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DEVELOPMENT OF TEA-WASTE IMPREGNATED WITH IRON OXIDE 

NANOPARTICLES FOR MAGNETIC MICRO-SOLID PHASE EXTRACTION 

OF NON-STEROIDAL ANTI-INFLAMMATORY DRUGS IN WATER 

SAMPLES 

ABSTRACT 

The presence of pharmaceutical compounds as well as their degradation products in the 

aquatic environment is of great concern. Non-steroidal anti-inflammatory drugs 

(NSAIDs) are one of the major pharmaceutical products that may be present in 

environmental water samples. In this study, a simple method based on the magnetic 

micro-solid phase extraction (MMSPE) technique was developed for the determination 

of NSAIDs in water samples prior to the UV-Vis spectrophotometer analysis. A new tea 

waste-impregnated with magnetic nanoparticles (MNP-TW) was successfully 

synthesized by the chemical co-precipitation technique. The characterization studies were 

carried out by Brunauer–Emmett–Teller (BET), Fourier Transform Infrared Spectroscopy 

(FT-IR), X-Ray Diffraction (XRD), transmission electron microscope (TEM), field 

emission scanning electron microscopy with energy dispersive X-ray spectroscopy 

(FESEM-EDX), vibrating-sample magnetometry (VSM) and thermogravimetric analysis 

(TGA). MNP-TW was utilized as an MSPE sorbent for the extraction and determination 

of ibuprofen (IBP), diclofenac (DCF) and naproxen (NAP) separately. Experimental 

variables affecting the extraction efficiency of NSAIDs such as sample pH, sorbent 

dosage, extraction time, ionic strength, the volume of sample, type of desorption solvent, 

desorption time and desorption volume were studied and optimized in detail.  Under the 

optimal conditions, the calibration curves were linear for the concentration ranging 

between 30 and 700 µg L-1 with the coefficient of determination (R2) between 0.9964 to 

0.9981. The limit of detection (LOD) was in the range from 10.30 to 11.70 µg L-1, the 

limit of quantification (LOQ) was in the range from 31.20 to 35.40 µg L-1 and the method 
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exhibited excellent precision (RSD ≤ 4.83%), repeatability (RSD ≤ 4.66%) and relative 

recovery (86% - 115%). The green assessment was conducted, and the Analytical eco 

scale score obtained from this method would be 77 which shows this method is neatly a 

green analysis. The method presented the advantages of the study which show that the 

integration of MNP-TW and MMSPE with UV-Vis spectrophotometer provides a simple, 

sensitive, and rapid method for the extraction and determination of NSAIDs in water 

samples. The usage of tea waste in the extraction process presents many advantages, as it 

is biodegradable and versatile, and it contributes to an intelligent and sustainable 

economic strategy projected toward a circular economy approach. 

Keywords: Magnetic tea waste; Ibuprofen; Magnetic micro-solid phase extraction; 

UV-Vis spectrophotometer; Green assessment 
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PEMBANGUNAN SISA TEH YANG DIRESAPKAN DENGAN PARTIKEL 

NANO FERUM OKSIDA UNTUK PENGEKSTRAKAN MIKRO FASA 

PEPEJAL MAGNETIK UBAT ANTI-RADANG BUKAN STEROID DI DALAM 

SAMPEL AIR 

ABSTRAK 

Kehadiran sebatian farmaseutikal serta produk degradasinya di dalam persekitaran 

akuatik amat membimbangkan. Ubat anti-radang bukan steroid (NSAID) ini adalah satu 

produk farmaseutikal utama yang mungkin terdapat dalam sampel air persekitaran. Oleh 

itu, dalam kajian ini, satu kaedah mudah berdasarkan teknik pengekstrakan mikro fasa 

pepejal magnetik (MNP-TW-MMSPE) telah dibangunkan untuk penentuan sebatian 

NSAID dalam sampel air sebelum analisis menggunakan spektrofotometer UV-Vis. 

Nanopartikel magnetik novel yang diresapi dengan sisa teh (MNP-TW) telah berjaya 

disintesis dengan menggunakan teknik pemendakan bersama kimia. Kajian pencirian 

telah dijalankan oleh analisis Brunauer–Emmett–Teller (BET), Spektroskopi Inframerah 

Transformasi Fourier (FT-IR), Pembelauan Sinar-X (XRD), Mikroskopi Elektron 

Transmisi (TEM), Mikroskopi Elektron Imbasan Dengan Penyebaran Tenaga Sinar-X 

(FESEM-EDX), Magnetometer Sampel Bergetar (VSM) dan Analisi Termogravimetrik 

(TGA). MNP-TW digunakan sebagai bahan penyerap bagi teknik MMSPE untuk 

pengekstrakan dan penentuan ibuprofen (IBP), diklofenak (DCF), dan naproxen (NAP) 

secara individu. Pembolehubah ekeperimen yang mempengaruhi kecekapan 

pengekstrakan NSAID seperti pH sampel, dos penyerap, masa pengekstrakan, kekuatan 

ion, isipadu sampel, jenis eluen, masa nyahjerapan dan isipadu nyahjerapan telah dikaji 

dan dioptimumkan secara terperinci. Di bawah keadaan optimum, lengkung 

penentukuran adalah linear untuk kepekatan antara 30 dan 700 µg L-1 dengan pekali 

penentuan (R2) antara 0.9964 hingga 0.9981. Had pengesanan (LOD) berada dalam julat 

dari 10.30 hingga 11.70 µg L-1, had kuantifikasi (LOQ) berada dalam julat dari 31.20 
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hingga 35.40 µg L-1 dan kaedah ini menunjukkan ketepatan yang sangat baik dengan 

(RSD ≤ 4.83%), kebolehulangan (RSD ≤ 4.66%) dan kebolehdapatan semula (86% - 

115%). Penilaian hijau telah dijalankan, dan skor skala eko analitik yang diperoleh 

daripada kaedah ini ialah 77 yang menunjukkan kaedah ini adalah analisis hijau. Kaedah 

ini membentangkan kelebihan kajian yang menunjukkan bahawa gabungan MNP-TW-

MMSPE dengan spektrofotometer UV-Vis menyediakan kaedah yang mudah, sensitif, 

dan pantas untuk pengekstrakan dan penentuan NSAID dalam sampel air. Penggunaan 

sisa teh dalam proses pengekstrakan  memberikan banyak faedah dan kelebihan, kerana 

ia boleh terbiodegradasi dan ia menyumbangkan kepada strategi pintar dan mampan yang 

diunjurkan ke arah pendekatan ekonomi kitaran. 

Kata kunci: Sisa teh magnetik; NSAID; Pengekstrakan mikro fasa pepejal magnetik; 

Spektrofotometer UV-Vis; Penilaian hijau 
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CHAPTER 1: INTRODUCTION 

 

1.1 Background of study 

A class of medications known as non-steroidal anti-inflammatory drugs (NSAIDs) is 

one of the most popularly used (over-the-counter) drugs, to treat pain, fever, and 

inflammation in both animals and humans due to their analgesic, antipyretic, anti-

inflammatory, and other effects (Bindu et al., 2020). NSAIDs work by inhibiting specific 

enzymes; namely cyclooxygenases (COX-1 and COX-2), which participate in the release 

of prostaglandins by injured cells (Omran, 2013). Acute overdose or long-term usage can 

result in significant adverse effects including ulcers, gastrointestinal bleeding, renal 

failure, and aplastic anaemia (Eslami et al., 2015). 

NSAIDs which are the “emerging” or “new” unregulated pollutants have become an 

environmental concern. NSAIDs are easily introduced into water systems due to their 

strong hydrophilicity, low adsorption coefficients and high stability and persistence 

(Wang et al., 2017). Even in very low quantities, these pollutants might endanger aquatic 

ecosystem and human health since they can enter the environment through diverse paths, 

including the disposal of excess medications, patient excretion, effluent from 

pharmaceutical manufacturing industries, and hospital waste (Sebok et al., 2008). 

Unfortunately, there are still high concentration (ng L-1 to µg L-1 level) of NSAIDs 

found in the effluent in wastewater treatment plants (WWTP) due to incomplete removal 

of drugs from the effluent water (Hunter et al., 2011; Mohd Hanafiah et al., 2022). 

Continuous exposure to these bio-accumulative compounds would harm aquatic life and 

pose a risk to human health and fish-eating animals (Shahhosseini et al., 2021; Wang et 

al., 2017). In recent years, previous studies (Abd Rahman et al., 2016; Larsson et al., 

2014; Li et al., 2013; Matongo et al., 2015; Mohd Hanafiah et al., 2023; Mohd Hanafiah 
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et al., 2022) Nosek et al., 2014) have reported the timeline series of NSAIDs 

concentrations found in Malaysian influent wastewater which were greater compared to 

other countries such as South Africa, Sweden, China, Algeria and Poland.  

These compounds are exempt from the regulations. On a variety of criteria, different 

countries have different approaches to policy creation, regulatory enforcement, and 

implementation (Abd Rahman et al., 2016). The United States Environmental Protection 

Agency (USEPA) is instrumental in establishing and enforcing drinking water regulations 

to guarantee the provision of safe, clean drinking water for the American population. 

Their efforts contribute to the prevention of waterborne diseases and the protection of 

public health. USEPA is considering some medications as prospective candidates to be 

added to the list of prioritized organic pollutants in drinking water, such as diclofenac 

(Manzo et al., 2014; Mi et al., 2020; Wang et al., 2017).  

A recent study revealed the presence of NSAIDs in river water and treated water at 

Selangor at µg L-1 level (Mohd Hanafiah et al., 2023; Mohd Hanafiah et al., 2022; 

Praveena et al., 2018). This has proved that these drugs exist in the current urban water 

cycle, which could induce adverse effects on humans and the environment (risk quotient 

in high and low-risk categories). These pollutants should be considered as a priority to be 

monitored, in the environment to protect human health, aquatic diversity, and the 

environment’s water health. However, direct NSAIDs determination is typically 

unachievable due to the trace level concentration and severe matrix effects of the samples. 

Therefore, sample pretreatment techniques are very much crucial before measurement 

(Liu et al., 2019). Several extraction techniques were applied to NSAIDs, including 

liquid-liquid extraction (LLE), solid-phase extraction (SPE), etc. SPE is the sample pre-

treatment technique that is employed most among these approaches. However, the 

conventional SPE method typically consumes a high volume of toxic samples, sorbents 
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and organic solvents, suffers from a significant matrix effect, and has a limited rate 

of diffusion (Wang et al., 2017). Besides, SPE requires expensive sorbents, a time-

consuming, multi-step experimental process and the generation of a high amount of waste 

(Emiroğlu et al., 2021; Liu et al., 2019; Ravi & Sundararaman, 2020; Wang et al., 2017).  

Magnetic solid-phase extraction (MSPE) seems to be the mostly preferred analytical 

approach in sample preparation based on the use of magnetic sorbent. The development 

of the MSPE is based on the employment of adsorbents that can be magnetized. Applying 

an external magnetic field would make it simpler to separate and retrieve the magnetic 

components without the use of filtration or centrifugation. This method simplifies and 

expedites the separation process. On the other hand, this swift separation reduces the 

contact time between the sample matrix and the sorbent, minimizing the risk of particle 

aggregation and subsequent back pressure. As of now, pre-concentration and separation 

are two areas where MSPE shows a great deal of promise (Emiroğlu et al., 2021; Liu et 

al., 2019; Wang et al., 2017). In this technique, the increased efficiency allows for the 

extraction of a higher proportion of the target analytes, reducing the need for extensive 

sample processing and minimizing potential sources of back pressure (Han et al., 2019).  

Many efforts have been made to develop micro-extraction (ME) techniques as an 

alternative to conventional extraction procedures. This technique offers advantages such 

as minimal sample requirements, reduced solvent consumption, enhanced sensitivity, fast 

extraction processes, compatibility with small-scale systems, versatility, high selectivity, 

cost-effectiveness, ease of automation, and adherence to green chemistry principles. 

These benefits make microextraction valuable tools in modern analytical chemistry 

(Armenta et al., 2015; Gałuszka et al., 2012; Racamonde et al., 2015). In addition, small 

sample volumes, making them suitable for situations where sample availability is limited. 

This can be crucial when dealing with precious or rare samples. In this context, the use 

Univ
ers

iti 
Mala

ya



 

  4 

of natural sorbents represents an additional and convenient option for green method 

sample preparation. The advantages of using natural sorbents for extraction include their 

wide availability from renewable sources, low toxicity, and biodegradability. The use of 

surpluses of natural products as raw materials for the preparation of new sorbents is an 

interesting contribution of analytical chemistry to change the production model. 

Therefore, in this study, a simple and fast magnetic micro-solid phase extraction 

(MMSPE) method was employed using tea waste impregnated with magnetic 

nanoparticles as a sorbent to extract NSAIDs from water samples. 

Black tea is the most consumed beverage worldwide. In 2008, the annual production 

of dried tea was 3.75 million tonnes. Average tea consumption per person per year 

worldwide stands at 0.5 kg, which amounts to consumption of an estimated 150 litres per 

year or 500 mL per person per day. Black tea is particularly rich in polyphenol 

compounds. In this study, tea waste has been largely used due to some factors such as 

low cost, easily obtained, greater surface area, reduced disposal cost, and high sorption 

affinity (L. Liu et al., 2018; Mondal, 2009). Furthermore, tea waste was focused in this 

study because it contains low molecular mass polyphenols known as “theaflavins” that 

have lots of aromatic rings which could facilitate the adsorption of analytes (Amarasinghe 

& Williams, 2007; Drynan et al., 2010; Kabir et al., 2021; Weng et al., 2014).  

Carboxylate, aromatic carboxylate, phenolic hydroxyl, and oxyl groups are the major 

responsible functional groups. The exploration of magnetic nanoparticles, specifically 

those modified with tea waste, as adsorbents for extracting and detecting pharmaceutical 

drug pollutants is an area that has not received extensive attention. While existing 

research has predominantly concentrated on their application in environmental 

remediation for pollutant removal, the investigation into their potential use in the 

extraction and determination of pharmaceutical drug pollutants remains relatively limited  
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(Inbaraj et al., 2021; Lunge et al., 2014; Panneerselvam et al., 2011; Wen et al., 2017). 

Thus, this study dealt with the application of tea waste impregnated with magnetic 

nanoparticles (MNP-TW) from kitchen waste as the adsorbent for magnetic micro-solid 

phase extraction technique (MNP-TW-MMSPE) which was developed for the extraction 

of NSAIDs species including ibuprofen (IBP), diclofenac (DCF) and naproxen (NAP) in 

water samples prior to Ultraviolet-Visible spectrophotometer analysis. MNP-TW was 

found to be eco-friendly in nature, cost-effectiveness, waste valorization, renewability, 

tailored surface chemistry, high surface area, magnetic responsiveness, reduced 

environmental impact, enhanced analyte recovery, and versatility. These advantages 

make them attractive for sustainable and efficient sample preparation in analytical 

chemistry (Drynan et al., 2010; Lunge et al., 2014). Furthermore, the magnetic properties 

of the adsorbents allow for efficient recovery of analytes during the separation step, 

reducing the likelihood of analyte loss and improving the overall sensitivity, thus omitting 

the sample clean-up procedure, and lessens sample preparation time. The extraction 

parameters such as the amount of adsorbent, extraction time, ionic strength, type of eluent, 

desorption time, the volume of desorption solvent, sample volume and sample pH were 

optimized comprehensively. At optimum conditions, the developed method (MNP-TW-

MMSPE) collectively contributes to the extraction analysis, making a valuable technique 

in analytical chemistry and was successfully applied to water samples for the extraction 

of NSAIDs. 

1.2 Problem statement 

According to Malaysian Statistics on Medicine (MSOM), NSAIDs were considered 

the top 50 most utilized drugs from 2015 to 2016. The increment in statistics was 

attributed to large drug consumption by the household community for chronic diseases 

such as hypertension, diabetes, cardiovascular disease, and cancer. Studies have found 

that 90% of Ibuprofen would be metabolized in the human body after 24 hours of oral 

Univ
ers

iti 
Mala

ya



 

  6 

administration. Approximately, 1-12% of the drug is expected to be excreted in the form 

of the parent compound and other significant metabolites. These compounds have the 

potential to accumulate in sewage treatment plants, given the elevated usage within the 

community. (Mohd Hanafiah et al., 2022).  

The sources of NSAIDs in the water body cycle can be originated from pharmaceutical 

industries, hospitals, direct disposal from remaining medicines, aquaculture, and 

agriculture. However, wastewater from sewage treatment plants (STP) is considered the 

primary source as they are the centre of water collection from the nearby household 

community.  

By narrowing the scope of NSAIDs investigation in Malaysia, surprisingly NSAIDs 

are detected in Malaysian influent wastewater treatment plants, 10 folds higher compared 

to other countries like China, Sweden, Poland, and Algeria. At Johor, ibuprofen was 

detected in influent water at the concentration of (1.03 × 102 to 7.69 × 102 ng L-1) 

(Mohd Hanafiah et al., 2023). This reveals the inadequate attention has been paid, likely 

lack of comprehensive monitoring programs specifically targeting NSAIDs in water 

systems. Limited data on the occurrence and concentrations of these pharmaceuticals in 

Malaysian waters can contribute to the perception that they are not a significant 

environmental concern. Surface water such as river water is widely used as a primary 

resource for drinking (Mohd Hanafiah et al., 2022). Since NSAIDs can accumulate in the 

human body through consumption, their analysis is essential to ensure optimizing 

therapeutic outcomes, ensuring patient safety, preventing overdoses, individualizing 

treatment plans, managing drug interactions, monitoring renal function, promoting 

treatment compliance, and advancing pharmacokinetic research. 

 Hence, accurate quantitative analysis is crucial, leading to the development of 

methods like gas chromatography, liquid chromatography, capillary electrophoresis, 
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voltammetry, and mass spectroscopy. Combinations of these techniques are also viable, 

but challenges may arise with increased equipment costs and the need for specialized 

expertise. Conversely, UV-Vis spectrophotometers, being widely accessible, offer rapid 

and cost-effective results with ease of use. However, their lower sensitivity necessitates 

the incorporation of pre-concentration-separation techniques for precise and accurate 

measurements (Duman et al., 2020). 

Different sample preparation techniques and separation methods have been developed 

and reported for NSAID determination. Among the sample preparation techniques, the 

magnetic solid phase extraction (MSPE) technique stands out as the most preferred. 

Recent advances in magnetic nanoparticles (MNPs) have been widely developed for 

NSAID extraction. However, pristine MNPs usually suffer from non-specific adsorption, 

aggregation issues leading to decreased efficiency, magnetic interference affecting signal 

clarity, limited loading capacity for certain analytes, variability in magnetic properties 

impacting reproducibility, and the influence of sample matrix effects on extraction 

efficiency. Despite these drawbacks, ongoing research aims to address these issues, 

enhancing performance and broadening the applicability of pristine MNPs in MSPE 

analysis. To overcome these issues, various types of functionalized carbon materials have 

been designed and incorporated into magnetic particles to satisfy the applications (Hsen 

& Latrous, 2023). However, most of these adsorbents are tuned with a focus on their 

affinity towards target analytes (Hsen & Latrous, 2023). Herein, to maximize the 

extraction process, the efficiency and selectivity, a low-cost adsorbent were studied. 

Based on the literature review, in the year 2011, Malaysia was ranked the 18th largest 

tea producer in Asia with 0.45% of the world’s total tea production by the Food and 

Agriculture Organization of the United Nations. On average, for every 22 kg of tea 

production, 4 kg (18%) of tea will contribute to waste generation. This tea waste contains 
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a high value of nitrogen and carbon chemicals, and they are oxygen-demanding 

pollutants, that take a longer time for biodegradation. On the other hand, tea leaves are 

made up of components that are rich in functional groups such as carboxylate, aromatic 

carboxylate, phenolic hydroxyl and oxyl groups. The polymer framework of cellulose-

based materials exhibits a robust chemical adsorption affinity for acidic or anionic 

compounds. This characteristic makes them a prime candidate as a potential adsorbent, 

specifically chosen for their ability to attract NSAIDs (Atirah Mohd Nazir et al., 2020; 

Panneerselvam et al., 2011; Pua et al., 2020).  

Time-consuming traditional extraction techniques have been replaced with 

microextraction techniques (ME). ME is more effective in separation and enrichment, 

which requires less solvent, is well suited for automation, and has shorter extraction steps. 

ME supports green chemistry, allows simultaneous separation and enrichment, and is 

simple to use on small and complex materials. Additionally, it has improved the 

preconcentration factor, recovery value, speed, accuracy, and precision (Duman et al., 

2020). 

To comprehensively address the issues, this study is systematically conducted. We 

hope the findings in this study can be a preliminary benchmark or added value of a new 

method for the analysis of NSAIDs in water samples. In addition, we anticipate that the 

study outcomes provide insight and awareness of monitoring NSAIDs in environmental 

water samples considering public health. 

1.3 Scope of research 

This study involves the application of tea waste impregnated with magnetic 

nanoparticles, namely magnetic nanoparticles tea waste (MNP-TW) which combines the 

merits of tea waste, and magnetic nanoparticles. It is important to highlight the rationality 

for such a design and impregnation of the nanoparticles since different moieties possess 
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properties that contribute to extraction efficacy. For this, tea waste is chosen instead of 

other low-cost adsorbents due to its low cost, active, abundant, accessible, and 

environmentally friendly nature. In addition, the insoluble cell walls with fibrous content 

are largely made up of cellulose-based structural proteins. A high response surface of the 

functional groups and active sites is also present. Meanwhile, tea waste impregnated with 

magnetic nanoparticles makes the nanoparticles separate easily by employing an external 

magnetic field, improving the adsorption capacity by its large specific surface area. The 

synthesized nanoparticles are expected to exhibit unique properties such as high surface 

area and superparamagnetism.  

The successful synthesis of these nanoparticles was confirmed by various 

characterization techniques such as Brunauer–Emmett–Teller (BET), Fourier transform 

infrared (FTIR), elemental analysis, vibrating sample magnetometer (VSM), scanning 

electron microscopy (SEM), transmission electron microscopy (TEM), x-ray powder 

diffraction (XRD) and thermogravimetric analysis (TGA). Thereafter, it was applied in 

magnetic micro-solid phase extraction technique for the determination of NSAIDs in 

water samples using a UV-Vis spectrophotometer. 

1.4 Objectives of research 

The objectives of this study are as follows: 

1. To synthesize the tea waste impregnated with magnetic nanoparticles (MNP-TW) and 

compare the physicochemical properties of MNP-TW with pristine MNP. 

2. To develop, optimize, evaluate, and validate the MNP-TW-MMSPE method for the 

determination of selected NSAIDs using UV-Vis Spectrophotometer. 

3. To access the validated MNP-TW-MMSPE method for the determination of selected 

NSAIDs in water samples using a UV-Vis Spectrophotometer. 
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1.5 Organization of the thesis 

This thesis is constructed into five chapters. Chapter 1 contains the background of the 

study, the problem statement, the scope of research, the objectives of the research, and 

the organization of the whole thesis. The literature review is summarized in Chapter 2. 

Chapter 3 discusses the experimental procedures done throughout this project. It is 

subdivided into five parts. In part one, details encompassing the chemicals, materials, 

reagents, and instruments employed are presented. Subsequently, part two delves into the 

preparation, applications, method validation, real sample applications, and the green 

assessment analysis of the proposed method, MNP-TW-MMSPE. Chapter 4 consists of 

the results and discussions. Characterizations of MNP-TW, optimizations of eight 

parameters and analytical performances are discussed in Chapter 4. Chapter 5 is about the 

conclusions and future recommendations. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Non-steroidal anti-inflammatory drugs (NSAIDs) 

Non-steroidal anti-inflammatory drugs (NSAIDs) are substances that are other than 

steroids that can inhibit the inflammatory cascade components (Moses & Bertone, 2002). 

They are commonly used to treat inflammation, fever and pain (Asirvatham et al., 2019).  

The first NSAID that was introduced in 1899, aspirin (acetylsalicylic acid) was not called 

as anti-inflammatory agent because anti-inflammatory treatment in rheumatology 

practice was not clinically demonstrated at that time. In 1949, cortisone emerged and 

showed its anti-inflammatory properties which result in the term “non-steroidal anti-

inflammatory drug” being used for the first time when phenylbutazone was introduced in 

1952 (Bindu et al., 2020). At present, NSAIDs are grouped as the major derivatives of 

salicylic acid, acetic acid, enolic acid, anthranilic acid or propionic acid. Concurrent with 

the development of scientific knowledge, the classification has also been revised based 

on their selectivity for inhibiting cyclooxygenase/prostaglandin-endoperoxide synthase 

(PGHS) enzymes for which these medications are mostly intended (Bindu et al., 2020). 

NSAIDs possess similarities in their structure, which are the acidic moiety, either enols 

or carboxylic acid and the planar aromatic ring. The acidic group in NSAIDs plays an 

important role in exerting their therapeutic effect by cyclooxygenase inhibition. The 

presence of acidic moiety causes them to be generally stronger acids. The lipophilicity 

differences of NSAIDs are affected by the lipophilic character of the aryl group and 

substituents present in the structure of NSAIDs (Asirvatham et al., 2019; El-Sheikh et al., 

2019; Manrique-Moreno et al., 2009; Neuvonen, 1991). Table 2.1 shows the NSAIDs 

chosen for this study, their properties, and their molecular structure. These NSAIDs were 
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primarily chosen as many studies reported the detection of these major compounds at high 

concentration and as their prescription for medication is quite popular among society. 

NSAIDs have been known as “contaminants of emerging concern” (CEC) that causes 

pollution in aquatic systems (Choina et al., 2013; Tyumina et al., 2020). The 

concentration of NSAIDs detected in wastewater typically has higher concentration than 

that of surface water and groundwater. Due to the natural processes of photolysis, 

biotransformation, dispersion, volatilization, and sorption, the concentration of NSAIDs 

in surface water and groundwater is typically lower (Izadi et al., 2020). However, the 

presence of NSAIDs in water has exerted acute and chronic toxic effects on the 

organisms. It had been reported that organisms experienced problems such as 

reproduction disorder, endocrine disruption, locomotive disorder, body deformations, 

genotoxicity and teratogenic effects due to bioaccumulation (Hejna et al., 2022; 

Lonappan et al., 2016; Parolini, 2020; Wang et al., 2021; Wojcieszyńska & Guzik, 2020). 

The reported Annual Average Ecological Quality Standards (AA-EQS) and Predicted 

Effect Concentrations (PNEC) in freshwater for ibuprofen are both 10 ng L-1. AA-EQS 

are concentrations where substances must be kept below for a given year to minimize 

environmental impact and for the water to be considered “good” at the Water Framework 

Directive classification point. Meanwhile, PNECs are concentrations where the substance 

is unlikely to cause short or long-term effects. These guidelines are based on half maximal 

effective concentration (EC50s) and lethal concentration (LC50s), which assume that 

most invertebrates will experience negligible lethal effects when pharmaceutical 

concentrations in the environment are below these levels. However, sub-lethal effects on 

organisms can still happen even at low concentrations (Hunter et al., 2011). 

NSAIDs are notorious for causing oxidative stress, which manifests as changes in the 

enzymatic activity of compounds known to be antioxidants and/or in the transcription of 

genes linked to antioxidant/detoxifying pathways. Induction of irreversible DNA damage 
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and cytological alterations that raise the likelihood of cancer development and even affect 

the genomic stability of entire populations are both thought to be primarily caused by 

oxidative stress (Wang et al., 2017). According to the studies addressed in this review, 

NSAID concentrations found in the environment may seriously harm aquatic habitats, 

which could affect socioeconomic concerns related to the aquatic industry, fisheries 

industry and sustainability (Świacka et al., 2021). Some NSAIDs, such as diclofenac are 

being classified by the United States Environmental Protection Agency (USEPA) as 

potential threats to be included in the list of prioritized organic pollutants in drinking 

water (Manzo et al., 2014). However, most Asian countries especially Malaysia have not 

established any standards or regulations on the safe levels of NSAIDs concentration that 

can be present in environmental water bodies, despite numerous studies have been 

conducted on the detection and occurrences. 

The environmental ubiquity of pharmaceuticals has stimulated a lot of societal and 

global concerns which differ from country to country depending on the extent of 

consumption and monitoring. 
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Table 2.1: List of NSAIDs chosen for this study, their properties, and their molecular structure. 

Order NSAIDs Chemical Formula Molecular weight (g mol-1) pKa Log kOw Molecular structure 

1 Ibuprofen C13H18O2 206.3 4.52 3.50 

 

 

 

2 Diclofenac C14H11Cl2NO2 296.1 4.00 1.90 

 

 

 

3 Naproxen C14H14O 230.2 4.15 3.18 
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2.1.1 Occurrences of NSAIDs in environmental water samples 

There are two types of sources for NSAIDs in water: point sources and non-point 

sources. Some point sources of water pollution caused by the presence of NSAIDs are 

wastewater from industrial, hospital, and wastewater treatment plants and septic systems. 

However, runoff water is one of the non-point sources of NSAID-related water pollution. 

As the wastewater treatment plant is designed to remove mainly the degradable organic 

compound, it was found ineffective to remove the NSAIDs completely (Patel et al., 2019). 

Water contamination is caused by human excretion, flushing unwanted NSAIDs down 

the sinks and toilets, and dumping raw and treated waste containing NSAIDs from 

factories and hospitals. Water pollution can also be caused by the leachate from a septic 

tank that contains residential waste. The seepage of NSAIDs into soil and water can occur 

when household or other waste is deposited in a landfill. Moreover, NSAIDs may leak or 

flow into water from the livestock waste and the use of sewage sludge as fertilizer in 

agriculture (Li, 2014; Rzymski et al., 2017). Additionally, because of their strong polarity 

and solubility, they can bypass conventional wastewater treatment facilities and be 

released as effluents into environmental water bodies.   

In recent years, the monitoring of intact pharmaceuticals in river water and wastewater 

treatment plants (WWTPs) received most of the attention. In 2020, diclofenac, naproxen, 

and ibuprofen were the three NSAIDs that were most frequently prescribed in Malaysia’s 

primary healthcare sectors (Hwong et al., 2020). However, studies have shown that these 

most prescribed NSAIDs in 2020 were also the most detected in Asian environmental 

water samples in previous years (2014 - 2021). Table 2.2 shows some key studies and 

ecological assessments conducted on the determination of NSAIDs in environmental 

water samples at Asian countries. As shown in Table 2.2, the concentrations of NSAIDs 

found in water samples in large population countries like Pakistan and India were in the 

range of 10 – 140 µg L-1. In that list, a recent study published by (Mohd Hanafiah et al., 
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2023) has recorded an alarming scenario where NSAIDs were detected in the range of 

14.70 – 27.60 µg L-1 in the urban water cycle and commercial areas near Selangor, 

Malaysia. Therefore, based on the concern about the NSAID concentration in Malaysia 

and its potentially toxic effects on the organisms, these three NSAIDs are chosen as 

analytes for this study. Hence, it is essential to establish an analytical approach that is 

suitable for onsite monitoring, sensitive, less laborious, selective, and reliable for 

NSAIDs residue detection and quantification in water samples for both environmental 

monitoring and risk assessment.
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Table 2.2: Maximum concentrations (µg L-1) of NSAIDs found in Asian environmental water samples. 

NSAIDs Country Location Sampling 
year 

Concentration 
(µg L-1) Reference 

Acetaminophen 

India Brahmaputra River 2017 1.50 (Kumar et al., 2019; Subedi et al., 2017) 
Pakistan WWTP, Lahore City 2019 12.80 (Ashfaq et al., 2019) 

Singapore WRP 2015 0.73 – 1.38 (Tran & Gin, 2017) 
Pakistan Lahore Canal WWTP, Lahore 2015 23.81 – 27.90 (Ashfaq et al., 2017; Khan et al., 2018) 

Naproxen India Lahore Canal 2015 140.00 (Ashfaq et al., 2019) 
Singapore WRP 2015 2.10 – 2.50 (Tran & Gin, 2017) 

Diclofenac 
Pakistan WWTP, Lahore 2014 0.91 – 72.00 (Ashfaq et al., 2017) 
Malaysia Commercial area in Selangor 2020 27.60 (Mohd Hanafiah et al., 2022) 
Malaysia Urban water cycle in Selangor 2021 24.90 (Mohd Hanafiah et al., 2023) 

Ketoprofen Pakistan Lahore Canal 2015 0.068 (Ashfaq et al., 2019) 

Ibuprofen 
Singapore WRP 2015 0.87 – 1.07 (Tran & Gin, 2017) 
Malaysia WWTP in Selangor 2020 15.10 (Mohd Hanafiah et al., 2022) 
Malaysia Urban water cycle in Selangor 2021 14.70 (Mohd Hanafiah et al., 2023) 
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2.2 Sample Preparation technique 

Since the direct determination of trace-level analytes in complex matrices is 

challenging due to the inadequate sensitivity of the analytical instruments, sample 

preparation step is necessary before any analytical procedure. This phase involved the 

isolation and/or enrichment of target analytes to ensure that the samples were suitable for 

the instrument analysis. Prior to analysis, sample preparation was intended to enrich the 

concentration of the analytes for better detection and quantification. It was also aimed to 

separate the target analyte from the sample matrix, enrich and eliminate any interference 

or components that could have been present. 

2.2.1 Magnetic micro-solid phase extraction  

Numerous researchers have applied the magnetic micro-solid phase extraction 

(MMSPE) technique with various adsorbents mainly known for its easy separations, 

greater preconcentration and recovery properties. MMSPE involves minimal solvent 

usage, and the sorbents can be reused, aligning with environmentally friendly practices 

by generating less waste, reducing labor intensity, and maintaining low operating costs. 

Moreover, the use of an external magnetic field can facilitate the extraction processes 

without the requirement for centrifugation or filtration (Khan et al., 2014; Panhwar et al., 

2015). As a result, many abbreviations and terminology were used including magnetic 

solid phase microextraction (magnetic µ-SPE) (Boon et al., 2019), magnetic-based 

dispersive micro-solid phase extraction (M-d-µ-SPE) (Rocio-Bautista et al., 2016), and 

dispersive magnetic solid phase microextraction (d-MSPE)(Farahmandi et al., 2021; F. 

Liu et al., 2018), which have been observed from the reported researches. Table 2.3 

shows some of the previous works applying MMSPE as a versatile sample preparation 

technique using various magnetic adsorbents modified for the detection of various 

analytes in various sample matrices. 
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Table 2.3: Some previous works on the application of MMSPE as a sample preparation technique in various samples. 
Core/Shell Functional groups or 

final coatings 
Analyte Matrices Detection Limit of detection  References 

Fe3O4 Polyaniline Paraben Fruit juice, sunscreen, 
urine 

HPLC/UV 3.0 – 25.0 µg L-1 (Farahmandi et al., 
2021) 

Fe3O4 Carbon nanodots Erythrosine Pharmaceutical tablets 
and syrup 

UV-Vis 
spectrophotometer 

60 ng L-1 (Emiroğlu et al., 
2021) 

Fe3O4 Poly (β-cyclodextrin-
ionic liquid) 

PAH Rice GC-FID 0.01-0.18 µg kg-1 (Boon et al., 2019) 

Cyclodextrin-
functionalized Fe3O4 

dendrimer 
nanocomposites 

Ionic liquid Pyrethroids Juice HPLC 0.36–1.3 μg L−1 (F. Liu et al., 2018) 

Fe3O4 Multiwalled carbon 
nanotube 

Patent blue V Syrup, waters, 
artificial sweat  

UV-Vis 
spectrophotometer 

3.5 μg L−1 (Duman et al., 2020) 

  Fe3O4 Silica Organophosphorous Wastewater CapLC-DAD 50 – 100 ng L−1 (Moliner-Martinez et 
al., 2014) 

Fe3O4 graphene oxide Pyrocatechol violet copper Water, black tea, diet 
supplements 

FAAS 4.0 μg L−1 (Ozkantar et al., 
2020) 

Fe3O4 Chip-based array Copper, Zinc, 
Cadmium, Mercury, 

Lead 

Cells ICP-MS 4.2 – 49 ng L−1 (Wang et al., 2015) 

Fe3O4 - Lead Aqueous  FAAS 5.44 µg L-1 (A. S. Silva et al., 
2020) 

Fe3O4 Sodium dodecyl sulfate Fluoroquinolones Water, urine HPLC/UV 0.01 - 0.05 µg L-1  (Manbohi & 
Ahmadi, 2015) 

Fe3O4 = Magnetic Nanoparticles; PAH = Polycyclic Aromatic Hydrocarbon; HPLC/UV = High Performance Liquid Chromatography-Ultraviolet; GC-
FID = Gas Chromatography Flame Ionization Detection; HPLC = High Performance Liquid Chromatography; CapLC-DAD = Capillary Liquid 
Chromatograph (CapLC) with Diode Array Detection; FAAS = Flame Atomic Absorption Spectrometry; ICP-MS = Inductively Coupled Plasma Mass 
Spectrometry 
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2.2.2 Magnetic micro-solid phase extraction for determination of NSAIDs 

In this section, we can find more studies that employed MMSPE as the primary 

separation technique for the extraction of NSAIDs in various samples. Table 2.4 shows 

previous works on this application and based on the review, the application of the 

MMSPE technique was found to be very famous and common among researchers. 

Various magnetic adsorbents with numerous functionalities have been employed. The 

enhanced adsorbent material has a higher selectivity and can be able to extract 

multiparameter of NSAIDs. Adsorbents with functional groups that can form strong 

interactions, such as hydrogen bonding or van der Waals forces, with the functional 

groups present in NSAIDs enhance selectivity. Some adsorbents can be tailored or 

modified to have specific binding sites that match the molecular structure of NSAIDs. 

This customization enhances the selectivity of the adsorbent (Alvarez-Torrellas et al., 

2016). Certain adsorbents may possess inherent chemical properties that make them 

particularly effective in selectively attracting NSAIDs. Electrostatic interactions based on 

the surface charge of the adsorbent and NSAIDs can lead to selective adsorption, 

especially if there are specific charge interactions involved (Yıldırım et al., 2024; Zandian 

et al., 2024). This adds merit and confidence to apply the MMSPE technique for the 

extraction of NSAIDs in this study.  

On the contrary, most of the studies focused on the modifications using organic 

compounds on the surface of the sorbents to improve the adsorption capability, binding 

capacity, solubility, and ease of separation of NSAIDs from the overall sample matrices. 

The modifications were found to involve very laborious synthesis like coating, 

functionalization, fabrication, grafting, etc., with complex compounds like ionic liquid, 

metal organic framework, beta-cyclodextrin, methyl methacrylate, etc., to enhance the 

properties of the adsorbents. The laborious synthesis will always contribute to high 
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solvent usage, longer time and energy needed, and high waste generation (Liu et al., 

2019). Therefore, a simple modification step can be applied to synthesize the sorbent 

using magnetic nanoparticles which have greater properties.

Univ
ers

iti 
Mala

ya



 

 

22 

Table 2.4: Some previous works on the application of MMSPE techniques as sample preparation in NSAIDs detection in various samples. 
Core/Shell Functional groups or 

final coatings 
Analyte Matrices Detection Limit of detection (µg 

L-1) 
References 

Fe3O4 Silica, CTAB Acetyl-salicylic acid Effluent water Capillary LC-
MS 

0.04 – 0.15  (Moliner-Martinez et 
al., 2011) Acetaminophen 

Diclofenac 
Ibuprofen 

Fe3O4 p-tert-
butylcalix[4]arene 

Indoprofen Tap water, drinking water, 
river water  

HPLC-DAD 0.061 – 0.267 (Syed Yaacob, Mohd 
Jamil, et al., 2018) Ketoprofen 

Ibuprofen 
Fenoprofen 

Fe3O4 Graphene oxide Naproxen milk, urine, well and river 
water 

HPLC-DAD 0.03 – 0.10 (Ghorbani et al., 2016) 
Ibuprofen 

Fe3O4 Filter paper Ketoprofen River water, urine, human 
serum 

HPLC 0.2 – 0.4  (Han et al., 2019) 
Naproxen 
Diclofenac 

Fe3O4 TiO2 nanoparticles and 
C-Nanofibers 

Ibuprofen Surface water, lake water, 
sea water 

HPLC-DAD 0.95  (Yilmaz et al., 2020) 

Fe3O4 βCD-functionalized 
TDI-modified 
Sporopollenin 

Indoprofen Tap water, drinking water, 
river water 

HPLC 0.16 – 0.37 (Syed Yaacob, 
Kamboh, et al., 2018) Ketoprofen 

Ibuprofen 
Fenoprofen 
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Table 2.4, (continued).  
Fe3O4 Metal-organic 

framework with core-
shell structure 

Meloxicam Wastewater, lake water, 
feed water,  

UPLC-MS 0.02 – 0.09 (Liu et al., 2019) 
 

 

Carprofen 
Indomethacin 

Tolfenamic acid 
Diclofenac 
Naproxen 

Mefenamic acid 
 
 

Fe3O4 

 
 

MIL-101(Cr) 

 
 

Piroxicam 

 
 

Tap water, river water, 
pharmaceutical 

wastewater, hospital 
wastewater, influent, 

effluent 

 
 

UPLC-MS 

 
 

0.01 – 0.06 

 
 

(Wang et al., 2017) 
Ketoprofen 
Meloxicam 
Naproxen 
Diclofenac 

Indomethacin 
Mefenamic acid 
Tolfenamic acid 

Fe3O4 = Magnetic nanoparticle; CTAB = Cetyltrimethylammonium bromide; LC-MS = Liquid Chromatography-mass spectrometry; HPLC-DAD = 
High Performance Liquid Chromatography with photodiode-array detection; HPLC = High Performance Liquid Chromatography; UPLC-MS/MS = 
Ultra-high performance liquid chromatography-tandem mass spectrometer 
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2.3 Magnetic nanoparticles  

The research and development of nanotechnology-based materials has drawn a lot of 

interest among the scientific community (Haeri et al., 2017; Rezaeifar et al., 2016; 

Sarafraz-Yazdi et al., 2012; Yilmaz et al., 2020). Due to their tunable features and 

promising applications in terms of magnetization, reusability, and ease of recovery, 

MNPs have been widely utilized in the field of analytical chemistry.  

MNPs can be controlled by applying external magnetic fields. It can be used for 

magnetic drug targets, nano-sorbents in environmental engineering, magnetic resonance 

imaging, biomedicine, sensors, and many other applications. MNPs large surface areas to 

volume ratio, high dispersibility, quantum size effects, superparamagnetic behaviour, and 

ease of surface modification, makes MNPs useful in a wide range of applications (Boon 

et al., 2019). 

The most popular iron oxides used to synthesize MNPs are maghemite (Fe2O3) and 

magnetite (Fe3O4) due to their large magnetic moment, biocompatibility, and ease of 

preparation. For these reasons, numerous researches have concentrated on the synthesis 

of MNPs, which have a high surface area with nano-size dimension, superior sorption 

capability, and a strong response under an applied external magnetic field (Husin et al., 

2021). 

Several techniques, including laser ablation, mechanical grinding, chemical co-

precipitation, high-temperature decomposition of organic precursors, and micro-

emulsion, can be used to make magnetic nanoparticles (Boon et al., 2019). Chemical co-

precipitation is a technique that is mostly employed because it is inexpensive and easy to 

prepare. This procedure required combining ferrous (II) and ferric (III) ions in an inert 

condition with the highly basic solution at a high temperature with rapid stirring in a 1:2 

molar ratio (Sun et al., 2004).  
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Besides the advantages, MNPs still have a propensity to aggregate due to their high 

surface energies, which were caused by the huge surface area to volume ratio. In addition, 

unaltered MNPs are susceptible to oxidation, which can reduce their magnetic and 

dispersibility properties, making it more difficult to manage their stability, size, and form. 

Pristine MNPs are unstable in an acidic medium. They lack selectivity, easily oxidize, 

and agglomerate in an aqueous solution (Haeri et al., 2017). Thus, various approaches 

can be adopted to select the right material that is easily accessible and available 

abundantly in nature to be modified with MNP to overcome these limitations.   

2.3.1 Magnetic nanoparticles modified with agricultural waste 

Agricultural waste is among the most widely used adsorbents in recent years due to 

their easily accessible, abundantly available, great biocompatibility, low cost, highly 

degradable, and non-toxicity properties (Kabir et al., 2021). (Ravi & Sundararaman, 

2020) address agricultural waste as “nourishment squander”, which means agricultural 

waste has high value and multiple functions that can be reused for a different intended 

purposes with better efficiency.  

Table 2.5 shows the types of modifications done to magnetic nanoparticles using 

agricultural waste material. Based on the review, many researchers have studied the 

modifications of MNPs with various agricultural waste. In 2014, (Ebrahimian Pirbazari 

et al., 2014) used agricultural biomass, NaOH-treated wheat straw as a template 

impregnated with MNP on its surface to investigate the removal of methylene blue from 

an aqueous solution. In 2016, (Kaykioglu & Gunes, 2016) used magnetic nanoparticles 

modified with rice husk ash as a support material to investigate the removal of acid red 

114 dye from an aqueous solution. The author indicated there has not been any previous 

study conducted on MNP with rice husk ash. In 2021, (Nordin et al., 2021) studied the 

modification of cellulose with polyethyleneimine (PEI) and MNP for the removal of 

anionic dye (RB5). These studies show that modified MNP with agricultural waste has 
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always shown better properties compared to native conditions and it may work better for 

the intended purpose. 

Despite many studies, the literature related to the extraction of pharmaceutical 

compounds by modified magnetic-agricultural waste is limited, and there are many 

interesting adsorbents, including magnetic nanoparticle tea waste are yet to be explored.
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Table 2.5: Comparison of types of modifications in preparation of magnetic nanoparticles modified using agricultural waste material. 

Agricultural waste Analyte Sample Detection Reference 

Cellulose with polyethyleneimine Anionic dye Wastewater UV-Vis Spectrophotometer (Nordin et al., 
2021) 

Eggshell membrane Lead Wastewater Inductively coupled plasma 
optical emission spectroscopy 

(Peigneux et 
al., 2020) 

Chicken eggshell powder Chromium 
(VI) 

Tested water, surface water, 
underground water, tannery wastewater Atomic adsorption spectrometer 

(Ravi & 
Sundararaman, 

2020) 

Eggshell membrane 
Copper (II) 

and Titanium 
(I) 

Tap water, well water, rainwater, human 
hair, rice, and tea leaves 

Electro thermal Atomic 
Absorption Spectroscopy 

(Naghizadeh et 
al., 2018) 

Rice husk ash Acid red 114 
dye Aqueous solution Spectrophotometer (Kaykioglu & 

Gunes, 2016) 

Activated carbon and biochar Zinc, Copper, 
Lead Aqueous solution High-Performance Liquid 

Chromatography 
(Han et al., 

2015) 

Wheat straw Methylene 
blue Aqueous solution UV-Vis Spectrophotometer 

(Ebrahimian 
Pirbazari et al., 

2014) 

Almond shell-activated carbon Trinitrophenol Water UV-Vis Spectrophotometer (Mohan et al., 
2011) 
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2.3.2 Magnetic nanoparticles modified with tea waste as adsorbent 

In Malaysia, a large amount of tea waste is generated every year due to the great fan 

base for tea consumption. Based on the literature review, on average, Malaysia produces 

0.45% of the world’s total tea production. In general, the waste created from making tea 

is an oxygen-demanding contaminant that takes a very long time to degrade (Atirah Mohd 

Nazir et al., 2020). On the other hand, the tea template can function as a powerful 

adsorbent for the extraction of pollutants. The presence of many functional groups on the 

surface of the tea residue serves as potential pollutant-binding sites (Wong et al., 2018). 

Due to their high surface area, efficiency in separation, efficiency in mass transfer, and 

chemical stability, tea-waste impregnated with MNPs was synthesized successfully and 

has gained a lot of interest (Drynan et al., 2010). 

(Malhotra et al., 2018) have demonstrated the usage of tea leaves wastes as an 

environment-friendly, cheap bio sorbent for the removal of NSAID from wastewater. 

This was a study on the removal of Diclofenac (NSAIDs) utilizing tea waste. Their 

investigation focused on a single analyte. However, to date, no research has been 

conducted on the extraction study using a multi-analyte approach for NSAIDs employing 

tea waste. This approach forms the basis of the current study. 

(Wong et al., 2018) have studied the removal of acetaminophen (analgesics) from 

wastewater using activated carbon from spent tea leaves in wastewater. These studies are 

strong evidence that tea waste has the potential to bind and extract pharmaceutical 

compounds, specifically NSAIDs, from water samples. Therefore, an approach has been 

taken in the modification of MNP with one of the very common agricultural waste, tea 

waste as a potential robust adsorbent (Kabir et al., 2021). 

Table 2.6 shows some studies that have performed modifications on tea waste with 

MNPs for several applications. (Lunge et al., 2014) have used ferric chloride as an iron 
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source and tea as a template to synthesis magnetic nano iron oxide for the adsorption of 

arsenic ions in water samples. (Panneerselvam et al., 2011) have investigated the 

preparation of magnetic nanoparticles, impregnated onto tea waste from agricultural 

biomass for the adsorption of nickel ions in an aqueous solution. (Wen et al., 2017) have 

prepared a magnetic material by decorating pristine MNP on tea leaf waste to investigate 

the adsorption performance towards copper and zinc ions in wastewater. All the 

mentioned authors have used co-precipitation as a common method to synthesis these 

materials and on top of that, it was only applied for removal studies (remediation). 

Surprisingly, none has applied magnetic tea waste with any extraction studies, especially 

the MMSPE technique for chemical analysis application. Therefore, this is the first 

attempt to investigate the application of magnetic tea waste with the MMSPE technique 

for the extraction of NSAIDs in water samples using UV-Vis spectrophotometer.  

The goal of the current study is to use and manage such valuable agricultural biomass 

for great purposes more effectively. The key idea of utilizing waste products generated 

from our daily routine use to synthesize new material that can solve alarming 

environmental issues is indirectly contributing to the sustainable development goals 

(SDGs) that were adopted by the United Nations in 2015. Goal no. 12: Responsible 

consumption and production explains the urge to manage our shared natural resources 

and the way we dispose of any type of waste and pollutants. This goal encourages 

industries, businesses, and consumers to recycle, reduce and reuse waste as it supports 

developing countries to move towards more sustainable patterns of consumption by 2030. 

On par with the SDGs, the nanocomposite of MNP with tea waste as agricultural waste 

in this study has permitted us to prepare a new class of material for the extraction of 

NSAIDs in water samples. This research dissertation employs unconventional 

methodologies, distinct from the commonly adopted approaches within this domain, to 

achieve a notable and innovative outcome.
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Table 2.6: Some previous works using magnetic nanoparticles modified with tea waste coupled with various detectors in aqueous samples. 
Analyte Technique Sample Detectors Reference 

Arsenic Removal Aqueous solution AASHVG-1 (Lunge et al., 2014) 
Nickel Removal Aqueous solution UV-Vis Spectrophotometer (Panneerselvam et al., 2011) 
Copper Removal Aqueous solution ICP-AES (Wen et al., 2017) Zinc 

Acetaminophen Removal wastewater UV-Vis Spectrophotometer (Wong et al., 2018) 
Diclofenac Removal wastewater UV-Vis Spectrophotometer (Malhotra et al., 2018) 

Benzo[a]anthracene (BaA) 

Removal Aqueous solution UHPLC-DAD (Inbaraj et al., 2021) Chrysene (Chr) 
Benzo[b]fluoranthene (BbF) 

Benzo[a]pyrene (BaP) 
AASHVG = Atomic absorption spectrophotometer hydride vapor generator; ICP-AES = inductively coupled plasma atomic emission spectroscopy; 
UHPLC-DAD = ultra-high-performance liquid chromatographic-diode array 
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CHAPTER 3: RESEARCH METHODOLOGY 

 

3.1 Chemicals, materials, and reagents 

Black tea leaves were purchased from a supermarket in Shah Alam, Selangor. 

Ibuprofen (IBP), diclofenac (DCF) and naproxen (NAP) (purity ≥ 99%) were selected 

NSAIDS as analytes, purchased from Aldrich (USA). Figure 3.1 shows the UV-Vis 

spectra examined using UV-Vis spectrophotometer, when 500 µg L-1 of ibuprofen (λ : 

222 nm), diclofenac (λ : 276 nm) and naproxen (λ : 230 nm) were wavelength screened. 

Solvents used like acetonitrile and methanol were HPLC grade, 99.7% were purchased 

from Merck (Darmstadt, Germany). Iron (II) chloride tetrahydrate (FeCl2.4H2O) and iron 

(III) chloride hexahydrate (FeCl3.6H2O) were obtained from R&M Chemicals (Essex, 

UK). Sodium chloride (NaCl) and sodium hydroxide (NaOH) were provided from 

Friedemann Schmidt (Parkwood, WA, Australia). The ultrapure water with a resistivity 

of > 18.2MΩ was prepared by the Merck Milli-Q system (Lane End, UK).  

The standard stock solutions (1000 mg L-1 for each analyte) were prepared in methanol 

and preserved in a refrigerator at 4ºC to avoid the degradation process. The working 

standard solutions containing all analytes were freshly prepared by diluting the stock 

solutions with ultrapure water to the desired concentration. 
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Figure 3.1: The UV-Vis spectra for individual NSAIDs species at the respective 
wavelength in the analyte-rich phase. 

 
3.2 Instruments 

A Shimadzu (Kyoto, Japan) Model UV-1650 Ultraviolet-Visible spectrophotometer 

was used for the measurement of the NSAIDs compounds to record their 

spectrophotometric measurements (absorbance) with matched 1 cm quartz cells. 

Absorption spectra were determined between 190 nm and 400 nm. A vortex was used to 

desorb the analyte from the sorbent to the solvent. An orbital shaker, model: SKU: 719, 

from TECH-LAB was used for the extraction of NSAIDs from the aqueous solution to 

the adsorbent. The pH values of the sample solutions were determined by a pH meter 

(Accumet AB150, Fisher Scientific).Univ
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3.3 Preparation of MNP-TW 

The preparation of the MNP-TW method was inspired by (Panneerselvam et al., 2011) 

for its simple and less complex synthesis. The black tea purchased was used to mix tea 

beverages and the residue was collected, and soaked in boiled water several times, until 

decolorized. This resembles the multiple uses of the tea residue before disposing of it. 

The residue was thoroughly washed with water and dried at 85ºC overnight (Atirah Mohd 

Nazir et al., 2020; Panneerselvam et al., 2011). Once dried, the material was ground and 

sieved. Then, the chemical co-precipitation technique was implemented where 11.68 g of 

ferric chloride and 4.3 g of ferrous chloride were dissolved in distilled water. Under N2 

condition, the mixture was heated at 80ºC with vigorous stirring at 2000 rpm for 1 hour. 

N2 gas was continuously bubbled to expel oxygen gas. After 1 hour, 10 mL of 30% of 

ammonia solution was added drop wise. The solution was then added with 5 g of the fine 

tea waste material. The reaction was carried out for 30 mins at the same temperature under 

constant stirring. To eliminate the unreacted chemicals, the suspension was cooled down 

to room temperature and repeatedly washed with distilled water. Lastly, the material was 

washed with ethanol to enhance the crystal formation. The washed residue was dried in 

the oven at 50ºC for 12 hours. Equations 3.1 and 3.2 show MNP-TW material formation 

which was inspired from and tested with the magnet as shown in Figure 3.2. It was crystal 

clear that the MNP-TW was attached to the magnet, due to the magnetic behaviour. The 

reactions that occur in the synthesis of MNP-TW are shown in Equations 3.1 and 3.2.Univ
ers
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𝐹𝑒𝑆𝑂₄. 7𝐻₂𝑂 +  2𝐹𝑒𝐶𝑙₃. 6𝐻₂𝑂 +  8𝑁𝐻₄𝑂𝐻 → 𝐹𝑒₃𝑂₄ +  6𝑁𝐻₄𝐶𝑙 +  (𝑁𝐻₄)2𝑆𝑂₄ +

17𝐻₂𝑂           (3.1) 

𝐹𝑒3𝑂4 +  𝑇𝑊 +  17𝐻2𝑂 → 𝑇𝑊 − 𝐹𝑒₃𝑂₄      (3.2) 

   
Figure 3.2: (a) The image of MNP-TW before attracted to external magnetic force 
by neodymium magnet. (b) The image of MNP-TW after attracted to external 
magnetic force by neodymium magnet. 
 

3.3.1 The procedure of MNP-TW-MMSPE for the determination of NSAIDs 

In the MNP-TW-MMSPE study, a 10 mL sample solution containing known 

concentrations of IBP, DIC, or NAP standard solution was placed in a vial. Then 20 mg 

of synthesized MNP-TW was added to the sample solution. The mixture was shaken on 

an orbital shaker at 1000 rpm for 15 mins. After the extraction process was completed, 

the particles residue was separated by a neodymium magnet and collected. Because the 

neodymium magnet could successfully separate the magnetic particles from the liquid 

phase, the time for centrifugation or filtration step were saved. The aqueous phase was 

discarded, and 1.0 mL of methanol was added into the vial and the suspension was kept 

on vortex for 30 s to desorb the analytes from the surface of MNP-TW. The eluent was 

then added in 3 mL of desorption solvent and analyzed by UV–Vis spectrophotometer at 

222 nm, 276 nm, and 230 nm to determine the concentration of IBP, DIC and NAP, 

(a) (b) 
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respectively. The same procedure was applied for the blank and standard solutions. All 

analytes were extracted and analyzed individually (single detection). Figure 3.3 shows a 

schematic representation of MMSPE procedures. 

 

Figure 3.3: Schematic representation of MMSPE procedures. 

 

3.4 Optimization of the MNP-TW-MMSPE method 

To comprehensively assess the performance of MNP-TW, some essential 

experimental parameters, including sorbent dosage, sample pH, extraction and desorption 

time, ionic strength, sample volume, type and volume of desorption solvent have been 

investigated. These parameters were analyzed in water samples spiked with 500 µg L-1 of 

IBP, DCF and NAP, separately in triplicate (n=3). The extraction efficiency was 

calculated as in Equations 3.3 and 3.4: 

𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦, (%) =
𝐶𝑠×𝑉𝑠

𝐶𝑜×𝑉𝑜
× 𝐷𝐹 × 100%                                         (3.3) 

𝐷𝐹 =
𝑉𝑓

𝑉𝑖
                                                                                                                 (3.4) 

where Cs represents the NSAIDs species concentration (µg L-1) in the sample-aqueous 

mixture of volume Vs (mL); Co represents the NSAIDs species concentration (µg L-1) in 

Univ
ers

iti 
Mala

ya



 

 
36 

the standard solution of volume Vo (mL), DF is the dilution factor due to adding the eluent 

in 3 mL of solvent to make sure the sample volume is adequate for analysis. 𝑉𝑓 and 𝑉𝑖 

represents the final volume and initial volume of the sample, respectively. 

3.4.1 Optimization of sorbent dosage 

The different amounts of sorbent were studied in the range of 5 – 30 mg. The extraction 

parameter conditions were like the MMSPE procedure in section 3.3.1. 

3.4.2 Optimization of pH 

The effect of sample pH were studied from pH 3 to pH 11 at room temperature. The 

preferred pH was adjusted using 0.1 M HCl and 0.1M NaOH monitored using a pH meter 

(Accumet AB150, Fisher Scientific). The extraction parameter conditions were 

comparable to the MMSPE procedure in section 3.3.1. 

3.4.3 Optimization of extraction time 

The prolonged extraction time was investigated from 10 mins to 60 mins to enhance 

the extraction efficiency towards the analytes. The extraction parameter conditions were 

like the MMSPE procedure in section 3.3.1. 

3.4.4 Optimization of ionic strength 

The effect of ionic strength was studied with the addition of 0% to 5% (w/v) of NaCl 

in the sample solution. The extraction parameter conditions were like the MMSPE 

procedure in section 3.3.1.  

3.4.5 Optimization of sample volume 

Several sample volumes were tested from 5 mL to 30 mL. The extraction parameter 

conditions were like the MMSPE procedure in section 3.3.1. 
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3.4.6 Optimization of desorption conditions 

Three types of solvents were used as desorption solvents in the MMSPE procedure, 

such as acetonitrile (ACN), methanol (MeOH) and acetone. The effect of desorption time 

was investigated in the range of 10 to 50 mins. Different volumes of desorption solvent 

were employed from the range of 200 µL to 1000 µL. The extraction parameter conditions 

were like the MMSPE procedure in section 3.3.1. 

3.5 Reusability and carryover study 

After considering how important it is for the environment to reduce waste and save 

chemicals, the feasibility of reusing MNP-TW was investigated. The identical MNP-TW 

that had been fully washed three times with 1.5 mL of methanol each and dried at 65 °C 

for 30 mins was used again for this study. The reusability process begins after the 

adsorbent is washed and dried before the next MMSPE application. 

3.6 Method Validation 

A series of experiments were designed to attain linearity range, precision, limit of 

detection (LOD), limit of quantification (LOQ) and other characteristics of the developed 

method. 

3.6.1 Linearity and precision 

Linear range standardization curves was plotted in the range between 30 µg L-1 to 700 

µg L-1. The repeatability and precision of the advanced method were signified by 3 

replicates of spiked DI water with 300 µg L-1 of each NSAIDs. The data collected in 

standard deviation (SD) and relative standard deviation (RSD, %) were designed using 

the following Equations 3.5 and 3.6: 

𝑆𝐷 =  √
∑(𝑥−�̅�)2

𝑛−1
                                                                                                               (3.5) 
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𝑅𝑆𝐷(%) =
𝑆𝐷

�̅�
 × 100%                                                                                             (3.6) 

where �̅� indicates mean, 𝑥 is the results of every run, and n is the number of measurements 

(repeatability). 

3.6.2 Limits of detection (LOD) and limit of quantification (LOQ) 

The limit of detection and quantification of MNP-TW-MMSPE towards the sensitivity 

of the studied analytes were determined by Equations 3.7 and 3.8 

𝐿𝑂𝐷 = 3.3 ∗ (
𝑆𝐷

𝑀
)                                                                                                     (3.7) 

𝐿𝑂𝑄 = 10 ∗ (
𝑆𝐷

𝑀
)                                                                                                      (3.8) 

where 𝑆𝐷 represents the standard deviation of the blank residuals, and 𝑀 is the slope of 

the calibration curve.  

3.6.3 Pre-concentration factor (PF) 

The pre-concentration factor is the concentration ratio of the analyte in the final 

enriched extract to the initial sample solution (Naeemullah et al., 2012). A volume of 300 

µg L-1 of NSAID was spiked in water sample and will run through the MNP-TW-MMSPE 

procedure and the PF value will be calculated as Equation 3.9.  

𝑃𝐹 =
𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑓 𝑓𝑖𝑛𝑎𝑙 𝑒𝑛𝑟𝑖𝑐ℎ𝑒𝑑 𝑒𝑥𝑡𝑟𝑎𝑐𝑡

𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑓 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
×

𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑜𝑙𝑢𝑚𝑒

𝑑𝑒𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑒𝑙𝑢𝑒𝑛𝑡 𝑣𝑜𝑙𝑢𝑚𝑒
                            (3.9) 

3.6.4 Sorbent-to-sorbent reproducibility study 

The MNP-TW repeatability was assessed in terms of batch-to-batch or lot-to-lot to 

evaluate the efficacy of MNP-TW reproducibility. NSAIDs spiked at 500 µg L-1 in water 

samples employing three batches of sorbents (n=3) that were synthesized under the same 
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conditions but at different times. RSD (%) was used to express the result using Equation 

3.6. 

3.6.5 Relative recovery study 

The percentage of relative recoveries (%R) for the real sample was calculated by using 

the following Equation 3.10. 

%𝑅 =
𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑝𝑖𝑘𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒−𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑢𝑛𝑠𝑝𝑖𝑘𝑒 𝑠𝑎𝑚𝑝𝑙𝑒

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑝𝑖𝑘𝑒 𝑣𝑎𝑙𝑢𝑒 𝑎𝑑𝑑𝑒𝑑
× 100%         (3.10) 

3.7 Real sample analysis 

The calibration curves in the range of 30 – 700 µg L-1 were constructed by plotting the 

absorbance signal against the concentration of each NSAID species according to the 

general procedure under the optimized conditions. The developed method has been 

applied to evaluate its feasibility by spiking each NSAIDs into the water samples. Two 

different water samples were collected. Tap water was collected in Universiti Malaya 

laboratory and a wastewater sample was collected near a rubber factory in Meru, 

Selangor. The water samples collected were preserved and stored in polyethylene bottle, 

chilled, and filtered through a 0.45 µm membrane filter to remove solid particles before 

use. The presence of NSAID was not detected in any water samples later thus depicting 

that the water samples collected were safe from NSAIDs contamination. 

3.8 Green assessment 

The analytical Eco-Scale as a comprehensive approach has been chosen to evaluate 

the greenness of this method. It is evaluated based on the penalty points assigned to 

parameters of an analytical process that are not in agreement with the idea of green 

method analysis. This approach compares the differences in parameters and steps of the 

analytical process. The penalty points were contributed for the amounts of 
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chemicals/reagents, the consumed energy by electrical devices, the possible occupational 

hazards as well as the waste product generated from this method. The allocated penalty 

points for the reagents are based on the level of risks which include their hazards such as 

physical, health and environment based on the Globally Harmonized System of 

Classification and Labelling of Chemicals (GHS) (Armenta et al., 2015; Gałuszka et al., 

2012; Zain et al., 2014). 
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CHAPTER 4: RESULT AND DISCUSSION 

 

4.1 Characterization of MNP-TW as adsorbent 

4.1.1 FT-IR analysis 

FT-IR spectra of MNP-TW, MNP and TW between 4000 cm-1 and 400 cm-1 are 

presented in Figure 4.1. The spectra display several absorption peaks, reflecting the 

complex nature of tea waste. By comparison for MNP-TW, MNP and TW, the troughs, 

due to bonded OH groups are observed in the range of 3340 - 3380 cm-1. A broad band at 

3409 cm-1, 3406 cm-1 and 3384 cm-1 from TW spectra is attributed to the presence of 

bonded (-OH) groups whereas, at (2930 - 2842 cm-1) and (2931 - 2850 cm-1) is attributed 

to the aliphatic (C-H) groups which might probably from the tea waste. The peaks 

between 1630 cm−1 and 1057 cm−1 represent C=O stretching mode conjugated with the 

NH2 (Amide 1 band) in MNP-TW representing the carboxylic group and stretching of 

polysaccharides indicating the presence of a great amount of carboxylic acid. The skeletal 

vibrations of C=C stretching (aromatic rings) at 1630 cm−1 with the hydroxyl group in 

MNP-TW and TW are the representation of the large content of polyphenols in MNP-

TW. The stretching vibration of the Fe-O bond was responsible for the transmittance band 

at 634 cm-1. Additionally, the reduced intensity of Fe-O suggested that MNP-TW 

composites had a significant TW loading. The peaks in the spectra of MNP and TW 

coincided with those of MNP-TW, proving that MNP-TW nanoparticles were 

successfully formed (L. Liu et al., 2018; Panneerselvam et al., 2011; Wen et al., 2017; 

Wong et al., 2018).  Univ
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Figure 4.1: The FT-IR spectra of MNP-TW, MNP and parent TW. 

4.1.2 Magnetization studies 

The predominant characteristic of a magnetic material lies in its magnetic properties, 

which are essential for the rapid separation of materials from an aqueous medium, 

especially in magnetic micro-solid phase extraction (Mµ-SPE) applications. The 

magnetic behaviour of MNP-TW and MNP was assessed using VSM (Vibrating Sample 

Magnetometry), as displayed in Figure 4.2. It was discovered that MNP and MNP-TW 

had saturation magnetizations (Ms) of 62.51 and 40.47 emu g-1, respectively. The 

difference in the magnetization values of both MNP-TW and MNP yielded 22.04 emu g-

1 which is 35.3% (w/w), which was close to that of weight loss calculated from 

thermogravimetric (TG) analysis (~31.6% in w/w). Thus, this further proved that the 

synthesis was successful [10,27]. Figure 4.2 shows the saturation magnetization (Ms) of 

MNP and MNP-TW (Liu et al., 2019; Wen et al., 2017). 
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Figure 4.2: VSM analysis of (a) MNP and (b) MNP-TW 

4.1.3 FESEM analysis 

In Figure 4.3(a), The parent TW has smooth, heterogeneous, irregular bumpy 

structure surfaces. It indicates TW is primarily composed of structural proteins derived 

from cellulose and has insoluble cell walls with fibrous composition. As there are more 

adsorption sites, this feature would help to increase the extraction efficiency. In Figure 

4.3(b), the MNP surface has more pores and compact particles with rough morphology. 

It adhered closely together, which causes the nanoparticles to aggregate. In MNP-TW, 

MNP has completely covered the parent TW as shown in Figure 4.3(c), and all the MNP 

particles have aggregated to create a spherical, cage-like structure. Since the iron oxide 

occupied the active sites, Figure 4.3(c) depicts a single TW fibrous material with more 

holes and active sites available at 1.00 µm (Panneerselvam et al., 2011). In addition, the 

corresponding photographs of TW, MNP and MNP-TW were provided inset of Figure 

4.3(a), (b) and (c). 
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Figure 4.3: FESEM analysis of 50k× magnification: (a) TW, (b) MNP, (c) MNP-TW, 
inset: photographs of TW, MNP and MNP-TWUniv

ers
iti 

Mala
ya



 

 
45 

4.1.4 EDX analysis 

Figures 4.4 a), b) and c) show the results of the EDX analysis. By comparison, the 

weight percentage of iron (Fe=0.41%) and carbon (C=0.10%) in MNP-TW has confirmed 

the impregnation of the tea waste with MNP and further proves the successful formation 

of MNP-TW. 

It was observed that carbon weight percentage has reduced from (b) Raw Tea (0.19%) 

to (c) MNP-TW (0.10%). The reduction in carbon content observed is likely due to high 

temperature steps or chemical reactions during impregnation may lead to the breakdown 

of organic carbon compounds. The impregnation of magnetic nanoparticles may involve 

chemical interactions modifying or breaking down carbon-containing compounds. 

Besides, the impregnation process may induce structural changes in the tea waste, altering 

the arrangement of carbon-containing molecules (Siddiqui et al., 2023). 
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Figure 4.4: (a) EDX spectrum of MNP, (b) EDX spectrum of parent TW and (c) 
EDX spectrum of MNP-TW. 
 
4.1.5 TEM analysis 

In TEM analysis, the particles of individual MNP and MNP-TW were difficult to 

visualize. Therefore, their mean particle size was determined by randomly choosing the 

observed particle grains in the TEM image and plotting the particle size distribution 

histogram with the aid of J image software. From Figure 4.5(a) and Figure 4.5(b), the 

average diameter obtained from the plot for MNP (15.1 nm) is higher compared to MNP-

TW (9.6 nm). The reduction in the average diameter of nanoparticles from MNP to MNP-

TW is due to the infusion of MNP into the surfaces and pores of the tea waste during the 

synthesis, which was essential for an effective magnetic separation to occur. A similar 

(a) 

(b) 

(c) 
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observation was reported by Wen and co-workers (Wen et al., 2017). Further 

impregnation on the surface of tea waste produced nanoparticles with tiny, spherical 

morphology (Bakhshaei et al., 2016; Panneerselvam et al., 2011). 

Figure 4.5: TEM images of 50 nm scale image and corresponding particle diameter 
distributions of (a) MNP and (b) MNP-TW
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4.1.6 BET analysis 

In Brunauer-Emmett-Teller (BET) analysis, the porous structure of MNP and MNP-

TW were studied by using nitrogen adsorption-desorption isotherms. The unmodified 

MNP (67.14 m2 g-1) yielded a BET surface higher than MNP-TW (48.38 m2 g-1). The 

decline in values could be attributed to the increment in particle diameter due to the 

presence of an impregnation layer from magnetic nanoparticles on the surface of tea waste 

(Altaf et al., 2021; Inbaraj et al., 2021). 

Barret-Joyner-Halenda model (BJH) was used to calculate the pore size distribution 

that gave pore diameters of 13.1 nm and 17.8 nm for MNP and MNP-TW, respectively. 

These findings align with the IUPAC classification, which categorizes mesoporous 

materials within a diameter range of 2 - 50 nm. The increase in pore size could potentially 

be attributed to the presence of an impregnation layer derived from magnetic 

nanoparticles. This layer might have contributed to the dimensional enlargement of 

particles, thereby confirming the successful synthesis of the investigated materials. 

Figure 4.6(a) and (b) show the hysteresis loop of MNP and MNP-TW respectively. In 

Figure 4.6(a) the MNP displayed type IV isotherm with H1-type hysteresis loop 

indicative of its mesoporosity. The outcomes are in line with the SEM analysis, whereby 

porous material that exhibited type H1 contained uniform sphere aggregates. However, 

in Figure 4.6(b), MNP-TW demonstrated type II with H3-type hysteresis loop which 

indicates the formation of a monolayer on the material’s surface. This behaviour is said 

to be common for materials with relatively low surface area, where multilayer adsorption 

occurs after monolayer adsorption. The H3-type hysteresis loop observed in Type II 

isotherms signifies the presence of a macroporous surface with relatively uniform 

cylindrical mesopores or ink-bottle-shaped pores in MNP-TW. While mesoporous and 

macroporous materials differ in their pore size ranges, they can sometimes be related to 
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certain materials. For example, a material could exhibit a hierarchical porous structure 

containing both mesopores and macropores. This combination of different pore sizes 

might be advantageous, providing multiple levels of adsorption capabilities for different-

sized molecules or particles (Boon et al., 2019; Panneerselvam et al., 2011; Raoov et al., 

2014). Table 4.1 presents the BET analysis of MNP and MNP-TW. 

 
Figure 4.6: BET Hysteresis loop of (a) MNP and (b) MNP-TW 

 
Table 4.1: BET analysis of MNP and MNP-TW 

Characteristics MNP MNP-TW 

Surface area (m2/g) 67.14 48.38 
Pore volume (cm3/g) 0.30 0.16 

N2 adsorption/desorption 
isotherm 

Type IV Type II 

Hysteresis type loop H1 H3 
BJH pore diameter (nm) 13.09 17.83 
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4.1.7 TGA analysis 

The thermal stability of a molecule is measured by thermo-gravimetric analysis 

(TGA), which is also employed to analyze MNP and MNP-TW. According to Figure 4.7 

(a), the weight-loss curve for MNP and MNP-TW required a multi-step approach. In 

general, the first step can be understood because of the loss of water, while the second 

step may be responsible for other compounds. Upon increasing the temperature to 200 

ºC, the weight of MNPs was reduced by 3.69%, apparently caused by the loss of moisture 

content. However, only a minor loss in weight (2.50%) occurred in the temperature 

ranging from 200 ºC to 400 ºC due to minor volatile fractions with the remaining MNPs 

purity obtained at 93.81%. For MNP-TW, a three-step degradation pattern was obtained. 

The first step involved a loss of 5.96% moisture content at temperature < 200 ºC, followed 

by a 13.22% reduction in weight between 200 ºC to 400 ºC in the second step which is 

attributed to the loss of cellulose and hemicellulose residues as well as volatile fractions. 

In the third step, a loss in weight by 12.45% was observed at 400 ºC to 800 ºC, accounting 

for the devolatilization of thermally stable volatile compounds, oxidation of carbon and 

degradation of lignin. A final residue mass of 68.37% was obtained (Inbaraj et al., 2021). 

Figure 4.7 (b) provides additional evidence of that MNP and MNP-TW. The findings are 

summarized and displayed in Table 4.2. 
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Table 4.2: TGA analysis of MNP and MNP-TW. 

Adsorbents Region Temperature 
(ºC) 

Weight 
loss (%) 

Assignment Total 
weight 
loss (%) 

MNP A1 36.38 – 108.29 3.69 Water/ moisture loss 6.19 
B1 226.12 – 369.95 2.50 Volatile fractions 

MNP-TW A2 30.75 – 98.98 5.96 Water/ moisture loss 31.63 
B2 229.81 – 380.99 13.22 Cellulose, 

hemicellulose, 
volatile fractions.  

C 463.95 – 898.66 12.45 Devolatilization of 
thermally stable 
volatile compounds, 
oxidation of carbon, 
degradation of lignin 
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Figure 4.7: (a) TGA analysis of MNP and MNP-TW. (b) DTA diagram of MNP and 
MNP-TW. 
 

4.1.8 XRD analysis 

As shown in Figure 4.8, the analysis of crystallinity was carried out using X-ray 

powder diffraction XRD spectroscopy. The typical peaks of MNP-TW were found to 

correspond to the Miller index values of (220), (311), (400), (422), (511), and (440) planes 

of MNP with a face-centred cubic structure at 2Θ = 30.3°, 35.7°, 43.3°, 53.8°, 57.4°, and 

63.1°, respectively which indicates the cubic phase of the full faces centers of magnetic 

metal oxide (JCPDS No. 75-0033). The two patterns showed a broad and relatively weak 

diffraction peak at 23°, which indicates the amorphous carbon, consists of aromatic 

carbon sheets oriented in a relatively random manner (Wen et al., 2017). It should be 

observed that the impregnation process of MNP on tea waste did not alter the cubic phase 

of the magnetic metal oxide, as shown by the identical XRD pattern of MNP-TW. The 

results obtained from Figure 4.8, can be used to determine the crystallite sizes of MNP 

and MNP-TW with the Scherer equation in Equation 4.1. 
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𝐷 = 𝑘𝜆/𝛽𝑐𝑜𝑠𝛩 (4.1) 

Where D is crystalline sizes (nm), k is grain shape factor constant, λ is the wavelength of 

the XRD beam, β is the full width at half maximum for the diffraction peak (radian), and 

Θ is the diffraction angle.  

The quantitative analysis based on the Scherer equation showed that the average 

crystallite size of MNP and MNP-TW are 14.1 nm and 11.4 nm, respectively. As can be 

realized, the crystallite size of MNP-TW is lower than the size of MNPs achieved by BET 

and TEM techniques. 

 
Figure 4.8: XRD patterns of MNP and MNP-TW. 

 
4.2 Optimization of the MNP-TW-MMSPE technique 

4.2.1 Preliminary comparison between MNP and MNP-TW 

The extraction performance of MNP-TW and native MNP was examined in the 

extraction of NSAIDs using similar extraction conditions (n=3), which included 20 mg 

of sorbent, 10 mL of sample solution, 30 min for extraction time, 30 s for desorption time, 

and 1.0 mL of acetonitrile as the desorption solvent. This experiment was conducted to 
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ascertain the impact of tea-waste impregnation on the sorbents' ability to extract materials. 

Figure 4.9 displayed the measured (absorbance) of NSAIDs applying MNP and MNP-

TW. According to the bar chart, MNP-TW demonstrated a higher extraction efficiency, 

which can be attributed to the tea waste impregnated with magnetic nanoparticles, which 

increased the porosity of the adsorbent and drew more analyte particles towards it 

(Panneerselvam et al., 2011). Additionally, the polyphenol compound in tea waste which 

contains functional groups such as hydroxyl groups, carboxyl groups and benzene rings 

in its structure, enhances the selectivity for NSAIDs and adds another outstanding 

characteristic to the interaction system. Furthermore, the greater extraction capability of 

MNP-TW towards the studied NSAIDs could be due to strong π–π interaction and 

electrostatic interaction (Li et al., 2018). 

 
Figure 4.9: The performance capacity in terms of extraction efficiency of MNP and 
MNP-TW. Univ
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4.2.2 Effect of sorbent dosage 

The amount of MNP-TW in the range of 5-30 mg was evaluated with other conditions 

kept unchanged. From Figure 4.10, the optimum amount for ibuprofen and diclofenac 

was 25 mg, whereas for naproxen was 15 mg. When the amount of MNP-TW increases, 

the extraction efficiency increases too. MNP-TW provides a large surface area which 

facilitates strong adsorption for their π-π electrostatic interactions with the aromatic rings 

of the targets, which explains the adsorption capacity variation and thus the limited 

number of active sites (Hsen & Latrous, 2023). However, the extraction efficiency 

decreases after 25 mg for ibuprofen and diclofenac and 15 mg for naproxen with the 

increase of adsorbent dosage due to particle aggregation that happens when the high mass 

of adsorbent is present which reduces the surface area of MNP-TW exposed to NSAIDs 

for the adsorption to occur (Han et al., 2019; Liu et al., 2019; Malhotra et al., 2018).  

 
Figure 4.10: Effect of the sorbent dosage of MNP-TW on the MNP-TW-MMSPE 
efficiency of NSAIDs (n=3). 
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4.2.3 Effect of pH 

From FT-IR characterization (Figure 4.1), the spectrum demonstrates the presence of 

carbonyl, hydroxyl, and carboxyl groups on the surface of MNP-TW which are likely to 

participate in analytes binding (Panneerselvam et al., 2011). The oxygen-bonded 

functional groups enhance the affinity of the MNP-TW with the analyte, making the 

magnetic materials suitable for extraction. It also acts as a hydrogen bond donor and 

acceptor. The target analytes and the adsorbent's present forms, as well as the charged 

NSAIDs species and the associated density on the adsorbent surface, are all significantly 

influenced by the pH values of water samples (El-Sheikh et al., 2019). The impact of pH 

values in the range of 3 to 11 was investigated and presented in Figure 4.11. At pH 4, the 

maximum extraction efficiencies were discovered for all target analytes. It might be 

explained by the significant hydrogen bonding and hydrophobic interactions between the 

adsorbent and the target analytes. ibuprofen (IBP), diclofenac (DCF), and naproxen 

(NAP) have dissociation constants (pKa) in the range of 4.00 - 5.20. These drugs are weak 

acids, and the pH will affect the ionization of NSAIDs and surface of MNP-TW.  

At pH < 4, where the pH < pKa, the solution is rich in hydrogen, H+ and hydronium, 

and H3O+ ions making the polar analytes prone to protonation which makes the NSAIDs 

in a neutral state. The protonation effect impeded the hydrogen bonding interaction and 

thus weakens the adsorption.  

At optimum pH 4, near or equal to the pKa value, most of the target analytes existed 

in molecular form. There was an equal amount of neutral and deprotonated NSAIDs 

species. The hydrogen bonding interaction was the strongest, leading to optimal 

adsorption (El-Sheikh et al., 2019).  
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When pH > 4, where the pH > pKa most analytes were deprotonated, changed to 

anionic forms and the MNP-TW became electroneutral or even negatively charged, thus 

resulting in reduced interaction or repulsion (Manzo et al., 2014; Sarafraz-Yazdi et al., 

2012). Since all analytes would be ionized and present in their conjugated forms at sample 

pH greater than their pKa values, an increase in the sample pH bigger than 4 led to a 

gradual fall in the extraction recovery (Sarafraz-Yazdi et al., 2012). To prepare the sample 

solution for further analysis, the pH was adjusted to 4 for subsequent analysis (Li et al., 

2018; Liu et al., 2019). 

 
Figure 4.11: Effect of pH of MNP-TW on the MNP-TW-MMSPE efficiency of 
NSAIDs (n=3). 
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4.2.4 Effect of extraction time 

The length of the extraction process has a significant impact on how the analytes are 

distributed between the aqueous phase and the sorbent adsorption sites, which helps to 

increase extraction efficiency. Equilibrium is reached when the sorbent can extract the 

most analyte possible. To get the best microextraction efficiency, the extraction time was 

investigated. The time required for analyte diffusion into a thicker sorbent was greater 

than for thinner materials. The effect of different extraction times (10-60 mins) was 

studied at room temperature as shown in Figure 4.12. The extraction efficiency was 

greater for IBP at 10 mins whereas for DCF and NAP at 20 mins, then decreased. IBP 

achieved lower extraction time compared to DCF and NAP probably due to upon examine 

the structures of IBP, DCF and NAP, the size and shape of the drug molecules can affect 

their binding kinetics with MNP-TW. IBP (molecular weight: 206.29 g mol-1) being 

smaller in size compared to DCF (molecular weight: 296.15 g mol-1) and NAP (molecular 

weight: 230.26 g mol-1), might have fewer steric hindrances, allowing for faster binding 

with polyphenols (Syed Yaacob, Kamboh, et al., 2018). Therefore, the optimum 

extraction time for ibuprofen was 10 mins and for diclofenac and naproxen at 20 mins 

which were selected for further experiments (Rezaeifar et al., 2016). 
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Figure 4.12: Effect of extraction time of MNP-TW on the MNP-TW-MMSPE 
efficiency of NSAIDs (n=3). 

 
4.2.5 Effect of ionic strength 

Ionic strength was varied from 0 - 5% of NaCl salt content in the sample solution. In 

Figure 4.13, the optimum ionic strength was 0% of NaCl salt content in the sample 

solution which was selected for further experiments. The purpose to addition of NaCl salt 

is to make the NSAIDs becomes less soluble in the solution and tends to partition 

preferentially adsorb onto MNP-TW. In this study, ionic strength was examined to see its 

contribution to the extraction efficiency of NSAIDs with MNP-TW. However, the high 

viscosity and density of the solution may hamper the molecular mass transfer of the 

analytes to the sorbents. Therefore, no salts were added to the sample solution in the latter 

experiments. In addition, at a high concentration of the salt solution, Na+ and Cl− ions 

reversed the metathesis reaction to make MNP-TW more polar, and slower the diffusion 

rate of the analyte from aqueous to sorbents since the solvation cage of the analyte was 

disrupted (Han et al., 2019; Wang et al., 2017). As such, the extraction performance 
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declined. Therefore, further studies continued with 0% (w/v) of NaCl which means 

without the addition of NaCl salt content in the sample solution. 

 

Figure 4.13: Effect of ionic strength of MNP-TW on the MNP-TW-MMSPE 
efficiency of NSAIDs (n=3).  

4.2.6 Effect of sample volume 

The sample volume is directly related to the enrichment factor (EF) and loading 

capacity of the adsorbent. Hence, the sample volume was examined in the range of 5 to 

30 mL to attain a high enrichment factor. In Figure 4.14, results indicate that all the 

NSAIDs prefer lower sample volumes. From 10 to 30 mL, the trend seemed to decrease. 

Higher volumes cause the adsorption sites to completely saturate with analytes and it 

could not be processed as the amount of sorbent in the volume unit of the sample 

decreased due to high dispersion of the sorbent in aqueous media. This makes the 

adsorption of analytes more difficult (Boon et al., 2019). Based on the results, ibuprofen 

with 10 mL whereas diclofenac and naproxen with 5 mL were selected as the optimum 

sample volume for the proposed method (Manzo et al., 2014).  

Univ
ers

iti 
Mala

ya



 

 
61 

 

Figure 4.14: Effect of sample volume of MNP-TW on the MNP-TW-MMSPE 
efficiency of NSAIDs (n=3).  
 

4.2.7 Effect of type of desorption solvent 

In the case of MNP-TW-MMSPE, the analytes were desorbed by a polar, organic 

solvent from the surface of MNP-TW, after extraction. Different desorption solvents were 

evaluated (methanol, acetonitrile, acetone). In Figure 4.15, the best desorption solvent 

for IBP and DCF were acetonitrile, whereas for NAP was methanol. IBP and DCF are 

both NSAIDs with similar chemical structures, belonging to the propionic acid derivative 

and acetic acid derivative classes, respectively. These compounds typically exhibit 

moderate polarity due to the presence of polar functional groups (such as carboxylic 

acids) in their structures. While they are not highly polar like some other NSAIDs, they 

are not considered nonpolar either. In the context of solvent polarity, both IBP and DCF 

may have varying affinities for solvents based on their moderate polarity. NAP is 

generally considered to be more polar than IBP and DCF. This is due to its chemical 

structure, which contains a napthyl and carboxylic acid group, making it more hydrophilic 
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and polar compared to the other two compounds. In the context of solvent polarity, NAP 

might exhibit higher solubility and extraction efficiency in relatively more polar solvents 

like methanol, which can better interact with its polar functional groups and facilitate its 

desorption. The affinity of the desorption solvent towards NSAIDs depends on the solvent 

polarity and the solubility of the analyte in the solvent. The selected polar solvents have 

higher solvent strength (Madikizela & Chimuka, 2016; Sarafraz-Yazdi et al., 2012; 

Yıldırım et al., 2024; Zandian et al., 2024). 

 

Figure 4.15: Effect of type of desorption solvent of MNP-TW on the MNP-TW-
MMSPE efficiency of NSAIDs (n=3).  
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4.2.8 Effect of desorption time 

The vortex method was employed in the desorption process. To ensure complete 

desorption, the time was tested in the range from 10 to 50 s. In Figure 4.16, for IBP, DCF 

and NAP the analytical signals achieved optimum when desorption time was fixed at 20 

s, 40 s, and 30 s for IBP, DCF and NAP, respectively. The optimum desorption time 

allowed the complete desorption of the analytes from the adsorbent material. The decrease 

trend observed in Figure 4.16 after the optimum desorption time could be due to the re-

adsorption of the target analytes onto the sorbent upon increased duration leading to 

incomplete desorption. 

 

Figure 4.16: Effect of desorption time of MNP-TW on the MNP-TW-MMSPE 
efficiency of NSAIDs (n=3). 
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4.2.9 Effect of desorption volume 

The effect of desorption volume on the elution of analytes was examined. Desorption 

volume was investigated from 200 µL to 1000 µL. Based on Figure 4.17, all 3 analytes 

prefer 800 µL as the optimal volume of eluent and sufficient to elute the analyte from the 

adsorbent to accommodate the maximum extraction from the sorbent, which portrays that 

the smaller the volume used, the higher the extraction performance. 

 

Figure 4.17: Effect of desorption volume of MNP-TW on the MNP-TW-MMSPE 
efficiency of NSAIDs (n=3).  

To sum up, based on the overall outcomes, the optimum extraction parameters were 

finally selected as presented in Table 4.3 below.Univ
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Table 4.3: Optimum conditions for the extraction of NSAIDs by MNP-TW-MMSPE. 

Parameter Ibuprofen Diclofenac Naproxen 

Dosage of sorbent 25 mg 25 mg 15 mg 

pH 4.0 4.0 4.0 

Extraction time 10.0 mins 20.0 mins 20.0 mins 

Ionic Strength, % 
(w/v) 

without addition of 
NaCl salt 

without addition of 
NaCl salt 

without addition of 
NaCl salt 

Type of eluent ACN ACN MeOH 

Desorption time 20.0 seconds 40.0 seconds 30.0 seconds 

Desorption volume 800 µL 800 µL 800 µL 

Volume of sample 10 mL 5 mL 5 mL 
 

4.3 Reusability and carryover study 

After considering how important it is for the environment to reduce waste and save 

chemicals, the feasibility of reusing MNP-TW was investigated. The same MNP-TW 

material that had been fully washed with 1.5 mL of methanol and dried at 65 °C for 30 

mins was used for this reusability study. Based on Figure 4.18, there was no carryover 

of analytes during the MSPE method, and the sorbents could be reused up to 2 times with 

a percentage recovery of >70% (as per ICH guidelines for analytical method validation). 

This demonstrates MNP-TW and its potential for reuse in the actual MMSPE application. 
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Figure 4.18: The reusability analysis of MNP-TW-MMSPE. 

 

4.4 Method validation 

Under the optimized conditions, linearity, the limit of detection (LOD), the limit of 

quantification (LOQ), precision, pre-concentration factor (PF), matrix effect, and sorbent-

to-sorbent reproducibility study were carried out as shown in Table 4.4 to validate the 

performance of the proposed MMSPE with UV-Vis spectrophotometric method. The 

calibration graphs were obtained by plotting the absorbance signal against the 

concentrations of each target analyte following the standard MMSPE technique.  The 

calibration ranges were between 30 – 700 µg L-1 for water samples with three replicates. 

Each analyte exhibited a remarkable linearity   and a positive coefficient R2 of 

determination ranging from 0.9964 – 0.9981 during the analytical performances. The 

LOD shows between 10.30 – 11.70 µg L-1 and LOQ of 31.20 – 35.40 µg L-1. The relative 

standard deviations (RSD) ranged from 1.48% to 4.83%. This demonstrates higher 

reproducibility of the MNP-TW preparation method
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Table 4.4: Analytical performance values of the developed MNP-TW-MMSPE 
procedure in water matrices. 

Water Ibuprofen 
(222 nm) 

Diclofenac 
(276 nm) 

Naproxen 
(230 nm) 

linearity (µg L1) 30 - 700 30 - 700 30 - 700 
(𝑅2) 0.9980 0.9964 0.9981 

LOD (µg L-1) 10.30 11.70 11.10 
LOQ (µg L-1) 31.20 35.40 33.70 

Intra-day, (n=30) RSD (%) 
at 300 µg L-1 

1.48 3.98 4.66 

Inter-day, (n=10) RSD (%) 
at 300 µg L-1 

1.53 4.12 4.83 

Pre-concentration factor at 
800 µg L-1 

116 174 153 

 

4.5 Sorbent-to-sorbent reproducibility study 

The MNP-TW synthesis repeatability was assessed in terms of batch-to-batch or lot-

to-lot reproducibility. The extraction efficiency of each batch was studied by spiking 500 

µg L-1 in water samples employing three batches of sorbents (n=3) that were 

manufactured under the same conditions but at different times. From Figure 4.19, 0.4% 

to 15.6%, the RSD values appeared to be improved and acceptable. This suggests that the 

MNP-TW preparation used in this investigation has good reproducibility. 
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Figure 4.19: The reproducibility analysis of MNP-TW 

4.6 Real sample analysis 

To study the effectiveness of the suggested method for application on real water 

samples, tap water and effluent water were tested. The samples were screened for 

detection of NSAIDs, and the results shows negative and hence the water samples were 

spiked simultaneously with 100, 400 and 700 µg L-1 of all target analytes. All experiments 

were repeated three times (n = 3). Plotting the absorbance signal against the concentration 

of NSAIDs species exposed to the usual process under optimal conditions resulted in a 

calibration graph for the concentration range 30 – 700 µg L-1. The findings were compiled 

in Table 4.5, where the full recoveries for all NSAIDs species fell between the ranges of 

82 to 114%. As a result, the technique can be regarded as extracting NSAIDs from 

samples. Figure 4.20 shows a typical UV-Vis spectrum obtained from a water sample 

spiked with NSAIDs at 50 µg L-1 and 100 µg L-1 evaluated with and without the MNP-

TW-µ-SPE technique and compared with an unspiked sample. This indicates that the 
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matrix effect did not have any significant effect on the recovery of the spiked analyte. In 

addition, it shows the effectiveness of the MNP-TW-µ-SPE to enrich the NSAIDs in 

water samples. 

Table 4.5: Addition-recovery experiments results of NSAIDs in water samples 
(n= 3). 

Analyte Samples Correlation of 
determination, 

R2 

Spiking (µg 
L-1) 

Recovery (% 
mean ± RSD) 

n=3 
Ibuprofen 
(222nm) 

1 

0.9980 

100 94 
400 98 
700 113 

2 100 84 
400 86 
700 110 

Diclofenac 
(276nm) 

1 

0.9964 

100 96 
400 105 
700 114 

2 100 84 
400 95 
700 94 

Naproxen 
(230nm) 

1 

0.9981 

100 91 
400 100 
700 103 

2 100 82 
400 83 
700 94 

Sample 1 = Tap water 
Sample 2 = Effluent water 
 
 
Figure 4.20 (a), (b), (c) shows the typical UV-Vis spectra obtained from spiked 

wastewater samples at concentration levels of 50 µg L-1 and 100 µg L-1. It was compared 

with an unspiked sample and spiked wastewater sample at a concentration of 50 µg L-1 

without MNP-TW-MMSPE. This indicates that the matrix effect did not have any 

significant effect (negligible) in the extraction efficiency. In addition, it shows the 

effectiveness of the MNP-TW- MMSPE method in extraction of the NSAIDs in the water 

sample matrices. 
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Figure 4.20: Typical UV-Vis spectra of NSAIDs in wastewater sample using MNP-
TW-MMSPE. The spectrum corresponds to (a) IBP, (b) DCF and (c) NAP. 
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4.7 Green assessment analysis 

The analytical eco-scale (AES) as a novel comprehensive approach has been chosen 

to evaluate the level of green analytical methodology. It is evaluated based on the penalty 

points assigned to parameters of an analytical process that are not in agreement with the 

idea of green method analysis. This approach compares differences in parameters and 

steps of the analytical process. The penalty points were contributed for the amounts of 

chemicals/reagents, the consumed energy by electrical devices, the possible occupational 

hazards as well and the waste product generated from this method as shown in Table 4.6. 

The allocated penalty points for the reagents are based on the level of risks which include 

their hazards based on the Globally Harmonized System of Classification and Labelling 

of Chemicals (GHS) (Armenta et al., 2015; Gałuszka et al., 2012; Zain et al., 2014). 

If the amount of chemical is < 10 mL (g), 1 penalty point is assigned while 2 penalty 

points are given for reagent amounts between 10 to 100 mL (g). In addition, the signal 

word ‘warning’ or ‘danger’ of a reagent is also considered in the hazard penalty. Based 

on the GHS information, ammonia (25%), acetonitrile, methanol and acetone have been 

labelled with the signal word ‘warning’, thus assigning 1 penalty point each.  

The total energy consumption contributed to 4 penalty points. 0 penalty point was 

contributed by UV-Vis due to 0.1 kWh of energy per sample being consumed and the 

other 2 penalty points for each stirrer and orbital shaker during material synthesis that 

consumed an average of 1.5 hours. 4 penalty points were recommended for waste 

generation where >10mL of waste was produced during the material synthesis and 

extraction process. The occupational hazards hold 3 penalty points. Altogether, 23 penalty 

points were accumulated, and the net value was deducted from 100 points which were the 

total ideal scores. Therefore, the total AES score was 77 which shows the MNP-TW-
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MMSPE method for the determination of NSAIDs in water samples is neatly a green 

analysis (acceptable green method analysis > 50 points). 

Table 4.6: AES scores of the MNP-TW-MMSPE method. 

Reagents Penalty points 
Ammonia (30%) 10 mL 3 
Ethanol 10 mL 3 
Acetonitrile 4 mL 2 
Methanol 4 mL 2 
 ∑ 10 

Instruments Penalty points 
UV-Vis Spectrophotometer 0 
Stirrer 2 
Oven (> 1.5 kWh per sample) 2 
Orbital shaker 2 
Occupational Hazard 3 
Waste 4 
 ∑ 13 
Total penalty points: 23 
AES Total score: (100-23) = 77 

 

4.8 Comparison of the MNP-TW-MMSPE method with others 

The developed MNP-TW-MMSPE was compared with previous literature for the 

extraction methods of NSAIDs which are summarized in Table 4.7. By comparison, 

MNP-TW-MMSPE has obtained the lowest LOD among the other methods that have 

chosen UV-Vis spectrophotometer as the detection instrument. The newly developed 

MNP-TW-MMSPE method is nothing less, as it has achieved a significantly lower limit 

of detection even by using tea waste as an adsorbent and UV-Vis spectrophotometer. As 

discussed in Table 2.2, the concentration of NSAIDs detected in Asian countries 

specifically in urban water cycle and commercial areas near Selangor were recorded in 

the range of 14.70 – 27.60 µg L-1. MNP-TW-MMSPE has achieved lower LOD (10.3 to 

11.7 µg L-1) than the detected concentration (Mohd Hanafiah et al., 2023; Mohd Hanafiah 

et al., 2022).  

Univ
ers

iti 
Mala

ya



 

 
73 

It was also observed that MNP-TW-MMSPE has achieved a good pre-concentration 

factor for microextraction compared to other methods. This clearly shows that MNP 

modified with agricultural waste such as tea waste has great potential to achieve a lower 

detection limit, with lower RSD values and great recoveries. 

Therefore, the MNP-TW-MMSPE method represents a noteworthy advancement in 

analytical procedures, offering rapid, reproducible, and straightforward technique with 

lower LOD and RSD values, alongside satisfactory extraction recoveries of NSAIDs from 

water samples. This method is reliable for NSAIDs residue detection and quantification 

in water samples for both environmental monitoring and risk assessment.
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Table 4.7: Comparison of the analytical performance of the method developed with other extraction methods in the literature. 
Extraction method Analyte Linear Range 

(µg L-1) 
LOD (µg L-1) Instrument Pre-concentration 

factor 
Recovery % Reference 

MMSPE (modified with arginine amino 
acid.) 

DCF 50–10000 39 UV-Vis - 92.0 – 100.8 (Shahhosseini et al., 2021) 

MSPE (modified carbon nanodots) ERY 100–500 60 UV-Vis 6.7 94.8 – 97.6 (Emiroğlu et al., 2021) 
UADSPME (molecularly imprinted 
polymer) 

CAR 100–1200 33 UV-Vis 25 97 - 112 (Bazrafshan et al., 2017) 

MNP-TW-MMSPE IBP 30 – 700 10.3 UV-Vis 116 84.0 – 113.0 
This Work DCF 30 – 700 11.7 174 84.0 – 114.0 

NAP 30 – 700 11.1 153 82.0 – 103.0 

MSPE = Magnetic Solid Phase Extraction; MMSPE= Magnetic Solid Phase Microextraction; UADSPME = Ultrasound-assisted dispersive Solid Phase 
Microextraction; IBP = Ibuprofen; NAP = Naproxene; DCF = Diclofenac; ERY = Erythrosine; CAR = Carbaryl; LOD = Limit of Detection; UV-Vis 
= Ultraviolet-visible spectrophotometer 
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CHAPTER 5: CONCLUSION AND RECOMMENDATION 

 

5.1 Summary  

In this study, we have successfully synthesized and characterized tea waste 

impregnated with magnetic nanoparticles by simple chemical co-precipitation method 

and investigated their applications in MMSPE techniques for the determination of 

selected NSAIDs in water samples with UV-Vis spectrophotometry detection analysis. 

MNP-TW could be easily separated by magnetic separation technique and showed 

excellent NSAIDs sorption properties.  The morphology studies indicated that iron oxide 

has completely impregnated the parent tea waste and has aggregated to create a spherical, 

cage-like structure. In TEM analysis, the MNP-TW retained their initial structures but 

exhibited a rougher surface with an average particle size of 9.6 nm compared to MNP 

with an average particle size of 15.1 nm. The thinner structures were observed in the 

MNP-TW as the nanoparticles were well dispersed onto the surface of the tea waste and 

tended to cluster as they are magnetic, which is essential for the magnetic separation of 

the target analyte from aqueous solutions. The maximum saturation (Ms) of MNP and 

MNP-TW were 62.51 and 40.47 emu g-1, respectively. Furthermore, the organic 

component in MNP-TW was roughly 35.3% (w/w), and the difference value of 22.04 emu 

g-1 was calculated. The reduced magnetization indicates the impregnation of MNP on the 

surface of parent TW which proved the synthesis was successful. All the characterization 

results confirmed the successful synthesis of MNP-TW.  

The newly synthesized MNP-TW exhibits great performance compared to native MNP 

towards the extraction of NSAIDs in water samples. The analytical features of developed 

microextraction techniques such as method development, validation and real sample 

analysis were described in detail. The negligible matrix effect on the studied water 
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samples revealed that MNP-TW enhanced the sample purification and enrichment. This 

technique attained a good preconcentration factor owing to the outstanding characteristics 

of tea waste and magnetic nanoparticles. 

It is interesting to point out that MMSPE generally achieved better or comparable 

results than the other techniques because of its extraction process taking a shorter time 

and it shows higher efficiency. 

Under optimized MMSPE conditions, the calibration curves were linear for the 

NSAIDs concentration ranging between 30 and 700 µg L-1 with the correlation of 

determinations (R2) from 0.9964 to 0.9981 for all analytes. Besides, the detection limits 

ranged from 10.30 to 11.70 µg L-1 in real matrix with acceptable recovery values from 82 

to 114%. 

Apart from that, a comparison with previous works also had been presented along with 

the developed techniques in this study, and surprisingly who exhibited a fair, better, and 

comparable performance than those reported in the literature. 

To sum up, MMSPE technique and MNP-TW adsorbent applied are not new. 

However, they have been integrated and applied for the sensitive extraction of NSAIDs 

in water samples. A new application of the combined sorbent and technique has been 

successfully employed in the study. All the objectives of this study have been achieved 

accordingly. The findings have successfully addressed the research gaps and the needs as 

stated in Chapter 1. 
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5.2 Future directions 

We have discovered interesting directions for future work, as mentioned below.  

(a) Further investigation on the properties and applications of MNP-TW with other 

NSAID compounds or probably with different pharmaceutical compounds (E.g.: 

antibiotics) is required since this combination displays great performance with better 

findings. 

(b) To incorporate MNP-TW in the extraction of NSAIDs with advanced instruments 

like HPLC, GC-FID or LC-MS to acquire lower detection limit with better recovery. 

(c) The developed technique can be applied to other types of sample matrices due to the 

availability of active sites on MNP-TW. Different interactions could be studied for 

the extraction behaviour including but not limited to ionic bonding, hydrogen 

bonding, van der Waals forces, π-π interaction, and host guest interaction.  

Therefore, future studies on the topics discussed are highly recommended. 
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