = λA+ µ(A)I3 + ϕ(A)

for all A ∈ T3(F2), where ϕ : T3(F2) → T3(F2) is the additive map defined by

ϕ(A) = ((λ
(1,1)
11 + λ

(1,1)
22 )a11 + (λ

(1,2)
11 + λ

(1,2)
22 )a12 + (λ

(2,3)
11 + λ

(2,3)
22 )a23

+ (λ
(1,3)
11 + λ

(1,3)
22 )a13)E22

+ (λ
(1,1)
12 a11 + (λ+ λ)a12 + λ

(1,3)
12 a13 + λ

(2,3)
12 a23)E12

+ (λ
(1,1)
13 a11 + λ

(1,2)
13 a12 + (λ

(1,3)
13 + λ)a13 + λ

(2,3)
13 a23)E13

+ (λ
(1,1)
23 a11 + λ

(1,2)
23 a12 + λ

(1,3)
23 a13 + (λ

(2,3)
23 + λ)a23)E23.

for all A = (aij) ∈ T3(F2), and

• when n = 2, there exist λ, λ(1,1)11 , λ
(1,1)
22 , λ

(1,1)
12 , λ

(1,2)
11 , λ

(1,2)
22 ∈ F2 and an additive map

µ : T2(F2) → F2 such that

ψ(A) = λA+ µ(A)I2 + ς(A)

for all A ∈ T2(F2), where ς : T2(F2) → T2(F2) is the additive map defined by

ς(A) = (λ
(1,2)
11 + λ

(1,2)
22 )a12E11 + (λ

(1,1)
11 + λ

(1,1)
22 )a11E22 + λ

(1,1)
12 a11E12

for all A = (aij) ∈ T2(F2).

8.4 Some open problems

Let S be an additive subgroup of a ring R. We say that a map ψ : S → R is 2­

commuting on S if [[ψ(x), x], x] = 0 for all x ∈ S . LetR be a prime ring with charR 6= 2.

Brešar (1992) proved that if an additive mapping ψ : R → R satisfies [[ψ(x), x], x] = 0

for all x ∈ R, then [ψ(x), x] = 0 for all x ∈ R. Let n ⩾ 4 be an integer and let F be a

field with char F = 0 or char F > 2. Generalising Brešar’s result of 2­commuting additive

maps to subsets of matrices that are not closed under addition, Franca and Louza (2019)

proved that if ψ : Mn(F) → Mn(F) is an additive map such that [[ψ(A), A], A] = 0 for
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all singular A ∈Mn(F), then there exists an element λ ∈ F and a central map µ such that

ψ(A) = λA+ µ(A) for all A ∈Mn(F).

We end this chapter with some open problems related to the work in this thesis.

1. Determine the structure of 2­power commuting additive maps on invertible n × n

upper triangular matrices over fields with at least three elements.

2. Determine the structure of 2­power commuting additive maps on rank k, n × n

upper triangular matrices over fields, where 2 ⩽ k ⩽ n− 1 is a fixed integer.

3. Determine the structure of 2­power commuting additive maps on rank one upper

triangular matrices over fields.

4. Determine the structure of m­power commuting additive maps on rank k upper

triangular matrices over fields, where 1 ⩽ k ⩽ n andm ⩾ 3 are integers.

5. Determine the structure of 2­commuting additive maps on invertible upper triangu­

lar matrices over fields.
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