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COMMUTING ADDITIVE MAPS AND SOME RELATED
MAPS ON TRIANGULAR MATRICES

ABSTRACT

Let IF be a ring with identity and let n > 2 be an integer. Denote by 7, (F) the ring of n x n
upper triangular matrices over F with centre Z(7,,(IF)) and unity ,,. Let 1 < i < j < n
be integers and let £;; € T,,(IF) denote the standard matrix unit whose (i, j)th entry is one
and zero elsewhere. In this thesis, the following results have been obtained:
Let1l < k& < nbeaninteger and let [F be a field. We characterise commuting additive maps
¢ : T,,(F) — T,(F) on rank k matrices, i.e., additive maps ¢ satisfying )(A)A = Ay (A)
for all rank £ matrices A € T,,(FF) and show that

 when either & < nor |F| > 3, there exist A, & € [F and an additive map x : T,,(F) —

IF such that

W(A) = AN+ p(A) 1, + alar + ann) Ery

for all A = (a;;) € T,,(F), where a # 0 only if £ = n and |F| = 3,
« when k£ = n > 4 and |F| = 2, there exist \,«, 51,52 € F, H, K € T,(F) and
Xi,..., X, € T,(F) satisfying X; + - - - + X,, = 0 such that

Y(A) = M+ tr(H AL, + tr (K A) By + B, 5, (A) + ) 03X
=1

for all A = (a;;) € T,,(F), where tr (A) and A" are the trace and the transpose of A

respectively, and W, g, 3, : T,,(F) — T,,(F) is the additive map defined by
U 6.8, (A) = (aars + fr(an—1n + ann)) Ern1 + (@an_1, + Ba(a11 + a12)) B,

forall A = (a;;) € T,,(F),
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* when £ = n = 3 and |F| = 2, there exist A\,a, 3,7 € F, H /K € T3(F) and
X1, Xo, X3 € T3(FF) satisfying X; + X5 + X3 = 0 such that

3
Y(A) = A + tr(H' A) I3 + tr (K" A) Bz + o 5(A) + D4 (A) + ) aaX;
i=1

for all A = (a;;) € T5(F), where U, 5 : T3(F) — T5(F) and @, : T5(FF) — T5(F)

are the additive maps defined by

U, 5(A) = a(ags + ass) E1a + B(air + ai2) Eas,

D, (A) = v((a12 + a22) Eaa + (a11 + a1z + ass + ass) Ess + ai3(Erg + Ea))

forall A = (a;;) € T5(F), and
» when £ = n = 2 and |F| = 2, there exist A, Ay € F and X, Xy € T5(F) such that

P(A) = (a11 + a12) X1 + (as + a12) Xo + Ararals + AsaraErp

forall A = (a;;) € To(F).

Let IF be a division ring. We classify centralizing additive maps ¢ : T,,(F) — T, (F)
on rank one matrices, i.e., additive maps v satisfying ¥(A)A — AY(A) € Z(T,(F))
for all rank one matrices A € T,,(IF). We show that centralizing additive maps on rank
one upper triangular matrices are equivalent to commuting additive maps on rank one
upper triangular matrices over division rings. The structure of commuting additive maps
on rank one upper triangular matrices over noncommutative division rings is relatively
simpler than the corresponding result on commuting additive maps on rank one upper
triangular matrices over fields. Let I, denote the Galois field of two elements. We obtain
a complete description of 2-power commuting additive maps ¢ : T,,(Fy) — T,,(F3) on
rank n matrices, i.e., additive maps 1 satisfying ¢)(A) A2 = A%)(A) for all rank n matrices
A e T, (Fy).

Keywords: commuting additive maps, upper triangular matrices, ranks, functional iden-

tities, linear preserver problems.
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PEMETAAN KALIS TUKAR TERTIB BERDAYA TAMBAH DAN BEBERAPA
PEMETAAN YANG BERKAITAN PADA MATRIKS SEGITIGA

ABSTRAK

Biar [F suatu gelanggang dengan identiti dan biar n > 2 suatu integer. Tandakan T, (IFF)
gelanggang bagi matriks segitiga atas n x n terhadap F dengan pusat Z (7, (IF)) dan identiti
I,. Biar 1 < i < j < n merupakan integer dan biar E;; € T,(F) menandakan unit
matriks piawai yang masukan (¢, j) ialah satu dan sifar bagi yang lain. Dalam tesis ini,
hasil berikut telah diperolehi:

Biar 1 < £ < n suatu integer dan biar IF suatu medan. Kami mencirikan pemetaan berdaya
tambah kalis tukar tertib ¢ : T,,(F) — T,,(F) pada matriks A € T,,(F) berpangkat k, iaitu,
pemetaan berdaya tambah 1) memenuhi ¢)(A) A = Ay(A) bagi semua matriks A € T,,(F)

berpangkat £ dan membuktikan bahawa
» apabila k < natau [F| > 3, wujudnya \, @ € F dan suatu pemetaan berdaya tambah
w: T, (F) — F supaya
¢(A) =M + M<A>In + OC(CLH + ann)Eln
bagi semua A = (a;;) € T,,(F), di mana « # 0 hanya jika k& = n dan |F| = 3,
* apabila k = n > 4 dan |F| = 2, wujudnya A\, «, 51,52 € F, H, K € T,(F) dan
Xi,..., X, € T,(F) yang memenuhi X; + - - - + X, = 0 supaya
Y(A) = M + tr(H' A)L, + tr (K'A) By + Vo, 5, (A) + D aiX;
i=1
bagi semua A = (a;;) € T,,(F), di mana tr(A) and A’ ialah surihan dan transposisi

bagi A, masing-masing, dan ¥, 3, 5, : T,(F) — T,(F) ialah pemetaan berdaya

tambah yang ditakrifkan sebagai

U 8.8, (A) = (aars + fr(an—1n + ann)) E1n1 + (@an_1, + Ba(a11 + a12)) B,

bagi semua A = (a;;) € T,(F),



 apabila k = n = 3 dan |F| = 2, wujudnya A\, o, 5,7 € F, H, K € T3(F) dan

X1, Xy, X3 € T3(F) yang memenuhi X; + X, + X3 = 0 supaya
3
Y(A) = A + tr(H' A) I3 + tr (K" A) Eys + o 5(A) + D4 (A) + ) aaX;
i=1

bagi semua A = (a;;) € T5(F), di mana U, g : T5(F) — T5(F) dan @, : T3(F) —

T3(F) adalah pemetaan berdaya tambah yang ditakrifkan sebagai
Vo p(A) = afags + ass) Era + Blai + aiz) Fas,

(I)'y(A) = v((a12 + ag)Faa + (a11 + aia + ass + as3) Ess + a13(F1a + Ea3))

bagi semua A = (a;;) € T5(FF), dan
* apabila k = n = 2 dan |F| = 2, wujudnya A\, Ay € F dan X;, X, € T5(FF) supaya

Y(A) = (a11 + a12) X1 + (@22 + a12) Xa + Maials + Aeai2Ero
bagi semua A = (a;;) € T5(F).

Biar IF suatu gelanggang pembahagian. Kami mencirikan pemetaan berdaya tambah me-
musat ¢ : T,,(F) — T, (F) pada matriks berpangkat satu, iaitu, pemetaan berdaya tambah
¢ yang memenuhi ¢)(A)A — AyY(A) € Z(T,(F)) bagi semua matriks A € T,,(F) ber-
pangkat satu. Kami membuktikan bahawa pemetaan berdaya tambah memusat pada ma-
triks segitiga atas berpangkat satu adalah setara dengan pemetaan berdaya tambah kalis
tukar tertib pada matriks segitiga atas berpangkat satu terhadap gelanggang pembahagi-
an. Struktur pemetaan berdaya tambah kalis tukar tertib pada matriks segitiga atas ber-
pangkat satu terhadap gelanggang pembahagian tak kalis tukar tertib adalah lebih ringkas
berbanding dengan pemetaan berdaya tambah kalis tukar tertib pada matriks segitiga atas
berpangkat satu terhadap medan. Biar F; menandakan medan dengan dua unsur. Kami
memperolehi suatu pemerihalan lengkap bagi pemetaan berdaya tambah kalis tukar ter-
tib 2-kuasa ¢ : T,,(Fs) — T,,(F5) pada matriks berpangkat n, iaitu, pemetaan berdaya
tambah 1) memenuhi ¢(A) A% = A% (A) bagi semua matriks A € T}, (IFy) berpangkat n.

Kata kunci: pemetaan berdaya tambah kalis tukar tertib, matriks segitiga atas, pangkat,

identiti fungsian, masalah pengekal linear.
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CHAPTER 1: INTRODUCTION

1.1 Background of the study

Linear preserver problems represent one of the very active research areas in matrix the-
ory concerning the characterisation of linear maps that leave certain properties, relations
or subsets invariant. This research subject has a long history in linear algebra which traces
back to Frobenius (1897) on determinant preserving linear maps on matrix spaces. Over
the past few decades, the study of linear preserver problems is prospering into a fruitful
ground of discovery for many researchers and yet there are still many open problems and
interactions of linear algebra with other research areas in functional identities, geome-
try of matrices, operator algebras, etc. Recently, linear preserver problems on triangular
matrices have received substantial attention. The results of linear preserver problems on
triangular matrices often have much complicated and different structures compared to the
corresponding result on other matrices. For a survey of linear preserver problems and its
developments, we refer the reader to the special survey issue of Linear and Multilinear
Algebra (volume 33, no.1-2 (1992), pp.1-119) in Pierce et al. (1992) and C.-K. Li and
Pierce (2001).

Let R be aring with centre Z (R ) and let S be a nonempty subsetof R. Amap) : R —
R is called commuting on S if [¢)(x), 2] = 0 for all z € S, ® is said to be centralizing on
Sif[y(x),z] € Z(R) forall x € S, and 1) is m-power commuting on S if [¢)(x), 2] = 0
for all x € S, where [z,y] = zy — yx is the commutator of 2,y € R, and m > 2 is an
integer. In 1993, Bresar (1993a) obtained the structural result of commuting additive maps
1Y : R — R on a prime ring R. His works have actuated the development of the theory
of functional identities. Moreover, since such a problem has a wealth of applications,
there have been much research activities on commuting maps, centralizing maps, power
commuting maps on various rings, algebras and linear spaces. For a survey of the subject
and its historical developments, we refer the reader to the book “Functional Identities”
by Bresar, Chebotar and Martindale 3rd and the survey paper by Bresar, see Bresar et
al. (2007) and Bresar (2004). More recently, inspired by the study of linear preserver

problems on sets of matrices that are not closed under addition, Franca (2012, 2013a)



initiated the study of commuting additive maps on invertible, singular and rank % square
matrices. He deduced the results from the classical result of Bresar (1993a). His work
has advanced the study of functional identities to the set of matrices that are not closed

under addition, which leads to many open problems in this area.

1.2 Objective of the study

Motivated by the research on linear preserver problems on rank k& matrices, Franca
(2013a) initiated the study of functional identities on rank & square matrices, which has
inspired a new line of research in this research area. Many works have been done, see for
example commuting additive maps in Franca (2017); Franca and Louza (2017); Xu and
Yi (2014), centralizing additive maps in C.-K. Liu (2014a), power commuting additive
maps in Chou and Liu (2021); C.-K. Liu and Yang (2017), m-commuting additive maps in
Franca and Louza (2019), strong commutativity preserving maps in C.-K. Liu (2014b); C.-
K. Liu et al. (2018), commuting traces maps in Franca (2013b) and additivity preserving
maps in Chooi and Kwa (2019); Xu and Liu (2017); Xu et al. (2016).

Letn > 2and 1 < k < n be integers. Let 7,,(F) denote the ring of n X n upper
triangular matrices over a ring [F. The main objective of this thesis is to obtain complete
descriptions of commuting additive maps ¢ : T,(F) — T,,(IF) and some related additive

maps on rank £ matrices. More precisely, we characterise the following additive maps:

(a) commuting additive maps ¢ : T,,(F) — T, (F) on rank k£ matrices, where F is a
field with |F| > 3 and 1 < k < n is a fixed integer,

(b) commuting additive maps ¢ : T,,(F) — T,,(F) for all invertible matrices, where [F
is the Galois field of two elements,

(c) centralizing additive maps ¢ : T,,(F) — T,,(FF) for all rank one matrices, where ¥
is a division ring,

(d) 2-power commuting additive maps ¢ : T,,(F) — T,,(IF) for all invertible matrices,

where [ is the Galois field of two elements.



1.3 Significance of the study

Letn > 2and 1 < k < n be integers. This thesis is devoted to the study of functional
identities on rank k upper triangular matrices which is motivated by the study of linear
preserver problems on sets of matrices that are not closed under addition. This new line
of research has advanced the study of linear preserver problems of functional identities
on matrix rings (the ring of square matrices and the ring of upper triangular matrices).
Moreover, this study has also established an interesting mathematical interaction between

linear preserver problems and functional identities on rank k£ matrices.

1.4 Organisation of the thesis

This thesis is divided into eight chapters. In Chapter 1, we begin with a background of
the study and a general introduction of our main themes. We state the research objectives
and the significance of the study. This is followed by a brief overview of each chapter in
the organisation of the thesis.

In Chapter 2, we start by introducing some preliminary results that are needed in this
thesis. Next we give a brief introduction of linear preserver problems on matrices. We
then proceed with a literature review of the study of functional identities in commuting
maps, centralizing maps, power commuting maps and some related maps. Finally, the
research methodology employed in the research will be given.

Chapter 3 is devoted to the study of commuting additive maps ¢ : T,,(F) — T,,(FF) on
rank k£ matrices, where n > 2 and 1 < k < n are integers and I is a field with |F| > 3.
We assert a few technical lemmas by adapting known techniques from matrix theory and
obtain a characterisation of such additive maps.

Chapter 4 is primarily concerning the study of commuting additive maps ¢ : T,,(F5) —
T, (F3) on rank n matrices, where n > 2 is an integer and I is the Galois field of two
elements. Some irregular nonstandard forms of commuting additive maps on rank n upper
triangular matrices will be illustrated. We obtain a complete description of commuting
additive maps v : T,,(Fs) — T,,(F2) on rank n upper triangular matrices for n > 2. As a
by-product, we give a classification for commuting additive maps on 2 x 2 invertible full

matrices.



In Chapter 5, we study commuting additive maps on rank one upper triangular matrices
over fields. We start with some intriguing irregular forms of commuting additive maps,
and then we continue to present a complete characterisation of commuting additive maps
on rank one upper triangular matrices over fields.

In Chapter 6, we investigate the structure of centralizing additive maps on rank one
upper triangular matrices over division rings. We show that centralizing additive maps
and commuting additive maps on rank one upper triangular matrices over division rings
are equivalent. We give a characterisation of centralizing additive maps on rank one upper
triangular matrices over noncommutative division rings. As a side remark, the structure of
centralizing additive maps on rank one upper triangular matrices over fields is much more
fertile and complex than the corresponding result on noncommutative division rings.

Chapter 7 is devoted to the study of 2-power commuting additive maps on invertible
upper triangular matrices over the Galois field of two elements. We give some interesting
examples of the maps which are of nonstandard forms and we prove the main results.

In Chapter 8, we provide a summary of the overall findings in this study and suggest

some potential open problems that would be possible for future research work.



CHAPTER 2: LITERATURE REVIEW AND METHODOLOGY

This chapter starts with some preliminary results which will be employed in the forth-
coming chapters. We will give a brief introduction of linear preserver problems on ma-
trices. We then proceed with a literature review of the study of functional identities in
commuting maps, centralizing maps, power commuting maps and some related maps.

We end this chapter with a brief discussion of the methodology used in this research.

2.1 Preliminary results

Let F be a field and let n > 1 be an integer. Recall that 7}, (F) is the ring of all n x n
upper triangular matrices over F and E;; € T,,(F) is the standard matrix unit whose (3, j)-
th entry is one and zero elsewhere.

We start with the following lemma proved in (Chooi & Lim, 1998, Lemma 4.1).

Lemma 2.1.1. (Chooi & Lim, 1998, Lemma 4.1). Let I be a field and let n > 1 and
1 < k < n be integers. Then A € T, (FF) is of rank k if and only if there exist invertible

matrices P, Q) € T,(FF) such that

Sfor some integers 1 < s; < t; < nfori=1,....kwiths < --- < sgandt; #1;

whenever 1 < i # j < k.

Let M, (F) be the ring of all n x n matrices over F. Given A € T, (F), we denote by
At = J,A'J, € T,(F), where A’ is the transpose of A and J,, € M,,(F) with one on the
minor diagonal and zero elsewhere. We now prove a technical lemma that will be used in

the study of commuting additive maps on rank & upper triangular matrices.

Lemma 2.1.2. Let F be a field with at least three elements and let n > 3 be an integer.
Suppose that 1 < k < n is a fixed integer. Then each rank one or rank two matrix in
T,.(F) can be represented as a sum of three rank k matrices in T, (F) among which the

sum of any two is of rank k.



Proof. Let A € T,(F). First, consider A is of rank one. By Lemma 2.1.1, we assume
without loss of generality that A = E); for some integers 1 < ¢ < j < n.
Casel: i = j. When 1 < ¢ < n, we select distinct integers s, ..., 5,1 € {1,...,n—

1}\{i} and a € F\{0, 1}. Let

o

—1
Xi=Ey+(a—1)Ej1+ (@ —1)E; 41,
1

<.
Il

k—1
Yi=Eij1+ » _ Eysa and Z; = —aYi.

j=1
Then X;,Y;, Z; € T,,(F) are of rank k such that £;; = X; +Y; + Z; and among which the
sum of any two is of rank k. When i = n, since E,,,, = E;, wehave E,,,, = X; +Y;"+Z;
as required.

Case II: i < j. We select distinct integers s1,...,8,1 € {1,...,n}\{i} and a €

F\{0,1}. We set
k—1

X=FEj+(a-1)E;+» (a—1)E,,,

j=1
k—1
Y=E;+)» E,, and Z=-aY.

j=1
Then E;; = X + Y + Z is the sum of three rank k£ matrices X,Y,Z € T,,(F) among
which the sum of any two is of rank k.

Consider now A is of rank two. By Lemma 2.1.1, we may assume A = E;; + E,,
forsomeintegers 1 < i < j<n, 1 <p<qg<n,i<pandj # q. Weargue in the
following cases.

Case A:7 = jandp = ¢q. When: = 1 and p = n, we select distinct integers

S1y.0eySp—2 €4{2,...,n— 2} and a € F\{0, 1}. Let

k—2

X=FEn+(a=1)Ep+Ey+(a—1D)E1,+ Y (a—1)E, 1,
j=1
k—2
Y =En+E,1n+ Y Eya and Z=-aY.
j=1

Then Eyy + E,, = X + Y + Z is the sum of three rank & matrices X,Y, Z € T,(F)

among which the sum of any two is of rank k.



When 1 <@ < p < n, we select distinct integers s1, ..., sy € {1,...,n—1}\{4,p}

and o € F\{0, 1}. Set

k—2
Xip=Ei + (@ = D) Eiiy1 + Epp + (@ = 1) Ep pi1 + Z(a ~ DB 5541,
j=1
k—2
Yip = Eiiv1+ Eppi1 + Z Esjsi01 and Zi = —ay,
j=1

Then E;; + E,, = X, +Yip,+ Z;, is the sum of three rank k& matrices X, Y;,, Z;, € T,,(F)
among which the sum of any two is of rank k.

When 1 < i < p =n,since Ej;; + Ey;, = (Ey1+ Epg1-int1-:) . wehave Ej;; + E,,,, =
Xt Y+ Z,, 1, as desired.

CaseB:i = jorp=¢q. Wheni=jandp < g, wehavel < i <p<q<n We

select distinct integers si, ..., 5,2 € {1,...,n}\{i,p,¢} and a € F\{0, 1}. Set

Ead

2
Xipg = Eii + (o — 1>Eip + Epg + (o — 1)qu + (o — ]‘>E5j,5j?
1

<.
Il

k—2
Yipg = Eip + B + > By, and Zipg = —aYi,.

j=1
Then Ej; + Ep,g = Xipg + Yipg + Zipg 1s the sum of three rank k& matrices X,q, Yipq, Zipg €
T, (F) among which the sum of any two is of rank k.

Wheni < jand p = g, wehaveeither ]l <i< j<p<norl<i<p<j<n
Consider the case 1 < 7 < j < p < n. Note that E;; + E,, = (En, + Eg)", where
h=n+1l—p,s=n+1l—jandt=n+1—1¢,withl < h < s <t <n. Itfollows
that £;; + E,, = X,", + Y,b + Z;, is the sum of three rank k matrices Xj,, Yist, Znst €
T, (F) among which the sum of any two is of rank % as required. Consider now the case
1 <i < p<j< n. Weselect distinct integers sy, ...,s,2 € {1,...,n}\{4,p,j} and

a € F\{0,1}. Let

E

-2
X = Epp + Eij + (O[ — ]-)Ezp + (a — 1)Ejj + (O[ — ]-)Esj-,s]-a
1

J
k—2
Y =Ep+E;+)Y E,, ad Z=-aY.

j=1



Then E,,+ E;; = X +Y + Z is the sum of three rank £ matrices X, Y, Z € T,,(FF) among
which the sum of any two is of rank £.
Case C: i < j and p < q. We select distinct integers s1, ..., 5,2 € {1,...,n}\{4,p}

and o € F\ {0, 1}. Let

e

-2
X = EU + (O{ - 1)E“ + qu + (OZ - 1>Epp + (O{ - 1)E8j,8j7
1

<.
Il

k—2
Y =Ei+E,+) E, ad Z=-aY.

j=1
Then E;; + E,;, = X +Y + Z is the sum of three rank k£ matrices X,Y, Z € T,,(F) among

which the sum of any two is of rank k. We are done. [

Lemma 2.1.3. Let F be a field. If A € T, (F) is such that [A, E;j| = 0 forall 1 < i <

Jj < n, then A = \,, for some \ € F. In particular, the centre Z of T,,(F) is FI,,.

Proof. Let A = (a;;) € T,,(F). Note that AE, = E A leads to
Ekk(AEst) = Ekk(EstA) = apsBi = Ops B A

for every integer 1 < k < s < t < n, where d;, is the Kronecker symbol. In particular,
arpsFg = 0 when k < s. Hence A is diagonal. Thus E; A = agr Ey, and so a;; = agg, for

all 1 <k <t < n SoA=M\, forsome A € F. Hence Z(7,,(F)) = FI,. O

Next, we establish two lemmas that will be employed in the study of commuting addi-
tive maps on invertible upper triangular matrices. In what follows, let n > 2 be an integer
and let I, denote the Galois field of two elements. In view of Lemma 2.1.3, we note that
the centre of T),(F2) is Z(7T,,(F2)) = Fs1,,. For each integer 0 < ¢ < n — 1, we denote

n—~_

D, = Z E;ive € T,(Fs). (2.1
i=1

In particular, Dy = I, and D,, 1 = Ejy,,.
Let A = (a;;) € T,(F2) and let 1 < s < n — ¢ be an integer. Notice that AF, ;. =

Sor s Eisipand Eg g A= Z?:s-i—é 510 Fs;. It follows from (2.1) that

s=1 \t=1 s=0 =1

n—~¢ s n——4—1 n—{—s
AD, = E E s Broys | = E i igs i itots



n—~¢ n n——4—1 n—{—s
Dy A= g g a£+s,tEst = Qitt,i4+l+s Ei,i-‘,—ﬁ-‘,—s-
S

s=1 t=~+s =0 i=1

In particular, for any integers 0 < s, < n — 1, we have

Z;;(SH) E;its+¢ whens+t <mn,
DsDt =

0 whens+t>n

Then D;D; = Dy when s 4+ t < n. Furthermore, since Dy = (D;)*, we have
DsDt = Ds+t = (D1>S+t

when s +t < n,and D,D; = 0 = (D;)*" when s + ¢t > n. Consequently, [D,, D;] =0
for every integer 0 < s, < n — 1, where [X, Y] is the commutator of X,Y € T,,(FFs).
This proves the following result.

Let A=>", 'o;D; and B = Yoo ' 3.D; be upper triangular Toeplitz matrices for

some «;, 3; € Fy. By the bilinearity of [ -, -], we obtain

3
L
3
L

[A, B] = Oéiﬁj [DZ7 Dj] = O

N
Il
o

.
Il
=)

We summarise the observation as a lemma.

Lemma 2.1.4. Let A= Y""""o,D; and B = 3" 3;D; be Toeplitz matrices in T,(Fy).
Then [A, B] = 0.

Lemma 2.1.5. Let B = Dy + aD, for some integer 1 < { < n and let o« € Fy. If
A € T,(Fy) satisfies [A, B = 0, then A = 3" \i;D; for some X, ..., A\y_1 € Fa.

Proof. When n = 2, the result is clear since B = E15 € T5(F5). We now consider n > 3.
Recall that 1 < ¢ < n and o € F, are fixed. Let A = (a;;) € T,,(F3). Note that

n—2 n—1-s

[A Dl = E E az,i—i—s +ai+1,i+1+s)Ei,i+l+57

s=0 =1



[A, D] = (@i, its + it ivors) Eiitrs

= (@i, i—t414s + Qigt,iv14s) i ip14s-

Since [A, B] = 0, it follows that [A, D] = a[D,, A]. We thus obtain

-2 n—1-s
E (@iirs + Qi1 it14s) Biip1s
s=0  i=1
n—2 n—1-—s
+ E ((@i,i4s + @ig1iv14s) + (@i imesirs + ireiv1vs)) Biigrys = 0.
s=0—1 i=1

It follows that 3° 2 S " (ais1.i4 146 + Giiss) Biip1s = 0, which leads to

Qjjits = Qit1,i+1+s- (2.2)

It follows that for every integer 0 < s </ —2and 1 <i<n—1—3s,

9 1o
S "ZS (@i ivs + Qis1,iv14s) + (@ i—e414s + Qe iv14s)) Eiiv14s = 0. (2.3)
s=0—1 =1
Consider s = ¢ — 1. By the result of (2.2), 1.e., a;; = ;41,41 fori =1,...,n—1, we get
Qj 04145 = Qi = Aijqp, 540 = AL, i4+1+s
forevery:=1,...,n — 1 — s. In view of (2.3), for s = ¢ — 1, we obtain

Qi i4s = Ai41 i+1+s (2.4)

forevery: =1,...,n — 1 — s. Consequently, Equation (2.3) is reduced to

[\

n—2 n—s—1

((ai,its + Qiv1,it14s) + (@i ip14s + Qigeit1+s)) Eiiv1+s = 0. (2.5)

vy
I
~

i=1

We now consider s = ¢. By the result of (2.2) or (2.4), i.e., a;;+1 = @jy1,42 fori =

1,...,n — 2, we obtain

A j—f+14+s = Aii+1 = Ail, i+04+1 = il i+1+s

10



forevery: =1,...,n — 1 — s. Inview of (2.5), for s = ¢, we get
Qi j+s = Qj41,i+1+s

forevery: =1,...,n — 1 — s. Hence Equation (2.5) is reduced to

n—2 n—s—1

Z Z (@, i4s + Qiv1 iv1+s) + Qi imtr1+s + Qive,it1+s)) Eiiv14s = 0. (2.6)
s=¢+1 i=1

Continuing this process in (2.6), we thus obtain a; j+s = a;1,i+1+s for all integers 0 <

s<n—1land1l <7< n—1-—s. Therefore A = Z?:_()l A D; for some A\g, ..., \,_1 € [Fs.

The lemma is proved. [
2.2 Literature review
2.2.1 Linear preserver problems on matrices

Linear preserver problems on matrices represent an active and continuing research sub-
ject in matrix theory that deals with the characterisation of linear maps on matrices leaving
certain properties or relation of subsets invariant. The formulation of linear preserver prob-
lems is natural and simple. The study often gives a deeper understanding of the matrix
functions, relations or identities under consideration. Let M be a linear space of matrices.
The study of linear preserver problems usually falls into some of the following typical

problems.

(1) Type I: Suppose that ¢ is a scalar-valued, vector-valued, or set-valued function on
M. The aim of this type of problem is to characterise linear maps ¢ : M — M

preserving the function ¢, i.e.,

for all A € M. One of the classical examples in this type of linear preserver prob-
lems is the result of Frobenius (1897) which characterised bijective linear operators

on complex matrices that preserve the determinant. Let ¢ : M,,(C) — M, (C) be

11



(i)

(iii)

an invertible linear map satisfying det(¢)(A)) = det(A) for all A € M,,(C). Frobe-
nius (1897) proved that there exist invertible matrices P and @ in M, (C) with

det(PQ) = 1 such that either

Y(A) = PAQ (2.7)
forall A € M,,(C), or
P(A) = PA'Q (2.8)

for all A € M, (C). For more examples of this type of linear preserver problems,
see, for example Botta (1967); Chooi et al. (2017); Huang et al. (2016).

Type II: Let S be a nonempty subset of M. In this type of linear preserver problems,
the aim is to determine the structure of linear maps ¢y : M — M leaving the subset
S invariant, i.e.,

W(S) C 8.

Let 1 < k < n be an integer and let R denote the totality of rank £ complex matri-
ces of M,,(C). Marcus and Moyls (1959) characterised linear maps ¢ : M, (C) —
M,,(C) that preserve rank k matrices, i.e., ¥)(Ryx) C Ry. They showed that there

exist invertible matrices P and @ in M,,(C) such that either

¥(A) = PAQ
forall A € M,,(C), or
Y(A) = PA'Q

for all A € M, (C). For more examples of Type II linear preserver problems, see,
for instance Costara (2020); Marcus and Purves (1959); Omladi¢ and Semrl (1998);
Song et al. (2016).

Type I11: Suppose that ~ is a relation on M. The aim of this type of linear preserver

problems is to classify linear maps ¢ : M — M satisfying the following relation:

(A) ~(B) whenever A~ Bin M,

12



(iv)

or

W(A) ~(B) ifandonlyif A~ Bin M.

Pierce and Watkins (1978) classified invertible linear maps ¢ : M, (F) — M, (F)
preserving commutativity, i.e., 1)(A)(B) = ¥(B)y(A) whenever AB = BA for
all A, B € M, (F). They proved that there exists an invertible matrix P in M, (F),

A € [F and a linear functional f on M, (IF) such that either

Y(A) = AP TAP + f(A)I, (2.9)

forall A € M, (IF), or

Y(A) = APTA'P + f(A)I, (2.10)

for all A € M, (F). More examples of Type III linear preserver problems can be
referred to the works, for example Chebotar et al. (2003); Hiai (1987); Petek and
Radic (2020).

Type IV: Let G : M — M be a matrix function. The aim of this type of linear
preserver problems is to study the structure of linear maps ¢ : M — M that

commute with the matrix function G, i.e.,

forall A € M. Let G(A) = adjA, the classical adjoint of A € M,,(C). Sinkhorn
(1982) initiated the study of classical adjoint-commuting linear maps ¢ : M,,(C) —
M,,(C) satisfying v (adj(A)) = adj(1)(A)) for all A € M, (C). He showed that
there exists an invertible matrix P in M, (C) and A € C with A"~ = 1 such that

either

(A) = APAP™!

forall A € M,,(C), or
W(A) = APA'P!

13



for all A € M, (C). For more examples of this type of linear preserver problems,
the reader may referred to see, for instance Chan and Lim (1992); Chooi and Ng

(2010); Khachorncharoenkul et al. (2020).

The literature on linear preserver problems is vast and rich. For an extensive expository
survey of the subject and its developments, we refer the reader to the papers in Linear and
Multilinear Algebra (volume 33, no.1-2 (1992), pp.1-119) in Pierce et al. (1992), or to
the expository papers in Guterman et al. (2000); C.-K. Li and Pierce (2001); C.-K. Li
and Tsing (1992); Mbekhta (2012), or to the books/book chapter in Molnar (2007); Semrl
(2014); Zhang et al. (2007) and references therein. Many works have been done in linear
preserver problems related to the theory of functional identities. For works in this area,
see, for example Beidar et al. (2002), (Bresar et al., 2007, Chapter 7) and (Bresar, 2004,
Section 5.3).

It is worth mentioning that linear preservers ¢ : M — M of the form (2.7), (2.8),
(2.9) or (2.10) are said to be of the standard form in the study of linear preserver prob-
lems. Nevertheless, in some situations, it is interesting to discover linear preservers which
are of irregular form or nonstandard form. Chooi and Lim (1998) studied some linear pre-
servers on upper triangular matrices and discovered that the structure of linear preservers
on upper triangular matrices is more fertile and complex than the corresponding result on
full matrices. A subspace H of T,,(IF) is a called a rank one subspace if A € H implies that
either A = 0 or A is of rank one. They classified linear maps ¢ : T,,(F) — T,,(F) preserv-
ing rank one upper triangular matrices and showed that either Im ) is an n-dimensional

rank one subspace, or there exist invertible matrices P, ) € T,,(F) such that

¥(A) = PAQ

forall A € T,,(F), or
P(A) = PATQ

for all A € T,(F). Here, A* = J,A"J, and J, € M,(F) is the matrix with one on
the minor diagonal and zero elsewhere. In the paper, they characterised linear maps v :

T, (F) — T,(FF) that preserve determinant and showed that there exists a permutation o

14



of degree n and nonzero scalars \q, ..., A, € Fwith A\, --- )\, = 1 such that

[w(A”SS = Asaa(s),a(sﬁ s=1,...,n

forall A = (a;;) € T,,(F). Molnar and Semrl (1998) studied bijective linear maps preserv-
ing rank one idempotents, linear maps preserving commutativity in both directions and
bijective linear maps preserving commutativity, on upper triangular matrices. Bell and
Sourour (2000) characterised surjective additive maps preserving rank one block upper
triangular matrices as well as additive maps preserving rank one matrices in both direc-
tions on block upper triangular matrices. Since then, there has been considerable interest
in studying linear preservers on 7T, (), see, for example rank one nonincreasing linear
maps in Chooi and Lim (2001), linear maps preserving numerical range in C.-K. Li et
al. (2001), linear maps preserving generalised numerical ranges in Cheung and Li (2001)
and coherence invariant maps in Chooi and Lim (2002). The study of linear preservers
on 7, (F) is more challenging and the structures are usually more complicated than the

corresponding result on M, (TF).

2.2.2 Functional identities

A functional identity on a ring R is an identical relation holding for all elements in
‘R which involves some functions on R. The goal in the study of functional identities
is to determine the form of functions satisfying certain identities, or, when this is not
possible, to describe the structure of the ring admitting the functional identity in question.
The theory of functional identities is a relatively new subject whose roots lie in the Ph.D.
thesis of Bresar in the year 1990.

Let R be aring and let f, g : R — R be maps such that

f@)y+gy)z=0 (2.11)

for all z,y € R. This is a very basic example of a functional identity. A trivial solution
when (2.11) is fulfilled is when f = g = 0. If R is commutative, then nontrivial solutions

when (2.11) holds are f is the identity function and ¢ = —f. Let D be a division ring.
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Bresar (1995b) proved the following theorem.

Theorem 2.2.1. (Bresar, 1995b, Lemma 4.5) If f1, fo, f3, f1 : D — D are additive maps
satisfying
fi@)y +zfo(y) + fs(y)z +yfa(z) =0 (2.12)

forall x,y € D, then there exist additive maps p,n : D — Z (D) and a,b € D such that

fi(z) = —za + p(z),
fo(z) = ax — n(z),

(2.13)
f3(x) = —xb+ n(x),

fa(x) = br — p(x)
forall x € D.

For more studies on functional identities, see, for example Bresar (1995a, 2016, 2020);
Bresar et al. (2015); Bresar and Spenko (2014, 2015); Catalano (2018); Cezayirlioglu and
Demir (2021); Dar and Jing (2022); Han (2017); T.-K. Lee (2019); Wang (2013). Also,
the study of functional identities on triangular matrix rings can be found in, for example
Beidar et al. (2000); Eremita (2013, 2015, 2016); Wang (2015, 2016b, 2019); Yuan and
Chen (2020). For a full account on functional identities and its historical developments,
we refer the reader to the book ‘Functional Identities’ by Bresar, Chebotar and Martindale
3rd in BreSar et al. (2007) and the survey paper in Bresar (2000).

The theory of functional identities is closely related to the study of commuting maps,
centralizing maps and power commuting maps on rings. One of the earliest results in the
study of commuting maps is Posner’s theorem (Posner, 1957, Theorem 2) which states
that a prime ring admitting a nonzero commuting derivation must be commutative. In
1993, Bresar first described the structures of commuting additive maps on a prime ring
and centralizing additive maps on a prime ring of characteristic not two. He proved the

following results.

Theorem 2.2.2. (Bresar, 1993a, Theorem 3.2) Let R be a prime ring. Suppose that an

additive mapping ¢ : 'R — R is commuting on 'R. Then there exists an additive map
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1 R — C and an element ) in the extended centroid C of R such that

W(A) = M + p(A) (2.14)

forall A e R.

Theorem 2.2.3. (Bresar, 1993a, Theorem A) Let R be a prime ring of characteristic not
two. If an additive map ¢ : R — R is centralizing on R, then there exists an additive

map |t : R — C and an element ) in the extended centroid C of R such that

(A) = AA + p(A) (2.15)

forall A e R.

The form as described in (2.14) or (2.15) is called the standard form. These results
have been generalised in several directions, see, for example commuting maps in Beidar
(1998); Bresar and Miers (1995); Costara (2021); Lapuangkham and Leerawat (2021);
P.-H. Lee and Lee (1997); T.-K. Lee and Lee (1996); Xiao and Wei (2010), and central-
izing and related maps in Ara and Mathieu (1993); Bresar et al. (1993); P.-H. Lee and
Wang (2009); T.-C. Lee (1998); T.-K. Lee (1997); Y. Li and Wei (2012); Qi (2016); Wang
(2016b). For a full account on commuting maps and its historical developments, we refer
the reader to the survey paper by BreSar (2004). The study of commuting additive maps
on triangular algebras was initiated by Cheung (2001). He showed that the structure of
commuting linear maps on triangular algebras is of the standard form (2.14). Beidar et al.
(2000) studied commuting linear maps on upper triangular matrices over fields. Eremita
(2017) investigated commuting additive maps on upper triangular matrices over unital
rings. On the other hand, BreSar’s structural results are extremely influential and have
stimulated considerable study in some related maps on various algebras, rings and matrix
spaces such as: m-power commuting maps in Ahmed (2019); Beidar et al. (1997); BreSar
and Hvala (1995); Chacron (2021); Chacron and Lee (2019); Franca and Louza (2021);
Inceboz et al. (2016); T.-K. Lee et al. (2004); Qi (2016); Stowik and Ahmed (2021), skew-

commuting maps in Bresar (1993c¢); Fosner (2015); Park and Jung (2002), m-commuting
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maps in Bresar (1992, 1996); Du and Wang (2012); Y. Li et al. (2019); C.-K. Liu (2020);
C.-K. Liu and Pu (2021); Qi and Hou (2015); Xiao and Yang (2021), strong commutativ-
ity preserving maps in BreSar and Miers (1994); Chen and Zhao (2021); T.-K. Lee and
Wong (2012); Qi and Hou (2012) and commuting traces maps in Benkovi¢ and Eremita
(2004); Bresar (1993b); Bresar and Semrl (2003); Eremita (2017); Franca (2015, 2016);
Franca and Louza (2018); P.-H. Lee et al. (1997); Wang (2016a).

In 2012, inspired by the study of linear preserver problems on sets of matrices that are
not closed under addition and the structural result in (Bresar, 1993a, Theorem 3.2), Franca
(2012) initiated the study of commuting additive maps ¢ : M,,(F) — M, (F) on invert-
ible (respectively, singular) n x n matrices over a field F. He showed % is of the standard
form (2.14). This result has been generalised by Franca (2013a) and Xu and Yi (2014) for
commuting additive maps ¢ : M, (F) — M, (F) on rank £ matrices for some fixed inte-
ger 1 < k < n. Subsequently, the description of commuting additive maps on rank one
matrices over fields and on rank one matrices over noncommutative division rings was
obtained in Franca (2017); Franca and Louza (2017), respectively. Extending Franca’s
results, C.-K. Liu (2014a) studied centralizing additive maps on the set of singular and
invertible matrices. Chooi, Mutalib, and Tan (2021) characterised centralizing additive
maps on rank & block triangular matrices over fields. C.-K. Liu (2014b); C.-K. Liu et al.
(2018) advanced the study of strong commutativity preserving maps to rank k& matrices.
Chooi and Wong (2021) gave a characterisation of commuting additive maps on tensor
products of matrix algebras over fields. More recently, Chooi and Tan (2021) successfully
described commuting additive maps on rank k symmetric matrices over a field of char-
acteristic not two. Many interesting results have been obtained, see, for example Chooi
and Kwa (2019, 2020); Franca (2013b); Franca and Louza (2019); H. Liu and Xu (2017);
Xu and Liu (2017); Xu et al. (2016); Xu and Zhu (2018). Lately, m-power commuting
additive maps have been generalised to set of matrices that are not closed under addition

in C.-K. Liu and Yang (2017) and Chou and Liu (2021).

2.3 Methodology

Our approaches of research methodology comprises of three components.
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The first component is preliminary background review to identify essential research
problems. We study and understand specific matrix theoretic techniques and ideas em-
ployed in determining the commuting maps on fixed-rank square matrices. We then iden-
tify suitable research problems on commuting additive maps on fixed-rank triangular ma-
trices over certain underlying rings for further investigation.

The second component involves mathematical calculations and analysis. We perform a
series of careful algebraic calculation via basis constructive approach. This is followed by
an analysis of trait and pattern of the computation to derive useful information in planning
the sequence of our proof.

The last component is characterisation and refinement of maps. We formulate theo-
rems and prove the structural results with rigorous and valid mathematical arguments. By
factorising the additive group generators, we scrutinise and refine the commuting additive

map obtained to ensure its form is the simplest and ultimate.
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CHAPTER 3: COMMUTING ADDITIVE MAPS ON RANK k£ UPPER
TRIANGULAR MATRICES OVER FIELDS

3.1 Introduction

Let R be aring with centre Z(R) and let S be a nonempty subsetof R. Lety) : R — R
be a map. Recall that a map ) is commuting on S if [(A), A] = 0 forall A € S, where
[X,Y] is the commutator of X,Y € R. The study of commuting additive maps was
recently extended to subsets of matrices that are not closed under addition. Let n > 2
be an integer and let M, (IF) denote the ring of all n x n matrices over a field F with
unity /,,. Franca (2012) proved that if ¢» : M, (F) — M,(F) is an additive map that
satisfies [1)(A), A] = 0 for all invertible (singular) matrices A € M, (F), then there exists
a scalar A € F and an additive map p : M,(F) — F, such that ¢ is of the standard
form ¥(A) = AA + u(A)IL, for all A € M, (F), except when F = F,, the Galois field
of two elements. Let n > 3 be an integer. Fix an integer 2 < k£ < n — 1. Under the
assumption char F = 0 or char F > 3, Franca (2013a) proved that commuting additive
maps ¢ : M,,(F) — M, (IF) on all rank k& matrices are of the standard form (2.14) i.e. there
exists A € F and an additive map p : M,,(F) — F such that ¢o(A) = AA + u(A)I, for all
A € M,(F). Improving Franca’s result (Franca, 2013a, Theorem 3), Xu and Yi (2014)
gave a new proof for commuting additive maps ¢ : M,,(F) — M,,(IF) on rank k matrices,
for fixed integers 2 < k < n, by getting rid of the assumption char F # 2,3. Recall
that T, () is the ring of n x n upper triangular matrices over I with centre Z(T,,(IF)) and
unity /,,. Inspired by the aforementioned results, in this chapter, we successfully address
the question of describing the form of commuting additive maps ¢ : 7,,(F) — T,,(F) on
rank k& matrices with |F| > 3 and 2 < k < n a fixed integer. The result highlights that )

is “almost” of the standard form (2.14) when |F| = 3 and k& = n.

3.2 Irregular nonstandard examples

We characterise commuting additive maps on rank £, 2 < k£ < n, upper triangular
matrices over fields of at least three elements. Surprisingly, unlike the case of commuting
additive maps of M, (FF) on rank k matrices, it turns out that ¢/ is not necessarily of the

standard form (2.14) when & = n and [ is the Galois field of three elements. For instance,
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consider the additive map ¢ : T,,(F) — T,,(IF) is defined to be

SO(A> = (all + ann)Eln

for every A = (a;;) € T,,(F). Here, E;; € T,,(F) denotes the standard matrix unit whose
(i, j)-th entry is one and zero elsewhere. Let A = (a;;) € T,(F) be invertible. Then
ai1, Gny # 0. If |F| = 3, then ay1 + @y, = 0 whenever a1y # ayy,. Thus (@11 + app)apn =

air(ai + any), and so

V(A)A = (a1 + apn) F1,A
= (a11 + ann)ann By
= ay1(a11 + ann) Ein
= A(an + apn) Ern

= Ap(A).

Hence ¢ is a commuting additive map on rank n triangular matrices when |F| = 3.
We now give some examples to show the indispensability of the conditions k£ > 2 and

|F| > 3 in Theorem 3.3.1.

Example 3.2.1. Let F be a field and let n > 3 be an integer. Let ¢; : T,,(F) — T, (F),

1 = 1, 2, be the additive maps defined by

V1(A) = apErn

for all A = (a;;) € T,(F), where p and ¢ are fixed integers satistfying 1 < p < ¢ < n;
and

V9(A) = ageFhg + assboy + - - + Up—1n—1En_2n

forall A = (a;;) € T,,(F). We show that each additive map 1); is commuting on rank one
matrices. Let X = (z;;) € T,,(F) be of rank one. As we see in Lemma 2.1.1, there exist
invertible matrices P, ) € T, (F) such that X = PFE,() for some integers 1 < s < ¢ < n.

Since P and () are invertible upper triangular matrices, it follows that when (s, t) = (h, h)
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for some 1 < h < n, we have xp,;, # 0, x;; = 0 forevery 1 < < j < hand z;; = 0 for
every h <1< j < n.

Consider first the additive map ;. When (s,t) € {(1,1), (n,n)}, wehave ¢, (X) = 0,
and so [¢(X), X] = 0. When (s,t) ¢ {(1,1), (n,n)}, we have 1, = x,,, = 0. Thus

(X)X = (2pgF1n) X = 0= X(2p,E1,) = X1 (X).

Next, we consider the additive map 1. When (s,¢) € {(1,1),(n,n)}or1 < s <t < n,
we have 15(X) = 0, so [¢o(X), X] = 0. When (s,t) = (¢,¢) for some 1 < ¢ < n, we
have ¢2(X) = ZEggEg_lyg_H. Since Eg_175+1PEgg = (0 and EggQEg_Lg_H = 0, it follows

that

V(X)X = 2p(Ep—1,041PEp)Q = 0 = 29 P(EpQE_1041) = X1ho(X).

Consequently, both 1, and 1), are commuting additive maps on rank one matrices.

Example 3.2.2. Let |F| = 2 and let n > 3 be an integer. Let ¢ : T,,(F) — T,,(FF) be the
additive map defined by
Y(A) = anBon + a1y

forall A = (a;;) € T,,(F). Let X = (z;;) € T,,(F) be of rank one. Then there exist
invertible matrices P, () € T, (F) such that X = PFE,() for some integers 1 < s <t < n.
When (s,t) ¢ {(1,1),(1,2),(2,2)}, we have x1; = 15 = 0, and so [/(X), X]| = 0.

When (s,?) = (1,1), we have z;; = 0 forall 2 < ¢ < j < n. Thus

Y(X)X = (211 Eop+212E1,) X = 0 = 2(x11212) Ery, = X (211 By +212E4,) = X(X).

When (s,t) € {(1,2),(2,2)}, we get 13 = 0 = z,,,. Then

¢(X)X = (ZL’lgEln)X =0= X(l’lgEln) = X@Z)(X)

Hence 1) is a commuting additive map on rank one matrices.
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The following example shows that the commuting additive map ¢ : T,(F) — T,,(F)

on rank k matrices is not of the form given in (3.1) when |F| = 2 and k = n.

Example 3.2.3. Let |F| = 2 and let ¢ : T5(IF) — T5(FF) be the additive map defined by

Y(A) = a12(Ery + Eia + Eg)

for all A = (a;;) € T(F). Note that A; = E4y + Ey and Ay = Eyy + Eoy + Ey are the
only rank two matrices in 73(FF), and /(A1) A; = 0 = A19(A1) and Y(Ay) Ay = Ay =

As1p(As). Then ¢ is a commuting additive map on rank two matrices.

3.3 Main results
We obtain a complete description of commuting additive maps ¢ : T,,(F) — T,,(F) on
rank k£ matrices for |F| > 3 and 2 < k& < n which highlights that ¢) are “almost” of the

standard form as given in (3.1) when |F| = 3 and k& = n.

Theorem 3.3.1. Let 2 < k < n be an integer and let F be a field with |F| > 3. Let T,,(FF)
be the ring of n x n upper triangular matrices over F with centre Z (T, (F)) and unity
I,. Then ) : T,(F) — T,(F) is an additive map satisfying [)(A), A] = 0 for all rank
k matrices A € T,(F) if and only if there exists an additive map n : T,(F) — F and

A, a € Fin which o = 0 when |F| > 3 or k < n such that

W(A) = A+ u(A) L, + a(ar; + ann) Ern (3.1)

Jorall A = (a;;) € T,(F).

Recall that a map ¢ : T,,(IF) — T,,(F) is centralizing on rank & matrices if [{)(A), A] €
Z(T,(F)) for all rank k£ matrices A € T,,(IF). The following result can be found in Chooi,
Mutalib, and Tan (2021).

Lemma 3.3.2. (Chooi, Mutalib, & Tan, 2021, Theorem 3.8) Let IF be a field and let n > 2
be an integer. Let 1 < r < n be a fixed integer such that r # n when |F| = 2. Then

W To(F) — T,(F) is a centralizing additive map on rank r matrices if and only if there

23



exist scalars \, o € F and an additive map . : T,,(F) — F such that

¢(A) =M + M<A>In + OC(CLH + ann)Eln

Sor every A = (a;;) € T,(IF), where o # 0 only if 7 = n and |F| = 3.

Invoking Theorem 3.3.1 and Lemma 3.3.2, we deduce a structural characterisation of
commuting additive maps ¢ : T,,(F) — T,,(F) on rank r matrices over a field IF, where

1 < r < nis an integer such that r # n when |F| = 2.

Theorem 3.3.3. Let F be a field and let n > 2 be an integer. Let 1 < r < n be a fixed
integer. Then ¢ : T, (F) — T,(F) is a commuting additive map on rank r matrices if

and only if when v < n or |F| # 2, there exist scalars A\, € F and an additive map

T (F) — T osuch that

w(A) =M + M<A>In + Of(all + ann)Eln

Sorall A = (a;;) € T,,(IF), where o« # 0 only if r = n and |F| = 3.

34 Proofs
Throughout this section, unless stated otherwise, let n > 2 be an integer and let [F be a
field. Recall that [A, B] is the commutator of A, B € M, (F). Our discussion begins with

the following lemma by adopting an idea of (Xu & Yi, 2014, Lemma 2.5).

Lemma 3.4.1. Let 1 < k < n be an integer and let F be a subset of M,,(F) closed under
addition. Let ) : F — F be a commuting additive map on rank k matrices. If A € F

is a sum of three rank k matrices in F among which the sum of any two is of rank k, then

[1(A), A] = 0.

Proof. Let A = X; + X, + X for some rank £ matrices X;’s in .# such that X; + X
is of rank k for each pair of distinct integers 1 < 4,7 < 3. Foreach1 < i # j <

3, since [Y(X; + X;), X; + X;] = 0, [¢(X;),X;] = 0and [¢(X;), X;] = 0, we get
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as desired. O]

Lemma 3.4.2. Let F be a field with |F| > 3 and let i : T,,(F) — T, (F) be a commuting
additive map on rank n matrices. Then there exists a unique additive map 7 : F — F
such that

Y(AL,) + 7(N) Ey, € Z(T,(F))
for every A € F. Moreover, T = 0 when |F| > 3.

Proof. Let A € F. The result clearly holds when A\ = 0. Consider A # 0. Since |F| > 3,
there exists a nonzero o € Fsuchthata # A. Let1 <@ < j <nand B = E;; — al,.
Then B and \I,, + B are of rank n. Since [)(A],), A\,,] = 0, [(B), B] = 0 and [)(A],, +
B),\I,, + B] = 0, we get [v(A],), B] + [v(B),\,] = 0. Since [¢(B),Al,] = 0, it

follows that

0 =[(AMn), Bl = (ML) (Eij — odn) — (Eij — aln) (M) = (M) By — Eijp (ML)

Then (\l,) E;; = E;j¢0(AL,) forall 1 <4 < j < n. Note that o and o — A are distinct
nonzero scalars. When |F| > 3, there exists a nonzero 3 € F\{a,a — A\}. Let 1 <i < n.
We take C' = pE; — al, € T,(F). Clearly, C and A\I,, + C = (A — a)I,, + BE;
are of rank n. Since [¢(C), AI,,] = 0, it follow that [¢(A\],, + C), AL, + C] = 0 yields
[Y(AL,), C| = 0. Therefore (A1) Ey = Eyw(M,) forall 1 < i < n. By Lemma 2.1.3,
we have Y(\],,) € Z(T,(F)) = FI,. Consequently, the result follows with 7 the zero
map on F.

Consider now |F| = 3. Suppose that ¢(\l,,) = (a;;). By virtue of Y(\l,)E;; =
Eiji(M,) forevery 1 < i < j < n, we have Eyp(M\,)Eij = ExpEij¢p (M) for every
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1< k<1< j<n. Hence

apiErj = 0riEj v (A,)

foralll <k <i<j<n Soay, =0forl <k <1t < n. When k = 14, for each

1<i<j<n,
aiiEij = Eijw()‘[n)

n n—1
= E’L (Z CLSSESS + ZasnEsn>
s=1

s=1
aijij + (Zanm if1 < 7 <mn,

AnnEin if 7 =n.

Then a;, = Oforall 1 < ¢ < n,and a;; = aj; foralll < i # j < n. SoY(\l,) =

a1 I, + a1, F1,. Consequently, there exist maps 7, 7 : ' — [ such that
Y(AL) + 7N Ey, =n(N), € Z(T,(F))

for every A € F. By the additivity of ¢ and the linear independence of I,, and Fj,,, it can

be verified that 7 and 7 are additive maps which are uniquely determined by ). ]

Lemma 3.4.3. Let IF be the Galois field of three elements and let ) : T, (F) — T, (F) be
a commuting additive map on rank n matrices. If ¢ : T, (F) — T,,(IF) is the map defined
by

p(A) = ¥(A) — 7(a11 + ann) Ern

Jorall A = (a;;) € T,(F), where 7 : F — F is the additive map uniquely determined by

W as described in Lemma 3.4.2, then ¢ is a commuting additive map on rank n matrices

such that o(Z (T, (F))) C Z(T,(F)).

Proof. Note that ¢ is additive by the additivity of ¢y and 7. We now claim that ¢ is

commuting on rank n triangular matrices. Let A = (a;;) € T,(F) be of rank n. Then

[(A), A] = 0 and

[@(A)v A] = AT(all + ann)Eln - 7—(all + ann>E1nA
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- (allT(all + ann) - T(all + ann)ann)Eln

= (all - ann)7—<a11 + ann)Eln-

Clearly, [¢(A), A] = 0 when a;; = a,,. Consider a;; # a,,. Since A is invertible,
a11, App # 0. Thus ayg + a,, = 0 by virtue of |F| = 3. Hence [p(A), A] = 0 for all rank
n matrices A € T,,(FF).

Let X = A\, € Z(T,(F)) for some A € F. Then p(X) = ¢(A\l,) — T(A+ N\)Ey, =
W(AL) + T(AN)Ey — 7(A+ A+ AN Ey, = (M ,) + 7(N\) Ey, since |F| = 3. It follows
from Lemma 3.4.2 that (X)) € Z(T,(F)). Hence o(Z(T,,(F))) C Z(T,.(F)). O

Let 2 < k < n be fixed integers and let F be a field with |F| > 3. Using some ideas

from Franca (2012); Xu and Yi (2014), we now prove Theorem 3.3.1.

Proof of Theorem 3.3.1. The sufficiency is trivial when |F| > 3 or £ < n. When |F| = 3
and k = n, the result follows immediately from Lemma 3.4.3.

Consider the necessity. Let A = (a;;) € T,,(F). Then

[W(A), Al = > [layEy) ai;Ey] + Y [laiEy) axByl.  (32)

1<i<j<n (1,9)#(s,t)

To prove [1)(A), A] = 0, it suffices to claim
[V(aijEij), aijBijl = 0 and  [¢(ai;Eij), asBs] + [V(asEs), aijEij] =0

foralll <i<j<mnandl < s <t<nwith(i,7) # (s,t). We argue in the following
two cases.

Casel: 1 < k <n.Thenn > 3. Let A = (a;;) € T,,(F). Forany 1 < ¢ < j < nand
1 < s <t < nwith (4,5) # (s,t), the rank of a;; E;; + as Ey is at most two. By Lemma
2.1.2, if a;;E;; + as E 1s nonzero, then it can be expressed as a sum of three rank k
matrices in 7},(F) among which the sum of any two is of rank k. It follows from Lemma
3.4.1 that [¢(a;;Eij + asEg), ai;Eij + agEsy] = 0. Likewise, [¢(a;;E;j), a;; Eij] =
0 = [Y(astEst), astEs]. Hence [¢(ai; Eij), astEst] + [Y(asEst), aijEi;] = 0. By (3.2),
[(A), A] =0 forall A € T,,(F).
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CaseIl: k = n. Let p : T,,(F) — T,,(IF) be the map defined by

A) — + Gpn ) B h F| =3,
o(A) — Y(A) — 7(a11 + apn) Ern - When [F|
P(A) when |F| > 3

for every A = (a;;) € T,,(F), where 7 : F — T is the additive map uniquely determined
by ¢ as described in Lemma 3.4.2. Then ¢ is a commuting additive map of rank n matrices
such that o(Z(T,(F))) € Z(T,(F)) by Lemmas 3.4.2 and 3.4.3.

Let A = (a;;) € T,,(IF). We first claim that

lp(ai;Eij), aijEij] = 0 (3.3)

for every 1 < i < j < n. Consider a;; # 0. Since || > 3, there exists a € F\{0}
such that a;; E;; + o, is of rank n. By virtue of [p(a;; E;; + aly,), a;; Ei; + ady,] = 0 and
o(Z(T,(F))) C Z(T,(F)), the claim is proved.

Next, we claim that

[p(a;; Eij), astEBst] + [p(astEst), aij Eij] =0 (3.4)

foreveryl <i < j<nandl <s<t<nwith(i,j) # (s,t). Notethatifi < jors <t
or |F| > 3, then there exists a 5 € '\ {0} such that a;; E;; + a5 Es + B1, is of rank n. By
virtue of [gp(aijEij—l—astESt—i—ﬂ[n), aijEZ-j—i—astESt—i—ﬁ[n] = 0, QO(Z(TH(F))) - Z(TR(F))

and (3.3), the claim is proved. We now consider i = j, s = ¢ and |F| = 3. Note first that

[p(Eii), Ess] + [p(Ess), Ei] = 0 (3.5)

due to the fact that F;; + Es + I, is of rank n for some nonzero v € F. Note that ¢ is

linear when || = 3. It follows from (3.5) that

[Qo(amEzz)v assEss] + [Sp(assEss)y azzEu] = Q045 ([QD(EM)7 Ess] + [QD(ESS>) Ez])

= 0.
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Therefore the claim (3.4) is proved. Together with the results (3.3) and (3.4), we conclude
that ¢ is an additive map satisfying ¢(A)A = Ap(A) for all A € T, (F).
It follows from (Eremita, 2015, Corollary 3.1) or (Eremita, 2017, Proposition 3.1) that

there exists an additive map y : 7,,(F) — F and A € F such that

PY(A) = A+ p(A) L, + 7(ar1 + ann) Ern

for all A € T,(F), where 7 = 0 when |F| > 3or1 < k < n. Furthermore, when
F = {0, 1, —1} is the Galois field of three elements and k& = n, the additivity of 7 implies
linearity of 7. Then either 7 = 0 or 7 is bijective. We thus have 7 = 0, 7 is the identity,
or

7(0) =0, 7(1) =—1 and 7(—1) = 1.

Consequently, there exists a scalar & € F such that 7(z) = ax for every a € F. This
completes the proof. O

Remark: The results in this chapter have been published in Chooi et al. (2020).
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CHAPTER 4: COMMUTING ADDITIVE MAPS ON INVERTIBLE UPPER
TRIANGULAR MATRICES OVER THE GALOIS FIELD OF TWO ELEMENTS

4.1 Introduction

Let n > 2 be an integer and let Fy be the Galois field of two elements. Let 7,,(F2) be
the ring of n X n upper triangular matrices over [Fy with centre Z(7,,(IF3)) and unity I,,. In
Franca (2012), an example of a nonstandard commuting additive map on invertible 2 x 2
matrices over [Fo was illustrated. Motivated by this example and Theorem 3.3.3, in this
chapter we give a complete description of commuting additive maps ¢ : T,,(Fs) — T,,(FF5)
on invertible matrices, i.e., additive maps v satisfying [¢)(A), A] = 0 for every invertible
matrix A € T,(Fs), in Theorems 4.3.1, 4.3.2 and 433 forn > 4, n = 3and n = 2,
respectively, where [X, Y] is the commutator of X, Y € T, (Fz). Surprisingly, unlike
the situation in commuting additive maps on invertible square matrices, the structure of
commuting additive maps ¢ : T,,(Fy) — T,(IF3) on invertible matrices is much more
complex and fertile. Since the set of commuting additive maps ¢ : T,,(Fy) — T,(F3)
on invertible matrices is an additive group, it is plausible to start our discussion in the
upcoming section by presenting some of the generators or basic maps that are not of the

standard form (2.14).

4.2 Irregular nonstandard examples
For the sake of simplicity, we adopt a — b = a + b for a,b € F, throughout our
discussion. For each pair of integers 1 < 4,5 < n, let E;; € T,(F;) be the standard

matrix unit whose (i, j)th entry is one and zero elsewhere.

Example 4.2.1. Let n > 2 be an integer and let H = (h;;) € T,,(F2) be a fixed matrix.
Lets : T,,(F2) — T,,(F2) be the map defined by

§(A) = Eln - Z az]hleln

1<i<ysn

for all A = (a;;) € T,(FF3), where tr(A) is the trace of A. Then ¢ is an additive map on
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T,(Fs). Let A = (a;;) € T,(F2) be invertible. Then a;; = 1 fori =1,...,n. Thus
A§(A) = Z hijaijEln = §(A)A
1<i<j<n
Hence ¢ is a commuting additive map on invertible matrices. For example,

A—tr(A)Ey, and Aw— X(A)E,,

are commuting additive maps on invertible matrices of this type. Here, 3(A) denotes the

sum of all entries of A.

Example 4.2.2. Let n > 2 be an integer and let o, 31, B2 € F5 be some fixed scalars. Let

U, 5.8 ¢ Tn(F2) — T,(IF2) be the map defined by
\Pa,ﬁl,ﬁz (A) = (aa12 + ﬁl(an—lm + ann))El,n—l <& (aan—l,n + 62(0111 + a12)>E2n

for all A = (a;j) € T,,(Fs). Then ¥, s, 5, is an additive map on 7,,(IFy). We now verify
that [A, ¥, 4, 5,(A)] = 0 for all invertible matrices A € T,(Fs). Let A = (a;;) € T,,(Fs)
be invertible. Then A = I, +U where U = >, _,,, a;; Eyj. Since [I,, Wy 5, 5,(A)] = 0,
it follows that [A, ¥, 5, 5,(A)] = [U, ¥4a.s 5, (A)]. Therefore

U\Pa,ﬁl,ﬁg(A) = a12E12(05an71,n + 52(1 + @12))E2n = Oéa12anfl,nEln
because ajo(1 + a12) = 0, and
\Ija,/)’h,@g (A)U = (aa12 + /81 (an—l,n + 1))E1,n—1(an—l,nEn—l,n) = aa12an—1,nE1n

because (ap—1,,+1)an—1, = 0. Then ¥, g, 5, is a commuting additive map on invertible
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matrices. For instance, the following maps

11 A1z Q13 Qi4 0 0 a2 O
0 axp ax ay 00 0 axu
'—> )
0 0 a3z a3zq 0 0 0 0
0 0 0 ay 0 0 O 0

aiy G2 a3 a4 0 0 agg+asy O
0 azx ax axy 0 0 0 0
H )
0 0 as33 a34 0 0 0 0
0 0 0 au 00 0 0
air G2 a13 Q14 0 00 0
O 929 A23 Q24 O O O a1 + a19
}_)
0 0 ass 34 000 0
0 0 0 au 00O 0

are commuting additive maps on invertible matrices of this type.

Example 4.2.3. Let n > 2 be an integer and let X,..., X, € T,(F;) be some fixed

matrices such that Xy + .-+ X, = 0. Let ¢ : T},(F3) — T,,(F5) be the map defined by
Pp(A) = Z ;i X;
i=1

for all A = (a;;) € T,(F2). Notice that ¢ is additive and ¢(A) = 0 whenever A is
invertible. Then ¢ is a commuting additive map on invertible matrices which vanishes on

invertible matrices. For instance, the following

air  aq2 ay +azy 0
—

0 929 0 0
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ayr a2 a3 Qa4 0 agp+azs 0 0
0 axp ax axu 0 0 0 0
— ;

0 0 asz Qas34 0 0 0 a1 + 929 + ass + Q44
0 0 0 auy 0 0 0 0
aipr Q2 -+ Gip a1 + aga 0 s 0

0 axp - a 0 a2 +asg - -- 0

H
o o . 0 0
0 0 0 Ann 0 0 0 Qpn + Q11

are commuting additive maps on invertible matrices of this type which vanish on invertible

matrices.

4.3 Main results
Recall that 7,,(IF,) is the ring of n x n upper triangular matrices over [, with centre
Z(T,(F3)) and unity ,,. We obtain the following characterisations of commuting additive

maps on invertible upper triangular matrices over the Galois field of two elements.

Theorem 4.3.1. Let n > 4 be an integer. Then ) : T,(Fy) — T,(Fs) is a commuting
additive map on invertible matrices if and only if there exist scalars \,«, 51, P2 € Fo,
matrices H, K € T,(Fs) and X1, ..., X, € T,(F2) satisfying X1 + --- + X,, = 0 such
that

U(A) = A + tr(H' A)L, + tr (K'A) By + o, 5, (A) + D anX;
=1

Jorall A = (a;j) € T,(F2) where U, g, 3, : T,(F2) — T,,(Fy) is the additive map defined

by
U, 5.8, (A) = (aarz + Br(@n—1n + ann)) E1n1 + (@@n—1, + Bo(a11 + a12)) By,

Jorall A = (a;;) € T,(F).

Theorem 4.3.2. ¢ : T3(Fy) — T5(Fy) is a commuting additive map on invertible ma-

trices if and only if there exist scalars \,«, 3,y € Fo, matrices H/ K € T3(Fy) and
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X1, Xo, X3 € T3(Fy) satisfying X1 + Xo + X3 = 0 such that
3
Y(A) = M+ tr(H'A)I; + tr (K" A) Bz + o a8(A) + D4 (A) + Y asX;
=1

Jor every A = (a;;) € T5(F3), where Vo5 : T5(Fy) — T5(Fy) is the additive map
defined in (4.4) and ®., : T5(Fy) — T5(Fs) is defined by

¢7(A) = v((a12 + ag)Ea + (a11 + aia + asg + asz) Ess + a13(F1a + Ea3))

Jor every A = (a;;) € T5(F5).

Theorem 4.3.3. ¢y : T5(IFy) — T5(F2) is a commuting additive map on invertible matrices
if and only if there exist some scalars \i, \y € Fy and matrices X1, Xo € T5(Fs) such

that

Y(A) = (a11 + a12) X1 + (@22 + a12) X + Maials + Aaai2Ero
Jor every A = (a;;) € T(F5).

We remark that Example 3.2.3 can be derived from Theorem 4.3.3 by setting X; =
XQ :Oand)\l :)\2 =1.

Remark 4.3.4. In view of Theorem 4.3.3, we have the following observation.

@ Let A € F, be a fixed scalar. If X1 = AE};, X5 = AEy and \; = Ay = ), then

W(A) = XA forevery A € Ty(Fy).

(ii) Let €1,€9,€3 € ]FQ be fixed scalars. Ile = 61]2, XQ = 62[2, )\1 = €1+ €2 + €3 and
Ay = 0, then

’QD(A) = (61&11 —+ €2a99 + 63&12)[2 for cvery A= (aij) S TQ(FQ)

(i) Let my,my, M3 € Iy, be fixed scalars. If X = m Ejs, Xo = mFi2, Ay = 0 and

/\2 =T + 7o + T3, then

Y(A) = (mra + Taaze + T3a12) Erp forevery A = (a;;) € T3(F»).
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(v) Let X € T5(FFy) be a fixed matrix. If X; = Xy = X and \; = Ay = 0, then
X1 -+ X2 =0and

V(A) = a1 Xy + ageX, forevery A = (a;;) € Ty(Fa).

v) Let o, (1,82 € Fy be fixed scalars. If X| = [yFE9, Xo = [1E11, Ay = a and
Ao = 0, then

Y(A) = (aarz + Bi(aiz + ag2))En + (ain + Bo(ain + a12)) Eaa = Vo g, 5, (A)

for every A = (a;;) € T»(Fs).

Together with Theorem 3.3.3 in Chapter 3, Theorems 4.3.1, 4.3.2 and 4.3.3, we obtain
a complete structural characterisation of commuting additive maps ¢ : T,,(F) — T,,(F)

on rank r matrices over an arbitrary field IF, where 1 < r < n is a fixed integer.

Theorem 4.3.5. Let F be a field and let n > 2 be an integer. Let 1 < r < n be a fixed

integer. Then ¢ : T,,(F) — T,(F) is a commuting additive map on rank r matrices if and
only if

« when r < n or |F| # 2, there exist scalars \,o« € F and an additive map p :

T,.(F) — F such that
w(A) = )‘A + /’L(A)In + a(afll + ann)Eln
Sorall A = (a;;) € T,,(F), where o # 0 only if r = n and |F| = 3,
» whenr = n > 4 and |F| = 2, there exist scalars \,«, 51, s € T, matrices
H K € T,(F) and X, ..., X, € T,(F) satisfying X1 + - - - + X, = 0 such that

Y(A) = A + tr(H' A)L, + tr (K'A) By + Vo, 5, (A) + ) aaX;
=1

Jorall A = (a;j) € T,(F), where ¥, g, 5, : T,,(F) — T,(F) is the additive map
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defined by
U, 6.8, (A) = (aarz + Br(n—1n + ann)) E1no1 + (@@n—1,, + B2(a11 + a12)) Eay,

Jorall A = (a;;) € T,(F),
* whenr = n = 3 and |F| = 2, there exist scalars \, o, 3,y € F, matrices H, K €

T5(F) and Xy, Xy, X3 € T5(F) satisfying X1 + Xo + X3 = 0 such that
3
Y(A) = M + tr(H' A) I3 + tr (K" A) Erz + o 5(A) + 04 (A) + Y auX;
=1

Jorall A = (a;;) € T5(F), where U, 5 : T5(F) — T5(F) and ., : T5(F) — T5(F)

are the additive maps defined by

U, 5(A) = (a(ags + ass)) Eia + (B(a11 + a12)) Eas,

(I)v(A) = v((a12 + ag)Faa + (a11 + a1z + ags + ass) Ess + ai13(E1a + Ea3))

Jorall A = (a;;) € T5(F), and
« whenr =n = 2 and |F| = 2, there exist scalars A1, \y € F and matrices X1, X5 €

T5(F) such that
W(A) = (a11 + a12) X1 + (ag2 + a12) Xo + Aaials + Aoar2Ero

Jorall A = (a;;) € Tr(F).

4.4 Proofs

Throughout this section, unless stated otherwise, let n > 2 be an integer and let 5 be

the Galois field of two elements.

Lemma 4.4.1. Let n > 3 be an integer and let ¢ : T,,(Fo) — T,(F2) be a commuting

additive map on invertible matrices. Then the following assertions hold.

For each integer 1 < i < n and o € Fy, there exist o, ..., n—1 € Fy such that

w(]n -+ D1 —+ OéDZ) = Z;:_é OéZ'ij.
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(i) For each integer 1 < i < n, there exist \jg, ..., Nin—1 € Fa such that (D;) =
3520 Aii Ds.

Gii) [V(1,), D1] = [W(D1), D1] and [(1,), D;] = [¢(Dy),D;] = 0 for every i =
2,...,n—1

(v) Foreachi € {0, 1}, there exist g, . .., Qi n—3, i, b1, ba, ¢; € Fo such that
n—3
Y(D;) = <Z Oéiij> + (Qin—3 + a;)Ea 1 + b By 1 + binEayn + ¢ By,
j=0

with Q-3+ Q1 p_3 = Qo+ a1 and by, + b1 = b + b1a.

Proof. (i)Leta € Fyandlet1 < i < nbean integer. Since [¢(I,, + Dy +aD;), I, +D; +
OZDZ] = 0and W)(In —+ D1 + OéDi>, In] = O, we get [¢(In —+ D1 -+ OéDZ'), D1 + OéDz] =0.
The result readily follows from Lemma 2.1.5.

(i1) Let 1 <7 < n be an integer. By (i) and the additivity of ¢/, we obtain

n—1

Y(D;) = (I, + D1+ D) + (L, + Di) = > Ay D;

=0

for some Ao, ..., A1 € Fo.

(iii) Let 1 < ¢ < n be an integer. By (i) and Lemma 2.1.4, [¢(I,, + D;), D;] = 0.
Then [¢(1,,), D;] = [(Dy), D;]. For 1 < i < n, we note that [¢)([,, + D;), D;] = 0.
So [¢¥(I,), Di] = [¢(D;), D;]. Moreover, [¢(D;), D;] = 0 by (ii) and Lemma 2.1.4.
Consequently, [¢(Dy), D;] = [¢(1,), D;] = 0 foreveryi = 2,...,n — 1 as desired.

(iv) Denote (1) = (a;;) € T,,(F2). Since [¢)(1,,), Do] = 0, it follows that for each

integer 0 < ¢ < n— 3,
Qi 40 = Q42 4+24¢ for CVGFYi = 1, e, — (—2. (41)
Moreover, for n > 4, [1/(1,,), D3] = 0 implies that for each 0 < ¢ < n — 4,

Qg j40 = Q43 i+3+4 for everyz' = 1, N ?— 3. (42)
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By (4.1) and (4.2), we obtain
n—3
Y(I,) = (Z &Oij> + (on—3 + a0)Eon—1 + bo1 Er o1 + b2 By + coEr, (4.3)
j=0

for some scalars aqy, . . ., o n—3, G0, bo1, boz, co € 3 as required.

Notice that [¢)(1,,) + ¥(D1), D1] = 0 by (iii). It follows from Lemma 2.1.5 and (4.3)

that
n—3
Y(Dy) = (Z Oélij> + (s +a1)Eopn1 + 011 By 1 + bioEsy, + 1 B4y,
§=0
for some scalars o, . .., o1 -3, a1, 011, b2, 1 € Fy such that g ,,—3 + a3 = ap + a3
and b()l + bll = b(]Q + b12. O

Lemma 4.4.2. Let n > 3 be an integer and let ¢ : T,,(Fy) — T,,(Fy) be a commuting
additive map on invertible matrices. Then the following assertions hold.

0 [V(In), Eij| = [Y(Eij), Eij| for all integers 1 < i < j <
Gi) [Y(D1), Eij]l = [Y(Eij), D1] for all integers 1 < i < j < n.
i) [V(Ey), Ba] = [V(Eq), Eiy] for all integers 1 <i < j <

Proof. (i) Let 1 < ¢ < j < n be integers. Since [¢(I,, + Ejj), I, + E;;] = 0 and
W1, + Ei;), I, = 0, it follows that [¢)(1,,) + ©(E};), Ei;] = 0. Thus [¢(1,), E;j] =
[V(E;j), Eij| as desired.

(if) Let 1 < ¢ < j < n be integers. Note that [¢([,, + Dy + Ejj), I, + D1 + E;j] =0
implies that [¢)(1,,) + ¥(D1) + ¢(Ei;), D1 + E;j] = 0. Since [¢(1,,), D1] = [¢(D1), D]
and [¢(I,.), Eijj] = [W(E3j), Eij], it follows that [ (Dy), Eij] = [0 (Ei;), Di.

(i)Letl < ¢ < j<nandl < s <t < nbeintegers. Then [¢(I, + E;; +
Ey), I, + Eij + Ey] = 0 yields [¢(1,) + ¥(Ei;) + Y(Es), Eij + Es) = 0. Since
[W(In) + 9 (Ey), Byl = 0and [(1,,) +9(Eg), Es] = 0by (i), we obtain [{)(Ey;), Es] =
[V(Est), Eijl. O

Lemma 4.4.3. Let n > 4 be an integer and let ¢ : T,(F2) — T,(F2) be a commuting

additive map on invertible matrices. Then there exist \, «, 81, P2 € Fy and additive maps
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w:To(Fy) — Fyand 7 : T,(Fy) — Fy such that
V(A) = AN+ p(A) L, + 7(A) B + Vo s, 5,(A)

for every strictly upper triangular matrix A € T,(Fy) and A = I, where U, 3, 5, :

T.(Fy) — T,(FFy) is the additive map defined by

\Ija,ﬁ1,,32(A) = (Oéam + ﬂl(an—l,n + ann))El,n—1 + (Oé(ln—l,n + 52(6111 + a12))E2n 4.4)
Jorall A = (a;;) € T,(F).
Proof. By Lemma 4.4.1 (1), (ii) and (iv), we have

n—3
V(1) = <Z Oéz'Di) + (-3 + a)Ey 1 + bEy 1 + cEsy, + dEh,

for some oy, ..., a,_3,a,b,¢c,d € Fy, and

n—3
Y(Dh) = <Z(Oéi + %’)Di) + (a3 +a)Eop1+ (b+ Yn—2)E1 1

=0
+ (C + 7n—2)E2n + (d + ’yn—l)Eln

for some Y, . . ., ¥n_1 € Fa. For each integer 1 < p < ¢ < n, we let (E,,) = (ag”q)) €

T,(Fy) where a(p 9 ¢ T, for all integers 1 < ¢ < j < n. Note first that

n—2 n—l—]
[ (Epq) @; z+] + az+1 1+1+])Ei,i+1+j7
7=0 =1
p—1
[¢(EPQ)7 qu] - ( (p.0) + (l p 9 E + Z qpq(zng ,q+i Z a’;}i(z]‘,)pEp—i,m

=1

p

aEln 1 + CEln + Zz 1 azEl 241 1f<p7 q) = (172)7

[W(In), Epgl = § aBop + bEry + 3" By _in if (p,q) = (n —1,n), -

n—q p—1 .
\Z Ly aiBlp i+ )00 aiBp iy otherwise,

and
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(@4 Yn-3)E1n_1+ (¢ + Yn—2) Ern

+ 30 (e + i) B o if (p,q) = (1,2),
[V(Dr), Epgl= (@ +Y-3)Eon+ (b + Yn_2)Ein
+ Z?;14<04i + ’Yi)En—l—i,n lf <p7 Q) = (n - 17 n),

\ Z?;lq(ai + i) Epgri + Z?;ll (i +7i)Ep_iq otherwise.

We first consider (E12) = (a}™™). By [t/(Er2), Di] = [/(D1), E1a), we have

n—2 n—1—j
1,2 1,2
Z Z (“z(;z‘Jr)j + az('+1,) it143) By i 14
j=0 i=1
n—4
= (a+vm-3)E1pn-1+ (c+ Yn—2)Ern +Z(Oéz' + ) E1 244
i=1
Then
az(iLZ) = G§11’2) fori = 27 sy Ty (45)
az(',liﬂz—s = aﬁf_@ +a+yn-g fori=2,3, (4.6)
a5,? = aii? ) + ¢+ Yuoa, 4.7)
and when n > 5, we get
1,2 1,2
afyly = aiih g+ (4.8)

fOI'j = 1, o, = 4and i = 2, e, = j By virtue of [’(/}(In), E12] = ["L/)(Elg), Elg],
together with (4.5)—(4.8), we obtain

n—4

abiy 1 + chy, + Z a; By oy
=1

= (aff—)2 +a+ ’7n—3)E1,n—1 + (aﬁle +c+ ’Yn_Q)Eln

n—4
+ Z(a&% + i + i) By
i=1

We thus have

ag}fgl =~ fori=1,...,n—2. 4.9

40



It follows from (4.6)—(4.8) that

al?) s =a fori=23 (4.10)
as? =, 4.11)

and when n > 5, we have
a7 = a; (4.12)

fory=1,....n—4andi=2,...,n — 7.
Consider now ¢ (Es3) = (ag’?’)). By virtue of [¢)(Es3), D1] = [¢(D;), Ea3), we have

n—2 n—1-—j n—3
Z(in] 7,+1 z+1+j)Ez‘, i+1+5 = (01 + 1) Ers + Z(Oéi + %) B2+
7=0 =1 i=1
Then
al?® =a®® fori=2,...n, (4.13)
a%g) = a%?’) +a;+7 and afii)l = ag?’) fortr=3,...,n—1, (4.14)
agff) =5 a%?’) and OL(2 3) aff_)l, (4.15)
and when n > 5, we get
3 2,3
a5’y =al)) and oY = a4 oy 4+ (4.16)

forj=2,...,n—3andi=3,...,n—7j. By [¢/([,), Fas] = [(Ea3), Fa3), together with
(4.13), (4.14) and (4.16) yield

n—3
(2,3
OélElg -+ g OQEQ 34 = a12 E13 + (112 E24 -+ E al H-)l + o; + 72)E2,3+i.
=1 =2

We thus obtain

al%? = ay, (4.17)
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and when n > 5, we have

afﬁ-)l =~ fori=2,...,n—3.

It follows from (4.14) and (4.17) that

(2,3) (2,3)

ay” = and a;;; =y fori=3,...,n—1

By (4.16) and (4.18), we get

(2,3) (23) _

Ag o = Vj and Q545 = O
forj=2,...,.n—3andi=3,...,n—jwhenn > 5.
In view of (4.5), (4.9), (4.10) and (4.12), we see that
n—4

[V(Eh2), Eas) = 11 Evs + aFay, + Z ;B3 ;.
i1

Next, by (4.13), (4.15), (4.19) and (4.20), we obtain

n—3
[W(Ea3), Era] = le{i)lEm + Z Vil a1
i=1

It follows from [¢<E12), Egg] = [¢(E23), Elg] that
a =0,

and when n > 5, we have

a; =0 and ~; =0

fortr=1,...,n—4and j = 2,...,n — 3. We thus obtain

V(1) = aoly + an_s(E1p—2 + Es,) + OE1 1 + By, + dEhy,

Y(Dh) = (o +v0)Ln + D1 + an_s(Er 2 + Es,) + X,

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)
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where X = (b + vp—2)E1n-1 + (¢ + Yn—2)Ean + (d + vp—1)E1p,. Together with (4.5),
(4.9), (4.10), (4.11) and (4.12), we obtain

Y(Eg) = G§1 )I + 1B + V2B o1 + cEop + a§n2)E1n (4.23)

We next claim that o,,_3 = 0. Consider ¢(E3) = (a(l-’?’)). From [¢(E\3), D1] =

ij

[4(D), E13], we obtain

n—2 n—1—j n—3
1,3)
(a3 + al i ) B iy = 3 (06 + %) Erai = 1B + an_3Eun.
7j=0 =1 i=1
Then
all’® =al? fori=2,. .. n, (4.24)
aﬁf’;{ a%?’) fort=2,...,n—1; (4.25)
when n = 4, we obtain
a8y = aly? + 71 + ans; (4.26)
when n > 5, we get
o) =aly? vy fori=2,....n -2 (4.27)
an? = al’? )+ s, (4.28)
and whenn > 6,
1,3 1,3
aiiy; = arih (4.29)

fOTj = 3, e, = 3and ¢ = 2, N j By virtue of [w([n)a Elg] = [@b(Elg), Elg],
together with (4.21), (4.24), (4.25), (4.27) and (4.29), we get

a§2 )E14 ifn= 4,
an—SEln =

ag123)E14 + (ag3 ) + 71)E15 + Zn 3 glzi)lEl,i—&-S ifn 2 5.
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It follows that

a(112’3) ifn=4,

Qp—3 = a%’g) +v  ifn =5, (4.30)

al’?,  ifn>6.

\

By (4.23), we have [(/(Eq2), Eis] = 0. From [¢(E12), Exs] = [(E13), B2, together
with (4.24)—(4.29), we obtain

a§2 )Elg —|— (agg ) —I— 71 + (079 3)E14 1fn = 47

a(1123)E13 + (a§3 )+ Y1) B + (ag4 '+ 3)Eis  ifn =5,

0= (4.31)

a5 B + (aly” + 71) B + (af n3)1 + n-3) E1n

+Zz 4 CLlz )El it ifn = 6.

In view of (4.30) and (4.31), we conclude that o, 3 = 0 as claimed. By (4.21) and (4.22),
we obtain

w(In> = aOIn + bEl,n—l + CEQn + dEl?’L? (432)
Y(D1) = (o+7) In+71 D1+ (b+Yn—2) E1 -1+ (c+Vn—2) Eon+ (d+vn-1) E1n. (4.33)

We now consider t(E,_1.,) = (a7""™). By (4.33), [('(Ep_1.0), D1]=[t(D1), Ep_1.,]

)

yields
n—2 n—1—j
n—1n n—1n
Z Z (az(‘,i—i—j '+ a§+1,z’+1)+j)Ez it145 = 0+ m—2)Ein + 1 En_2.
j=0 =1
Then
al" M = {" fori =2 ,
7(171—1%7,:1) _ (n 1,n) +7 and CLE H_},n) gg 1,n) fori — 2 _9
n—1,n n— 1n
gn : - ( + b + Tn—2,
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and when n > 5, we have

(n—=1,m) _  (n—1n)
it Q11+

forj=2,...,n—3andi = 2,...,n—j. Likewise, by [¢'(1,,), Er—1.,]=["(En-1n), En-14]
and (4.32), we get

n—2

bEln = ( gln 11nn)1 + a(n L n)>En—1,n + a(n—l,ﬁ) En—l—i,n‘

nn n—1—in—1
=1

Then a§”n " — pand a "™ — 0 fori=2,...,n — 2. We thus obtain

w(Enfl,n) - Ggq ! n)[ + ’71En 1,n + bEl n—1 + Yn— 2E2n + agn X n)Eln (434)

Next, consider ¢(Ey,,) = (al;™). By applying (4.33) in [)(E\,,), D1] = [(Dy), B,

we obtain

|
N

nnlj

(L,n) _
a; z—l—j + az—l—l z+1+j)Ei,i+1+j = 0.

<.
Il
o

=1
Then ¢(E1,) = 327 al'/"y Di. By using (4.23) and [¢/(E1,), Evs] = [(Ewa), B, we

get
n—1
Y ai B =0.
=2

Then a%’") =0fori=2,...,n— 1. We thus obtain
Y(Ey) = ay" I + allV By, (4.35)

Finally, consider ¢(E,,) = (ag’q)) for 1 < p < q < nwith (p,q) ¢ {(1,2),(n —
1,n),(1,n)}. Since p # n — 1,n and ¢ # 1,2, by applying (4.33) in [¢)(E,,), D1] =
[¢(D1), E,q], we obtain

ME g1 ifp=1andq < n,
n—2 n—1—j
Z Z (a(p,q) + a(p,q) )E ) o .
iyitj i1, i1+ ) Py i1+ = MEp-1n ifg=nandp > 1,
j=0 =1

Y1 Ep—l,q + ’YIEp,q—‘rl otherwise.
\
(4.36)
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When p = 1 and ¢ < n, we get

1, 1, .
agﬁ)qﬂ " +a§qQ) fori=1,...,n—gq,

(1,9) _ (La)
A1 piitits — 1145

forj=0,...,9—2,q,....n—2andi=1,....n—1—j. Wheng=nandp > 1, we

obtain

all™) =y + ag{’;f_)pﬂ and al(l;”)pﬂ agpn")pﬂ fori =2,...,p
(p,n) (pn)

Aipin+it; — 11+

_]_’

forj=0,....n—p—1n—p+1,...,.n—2andi=1,...,n—1—7. When p # 1 and

q #n,

(p,9) _ (p9)
A1 14itg = 1114

forj=0,....,.¢—p—1,g—p+1,....n—2andi=1,...,n—1—7,

(p,q) (
(pq) _ (»,9) (»,9) __(p9)
Apg " =M+ a1 p and Upt1g+1 = A 14g—p>
(p,q) _ (»9) s
A1 {itgopti = M itqp fOri=p+1l....n—1—q+p.

Consequently, we obtain

n— 1, .
Zz 1 ’ylEH‘LQ'H + Z s gzgr)lD lfp =1,

Epy + i ali?yD; ifp # 1.

We claim that

¢(qu) = a%’q)ln + 1B, + a( Q)E

1n

We distinguish our argument between two cases:

(4.37)

(4.38)
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Case I: p = 1. By (4.23), we have ¢(E13) = ag11,2)ln +E2 + V2B 1 + cEoy +
a{" E1,. Then [(E1y), Bi,] = 0 as ¢ # 1,2. By (4.37),

In

n—1
[V(ELg), Era] = (a%q) +7)Erg1 + Z a%q)ELiH-
i=2,i#q
en 1q), L12| = 12), £1g] yields a =manday,” = 0tora <1 < nwit
Then [¢)(E,), E D(Er), i) yields af? dall? = 0forall1 < i ith
1 # q. Claim (4.38) follows immediately from (4.37).

Casell: p # 1. Since p # 1,n — 1,n and q # 1, 2, it follows from (4.23) that

Nk ifp=2,
W’(EH)’EM] =
0 ifp > 2.

By (4.37), we have ¢(Epy) = 71 Epg + >0 a1 z—l—lD Since g # 1, we get (E,,) Er2 =

a§1 )E12 Therefore

Yy + Z 2 alz )El i1 ifp=2
[w(qu>vE12] =

ZZL 21 agl )El i+l lfp > 2.

By virtue of [(/(E,,), E1a] = [)(E), E,q), we obtain > a{?@ By ;; = 0, and thus
al? =0 fori=2,...,n — 1. It follows from (4.37) that claim (4.38) is proved.
It follows from the results of (4.23), (4.32), (4.34), (4.35) and (4.38) that we let u :

T, (Fy) — Fy be any linear map such that p(1,,) = ag + v, and

p(Ey) = ay”
for every integer 1 < i < j < n, and let 7 : T,,(Fy) — Fy be any linear map such that

7(I,) = d, 7(Ey,) = 71 + alt™ and
7(Ey) = al

for every integer 1 < i < j < n with (4,7) # (1,n). We define the map ¢ : T,,(Fy) —
C(A) = A+ p(A) I + 7(A) B + Uy, 5.0(A)
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for every A € T, (F,) where ¥, ;. : T,(F2) — T,(FF) is the additive map defined
in (4.4). Notice that ( is a commuting additive map on invertible matrices by Examples
4.2.1 and 4.2.2. Moreover, since ((£;;) = 1(E;;) for all integers 1 < i < j < n, and

U, sbe(ln) =bE) -1 + cEsy,, we have

<<In) =i, + N(In)[n + T(In)Eln + \11%7271)70(%)
=yl,+ (o +n) I+ dEy, +bE) 1 + cEay

= Oéo[n + bEl,n—l + CEQn + dEln

= w(In)

Since 9 is linear, it follows that ¢)(A) = ((A) for all strictly upper triangular matrices

A € T,(Fy) and A = I,,. The proof is complete. O
We next prove the following particularly interesting results.

Lemma 4.4.4. Let n > 2 be an integer and let ¢ : T,,(Fy) — T,,(F2) be an additive map.

Then the following are equivalent.

() ¢ is a commuting map on invertible matrices that vanishes on invertible matrices.
G) Y(I,) =0and Y(E;;) = 0 for all integers 1 <1i < j < n.
(i) There exist matrices X1, ..., X, € T,(Fs) satisfying X1+ - - -+ X,, = 0 such that

¢(A) = Z a; X
i=1

Jorall A = (a;;) € T,(F).

Proof. (1) = (ii). Let 1 < i < j < nbeintegers. Then(E;;) = (I, + E;;)+v¢(1,) =
0.

(i) = (iii). Let X; = (Ey;) € Ty(Fy) fori = 1,....,n. Then X; + - + X,, =
¥(I,) = 0and

0 whenl<i<j<n,
V(Eij) =

X, whenl <=7 <n.

It follows from the linearity of ¢ that ¢)(A) = > | a;X; for every A = (a;;) € T,,(FF2).
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(iil) = (i). Let A = (a;;) € T,,(F3) be invertible. Thena; = 1 fori=1,...,n, and

thus ¢ (A) = > | X; = 0. Consequently, (A)A = 0 = Ay (A) as required. O

Lemma 4.4.5. Let F be a field and let V be an n-dimensional linear space over F. Let
{e1,...,en} be a basis of V. Then 7 : V — T is linear if and only if there exist unique

scalars 11, ..., T, € F such that

n
T(u) = Z Til;
i=1

Joreveryu =" ue; €V.

Proof. The sufficiency is clear. For the necessity, let 7(e;) = 7, € F for every 1 <
i < n. Foreachu = > we; € V, it follows from the linearity of 7 that 7(u) =
D i wiT(eq) = D i) it

For the uniqueness, suppose there exist scalars «q,...,a, € F such that 7(u) =
Yo aqu; forevery u =Y " uze;. Then )1 (a; — 7;)u; = 0 forevery u = >0 | we;.

Choosing u = e;, we thus obtain o; = 7; for all 1 < ¢ < n as desired. O

Let n be a positive integer and let 7 : T,,(Fy) — 5 be an additive map. Then 7 is
linear. Considering the standard basis of 7},(Fs), it follows from Lemma 4.4.5 that there

exists a matrix H = (h;;) € T,,(F3) such that

T(A) = > hjay = te(H'A) (4.39)

1<i<j<n

for all A = (a;;) € T,(F2). Notice that tr (H*A) is the sum of all entries of H 0 A =
(hija;;), the Hadamard product of H and A.
As a side remark, a result that is similar to (4.39) for symmetric matrices has been

obtained in (Orel, 2019, Lemma 3.4).

We are now ready to prove our main results. We start with the proof of Theorem 4.3.1.

Letn > 4 be an integer.

Proof of Theorem 4.3.1. By Examples 4.2.1-4.2.3 and Lemma 4.4.4, the sufficiency holds.

For the necessity, in view of Lemma 4.4.3, there exist scalars \, «, 81, B2 € Fy and addi-
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tive maps p : T,,(Fo) — Fy and 7 : T,,(Fy) — F such that
V(A) = AN+ p(A) L, + 7(A) By + Vo s, 5,(A)

for all strictly upper triangular matrices A € T,(Fy) and A = I,, where U, 3, 3, is the

additive map defined in (4.4). Let ¢ : T,,(Fy) — T,,(IF2) be the map defined by
p(A) = V(A) + AA + p(A) L + 7(A) Ern + Yo p,,(A)

forall A € T,,(F3). Then p(E;;) = 0 for every integer 1 < ¢ < j < nand ¢(I,) = 0. By
Lemma 4.4.4, there exist matrices X1, ..., X, € T,(Fy) satisfying X; +--- 4+ X,, =0
such that o(A4) = > | a;X; for every A = (a;;) € T,,(F2). We thus obtain

V(A) = A+ p(A) L + 7(A) B + Va6, (A) + Z ;i X
i—1

for all A = (a;;) € T,(Fy). It follows that p : T,,(Fy) — Fo. By (4.39), there exist

matrices H, K € T,,(IFy) such that
w(A) =tr(H'A) and 7(A)=tr(K"'A)
for every A € T,,(F2). This completes the proof. O

Next we prove Theorem 4.3.2.

Proof of Theorem 4.3.2. We first claim that ., is a commuting additive map on invertible
matrices. Evidently, ®, is additive. Let A = (a;;) € T5(FF2) be invertible. Then A =
I3 4+ U where U = a12E15 + a3 E93 + ai3E3, and thus [A, @, (A)] = [U, ,(A)]. Note

that

Ud,(A) =7U ((a12 + 1) Ex + (a12 + a23) Ess + a13(Er2 + Ea3))
= vy(a1aFE12(a12 + 1) Eag + (a13E13 + ag3 Eas)(a12 + ag3) Ess + (a12E12)a13F3)
= Y(ai3(a12 + ag3) E13 + ass(a12 + ag3) Eaz + aiza13F43)

= 7v(aiza23FE13 + agsaiaFas + agsFag)
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since aj2(ay2 + 1) = 0 and a3; = as3. On the other hand, we see that

Q. (A)U =7 ((a12 + 1) Eae + (a12 + ag3) Ess + aiz(Er2 + Eas)) U
= Y((a12 + 1) Eaz(as3 Eas) + a13E12(ass Eas))

= y(a12a93Ea3 + ag3Ea3 + aiza93E13).

Hence @, is a commuting additive map on invertible matrices. Moreover, by Examples
4.2.1-4.2.3 and Lemma 4.4 .4, the sufficiency is proved.

For the necessity, in view of Lemma 4.4.1 (1), (i1) and (iv), we have

W(I3) = ag(F11 + Es3) + aBa + bE19 + cEas + dEs3, (4.40)

Y(D1) = (a0 +7)(Ern + Es3) + (a+70) B + (b+71) E1a + (¢ + 1) Eas + (d+72) Ers

for some scalars a, b, ¢, d, g, Y0, 71,72 € Fa. Let ¢(E12) = (pi;) € T3(F3). By
[Y(E12), D1] = [¥(Dy), E12], we have ps3 = pas = p11 + @ + ap and pag = p1a + ¢ + 7.
By [¢(13), E12] = [¥(E\2), F12], we obtain p;s = 71, and so pa3 = ¢. Then

Y(E12) = punEn + (pn + a+ ap)(Eag + Es3) + 71 B2 + cEos + pisEis. (4.41)

Let @Z)(EQg) = (qw) € T3(]F2) LikCWiSC, by [@Z)(EQg),Dl] = [¢<D1>,EQ3], we obtain
Q22 = Qu1, @33 = 11 + a + ap and g3 = q12 + b+ 1. It follows from [¢(13), Eas] =
[1)(Ea3), Eas] that g2 = b, and thus ¢o3 = ;. Therefore

Y(Ea3) = q1(E1 + Es) + (g1 + a + ag) Ess + bEvg + 71 Eos + i3 Exs. (4.42)

Let ¢(E13) = (Tij) - T3(F2) By [@/)(Elg), Dl] = [T/J(Dl), Elg], we obtain M =
T99 = T33 and T93 = T19. Hence w<E13> = 7”11[3 -+ 7’12(E12 + E23) + T13E13. Next,
by WJ(Elg), E12] = WJ(EQ), Elg], we obtain T19 = a + Q. Then

Y(E3) = riils + (a + ap) (B2 + Eas) + ri3FEhs. (4.43)

51



Weset A = v, x = ap + A and v = a + ag. In view of (4.40)—(4.43), we obtain

w(Ig) = )\13 + Ifg -+ (bElg + CE23> -+ ’)/E22 + dE13, (444)

Y(Er2) = AE19 + pi1ls + (0E12 + cEas) + v(Eaa + Ess) + pi3Eis, (4.45)
Y(FEas) = AEas + quils + (bE12 + 0Es3) + vEs3 + qu3 Ehs, (4.46)
V(E13) = AE13 + r11l5 + y(Ei2 + Eos) + (113 + M) Eis. (4.47)

By virtue of (4.44)—(4.47), we let i1 : T3(F3) — Fy be any linear map such that ju(/3) = x
and

(Er2) = pu, w(Faz) = quu, p(Eiz) = i,

let 7 : T5(F3) — F be any linear map such that 7(/3) = d and
7(E12) = pi3, T(Eas) = qu3, T(Ei3) =113 + A,
and let @, : T5(F,) — T3(IF,) be the linear map defined by
P, (A) = v((a12 + ag) B + (a11 + a1 + ass + ass) Esg + a13(Eiz + Eag))

for every A = (a;;) € T5(F2). We next define the map ¢ : T5(FFy) — T5(IF2) by

E(A) = NA+ p(A) s+ 7(A) Bz + Yo (A) + D, (A) (4.48)

for every A € T5(FFy) where W, . is the additive map defined in (4.4). Clearly, ¢ is a
commuting additive map on invertible matrices. By (4.45)—(4.48), we have {(E;;) =
Y(E;;) for every integer 1 < ¢ < j < 3. In view of (4.44) and (4.48), we obtain {(/3) =
Y(I3) by virtue of Wy, .(I3) = bE12 + cEy3 and @, (I3) = v Ea.

Let 9 : T3(IFy) — T3(IF5) be the map defined by

V(A) = ¢(A) +£(4)
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for every A € T3(F;). Since ¥(I3) = 0 and J(E;j) = 0 forevery 1 < i < j < 3,
it follows from Lemma 4.4.4 that ¢ is a commuting additive map on invertible matrices
which vanishes on invertible matrices. Then there exist matrices X1, Xo, X3 € T5(F2)
satisfying X; + X5+ X3 = O such that J(A) = Z?:l a; X; forevery A = (a;;) € T5(F2).
By virtue of (4.39) and (4.48), there exist matrices H, K € T3(IFy) such that

3
U(A) = A +tr(H' A) I + tr (K" A) Eys + o 0,5(A) + 0, (A) + ) aiX;
=1

for every A = (a;;) € T5(F3). This completes the proof. O

We now prove Theorem 4.3.3.

Proof of Theorem 4.3.3. For the sufficiency, we first see that ¢ is additive. Let A € T5(F2)
be invertible. Then either A = I, or A = [, + Ej5. Clearly, ¢(A)A = Ay (A) when
A = 1,. Consider A = I, + E15. Then

P(A)A = (Mo + ME12) (I + Er2) = (Io + Ev2)(Mls + A Er2) = AY(A).

For the necessity, we notice that [¢)([> + E12), Is + F12]) = 0and [¢(Iy + Eis), [] =0
yield [¢(Iy+ E12), E12] = 0. By Lemma 2.1.5, we obtain ¢ (Iy 4+ E15) = A Io+ Ay Eyo for
some scalars A, Ay € Fy. Let X; = o(E;;) € To(Fy) fori = 1,2. Then¢(13) = X+ X3
and Y (E12) = ¥(1s) + (I + E12) = X1+ Xo + A1y + Ao Eq5. Consequently, we have

Y(En) = X1, Y(Exn) =X, and ¢(E) = X1+ Xo+ M+ B
Let v : Ty(Fy) — T5(IFy) be the additive map defined by
v(A) = (@11 + a12) X1 + (a2 + a12) Xa + Maials + Aeai2Ero

for every A = (a;;) € T5(F3). Then v(E;;) = (E;;) forevery 1 < i < j < 2, and so
(A) = v(A) for every A € Ty(F,) as desired. O

Let M5 (F3) denote the ring of 2 x 2 matrices over F and let E;; € M,(IF;) be the
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standard matrix unit whose (¢, j)th entry is one and zero elsewhere. We end the discussion
with a characterisation of commuting additive maps ¢ : My(Fy) — My (F2) on invertible

matrices, i.e., additive maps ¢ satisfying [¢)(A), A] = 0 for all invertible matrices A €
My (F2).

Theorem 4.4.6. ¢ : My(Fy) — My (Fy) is a commuting additive map on invertible ma-

trices if and only if there exist scalars o, 5, \ € Fy and a matrix H € My(Fy) such

that

V(A) =M +tr(H'A)Ly + T 5(A)

Jorall A € My(Fy). Here, Iy, 5 : My(Fo) — My(FFy) is the additive map defined by
Fap(A) = aanQ + (aax + faiz + asn + ax))R

fOI’ all A = ((Zi]‘) € MQ(IFQ) where Q =F1+FEsy+ Eyyand R =1, + Q
PVOOf LetA1 = IQ,AQ = IQ—I—ElQ, Ag = IQ+E21, A4 = Q,A5 = RandAG = E12+E21.
Notice that Ay, ..., Ag, are the only invertible matrices in M, (F3), and

Faﬁ(Ag) = 0412, Faﬁ(Ag) = OzIQ, Fa,,@(A4) = &A4, Fa75(A5) = (Oé—l—B)Ag,, Faﬂ(AG) =0.

Therefore [I', 5(A;), A;) =0 fori =1,...,6. Hence ¢ is a commuting additive map on

invertible matrices of M, (F5) as required.
For the necessity, let )(A;) = (ag?) € My(FFy) fori = 1,2,3,4. From [¢(A;), A;] =0

fori = 2, 3,4, we obtain

2 2 ) (4) (4)

ap Q12 a1 a1 (12
Vide) = S Rl P Bl I
0 ay Aoy Qqq Ayy Ay + Qg
Then
Y(En) = ¥Y(A2) + 9(Asz) + 1 (As)
(sl el 49
3 4 2 3 4 4
@21) + agz) agl) + agl) + agl) + agz)

54



O, @ 0 o

aqq 11 Q12 12
Y(Er2) = P(A1) +¥(Az) = " N E (4.50)
Aoy Ay + Qyy
D) ol
Y(Ea) = P(A1) +¥(Az) = : (4.51)
1) 3) (1) (3)

() + Q31 Gy + ayy

VY(E) = Y(Ar) + (L)

(@ v ol vl 452
1 3 4 1 2 3 4 o]
aél) + agl) + @32) aéz) + agl) + @31) + agl) + agz)

Since A5 = E12 + E21 -+ EQQ, it follows from 0 = W)(A5), A5] = [@Z)(Elg) + ¢<E21) +

QZJ(EQQ) , A5} that

aéll) = aglg) and a%) = aﬁ) + a§12). (4.53)

Likewise, since Ag = E15 + Eo1, it follows from [¢)(Ag), Ag] = 0 that
o) = o®. (4.54)

Let A = ag) and let hy; = aﬁ) + aﬁ) + aﬁ) + a%), hiy = aﬁ) + aﬁ), hoy = agll) + aﬁ)

and hgy = aﬁ) + aﬁ) + aﬁ) + aﬁ) . It follows from (4.49)—(4.54) that

(2) 4 (2 4)
a1y + ajy A1y + Qg
Y(En) = AEn + hads + , ., , (4.55)
a§2) + ag2) 0
0 a%)
U(E12) = Mg + haols + : (4.56)
[CO N EY)
a1y Qq9
0 a%)
U(Ey1) = Ay + hot o + : (4.57)
n @
a1y Qg9
0 a%) + a%) + a%)
V(Ea) = AE + haols + . (4.58)

2 4 1 2 4 1
a§2) + a(12) + agz) agz) + a§2) + a§2)

Let p1 : Ms(IFy) — Fy be the linear map defined by
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p(Eij) = hij (4.59)
for every integer 1 < 7,5 < 2, and let £ : My(FFy) — My (IFy) be the map defined by
£(A) = M + p(A) L, (4.60)

for every A € My(F5y). Then £ and ¢ + £ are commuting additive maps on invertible

matrices of My (F,). Letting o = a{2 + a3 and 8 = a'Y), by (4.55)~(4.60), we get
(Y +&(A) = aanQ + (vage + f(are + as + axn))R

for all A = (a;;) € My(Fs). It follows from Lemma 4.4.5 that there exists a matrix

H € M;(F) such that

(A) = AA + tr(H'A) I + T 5(A)

for all A € My(F,). This completes our proof. O

We remark that Example 1 in Franca (2012) can be derived from Theorem 4.4.6 by
setting \ =0, H = Ejos+ Fyyanda = = 1.

Remark: The results in this chapter have been published in Chooi et al. (2019).
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CHAPTER 5: COMMUTING ADDITIVE MAPS ON RANK ONE UPPER
TRIANGULAR MATRICES OVER FIELDS

5.1 Introduction

Motivated by an example of nonstandard commuting map on rank one matrices over
fields when n > 3 in Franca (2013a), Franca (2017) studied commuting additive maps
Y : M,(F) — M,(F) on rank one matrices and discovered that the structure is much
more complicated and quite different from the standard form (2.14). Let T,,(FF) be the
ring of all n x n matrices over the field F with centre Z(T,,(FF)) and unity /,,. In view
of Theorem 4.3.5 and with the aim to complete the study for commuting additive maps
for all rank £ upper triangular matrices, with 1 < &£ < n being a fixed integer, in this
chapter we obtain a characterisation of commuting additive maps ¢ : T,,(F) — 7,,(F) on
rank one matrices. It is worth pointing out that the structure of commuting additive maps
¢ : T,,(F) — T,(F) on rank one matrices is much more fertile. Surprisingly we obtain
some irregular forms of commuting additive maps on rank one triangular matrices over

fields in which their structures are considerably more complex and astonishing.

5.2 Irregular nonstandard examples

We start our discussion with some irregular nonstandard examples of commuting ad-
ditive maps on rank one upper triangular matrices over fields. Throughout this section,
unless stated otherwise, let n > 2 be an integer and let I be a field. We recall from Lemma
2.1.1 that a matrix A € T, (F) is of rank one if and only if there exist a pair of positive

integers 1 < s < ¢ < n and invertible matrices P, ) € T,,(IF) such that

A= PE,Q. (5.1)

Here, E;; € T,(F) is the standard matrix unit whose (7, j)th entry is one and zero else-

where.
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Example 5.2.1. Let n > 3 be an integer and let x = (7;;) € T,,(IF) be a strictly upper

triangular matrix. Suppose that ¢, : T),(IF) — T,,(F) is the linear map defined by

T1 —Ti2Q12 —T13A13 **° —Tiplin
0 T —To3d23 **+ —Toploy

wX(A) = 0 0 T3 st —T3p03n
0 0 0 Ty

for all A = (a;;) € T,,(FF), where

Z?:Q T1: Q44 lf h = ]_,

— h—1 n .
Th = 2t Tin @i+ Dy Thi @i if 2<h<n— 1,

n—1 .
Zi:l TinQi; if h =n.

Let 1 < s <t < nbeintegers. It is not difficult to see that

Zn TliaEii if s=1t= 1,

=2
Zf;ll Tisa B + Z?:SJA Teial;; fl<s=t< n,
¢x(aEst) N
E:.L:_ll TinCLEM if s=t= n,

—TgaFy if s<t

for all @ € FF. For simplicity of notation, we write

Zf;ll TisaFy; + Z?:S“ Tsialy; if s =1,
wx<aEst) = (52)
_TstaEst if s<t

s—1
i=1 TisaEii =0

for all @ € T and integers 1 < s < t < n, where it is understood that >
when s = 1,and > 7" | 7aE; = 0 when s = n.

We show that 1, is commuting on rank one upper triangular matrices. Let A =
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(a;j) € T,(F) be of rank one. By (5.1), there exist integers 1 < s < ¢ < n and scalars

A1, ..., A € F such that

s

A= Z )\i(astEit +---+ asnEin)

i=1

with ag # 0 and Ay = 1. We argue in the following two cases:

Case 1: s <t. Thena; =0fori=1,...,n,and so

s

P (A) = — Z(Tit<)\iast)Eit + -+ T (Niasn) Ein).

=1

Since s < t, it follows that Ay, (A) = 0 and ¢, (A)A = 0.

Case2: s =t. Whens = 1,wehave A = > 1" \jay; By and o, (A)=>"", mi\ian By —
Yoo miMa B So ¢y (A)A = 0and AY, (A) = >0, Maymiihan By —
Yoo ManmiAa By = 0. When s = n, we get A = Y"1 i@y, By and ¢, (A) =
S T Annn Bii — S0 Tin ity Eip. Then Ath, (A) = 0 and

U (A)A = >0 L A @ Ni G Eliry — Yo 11 Tin\iGnnAnnn Ein = 0. We now consider
l<s<n ThenA=377 3" \agkiand

ZTzs/\ assEzz + Z Tsz)\ assEzz Z Tzs /\ aJss 18 -+ Tzn()\zasn>Ezn>

i=s+1
2 (Ts,s+1>\sas,s+1ES,s+1 + -+ Tsn/\sasnEsn)-

We see that
A@Z)X(A) = Z (Z Ai ilsj 2]>(7—53>\ ass ]] (Z Ai ilss zs)( Z Tsj/\sasjEsj>
Jj=s+1 \1i=1 J=s+1
= Z Z)‘iaszsj)‘sassEij - Z Z )\iassTsj)\sasjEij = O,
j=s+1 i=1 i=1 j=s+1
and
s—1 n
@bX(A)A = Z(TisAsassEii) <Z AZ‘CLS]'EZ']‘> (Z Tw)\ Qgs zs) (Z A CLS] sg)
=1 Jj=s
s—1 n s—1 n
= Z Z Tis)\sass/\iasjEij - Z Z Tis)‘iass)‘sasjEij = 0.
i=1 j=s i=1 j=s
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Hence (¢, (A), A] = 0 for all rank one matrices A € T,,(F) as required. As a side remark,
(Chooi, Mutalib, & Tan, 2021, Example 3.10) is a commuting linear map on rank one

triangular matrices of this type.

Example 5.2.2. (Chooi, Mutalib, & Tan, 2021, Example 3.10) Let [F be a field and let
Y : T5(F) — T5(FF) be the additive map defined by

Y(A) = ag3 B + anFs3 — azggFag

for all A = (a;;) € T5(F). It is not difficult to see that ¢)(A)A = 0 = A(A) for all rank

one matrices A € T3(FF).

Example 5.2.3. Let n > 3 be an integer and let

F = U {¢§;’t):F—>F:1<i<sandt<j<n}

1<s<t<n

be a set of additive maps on F. We define the additive map ¢ & : T,,(F) — T,,(F) by

vr(A) = > (Z > ¢S’t)(ast)Eij>

1<s<t<n \i=1 j=t+1

forall A = (a;;) € T,,(F). Let 1 < p < ¢ < n be integers. We see that

0 if p=1or g=n,
vz (alyg) = (53)
SIS ol (@B, if1<p<qg<n

for all @ € F. We now show that 1)#(A)A = 0 = Aty »(A) for all rank one matrices
A € T,(F). Let A = (a;;) € T,(F) be of rank one. By (5.1), there exist integers

1 < p < g < n such that

P n

i=1 j=q
where a,, # 0and (g, - - -, @in)s (Apg, - - -, app) are linearly dependent fori = 1,..., p—1.
Note that when p = 1, we have A = > a1;Ey;, and thus ¢7(A) = 0 by (5.3). The

claim is proved. Likewise, the result holds when ¢ = n. We now consider 2 < p < ¢ <
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n — 1. Notice that

hS]

3
|

—

¢?(A) = ¢st(ast)a

s=2 t=q

where, for each pair of integers 2 < s < pandq <t < n— 1,9y : F — T,(F) is the

additive map given by

Ya(a :Z Z 65" (a

=1 j=t+1

for all @ € F. We have

Abua) — (ZZ% )(z 3™ 669 an )—0

=1 j=q =1 j=t+1

because s — 1 < p < ¢, and

() (zz¢ )(zz% w>_0

i=1 j=t+1 =1 j=¢q

because p < ¢ < t+ 1. Hence A¢gy(agy) = 0 = g(agy)A forall 2 < s < pand
g <t < n—1. It follows that AYz(A) = 0 = 1h5#(A)A for all rank one matrices
A € T,(F). We notice that (Chooi, Mutalib, & Tan, 2021, Examples 3.11, 3.12) are

commuting additive maps on rank one triangular matrices of this type.

Example 5.2.4. (Chooi, Mutalib, & Tan, 2021, Example 3.11) Let [F be a field and let
f,g: F — F be additive maps. Let ¢ : Ty(IF) — T,(F) be the additive map defined by

Y(A) = f(az)Ei3 + g(ass) Fay

for all A = (a;;) € Ty(F). It can be checked that 1)(A)A = 0 = Ay (A) for all rank one

matrices A € Ty (F).

Example 5.2.5. (Chooi, Mutalib, & Tan, 2021, Example 3.12) Let [ be a field and let
n > 3 be an integer. Let ¢ : T,,(F) — T,,(IF) be the additive map defined by

(A) = (plazz) + 1(an-1n-1)) En
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for all A = (a;;) € T,,(FF), where p1,n : F — T are additive maps. Then ¢)(A)A =0 =
A1 (A) for all rank one matrices A € T,,(FF).

Letn >3andletV, = {(i,7) e NxN:1<i<j<n}\{(1,n—1),(1,n),(2,n—
1),(2,n)}.

Example 5.2.6. Letn > 3 be an integer and let

A= U {)\(St)EIF I<i<j<sort<i<j< }
(8,t)EVn

be a set of scalars. Let i : T,,(F) — T,,(IF) be the linear map defined by
Ua(A) = Y Ta(A) + @u(A)
(s,t)E€Vn

for all A = (a;;) € T,,(F), where for each (s,t) € V,,

0 if 1<s<2,
\Ijst(A) —
(21<z<j<s A t)Eij)( 2;11 st Epp — ahtEhs) if 3<s<n,
(5.4)
(X hety1 @stEnn — ashEth)<zt<i<]<n AS’”E@) if 1<t<n—2,
ést(A) -
0 ifn—-1<t<n
(5.5)
forall A = (a;;) € T,,(F). It can be shown that for each integer 1 < p < n,
Ua(aBy,) = > AMPaB;+ > AR, (5.6)

1<i<j<p p<i<j<n

for all a € F, where 32, ;AP Ej; = 0 whenp = 1,2, and 3 <Z<J<nA§§’p)E” —0

when p = n — 1, n; and that for each pair of integers 1 < p < ¢ <

—1 n
) = X 00,5 3 a3 Aan, S 3 e

1<i<j<p i=1 j=p+1 g<i<j<n i=p j=q+1
(5.7)
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foralla € F, where 37, ;.. APOE L — 0 whenp =1,2, 7] AV — 0

17 ] =p+1 ""ip

whenp =1, APDE — 0 wheng=n—1,n,and S D g )\g?’l)Eij =0

g<i<j<n g
when ¢ = n.

We first claim (5.6). Let 1 < p < n be an integer and let « € [F. First, note
that U (aFE,,) = 0 = ®y(ak,,) whenever (s,t) # (p,p). When p = 1,2, we have

U,,(aE,,) = 0by (5.4), and
waE,,) = ®,,(aE,,) = aBy, AP | = PP E
(G ( pp) pp pp ij J ij
h=p+1 p<i<j<n p<i<j<n
When p =n — 1,n, we get ¢,,(aE,,) = 0 by (5.5), and
p—1
dn(aBy) = Uyp(aByy) = < T A )(z E) S g,
1<i<j<p h=1 1<i<j<p
Considernow 2 < p <n — 1. So
Va(aEy) = Vpp(aEp) + Pppaky,y) = Z )‘ GEU + Z )‘(p Yok
1<i<g<p p<i<j<n

Hence (5.6) is proved.
We next prove (5.7). Let 1 < p < g < n be integers and let a € F. By (5.4) and
(5.5), we notice that ¥, (aE,,) = 0 whenever t # ¢, ¥y (aE,,) = 0 whenever p > s,

O (aE,,) = 0 whenever s # p, and @, (aFE,,) = 0 whenever ¢ < t. We thus obtain

q—1
Va(aBpg) = Vpg(aEpg) + Z Ujg(aEpg) + PpgaEyy) + Z Ppi(aEyg). (5.8)
Jj=p+1 i=p

In view of (5.4), ¥,,(aE,,) = 0 when p = 1,2. When p > 3, we have

p—1
v, ( > ArE, )(ZaEhh>: S AraE,  (5.9)
h=1

1<i<j<p 1<i<j<p

Next, in view of (5.4), since ¥;,(aFE,,) = 0,7 =p+1,...,q, when p = 1, it follows that
q
> Wjy(aBy,) = 0. (5.10)

63



When p > 2, we have

zq: Vjg(aEy) = zq: ( Z )\gaQ)EM)( aE,; Z <Z /\JQ) )

Jj=p+1 J=p+1 \1I<i<l<j Jj=p+1 \1<i<p
and thus
-1 gq
_ (9,9)
§ W (aBy,) = —§ j AV aB;;. (5.11)
Jj=p+1 =1 j=p+1

Likewise, in view of (5.5), we have ®,,(aFE,,) = 0 when g =n —1,n. When ¢ < n — 2,

we get

®,,(aE,,) = (Z aEhh>( > Ag’q)Eij) = > APap. (5.12)

h=q¢+1 g<i<j<n g<i<jg<n
By (5.5), since ®,,(aE,,) = 0,7 =p,...,q — 1, when ¢ = n, it follows that

n—1

> i(aB,,) = 0. (5.13)

i=p

When ¢ < n — 1, we have

q—1 q—1 q—1
Z(I)pi(aqu) = Z aElq ( Z )\ E@) = Z < Z _a)\g?i)Eij)

i=p i=p i<l<j<n i=p \g<jsn

and thus

q—1 q—1 n
S uaB) =Y Y —AaE;. (5.14)
i=p

1=p j=q+1
Consequently, in view of (5.8)—(5.14), this completes the proof of (5.7).
We next show that ¢, is commuting on rank one upper triangular matrices. Let A =

(a;j) € T,,(F) be of rank one. By (5.1), there exist integers 1 < p < ¢ < n such that
P n
A= ZZGUEU, (515)
i=1 j=q

where a,, # 0, {(aiq, . .., @in), (ajq, - - -, a;j,)} is linearly dependent for every 1 < 4, j <
p, and {(a1s, . .., ay), (a1j, ..., ay;)} is linearly dependent for every ¢ < i,j < n.
We first claim that

U (A)A=0= AV y(A) (5.16)
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for every (s,t) € V,. Let (s,t) € V,,. Clearly, (5.16) holds when s = 1,2. Consider

now s > 3. By (5.15), since a;; = O forall 1 <i<nand1 < j < g, it follows that
s—1 s—1
astEpn A = ast(angBng + - - + ann L),
h=1 h=1
s—1 s—1
Z ahtEhsA = Z CLht(asq-th + - asnEhn)'
h=1 h=1
If as; = 0, then either (ay,...,an) = 0or (as,...,as;) = 0 since A is of rank one.

Hence U, (A)A = 0 by (5.4). Ifay # 0,then s < pandt > ¢ by (5.15). Thus, for
each 1 < h < s, there exists o, € I such that (apn,, ..., an) = ap(asg, - .-, as,) and

apr = apag. Consequently,

( > AE w) (ZastEhhA ZahtEhs )Z

1<i<j<s
We now proceed to claim AV, (A) = 0. By (5.4), we notice that

s—2 s—1 s—2 s—1
- Z Ai St)astEw Z ( Z Az(j’t)ajt>Ei5

i=1 j=i+1 i=1 \j=i+1

because D, ;i 1/\2 Eyj; = >0 Z] i1 Z;t)E If p = 1, then ay; = 0 and
ajy = 0forj =2,...,5 — 1, and so U (A) = 0. Therefore Claim (5.16) is proved.
Consider now p > 2. Suppose that a,, = 0. By (5.15), since the j-th column vector of A

is zero for j = 1,...,q — 1, it follows that
AE;; =0 fori=1,...,g—1landj=1,...,n (5.17)

We argue in two cases:

Casel: p > s — 1. By (5.17), we obtain

s—2 s—1
AT (A) ==Y ( > )\S-’t)ajt>AEis — 0.
i=1 \j=i+1
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Casell: p <s—1. Thena;; =0forj =p+1,...,s — 1by (5.15). We thus have
p—1 P
- < > /\Ej’t)ajt>AEis =0
i=1 \j=i+1

by (5.17). Consider now az # 0. Then s < p because a;; = 0 for all i > p by (5.15). It

follows from (5.17) that

s—2 s—1 s—2 s—1
A) =33 AYagAE; - ( DAY ajt>AEzs =0

i=1 j=i+1 i=1 \j=i+l

as required. Consequently, Claim (5.16) is proved.

We now proceed to show
Dy (A)A=0= AD,(A) (5.18)

for all (s,t) € V,,. Let (s,t) € V,,. Claim (5.18) is proved when t = n — 1, n. Consider

t <n—2. By(5.15),since a;; =0 forall p < ¢ <nand 1 < j < n, it follows that

Z astAEy, = Z ast(ainErp + -+ apn Epp),
h=t+1 h=t+1

> anAEy = Y am(anBuy + - + apByp).
h=t+1 h=t+1

If agz = 0, then either (ay,...,a,) = 0or (as,...,as) = 0. Thus ADy(A) = 0 by
(5.5). Ifagy # 0,then s < pand t > ¢q. For each t < h < n, there exists 5, € I such that
(@1, - - s apn) = Brlais, - - ., ap) and ag, = Bras. Hence ADy(A) = 0. We now claim

o (A)A = 0. By (5.5), we note that

n j—1 n j—1
A) = Z jz ast/\l(;’t)E,-j — Z (JZ CLSZ)\( )>Et]

J=t+2 i=t+1 j=t+2 \i=t+1

because Zt<i<j<n )‘z('?t)Eij = Z] =t42 Zz 1 A (St Ei. 1f ¢ = n, then a,; = 0 and

=0fori =t+1,...,n — 1, and thus ®4(A) = 0. Hence the claim is proved.

Consider now ¢ < n — 1. Suppose that a;; = 0. Since the i-th row vector of A is zero for
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1=p+1,...,n, wehave
EjA=0 forj=p+1,...,nandi=1,... n.

If ¢ <t + 1, then, by virtue of (5.19), we have
D, (A)A Z (Z agi) ”)>Et] = 0.
J=t+2 \i=t+1
Ifg>t+1,thenay; =0fori=¢t+1,...,q— 1by(5.15). We thus have

D, (A)A f: (Zam )Etj =0

Jj=q+1 \i=q

by (5.19). Consider now ag # 0. Then ¢t > q. It follows from (5.19) that

A)A = zn: ZastA(StEUA Z (Za S“)EtjA:o.

Jj=t+2 i=t+1 Jj=t+2 \i=t+1

(5.19)

Claim (5.18) is proved. Therefore ¢)p(A)A = 0 = Ay, (A) for all rank one matrices

A € T,(F). We remark that Example 3.2.2 is a commuting additive map on rank one

triangular matrices of this type.

5.3 Main results

We obtain a characterisation of commuting additive maps ¢ : T,,(IF) — T,,(F) on rank

one triangular matrices over an arbitrary field [F in the following two results.

Theorem 5.3.1. Let F be a field. Then ) : To(F) — T5(F) is a commuting additive

map on rank one matrices if and only if there exists a scalar A € F and an additive map

w: To(F) — T such that
V(A) = AA + p(A) L

for every A € Ty(FF).

Let n > 3 be an integer and let [F be a field. We now give a complete characterisation

of commuting additive maps ¢ : T,,(F) — T,,(F) on rank one triangular matrices. Recall
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that V,, = {(4,7) e Nx N:1<i<j<nP\{(1l,n—1),(1,n),(2,n —1),(2,n)}.

Theorem 5.3.2. Let F be a field and let n > 3 be an integer. Then ¢ : T,,(F) — T, (F) is
a commuting additive map on rank one matrices if and only if there exists a scalar \ € F,
an additive map i : T,,(F) — T, a strictly upper triangular matrix x = (1;;) € T,,(F), a
set of additive maps F = U1<S<t<n{¢§;’t) F—oF:1<i<sandt<j<n}anda

set of scalars \ = U(si)evn{/\g’ﬂ eF:1<i<j<sort<i<j< n} such that
PY(A) = A+ p(A) 1, + ), (A) + vz (A) + Ya(A)

Jorall A = (a;;) € T,,(F). Here, ¢, : T,,(F) — T,,(F) is the linear map defined by

X1 —Ti2@12 —T13Q13 *°° —Tinlin
0 X2 —T23023 -+ —Toplan

'(/}X(A) = 0 0 x3 . _7'3na3n (520)
0 0 0 T

Jorall A = (a;;) € T,,(F), where

2?22 T1: Q4 if h = ]_,

- h—1 n .
Th = Doimy Tin @i T i Thiti if 2<h<n—1,

n—1 .
Zi:l TinQii if h= n,

and Vg : T, (F) — T,(F) is the additive map defined by

s—1 n
vr(A) = > (Z > ¢§j’”(ast>Eij> (5.21)
1<s<t<n \i=1 j=t+1

Jorall A = (a;;) € T,(F), and p : T,,(F) — T,,(F) is the linear map defined by

Ya(Ad) = ) Ty(A) + Dy(A) (5.22)
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Jorall A = (a;;) € T,,(FF), where for each (s,t) € V,,

0 if 1<s<2,
\I[St(A) —

(Crcicses M5By ) (S0 @B — ansBri) i 8<s <,

(ZZ=t+1 ag By — ashEth>< t<i<j<n )\S’t)Ei‘) fl<t<n— 2,
(I)st(A) -

0 ifn—-1<t<n
Jorall A = (a;;) € T,,(F).

5.4 Proofs

Let n = 2 and let F be a field. We first prove Theorem 5.3.1.

Proof of Theorem 5.3.1. The sufficiency is clear. We now consider the necessity. For each

pair of integers 1 < ¢ < j < 2, there exist additive maps f;;, gij, hi;j : F — [ such that

fij(a) hij(a)
0 gij(a)

Y(aEij) =

forall a € F. Since 0 = [w(aEij),aEl-j] = w(aEij)aEij — CLEijw<CLEij) foralla € F
and 1 < i < j < 2, it follows that hy; = hoe = 0 and g12 = fi2. Next, 0 = [¢(aFE; +
bElg), CLE11 + bElg] = Qﬁ(CLEH + bE12)<CLE11 + bElg) — (CLEH + bE12)¢(aE11 + bEm)

for all a, b € F implies that

ahiz(b) 4+ b(g11(a) — fi(a)) =0 (5.23)

for all a,b € F. Taking a = 1 in (5.23), we get hi2(b) = b for all b € F where
A = f11(1) — g11(1). Setting b = 1 in (5.23), we obtain fi;(a) = gi1(a) + Aa for all
a € . Likewise, considering [)(bE 2 + aFa),0F 12 + aFy] = 0 for all a,b € F, we
obtain gos(a) = fae(a)+ Aaforalla € F. Let i : To(F) — F be the additive map defined
by

1(A) = gi(ain) + giz(aiz) + f2(as2)
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for all A = (a;;) € T(F). Then ¢(A) = ANA + u(A)I, for all A € T5(F) as desired. [

In what follows, let n» > 3 be an integer and let IF be a field. Recall that V,, = {(4, j) €
NxN:1<i<j<nP\{(1,n=1),(1,n),(2,n—1),(2,n)}. We are now ready to

prove Theorem 5.3.2.

Proof of Theorem 5.3.2. It is easily seen that A — AA + p(A)I, is a commuting additive
map on rank one matrices A € T,,(IF). Together with Examples 5.2.1, 5.2.3 and 5.2.6, the
sufficiency is proved. We now proceed to show the necessity. For each pair of integers

1 < s <t < n, there are additive maps ¢§j’” :F—T,7,7=1,...,n,such that

YaBq) = Y o5 (a (5.24)

1<z<]<n

forall a € F. Since [¢(aEy),aEy] = 0 for all a € F, it follows from (5.24) that

( > el >aEst aEst( > aczﬁfj-’t)(a)Eij) =0

1<i<j<n I<i<y<n

forall a € F. Since £;; B = 0, forany 1 < ¢, 7,5, < n, it follows that

( 3 ol cst,t)) — ( > a¢>§j’t’(a)<5tiEsj)> =0
1<i<j<n 1<i<ysn
for all a € F, where ¢,; is the Kronecker delta. We thus obtain

a(¢$"(a) - ¢l (a wz ad N (a)Ey — Y agfiV(a)Ey =0

j=t+1

foralla € F and integers 1 < s <t < n. Thenforeveryl < s<t<n,

o =0 fori=1,...,s—1, (5.25)
¢V =0 forj=t+1,...,n, (5.26)
ot =i}, (5.27)
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When s = t, it follows from (5.25) and (5.26) that foreach 1 < s < n,
P =0 fori=1,...,s—1, (5.28)

¢ =0 forj=s+1,...,n. (5.29)

We first study the structure of ¢)(aFs;) forevery 1 < s < nanda € F. Let 1 <
s < t < n be integers and let a,b € F. By virtue of [¢)(X), X] = 0 for all X €
{aEs + bEg, aFqs, bEg}, we obtain [¢(aFEss), bEg] + [W(bEy), aEss) = 0. It follows
from (5.24) that

i $i (a)bE - Z 315 (a)bEyy + Z o (b)aE; — En: ¢ (b)aB,; = 0. (5.30)
i=1 Jj=s

Since s < t, it follows from (5.30) that

(642 ()b — 6 (a)h - Ey +Z¢ Ex — Y @,

j=t+1

+¢(st aESS+Z¢(St

(bSt) Z ¢st) CLESJ Z¢(st aEstO

Jj=s+1 Jj=t+1

for all a,b € F. By (5.25) and (5.28), we see that ¢{*) = 0 = ¢* fori = 1,...,s — 1.

Then
(0 (a)h — ¢§f’8)< >b—¢<”<b>a>Est
Z ¢\ (b)aEy; — Z (@S (B)a + ¢ (a)b) By = 0

Jj=s+1 j=t+1

forall a,b € F and integers 1 < s < t < n. Consequently, forevery 1 < s <t < n,

%) (a)b = ¢ (a)b + ¢ (b)a forall a,b € F, (5.31)
¢ (b)a =~ (a)b foralla,beF, j=t+1,...,n, (5.32)
¢ =0 forj=s+1,...,t—1. (5.33)
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By (5.31) and (5.32), we get gbg‘z’t) and ¢>§§’t), ¢§j~’s)> j=t+1,...,n,are linear maps on
IF. Therefore, for each pair of integers 1 < s < t < n, there exist scalars 7, )\g,s) cF,

j=t+1,...,n,such that

¢S’t)(a) = —74a foralla €T, (5.34)
65" (a) = ") (a) + Tpa foralla €F, (5.35)
o0 (a) = \0Va = ¢ () forallaeF, j=t+1,...,n. (5.36)

Likewise, let 1 < r < s < n be integers and let a,b € F. By [¢/(X), X] = 0 for every
X € {aFs + bE,s,aFs, bE, s}, we obtain [)(aFss), bE,s| + [Y(bE,s),aFs] = 0. By
(5.24), we get

> o @bEi =Y 6l (@), + Z O (BB~ 05" (D)aBy = 0. (537)
=1 j=s Jj=s

Since r < s, it follows from (5.37) that

(64 (a)b — 937 (a)b+ o1 (b)a )Em

r—1

b @bE, - 3 )
i=1 j=s+1
r—1 n

4 Z (rs b)aE;s + Z qf) blaE;s — Z ¢g"8)(b)aE8j =0
i=1 i=r+1 J=s+1

forall a,b € F. By (5.26) and (5.29), we obtain

(¢4 (a)b — ¢< '(a >b+¢”><> )Eys

+Z (a)b+ 0" (b EZS+Z¢

1=r+1

forall a,b € F and integers 1 <7 < s < n. Hence forevery 1 <r < s

N
S

o9 (a)b = {59 (a)b + 4" (b)a forall a,b € T, (5.38)

O Ba = - (a)b foralla,beF, i=1,... r—1, (5.39)

18
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o) =0 foralli=r+1,...,s— 1. (5.40)

In view of (5.34), we see that qbf;’s)(b) = —1,5b forall b € F. By (5.39), we have

gb(” gb ,i=1,...,7 — 1, are linear maps. Then for eachr = 1,...,s — 1, there
exist scalars )\Ef’s) €F,i=1,...,r — 1, such that

059 (a) = %9 (a) + 150 foralla € F, (5.41)

65 (a) =\ = —¢"(a) forallae€F, i=1,...,r — 1. (5.42)

By (5.35) and (5.41), foreach 1 < s < n,

Z 65 (a) By = 6 (a)], + Z 7350 B + Z Ty Ey (5.43)

i=s+1

for all @ € F, where Zf;ll TisaB; = 0 when s = 1,and >

sr1 TsiaFi = 0 when s = n.

By virtue of (5.28), (5.29), (5.36) and (5.42), foreach 1 < s < n,

s—1 n
S 0B = Y A+ Y am, Y Y W,

1<i<j<n 1<i<j<s s<i<j<n i=1 j=s+1
(5.44)

for all a € F. Here, Z1<2<J<s)‘ JaE; = 0when s € {1,2}, " A aB; =0

% s<i<j<n 1]

when s € {n — 1,n} and >3~} Dt gbij’ (a)EZ-j = 0 when s € {1,n}. By (5.24),
(5.43) and (5.44), foreach 1 < s < n,

Y(aBu) = 037 (@) + ZTzs“E@ﬁ Z B+ ) Ay YaB

i=s+1 1<i<j<s
+ 3 AbYary, +Z Z o) (a (5.45)
s<i<j<n =1 j=s+1

foralla € F.
We now continue to study the structure of ¢)(aE;) forevery 1 < s <t < nanda € F.
Letl < s <t <mnand1l < p < tbe integers such that p # s. Leta,b € F. Since

[Y(X), X] =0forevery X € {aEg+bE,,aEy, bE,}, it follows that [{)(aEy), bE,] +
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[Y(bEL), aEs) = 0. By (5.24), we obtain

P n
> 60 (a)bE; Z ¢\ (a)bE,; + Z P B)aBy — Y o (b)aEy = 0. (5.46)
j=t

=1

First consider 1 < p < s. It follows from (5.46) that

(60 (a)b — ¢<8’“< )b+ G20 (b)a) By +<¢<pvt><b>a— 0 (b)a) Ey

+Z )b+ 2" n+§j¢ b)aE;

i=p+1

- Z @S"t)( Z ¢t By =

j=t+1 j=t+1

Since gbts D=0 = gbg’t) forall t < j < n by (5.26), and gzﬁg-’t) =(0forallp < j < tby
(5.33), we get

(@50 (a)b — ¢ (a)b) By + (629 (b)a — §f’“<b>a>Est

p—1
+ 3708 (@b + ¢ (1) t+Z¢ baEy = 0
=1 i=p+1
foralla,b € Fandintegers 1 < p < s <t <n. Thusforeveryl <p<s<t<
o = oi", (5:47)
o0 ()b =~ (b)a foralla,b e F, i=1,...,p— 1. (5.48)

By (5.48), we see that qbw ) ¢1§ t), t=1,...,p—1, are linear maps on [F. Then for every

integer 1 < p < s <t < n, there exist scalars )\ ) e F,i=1,...,p— 1, such that
() () — (1) (i)
¢y (a) = A a=—¢. " (a) foralla € F. (5.49)

In view of (5.27), (5.47) and (5.49), we conclude that for every 1 < s <t < n,

¢£f7t) - qzsgts’t) for/l/ = 17 A 787 (5.50)
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Qs(s.’t)(a) = )\Z(.j.t a, a € F, forallintegers 1 <i < j < s. (5.51)

)

Consider now s < p < t. It follows from (6.35) that

(6% (b)a — W’() + ¢80 (a)) By + (63 <>b— S (@)b) By
+Z 05" (@b + 62" (b) t+Z<z> a)bEy

1=s+1

Y @B, — 3 60 BBy -

j=t-+1 j=t+1

for all a,b € F. Since ¢} = 0 = ¢ forall t < j < n by (5.26), and ¢\ = 0 for all

s < j < tby(5.33), it follows that

(& (b)a — §§”“(b)) By + (689 (a)b — $t><a>b>Ept

+Z a)b + ¢ nJerb(St )bE;; =0

i=s+1

foralla,b € Fandintegers 1 < s <p <t <n.Henceforeveryl <s<p<t<n

o5 = o, (5.52)
o) =0 fori=s+1,...,p—1, (5.53)
oo (a)b =~ (b)a foralla,b e F, i=1,...,s — 1. (5.54)
By (5.50) and (5.52), we have
o = o fori=1,... . t—1. (5.55)

We conclude from (5.53) that for every 1 < s <t < n,

(j)(.s.’t) =0 foralls<i<j<t. (5.56)

v

By (5.54), gbZ; 2 qb(p i = 1,...,s — 1, are linear maps on F. Moreover, for each

1 <s<p<t<n,itfollows from (5.51) that gbpt)( ) = /\Ef’t)a for all a € T,

75



1=1,...,5 — 1. Consequently, forevery 1 < s <t < n,

925(3.’”(@) = )\(J Ya, a € F, forallintegers 1 <i < sands < j < t. (5.57)

)

We proceed to consider integers 1 < s < t < nand s < ¢ < n such that ¢ # ¢. Let
a,b € F. Since [¢)(X),X] = 0 forall X € {aEy + bE,;, aEy, bE,}, it follows that
[W(aEy), bEgy] 4 [(bEs), aEy] = 0. By virtue of (5.24), we obtain

> o (a)pEr, — Zaﬁ(“ a)bE,; +Z¢ CDB)aB,— > ¢ (b)aEy = 0, (5.58)
i=1 j=t

We first consider t < ¢ < n. It follows from (5.58) that

(6D (a)b — 6D (a)b @”’())Esﬁ(sb(”() —asﬁf’q)(b)a)Est

N Z a)b + ¢t$ (b a)Eg; + Z (b baEy
Jj= q+1
+Z¢ WEa— S 70
Jj=t+1

forall a,b € F. Since 6 = 0 forall s < i < ¢ by (5.40), 6" = 0 = ¢{>? for all
1 <i < sby(5.25), and gzﬁg’q =(0forall s <t < j < qby (5.56), it follows that

(6D (a)b — o5 (a)b) By +<¢<Sq<> — ¢4 ?(b)a) Ey
—Z S (a)b+ S0 (b)a) By = 0

j=q+1
forall a,b € F and integers 1 < s <t < g < n. Therefore forevery 1 < s <t < ¢ <
Pl = gloh), (5.59)
¢ (a)b = —¢>" (b)a foralla,b e F, j=q+1,...,n. (5.60)

In view of (5.27), (5.55) and (5.59), we conclude that forevery 1 < s <t < n,
qﬁSt) qb(‘” foralli=1,...,n. (5.61)
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By (5.60), we see that ng «t) gzﬁts ) ,J =q-+1,...,n,are linear maps on [F. Therefore for

q

every 1 < s <t < q < n, there exist scalars )\ ) ¢ F,7=q+1,...,n,such that

¢>(5ft)(a) — )\((;t) ¢(5 ) (a) foralla € F. (5.62)

qj

We conclude from (5.62) that forevery 1 < s <t < n,

¢(S.’t)(a) = Al(;’t)a, a€lF, forallintegerst <¢ < j < n. (5.63)

)

Next, we consider s < g < t. It follows from (5.58) that

<¢§z¢><a>b—¢gq>< )0)Ey, +<¢<Sq><b>a—¢< '(b)a — o (a)b) By

+ Z H @+ 3 9 (B)aE
' i=1
ZW — 3 (@5 (@b + ¢80 (B)a)Eyy = 0

j=q+1 Jj=t+1

for all a,b € F. By virtue of (5.25), (5.40), (5.56) and (5.61), we obtain

n

S (650 @b+ 857 (B)a) By = 0

j=t+1

foralla,b € Fandintegers 1 < s < ¢ <t <n. Thusforeveryl <s<qg<t<

¢ (a)b = —¢\>" (b)a foralla,beF, j=t+1,...,n. (5.64)

By (5.64), qﬁflj-’t), ¢§j’q), j = q+1,...,n, are linear maps on F. Moreover, for every
integer 1 < s < g <t < n, it follows from (5.63) that QSS-’Q)(CL) = /\S’Q)a forall a € FF,

J=t+1,...,n. We conclude from (5.64) that forevery 1 < s <t <
qu(St (a) = —)\g’i)a, a €T, forallintegerss <i<tandt < j < n. (5.65)

We are now ready to classify the structure of ¢ (aFEy) for all integers 1 < s <t < n

and a € [F. Tosee this, let 1 < s <t < n be integers. Since gb S = 0 fori = 1,...,8s—1
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by (5.25), and ¢0" = —A"Y fori = 1,...,s — 1 by (5.42), it follows from (5.51) and
(5.57) that

s—1 t
> o5 (0E; +Z Z oy @By = > NjaBy =Y > ATk

1<i<y<s =1 j=s+1 1<i<y<s =1 j=s+1
(5.66)

foralla € F, where itis understood that -, ; gb(St (a)E;jj =0 = ZKKK& i )aEij
when s € {1,2}, and Zz;l Zj:s—H (bl] (a)Eij =0=73 Z] —er1 A Jt)aElJ when
s = 1. Likewise, since gbg‘;’t) =0forj=t+1,...,nby(5.26), and gbsj’ = —)\tj’s for
j=t+1,...,nby(5.36), it follows from (5.63) and (5.65) that

Z ¢(st E1]+Z i ¢(st _ Z )\§;,t)aEij Z i )\(Sl

t<i<j<n i=s j=t+1 t<i<j<n i=s j=t+1

(5.67)

A t)aE = QOwhent €

t<i<j<n 7'y

for all @ € F, where ZKKK” ¢(-S»’t)(a)Eij =0 =

v

{n—1n},and SIS 600 (@) By = 0 = YL A YaBy when t = .
Next, since 607" = 0forj = s+1,...,t —1by(5.33), ¢\ =0fori =s+1,...,t—1
by (5.40), and ngf-j’” = (O forall s <i < j <t by (5.56), it follows from (5.34) that

S ot 7By (5.68)

s<i<y<t

for all @ € F. Since

Z ¢(st Z ¢st) +Z Z ¢(st EZJ+ZZ¢(515

1<i<j<n 1<i<j<s i=1 j=s+1 =1 j=t+1
n
(st (s t
+ E ¢ EZ] + E E ¢ EZ] + E ¢
s<i<g<t i=s j=t+1 t<i<g<n

forall a € F, it follows from (5.66)—(5.68) that

s—1 t
ST o a)Ey = > A8YaE; -3 A, +Z Z ¢ (a)

1<i<j<n 1<i<j<s i=1 j=s+1 i=1 j=t+1
n
(s,t) S,
—rwaBy+ Y ASVaE; - § > AYaky (5.69)
t<i<j<n i=s j=t+1
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foralla € F, where 37~/ PR gzﬁl(j’t)(a)Eij = 0 when either s = 1 or¢ = n. Moreover,

by virtue of (5.61), for each pair of integers 1 < s <t <

Z oD (a)Ey = ¢ (a)1, (5.70)

for all a € F. Consequently, by (5.24), (5.69) and (5.70), for each pair of integers 1 <

s<t<n
P(aB) = @) — meaBe + 303 50
=1 j=t+1
s—1 t A
+ > AYaEy =Y Y ALVaE
1<i<j<s i= 1j s+1
+ > aYaEy; - Z > ApaE (5.71)
t<i<j<n i=s j=t+1
forall a € F.

Let i : T,,(F) — FF be the additive map defined by

= Y o8 (ay) (5.72)

1<s<t<n

forall A = (a;;) € T,,(F). Let ¢, : T,(F) — T,,(F) and o5 : T,,(F) — T,(F) be the
linear maps defined in (5.20) and (5.22), respectively, and let vz : T,,(F) — T,,(F) be
the additive map defined in (5.21), where x = (7;;) € T,,(F) is a strictly upper triangular

matrix, and

F = U {gbf F—oF:1<i<s—1and t+1<j<n},

1<s<t<n

A= U {)\(St)eF I<i<j<sort<i<j< }
(8,t)EVn

In view of (5.45) and (5.71), together with (5.2), (5.3), (5.6), (5.7) and (5.72), we see that

w(aEst) = :U/(aEst)In + '(bX(aEst) + ¢A<aEst) + ¢9(aEst) (573)
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for all integers 1 < s <t < nanda € F. By (5.73) and the additivity of ¥, p, 1, ¥a

and 4, we obtain

w(A) = Z ¢ astEst

//\
//\
//\

= Z astEst n+ wx(astEst> + wA(astEst) + weﬁz(astEst)
= (A)I + Un(A) + a(A) + vz (A4)

= M+ p(A) ], + Py (A) +Ya(A) + Yz (A)
forall A = (a;;) € T,,(F), where A = 0 € IF. This completes the proof. O

Remark 5.4.1. Let IF be a field and let ¢ : T3(F) — T5(FF) be the commuting additive

map defined by
T12Q22 + T13033 —T12012 —T13Q13
P(A) = u(A) L5 + 0 Ti2a11 + T23033 —T93023 (5.74)
0 0 T13011 + T23022

forall A = (a;;) € T5(F), where 7;;, 1 <7 < j < 3, are scalars in F and i : T5(F) — F
is an additive map. Given any A € F, it is not difficult to note that the additive map ¢ in

(5.74) can be reformed as follows:

G12Q29 + S13G33 —G12012 —G13013
Y(A) = XA +n(A)I5 + 0 G12011 + S23G33 —G3a23
0 0 G13a11 1 S2322

for all A = (a;;) € T5(F). Here,g; = 7, + A € Fforalll < i < j < 3, and

n : T3(IF) — F is the additive map defined by

n(A) = p(A) = Aaw + ag + as3)

for all A = (a;;) € T5(F).
Remark: The results in this chapter have been published in Chooi, Mutalib, and Tan,
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L.Y. (2021).
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CHAPTER 6: CENTRALIZING ADDITIVE MAPS ON RANK ONE UPPER
TRIANGULAR MATRICES OVER DIVISION RINGS

6.1 Introduction

Let R be aring with centre Z(R) and let S be a nonempty subset of R. Lety) : R — R
be a map. Recall that a map ¢ is centralizing on S if [(A), A] € Z(R) forall A € S,
where [X,Y] is the commutator of X,Y € R. Extending Franca’s results, C.-K. Liu
(2014a) developed the study of centralizing additive maps to subsets of matrices that are
not closed under addition. Let n > 2 be an integer and let D be a division ring. Recall
that M, (D) is the ring of all n x n matrices over D with centre Z (M, (D)) and unity 1,,.
C.-K. Liu (2014a) showed that if ¢y : M, (D) — M, (D) is an additive map satisfying
[Y(A), A] € Z(M, (D)) for all invertible A € M, (D), then there exists A € Z(ID) and an
additive map p : M, (D) — Z(D) suchthatiy(A) = AA+u(A)IL,, unless |D| = 2. Franca
and Louza (2017) studied commuting additive maps ¢ : M, (D) — M, (D) on rank one
matrices over a noncommutative division ring I and it turns out that ¢ is of the standard
form (2.14), which is unexpectedly simple compared to Franca (2017) when D is a field.
Letn > 2 be an integer. Recall that 7,,(ID) is the ring of all n x n upper triangular matrices
over a division ring D with centre Z (7,,(ID)). Inspired by the aforementioned result, in this
chapter we study and characterise centralizing additive map ¢ : T,,(D) — T,,(D) (i.e. ¥
satisfying [)(A), A] € Z(T,,(D))) for all rank one matrices A € T,,(ID). We then deduce
from this result a complete description of commuting additive maps ¢ : T,,(D) — T,,(D)
on rank one matrices over a noncommutative division ring ). We show that the concept
of centralizing and commuting are equivalent in rank one upper triangular matrices over
division rings. As we see from Theorem 6.2.2, it is worth mentioning that the structure of
1 1s relatively simple compared with the corresponding result in Theorem 5.3.2 when D

is a field, but ¢ is not of the standard form.

6.2 Main results
Let n > 3 be an integer. Let V,, = {(i,j) e NxN:1<i<j<np\{(1,n—
1),(1,n),(2,n —1),(2,n)}. Recall that E;; € T,,(ID) is the standard matrix unit whose

(1, 7)th entry is one and zero elsewhere.
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Theorem 6.2.1. Let n > 2 be an integer and let D be a division ring with centre Z (D).

Suppose that ¢ : T,,(D) — T,,(D) is a map. Then the following statements are equivalent:

(@) Y is a centralizing additive map on rank one matrices.

(i) Y is a commuting additive map on rank one matrices.

(i) There exists A € Z(D), an additive map u : T,(D) — Z(D), a strictly upper
triangular matrix x = (7;;) € T,,(D), a set of elements A =, ey, {)\(St eD:
1<i<j<sort<i<j<n}andasetofadditivemaps F = U1<S<t<n{¢;’t)

D—-D:1<i<s—1andt+1<j<n}suchthat
P(A) = AN+ p(A) L, + Y, (A) + ¢z (A) + Ya(A)

Sorall A € T,,(D), where 1, : T,,(D) — T,,(D) is the linear map defined by

T1 —T12@12 —T130413 - —Tipnlin
0 T —To3023 **+ —Toplay

7W/}X(Iél) = 0 0 3 st —T3p03n
0 0 0 Ty

Sorall A = (a;;) € T,(D), where

/]’L .
Zi:Z T1i Q44 if h= 1,
— h—1 n .
Th =9 s Tn @i+ D T i 2<h<n—1,
n—1 f h o
Zizl Tin Qs 1 =n,
\

Vg To(D) — T, (D) is the additive map defined by

vr(A) = (Z > i (aw)E )

1<s<t<n \i=1 j=t+1
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Jorall A = (a;;) € T,,(D), and p : T,,(D) — T,,(D) is the linear map defined by

Pa(A) = D Ty(A) + y(A)
(

$,t)EVy,

forall A € T,,(D), where for each (s,t) € V,,

0 if1<s<2,
\Ijst(A) -
(Zlgi<]’<s Agjt)Ez>( 2;11 s By — ahtEhs) if 3<s<n,
(X bt astEnn — asnEu) (Zt<i<j<n )\z('?t)Ei > if 1<t<n—2,
(Dst(A) —

0 if n—1<t<n
SJorall A = (a;;) € T,(D). Here, 7 = 0 when n = 2, and ,, = 0 and 1)p = 0
when either n = 2 or D is noncommutative.

As an immediate consequence of Theorem 6.2.1, we deduce the following result.

Theorem 6.2.2. Let n > 2 be an integer and let D be a noncommutative division ring
with centre Z (D). Then v : T, (D) — T,(D) is a commuting additive map on rank one
matrices if and only if there exists an element \ € Z (D), an additive map p : T,,(D) —
Z (D) and a set of additive maps .F = Ul<s§t<n{¢§j7t) D—-D:1<i<s—1and ¢+
1 < j < n} such that

P(A) = A+ p(A) I + 7 (A)

forall A € T,,(D), where vz : T, (D) — T, (D) is the additive map defined by

vr(A) = > <Z > ¢£§’”<a5t>Eij>

1<s<t<n \ i=1 j=t+1

Sorall A = (a;;) € T,,(D) and 1z = 0 when n = 2.

6.3 Proofs
Throughout this section, unless stated otherwise, let n > 2 be an integer and let D

denote a division ring with centre Z (D). Let A € M,, (D). The row (respectively, column)
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space of A is the left (respectively, right) vector space over D generated by the n rows
(respectively, n columns) of A. The row rank (respectively, column rank) of A is the
dimension of the row (respectively, column) space of A. The rank of A, denoted by rank
A, is the common value of the row rank and column rank of A. See, for instance (Wan,
1996, Corollary 1.18).

The following lemma generalises (Chooi & Lim, 1998, Lemma 4.1) over division rings,

where the lemma holds true when the division ring is a field.

Lemma 6.3.1. Let D be a division ring and let n > 1 and 1 < k < n be integers. Then
A € T,(D) is of rank k if and only if there exist invertible matrices P,Q € T, (D) such

that
k
A=P (Z Et> Q
i=1

for some integers 1 < s; < t; < nfori=1,....kwiths, < --- < sgandt; #1;

whenever 1 <1 # j < k.

Proof. The sufficiency is clear. We prove the necessity. Let A = (a;;) € T,,(D) be of
rank £ > 1. The result is clear when n = 1. Consider n > 2. We denote by R; and C;
the i-th row and the i-th column of A, respectively. Let 12, be the nonzero row of A in
which R, = 0fori=p; +1,...,n, and let a,, 4 be the first nonzero entry from the left
of Ry,,. We left multiply R, by a, ', and obtain a,, 4, = 1. Then, for each 1 < i < p;

and ¢; < 7 < n, we apply the following elementary row and column operations on A:
R, — R; — ai,qupl and O]‘ — Cj — quaphj. (61)

Then, by (Hungerford, 1974, Chapter VII, Theorem 2.8) and (6.1), there exist invertible

matrices Hy, Ky € T,(D) such that
H\AK, =E, 4, + B, (6.2)

where E,, .., B € T,,(D). If B = 0, then the lemma is proved. Suppose that B = (b;;) #
0. In view of the elementary operations performed in (6.1), we see that b; ,, = 0 for

t=1,...,n,and b;; = O forall p; <7 <nand1 < j < n. Werepeat a similar process
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for B. Then there exist integers 1 < py < ¢ < n, with py < p; and g2 # ¢, and

invertible matrices Hy, Ky € T, (D) such that

HQBKQ = Ep27q2 + C and Hngl Q1K2 = EPl,Ql

for some C' € T,,(D). It follows from (6.2) that (HyH1)A(K1K2) = Ep gy + Epy g + C.
If C' = 0, then we are done; otherwise, we continue this process, since A is of rank £, and

finally reach to the desired result. [l

Lemma 6.3.2. (C.-K. Liu et al., 2018, Lemma 2.1) Let D be a division ring. Let a,b € D

be such that ax = xb for all nonzero x € D. Then a = b € Z(D).

Proof. Takingx = 1 € D, we get a = b. It follows that ax = za for all all nonzero

z €D. Hencea = b € Z(D). O
Lemma 6.3.3. Letn > 2 be an integer. Then the centre of T,,(D) is Z(T,,(D)) = Z(D)I,,.

Proof.  We first show that Z(D)I, C Z(T,(D)). Let X € Z(D)I,. Then X = \I,
for some A € Z(D). Let A € T,(D). Since A € Z(D), we get A\A = AX. Then
AX = A(\L) = (AN, = (M), = MAL,) = MN(I,,A) = (M)A = X A. Therefore
AX = XAforall A€ T,(D), and so X € Z(T,(D)). Hence Z(D)1,, C Z(T,(D)).

Consider A = (a;;) € Z(T,,(D)). Let 1 < s < t < n be integers and let d € D be
nonzero. Since A(dEy) = (dE4)A, it follows that By (A(dEg)) = Exx((dEg)A), and
SO

asd By = Opsd By A (6.3)

for every integer 1 < k < s, where 0y, is the Kronecker symbol. In particular, ay,dEy =
0 when £ < s. Then A is diagonal. We note that K4 A = ayEg. By (6.3), assdEy =
day Eg for every nonzerod € Dand 1 < s < t < n. Then ay, = a; € Z(D) for all
1 < s <t < nbyLemma 6.3.2. Consequently, A = al,, for some a € Z(ID). Hence
Z(T,,(D)) = Z(D)I,. O

We remark that Lemma 6.3.3 extends Lemma 2.1.3 over division rings.
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Lemma 6.3.4. Let D be a noncommutative division ring. If f,g : D — D are additive
maps satisfying either x f(y) + yg(z) = 0 for all x,y € D, or f(x)y + g(y)x = 0 for all
x,y €D, then f =g =0.

Proof. The case x f(y) + yg(x) = 0 has been shown in (C.-K. Liu, 2014a, Lemma 2.7).

We consider the case

f(@)y +g(y)z = 0. (6.4)

Taking x = 1 in (6.4), we see that g(y) = — f(1)y. Likewise taking y = 1 in (6.4), we
have f(x) = —g(1)z. Letting x = y = 1 in (6.4), we get g(1) = — f(1). Hence

0= f(@)y+gy)r=—g(V)ry — f(yzr = f(1)oy — f(1yx = f(1)(zy — yz).

It follows from the noncommutativity of D that f(1) = 0. We thus obtain f = g =0. [

Lemma 6.3.5. Let D be a noncommutative division ring with centre Z(D) and let f, g
D — D be additive maps. If f(x)x = xg(zx) for all = € D, then there exists A € Z(D)
and an additive map p : D — Z(D) such that f(x) = g(x) = Az + p(z) for all x € D.

Proof. Setting f; = f, fo = f3 = 0and f; = —¢g in Theorem 2.2.1, we get f(z)x —
xg(x) = 0 for all z € D. By Theorem 2.2.1, there exists an additive map . : D — Z(D)
and a,b € D such that f(z) = —za + u(x), —g(x) = bx — p(z) and ax = b for all
x € D. By Lemma 6.3.2, a = b € Z(D). Then f(z) = g(z) = A\x + p(z) forall z € D,
where A = —a € Z(ID). We are done. O

Lemma 6.3.6. Let D be a noncommutative division ring with centre Z (D) and let f, g, h

D — D be additive maps.

@ Iff(x)y+zg(y)+yh(x) =0forall z,y € Dand f(x) = Ax+ u(x) forall x € D,
where A € Z(D) and p : D — Z(D) is an additive map, then g(x) = —A\z and
h(x) = —p(z) for all x € D.

Gy If f(x)y+g(y)r+yh(z) =0forall z,y € Dand h(x) = Az + u(x) for all x € D,
where A € Z(D) and - D — Z(D) is an additive map, then f(x) = —p(z) and
g(x) = =Xz forall x € D.
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Proof. (i) Setting fi = f, fo = ¢, fs = 0 and f; = h in Theorem 2.2.1, we get f(z)y +
xg(y) + yh(xz) = 0 for all z,y € D. Then there exist a,b € D and additive maps
a, : D — Z(D) such that

f(z) = —za+ a(z), g(x) =ax — B(z), 0= —xb+ B(x) and h(z) = bxr — a(x)

for all z € D. Note that Az + p(z) = —za + a(x) yields (A + a) = a(z) — p(z) for all
x €D. Then A + a = (1) — u(1) € Z(D). Therefore yz(A + a) = y(a(z) — u(x)) =
(a(z) —p(x))y = (x(A+a))y = zy(A+a) forall z, y € D. By the noncommutativity of
D, we have @ = —\, and hence o = p1. Moreover, since 5(x) = zb and S(z) € Z(D) for
all z € D, it follows that yxb = yf(x) = S(x)y = xby for all z,y € D. By taking z = 1,
we get yb = by forall y € D, so b € Z(D). Then yzb = xyb for all z,y € D. Again, by
the noncommutativity of D, b = 0, and so 5 = 0. We thus conclude that g(z) = —Az and
h(z) = —p(z) for all z € D.

(ii) Setting f = f, f» =0, f3 = gand fy = hin Theorem2.2.1, we get f (x)y+g(y)z+
yh(z) = 0forall x,y € . Then there exist a,b € D and additive maps o,  : D — Z(D)

such that

f(z) = —za+a(z), 0=az — p(z), gx) =—xb+ B(x) and h(z) = bxr — a(x)

for all z € D. Note that Az + p(z) = bxr — a(x) yields (b — Nz = a(x) + u(x) for all
z €D. Thenb— X = «a(l) + u(1) € Z(D). Therefore (b — N)zy = (a(z) + p(x))y =
y(a(x) + u(x)) = y(b — Nz = (b — N)yx for all z,y € D. By the noncommutativity of
D, we have b = A, and hence aw = —p. Moreover, since 5(z) = ax and 3(x) € Z(D) for
all z € D, it follows that axy = (x)y = yf(x) = yax forall x,y € D. By taking z = 1,
we get ay = ya forall y € D, so a € Z(D). Then axy = ayx for all z,y € D. Again, by
the noncommutativity of D, a = 0, and so 5 = 0. We thus conclude that f(z) = —u(z)

and g(z) = — Az forall z € D. O

Lemma 6.3.7. Let n > 2 be an integer and let P,Q) € T,,(D). If A € T,,(D) is of rank
one such that PA — AQ € Z(T,(D)), then PA = AQ.
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Proof. We write PA = (p;;) and AQ = (g;;) to be matrices in 7,,(ID). By Lemma 6.3.1,
there exist invertible matrices H, K € T,(D) such that A = HFE K for some integers
1<s<t<n Then PA=PFEu K and AQ = HE,(Q',with P = PH and Q' = KQ
in 7,,(D). It follows that p;; = ¢;; = 0 forall 1 < i < j < ¢, and p;; = ¢;; = 0 for all
s <1 < j < n. Consequently, PA — A(Q has at most one nonzero diagonal entry. On the
other hand, by the hypothesis and Lemma 6.3.3, PA — AQ = al, for some o« € D. We
infer that « = 0, and so PA = AQ as required. ]

Let n > 2 be an integer and let D be a division ring with centre Z(ID). Recall that
T,,(D) is the ring of all n x n upper triangular matrices over a division ring D with centre

Z(T,(D)) and unity I,, We are now ready to prove Theorem 6.2.1.

Proof of Theorem 6.2.1. (i) = (ii). Let A € T,,(D) be of rank one. By the hypothesis
W(A)A — AY(A) € Z(T,(D)), it follows from Lemma 6.3.7 that )(A)A = Ay(A).
Hence v is a commuting additive map on rank one matrices.

(iii) = (i) Trivially, A — XA + u(A)I, is a centralizing additive map on rank one
matrices A € T,(D). When n > 3, we infer by a similar argument in the proof of
Examples 5.2.1, 5.2.3 and 5.2.6 that 1), 1)z and v, are centralizing additive maps on
rank one matrices. The result follows.

(i1) = (i11) In view of Theorems 5.3.1 and 5.3.2, we need only consider D being a
noncommutative division ring. First consider n = 2. For each pair of integers 1 < ¢ <

J < 2, there exist additive maps f;;, gi;, hij : D — I such that

fij(a)  hij(a)
0 gij(a)

Y(aky;) =

forall a € FF. Since [¢)(aFE;;),aE;;] =0foralla € Dand 1 < i < j < 2, it follows that

hn = h22 = 0, and flg(a)a = aglg(a), fu(&)@ = afu(a) and 922<a>a = agQQ(a) for all

a € D. By Lemma 6.3.5, we have

Ji2 = 12, (6.5)
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and there exist A, \; € Z(D) and additive maps ji1, i : D — Z(ID) such that

fn(a) = \a —+ 1251 (Cl), (66)
g22(a) = Ara + pz(a) (6.7)

for all a € D. Since [¢)(aFE11 + bFE1s),aF1; + bFE1s] = 0 for all a,b € D, we thus obtain

fi2(b)a = afi2(b) (6.8)

forall a,b € D, and
fn(a)b — ahlg(b) — bgn(a) = 0 (69)

for all a,b € D. By (6.5) and (6.8), we conclude that fi2(a) = gia(a) € Z(D) for all
a € D. Letting f = fi11, 9 = —h12, h = —g11 in Lemma 6.3.6(i), we obtain (6.9). By
Lemma 6.3.6(i) and (6.6), we conclude that h12(a) = Aa and g11(a) = py(a) foralla € D.
Next, by virtue of [¢)(aFas + bFE1s),aFa + bE15] = 0 for all a,b € D, we have

fzg(a)b = Aba — bggz(a) =0 (610)

for all a,b € D. Taking f = fo2, g(b) = Ab for b € D and h = —gys in Lemma 6.3.6(ii),
we get (6.10). By Lemma 6.3.6(ii) and (6.7), we thus obtain A\; = X and fa2(a) = pa(a)
foralla € D. Let i : T5(D) — Z(D) be the additive map defined by

w(A) = pa(ann) + fiz(aiz) + pa(azs)

forall A = (a;;) € To(D). Then ¢p(A) = ANA + p(A)I, for all A € T5(D) as desired.
We now proceed to n > 3. For each pair of integers 1 < s < t < n, there exist

additive maps d)Ej’” :D—D,4,j=1,...,n, such that

Y(aEq) = Y 650 (a)Ey (6.11)

Iigjsn

foralla € D. Let 1 < 4,j < n be integers. Note that [¢)(aFy, ), aFEy| = 0 for all a € D.
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By (6.11) and using the fact that F;; F;; = 0;,E;; for every 1 < 4, j < n, we obtain

Z ¢ 5]SE7,t Z Qb (Sm sg) 0

1<i<j<n 1<i<j<n

for all a € D, where 9;; is the Kronecker delta. Consequently, for every 1 < s <t < n,

n

(69 (a)a — agls™( de» a)aBy — Y apy(a)Ey =0

Jj=t+1

for all @ € ID. By the linear independence of F;;, 1 < i < j < n, we infer that for every

1<s<t<n,

o =0, i=1,... 51, (6.12)
qs(” =0, j=t+1,...,n, (6.13)
30 (a)a = agy" (a) (6.14)

for all a € D. It follows from (6.14) and Lemma 6.3.5 that for each pair of integers

1 < s <t < n,there exists Ay € Z(D) and an additive map ps : D — Z(ID) such that

¢9(a) = i7" (a) = Ay + pi(a) (6.15)

for all @ € D. We first claim that there exists A € Z(DD) such that for each integer
1 <s<n,

U(abss) = Ay + prss(a) + Z Z oL (6.16)

i=1 j=s+1
forall a € D, where >0/ >0 | gbgj’s)(a)Eij =0whens=1,n.Letl<s<t<n
be integers and let a,b € D. Since [)(A), A] = 0 for A € {aFs, bEq, aEss + bEg}, it

follows that

U(aEs)bEgy — bEg(aEss) + W (bEgy)aFEs — aFEg)(bEy) = 0.
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Using (6.11), we obtain

n

S0 () By — Z by (a) By + Y 0 (D)aEi, — > adl” (0)Ey = 0.
im1 i=1 j=s
Since 3" = 0 = ¢*" fori = 1,...,s — 1 by (6.12), it follows that for every 1 < s <

t < n,

(65 (a)b — bogy " (a) — asﬁ”)( b)) Est + (657 (b)a — adSV (b)) E

n

- Z a0 By — > <a¢i§’f“<b)+b¢§§’s><a>>Esj =0

Jj=s+1 J=t+1

for all a,b € . Then for each pair of integers 1 < s <t < n,

o0 =0, j=s+1,...t—1, (6.17)
¢l (b)a = agls (b) (6.18)
forall a,b € D,
ags (b) + by () =0, j=t+1,...,n, (6.19)
forall a,b € D, and
) ()b — agly" (b) — bofy ™) (a) = 0 (6.20)

for all a,b € D. By (6.15) and (6.18), for every 1 < s < t < n, (Agb + pug(b))a =
a(Astb + pse (D)), and so Ag;ab = Agba for all a, b € D. By the noncommutativity of D,
As¢ = 0 forany 1 < s <t < n. Together with (6.15), we thus conclude that for every

1<s<t<n

30(a) = oy (a) = pgi(a) € Z(D) (6.21)

for all a € . In view of (6.19) and Lemma 6.3.4, forevery 1 < s <t < n,
o = =0, j=t+1,. (6.22)

sj

Now, taking f = ¢$3”, g = =6 and h = — ¢} in Lemma 6.3.6(i), we obtain (6.20).
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Together with (6.15), we conclude from Lemma 6.3.6(i) that for every 1 < s <t < n,

¢ (a) = A (6.23)

for all a € D, and

5 (a) = pesla) (6.24)

foralla € D. Next, let 1 < r < s < n be integers and let a,b € . By virtue of
[(A), Al =0 for A € {aFEy, bE,s,aFy +E, s}, we get (aFg)bE,s — bE.s(aEss) +
W(bE,s)aEss — aEsp(bE,s) = 0. It follows from (6.11) that

Z o ()b — Z b6l (a) By + Z o1 (b)aEi, — Z agy;” (b)Ey = 0.
i=1 j=s

We further obtain

(#:a)p + o7 0o —b¢gz’s>< D+ (647 (B)a — adli B E.,

+ Z (a)b+ 67" (b Z 0o (a)

j=s+1

+ i sz(?;S)(b)aEis - Z a<b”)( b)E,; = 0.

=r+1 Jj=s+1

Since 0" = 0 = ¢\%% for j = s+ 1,...,n by (6.13), and ¢'=" (a) = yi,5(a) € Z(D
sJ sJ

for all @ € D by (6.21), it follows that forevery 1 <r < s < n,

r—1
(645 (@)b+6 7 (b)a—bg (s () Erat Y (65 (a)b+61" (b EZS+Z¢ b)aE;, =0
=1 i=r+1

forall a,b € . Then forevery 1 <r < s < n,

Q) =0, i=r+1,...,s—1, (6.25)
@b+ ¢ (Da=0, i=1,...,r -1, (6.26)

forall a,b € D, and
057 (@)b+ ¢ (b)a — b9V (a) = 0 (6.27)
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forall a,b € D. By (6.26) and Lemma 6.3.4, forevery 1 <r < s < n,

o) =t — 0 =1, r—1. (6.28)

ir

Letting f = 6459, g = ¢\=% and h = —¢'%* in Lemma 6.3.6(ii), we obtain (6.27).
Together with ¢\5*) (a) = Assa + pss(a) for all a € D in (6.15), and 65" (a) = A.a for

all a € D in (6.23), we conclude from Lemma 6.3.6(ii) that for every 1 < r < s < n,

)\7‘7‘ = )\557 (629)
¢\ (a) = prss(a) (6.30)
for all @ € D. From (6.29), we get A\;; = --- = \u. Weset A = A\j1. By (6.15), (6.24)

and (6.30), for each integer 1 < s < n,

S 65 (a) By = MaBa + pas(a)1, 6.31)
=1

for all « € ID. We note that for each 1 < s < n,

> 68V(@)E, =0 and Y ¢ (a)Ey; =0 (6.32)
1<i<s 1<i<y<s

for all a € D by (6.12) and (6.28), and
Y 5N a)Ey =0 and D ¢ (a)E; =0 (6.33)

s<j<n s<i<j<n

forall a € D by (6.13) and (6.22). It follows from (6.32) and (6.33) that foreach 1 < s <

n,

s—1 n
o oo@Es; = Y @B+ Y ot @B+ Y Y 65T (a)Ey

1<i<j<n 1<i<j<s 1<i<s i=1 j=s+1
+ 3 o5 E + Y 65V (a)Ey
s<j<n s<i<j<n
s—1 n
_ (s,8)
= > Y ¢57(a)Ey
i=1 j=s+1
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for all @ € D. Then, together with (6.31), for each integer 1 < s < n,

a’ESS Z¢(SS EZZ+ Z ¢(SS Z_] - )\aESS+MSS n+z Z Qs 88)

1<i<j<n 1=1 j=s+1

for all @ € D. Consequently, Claim (6.16) is proved.

We next claim that for each pair of integers 1 < s <t <

V(aBy) = MaBy + pg(a)l, + Z Z o5 (a (6.34)

=1 j=t+1

for every a € D, where Y77} 7 ngb”)( )E;; =0whens=1ort=n.Leta,beD
andlet 1 < s <t <mand1 < p < n be integers such that p # s,t. The proof will be
divided into two parts.

PartI: 1 < p < ¢t with p # s. From [¢)(A), A] = 0 for A € {aE,bE,,aEs + bE,:},

we infer from (6.11) that
Z¢ ) (@)bEy — Zwﬁ ol ﬁqu(pt) = ad P HE, — 0. (639)
j=t

First consider 1 < p < s. By (6.35), we obtain

<¢<st<>b—b¢<“<> + B (b)a) By + (92 <> — g (b)) Ey

+Z a)b+ o1 n+2¢> b)aEy

i=p+1

- Z b¢ts a Eyj — Z a(bg‘)’t)(b)ESj =0.

Jj=t+1 J=t+1

Note that ¢j>" = 0 = ¢ for j = t+1,...,n by (6.13), and ¢ = 0 by (6.17). Then

forevery l <p<s<t<

(69 (a )b—b¢§f’t( ) Epe + (629 (b)a —ad)ip’”( b)) Ey
+Z D)o+ ¢ (b)a) By + Z oD (b)aEy, =0

i=p+1
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for all a,b € D. Consequently, forevery 1 < p < s <t <

30 (a)b — boy" (a) = (6.36)

forall a,b € D, (5.0) (o)
(bz'p7 (a)b + ¢z§’ (b>a’ = 07 L= 17 Y 17 (637)

for all a,b € . Because ¢\;"” (a) = py(a) € Z(D) for all a € D by (6.21), we infer

from (6.36) that forevery 1 < s <t < n

o (a) = pw(a), i=1,...,5—1, (6.38)

forall a € . From (6.37), together with Lemma 6.3.4, we see that forevery 1 < p < s <

<n, gb(s = 0 fori = 1,...,p—1. One sees immediately that forevery 1 < s <t <n

P& =0 (6.39)

)

for all integers 1 <@ < j < s. We next consider s < p < t. It follows from (6.35) that

(&0 (b)a — aqs“””( b) + o0 (a)b) By + <¢<Svt><a>b - bqﬁif’”(a))Ept
+ Z S0 (a)b + ¢ (b)a) Exy + Z ¢ (a)bEy

i=s+1

a Z b¢§j”t) Z a¢tp (b Esj =

j=t+1 j=t+1

Note that ¢{>") = 0 = ¢{"" for j = ¢ +1,...,n by (6.13), and ¢{;" = 0 by (6.17). 1t

follows that forevery 1 < s <p <t <

(6% (b)a —a¢§p”( b)) st + (645" (a)b — babt::t( )) Epe
+Z a)b+ o ﬁzoﬁ“ JbEy =0

i=s+1

foralla,b € D. Then forevery 1 < s <p <t <

o =0, i=s+1,....p—1, (6.40)

p
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6" ()b — bey; " (a) = 0 (6.41)
forall a,b € D, and
S (@b + P (Ba=0, i=1,....s 1, (6.42)

for all a,b € D. From (6.40), we conclude that for every 1 < s <t < n,

P =0 (6.43)

)

for all integers s < i < j < t. In view of (6.41), since ¢\, (a) = ps(a) € Z(D) for

a € D, it follows that for every 1 < s <t <
o (a) = pg(a), i=s5+1,...,t—1, (6.44)

for all a € D. By (6.42) and Lemma 6.3.4, we see that forevery 1 < s <p <t < n

gb(St =0fori=1,...,s5— 1. One sees immediately that for every 1 < s <t < n,
o =0 (6.45)

for all integers 1 <7 < sand s < j < t.
PartIl: s < p < nwithp # t. Since [)(A), A] = 0for A € {aEy,bE;,, aEq+bE,},

it follows from (6.11) that

Zsjaﬁj’ a)bEy, — Zw‘” SJ+Z¢ =2)( Zad)jp) E,; = 0. (6.46)
=1

Consider t < p < n. By (6.46), we see that

(657 ()b — bls? (@) — adiy™ (8)) By + (@57 (b ) — agy;” (b)) E,
- Z (bo" (a) + agys” E8]+Z¢“’)

—p+1

p—1
+Z¢S” Ey— > apli? (b) By = 0.

j=t+1
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Since ¢ = 0by (6.25), 12" = 0= ¢\>% fori = 1,..., s — 1 by (6.12), and 6" =

forj=t+1,...,p— 1by (6.43), it follows that forevery 1 < s <t < p <

(68D (a)b — b5 () By + (8557 (b)a — agiy™ (b)) By
—Z (b653" (@) + agis” () Eg = 0

J=p+1

foralla,b € D. Then forevery 1 < s <t < p <

¢ (a)b — bps" (a) = (6.47)

foralla,b € D, and
bos(a) + ag” (b)) =0, j=p+1,....n, (6.48)

for all a,b € . From (6.47), since ¢%2” (a) = pe(a) € Z(D) for a € D, we infer that

forevery 1 < s <t <

68 (a) = pola), i=t+1,...,mn, (6.49)

for all a € D. By (6.48) and Lemma 6.3.4, we see that forevery 1 < s <t <p < n

gzﬁpj =0forj =p+1,...,n. From this, we conclude that forevery 1 < s <t <

ot = 0 (6.50)

)

for all integers t < ¢ < j < n. Next consider s < p < t. From (6.46), we infer that

(¢ (@)b — bqb(“( ) Esp + (¢(s”’)(b>a—a¢§s’p)(b> — by (a) Ex
+ Z ¢ (a)bEy, + Z &P (b)aEy

—Z by (a) Z(bw”m ads? (b)) By = 0.

Jj=p+1 Jj=t+1
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Since 685" = ¢4 and ¢ls” = o) by (6.21), (6.44) and (6.49), 6" = 0 by (6.25),
600 = 0= ¢ fori =1,....5 — 1by (6.12),and ¢ = 0 for j = p+1,...,t — 1

by (6.43), it follows that forevery 1 < s < p <t <

3" 065" +ad P B) B = 0

j=t+1
forall a,b € D. Then forevery 1 < s <p <t < n,wehaveb(bl(,‘;-’ (a )+agb(8p (b)=0
forall a,b € Dand 57 = t + 1,...,n. It follows from Lemma 6.3.4 that for every
1<s<p<t<n, I(Jj-’t) = 0forj =t+1,...,n. One sees immediately that for
every l <s<t<mn,

Pt = 0 (6.51)

)

for all integers s < ¢ < tandt < j < n
Now we are in the position to prove Claim (6.34). Let 1 < s < ¢ < n be integers and

leta € D. By (6.21), (6.38), (6.44) and (6.49), we have

Z ¢ Ezz - ,ust( )I (652)

Note also that

Z ¢(st Z ¢st) +Z Z ¢(st EZJ+ZZ¢(st

1<i<i<n 1<i<g<s =1 j=s+1 i=1 j=t+1
n
(s,t) t (s,t) t (s,t) t
+ E ¢ EZ] + ¢ EZ] + ¢
s<i<g<t 1=s j=t+1 t<i<gj<n

In view of " (a) = Aa by (6.23) and (6.29), and ¢§j’t> = (0forall s <i < j < texcept
(i, 7) = (s,t) by (6.17), (6.25) and (6.43), we obtain

Z ¢Z(;’t) (CL)EU = )\CLESt.

s<i<j<t
It is straightforward from (6.12) and (6.39) as well as (6.13) and (6.50) that

Z ¢z(';’t)(a)Eij =0 and Z ¢(St( )Ey; = 0.
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Likewise, one sees immediately from (6.28) and (6.45) as well as (6.22) and (6.51) that

Si i ¢ (@)E; =0 and Z zn: 6" (a)

1=1 j=s+1 i=s j=t+1

Consequently, we deduce that

s—1 n
S 60N Ey = MaBa+ Y. Y ¢ (0) By (6.53)
I<i<jsn i=1 j=t+1

It follows from (6.52) and (6.53) that for every 1 < s <t < n,

WaEst) = XaFEy + ,ust W+ Z Z ¢(st

=1 j=t+1

for all @ € D, which is the desired conclusion.

Let i : T,,(D) — Z(D) be the additive map defined by

> palag) (6.54)

1<s<t<n

forall A = (as) € T,,(D), and let ¥ : T,,(D) — T,,(D) be the additive map defined by

V() = ) (Z > o5 (aw)E ) (6.55)

1<s<t<n \ i=1 j=t+1

forall A = (a;;) € T,,(D), where .7 U1<S<t<n{¢(5t D—-D:1<i<s—1andt+
1 < j < n}. It follows from (6.16), (6.34), (6.54) and (6.55) that

¢(A) = Z 77/}<astEst>

1<s<t<n

= Z NagFe + Z pse(as) I + Z (Z Z ¢ ast )

1<s<t<n 1<s<t<n 1<s<t<n \i=1 j=t+1

= A + (AL, + 7 (A)

forall A = (ag) € T,,(ID). This completes the proof. [

Remark: The results in this chapter have been submitted for publication in Chooi and

Tan, L. Y. (2022).
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CHAPTER 7: 2-POWER COMMUTING ADDITIVE MAPS ON INVERTIBLE
UPPER TRIANGULAR MATRICES OVER THE GALOIS FIELD OF TWO
ELEMENTS

7.1 Introduction

Let R be a ring with centre Z(R) and let m > 2 be an integer. Recall that a map
¥ R — R is said to be m-power commuting if [1)(x), z™] = 0 for all z € R, where
[z, y] is the commutator of 2,y € R. Let R be a prime ring with charR # 2. Bresar and
Hvala (1995) proved that 2-power commuting additive maps ¢/ : R — ‘R is of the standard
form (2.14). Let m > 1 be an integer. Later, Beidar et al. (1997) extended this result to
m-power commuting additive maps and proved that every m-power commuting additive
map on a prime ring R with char R = 0 or char R > m is of the standard form (2.14).
Let n > 2 be an integer. Recall that M,,(IF) is the ring of all n x n matrices over a field
F with centre Z (M, (F)) and unity I,,. Recently, C.-K. Liu and Yang (2017) generalised
the result of Beidar et al. (1997) to subsets of matrices that are not closed under addition
and proved that when char F = 0 or char F > m, the m-power commuting additive maps
v M,(F) — M, (F) for all invertible matrices A € M, (F) are of the standard form, i.e.
there exists A € F and an additive map u : M, (F) — F such that ¢)(A) = A\A + u(A)1,
for all A € M, (F). In the same paper, an analogous result was obtained for m-power
commuting additive maps on singular matrices over fields, unless n = 2 and char F = 2.
Let D be a division ring and let n > 3 be an integer. Later, Chou and Liu (2021) asserted
that additive maps ¢ : M, (D) — M, (D) satistying [)(z),2™®] = 0 for all rank &,
1 < k < n matrices x € M, (D) are of the standard form (2.14), where m(z) > 1 is an
integer depending on z. Let n > 2 be an integer. Recall that 7;,(IF5) is the ring of all n. x n
upper triangular matrices over the Galois field of two elements with centre Z(7,,(F2))
and unity /,. Inspired by the aforesaid results, in this chapter we study and obtain a
complete structural characterisation of additive map ¢ : T,,(IFy) — T,,(F3) that satisfies
[1(A), A%] = 0 on all invertible matrices A € T,,(F;). Unexpectedly, the structure of 1)

is different from the standard form (2.14).
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7.2 Irregular nonstandard examples
Throughout this section, unless stated otherwise, let [, denote the Galois field of two
elements. We begin our discussion with the following irregular examples of 2-power

commuting additive maps on invertible upper triangular matrices over [F,.

Example 7.2.1. Let /\ (L) )\ (L) )\(1 1) ,)\1112), )\glz’Q) € Fy. Suppose that ¢ : Tp(Fy) —
T5(IFy) is the additive map defined by

C(A) = ()\51172) + )\512’2))(1125)11 + ()\&11’1) -+ )\51271))@11E22 + )\512’1)&11E12 (71)

for all A = (a;;) € T5(F3). We show that ¢ is a 2-power commuting additive map on
invertible matrices A € T5(Fy). Let A = (a;;) € To(F3) be invertible. Then A €

{I5, I, + E15} and A? = [,. Clearly [¢(A), A%] = [¢(A), I5] = 0.

Example 7.2.2. Let 1 <7 < j < 3and 1 < s <t < 3beintegers. Let A\, A 11),>\811 ,
A \@9) e . Suppose that ¢ : T5(F,) — T5(F,) is the additive map defined by

o(A) = (WY + 25N ay; + AL £ A8 a1, + AP + A4y,
+ ()\91,3) + )\212’3))@13)322
+ (A5Yay + A+ Na + A% ays + A3 a03) Er (7.2)
+ Y + A% a, + %Y + Nags + A2Vas) Fis

+ ()\gé l)CLH + )\23 a12 + )\23 a13 + ()\ —|— /\)@23)E23

for all A = (a;;) € T5(F3). We show that ¢ is a 2-power commuting additive map on
invertible matrices A € T5(F5). Let A € T3(FF5) be invertible and let B = A% = (b;;) €
T5(FFy). Since A € T3(Fs) is invertible, then A = I3 + U, where U = ZKKK?’ a;; Eij.
Then B = A* = (I3+U)(I3+U) = I3+ U?. By Lemma 7.4.1, we have b; ;1 = 0 for all
i =1,2. Then U? = bi3E3. By [¢(A), I3] = 0, we see that [¢p(A), A%] = [¢(A),U?] = 0,

because

P(AU? = ((()\( + )\ » 1))6111 + ()\(1 2 A(l & )a12

(A2 L AN 405 + AL 4 AE)015) By
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FOBYan + A+ Naws + A5V ars + A5V ags) B
FOEYan + A5 am + G + Naws + A5V a0s) Erg
+(/\(1 1) ai + /\53 aiz + )\%’3)%3 + ()\%3) + )\)a23)E23> bisE13

=0

and
U%$(A) = bi3E13 (((A + 28 an + A2 4 AEDay,

(A2 L AN a0 + AL + AL 015) By
FOBYan + A+ Naws + A5V ars + A5V ags) Ero
FOEYan + A5 am + OG5 + Naw + A5V a0) Erg

+(/\(1 1) a; + /\53 a2 + /\%3)@3 + ()‘%3) y § )\)a23)E23)

For instance, the following maps

@11 Q12 Q13 0 a3 0
0 agp axyx|— |0 ap O

0 0 ass 0 0 0

11 Q12 A13 0 0 a
0 ap ax| = |0 axs a

0 0 ass 0 0 0
are 2-power commuting additive maps on invertible matrices in 73(F5) of this type.
Example 7.2.3. Lety € Fy and let ¢, (A) : Ty(F3) — T4(F3) be the additive map defined

by

Vo (A) = v(aazaFa + axEu + ar3Eia + a24F34) (7.3)

for all A = (a;;) € Tu(F). We show that 1, is a 2-power commuting additive map
on invertible matrices A € Ty(Fy). Let A = (a;;) € T4(F2) be invertible. Then A =

Iy + a1aErs + a3Fr3 + a14F1y + ag3Fas + aggFoy + asyFsy and A? = I, + B, where
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B = ay12a23FE13 + (a12a24 + a13a34) E14 + a23a34F94. By

Vo (A)B = v(agsazaEos + assEsy + a13E12 + agssEsq)(a12a93 3
+(a12a24 + a13a34) E14 + a3a34 FEoy)

= 7(a23a23a34a34E24 + a13a23a34E14)

and

B, (A) = v(ai2a23Er3 + (a12a24 + a13a34) Era + ag3azaEag)(ag3asa Eoo
+ag3 By + a13E12 + a4 Fsy)
= Y(a12a23a24 F1a + (@12023024 + A13023034) E1a + a23023034) Eo4)

= v(aiza23a34E14 + ag3a93a34Foy),

we get ’QD,Y(A)B — B@ZJW(A) = 7&236123&34(@34 + 1)E24 = 0 because a34(a34 + 1) =0.It
follows from [¢,, I,] = 0 that [¢,(A), A% = [¢,(A), I, + B] = [¢,(A), B] = 0. For

instance, the following maps

ai1 Q12 a13 Q14 0 0 0 0
0 ax ax axn 0 aggaza 0 O
|_>
O O asz Q34 0 0 O O

0 0 0 Q44 0 0 0 a3

a2 a3 Q14 0 a3 0 O
0 ax ax au 0O 0 0 O
H
0 0 az3 asy 0 0 0 agy
0 0 0 ay 0O 0 0 0

are 2-power commuting additive maps on invertible matrices in Ty (F5) of this type.

Example 7.2.4. Letn > 4 be an integer. Denote d,, = {(1,n—1), (1,n), (2,n—1),(2,n)}.

Let© = U(S’t)een{/\gi’j) €Fy:1<i<j<n}beasetofscalars on Fy. Let A, )\g’l) €
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IFy for (s,t) € 6,. Suppose that g : T,,(Fs) — T, (F2) is the additive map defined by

forall A =

’QD@(A) <)\§ n—1011 + )\@1 n—1 + Z )\1 n— 1azj) El,n—l

1<i<g<n

-+ ()‘gn )CLH + >\CL1n + Z A zj)(hj) Eln

1<i<j<n

(7.4)

1<i<j<n

+ ()‘gn )CL11 + >\CL2n + Z )\;nj)aw)E%

1<i<y<n

(a;;) € T,,(F2). We show that 1g is a 2-power commuting additive map on

invertible matrices A € T,,(F,). Let A € T,,(F5) be invertible and let B = A% = (b;;) €

T, (Fs). Since A € T, (FFy) is invertible, then A = I,, + U, where U = ZKKK” a;; ;.

Then B = A* = (I, + U)(I, + U) = I,, + U%. By Lemma 7.4.1, we have b, ;,; = 0 for

alli =1, ...

By [¢e(A), I,

,n — 1. Then

U? = bizEi3+ - + b1 B + bygFoy + -+ + bop By, +

+bn73,nflEn73,n71 + bnf?),nEnffi,n + ban,nEann-

] = 0, we see that [1)g(A), A%] = [e(A), U?] = 0, because

Ve (A)U? = ((/\S;zl)lall—")\aln 1+ Z Aﬁzfi 1aw)E17n—1

1<i<j<n

-+ ()\(1 1)6611 + )\aln + Z )\ alj) Eln

1<i<j<n

+(/\§;11)1a11+>\a2n 1+ Z Aé’n 1GZJ)E2,n—1

1<i<j<n

+ ()\( a1 + Aaagy, + Z )‘Zn CLU) Egn)

1<i<j<n

<b13E13 + o+ by By by Eoy + - - 4 bop Eopy + - - -

+bn73,n71En73,n71 + bn73,nEn73,n + an,nEn2,n)

=0
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and

U2¢9(A) = (b1sErg + - 4+ bin By + bouEoy + - - + by By +

+bn73,n71En73,n71 + bnfS,nEnf?),n + bn72,nEn72,n)

<()\( )1a11+)\a1n 1+ Z )\1n 1%>E1,n1

1<i<yi<n

)\(1 air + Aai, + Z Aﬁi;j)%) En

1<i<j<n

1<i<g<n

+ )\gil ajy + )\CLQn + Z )\glnj CLU>E2n)

1<i<j<n

For instance, the following maps

11 A1z a1z Qi4 0 0 a O
0 ax axn au 0 0 a2 ags
|_>
0 0 a3z a34 0 0 0 0
0 0 0 ayy 0 0 O 0
i Q2 a3 Q14 0 0 a2 an
0 ax ax au 0 0 aos as
)_>
0 0 a33 a3q 0 0 0 0
0 0 0 awu 0 0 O 0

are 2-power commuting additive maps on invertible matrices in 7,,(F,) of this type.

7.3 Main results

Theorem 7.3.1. ¢ : T5(Fy) — T5(F2) is a 2-power commuting additive map on invertible

matrices if and only if there exists A\ € Fy and an additive map 11 : T5(Fy) — Fo such that

V(A) = AN+ p(A) Iz + <(A)

Jorall A € Ty(Fs), where s : Ty(Fo) — T2(IFy) is the additive map defined in (7.1).
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Theorem 7.3.2. ¢ : T5(Fy) — T5(F2) is a 2-power commuting additive map on invertible

matrices if and only if there exists X\ € Fy and an additive map i : T3(Fy) — Fy such that
P(A) = AA + p(A) Iz + ¢(A)

Jorall A € Ts(Fy), where ¢ : T5(Fo) — T5(Fy) is the additive map defined in (7.2).

Theorem 7.3.3. Let 0, = {(1,3), (1,4),(2,3),(2.4)} and let © = |J,, 0, {Ni” € F2 -
1 < i < j < 4} be a set of scalars on Fy. Then 1 : Ty(Fy) — Ty(F2) is a 2-power
commuting additive map on invertible matrices if and only if there exists A\ € 'y and an

additive map 1 : Ty(Fy) — Fy such that
P(A) = NA+ p(A) Ly + ¢y (A) + Yo (A)

Jorall A € Ty(Fy), where 1., : Ty(Fy) — Ty(F2) and g : Ta(Fo) — Tu(F2) are additive

maps defined in (7.3) and (7.4), respectively.

Theorem 7.3.4. Let n > 5 be an integer. Let 0, = {(1,n —1),(1,n),(2,n —1),(2,n)}
and let © = U(S’t)een{)\g’j) € Fy : 1 < i < j < n} bea set of scalars on Fy. Then
W T, (Fy) — T, (Fs) is a 2-power commuting additive map on invertible matrices if and

only if there exists A € Fy and an additive map v : T,,(Fy) — Fy such that
V(A) = A + p(A), + ve(A)

forall A € T,,(Fy). Here, Vg : T,,(Fy) — T,,(IFy) is the additive map defined in (7.4).

7.4 Proofs
Lemma 7.4.1. Let Fy be the Galois field of two elements and let n > 2 be an integer. Let

A € T,(Fy) and A* = (by;). If A is invertible, then b; ;11 = 0 fori=1,...,n— 1.

Proof. We first see that the result holds for n = 2 since the only invertible matrices in
Ty(IFy) are I, and I, + iy, where I3 = (I, + E12)? = I,. We now consider n > 3. Let
A € T,(Fy) be invertible with A* = (b;;) € T,,(F2). Since A € T,,(F) is invertible, then
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A=1T,+U,whereU =3 _,_,, ai; ;. Note that A2 = (I, + U)(I, + U) = I,, + U?,

where

U = ( CLZ']‘EZ‘]‘) ( aijEij)
1<i<j<n 1<i<j<n

= (Z ay; By + Z agj o + -+ apn—on1Fpn_on1+ an_onbn_on

=2 j=3

+an—1,nEn—1,n)
(Z alelj + Z a'QjEZj + -+ an—2,n—1En—2,n—1 + an—Q,nEn—Z,n

+an—1,nEn—1,n)

3 n—1
= aipagz bz + <Z Cl14aj4) Eiy+--+ (Z a1jajn> En
j=2 Jj=2
4

n—1
+agsaz4Foy + (Z a24aj4) Eos + -+ < azjajn> Eo,
3

=3 I=

+
+p—3n—20n—2n-1Fn_3n-1+ (@n—3n—20n—2n + Qpn-3n-10n-1n)En_3n

+an—2,n—lan—1,nEn—2,n- (75)

By (7.5), we see that b; ;11 = 0 fori =1,...,n — 1. We are done. O]
We first prove Theorem 7.3.1.

Proof of Theorem 7.3.1. 1t is easily seen that A — AA + u(A)I; is a 2-power commuting
additive map on invertible matrices A € T5(IF3). Together with Example 7.2.1, the suffi-
ciency is proved. Consider the necessity. For each pair of integers 1 < p < ¢ < 2, we

let

W(Epy) = (a?) € Ty(Fy) (7.6)

and let

U(I) = (alV) € Tu(Fy) (7.7)
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for all integers 1 < ¢ < j < 2. Let A = (a;;) € T»(F;) be invertible. Then A €

{I,,I, + Ey5} and A? = I,. By [¢(A), A%] = [¥(A), I,] = 0, we get

(LY - (1,1) (1,1)
din Qg (1,2) (1,1) (1,2) 0 ap)
Y(l) = an | = ayy >+ (ayy +ap ") I + wy  anl’ (7.8)
0 ay 0 ap” +ag
(1,2)  (1,2) (1,2) (1,2)
ayy aqo a; " + Qoo
1/1(E12) = (12) = CL§12’2)E12 + a§12’2)12 -+ . (79)
0  asy 0 0

Let A = )\512’2) € Fy. Let p : T5(Fy) — TFy be an additive map such that p(l;) =
o+ ff and () = of”. LAY 4 A5 = oy 4 o AL = o and

)\511’2) + )\92’2) = aglﬁ) + a§12’2). In view of (7.8) and (7.9), we see that
V(A) = AA+ p(A)L, + ¢(A)

for all A € Ty(F3), where ¢ : To(IFy) — T5(IFy) is the additive map defined in (7.1). We

are done. O]

We then prove Theorem 7.3.2.

Proof of Theorem 7.3.2. 1t is easily seen that A — AA 4 p(A)I3 is a 2-power commuting
additive map on invertible matrices A € T3(IFy). Together with Example 7.2.2, the suffi-
ciency is proved. Consider the necessity. For each pair of integers 1 < p < ¢ < 3, we

let

U(Epy) = (a??) € T3(F) (7.10)

and let

U(Iy) = (alV) € Ty(Fy) (7.11)

for all integers 1 < ¢ < j < 3. Let A = (a;;) € T5(F3) be invertible. Then A = A; U A,,

where Ay = {I5+ E1o+ Eos, I3+ Evo+ B3+ Eos} and Ay = {13, I3+ By, I3+ Eq3, I3+
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Egg, [3 -+ E12 -+ Elg, Ig + E13 + Egg}. Note that

13+E13 lf AEAl,
A? = (7.12)

I,  if Ac A,

Hence we only need to consider A = I3+ E15+ Fazand A = I3+ Eo+ E13+ Fos. Since
(I3+Ero+Ess)? = I3+ Evgand [ (I3+ Era+ Eos), I3] = 0,by [¢)(I3+ E1o+ Es3), Eis) =
0, (7.10) and (7.11), we get

(2,3)

(1,2)
Q33

R N (R B

=ayy" +ay’ +as; + a%Q). (7.13)

Since (Ig + E12 + E13 + E23)2 = [3 + E13 and [w(Ig + E12 + E13 + EQg), [3] = 0, by
[¢Y(I3 + E19 + E13 + Es3), E13) = 0, (7.10) and (7.11), we obtain

afy” = oY +aly! +alsV + oy + afy? + 0P +af5Y. (714
Taking (7.13) into (7.14),
al?? = aly?. (7.15)

We are now ready to classify the structures of ¢)(/3) and ¢(E;;) forall 1 < i < j < 3.

It follows from (7.11) that

Ly (1,1 (L1
a1 Gp) (GF!

Y(l3) = 0 a%’l) a%l)

0 0 alt!

= i+ (ol + k)
o al
+10 agll’l) + aélz’l) a%l) : (7.16)
0 0 ay! +ai?
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It follows from (7.10) that

1,2 1,2 1,2
51 ) a§2 ) ags )

Y(Er2) = 0 a%’m a§12’2)

0 0 alt?

0 a(1 D4 a(l 2 a%’2>
= agz )Elz + a )]3 +10 a(l 2y aglzz) a%’Z) . (7.17)
0 0 ( 2 4a (1 2)
By virtue of (7.10) and (7.13),
i ap? o
P(Ea3) = 0 a%’g) %3)
0 0 aﬁ?’)—l—a(“)—l—ag?, )+a§1 )+a%2)
= ag122)E23 + agl’ I3
0 ap” ar”
+10 a§1’ ) 4 a%s) a%g) + CL§12’2) - (7.18)
0 0 a§1 )+a§3 )+a§1 )+a%2)
By virtue of (7.10) and (7.15),
ap® apy” ajy”
Y(E3) = 0 a%’g) a%g)
0 0 af?
0 a§123) a§3 e a(1 2)
= ay? B +ayV L+ |0 ol 4ol als? . (7.19)
0 0 0

Let A = aglz’Q) € [Fy. Let i : T3(IFy) — Fo be an additive map such that pu(/3) = aﬁ’” and
1,1 1,1 1,1
gD A0 _

_sta

w(Eij) = aglj) for every pair of integers 1 <7 < j < 3. Let AGY =

AL = {5 and A% = o) where 1 < s < t < 3 are integers. In view of (7.16)—
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(7.19), we see that
(A) = N+ p(A) I3 + ¢(A)

forall A € T3(FF,), where ¢ : T3(IFy) — T5(FF,) is the additive map defined in (7.2). This

completes the proof. ]

Next we prove Theorem 7.3.3.

Proof of Theorem 7.3.3. It is easily seen that A — AA + pu(A)Iy is a 2-power commuting
additive map on invertible matrices A € T;(F;). Together with Examples 7.2.3 and 7.2.4,
the sufficiency is proved. Consider the necessity. For each pair of integers 1 < p < ¢ < 4,
we let

V(Epg) = (alf”) € Ty(F») (7.20)

)

and let

U(Ly) = (alV) € Ty(Fy) (7.21)

for all integers 1 < ¢ < j < 4. Let A = (a;;) € Ty(F) be invertible. Note that if
A=1I+E;forsomel <i<j<d4,then A2 = (I, + E;)(Ih, + Ejj) = I, + E;j +
Eij+ EjjE;; = Iy, forall 1 < i < j < 4. Thus [¢(A), A?] = [¢(Iy + Ey), L] =
Y(A) — (A) = 0. Hence we first consider A = I, + F,, for 1 < s <t < g < 4. Let
A=1,+Ey+ Ey, forintegers 1 < s <t < q < 4. Then A*> = (I4 + Ey + Ey) (14 +
Eq+ Ey) =1+ Eq+ Eyy+ Est + Eq By + Eyy = Iy + E. Since [¢p(A), I4] = 0,
hence 0 = [1(A), A%] = [(A), I + Ey] = [V(A), By = [¥(Is + Ey + Ey,), Es. By
[V(Iy + Ero + Es3), E13] = 0,(7.20) and (7.21), we have

2,3 2,3 1,1 1,1 12 12
afy” = a7V + aly! + aly + oy + aly?, (7.22)
2,3 1,1 12
ag4 ) = a§4 )+ a:(,)4 ). (7.23)

Since (I4 + E12 + Egg + E13)2 = ([4 + E]Q + E23 + E14)2 = ]4 + Elg, by [¢(I4 + E12 +
Ess + Ey), Ers) = 0, for every (u,v) € {(1,3),(1,4)}, we get

(u,v) (u,v) (2,3)

_ (2,3)
@y = asz " +ag

i 1,1
+ as3’ + a§1 )

+alV +ay? +ay?,  (124)
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(u,) (1,1) (1,2)

2.3
Azy " = Qzy " + Ay —|—a:(,)4 ) (7.25)

Taking (7.22) into (7.24) and (7.23) into (7.25) with (u,v) € {(1,3), (1,4)} respectively,

we obtain
{19 = g3, (7.26)
agllﬁl) _ a%‘l)’ (7.27)
a:(;lﬁ) -0, (7.28)
all? = 0. (7.29)

By [)(14 + Eas + Es4), Fay] = 0, we have

3,4 3,4 1,1 1,1 2,3 2,3
ag2 ) = az(14 = agz - a514 - agz - a§4 )a (7.30)

afy? = aly” +ay”. (7.31)

Since (I4 —+ E23 -+ E34 —+ E14>2 = ([4 + E23 -+ E34 —+ E24)2 = [4 + E24, by [w(L; —+ E23 +

E34 + Euv)v E24] =0 fOI‘ every (U, U) € {(L 4)> (2a 4)}7 we get

u,v u,v 2,3 2,3 1,1 1,1 3,4 3,4
agz )= az(14 ) +ag2 ) —|—a514 ) —|—a§2 ) +az(14 ) +a§2 ) +@4(14 )7 (7.32)
2 = 43P ot 735

for every (u,v) € {(1,4),(2,4)}. Taking (7.30) into (7.32) and (7.31) into (7.33) with
(u,v) € {(1,4),(2,4)} respectively,

a? = aly?, (7.34)
ayy? = aly?, (7.35)
aly =0, (7.36)
a2 =o. (7.37)
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By [¢(1s + E1a + Es4), Ey4) = 0, we have

1,1 1,1 1,2 1,2 2.4
avV +alY +alt? + aly? + all?

+al2® =o0. (7.38)
Since (14 + Evo + Foy + Els)2 =4+ Eio+ Eoy+ E14)2 = [y + Eio+ Eoy+ E34)2 =
Iy + E14, by [W(14+ Ero + Eoy + Eyy), Er4] = 0 for every (u,v) € {(1,3),(1,4),(3,4)},
we get

(u,v) (u,v) (L,1)

1 1,2 2,4
aj; =gyt ag Y ( Y

+ agfl) +ap T+ agfm + a121’4) + Qg (7.39)

for every (u,v) € {(1,3),(1,4),(3,4)}. Taking (7.38) into (7.39) for every (u,v) €
{(17 3>7 (17 4)’ (37 4)}9

an® = afy”, (7.40)

afy? = afy?, (7.41)
4 4

a3 = 34, (7.42)

It follows from (7.27), (7.35) and (7.41) that

1,4 1,4 1,4 1,4
a§1 g ag? ) = a§3 ) = %(14 )~ (7.43)

By [¢(I4 + E13 + Es4), E14) = 0, we have

oy + ol +aiy? + ol + affY + a5V = 0. (7.44)

Taking (7.40) and (7.42) into (7.44),
alt? = albY. (7.45)

Taking (7.34) and (7.45) into (7.38),
a2 =alY + ol 4 ol (7.46)
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Taking (7.42) and (7.45) into (7.30),

a(3,4) _(34) (1,1) +a(1,1) (2,3)

2,3
99 = Ay "+ apy 99 T Qg —|—ai4 )' (7.47)

Since (I4 + E13 + E34 + E12)2 = I4 + E14, by [77/1(14 + E13 + E34 + Elg), E14] = 0, we

have
apy? = ayy? +aiy? 4l + oy 1ol F et et (748)
Taking (7.44) into (7.48),
aly? = all?. (7.49)
Taking (7.49) into (7.46),
a?® = a2Y. (7.50)

We now consider A2 = I, + E,; + Eg forl < s <t <q <4 Since (I, + Eyg +

E23 —+ E24)2 = [4 -+ E13 -+ E14, by [¢([4 -+ E12 -+ E23 -+ E24), E13 + E14} = O, we have

(L,1) (1,2) (2,3) 24) _ (1,1 (1,2) (2,3) (2,4)

iy ay tagy T Fayy = agy’ +asg +aszs’ +dazg (7.51)
1,1 1,2 2,3 2,4
a:(’,4 )+a:(34 )+ag4 )+ag4 )
(7.52)
1,1 1,2 2,3 2,4 1,1 1,2 2,3 2,4
:agl )+a’§1 )+a§1 )+a51 )"‘afm )"‘afm )+a4(14 )—i—an )'
Taking (7.23) and (7.38) into (7.52),
asy) = all” + ay?. (7.53)
Taking (7.22) into (7.51),
a7 = aly?. (7.54)
It follows from (7.34), (7.50) and (7.54) that
) 74 ,4 74
9 = a3 = oy = oy (159

We next consider A? = I, + Eg + Ep for 1 < s < p <t < 4. Since (I + E13 + Ea3 +
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E:34)2 = Iy + Eyy + Esq, by [Y(Iy + Ev3 + Eas + Es4), By + Eaq) = 0, we have

1,1 1,3 2,3 3,4 1,1 1,3 2,3 3,4
aiy” + apy” +aiy” + a3 = iy +aiy? + i + ai}?
(7.56)
+agy +ayy? + oy +all?,
abs” +agy” +ag” +af? =l + ol + oY 4aGY (757)
Taking (7.31) and (7.44) into (7.56),
aly” = ail” +ay?. (7.58)
Taking (7.30) and (7.40) into (7.57),
al?? = aly?. (7.59)
It follows from (7.26), (7.40) and (7.59) that
1,3 1,3 1,3 3
aiy? = afy® = agy® = ol (7.60)

We now consider A = I, + Ey + E,,for1 < s <p <t <q<4. Since (I; + E15 +

E23 + E34)2 = ]4 + E13 + E24, by [ZZ)(L; + E12 + E23 + E34), E13 + E24} = 0, we have

aﬁ’” + aﬁ’z) + aﬁ’g) + aﬁA) = a%l) + ai%’m + a%’g) + a§§’4), (7.61)
1,1 1,2 2,3 34 1,1 1,2 2,3 34
agz : —|—a§2 : —|—ag2 ) —|—a§2 ) = a§4 : —|—a§4 : +a§4 : —|—a§4 )u (7.62)
1, 1,2 2,3 3,4 1, 1,2 2,3 3.4
asy” +asy? + a5y + ol = alyV + aly? + a7V + o} (7.63)
Taking (7.22) into (7.61),
3.4 34
a3 = a3Y. (7.64)
It follows from (7.42) and (7.64) that
3,4 3.4 3,4
agl ) = az(a?, )= %(14 ) (7.65)
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Taking (7.23) and (7.31) into (7.62),

agy? = afy?. (7.66)

Taking (7.30) and (7.49) into (7.63),
aly? = aly?. (7.67)

It follows from (7.49) and (7.67) that
apy? = agy” = ay?. (7.68)

We are now ready to classify the structures of ¢)(/,) and ¢(E;;) forall 1 <i < j < 4.

We first classify ¢(1,). Since aﬁ’” = aﬁ” by (7.45), it follows from (7.21) that

(1,1) (1,1) (1,1) a(l,l)

aq GP) aqs 14

1,1 1,1 1,1
w([) 0 agz ) a§3 ) aé4 )
= 1) (1D

0 0 ag ag

o o o0 a¥V

= aig” L+ (o + aiy”) s
1,1 1,1 1,1
0 a§2 ) a§3 : a§4 :
1,1 1,1 1,1 1,1
+ 0 apy” + ay” as") asy” (7.69)
00 el o
0 0 0 0
S i ; (12) _ (12) _ (1,2) )
econdly, we classify ¢(E1,). Since ajy” = agy = ay,~ by (7.68), it follows from
(7.20) that
1,2 1,2 1,2 1,2
agl ) a§2 ) 033 ) a§4 )
ol il
Y(E2) =

o0 a

1,2
o 0o 0 a}?
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1,2 1,2
00 a§3 ) a§4 )

00 ay?  al?

_ a§2 )E12 +a (1 2)]4+ 23 L 2;12 (7.70)
0 0 afy? +af” afy?
00 0 0
Thirdly, we classify 1)( Ea3). Since a%g) = (2’3)+a§11’1)+a§,3 )+ 512)%—&(12 by (7.22)

and as, 2:3) = aé4 )+ a34 by (7.23), it follows from (7.20) that

2.3 2,3 2,3 2,3
ait? afy” aty” afy”
0 afy? asy” asy”
P(Ea3) =
0 0 agl ta (1 1) ta (1 1) ta (1 2) ta (1 2) (1 1) ta (1 2)
0 0 0 alZ?
2,3 2,3 2,3
0 agQ ) a§3 ; a§4 )
(2,3) (2 3) (2,3) (1,2) (2,3)
0 a +a Qg3 +a a
n 11 23 12 24 7.71)
0 0 aﬁ’” + ag3 ) + a§12) + agl 2) ail) + a(1 2)
0 0 0 agf ) + a514’ )

Subsequently, we classify 1)(Es34). Since a(3 4 = aglz’ ) (2 9 by (7.31), a;;A‘ = aﬁ A 4
a7V 4 aly) +a + a5 by (7.47), 3 = a5 = oY by (7.65) and oy = aly?

by (7.66), it follows from (7.20) that

it o5+ aft? Yl
sy | O Al Y
: : ol
0 0 0 o
= a5 By + a3V,
0 I CE) B9 g3
o g |
0 0 0 0
0 0 0 0
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Next, we classify ¢(FE13). Since a34 = 0 by (7.28), a(1 B = ( 94 a443) by (7.58) and

al?? = alsY = al5¥ = o'y¥ by (7.60), it follows from (7.20) that

(1,3) (2,3) a(2,3) (1,3) (1,3)

apy Gy Ay g Ay
(1,3) CEINCE)
0 aq Qa3 Aoy
U(Er) = .
0 0 ayy 0
1,3
0 0 0 a}?
3 2,3 1,2 1,3
0 agl )+ ( ) a§3 )+a§2 ) ag4 )
0 0 a(l 3) a(l’g)
+ % S (7.73)
0 0 0 0
0 0 0 0

Then, we classify 1(Ea,). Since ag = 0by (7.37), as, @4 ( D4 a44 23 by (7.53) and

aﬁ 4 = agA) = a%A) = a44 by (7.55), it follows from (7.20) that

2,4 2,4 2,4
a0 GBY oY
2,4 2,4 2.4
0 agl ) aé3 ) ag4 )
V(Eyy) =
0 O ag21,4) (23)+ (23)
2.4
0O 0 0 al®?
2.4 2,4
00 a3V oY
00 a(2’4) a(2’4)+a(1’2)
= S By + a1+ @ e (7.74)
00 0 43
00 0 0

Finally, we classify ¢(F14). Since a§4 = 0 by (7.29), all =0 by (7.36) and a§11’4) =
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a% 4 a%A) = a44 4 by (7.43), it follows from (7.20) that

(1,4) 0 (14) (.49

ayy a3 14
(1,4)  (1,4)  (1,4)
0 ayy " Qgg " Qg

Y(Bu) =
o o o' o

o 0o o0 ¥

0 (14) (1,4)+ (1,2)

0 ais QA4 4P)
00 a(1’4) a(1’4)
= a§1272)E14 + CL51174)I4 + 23 2 (7.75)
00 0 0
00 0 0

Let A = a§122) € Fyand v = a§213) + ay

additive map such that p (1) = a§1 Y4 agl %) and w(Ei;) = allj) foreach1 <i < j <4.

(23) € ]FQ. Letp : T4(IF2) — FQ be an

Let 6, = {(1,3),(1,4),(2,3),(2,4)}. Let A7 = 007 and A}V = o}, for each

1 <i<j<4and(s,t) €0y Inview of (7.69)—(7.75), we see that

P(A) = NA+ p(A) Ly + ¢y (A) + Yo (A)
for all A € Ty(F;), where A € [F, and 1, and g are the additive maps defined in (7.3)
and (7.4) respectively. This completes the proof. O]

Finally we prove Theorem 7.3.4.
Proof of Theorem 7.3.4. Throughout the proof, unless otherwise specified, let n > 5 be
an integer. It is easily seen that A — A\A + u(A)I, is a 2-power commuting additive map
on invertible matrices A € T),(F5). Together with Example 7.4, the sufficiency is proved.

We now prove the necessity. We divide our proof into the following two cases:

Case I: n = 5. For each pair of integers 1 < p < ¢ < 5, we let

U(Epy) = (a?) € T5(F) (7.76)
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and let

Y(I5) = (alV) € T5(Iy) (7.77)

for all integers 1 < ¢ < 7 < 5. In what follows, it is understood that (7.76) and (7.77) are
used in [¢(I5 + Eq + Ey,), Esy) =0forl < s <t <q<5. Let A= (a;;) € T5(Fs)
be invertible. If A = I5 + E;; forsome 1 <4 < j < 5,then A*> = I; + Ey; + By = I.
Thus [(A), A%] = [¢(I5 + E;j),Is] = 0. Hence we first consider A? = I5 + Fj,
for integers 1 < s < ¢t < ¢ < 5. Note that A? # I5 + E . forall 1 < s < 4
sinceq # s+ 1. Let A = Is + Ey + E;, forintegers 1 < s < t < ¢ < 5. Then
A? = I5 + E,,, where (s,q) # (i,i + 1) for all integers i = 1,...,4, by Lemma 7.4.1.
By [¢(Is + Est + Eyy), Esq] =0, (7.76) and (7.77), forevery 1 < s <t < ¢ < 5,

1,1 1,1
( > ag e+ qu))Ez-j>Esq—Esq( > (ag +ai? + S‘”)Eij) =0.

1< <5 1< <5

Then
1,1 t 1,1 st t,

> (a4l +a) By — Y (0 + a” +ag?) By =0.

1<i<s q<j<hb
Thus

( (1,1) + agit) + a(“]) + a(l 1) —I—CL(St) + a(tQ))E’sq
t, 1,1 ,t t,
+ 2 (@ S alEy = Y (ot +ag? +ag”)Ey =0,

1<i<s—1 q+1<5<5

Hence forevery 1 < s <t < ¢ < 5, we obtain

alt? +alV + a4+ als? + alh? 4 alt) =0, (7.78)

al’V + a0 40" =0 for i=1,...,s—1, (7.79)
(171) (Svt) (t7Q) — ) —

a, tag a0 =0 for j=q+1,....5 (7.80)
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Setting (s,t,q) = (3,4,5) and i € {1,2} in (7.79) respectively,

(45) _ (1,1) (3,4)

a5 = ay5 " +aqg 7, (7.81)
a%"ﬁ) = a%l) + aé%’4). (7.82)

Setting (s,t,q) = (1,2,3) and j € {4,5} in (7.80) respectively,

2,3 1,1 1,2

ay? = alyV +aly?, (7.83)
2,3 1,1 2

al? = oV + o, (7.84)

Letl < s <t < q < 5beintegers. For each pair of integers 1 < v < v < 5 such
that u # t,q and v # s,t, we note that (I5 + Egy + Ey + Fuw)? = Is + Eg,. Since
W)(I5 + Est + th + Euv); ]5] = Oa by [¢<I5 + Est + th + Euv)a Esq] - 05 for cvery

1 <u<wv<5suchthatu # t,q and v # s,t,

i = o+l D s a0l D, 089
al =PV 4 a0 4 M for =1, s —1, (7.86)

(u’v) J— (1’1) (svt) (t7Q) Y
a, " =ay +a, +a, for j=q+1,...,5. (7.87)

Forevery 1 < s <t < g < 5, taking (7.78) into (7.85), (7.79) into (7.86), and (7.80) into

(7.87) respectively, for 1 <u < v < b, u#t, gandv # s, t,

alt?) = a{v), (7.88)
al™ =0 fori=1,...,s—1, (7.89)
al® =0 for j=q+1,...,5. (7.90)

Note that equations (7.88) and (7.90) give

(@) the 3rd row of ¢(E,,) for each pair of integers 1 < u < v < 5 satisfying u # 2,3
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and (u,v) # (1,2).
(i) the 4th row of ¥(F),,) for each pair of integers 1 < u < v < 5 satisfying u # 4

and (u,v) # (2, 3).
i) the 5th row of ¥(E,,) for each pair of integers 1 < u < v < 5 satisfying u # 5.

In particular, when s = 1, equations (7.88) and (7.90) respectively become
a\?) = ¢ for ¢ = 3,4,5 (7.91)
11 qq q ) Yy .

" =0 for j=q+1,...,5. (7.92)

q7

* When ¢ = 3, thent = 2. By (7.91) and (7.92), we obtain the 3rd row of ¥(E,,)
for every pair of integers 1 < u < v < 5 where u # 2,3 and (u, v) # (1,2). This
is because we get u = 1,4 and v = 3,4, 5, where u # 2,3 and v # 1, 2, satisfying
1 <u<v<5. Hence

ot = o, (7.93)
agy” = ale” =0 (7.94)

for all (u,v) € {(1,3),(1,4), (1,5), (4,5)}.

» When ¢ = 4, thent € {2,3}. By (7.91) and (7.92), we obtain the 4th row of
(Ey) where u # 4 and (u,v) # (2, 3). This is because when (¢, q) = (2,4), we
getu =1,3andv = 3,4, 5, where u # 2,4and v # 1, 2, satisfyingl <u <v <5
and; when (t,q) = (3,4), we getuw = 1,2 and v = 2,4,5, where u # 3,4 and

v # 1,3, satisfying 1 < u < v < 5. Hence
ay” = aiy"”, (7.95)

al® =0 (7.96)

for all (u,v) € {(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)}.
* When g = 5and ¢t € {2,3,4}, by (7.91) and (7.92), we get the 5th row of ¥(E,,)
for each pair of integers 1 < u < v < 5 where u # 5. This is because when

t=2,wegetu=1,3,4and v = 3,4,5, where u # 2,5 and v # 1, 2, satisfying
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I1<u<v<b whent =3 wegetu=1,2andv = 2,4,5, where u # 3,5 and

v # 1,3, satisfying 1 < u < v < 5 and; when ¢t = 4, we get (u,v) = (2,3). Hence
aiy” = agg” (797)

for (u,v) = (i, ) for each pair of integers 1 < i < j < 5.
Note that equations (7.88) and (7.89) give

(i) the 2nd column of ¥)(E,,) for each pair of integers 1 < u < v < 5 satisfying v # 2

and (u,v) # (3,4).
(i) the 3rd column of ¢(FE,,) for each pair of integers 1 < u < v < 5 satisfying

v # 3,4 and (u,v) # (4,5).

For every 2 < s < 3, equations (7.88) and (7.89) respectively become

alw?) — a((;;’”) forg=s+2,...,5, (7.98)

Ss

al" =0 fori=1,...,s—1. (7.99)

» For s = 2 witht € {3,4} and ¢ € {4,5}, by (7.98) and (7.99), we obtain the 2nd
column of ¢(E,,) for each pair of integers 1 < u < v < 5 where v # 2, and

(u,v) # (3,4). This is because:

— when (t,q) = (3,4), we get u = 1,2 and v = 4,5, where u # 3,4 and

v # 2,3, satisfying 1 < u < v < 5. Hence
asy” = aly?, (7.100)

al® =0 (7.101)

for all (u,v) € {(1,4), (1,5), (2,4), (2,5)}:
— when (t,q) = (3,5), we get (u,v) = (4,5), where u # 3,5 and v # 2,3,

satisfying 1 < u < v < 5. Hence

ass” = aly?, (7.102)
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aly” = 0; (7.103)

— when (t,q) = (4,5), we getu = 1,2,3 and v = 3,5, where u # 4,5 and

v # 2,4, satisfying 1 < u < v < 5. Hence
aly” = afe”, (7.104)

al® =0 (7.105)

for all (u,v) € {(1,3),(2,3),(3,5)}.

* Finally, for s = 3, by (7.98) and (7.99), we obtain the 3rd column of ¢)(E,,) for
each pair of integers 1 < u < v < 5 where v # 3,4, and (u,v) # (4,5), because
when (t,q) = (4,5), we getu = 1,2,3 and v = 2,5, where u # 4,5 and v # 3,4,

satisfying 1 < u < v < 5. Hence

a9 _ g lo0) (7.106)
a%,v) _ ag’gﬂ’) =0 (7107)

for all (u,v) € {(1,2),(1,5),(2,5),(3,5)}.

It follows from (7.95), (7.97) and (7.100) that

2.4 2.4 2.4 2.4
aiy? =afy? = oy = al2?. (7.108)

It follows from (7.97) and (7.104) that
a7 = al? = al2?. (7.109)

It follows from (7.95) and (7.97) that

k) ?4 k)
a7 = ay" = a3, (7.110)
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It follows from (7.95), (7.97) and (7.106) that

7 = off? = off? = ol )

It follows from (7.93), (7.97) and (7.102) that

45 45 45 45
@51 ) = aéz ) = a:(33 ) = aé5 g (7.112)

It follows from (7.93), (7.95), (7.97) and (7.104) that

(1,3) _ (1,3)
Ay " = Qg

fori=2,...,5. (7.113)
It follows from (7.93), (7.95), (7.97) and (7.100) that

ali? =l fori=2,...,5, (7.114)

(2

alv? =all® fori=2,...,5. (7.115)

It follows from (7.95), (7.97), (7.100) and (7.106) that

a®? = o® fori=2,....5. (7.116)

It follows from (7.95), (7.97), (7.104) and (7.106) that

(3,5) __ (35)
Ay - = Qy

fori =2,...,5. (7.117)

Next, by [¢(I5 + E12 + Eay), E14] = 0 for every 3 < ¢ < 5, we get

(1 (1,2)

a9 = a3 +alyV + ol 1 af? 4 ol (7.118)

q 71
for every 3 < ¢ < 5. Taking (7.108), (7.111) and (7.116) into (7.118), for every 4 < q <
5,

altV = alby. (7.119)

qq
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Setting ¢ = 3 in (7.118),

2,3 2,3 1 1,1 1,2
aég)_()_,_51)_i_()_i_()_i_é3

Taking (7.111) into (7.120),

o5 = o+ ol 4y

Y [V(I5 + E3 + Es5), Eas] = 0, we have

3,5 1,1 2,3
a%Q ) = a§2 )+ag2 )7

(1) _ (1,

asy? = alyV + a5y + alz?

(3,5)

+ a9y ' + agg

It follows from (7.105) that

2,3 3,5
agz )—agz =0,

Taking (7.124) into (7.122),
ag =0

Taking (7.109) and (7.117) into (7.123),

1,1 1,1
aéz )_aés )

It follows from (7.119) and (7.126) that

1,1 1,1 1,1 1,1
ag1 ) = ag2 ):afm : :aé5 g

By [¢(I5 + E19 + Ess), F1s] = 0 forevery 3 < s < t < 5, we get

)+ (12)+ (25)

ag? +ay? +ag” =0,

(3,5)

=0 for j=s+1,...,t —1,t+1,...

(7.120)

(7.121)

(7.122)

(7.123)

(7.124)

(7.125)

(7.126)

(7.127)

(7.128)

(7.129)
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for every 3 < s < t < 5. Setting (s,t) = (4,5) in (7.129),

o5+ a3 =0
It follows from (7.96) that
1,2 24
az(15 ):ais =0
Taking (7.131) into (7.130),
a%’l) =0.

On the other hand, by [1)(I5 + Ea3 + Es4), Fay] = 0, we get

3,4 1,1 2,3
a3V = alz" +af3”

2,3 1,1 3,4
%(15 ) = %(15 )+a515 A

It follows from (7.105) that

ag’g) = 0.

Taking (7.125) and (7.135) into (7.133),

af’;“) = 0.
It follows from (7.96) that
a%zl) =0.

Taking (7.132) and (7.137) into (7.134),

a(2’3) =0.

Let 1 < s <t <5 beintegers. Set

CLSZ’t) E14 + a5857t)E15 + agi’t)EM + ag?—)’t) E25

Xst =

(7.130)

(7.131)

(7.132)

(7.133)

(7.134)

(7.135)

(7.136)

(7.137)

(7.138)

if 1<s<t<)h,

@Sfl)EM + a%’l)Ew + agi’l)E% + C‘gls’l)E% if s=t=1.
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Up to this point, we obtain the partially completed maps as the following.

In view of (7.77), (7.81)—(7.84), (7.125), (7.127) and (7.132),

w(IS) = agll’l)(En + E22 + E44 + E55) + Cléé’l)Eg?, + a%’l)Elg + a%’l)Egg

+ az(zifl)E:M + a;(1,1571)E35 + X1

In view of (7.76), (7.83), (7.84), (7.109), (7.121), (7.124) and (7.138),

$(Eas) = aly? (Ev + Es + Ess) + (5% + all? + aly") Ess + a(3”) Euy
+aly By 4 a5y Bag + (aly" + aly®) Esg

+ (a§’5 ) + a(l 2))E35 + X23.

In view of (7.76), (7.81), (7.82), (7.110), (7.136) and (7.137),

Y(Esy) = aﬁl )(En + Ey + Es5) + aég )E22 + CL(S )E33 + a§4 )E34

(3:4)

+ass  Ess + a§3 )E13 + aég )E23 + Xaa.

In view of (7.76), (7.101), (7.108) and (7.131),

U(Eyy) = a’ (Eyy + Fag + B + Ess) + a2 Eys + a5V Eys + al0V Eoy

(2,4)

+az) " Esq+ a§25’4) Ess + Xoy4.

In view of (7.76), (7.83), (7.84), (7.107), (7.111) and (7.131),

Y(Ep) = a§1 )(En + Es3+ Eyy + Es5) + a§2 )E22 + Cl12 )E12 + a;(;4 )E34

+ a(l 2)Eaas + Xio.

In view of (7.76), (7.94), (7.96), (7.101) and (7.114),
Y(Ew) = a'§1174)ln + CL%A)EIB + G%A)EQ?) + X4
In view of (7.76), (7.96), (7.101), (7.107) and (7.116),

¢(E25) I5 + CL345)E34 -+ a§5 )E35 —+ X25.

(7.139)

(7.140)

(7.141)

(7.142)

(7.143)

(7.144)

(7.145)
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In view of (7.76), (7.81), (7.82), (7.94), (7.103) and (7.112),

(Ess) = a§41’5)(E11 + Eag + E33 + Es5) + aii’5)E44 + CLE;%5)E45

+ (5" + al3") Eis + (afs” + af3 V) Eas + Xus.
In view of (7.76), (7.96), (7.105), (7.107) and (7.117),

G(Ess) = alY Is + afy”) Esy + a$3”) Ess + Xas.
In view of (7.76), (7.94), (7.96), (7.105) and (7.113),

V(E3) = G§11’3)I5 + Cl%g)Em + a%’s)Ezzﬁ, + Xi3.
Finally, in view of (7.76), (7.94), (7.96), (7.101), (7.107) and (7.115),

Y(Es) = a§11’5)]5 + Xis5.

Remark that the map ¢(E}5) in (7.149) is already ultimate.

We now consider A% = I5 + E,, + Ey forintegers 1 <p < g <bSand1 <

and (p, q) # (s,t). By [(I5 + E12 + Eos + Eo), E13 + E14] = 0, we have

1,1 1,2 2,3 2,4 1,1 1,2 2,3 2,4

a§1 )+a§1 )+a§1 )+ag1 ):aéz& )+a§3 )‘l'a:(s:a )—l—aé3 )a
1,1 1,2 2.3 2.4 1,1 1,2 2,3 2,4

agl )+agl )+a§1 )+a§1 )+a£4 )+a£14 )—i—an )—i—an )

1,1 1,2 2.3 2,4
:a:(34 )+a§4 )+ag4 )—I—ag4 )7

1,1 1,2 2,3 2,4 1,1 1,2 2,3 2,4
ag) +agg? +af? + ot = alg? iy + oy +af”.
Taking (7.111) and (7.121) into (7.150),

(2,4) (2,4)

ayp "~ = Ggg

(7.146)

(7.147)

(7.148)

(7.149)

s<t<bH

(7.150)

(7.151)

(7.152)

(7.153)
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We conclude from (7.108) and (7.153) that
a*Y = a*Y fori=2,...,5. (7.154)

By [¢(I5 + E12 + Eas + Ebs), Evs + Ey5] = 0, we have

aly? + aly? +alY + a2 =0, (7.155)
aﬁ’” + aﬁ’?’ + a§1 3 + agl‘:’) + aéf,l) + a(l 2 + a% :3) + a% :5)
(7.156)
-l 2 4
By [¢(I5 + E19 + Es3), E13] = 0 for every 4 < j < 5, we get
as;V +aly? +aly? = 0 (7.157)

for every 4 < j < 5. Taking (7.138), (7.157) with 5 = 5 and (7.130) into (7.152),

alyt = 0. (7.158)
Taking (7.157) with j = 4 into (7.155),

al® =0. (7.159)
Taking (7.108), (7.111), (7.127) and (7.157) with j = 4 into (7.151),

all? = al? + a3, (7.160)
Taking (7.109), (7.111), (7.116), (7.127) and (7.157) with j = 5 into (7.156),
(2,5)

al> = 0. (7.161)

Secondly, by [¢)(I5 + Evg + Eas + Ey), Ers + Eo] = 0 forevery 3 < s <t < 5, we
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have

ai +aly? + oY +afi? =y 4 all? + 0l +al?,
apy" iy +aiy” + a3 =l g e i,

(L,1) (1,2)

1 (2,9)
Aoy "+ Qg9

Fal? 4 gl = gD 4 g1 4 2

Ty " = ay ) Tyt ay )

+ay

alV + a4l 40l =0 for j=s+1,. -1t 41,5

sJ sj

for every 3 < s <t < 5. Taking (7.128) into (7.165), for every 3 < s <t < 5,

a? =0 for j=s+1,...,t—1,t+1,...,5
By [¢(I5 + Eas + Eg), Eo] = 0 forevery 3 < s <t < 5, we get

o)+ oy ol =0

for every 3 < s < t < 5. Taking (7.129) and (7.167) into (7.163), for all 3 < s

(1,2) _ (sit)
g = = Qg -

Setting (s,t) = (4,5) in (7.162),

(1,1) (1,2) (2,4)

4,5 1,1 1,2 2,4
D (N C R B (12) |, (24)

4,5
+a :a44)—|—a44 + Qyy ( )-

+ ayy

Taking (7.108), (7.111), (7.127) into (7.169),

(4,5) (4,5)

Ay~ = Qyy
We conclude from (7.112) and (7.170) that

ag41’5) =a® fori = 2,...,5.

it

(7.162)

(7.163)

(7.164)

(7.165)

(7.166)

(7.167)

<t <5,

(7.168)

(7.169)

(7.170)

(7.171)
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Setting (s,t) = (3,4) in (7.162),

o5+ ol 1 a8 4 ol = oY+ o + o + oY,
Taking (7.111) and (7.121) into (7.172),
o0 = a3
It follows from (7.110) and (7.173) that
9 =y = = o3

Setting (s,t) = (3,4) in (7.164),

o5V 4y o+ oY = o+l o 4l
Taking (7.109), (7.111), (7.127) and (7.174) into (7.175),

o o oY = 4 4y

Setting (s,t) = (3,5) in (7.164),

o5+ ofs? + 5+ olf? = oY+ 4 ol2? 42

Taking (7.109), (7.111), (7.117) and (7.127) into (7.177),

(1,2) _  (1,2)
Ay " = Qgg .

It follows from (7.111) and (7.178) that

aﬁ’” = agj’” fori =2,...,5.

(7.172)

(7.173)

(7.174)

(7.175)

(7.176)

(7.177)

(7.178)

(7.179)
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Taking (7.179) into (7.176),

2,3 3,4 2,3 3,4
ait? + iV = afF” + a3

Thlrdly, by [¢(]5 + E13 —+ E34 —+ E45), E14 + E35] = 0, w¢E have

(1,1) (1,3)

(3,4)
(13 " + Qg3

+ al? (4,5) (1,1 (1,3) (3,4)

_ )
T a3 = Q5 " Ay T+ ays

ags” +asy” +agy? +agg” =0,

By [¢(I5 + Es4 + Eus), Es5] = 0, we obtain

R )

59+ + o =0,
1,1 3.4 45 1,1 3.4 4,5
agy” +afy? +afy” = alyV +aliY +aly?.
Taking (7.184) into (7.182),
a%g) = 0.
Taking (7.171) and (7.174) into (7.185),
1,1 1,1
az(a3 ) = aés g
We conclude from (7.127) and (7.187) that
altV =Y for i=2,....5
Taking (7.188) into (7.121),
2,3 2,3
agl )= a§,3 g
By [w(Ig, + EIS + E34), E14] = 0, Ww¢E get
oY 1ol 1 a3 = o,

+ ay;

(7.180)

(7.181)

(7.182)

(7.183)

(7.184)

(7.185)

(7.186)

(7.187)

(7.188)

(7.189)

(7.190)
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Taking (7.183) and (7.190) into (7.181),

1,3 4,5
a§3) 515 )‘

Next, by [¢(I5 + E23 + E34 + E45), E24 + E35] = O, we have

(1, ( (4,5)

a13 ) _'_ a133) + a/( ) + 0/13 - 0,

(1,1) (2,3)

3.4
(g3 " + Qg oY

+aly (4,5) (1,1) + (2 3) (3:4)

+ ag3 " = ayy Qg5 + a5+ ays

Taking (7.183) into (7.192),

a%g) = 0.

By [w(Ig, + Egg + E34), E24] = 0, we get

a%’l) + a§5 ) afg‘l) =0.
Taking (7.184) and (7.195) into (7.193),
2,3 45
aé:’, ) = az(m )

We conclude from (7.191) and (7.196) that for every 1 < r < 2,

r3 45
7(~3 ) az(15 g
Setting (s,t) = (4,5) in (7.168),
1,2 4,5
apy” = as”.

We conclude from (7.197) and (7.198) that for every 1 < r < 2,

r,3
f«s ) = ag2 2,

(4,5)

(7.191)

(7.192)

(7.193)

(7.194)

(7.195)

(7.196)

(7.197)

(7.198)

(7.199)
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We conclude from (7.168) and (7.199) that forevery 1 <r <2< s <t <

1,2 3 s,t
agz )= a£3 : :agt )

By [¢(I5 + Eas + Esy + Ess), Fay + Eas] = 0, we have

(2,3)

a52)+ 52)+a52)+a§25)+aé51)+a + (34)"’ é5)

= a%’l) + 004(15 )+ %(154) + a(

It follows from (7.147) that

ag’s’) =0.

Taking (7.123), (7.195) and (7.202) into (7.201),

3,4 3,4
agg )= aés )

We conclude from (7.174) and (7.203) that

a3 = a®Y for i=2,....5.

Taking (7.204) into (7.180),

2.3 2,3
agl ) a514 )‘

We conclude from (7.109), (7.189) and (7.205) that

aﬁg) = al(f’g’) for i =2,...,5.

Taking (7.206) into (7.160),
agff) =0.

Finally, by [’gb(jg) + E14 + E34 =+ E45), E15 + E35] = 0, \%(S] have

(3:4)

aﬁ” + a§11’4) + aﬁA) +a (4 5 + é51) +a (l e + asy (45)

+ asg

=afy” + a5 +aly? +afy

2,

3,5)

Y

(7.200)

(7.201)

(7.202)

(7.203)

(7.204)

(7.205)

(7.206)

(7.207)

(7.208)
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(1, (4,5)

abs" +al? +afy + aly® = 0.
Taking (7.184) into (7.209),
a%ll) =0.
By [¢(I5 + Eva + Eus), Ers5] = 0, we get
a§1 Yy a§1 D4 a§15) + aé R a%‘l) + a%m = 0.

Taking (7.183), (7.204) and (7.211) into (7.208),

a%’ll) = 0.

By [¢(I5 + E2y + Esq + Eys5), Eas + E35] = 0, we obtain

(2:4)

(LD 4 g9 4 gBY 4 U9 _ an) | @a) | e | @

1,1 3,4 5 1 2.4 3,4
aé2)+ag2)+ 52)+ 52)+ g5)+ ( )‘|’ ( )‘|’ é5)

(1,1)

= all" + a3 + a3 + alh

By [¢(I5 + Es + Eu5), Ess] = 0, we have

4 5 2,4 4,5
agy” +ag? +ays” + ol + Y +ag? =0,
Taking (7.184), (7.204) and (7.215) into (7.214),
a%4) =0.
It follows from (7.141) that
a%zl) =0.
Setting (s,t) = (4,5) in (7.167),
apy” +aiy? +apy” = 0.

(4,5)

(7.209)

(7.210)

(7.211)

(7.212)

(7.213)

(7.214)

(7.215)

(7.216)

(7.217)

(7.218)
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Taking (7.183), (7.217) and (7.218) into (7.213),
a2 =o0. (7.219)

Consequently, using (7.139)—(7.149), we are ready to classify /(5) and ¢ (E;;) for

each pair of integers 1 < ¢ < j < 5. By virtue of (7.139) and (7.188),
O(Is) = VI + alSV By 4 alyY Bas + alyV Esy + a5V Ess + X11. (7.220)
By virtue of (7.143) and (7.179),
W(Ey) = aly I + aly? Byy + aly” Bay + aly® Bgs + X1, (7.221)
By virtue of (7.146), (7.171) and (7.200),
W(Ess) = a7 I+ al5? EBus + (al5Y + aB N Ers + (ol + al3Y) Bas + Xus. (7.222)
By virtue of (7.140), (7.188), (7.194), (7.200) and (7.206),
Y(Bys) = aly? I + als” Bas + (afyV + afy™) By + (af5” + a55?) Bas + Xos. (7.223)
By virtue of (7.141), (7.166), (7.200) and (7.204),
W(Esr) = a8V 5 + aly? Bay + a5V Bys + a5y By + X, (7.224)

It follows from (7.144), (7.210) and (7.212) that

Y(Bu) = ayV s+ aly? B+ (aly? + aly) Bu + alyV Ers
(7.225)
+ agf) E24 + agi—)A) E25.
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Since the map ¢ (F15) in (7.149) is already ultimate, it follows from (7.149) that

D(Brs) = a7 L+ aly? Bis + aly” Bu 4 (0 + alsY) B

(7.226)
+ agi 5) E24 + a§15’5) E25.
By virtue of (7.142), (7.154), (7.158), (7.207), (7.216) and (7.219),
w(E24) = agl )[5 + Cl(l 2)E24 + a§4 )E14 + agg, )E15
(7.227)
+ ((zg? )+ a(2 A )Eoy + aé§’4)Ez5.
It follows from (7.145), (7.159) and (7.161) that
’QD(EQ{,) = Cl§2175)[5 -+ Cl%’z)EQS, + aﬁ"%)EM -+ af:;S)Elg, + Cléi’5)E24
(7.228)
+ (G§122) -+ Clg%:)S))Egg,.
By virtue of (7.147), (7.166) and (7.200),
(Es3) = a8V I + alh? Bys + X5 (7.229)
By virtue of (7.148), (7.186) and (7.200),
b(Eys) = aly? Is + aly? Bys + Xis. (7.230)
Let A = a12 ? € F,. Let w2 Ts(Fy) — Fy be the additive map defined by
w(A) =ayV + > ol (7.231)

1<i<j<h

forall A = (a;;) € T5(Fy). Let 65 = {(1,4), (1,5),(2,4), (2,5)}. Let A} = o'}V and
)\g’]) = ast ). for each pair of integers 1 < i < j < 5 and (s,t) € 5. Let g : T5(Fy) —
T5(F5) be the additive map defined in (7.4). In view of (7.220)—(7.231), together with the

additivity of ¢, u and g, we obtain
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= () + ), U(By)

1<i<j<5

= M+ (AL + vo(A)

for all A € T5(F3), where A € Fy. This completes the proof for n = 5.

Case I: n > 6. For each pair of integers 1 < p < ¢ < n, we let
U(Epg) = (aif ") € To(F)

and let

W(L,) = (al V) € T, (Fy)

(7.232)

(7.233)

for all integers 1 < 7 < j < n. In what follows, it is understood that (7.232) and

(7.233) are used in [¢(1, + By + Eyy), Esy) = 0forl < s <t <g<n LetA =

(a;j) € T, (F2) be invertible. If A = I, + E;

YE

[W(A), A?] = [¥(I, + Eij), I,] = 0. Hence we first consider A% = [, + E,, for i

then A2 = [n + El] + E” = [n Thus

ntegers

1 <s<t<qg<n Notethat A% # I,,+ FE, . forall1 < s < n—1sinceq # s+1. Let

A=1I,+Eq+ FE,, forintegers 1 < s <t < ¢ < n. Then A* = [, + E,,, where (s,q) #

(i,i+1)foralli=1,...,n— 1, by Lemma 7.4.1. Since [¢)(I, + Es + Ey,), I,] = 0, by

[Y(I, + Eq + Ey), Es] = 0,(7.232) and (7.233), forevery 1 < s <t < g < n,
( Z (az(;’l) + al(;’t) + ag’q))Ei ) Eo— Ey ( Z (ag’” + az(j’t) + az(;’q))Eij
1<i<j<n 1<i<j<n

Then

5 (@) 4 als 4 alE, — 3 (6l + s+ al?) B =0

q] qJ
1<i<s g<jsn

Thus

1,1 s,t t, 1,1 s,t t,
(ags ) + ags ) + G’ESQ) - aéq ) — a((]q ) — aéqq))ESq

)-o

+ Z (az(»sl’l) + agj’t) + ag’Q))Eiq — Z (a((];’l) + a4 a(t.’q))Esj =0.

q q)
1<i<s—1 q+1<j<n
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Hence for every 1 < s < t < ¢ < n, we obtain

albt + aé}l’l) + a3 4 agsq’t) +alt? + aétq’q) =0, (7.234)

a4 a0l =0 fori=1,... 51, (7.235)
(171) (S7t) (t»q) — ) —

a, ta, +a, =0 for j=q+1,...,n (7.236)

Setting (s,t,q9) = (n —2,n — 1,n) and i € {1,2} in (7.235) respectively,

afn 5" = aihy + al Y, (7.237)
ash 3 =afly + a5 (7.238)

Setting (s,¢,q) = (1,2,3) and j € {n — 1,n} in (7.236) respectively,

oy = afoly +ag? (7.239)
ag” = ag” + ag,?. (7.240)

Let1 < s <t < g < n be integers. For each pair of integers 1 < u < v < n such
that u # t,q and v # s,t, we note that (I, + Ey + Fy, + F.,)* = I, + Fs,. Since
V(I + Egq + Bty + FEuy), 1)) = 0,by (I, + Eq + Eyy + Ew), Esg] = 0, for every

l1<u<v<nsuchthatu # t,gand v # s, 1,

al = al) +allV + oot + oS + ale? + b9 + a(h0), (7.241)
af;"”) = ag’l) + agz’t) + ag”) fori=1,...,5s—1, (7.242)

(’LL,U) _ (171) (svt) (tvq) N
a, " =ay a0 +a,; for j=q+1,...,n (7.243)

Forevery 1 < s <t < ¢ < n, taking (7.234) into (7.241), (7.235) into (7.242), and

(7.236) into (7.243) respectively, for | <u <v <n,u#t, gandv # s, t,

alt) = qlwv) (7.244)
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" =0 fori=1,...,s—1, (7.245)

1S

a =0 for j=q+1,....n (7.246)

Note that equations (7.244) and (7.246) give

(i) the 3rd row of ¥(E,,) for each pair of integers 1 < u < v < n satisfying u # 2,3

and (u,v) # (1,2).
(i) the 4th row of (F,,) for each pair of integers 1 < u < v < n satisfying u # 4

and (u,v) # (2,3).
i) the gth row of ¥/(E,,) for every integer 5 < ¢ < n of each pair of integers 1 < u <

v < n satisfying u # q.

In particular, when s = 1, equations (7.244) and (7.246) respectively become
a\wv) _ () for o =3 7.247
11 qq q gy T ( . )

a =0 for j=q+1,....n (7.248)

» When g = 3, then t = 2. By (7.247) and (7.248), we obtain the 3rd row of ¥(E,,)
for every pair of integers 1 < u < v < n where u # 2,3 and (u,v) # (1,2).
This is because we get w = 1,4,...,n — land v = 3,...,n, where u # 2,3 and
v # 1,2, satisfying 1 <u < v < n.

* When ¢ = 4, thent € {2,3} since 2 < t < ¢ — 1. By (7.247) and (7.248), we
obtain the 4th row of ¢(E,,) where v # 4 and (u,v) # (2,3). This is because
when (t,q) = (2,4), we getu = 1,3,5,6,...,n — land v = 3,4,...,n, where
u # 2,4and v # 1,2, satisfying 1 < v < v < n and; when (¢,q) = (3,4), we
getu = 1,2and v = 2,4,5,6,...,n, where u # 3,4 and v # 1,3, satisfying
l1<u<v<n.

* Continue in this way, for every 5 < ¢ < n and t € {2,3,4}, by (7.247) and
(7.248), we obtain the gth row of ¢)(FE,,) for each pair of integers 1 < u < v < n
where u # ¢. This is because when ¢t = 2, we get u = 1,3,4,....,n — 1 and
v=23.4,...,n, where u # 2,qgand v # 1,2, satisfying 1 < u < v < n; when

t =3, wegetu = 1,2and v = 2,4,5,6,...,n, where u # 3,qgand v # 1,3,
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satisfying 1 < u < v < nand; whent =4, we getu = 2, v = 3.
Note that equations (7.244) and (7.245) give

@) the sth column of ¢)(E,,) for every 2 < s < n — 3 of each pair of integers 1 < u <

v < n satisfying v # s and (u,v) # (s + 1,s +2) if n = s + 3.
(i) the (n — 2)th column of ¥(E,,,) for each pair of integers 1 < u < v < n satisfying

v#n—2n—1and (u,v) # (n—1,n).

For every 2 < s < n — 2, equations (7.244) and (7.245) respectively become

alwv) — a(“ v) for g=s+2,...,n, (7.249)

Ss

" =0 fori=1,...,s— 1. (7.250)

7,8

« Forevery2 < s < n—4,witht € {s+1,s+2,s+3}andq € {s+2,s5+3,s+4}, by
(7.249) and (7.250), we obtain the sth column of ¢)( £, ), forevery s = 2,... ,n—4
of each pair of integers 1 < u < v < n, where v # s. This is because when (¢, q) =
(s+1,s+2),wegetu=1,2,...,n—landv=2,3,...,n,whereu # s+1,s+2
and v # s,s + 1, satisfying 1 < u < v < n; when (t,q) = (s + 1,5 + 3), we
getu =s+2andv =s+3,...,n,whereu # s+ 1,s+3and v # s,s + 1,
satisfying 1 < u < v < n;when (¢,q) = (s+2,s+3),wegetu=1,...,s+1and
v=s+1,...,n,whereu # s+2,s+3and v # s, s+2, satisfying 1 <u <v < n;
when (t,q) = (s +3,s +4) ifn > s+ 4, we get (u,v) = (s + 1,s + 2), where
u#s+3,s+4andv # s, s+ 3, satisfying 1 <u < v < n.

* Continue in this way, when s =n —3 witht € {n —2,n — 1} andgq € {n — 1,n},
by (7.249) and (7.250), we obtain the (n — 3)th column of ¢)( E,,) for each pair of
integers 1 < u < v < nwherev # n—3and (u,v) # (n—2,n—1). This is because
when (t,q) = (n—2,n—1),wegetu=1,...,n—3andv=2,....,n—4,n—1,n,
where u # n —2,n — land v # n — 3,n — 2, satisfying 1 < u < v < n; when
(t,q) = (n—2,n),weget(u,v) = (n—1,n), whereu # n—2,nandv # n—3,n—2,
satisfying 1 < u < v < m; when (t,q) = (n—1,n),wegetu=1,...,n — 2 and

v=n—2n,whereu #n—1,nandv #n—3,n — 1, satisfying 1 <u <v < n.
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* Finally, when s = n — 2, by (7.249) and (7.250), we obtain the (n — 2)th column

of (FE,,) for each pair of integers 1 < u < v < n where v #n —2,n — 1, and

(u,v) # (n — 1,n), because when (t,q) = (n — 1,n),wegetu = 1,...,n — 2

andv = 2,...,n—3,n, where u # n — 1,nand v # n — 2,n — 1, satisfying

I1<u<v<n.

It follows from (7.247) and (7.249) that for every 1 < p < ¢ < n,

(1,2) _ (1,2)

ay” =a;” fori=3,...,n,
_ -1, .
al™ 1’"):agl " ofori=1,...,n—2
2,3 2,3 2,3 ,
agl):aé2):agi) fori=4,...,n,
(n—2,n—1) _ (TL*Q,TL*].) _ (T‘L*Z,’nfl) f T oy I 1 _ 3
App, - an—l,n—l = Ay ory=1,...,1 )

(pa) _ , (p,9) -
ay” = ag; fori =2,...,n,

for every (p,q) ¢ {(1,2),(2,3),(n —1,n),(n —2,n — 1)}.
By [¢(I, + Ea3 + Es5), Eas] = 0, we have,

3,5 3,5 11 11 2,3 2,3
aty? = a5y” +afy + alyV + P +al2?.

Taking (7.253) and (7.255) with (p, ¢) = (3,5) into (7.256),

(1,1 _ (11)
Aoy~ = Q55 -

By [w(In + E34 + E45), E35] = O, we get

(4,5) (4,5) (1, (1,1) (3,4)

_ 1) (3,4)
(g5~ = Q33 = + 033 " + as5 ° + ag3 .

+ ass

It follows from (7.255) with (p, q) € {(3,5),(4,5)} that

(34) _ (34
gz = = Q455 7,

(7.251)

(7.252)

(7.253)

(7.254)

(7.255)

(7.256)

(7.257)

(7.258)

(7.259)
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(4,5) _ _(4,5)
Qg3 = = Q455 "

Taking (7.259) and (7.260) into (7.258),

1y _  (1,1)
Qg3 = = Qg5 "

By [¢(I, + E12 + Esy), Evy] = 0, for every 4 < ¢ < n, we get

9 = a2+ o+ o)+l 4 ol
(2up) J— (171) (172) .
a, =a, t+a,;” for j=q+1,...,n

Taking (7.251) and (7.255) with p = 2 into (7.262), for every 4 < g < n,

1y _  (1,1)

We conclude from (7.257), (7.261) and (7.264) that

a(l,l) (1)

By [w(In + E12 + E23), E13] 5 O, we obtain

(2,3) (2,3 (1,2)

: 1,1 11 12
(33 :a11)+a§1)+a§3)+a11 5

+ass
23 _ 1y (1,2)
A3y 9 =03y o+ A3 5.

Taking (7.251) and (7.265) into (7.266),

(2,3) _  (23)
app - = agg .

It follows from (7.253) and (7.268) that

2,3 2,3 :
a§1 ):agi ) fori=2,...,n.

(7.260)

(7.261)

(7.262)

(7.263)

(7.264)

(7.265)

(7.266)

(7.267)

(7.268)

(7.269)
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By (I, + En—2n-1+ En_1n), En_2n] = 0, we have
aln T = gy + s a4 al . (7.270)
Taking (7.252) and (7.265) into (7.270),
ay ot = a2, (7.271)

n—2n—2 nn

It follows from (7.254) and (7.271) that

ag’;_zvn_l) = al(.?_Q’"_l) fori =2,... n. (7.272)

BY [w(In—i_Ean,nfl—i_Enfl,n)’ En72,n] = Oand [z/}([n—i_Eannfl_'_Enfl,n—i_Eu,v)7 En72,n] =
0, for (u,v) € {(1,2),(2,3)}, we obtain

al’?, =0, (7.273)
al?, = 0. (7.274)

Taking (7.273) and (7.274) into (7.267),
al?l, = 0. (7.275)

By [¢(I, + Ei3 + Es,), Evy] = 0 and [¢(1, + Evs + Es, + Eu), Evy] = 0 for each

(u,v) € {(2,q),(1,2)}, where 4 < g < n, we obtain
(27 ) — (172) — ) —
ag; " =a,;" =0 for j=q+1,...,n, (7.276)

Taking (7.276) into (7.263), for every 4 < q < n,

WD —0 for j=qg+1,...,n. (7.277)

aQ]

146



Setting ¢ = 4 in (7.277), we get
al? =0 for j=5,....n. (7.278)
By [¢(In + Era + Eay), Ers] = 0 and [¢(1,, + E1p + Eoy + Es4), E14] = 0, we get
(3:4)

a;; =0 for j=5,...,n (7.279)

By [¢(I,, + Ea3 + E34), Eos) = 0, we have

(2,3) _ (1,1) (3,4)

aj;” =ay " +ay for j=5,...,n (7.280)
Taking (7.278) and (7.279) into (7.280),
al? =0 for j=5,....n. (7.281)

Next, by [¢(1, + Eyqt1 + Egt14+3), Eqqts] = 0 forevery 2 < ¢ < n — 3, we have

(a8 — gD Y for i =1,...,q 1, (7.282)

a’iq iq

for cvery 2 < q < n—3. By [¢(]n + Eq,q+2 + Eq+2,q+3)7 Eq,q+3] = O and [¢(In +Eq,q+2 +

Eq+2,q+3 + Eu’u)7 Eq,q+3] = 0 fOT each (uu U) S {<Q7 q + 1)7 (q + 17 q + 3)}’ we get

(@atl) _ gl bat®) — 0 for i=1,...,q—1. (7.283)

aiq iq

Taking (7.283) into (7.282), forevery 2 < g < n — 3,
agV =0 fori=1,....q— 1. (7.284)
On the other hand, by [¢(I, + Ep—3n-—2 + Eyn_2n-1), En—3n-1] = 0, we have

a5 =l e for i=1,.. 0 — 4. (7.285)

,n—3
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Setting ¢ = n — 3 in (7.284),

abVo=0 fori=1...,n—4. (7.286)
BY [@Z)(In + En—S,n—l + En—l,n)7 En—B,n] = 0 and
[¢(In + En—S,n—l + En—l,n + En—3,n—2>7 En—?),n] - 05 we obtain

"B 0 fori=1,....n— 4. (7.287)

,n—3
Taking (7.286) and (7.287) into (7.285),

al" 2" =0 fori=1...,n—4. (7.288)

i,n—3

Let 1 < s <t < nbeintegers. Set

(lgif)_lELn_l + (lgit)Eln + aé‘;’f)_lEgm_l + agi;t)Egn if 1 < s<t < n,

Xst =

(

a5 By 4+ VB a5 By 4+ 0V B, i s =1 = 1.

1
Up to this point, we obtain the partially completed maps as the following. In view of
(7.233), (7.237)—(7.240), (7.265), (7.275), (7.277) and (7.284),

w([n) = agll’l)ln + a%ﬁlngl,nf2 + a/gi’llZQEZ,an + agﬁlzlES,nfl
(7.289)

+ ag}ril)Egn + Xll-

Remark that the map (1,,) in (7.289) is already ultimate. In view of (7.232), (7.239),
(7.240), (7.248), (7.250), (7.269) and (7.281),

U(Eag) = a5 L, 4 a5V Bug + aly?) Eog + (agillf)l + agfL)Es,n—l (7.290)

+ (aS” + a$?) By, + Xog.
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In view of (7.232), (7.248), (7.250) and (7.255) with (p, q) = (2,n — 1),

Y(Eop_1) = aﬁ’nil)fn + afgl:QDEan + agﬁn:gl)Ez,nfz + G;(fﬁifgl)Es,nq

(7.291)
+ a;(f;::l)E?),nfl + Clg(gi’nil)Esn + Xon-1.
In view of (7.232), (7.237), (7.238), (7.248), (7.250), (7.272) and (7.288),
w(Ean,nfl) = Clg?ﬁ’nil)[n + agn_;?hn_ill)Enflnfl + agln_ig?ﬁnil)Ean,n
(7.292)

(n—2,n—1) (n—2,n—1)
tay,5 Einotay,s "Ean o+ Xpono1

In view of (7.232), (7.248), (7.250) and (7.255) with p = 2 and 4 < g < n — 2, for every
4<t<n—2,
V(Ey) = aﬁ’t)fn + ag’t)Eu + ag’t)Egt + Clg,%’t)Est + ag;f)qu,nfl
(7.293)
+ al! Bs, + Xy,
In view of (7.232), (7.248), (7.250) and (7.255) with3 < p < n—3and ¢ = n — 1, for

every3 < s <n— 3,

w(Es,n—l) = agsljn_l)]n + agf;—bn__Ql)El,n—Z + a(57n__21)E2,n—2 + a(sm_l)Es,n—Q

2,n s,n—2

(7.294)
+ a(sm_l)Es,nfl + agﬁin_l)Esn + Xs,nfl-

s,n—1

In view of (7.232), (7.248), (7.250) and (7.255) with 3 < p < ¢ < n — 2, for every

3<Sp<g<n-—2,

W(Epy) = a1 + ali? By + af? Byy + alV Eyy + o E

n— ,n—l
v e (7.295)
+ a;(f;{q)Epn + Xpg-
In view of (7.232), (7.239), (7.240), (7.248), (7.250) and (7.251),
V(Ey) = aﬁ’” (En + Z Ezz> + a§12’2)E22 + a§§’2)E12 + aéff,)l FE3n1
=3 (7.296)

+ agL’Q)Egn + Xlg.
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In view of (7.232), (7.248), (7.250) and (7.255) with (p,q) = (1,1 — 1),
(1,n—1) (1,n—1) (1,n—1)
¢(E1n 1)_6L11 I +a 1n2 Eln 2+a2n 2 E2n 2+X1n 1- (7297)
In view of (7.232), (7.248), (7.250) and (7.255) with (p, ¢) = (2,n),
V(Ban) = aiy I + af Byt + al") By 4 Xop. (7.298)

In view of (7.232), (7.237), (7.238), (7.248), (7.250) and (7.252),

w(Enfl,n> - n Lm) (Enn + Z Eu) nn 11nn)1En71,n71
(7.299)

+ agiill;ln)Enfl,n + (a’glnl)Q + gnn 22n % )Ela"*2

+ (aglnl)Q + gnn 22n 1))E2,n—2 + Xn—l,n.

In view of (7.232), (7.248), (7.250) and (7.255) with 3 < p < n — 2 and ¢ = n, for every

3<s<n—2,

(Esn) = a7V T, + a8 Byt + a5V By + X, (7.300)

sn—l

In view of (7.232), (7.248), (7.250) and (7.255) withp = 1 and 3 < ¢ < n — 2, for every
3<t<n—2,

O(Ey) = ay" 1, + aV By + a5 By + Xay (7.301)

Finally, in view of (7.232), (7.248), (7.250) and (7.255) with (p, ¢) = (1,n), we get
G(Er) = aly" I, + Xo,. (7.302)

Remark that the map ¢ (E},,) in (7.302) is already ultimate.
We now consider A% = I,, + E,, + E, forintegers 1 < p<g<nandl <s<t<n

and (p, q) 7& (8, t) By W}([n + Elg + E23 + E2t), Elg + Elt] = 0, fOI' cvery 4 < t < n,

( Z ( (1 1) +a (1 2) + a’g’g) + aE?’t))EU) (E13 + Elt)

I<igyjsn
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)

Then

1,2 2,3 2,3 2.t
(afy? + aly? + a0t + 1) (B + Bu) — Y (afV + a0l + a5 + o) By

— Z at] +at] 22 4 2P +a(2t))E1j =0.

tj
t<j<n
Thus

(2 3) (2 t) (1,2)

(ag1 b + a(1 2) + a7 +ay + a(l b +ag” + aég?’) + a(2 t))Elg

+(a§111)+a(12)+a(23)+a(2t)_’_a§t )_’_agt 2)+a7§t 3)+a(2t)

+a (1 Yig (1 2 4 ai()j’g) + agj’t))Eu

(7.303)
o Z (a;’l) + ag] K + ai(’:J ? + a(2 t))Elj
4<<t—1
t+1<j<n
Z (agj g + ai] 2 + ag] ? + a(2 t))Elj =0.
t+1<j<n
Hence for every 4 < ¢ < n, we have
aﬁ’” + a§1 2) + a§13) + aglt) + agt ) + a(l 2 + a(2 3) + a§§’t)
(7.304)
=l o o4 a2
aso 4l +alY 1 al =0 for j=4,...0-1, (7.305)

(2,t)

S+l +al? o = oY +ali? 1l yal

tj

for j =t+1,...,n. (7.306)

Taking (7.251), (7.255) with (p,q) = (2,t), (7.265) and (7.269) into (7.304), for every

4<t<n,

agi R aét R aét 2 ag’S). (7.307)

By [¢(1, + E12 + Eas), E15] =0, for every 3 < s < t < n, we have

o 4 402 —|—a$’s) =0 for j=s+1,...;t—1,t+1,...,n, (7.308)

sJ] sJ]
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( 1) (1,2)

+ a4+ 429 = 0. (7.309)

Taking (7.308) with s = 3 into (7.305), for every 4 < t < n,
ag =0 for j=4,....t—1. (7.310)
Taking (7.309) with s = 3 into (7.307), for every 4 < t < n,
a?? = 0. (7.311)
By [¢(I, + E12 + Eo), Eyy] = 0 for every 4 < ¢t < n, we have
agV +ai? +aliY =0 for j=t+1,...,n, (7.312)
for every 4 < t < n. It follows from (7.290) that for every 4 < t < n,
aZ? =0 for j=t+1,. (7.313)
Taking (7.308) with s = 3, (7.312) and (7.313) into (7.306), for every 4 < t < n,
a3] =0 for j=t+1,. (7.314)
We conclude from (7.310) and (7.314) that for every 4 < ¢ < n,

ag =0 forj=4,....t—1t+1,....n (7.315)

SCCOIldly, by [w(In + E12 + EQs + Est); Els + E2t] = 0 for cvery 3 < s<t < n, we

have
a§12,1) +a§12,2) +a§2 )+a§s2t) _ ag 1) +a$ 2) T (2 s) _|_a(s ) (7317)
asy? +as? +a%” +alY = afyV + al? + i + al}?, (7.318)
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a(l,’l)-|—a(1.’2)+a(2’s)—|—a$—’t) =0 for j=s+1,....,t—1,t+1,...,n,

sj sj sj

for every 3 < s < t < n. Taking (7.308) into (7.319), for every 3 < s <t < n,

a’ =0 for j=s+1,... . t—1t+1,... n

sj
By [¢(I, + Eas + Es), Ea] = 0 for every 3 < s < t < n, we have

o)+ o3 4ol =0

for every 3 < s <t < n. Taking (7.309) and (7.321) into (7.317), for every 3 <

n,
1,2 s,t
ag2 ) = agt )
Setting (s,t) = (3,4) in (7.318),
1,1 1,2 2,3 3.4 1,1 1,2 2.3 3.4
aé2 )"‘agz )+ag2 )+ag2 ):az(m )"‘afm )—i—an )—i—an )-

Taking (7.251), (7.255) with (p, q) = (3,4), (7.265) and (7.269) into (7.323),

12) _  (1,2)
Ay - = Qg 7.

We conclude from (7.251) and (7.324) that

(1,2) _ (1,2)
Ay " = Gy

fori =2,... n.

Setting (s,t) = (n — 1,n) in (7.316),

(1,1

aiy +aly? +all" T 4ol =l el el

n—1n—1 n—1n—1 n—1n—1

Taking (7.255) with (p, ¢) = (2,n — 1), (7.265) and (7.325) into (7.326),

(n—1,n) _ (n—1,n)
ary =0p_1n 1

(7.319)

(7.320)

(7.321)

s<t<

(7.322)

(7.323)

(7.324)

(7.325)

(7.326)

(7.327)
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We conclude from (7.252) and (7.327) that

a(n—l,n) _ a(n—lm) fori=2,...,n. (7.328)

11 — Y

Thirdly, by [¢(I, + Est + Eri41 + Err1.642), Esti1 + Ereio] = 0 forevery 1 < s <

t <n— 2, we have

ZJ

< Z (@ Ly (St)+ (tt-‘rl)+a§§+1’t+2))EZ-j>(Es7t+1+Et,t+2)

1<i<j<n

_(E37t+1 + Et,t+2)( Z (0/5;71) + CLZ(;J/) + a§;7t+1) + CLSJFI t+2))E¢j) =0.

Then

> (al? + alt? + ot 4+ ol B
1<i<s
n Z 1 Ly (st L a(t ) g (t+1 t+2))Ei7t+2
1<i<t

1,1 tt+1 t4+1,t42
o Z (§+1)J+ §+) + §+1,j)+ £+1y ))Esj

t+1<j<n
(1,1) (s,t) (t,t+1) (t+1,t42) B
E (at+2,j t o+ Aiya" T Ao )Ej; = 0.
t+2<j<n
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Sincel <s<t<n—2,

(agi,l) +&g§,t) +ag?t+1) +agi+1,t+2)

1,1 t41 41,42
+ @§+1,)t+1 + a§+1)t+1 + @§+1 thl + §+1 41 ))Es,t+1
+ Z )+ gtﬂ)+ (t+1t+2)>EMH

1<i<s—1

+ (! a, 1)_|_a(st)_|_ (n+1)Jr (t+1 t+2)

(1,1) (s,t) (t4+1) (t41,042)
R TSI N P B P e (PG )Es 2

+(&§t )+a(st)+a§§t+l)+ (t+1,64+2) (7.329)

(1,1) (s,) (t,t+1) (t+1,t42)
+ Qoo T o o T Qoo T iin iy ) Erite

- Z S 1 AR V O

1<i<s—1
s+H1<i<t—1

(1,1) (s,t) (t,t+1) (t+1,6+2)
E (at+1,j Tyt G )Es;j
t+3<y<n

1,1 (st t,t+1) t+1,t4+2
- Z (a§+2)j + t+2)j + §+2,j + 2(f+2] ))Etj = 0.
t+3<j<n

Hence for every 1 < s <t < n — 2, we obtain

s,t tt+1 t+1,t+2 1,1 s,t tt+1 t+1,t+2
( Rt @( ' ta ( ' ta ( )= §+1)t+2 + §+1),t+2 + a§+1 t—22 + §+1,t+2 )7 (7.330)

allV + a4 gl L I — g for =1, s—1,5+1,...,t—1. (7.331)

By (I, + Eri41 + Eiy1442), Ergo]) =0 forevery 1 < s <t < n— 2, we have
ayV + oy e =, (7.332)

allV 4 0T — g for i=1,...,s—1,s+1,...,t—1, (7.333)

forevery 1 < s <t < n — 2. Taking (7.333) into (7.331), forevery 1 < s <t < n — 2,

a =0 fori=1,...,s—1,s+1,...t—1. (7.334)
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By (I, + Est + Etr41), Es 1) =0 forevery 1 < s <t <n— 2, we get

() () (Lit)) _
g2 T 0Ty t @l =0,

(7.335)

forevery 1 < s <t < n— 2. Taking (7.335) and (7.332) into (7.330), forevery 1 < s <

t<n—2,

(s;t) _ (t+1,t4+2)
Aot = = Qpy1442 -

It follows from (7.322) that forevery 3 <t < n — 2,

(t+1t+2) _ (1,2)
Aip142 = A12 -

We conclude from (7.336) and (7.337) that forevery 1 < s <t < n — 2,

(st) _ (1,2)
Qg ~ = Q12"

(7.336)

(7.337)

(7.338)

We conclude from (7.322) and (7.338) that for every 1 < s < t < n — 2 and every

3<s<t<n,

(st) _ (1,2)
Qg =~ = Q12 -

(7.339)

Finally, by [¢(1, + Esn-1 + En—2n-1+ En_1n), Esn + En_2,] = 0 for every 1 <

s < n— 3, we have

( 3> (Y +aﬁj’”‘”+a§?‘2’”‘”+a§?‘1’”>>E¢j)<Esn+En_2,n>

1<i<j<n

- (Esn + Ean,n>

Then

Z (a(l,l)

1<i<s

(3 @l g g ) <o

I<igjsn

+ a(s,n—l) + a(n—2,n—1) + a(n—l,n))Em

18 18 18
(1,1) (s,n—1) (n—2,n—1) (n—1,n)
+ E (ai,n—2 T Ao T, Ty ) Ein
1<i<n—2

. (agﬁl) +a7(15771n_1) + as;;l—ln—l) + a(n—l,n))Esn

nn

— (allV 4 alsnY 4 gn2n=h) gl g, =0,
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Thus

(@) gD a2 gt

+ agllnl) + a(sn 1) + ag;;lnfl) + a(nfl,n))‘Evsn

1,1 n—1 n—2n—1 n—1n
+(Q£L 2)n st a 1(1$2n)2+ £L 2.n— 2)"‘@272,117)2

) a4l ) E, L,

+ Y (@Y +alm Y alr Y ar R,

1<i<s—1
+ Z Zn 2 —+ ann 21) + af;r;_én b + GEZ_IQH))E”L =3 O
1<i<n—3
Hence forevery 1 <i<s—1withl <s<n—-3or,fori=1,...,s,...

a(1,1)+ Ejn 1)_|_ (n 2,n— 1)_|_ (

18

n—1,n)

+ aﬁf’z + ag‘;" 21) + aﬂ‘j"‘” + aEZfQ") =0.

By (I, + Esn-1+ En-14), Esn] = 0 forevery 1 < s < n — 3, we have

(sn 1)

a0 or i1

for every 1 < s < n — 3. It follows from (7.292) that for 1 < s < n — 3,

" Z0 fori=1,...,s— 1.

18

By [¢(I, + En—a2n-1+ En_1,), En—2n] = 0, we have

alV, a1 a T =0 for i=1,...,n—3.

zn2

Taking (7.342), (7.343) and (7.344) into (7.341), forevery 1 < s <n — 3,

(s,n—1)
,n—2

=0 fori=1,...,s,...,n—4.

Consequently, using (7.289)—(7.302), we are ready to classify ¢ (/,,) and (

(7.340)

un_4a

(7.341)

(7.342)

(7.343)

(7.344)

(7.345)

El] ) for

each pair of integers 1 < i < j < n. Since ¥(1,,) in (7.289) is already ultimate, it follows
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from (7.289) that
G(L) = YV L +al) By ot aSi) By ot By i +al Y Byt X1y, (7.346)
It follows from (7.296) and (7.325) that
D(Er) = a1 4+ aly? Bis + a8 By + a5 Bs, + Xa. (7.347)

By virtue of (7.299), (7.328) and (7.339),

Y(En-10) = agrll ' n)I +a &y 2)En—l,n + (aglnl)Q + agtln_fén_l))El,n—2
(7.348)

+ a5y + 0l % N By g + X1

By virtue of (7.290), (7.334) and (7.339),

U(Ea) = afYV L, + aly? oy + (az()jhl—% + aéf;f_)l)Esn L+ (@Y + a5 P) By + Xos.

(7.349)
By virtue of (7.292), (7.320) and (7.339),
Y(Ep—opn-1) = aY{ 2’n_1)—7n + aglf)En 2n—1 T ﬁnn 22n 1>E1,n—2
N (7.350)
+ 2nn 5 Eopo+ Xp_on-1.
It follows from (7.297) and (7.345) that
Y(Brpr) = " VL + a5 By + (aly? + aglnn ) B
(7.351)

+a (ln 1)E1n+ én 11)E2n 1+agln 1)E2n

Since the map ¥ (E},) in (7.302) is already ultimate, it follows from (7.302) that

V(E,) = agl )I + agz )Eln + agn )1E1 n—1+ (agz ? + agn ))Eln
(7.352)

+ Gélnn)1E2 n—1 T+ G(l n)EQn-
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By virtue of (7.291), (7.311), (7.315) and (7.345),

w(Ez,n—ﬂ —aﬁ" 1) I+ (12)E2n 1+a§2nn 11)E1n 1+a(2n I)Em

(7.353)
+(afy? + a5 ) By + aS" Y By,
It follows from (7.298), (7.311) and (7.315) that
U(Eon) = a1, + alh? Ban + a2 Evpy + al2 Biy + a5  Eo
(7.354)
+ (a$5” + a2 Eay.
By virtue of (7.294), (7.320), (7.339) and (7.345), forevery 3 < s < n — 3,
D(Esn) = aly" VL, + al5? By + Xona. (7.355)

By virtue of (7.293), (7.311), (7.315), (7.334) and (7.339), forevery 4 < t < n — 2,
U(Ey) = a1, + al5? By + X, (7.356)
By virtue of (7.300), (7.320) and (7.339), forevery 3 < s < n — 2,
Y(Ea) = aii" I, + ai5” B + Xo. (7.357)
By virtue of (7.301), (7.334) and (7.339), forevery 3 <t < n — 2,
Y(Ey) = aﬁ’t)ln + a§12’2)E1t + X (7.358)
By virtue of (7.295), (7.320), (7.334) and (7.339), forevery 3 < p < g <n — 2,
W(Eyy) = " V1, + a5V By + X,y (7.359)
In view of (7.355)—(7.359), we conclude that

W(Eyy) = a1, + a5V By + X, (7.360)
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for every (p> q) §é en U {(17 2)7 (27 3)7 (n - 17”)7 (n - 2777’ - 1)}9 where 1 < p<gsn
and 0, = {(1,n—1),(1,n),(2,n —1),(2,n)}.
Let A = alL? € Fa. Let p : T,(F,) — F, be the additive map defined by

wA) =aiV+ Y oy (7.361)

forall A = (a;;) € T,(Fy). Let6, = {(1,n —1),(1,n),(2,n — 1),(2,n)}. Let A} =
ag’l) and )\g’j) = agi’j), for each pair of integers 1 < i < j < n and (s,t) € 6,. Let
e : T, (Fs) — T,,(IFy) be the additive map defined in (7.4). In view of (7.346)—(7.354),
(7.360) and (7.361), together with the additivity of ¢, x and ¥ g, we obtain

W(A) = Z V(Ey)

1<i<j<n

= ¢(L)+ Y W(Ey)

1<i<yi<n

= M+ p(A) ], + ¢e(4)

forall A € T,,(F3), where A € Fy. This completes the proof. O
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CHAPTER 8: CONCLUSIONS AND DISCUSSIONS

In this chapter, we summarise the main results in Chapters 3—7 for convenience. We

also propose some potential open problems related to the study in this thesis.

8.1 Main results in Chapters 3 and 4
Theorem 8.1.1. Let [F be a field and let n > 2 be an integer. Let 1 < k < n be a fixed
integer. Then ¢ : T,,(F) — T,(F) is a commuting additive map on rank k matrices if and

only if

« when k < n or |F| > 3, there exist scalars \,a € F and an additive map p :

T,.(F) — F such that
V(A) = M+ p(A) L, + a(arr + ann) By

Jorall A = (a;;) € T,,(IF), where o # 0 only if k = n and |F| = 3,
s when k = n > 4 and |F| = 2, there exist scalars )\, «, By, 32 € F and matrices

H K e€T,(F)and X4, ..., X, € T,(F) satisfying X1 + - - - + X,, = 0 such that
Y(A) = M + tr(H' A)L, + tr (K'A) By + o, 5, (A) + Y aaX;
i=1

forall A = (a;;) € T,(F), where tr (A) and A are the trace and the transpose of

A respectively, and U, g, 3, : T,(F) — T,,(F) is the additive map defined by
U, 6.8, (A) = (aars + Br(n—1n + ann)) E1no1 + (@an_1,, + B2(a11 + a12)) By,
Jorall A = (a;;) € T,(F),
* when k = n = 3 and |F| = 2, there exist scalars \,«, 3,y € F and matrices
H, K e T3<IF) and Xl, XQ, X3 € Tg(]F) Satisﬁ/ing X1 +X9+X5=0 such that

3
Y(A) = M + tr(H' A)I3 + tr (K" A) By + Vo g(A) + D4 (A) + > auX;
=1

Jorall A = (a;;) € T5(F), where U, 5 : T5(F) — T5(F) and ©., : T5(F) — T5(F)
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are the additive maps defined by

U, 5(A) = (a(ags + ass)) Eiz + (B(a11 + a12)) Eas,

(I)'y(A) = v((a12 + aga)Eaa + (a11 + a1z + ags + ass) Ess + ai13(E12 + Eas))

Jorall A = (a;;) € T5(F), and
* when k =n = 2and |F| = 2, there exist scalars A1, \y € F and matrices X1, Xs €
T5(F) such that

P(A) = (a1 + a12) X1 + (a2 + a12) Xo + Marals + Aoar2Ero

fOT’ all A = (CLij) c TQ(F)

Theorem 8.1.2. 1) : My(Fy) — My (Fy) is a commuting additive map on invertible ma-

trices if and only if there exist scalars o, 5, \ € Fy and a matrix H € My(Fy) such

that

V(A) = ANA+tr (H'A) I, + Ty 5(A)

Jorall A € My(Fy). Here, Ty g : My(Fy) — My (Fy) is the additive map defined by
Lo p(A) = aan@ + (aaz + Blarg + az + axn))R

Jorall A = (a;;) € My(Fy), where QQ = Eyy + Evo + Eoy and R = I, + Q.

8.2 Main results in Chapters 5 and 6
Theorem 8.2.1. Let n > 2 be an integer and let D be a division ring with centre Z (D).

Suppose that ¢ : T,,(D) — T,,(D) is a map. Then the following statements are equivalent:

(@) W is a centralizing additive map on rank one matrices.

(i) 1 is a commuting additive map on rank one matrices.

(i) There exists A\ € Z(D), an additive map p : T,(D) — Z(D), a strictly upper
triangular matrix x = (1;;) € T,,(D), a set of elements A = U(s,t)evn{)‘z('?t) eD:

1<i<j<sort<i<j<n}andasetofadditivemaps F = U1<s<t<n{¢§;’t) :
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D—-D:1<i<s—1andt+1<j<n}suchthat

P(A) = AN+ p(A) L, + ¥, (A) + ¢z (A) + Ya(A)

Sorall A € T,,(D), where 1, : T,,(D) — T,,(D) is the linear map defined by

T1 —Ti2@12 —T130413 - —Tipnlin
0 X2 —T23Q23 - —Topnlop

¢x(A) = 0 0 T3 st —T3p03n
0 0 0 Ty

Jorall A = (a;;) € T,(D), where

(

2?22 T1: Q44 if h= 1,

_ h—1 n
Tp = Zi:l Tih Qii + Zizh—l—l Thi Qs if 2 h n — ]_

n—1 .
Zizl TinQi; if h=n,

\

Vg T,(D) — T,(D) is the additive map defined by

v (4) z(zz¢ )

1<s<t<n \i=1 j=t+1

Jorall A = (a;;) € T,,(D), and Yy : T,,(D) — T,,(D) is the linear map defined by

Z \Ilst + (I)st(A)

(s,t)EVR

forall A € T,,(D), where for each (s,t) € V,,

0 if 1<s<2,
\Ilst<A) —

(Crcicses M5By ) (30} 0B — anBn) if 3< s <,
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(X hiir astBun — asnBu) (ZKKK” )\Ej’t)Eij> if1<t<n-2,
¢St(A) —

0 ifn—-1<t<n
Sorall A = (a;;) € T,,(D). Here, 1, = 0 and )5 = 0 when either n = 2 or D is

noncommutative, and 1)z = 0 whenn = 2.

Theorem 8.2.2. Let n > 2 be an integer and let D be a noncommutative division ring
with centre Z (D). Then 1 : T,(D) — T,(D) is a commuting additive map on rank one
matrices if and only if there exists an element \ € Z (D), an additive map p : T,,(D) —
Z (D) and a set of additive maps .F = U1<S<t<n{¢§;’t) D—-D:1<i<s—1andt+
1 < j < n} such that

P(A) = A+ p(A) I + 7 (A)

forall A € T,,(D), where vz : T,,(D) — T,,(D) is the additive map defined by

vr(A)= <i > ¢£§’t)(ast)Ez‘j>

1<s<t<n \ i=1 j=t+1

Sorall A = (a;;) € T,,(D) and 7 = 0 when n = 2.

8.3 Main results in Chapter 7
In view of Theorems 7.3.1-7.3.4, we obtain a complete characterisation of 2-power
commuting additive maps on invertible upper triangular matrices over the Galois field of

two elements.

Theorem 8.3.1. Let [V, be the Galois field of two elements and let n > 2 be an integer.

Then i : T, (Fo) — T,,(IF2) is a 2-power commuting additive map on invertible matrices

A € T, (Fy) if and only if

« whenn =5, let 0,={(1,n—1),(1,n),(2,n—1),(2,n)}, there exist \, )\(1’1) e F,

with (s,t) € 0,, a set of scalars © = U(S’t)een{)\gi’j) €eFy:1<i<j<n}and

an additive map 1 : T,,(Fy) — Fo such that
P(A) = AA + p(A)L, + Pe(A)
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forall A € T,,(Fy). Here, Vo : T,,(Fy) — T, (Fs) is the additive map defined by

Q/}@(A) = ()\glnl)lall + )\al n—1 + Z )\1 n— 1CL1]> El,n—l

1<i<j<n

+ ()\(1 1)CL11 + )\aln + Z )\ ”)alj) Eln

1<i<yi<n

+(/\gln1)1a11+)\a2n 1+ Z )‘Zn 1(IZJ)E27n_1

1<i<j<n

+ (/\gnl)au + )\ClQn + Z /\Qan)aU) Egn

1<i<y<n

Jorall A = (a;;) € T,,(F2),
whenn = 4, let 04 = {(1,3),(1,4),(2,3),(2,4)}, there exist \, A e Fy with

(s,t) € 604, a set of scalars © = Ust€04{/\lj) €Fy:1<i<j<4}andan

additive map 1 : Ty(Fy) — Fy such that
B(A) = M+ p(A) s+ (4) + do(A)
Jorall A € Ty(Fy), where o, : Ty(Fy) — Ty(Fy) is the additive map defined by
Yo (A) = y(agsass o + a23 By + a13E12 + a2 E3y)

Jorall A = (a;;) € Ty(Fq), and o : Ty(Fo) — Ty(Fsy) is the additive map defined

by

Yo(A) = (A§3 ay + Aags + Z >\13 a”>E13

1<i<j<4

+ <)\%’1)a11 + Aag + Z )\&’j)az’j) Eyy

1<i<j<a

+ (A%’l)an + Aagz + Z A%j)az‘j) Ess

1<i<j<4

<)\é4 ayy + Aagy + Z )\214])@@]) Eay

1<i<y<4

Jorall A = (a;;) € Ty(Fy),

e whenn = 3, letl <1 < j < 3andl < s <t < 3 be integers, there exist
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A ALY ,/\si DAL, Agij € ¥y and an additive map 1 : T3(IFy) — Fy such that

B(A) = M+ (AT + 6(A)
forall A € Ts(Fy), where ¢ : T3(IFy) — T3(Fy) is the additive map defined by

&(A) = (ASY + 25N a + A0 + 25 a1, + A8 + A% )ay
+ A0 £ AE N ay5) By
+ (MG Yan + A+ Nawz + A5 ars + A3V a2) B
+ A a2 a0, + Q8P + Nags + A2Va55) i

+ (/\(1 1)a11 + )\( )CL12 + )\%3)6!13 + ()‘%3) + A)ags) Ens.

Jorall A = (a;;) € T5(F,), and
* whenn = 2, there exist \, Aﬁ’l), AQQ’”, /\92’1), Aﬁ’”, )\212’2) € Fy and an additive map

w: To(Fy) — Fy such that
P(A) = NA + p(A) L + (A)
Jorall A € Ty(Fy), where s : Ty(Fo) — T5(IFy) is the additive map defined by
s(4) = AT + A5 anEn + ALY + A5 an Ba + A5 an By
Jorall A = (a;;) € To(Fy).

8.4 Some open problems

Let S be an additive subgroup of a ring R. We say thatamap ¢ : § — R is 2-
commuting on S if [¢(z), 2], 2] = 0 forall z € S. Let R be a prime ring with charR # 2.
Bresar (1992) proved that if an additive mapping ¢ : R — R satisfies [[¢)(z), z], 2] = 0
forall z € R, then [¢)(z),z] = 0 forall z € R. Letn > 4 be an integer and let IF be a
field with char F = 0 or char F > 2. Generalising BreSar’s result of 2-commuting additive
maps to subsets of matrices that are not closed under addition, Franca and Louza (2019)

proved that if ¢ : M, (F) — M, (F) is an additive map such that [[¢)(A), A], A] = 0 for
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all singular A € M, (F), then there exists an element A € F and a central map 4 such that
W(A) = ANA + u(A) forall A € M, (F).

We end this chapter with some open problems related to the work in this thesis.

1. Determine the structure of 2-power commuting additive maps on invertible n X n
upper triangular matrices over fields with at least three elements.

2. Determine the structure of 2-power commuting additive maps on rank k, n X n
upper triangular matrices over fields, where 2 < k < n — 1 is a fixed integer.

3. Determine the structure of 2-power commuting additive maps on rank one upper
triangular matrices over fields.

4. Determine the structure of m-power commuting additive maps on rank k upper
triangular matrices over fields, where 1 < k£ < n and m > 3 are integers.

5. Determine the structure of 2-commuting additive maps on invertible upper triangu-

lar matrices over fields.

167



REFERENCES

Ahmed, D. A. H. (2019). m-commuting additive maps on upper triangular matrices rings.
Earthline Journal of Mathematical Sciences, 2, 505-514.

Ara, P., & Mathieu, M. (1993). An application of local multipliers to centralizing map-
pings of C*-algebras. The Quarterly Journal of Mathematics, 44, 129—138.

Beidar, K. I. (1998). On functional identities and commuting additive mappings.
Communications in Algebra, 26, 1819-1850.

Beidar, K. 1., Bresar, M., Chebotar, M. A., & Fong, Y. (2002). Applying functional
identities to some linear preserver problems. Pacific Journal of Mathematics, 204,
257-271.

Beidar, K. 1., Bresar, M., & Chebotar, M. A. (2000). Functional identities on upper
triangular matrix algebras. Journal of Mathematical Sciences, 102, 4557—4565.

Beidar, K. I., Fong, Y., Lee, P.-H., & Wong, T.-L. (1997). On additive maps of prime rings
satisfying the engel condition. Communications in Algebra, 25, 3889—-3902.

Bell, J., & Sourour, A. R. (2000). Additive rank-one preserving mappings on triangular
matrix algebras. Linear Algebra and its Applications, 312, 13-33.

Benkovi¢, D., & Eremita, D. (2004). Commuting traces and commutativity preserving
maps on triangular algebras. Journal of Algebra, 280, 797-824.

Botta, P. (1967). Linear transformations that preserve the permanent. Proceedings of the
American Mathematical Society, 18, 566—569.

Bresar, M. (1992). On a generalization of the notion of centralizing mappings. Proceed-
ings of the American Mathematical Society, 114, 641-649.

Bresar, M. (1993a). Centralizing mappings and derivations in prime rings. Journal of
Algebra, 156, 385-394.

Bresar, M. (1993b). Commuting traces of biadditive mappings, commutativity-preserving

168



mappings and lie mappings. Transactions of the American Mathematical Society,
335, 525-546.

Bresar, M. (1993c). On skew-commuting mappings of rings. Bulletin of the Australian
Mathematical Society, 47, 291-296.

Bresar, M. (1995a). Functional identities of degree two. Journal of Algebra, 172, 690—
720.

BreSar, M. (1995b). On generalized biderivations and related maps. Journal of Algebra,
172,764-786.

BreSar, M. (1996). Applying the theorem on functional identities. Nova Journal of
Mathematics, Game Theory and Algebra, 4, 43-54.

Bresar, M. (2000). Functional identities: a survey. Contemporary Mathematics, 259,
93-110.

Bresar, M. (2004). Commuting maps: a survey. Taiwanese Journal of Mathematics, &,
361-397.

Bresar, M. (2016). Functional identities on tensor products of algebras. Journal of
Algebra, 455, 108—136.

BreSar, M. (2020). Functional identities and zero Lie product determined Banach algebras.
The Quarterly Journal of Mathematics, 71, 649—665.

Bresar, M., Chebotar, M. A., & Martindale 3rd, W. S. (2007). Functional Identities.
Frontiers in Mathematics. Basel: Birkhéuser.

Bresar, M., & Hvala, B. (1995). On additive maps of prime rings. Bulletin of the Aus-
tralian Mathematical Society, 51, 377-381.

Bresar, M., Martindale 3rd, W. S., & Miers, C. R. (1993). Centralizing maps in prime
rings with involution. Journal of Algebra, 162, 342-357.

Bresar, M., & Miers, C. R. (1994). Strong commutativity preserving maps of semiprime

169



rings. Canadian Mathematical Bulletin, 37, 457-460.

Bresar, M., & Miers, C. R. (1995). Commuting maps on lie ideals. Communications in
Algebra, 23, 5539-5553.

Bresar, M., Procesi, C., & Spenko, Spela. (2015). Quasi-identities on matrices and the
Cayley—Hamilton polynomial. Advances in Mathematics, 280, 439—471.

Bresar, M., & Semrl, P. (2003). Commuting traces of biadditive maps revisited. Commu-
nications in Algebra, 31, 381-388.

Bresar, M., & Spenko, Spela. (2014). Functional identities in one variable. Journal of
Algebra, 401, 234-244.

Bresar, M., & Spenko, Spela. (2015). Functional identities on matrix algebras. Algebras
and Representation Theory, 18, 1337-1356.

Catalano, L. (2018). On a certain functional identity involving inverses. Communications
in Algebra, 46, 3430-3835.

Cezayirlioglu, N., & Demir, Cagri. (2021). Functional identities of degree 2 vanishing
on zero products of xy and yx. Linear and Multilinear Algebra.

Chacron, M. (2021). Generalized power commuting antiautomorphisms. Communica-
tions in Algebra, 49, 5017-5026.

Chacron, M., & Lee, T.-K. (2019). Division rings with power commuting semi-linear
additive maps. Publicationes Mathematicae-Debrecen, 95, 187-203.

Chan, G.-H., & Lim, M.-H. (1992). Linear preservers on powers of matrices. Linear
Algebra and its Applications, 162, 615-626.

Chebotar, M. A., Ke, W.-F., Lee, P.-H., & Wong, N.-C. (2003). Mappings preserving zero
products. Studia Mathematica, 155, 77-94.

Chen, C.Z., & Zhao, Y. (2021). Strong commutativity preserving maps of upper triangular
matrix lie algebras over a commutative ring. Bulletin of the Korean Mathematical

170



Society, 58, 973-981.

Cheung, W.-S. (2001). Commuting maps of triangular algebras. Journal of the London
Mathematical Society, 63, 117-127.

Cheung, W.-S., & Li, C.-K. (2001). Linear operators preserving generalized numerical
ranges and radii on certain triangular algebras of matrices. Canadian Mathemati-
cal Bulletin, 44, 270-281.

Chooi, W. L., & Kwa, K. H. (2019). Additive maps of rank r tensors and symmetric
tensors. Linear and Multilinear Algebra, 67, 1269—1293.

Chooi, W. L., & Kwa, K. H. (2020). Additive maps of rank k bivectors. The Electronic
Journal of Linear Algebra, 36, 847-856.

Chooi, W. L., Kwa, K. H., & Lim, M. H. (2017). Coherence invariant maps on tensor
products. Linear Algebra and its Applications, 516, 24—46.

Chooi, W. L., Kwa, K. H., & Tan, L. Y. (2019). Commuting maps on invertible triangular
matrices over Fy. Linear Algebra and its Applications, 583, 77-101.

Chooi, W. L., Kwa, K. H., & Tan, L. Y. (2020). Commuting maps on rank £ triangular
matrices. Linear and Multilinear Algebra, 68, 1021-1030.

Chooi, W. L., & Lim, M. H. (1998). Linear preservers on triangular matrices. Linear
Algebra and its Applications, 269, 241-255.

Chooi, W. L., & Lim, M. H. (2001). Rank-one nonincreasing mappings on triangular
matrices and some related preserver problems. Linear and Multilinear Algebra,
49, 305-336.

Chooi, W. L., & Lim, M. H. (2002). Coherence invariant mappings on block triangular
matrix spaces. Linear Algebra and its Applications, 346, 199-238.

Chooi, W. L., Mutalib, M. H. A., & Tan, L. Y. (2021). Centalizing additive maps on rank
r block triangular matrices. Acta Scientiarum Mathematicarum, 87, 63-94.

171



Chooi, W. L., Mutalib, M. H. A., & Tan, L. Y. (2021). Commuting additive maps on rank
one triangular matrices. Linear Algebra and its Applications, 626, 34-55.

Chooi, W. L., & Ng, W. S. (2010). On classical adjoint-commuting mappings between
matrix algebras. Linear Algebra and its Applications, 432, 2589—2599.

Chooi, W. L., & Tan, Y. N. (2021). A note on commuting additive maps on rank k
symmetric matrices. The Electronic Journal of Linear Algebra, 37, 734—746.

Chooi, W. L., & Tan, L. Y. (2022). A note on centralizing additive maps on rank one
triangular matrices over division rings. preprint.

Chooi, W. L., & Wong, J. Y. (2021). Commuting additive maps on tensor products of
matrices. Linear and Multilinear Algebra.

Chou, P.-H., & Liu, C.-K. (2021). Power commuting additive maps on rank-£ linear
transformations. Linear and Multilinear Algebra, 69, 403—427.

Costara, C. (2020). Nonlinear invertibility preserving maps on matrix algebras. Linear
Algebra and its Applications, 602, 216-222.

Costara, C. (2021). Nonlinear commuting maps on L(z). Linear and Multilinear Algebra,
69, 551-556.

Dar, N. A., & Jing, W. (2022). On a functional identity involving inverses on matrix rings.
Quaestiones Mathematicae.

Du, Y., & Wang, Y. (2012). k-commuting maps on triangular algebras. Linear Algebra
and its Applications, 436, 1367-1375.

Eremita, D. (2013). Functional identities of degree 2 in triangular rings. Linear Algebra
and its Applications, 438, 584-597.

Eremita, D. (2015). Functional identities of degree 2 in triangular rings revisited. Linear
and Multilinear Algebra, 63, 534-553.

Eremita, D. (2016). Functional identities in upper triangular matrix rings. Linear Algebra

172



and its Applications, 493, 580—-605.

Eremita, D. (2017). Commuting traces of upper triangular matrix rings. Aequationes
Mathematicae, 91, 563-578.

Fosner, M. (2015). A result concerning additive mappings in semiprime rings. Mathe-
matica Slovac, 5, 1271-1276.

Franca, W. (2012). Commuting maps on some subsets of matrices that are not closed
under addition. Linear Algebra and its Applications, 437, 388-391.

Franca, W. (2013a). Commuting maps on rank-k matrices. Linear Algebra and its
Applications, 438, 2813-2815.

Franca, W. (2013b). Commuting traces of multiadditive maps on invertible and singular
matrices. Linear and Multilinear Algebra, 61, 1528—1535.

Franca, W. (2015). Commuting traces on invertible and singular operators. Operators
and Matrices, 9, 305-310.

Franca, W. (2016). Commuting traces of biadditive maps on invertible elements. Com-
munications in Algebra, 44, 2621-2634.

Franca, W. (2017). Weakly commuting maps on the set of rank-1 matrices. Linear and
Multilinear Algebra, 65, 475-495.

Franca, W., & Louza, N. (2017). Commuting maps on rank-1 matrices over noncommu-
tative division rings. Communications in Algebra, 45, 4696-4706.

Franca, W., & Louza, N. (2018). Commuting traces of multilinear maps on invertible
elements. Communications in Algebra, 46, 2890-2898.

Franca, W., & Louza, N. (2019). Generalized commuting maps on the set of singular
matrices. The Electronic Journal of Linear Algebra, 35, 533-542.

Franca, W., & Louza, N. (2021). Power commuting traces of bilinear maps on invertible
elements. Journal of Algebra and Its Applications, 20, 2150023.

173



Frobenius, G. (1897). Uber die darstellung der endlichen gruppen durch lineare
substitutionen. Sitzungsberichte der Koniglich Preussischen Akademie der
Wissenschaften zu Berlin, 994-1015.

Guterman, A., Li, C.-K., & Semrl, P. (2000). Some general techniques on linear preserver
problems. Linear Algebra and its Applications, 315, 61-81.

Han, D. (2017). Functional identities of degree 2 in CSL algebras. Bulletin of the Iranian
Mathematical Society, 43, 1601-1619.

Hiai, F. (1987). Similarity preserving linear maps on matrices. Linear Algebra and its
Applications, 97, 127-139.

Huang, H., Liu, C.-N., Szokol, P., Tsai, M.-C., & Zhang, J. (2016). Trace and determinant
preserving maps of matrices. Linear Algebra and its Applications, 507, 373-388.

Hungerford, T. W. (1974). Algebra (Graduate Texts in Mathematics, 73). New York:
Springer Verlag.

Inceboz, H., Kosan, M. T., & Lee, T.-K. (2016). m-power commuting maps on semiprime
rings. Communications in Algebra, 42, 1095-1110.

Khachorncharoenkul, P., Pianskool, S., & Siraworakun, A. (2020). Additive adjugate-
commuting preservers between matrix spaces. Asian-European Journal of Math-
ematics, 13, Article#2050114.

Lapuangkham, S., & Leerawat, U. (2021). On commuting additive mappings on
semiprime rings. Asian-European Journal of Mathematics, 14, Article#2150079.

Lee, P-H., & Lee, T.-K. (1997). Linear identities and commuting maps in rings with
involution. Communications in Algebra, 25, 2881-2895.

Lee, P.-H., & Wang, Y. (2009). Supercentralizing maps in prime superalgebras. Commu-
nications in Algebra, 37, 840—854.

Lee, P.-H., Wong, T.-L., Lin, J.-S., & Wang, R.-J. (1997). Commuting traces of multiad-
ditive mappings. Journal of Algebra, 193, 709—723.

174



Lee, T.-C. (1998). Derivations and centralizing maps on skew elements. Soochow Journal
of Mathematics, 24, 273-290.

Lee, T.-K. (1997). Derivations and centralizing mappings in prime rings. Taiwanese
Journal of Mathematics, 1, 333-342.

Lee, T.-K. (2019). Certain basic functional identities of semiprime rings. Communications
in Algebra, 47, 17-29.

Lee, T-K., & Lee, T.-C. (1996). Commuting additive mappings in semiprime rings.
Bulletin-Institute of Mathematics Academia Sinica, 24, 259-268.

Lee, T.-K., Liu, K.-S., & Shiue, W.-K. (2004). n-commuting maps on prime rings. Pub-
lications Mathematicae Debrecen, 63, 463—472.

Lee, T.-K., & Wong, T.-L. (2012). Nonadditive strong commutativity preserving maps.
Communications in Algebra, 40, 2213-2218.

Li, C.-K., & Pierce, S. (2001). Linear preserver problems. The American Mathematical
Monthly, 108, 591-605.

Li, C.-K., & Tsing, N.-K. (1992). Linear preserver problems: A brief introduction and
some special techniques. Linear Algebra and its Applications, 162, 217-235.

Li, C.-K., Semrl, P., & Soares, G. (2001). Linear operators preserving the numerical range
(radius) on triangular matrices. Linear and Multilinear Algebra, 48, 281-292.

Li, Y., & Wei, F. (2012). Semi-centralizing maps of generalized matrix algebras. Linear
Algebra and its Applications, 436, 1122—1153.

Li, Y., Wei, F., & Fosner, A. (2019). k-commuting mappings of generalized matrix
algebras. Periodica Mathematica Hungarica, 79, 50-77.

Liu, C.-K. (2014a). Centralizing maps on invertible or singular matrices over division
rings. Linear Algebra and its Applications, 440, 318-324.

Liu, C.-K. (2014b). Strong commutativity preserving maps on subsets of matrices that are

175



not closed under addition. Linear Algebra and its Applications, 458, 280-290.

Liu, C.-K. (2020). Additive n-commuting maps on semiprime rings. Proceedings of the
Edinburgh Mathematical Society, 63, 193-216.

Liu, C.-K., Liau, P.-K., & Tsai, Y.-T. (2018). Nonadditive strong commutativity preserv-
ing maps on rank-£ matrices over division rings. Operators and Matrices, 12,
563-578.

Liu, C.-K., & Pu, Y.-F. (2021). The structure of n-commuting additive maps on lie ideals
of prime rings. Linear Algebra and its Applications, 631, 328-361.

Liu, C.-K., & Yang, J.-J. (2017). Power commuting additive maps on invertible or singular
matrices. Linear Algebra and its Applications, 530, 127-149.

Liu, H., & Xu, X. (2017). Additive maps on invertible upper triangular matrices. Journal
of Jilin University Science Edition, 55, 79-81.

Marcus, M., & Moyls, B. N. (1959). Linear transformations on algebras of matrices.
Canadian Journal of Mathematics, 11, 61-66.

Marcus, M., & Purves, R. (1959). Linear transformations on algebras of matrices: The
invariance of the elementary symmetric functions. Canadian Journal of Mathe-
matics, 11, 383-396.

Mbekhta, M. (2012). A survey on linear (additive) preserver problems. In F. J. Pérez-
Fernandez (Ed.), Advanced Courses of Mathematical Analysis IV (pp. 174-195).
World Scientific.

Molnar, L. (2007). Selected Preserver Problems on Algebraic Structures of Linear
Operators and on Function Spaces. Lecture Notes in Mathematics. Volume 1895.
Springer-Verlag Berlin Heidelberg.

Molnar, L., & Semrl, P. (1998). Some linear preserver problems on upper triangular
matrices. Linear and Multilinear Algebra, 45, 189-206.

Omladi¢, M., & Semrl, P. (1998). Preserving diagonalisability. Linear Algebra and its
Applications, 285, 165—-179.

176



Orel, M. (2019). Nonstandard rank-one nonincreasing maps on symmetric matrices.
Linear and Multilinear Algebra, 67, 391-432.

Park, K.-H., & Jung, Y.-S. (2002). Skew-commuting and commuting mappings in rings.
Aequationes Mathematicae, 64, 136—144.

Petek, T., & Radic, G. (2020). A note on equivalence preserving maps. Linear and
Multilinear Algebra, 68, 2289-2297.

Pierce, S., Lim, M. H., Loewy, R., Li, C.-K., Tsing, N.-K., McDonald, B. R., & Beasley,
L. (1992). A survey of linear preserver problems. Linear and Multilinear Algebra,
33, 1-129.

Pierce, S., & Watkins, W. (1978). Invariants of linear maps on matrix algebras. Linear
and Multilinear Algebra, 6, 185-200.

Posner, E. C. (1957). Derivations in prime rings. Proceedings of the American
Mathematical Society, 8, 1093—1100.

Qi, X. (2016). k-power centralizing and k-power skew-centralizing maps on triangular
rings. Bulletin of the Iranian Mathematical Society, 42, 539-554.

Qi, X., & Hou, J. (2012). Strong commutativity preserving maps on triangular rings.
Operators and Matrices, 6, 147—-158.

Qi, X., & Hou, J. (2015). Characterization of k-commuting additive maps on rings. Linear
Algebra and its Applications, 468, 48—62.

Sinkhorn, R. (1982). Linear adjugate preservers on the complex matrices. Linear and
Multilinear Algebra, 12, 215-222.

Stowik, R., & Ahmed, D. A. H. (2021). m-commuting maps on triangular and strictly
triangular infinite matrices. The Electronic Journal of Linear Algebra, 37, 247—
255.

Song, S.-Z., Beasley, L. B., Mohindru, P., & Pereira, R. (2016). Preservers of completely
positive matrix rank. Linear and Multilinear Algebra, 64, 1258—1265.

177



Semrl, P. (2014). Linear preserver problems. In L. Hogben (Ed.), Handbook of Linear
Algebra 2nd Edition. Discrete Mathematics and its Applications (pp. 30-1-30-9).
Boca Raton: Chapman & Hall/CRC.

Wan, Z. (1996). Geometry of matrices: in memory of Professor LK Hua (1910—19835).
World Scientific Singapore Berlin Heidelberg.

Wang, Y. (2013). Functional identities in superalgebras. Journal of Algebra, 382, 144-
176.

Wang, Y. (2015). Functional identities of degree 2 in arbitrary triangular rings. Linear
Algebra and its Applications, 479, 171-184.

Wang, Y. (2016a). Commuting (centralizing) traces and Lie (triple) isomorphisms on
triangular algebras revisited. Linear Algebra and its Applications, 488, 45-70.

Wang, Y. (2016b). On functional identities of degree 2 and centralizing maps in triangular
rings. Operator and Matrices, 10, 485-499.

Wang, Y. (2019). Functional identities in upper triangular matrix rings revisited. Linear
and Multilinear Algebra, 67, 348-359.

Xiao, Z.-K., & Wei, F. (2010). Commuting mappings of generalized matrix algebras.
Linear Algebra and its Applications, 433, 2178-2197.

Xiao, Z.-K., & Yang, L.-Q. (2021). Linear n-commuting maps on incidence algebras.
Acta Mathematica Hungarica, 164,470-483.

Xu, X., & Liu, H. (2017). Additive maps on rank-s matrices. Linear and Multilinear
Algebra, 65, 806—812.

Xu, X., Pei, Y., & Yi, X. (2016). Additive maps on invertible matrices. Linear and
Multilinear Algebra, 64, 1283—-1294.

Xu, X., & Yi, X. (2014). Commuting maps on rank-k matrices. The Electronic Journal
of Linear Algebra, 27, 735-741.

178



Xu, X., & Zhu, J. (2018). Central traces of multiadditive maps on invertible matrices.
Linear and Multilinear Algebra, 66, 1442—1448.

Yuan, H., & Chen, L. (2020). Functional identities on upper triangular matrix rings. Open
Mathematics, 18, 182—193.

Zhang, X., Tang, X., Cao, C., Mo, D., & Chen, Y. (2007). Preserver Problems on Spaces
of Matrices. Science Press.

179



	ABSTRACT
	ABSTRAK
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF SYMBOLS
	Introduction
	Background of the study
	Objective of the study
	Significance of the study
	Organisation of the thesis

	Literature Review and Methodology
	Preliminary results
	Literature review
	Linear preserver problems on matrices
	Functional identities

	Methodology

	Commuting additive maps on rank k upper triangular matrices over fields
	Introduction
	Irregular nonstandard examples
	Main results
	Proofs

	Commuting Additive Maps on invertible upper triangular matrices over the Galois field of two elements
	Introduction
	Irregular nonstandard examples
	Main results
	Proofs

	Commuting additive maps on rank one upper triangular matrices over fields
	Introduction
	Irregular nonstandard examples
	Main results
	Proofs

	Centralizing additive maps on rank one upper triangular matrices over division rings
	Introduction
	Main results
	Proofs

	2-power commuting additive maps on invertible upper triangular matrices over the Galois field of two elements
	Introduction
	Irregular nonstandard examples
	Main results
	Proofs

	Conclusions and Discussions
	Main results in Chapters 3 and 4
	Main results in Chapters 5 and 6
	Main results in Chapter 7
	Some open problems

	REFERENCES



