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A COMPARATIVE GEOCHEMICAL STUDY OF HUMIC COALS FROM 

CENOZOIC SARAWAK BASIN, MALAYSIA AND CRETACEOUS BENUE 

TROUGH, NIGERIA 

 

ABSTRACT 
 
 

Although humic coal is generally described as a gas-prone source rock, a significant 

number of oil-prone coal-bearing sequences in Australasia and Southeast Asia have 

expelled commercial volumes of oil. Nevertheless, the mechanism of oil generation and 

expulsion from humic coals remains poorly understood. Therefore, this thesis seeks to 

provide new insights into the geochemical controls on the petroleum potential of humic 

coals. A total of sixty Tertiary and Upper Cretaceous coals from Sarawak Basin, 

Malaysia, and Benue Trough, Nigeria were investigated using bulk and molecular 

geochemical techniques such as standard proximate analysis, pyrolysis-gas 

chromatography (Py-GC), Rock-Eval pyrolysis, Fourier transform infrared spectroscopy 

(FTIR), gas chromatography-mass spectrometry (GC-MS), elemental analyser isotope 

ratio mass spectrometry (EA-IRMS), and inductively coupled plasma mass spectrometry 

(ICP-MS) to determine their thermal maturity, hydrocarbon generation potential, organic 

matter input, kerogen type, paleovegetation, paleoclimate, and environments of 

deposition. Furthermore, principal component analysis (PCA) of geochemical parameters 

was carried out to evaluate the probable controls on the hydrocarbon generation potential 

of the coals. First, vitrinite reflectance and Tmax data, and maturity-related biomarker 

parameters all signify low thermal maturity for all studied coals except the Lamja 

Formation coals of the Benue Trough which are in the early maturity stage. Furthermore, 

hydrogen index (< 300 mg HC/g TOC), TOC (> 20 wt. %), A-factor (> 0.4) and extract 

yield (> 10000 ppm) data for most of the coals indicate excellent potential for gas and 

mixed oil and gas generation. Rock-Eval, Py-GC, and source-related aliphatic and 

Univ
ers

iti 
Mala

ya



iv  

aromatic hydrocarbon parameters indicate that the coals are derived mainly from 

terrestrial organic matter but with a considerable proportion of marine algal organic 

matter in the Benue Trough coals. Additionally, δ13C values and the abundance of 

terpenoids imply the predominant contribution of gymnosperms and angiosperms to the 

paleoflora of the Benue Trough and Sarawak Basin, respectively. Bimetal proxies (Sr/Ba, 

Sr/Cu, and C-value), and δD values are generally suggestive of a warm and humid climate 

during the accumulation of the paleopeats. However, the presence of ≥ 6-ring 

combustion-derived polycyclic aromatic hydrocarbons (PAHs) in the Gombe Formation 

coals of the Upper Benue Trough implies relatively drier conditions during the 

Maastrichtian. Additionally, n-alkane proxies (Pwax, Paq, n-C23/n-C29, etc.) suggest that 

Liang Formation coals of the Sarawak Basin were deposited under relatively drier and 

strongly seasonal paleoclimate during the Late Pliocene. When compared with published 

global average abundances, the investigated coals are mostly depleted in major oxides 

and trace elements, suggesting peat accumulation in freshwater-influenced environments. 

Furthermore, the low to moderately high ash content of the Sarawak Basin coals indicates 

the presence of ombrotrophic and rheotrophic peat deposits, while the relatively higher 

ash content of the Benue Trough coals is indicative of prevalent rheotrophic conditions. 

PCA result of selected geochemical proxies suggests that thermal maturity, source input, 

peat hydrology, paleoflora, and marine incursions do not influence hydrocarbon 

generation potential. However, climatic, and depositional conditions both appear to 

slightly influence the hydrocarbon generation potential of the studied humic coals. 

 
 

Keywords: Humic Coal, Sarawak Basin, Benue Trough, Hydrocarbon Potential, 

Geochemistry 
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KAJIAN GEOKIMIA PERBANDINGAN ARANG HUMIC DARI LEMBANGAN 

CENOZOIC SARAWAK, MALAYSIA DAN CRETACEOUS BENUE TROUGH, 

NIGERIA 

 
 

ABSTRAK 
 
 

Walaupun arang batu humik secara amnya dianggap sebagai batuan sumber yang 

terdedah kepada gas, sebilangan besar jujukan yang mengandungi arang batu terdedah 

kepada minyak di Australasia dan Asia Tenggara telah mengeluarkan isipadu minyak 

komersial. Namun begitu, mekanisme penjanaan minyak dan pengusiran daripada arang 

humik masih kurang difahami. Oleh itu, tesis ini bertujuan untuk memberikan pandangan 

baharu tentang kawalan geokimia terhadap potensi petroleum arang humik. Sebanyak 

enam puluh arang Tertiary dan Upper Cretaceous dari Lembangan Sarawak, Malaysia, 

dan Benue Trough, Nigeria telah disiasat menggunakan teknik geokimia pukal dan 

molekul seperti analisis proksimat standard, kromatografi gas pirolisis (Py-GC), pirolisis 

Rock-Eval, Fourier spektroskopi inframerah transformasi (FTIR), spektrometri jisim 

kromatografi gas (GC-MS), spektrometri jisim nisbah isotop penganalisis unsur (EA- 

IRMS), dan spektrometri jisim plasma (ICP-MS) yang digandingkan secara induktif 

untuk menentukan kematangan terma, potensi penjanaan hidrokarbon. , input bahan 

organik, jenis kerogen, paleovegetasi, paleoklimat, dan persekitaran pemendapan. 

Tambahan pula, analisis komponen utama (PCA) parameter geokimia telah dijalankan 

untuk menilai kemungkinan kawalan ke atas potensi penjanaan hidrokarbon arang batu. 

Pertama, pemantulan vitrinit dan data Tmax, dan parameter biomarker berkaitan 

kematangan semuanya menandakan kematangan terma yang rendah untuk semua arang 

batu yang dikaji kecuali arang batu Formasi Lamja di Benue Trough yang berada di 

peringkat kematangan awal. Tambahan pula, data indeks hidrogen (< 300 mg HC/g 
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TOC), TOC (> 20 wt. %), A-faktor (> 0.4) dan hasil ekstrak (> 10000 ppm) untuk 

kebanyakan arang batu menunjukkan potensi yang sangat baik untuk gas dan penjanaan 

minyak dan gas campuran. Rock-Eval, Py-GC, dan parameter hidrokarbon alifatik dan 

aromatik berkaitan sumber menunjukkan bahawa arang batu berasal terutamanya 

daripada bahan organik daratan tetapi dengan sebahagian besar bahan organik alga marin 

dalam arang Benue Trough. Di samping itu, nilai δ13C dan kelimpahan terpenoid 

membayangkan sumbangan utama gimnosperma dan angiosperma kepada paleoflora 

Benue Trough dan Lembangan Sarawak, masing-masing. Proksi dwilogam (nilai Sr/Ba, 

Sr/Cu dan C-value), dan nilai δD secara amnya menunjukkan iklim panas dan lembap 

semasa pengumpulan paleopeat. Walau bagaimanapun, kehadiran ≥ 6-cincin hidrokarbon 

aromatik polisiklik (PAH) yang berasal dari pembakaran dalam arang batu Formasi 

Gombe di Upper Benue Trough membayangkan keadaan yang agak kering semasa 

Maastrichtian. Selain itu, proksi n-alkana (Pwax, Paq, n-C23/n-C29, dsb.) mencadangkan 

bahawa arang batu Formasi Liang di Lembangan Sarawak telah dimendapkan di bawah 

paleoklimat yang agak kering dan bermusim kuat semasa Pliosen Akhir. Jika 

dibandingkan dengan kelimpahan purata global yang diterbitkan, arang batu yang disiasat 

kebanyakannya habis dalam oksida utama dan unsur surih, mencadangkan pengumpulan 

gambut dalam persekitaran yang dipengaruhi air tawar. Tambahan pula, kandungan abu 

yang rendah hingga sederhana tinggi arang Lembangan Sarawak menunjukkan kehadiran 

mendapan gambut ombrotropik dan rheotropik, manakala kandungan abu yang agak 

tinggi bagi arang Benue Trough menunjukkan keadaan rheotropik yang lazim. Keputusan 

PCA proksi geokimia terpilih menunjukkan bahawa kematangan terma, input sumber, 

hidrologi gambut, paleoflora, dan pencerobohan marin tidak mempengaruhi potensi 

penjanaan hidrokarbon. Walau bagaimanapun, keadaan iklim dan pemendapan kelihatan 

sedikit mempengaruhi potensi penjanaan hidrokarbon arang humik yang dikaji. 
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Kata kunci: Arang Batu Humic, Lembangan Sarawak, Palung Benue, Potensi 

Hidrokarbon, Geokimia 
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CHAPTER ONE: INTRODUCTION 
 
 
 

1.1 Background and Problem Statement 
 
 

Coal is a black or brownish-black combustible sedimentary rock formed by the 

degradation, compaction, and induration of accumulated remains of plant debris, usually 

in a mire environment (McCabe, 1984). With burial, plant remains are subjected to 

increasing temperature and pressure, transforming them over time, first into peat and 

successively into lignite, sub-bituminous coal, bituminous coal, and finally anthracite. 

The biochemical transformation of plant materials into peat is called peatification, while 

the subsequent progressive physiochemical transformation from peat through lignite to 

anthracite, and approaching graphite is referred to as coalification (Diessel, 1992; Orem 

& Finkelman, 2003; O’Keefe et al., 2013). Coal is the most abundant fossil fuel and 

cheapest energy source, and its use has evolved over the years from transportation fuel to 

power generation to steel production and industrial manufacturing. 

 
Coal typically contains more than 50 wt. % organic carbon and in varying quantities 

of other elements such as hydrogen, oxygen, and sulfur. Hence, coals can be classified 

based on the percentage composition of elemental carbon, hydrogen, and oxygen. Before 

deposition and subsequent incorporation into peat, plant remains differ in morphological 

and chemical nature (Scott, 2002). During diagenesis, oxygen-containing functional 

groups are removed from peat until the oxygen/carbon ratio decreases to about 0.1 (Orem 

& Finkelman, 2003). With increasing burial, bacteria activity decreases due to increasing 

temperature and pressure, and catagenesis begins. While removal of oxygen continues 

during catagenesis, the main reactions are decarboxylation and aromatization of alkyl side 

chains occurs. During catagenesis, the hydrogen/carbon ratio reduces until it becomes 

graphite, which is pure carbon (Orem & Finkelman, 2003). Thus, the physical properties 
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of coal such as colour, hardness, and gravity are dependent on the composition of the 

original peat, the amount of impurities, and thermal maturity (McCabe, 1984). 

 
Coals are composed of optically homogenous aggregates of organic substances with 

distinct physical and chemical properties termed macerals (Spackman, 1958). The major 

maceral groups are huminite/vitrinite, derived mainly from woody material; liptinite, 

primarily derived from spores and cuticles; and inertinite, sourced from oxidized biomass 

(McCabe, 1984). The term huminite is used for lignite and sub-bituminous coals (<0.5% 

Ro), while vitrinite is used for bituminous coals (≥ 0.5% Ro). The International Committee 

for Coal and Organic Petrology (ICCP) System 1994 classification of coal organic 

compounds are used to identify and classify the macerals in coals (ICCP, 2001; Sýkorová 

et al., 2005; Pickel et al., 2017). The distribution of maceral groups in coals is dependent 

on the composition of organic matter at burial, which in turn primarily depends on plant 

type in peat-mire and the depositional environment (Hunt, 1991). For instance, the 

absence or low abundance of inertinite macerals in coals is generally regarded as an 

indicator of steady precipitation and constantly high water-table levels during peat 

accumulation, while the abundance of inertinite macerals is suggestive of frequent dry 

episodes (McCabe 1984; Diessel, 1992). 

 
There are two types of coals: sapropelic and humic coals. Sapropelic coals are formed 

from spores, pollen, and algae deposited in sub-oxic to anoxic conditions that are common 

in lakes (McCabe, 1984). Sapropelic coals are rich in resins and waxes and consequently 

have higher hydrogen content than humic coals. In addition, sapropelic coals are thin, 

lenticular, and non-banded, and often occur as single bands or at the top of humic coals. 

However, sapropelic coals are relatively uncommon and volumetrically insignificant. 

Conversely, humic coals constitute over 80% of the world’s coal resources and are formed 

by the deposition of plant cell and wall materials in anoxic-suboxic conditions found in 
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peat mires (McCabe 1984; Orem & Finkelman, 2003). Humic coals are often dominated 

by huminite/vitrinite maceral with heterogeneous organic matter structures (Petersen, 

2006). In addition, humic coals are banded and tend to form cleats. 

 
Given the low hydrogen content of humic coal, it is conventionally regarded as a gas- 

prone source rock, while shale and carbonates which have generated commercial 

quantities of oil are known to be oil-prone source rocks. However, Tertiary coals in 

Taranaki Basin, New Zealand, and Late Cretaceous coals in Gippsland Basin, Australia, 

are known to have expelled commercial volume of oil. Therefore, several studies have 

investigated oil-prone humic coals (Clayton et al. 1991; Hunt, 1991; Fleet & Scott, 1994; 

Killops et al., 1998; Isaksen et al., 1998; Sykes, 2001; Wilkins & George, 2002; Abdullah, 

2003; Petersen, 2006; Petersen & Nytoft, 2006). Nevertheless, the mechanism of oil 

generation in these coals is still not fully understood. 

 
 
 

1.2 Aim and Objectives of Study 
 
 

This thesis aims to provide new insights into the geochemical controls of the 

petroleum-generating potential of humic coals. This aim was achieved by investigating 

similarly ranked coals of different ages from Sarawak Basin, Malaysia, and Benue 

Trough, Nigeria using a novel combination of bulk and molecular geochemical 

techniques such as proximate analysis, pyrolysis-gas chromatography (Py-GC), Rock- 

Eval pyrolysis, attenuated total reflection-Fourier-transform infrared spectroscopy (ATR- 

FTIR), gas chromatography-mass spectrometry (GC-MS), elemental analyser isotope 

ratio mass spectrometry (EA-IRMS), and inductively coupled plasma mass spectrometry 

(ICP-MS). Furthermore, correlation and principal component analyses were carried out 

to evaluate the strength of relationships between petroleum-generating potential 
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indicators and source input-, paleovegetation-, paleoclimate-, and paleoenvironment- 

related proxies. 

 
The objectives of this thesis are summarized as follows: 

 
 

1. To evaluate the hydrocarbon generation potential of the coal samples, 
 

2. To determine their organic matter source input, 
 

3. To reconstruct the paleovegetation and paleoclimate of the study areas, 
 

4. To determine the environmental conditions of peat accumulation, 
 

5. To compare the elemental, isotopic, and hydrocarbon composition of the 

Sarawak Basin and Benue Trough coals, 

6. To determine the geochemical controls on the hydrocarbon-generating 

potential of the studied Malaysian and Nigerian coals. 

 
 
 

1.3 Research Hypotheses 
 
 

The research hypotheses developed in this thesis align with the sixth research objective 

in section 1.2 above, and are as follows: 

 
H1: The hydrocarbon generation potential of the studied coals is influenced by organic 

matter source input. 

 
H2: The hydrocarbon generation potential of the studied coals is influenced by 

paleovegetation. 

 
H3: The hydrocarbon generation potential of the studied coals is influenced by past 

hydrological and climatic conditions. 
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H4: The hydrocarbon generation potential of the studied coals is influenced by the 

environmental conditions of the paleopeats. 

 
These hypotheses were tested by undertaking principal component analysis (PCA) of 

selected geochemical proxies of organic matter input, paleoflora, paleohydrology, 

paleoclimate, and depositional environment to either accept or reject the above-stated 

propositions. 

 
 
 

1.4 Thesis Organisation 
 
 

The thesis is divided into seven chapters. Chapter 1 presents an introduction to the 

research and outlines the scope and objectives of the work, while Chapter 2 reviews 

published studies regarding oil-prone humic coals, marine-influenced coals, and 

geochemical proxies. Furthermore, Chapter 3 describes the geology of Sarawak Basin, 

Malaysia, and Benue Trough, Nigeria, and study areas within Sarawak Basin and Benue 

Trough. Chapter 4 outlines the analytical methods employed for this research work, while 

Chapter 5 presents the results and preliminary interpretations. 

 
Chapter 6 discusses the results, broadly characterizing the coals and determining their 

thermal maturity, hydrocarbon generation potential, organic matter source input, and 

provenance of source areas. In addition, this chapter assesses the paleovegetation, 

paleoclimate, and paleodepositional conditions of the studied coals, and importantly, 

discusses the potential geochemical controls on the generation potential of the coals. 

Finally, chapter 7 summarises the overall findings of this research work, highlights the 

limitations, and outlines the scope of future work. 
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CHAPTER 2: LITERATURE REVIEW 
 
 
 

2.1 Oil-prone Humic Coals 
 
 

Due to the low hydrogen contents of humic coals, they are conventionally regarded as 

a gas-prone source rocks whereas shale and carbonates which have generated commercial 

quantities of oil are known to be oil-prone source rocks. Nevertheless, some early studies 

show liquid hydrocarbon generation could occur in coal seams (Young, 1967). Two 

theories were proposed for this observation. First, coals generate oil but not in significant 

quantity, and second that coals generate a significant volume of oil but the oil cannot be 

expelled. Durand & Paratte (1983) investigated coals of different ages and found that 

significant amounts of oil can be generated in most coals and that expulsion is likely to 

commence sooner after generation than in other source rocks. The authors, however, 

suggested that fracturing due to basin evolution and the poor capacity of coals to retain 

oil likely explain the loss of generated oil. Shibaoka et al. (1978) indicated that the oil in 

the Gippsland basin is derived mainly from the liptinite maceral group, while Durand & 

Paratte (1983) found no correlation between maceral composition and the potential to 

generate liquid hydrocarbon. Furthermore, Durand & Paratte (1983) emphasized that all 

coal types can generate liquid hydrocarbon. 

 
Based on biomarker analysis, Shanmugam (1985) suggested that the 3 billion barrels 

of recoverable oil in the Gippsland Basin Australia could be sourced from the coaly 

succession of the Upper Cretaceous-Tertiary Latrobe Group. The high wax content, 

presence of long-chain n-alkanes, high pristane/phytane ratio, and dominant C29 sterane 

in the oil indicated a possible terrestrial source of organic matter. Furthermore, the 

depletion of liptinites in the offshore Latrobe coals proved that oil was generated from 

liptinites. In addition, Shanmugam (1985) suggested that extensive fracturing and the 
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observed decrease in the proportion of coals in the Latrobe Group from onshore to 

offshore areas facilitated oil expulsion. Hunt (1991) evaluated the importance of 

hydrogen in the generation of petroleum and concluded that as the percentage of liptinites 

in sedimentary organic matter increases, its hydrogen content increases and consequently, 

its oil generation potential. Whilst the oil potential of Latrobe Group coals of the 

Gippsland Basin was attributed to high liptinite content (Shibaoka et al. 1978; 

Shanmugam, 1985), the coals of the Taranaki Basin contain little liptinite. 

Mukhopadhyay et al. (1991) attributed the oil-generative potential of the Taranaki Basin 

coals to desmocollinite, a part of the vitrinite maceral group. Furthermore, Hunt (1991) 

postulated that coals with hydrogen/carbon (H/C) ratios > 0.9, hydrogen index (HI) values 

> 200 mgHC/gTOC and liptinite contents > 15% are capable of liquid hydrocarbon 

generation. However, this postulation was rejected by Powell & Boreham (1994). The 

authors concluded that the overall maceral composition of coal is a poor indicator of its 

petroleum potential as vitrinitic and inertinitic macerals also contribute to petroleum 

potential. 

 
Killops et al. (1994) evaluated oils from Taranaki Basin, New Zealand, and 

characterized the oils as waxy with high hopane/sterane ratios and dominant C29 steranes. 

Based on this characterization, the authors pointed out that most of the oils in the basin 

were sourced from terrestrial organic matter and accordingly suggested that the Pakawau 

and Kapuni Group coals as the most probable source rocks with varying contributions 

from marine shales. Powell & Boreham (1994) noted that the terrestrial oils are sourced 

from higher plants that became widespread post-Carboniferous, and, therefore, there is 

no clear evidence of a floral or depositional control on terrestrial organic matter. 

 
According to Killops et al. (1994), New Zealand coals began significant oil generation 

and expulsion at approximately 0.7% Ro and 1.0 % Ro, respectively. The expulsion of 

Univ
ers

iti 
Mala

ya



8  

hydrocarbons from source rocks is seemingly controlled by two consecutive processes: 

the release of hydrocarbons from kerogen and movements within the source rocks. 

However, there are opposing theories on which of the processes is the important limiting 

factor (Pepper & Corvi, 1995b). Furthermore, parameters like organic matter type and 

hydrogen richness, which vary with depositional environment and thermal maturity, are 

also considered factors. Inan et al. (1998) investigated oil expulsion efficiencies of seven 

different lithologies and found that source rocks containing hydrogen-rich kerogen 

efficiently expel oil as neither of the two consecutive processes is the major limiting 

factor. Hydrogen-poor kerogen-like humic coals do not expel large volumes of liquid 

hydrocarbon because both the release from kerogen and movements within rocks are 

limiting factors. However, Inan et al. (1998) found that oil is expelled from liptinite-rich 

humic coal once the amount of generated oil surpasses the sorption capacity of the coals. 

The author’s finding suggests that oil expulsion from humic coal is largely controlled by 

the release of hydrocarbons from kerogen, which in turn is controlled by the hydrogen 

richness of the kerogen. 

 
Comparing Middle Jurassic gas-prone North Sea coals and Cretaceous and Tertiary 

oil-prone coals from New Zealand, Australia, and Indonesia, Isaksen et al. (1998) sought 

to determine the key geochemical controls on hydrocarbon generation and expulsion from 

humic coals. The workers established that the North Sea coals had elevated HI values that 

suggested the capability to generate non-volatile oil (C15+) but the pyrolysis-gas 

chromatograms showed that the coals were depleted in non-volatile oil and enriched in 

aromatic moieties when compared to Taranaki basin coals of similar maturity. Hence, 

Isaksen et al. (1998) proposed that oil-prone coals are formed by the incorporation of 

highly aliphatic biopolymers into coals and that the amount of aliphatic long-chains in 

coal structures is the most significant control on petroleum generation potential. 

Furthermore, the authors noted that maceral distribution and elemental ratios and 
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parameters are not accurate indicators of oil generative potential in coals and terrigenous 

organic matter as they can lead to overestimation of non-volatile liquid hydrocarbon 

generation potential. This finding contradicts the earlier research by Hunt (1991) which 

had postulated the minimum attributes for oil generation in coals. However, Isaksen et al. 

(1998) concurred that the adsorptive capacity of coals is a key factor in the timing and 

composition of expelled petroleum. 

 
Various researchers have established that geochemical parameters like vitrinite 

reflectance and Rock Eval’s hydrogen index (HI) and Tmax are not linear indices to 

measure the maturity and petroleum generation potential of source rocks. Vitrinite 

reflectance measurements can vary greatly with different operators and reflectance of 

vitrinite can be suppressed (Mukhopadhyay, 1994), while HI can anomalously vary with 

rank and changes in maceral composition (Peters, 1986). Hence, in appraising New 

Zealand coals from Taranaki Basin, Killops et al. (1998) employed the rank scheme (Sr) 

developed for New Zealand coals by Suggate (1959) as the tool to measure maturity. 

Killops et al. (1998) noted that coal-generated oils are characteristically very paraffinic 

and thus, the paraffinic component (polymethylene) would be a more accurate measure 

of coal’s petroleum generation potential. However, the suggested linear relationship 

between petroleum potential and polymethylene required a zero polymethylene baseline 

that the authors noted corresponded to lignin and its diagenetic products. The authors, 

therefore, assumed that it was possible to determine the contribution of polymethylene 

(HIPM) to petroleum potential if the lignin contribution (HIlignin) is known, using Equations 

2.1 and 2.2: 

HI = HIPM + HIlignin 2.1 

HIPM = 1167 * (HImax – 165) / 1002 2.2 
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Commercial oil accumulations in the Danish North Sea are sourced from marine 

shales, except in Harald and Lulita fields, where the oils were derived from terrestrial 

organic matter (Petersen et al., 1996). Hence, Petersen et al. (2000) investigated Harald 

and Lulita fields, and based on biomarker and stable carbon isotope analyses, the authors 

concluded that the oil in Lulita was sourced from Middle Jurassic coals which are 

dominated by vitrinite macerals with a high proportion of inertinites and subordinate 

proportion of liptinites. The Middle Jurassic coals also contributed to the gas and 

condensate-dominated petroleum in the Harald field. Additionally, Petersen et al. (2000) 

noted that the absence of commercial oil accumulation in the Harald field can be 

explained by the uneven distribution of generation potential and the high thickness of the 

coals as both factors may have prevented oil saturation from reaching the expulsion 

threshold. 

 
The Cooper Basin in Australia is another example of petroleum sourced from 

terrestrial organic matter. Using geochemical and petrographic analyses, Kramer et al. 

(2001) evaluated the source rock potential and petroleum expulsion efficiency of the 

Permian Patchawarra Formation coals. Samples from two cores, comprising thin and 

thick coal beds each, were analysed and in agreement with the finding by Petersen et al. 

(2000), the thinner coal beds more efficiently expelled their hydrocarbons. Similarly, 

Boreham et al. (2003) investigated the source of petroleum in Australia’s Bass Basin and 

based on the results of the oil-source correlation study, the authors suggested that oils in 

the Bass Basin are generated from terrestrial sources. Furthermore, Boreham et al. (2003) 

concluded that the Tertiary coals and claystones possess sufficient organic richness to 

generate petroleum. 

 
Given the difference in the organic matter characteristic of coals and marine/lacustrine 

source rocks, Sykes & Snowdon (2002) argued that a distinct approach was required to 
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evaluate the thermal maturity and petroleum potential of coaly source rocks. The authors, 

therefore, developed a maturity pathway based on the Rock-Eval data of New Zealand 

coals and the modified rank scale of Suggate (2000). The modified Sr is independent of 

variations in coal type and lateral and vertical changes in coal rank. The maturation 

scheme by Sykes & Snowdon (2002) indicated that oil generation and expulsion 

thresholds are typified by an increase in the bitumen index (BI) and a decrease in the 

quality index (QI), respectively. Furthermore, the authors concluded that the HI values of 

immature coals underestimate the generative potential and that the HI values near the 

expulsion threshold, termed effective HI (HI’), more accurately indicate potential. 

 
Petersen (2006) created a global dataset of 509 humic coals to estimate the oil 

expulsion window. The author concluded that the peaking of the bitumen index (BI) and 

decline in the quality index (QI) indicates the start of the effective oil window, which was 

defined as the maturity at which efficient oil expulsion commences. Petersen (2006) 

therefore proposed 0.85-1.7% Ro or 440-490 °C as the oil window for humic coals instead 

of the conventional 0.5-1.3% Ro recognized in marine source rocks. In addition, Petersen 

(2006) suggested that the oil-generation capacity of coals is influenced by floral and 

depositional conditions. The author established a link between marine influence and the 

formation of vitrinite macerals with higher than normal hydrogen content, which mostly 

accumulated in the Cenozoic when angiosperm flora dominated. Furthermore, the 

vitrinitic composition of coals was directly associated with the effective oil window. 

Cenozoic coals which possess a comparably higher proportion of long-chain aliphatic are 

possibly able to attain the expulsion threshold at lower maturity levels (Table 2.1). 
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Table 2.1: Maximum hydrogen index (HImax) and effective oil window for humic 
coals of different ages (Petersen, 2006) 

Age HImax (mg HC/g TOC) Effective oil window (Ro and Tmax) 

Carboniferous 120 to 320 0.90-1.05% to 1.50-1.75% 
445-455 °C to 480-500 °C 

Permian 120 to 290 0.90-1.05% to 1.50-1.80% 
445-455 °C to 470-500 °C 

Jurassic 105 to 290 0.85-0.95% to 1.70-1.90% 
440-450 °C to 485-510 °C 

Cenozoic 250 to 370 0.65-0.95% to 1.70-2.00% 
430-450 °C to 490-510 °C 

 
 

Based on the global dataset of HI, vitrinite reflectance and Tmax, Petersen (2006) 

observed that minimum and maximum HI were attained at the reflectance of 1.0 %Ro and 

0.6 %Ro or Tmax of 455 °C and 430 °C, respectively. Hence, the author proposed that the 

maximum HI (HImax) line ranged from 0.60 to 0.95 %Ro. Whilst Pepper & Corvi (1995a) 

and Hunt (1996) suggested a minimum HI value of > 200 mg HC/g TOC for oil expulsion 

from coal to occur, Petersen (2006) specified that coals with HImax values ≤ 150 mg HC/g 

TOC are mainly gas-prone. 

 
Petersen & Nytoft (2006) examined the impact of floral evolution on the petroleum 

generation potential of coals from four major coal-forming periods and found that the 

amount of longer chain aliphatic hydrocarbon increases from Palaeozoic to Cenozoic 

coals, which conforms with the evolution from primitive Carboniferous plants towards 

more complex higher plants in the Cenozoic. This finding is in agreement with the 

conclusion by Isaksen et al. (1998) that plant evolution is a key control of the occurrence 

of oil-prone coals (Figure 2.1). Furthermore, Petersen & Nytoft (2006) argued that 

aromatic hydrocarbons contribute to the hydrogen index, establishing it is not a reliable 

measure of the paraffinic content of coals and thus, its oil generation potential. 
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Figure 2.1: Relationship between plant evolution and prevalence of oil-prone coals 
(Killops et al., 1998). 

 
 

Following this finding by Petersen & Nytoft (2006) and others (e.g. Isaksen et al., 

1998; Killops et al., 1998) and based on source rock analysis of samples from Turpan 

Basin, China, Zhao et al. (2009) proposed the use of absolute concentration of aliphatic 

and aromatic hydrocarbons as parameters to distinguish between oil and gas-prone source 

rocks. n-alkanes/aromatics ratio > 8.0, n-alkanes concentration > 110 µg/mg, and total 

aromatics concentration < 15 µg/mg suggest an oil-prone source rock, while n- 

alkanes/aromatics < 1.5, n-alkanes concentration < 82 µg/mg and total aromatics 

concentration > 40 µg/mg suggest a gas-prone source rock. 

 
Murchison (1987), Fleet & Scott (1994), and Wilkins & George (2002) presented 

summaries of the state of knowledge on oil-prone coals. Fleet & Scott (1994) concluded 

that oil-prone coals mostly occur as low latitude tertiary deposits or late Jurassic- 

Palaeogene sequences, and that liquid hydrocarbons derived solely from coals and other 
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terrestrial sources have pristane/phytane ratios greater than 3-4, while Wilkins & George 

(2002) noted that bulk techniques like elemental analysis and 13C NMR spectroscopy that 

allows for the measurement of coal’s PM component offer a more accurate estimate of 

petroleum potential. Based on the current understanding as summarized in this sub- 

section, it is apparent that the main factors governing the capacity of coals to generate oil 

include the botanical origin of organic matter input, depositional environment, and early 

diagenetic effects. 

 
 
 

2.2 Marine Influence 
 
 

The sulfur content of coals is often a useful indicator of marine influence (Casagrande, 

1987). Coals with sulfur contents < 1% and > 3% could be regarded as low-S and high-S 

coals, respectively, while coals with intermediate values (1-3%) are regarded as medium- 

S coals. According to Chou (2012), sulfur is derived primarily from parent plant material 

in low-S coals while in medium-S and high-S coals, it is sourced from both parent plant 

material and sulfate-rich seawater during peat accumulation and diagenesis. However, 

Sykes et al. (2014) assumed a maximum sulfur content of 0.5% for coals deposited under 

freshwater conditions and consequently, values > 0.5% indicate some degree of marine 

influence. Nonetheless, Oskay et al. (2016) showed that sulfate-rich karstic aquifer 

contribution to freshwater paleomire water supply could elevate total sulfur content. 

 
Marine influence in coals has been documented during early burial (syngenetic) and 

coalification (epigenetic). Dai et al. (2002) studied high sulfur coals from the Wuda 

coalfield, China and concluded that the No. 9 seam was influenced by seawater during 

peat accumulation. Similarly, Gayer et al. (1999) investigated the origin of sulfur in coals 

from the Bute seams in South Wales. The seams were without a marine roof but with a 
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relatively high abundance of sulfur (0.73-2.0 wt.%) in the lower plies. The authors 

attributed this to initial peat accumulation under the brackish-water influence. In addition, 

Sykes et al. (2014) concluded that the coaly source rocks from Mangahewa seams, New 

Zealand were inundated by brackish water during early burial while peatification was 

ongoing. Whilst sulfur content is no useful indicator of the type of marine influence, 

forms of pyrite in coals are effective indicators of the type/timing of marine influence as 

syngenetic and epigenetic pyrites are incorporated into coals during accumulation/early 

burial and after compaction/partial consolidation, respectively (Widodo et al., 2010). The 

formation of pyrite is governed by the availability of a reducing environment and ferrous 

ion (Casagrande, 1987). 

 
Cretaceous and Tertiary oil-prone coaly source rocks in Australasia and southeast Asia 

are known to have been deposited in coastal plain settings but the marine influence on oil 

potential and generation kinetic is not well established. Using organic geochemical and 

petrographic tools, Sykes et al. (2014) investigated the effects of early diagenetic marine 

influence on the oil generation potential of Eocene humic coals of Taranaki Basin, New 

Zealand. According to the authors, the presence of pyrites and elevated sulfur content in 

the coals indicated marine influence. In addition, suppressed vitrinite reflectance and 

elevated vitrinite fluorescence affirmed some degree of marine influence on the coals. 

Sykes et al. (2014) concluded that marine-influenced Cenozoic coals are typified by 

abundant hydrogen-rich perhydrous vitrinite as the increase in anaerobic bacteria activity 

due to low acidic conditions in brackish environments results in hydrogen enrichment. 

Additionally, the authors concluded that whilst early diagenetic marine influence does 

not increase inherent bitumen and capacity to generate non-volatile paraffinic oil, it 

significantly enhances the bio-resistance of peat biomass by sulfurization, reducing its 

biodegradation and thus preserving organic richness. 
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2.3 Conditions for Peat Accumulation 
 
 

The physical properties and chemical composition of coals are considerably influenced 

by the environmental conditions under which the paleopeats accumulated. Based on 

studies of modern peat-forming environments, a few factors have been documented to 

govern peat accumulation and quality. A recent comprehensive overview of peat 

depositional environments is provided by Dai et al. (2020), and references therein. 

 
McCabe (1984) summarized the conditions for peat accumulation as primarily the 

balance between plant production and organic matter degradation. Increasing temperature 

and moisture enhance plant growth and higher production of plant biomass (Diessel, 

1992). However, it also enhances the post-depositional microbial reworking of organic 

matter and peat destruction as microbial alteration is a temperature-sensitive process that 

is slower under cold and dry climatic conditions (McCabe et al., 1984). Hence, despite 

the relatively lower precipitation in the mid-latitudes, peat is currently accumulating 

mostly under cool climates (McCabe, 1984). Similarly, Hobday (1987) identified that 

peat formation and accumulation are governed by a combination of local, regional, and 

global factors such as depositional environment, climate and tectonics, and sea-level 

changes, respectively. 

 
For peat to accumulate, the rate of biomass production must be higher than the rate of 

bacterial decomposition (Fulton, 1987). The rate of peat accumulation is however 

dependent on climatic conditions, water-table levels, and surface topography (Cameron 

et al., 1989). Whereas peat can accumulate in different environments, varying vegetation 

types and depositional conditions impact seam structure and coal properties (McCabe, 

1987; Powell & Boreham, 1991). The two main types of mires or peat-forming systems 

are ombrotrophic mire and minerotrophic or rheotrophic mire which depend mainly on 

precipitation and groundwater, respectively, for moisture. Therefore, in peatlands, 

Univ
ers

iti 
Mala

ya



17  

vegetation type depends mainly on the availability of moisture and nutrient while peat 

composition depends primarily on contributing plant species and their mode of 

decomposition (Cameron et al., 1989). Orem & Finkelman (2003) noted that the principal 

factors for peat accumulation are vegetation type and redox conditions. Nevertheless, peat 

only forms in environments where organic accumulation exceeds organic decay, while 

accumulated peat only transforms to coal beds in environments with a minimal influx of 

clastic sediments (O’Keefe et al., 2013). 

 
Coal facies are also closely associated with groundwater fluctuation. Hence, the 

groundwater level is critical for peat accumulation and preservation. Groundwater levels 

are governed by climatic conditions, basin subsidence, eustasy, and rate of plant growth 

(Anderson, 1964; Moore, 1987; Diessel, 1992). Constantly high water-table levels due to 

relative sea-level rise and increased precipitation result in the waterlogging of plant 

biomass, which creates anaerobic conditions that support peatification. Consequently, 

when peat accumulation exceeds inorganic sediment accumulation, deposits assume a 

domed shape (Cameron et al., 1989). Furthermore, for thick peat to accumulate, the rates 

of subsidence and peat accumulation must proceed at similar rates (Courel, 1989). Rapid 

subsidence and the consequent rise in the water table can lead to the drowning of mires if 

the peat accumulation rate does not keep pace (McCabe, 1984). Nevertheless, plant 

biomass is presumably better preserved in rheotrophic mires due to its higher groundwater 

level which ensures a limited degree of organic matter biodegradation. However, as peat 

accumulates and the mire becomes more elevated, the degree of groundwater influence 

progressively decreases and the mire increasingly depends on precipitation for water and 

nutrient (Shotyk, 1988). Additionally, the peat-forming vegetation becomes less diverse 

as nutrient-poor rainfall increasingly provides moisture (McCabe, 1987). 
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The ash content of coals supposedly reflects its mineral sediment input (Love & 

Bustin, 1985). According to McCabe (1984), minerals in coals can originate from three 

sources: transportation by air or groundwater into peatlands; inorganic materials in plants; 

and introduction during or after peat accumulation or during coalification. Hence, low (< 

10%) mineral content in coals indicates the absence of a clastic source, typical of 

ombrotrophic mires that are largely dependent largely on precipitation. Conversely, low- 

lying, rheotrophic mires which get water and nutrient mostly from groundwater results in 

clastic partings with medium to high (> 25%) ash content (Love & Bustin, 1985). The 

ash content of peat has also been found to correlate with its sulfur content and the pH of 

peatland water (Esterle & Fern, 1994). In lower pH environments such as the Baram River 

area, in Malaysia, microbial activity is limited, and this results in the reduced degradation 

and sulfurization of organic matter, thereby yielding low ash and sulfur peat (Anderson, 

1964; Cameron et al., 1989). 

 
In summary, the preconditions for coal formation include interrelated and 

interdependent factors such as tectonics, climate, and vegetation (Friederich et al., 2016). 

 
 
 

2.4 Biomarker and isotopic proxies 
 
 

The molecular and isotopic compositions of n-alkanes from peat-forming plants and 

peat sequences are widely employed techniques for reconstructing past environmental 

conditions (Ficken et al., 2000; Nott et al., 2000; Pancost et al., 2002; Nichols et al., 2006; 

Zheng et al. 2007; Bingham et al. 2010; Andersson et al., 2011; López-Días et al., 2013; 

Zhao et al., 2018;  He et al., 2019; Naafs et al., 2019). 

 
Over the last 20 years, several studies have developed and applied proxies for 

reconstructing past climate and vegetation. In a study of plants from Lake Qinghai, China, 
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and its surrounding areas, Duan & Xu (2012) found that the mean δD values of n-alkanes 

from aquatic plants (-143‰) are relatively lower than from terrestrial plants (-113‰). 

The authors attributed this to the greater isotopic fractionation, relative to environmental 

water, in aquatic plants. Similarly, Duan et al. (2014) found a distinction in the δD values 

of n-alkanes from different plant types in the order: of woody plants > aquatic plants > 

herbaceous plants. Also, the authors noted that hydrogen isotopic (δD) values of n- 

alkanes generally decrease with increasing average chain length (ACL) values. This is 

corroborated by Hou et al. (2007), which established that the δD values of seven plant 

types show variation up to 70‰. 

 
According to Dawson et al. (2004), sediments deposited in high latitudes and under 

glacial climates show more negative hydrogen isotopic (δD) values than sediments 

deposited in low latitudes with tropical climatic conditions. Furthermore, Dawson et al. 

(2004) observed that the δD values become more negative with increasing distance from 

the ocean. The authors ascribed this trend to the δD values of meteoric waters in the 

different paleoenvironments as the isotopic composition is mainly related to temperature 

and thus latitude. Duan & He (2011) also studied the relationship between latitude and 

temperature, and the influence on the isotopic composition of n-alkanes in plants across 

five Chinese locations, spanning latitudes 22º to 39º. The authors observed lower ACL 

values for the same plant type as latitude increases from south to north. Also, the isotopic 

composition of plants is relatively lighter at high latitudes and altitudes as precipitation 

is relatively depleted in deuterium (Duan & He, 2011). 

 
Vegetation type and environmental factors such as temperature and aridity have been 

found to impact the n-alkane chain length. Hoffmann et al. (2013) observed that while 

ACL values are influenced by hydroclimatic conditions, additional information is needed 

to validate findings as both vegetational and hydrological changes affect the isotopic 
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composition. The authors, however, suggested that ACL be employed as a paleoclimate 

proxy under stable vegetational cover. In contrast, Bush & McInerney (2015) studied leaf 

and soil samples from across the United States and concluded that ACL values are 

influenced by temperature and not vegetation type (i.e. C3 or C4 plants). 

 
Ortiz et al. (2013) applied the relative proportion of C27, C29, and C31 n-alkanes to 

distinguish varying OM inputs in response to changing environmental conditions. 

According to the authors, deciduous tree forests and grasses expanded during wetter and 

drier periods, respectively. This finding was corroborated by López-Días et al (2013), 

which employed the n-C27/n-C31 ratio to estimate the contribution of arboreal vegetation 

relative to herbaceous vegetation. 
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CHAPTER 3: GEOLOGY OF STUDY AREAS 
 
 

3.1 Sarawak Basin, Malaysia 
 
 

The Sarawak Basin (Figure 3.1) is one of Malaysia’s prolific hydrocarbon-producing 

basins, accounting for 80 per cent of coal resources, 23 per cent of known oil reserves, 

and 51 per cent of its proven natural gas reserves (Madon, 1999b). The Basin forms the 

southern margin of the Oligocene-Recent South China Sea Basin, initiating as a foreland 

basin due to the collision of rifted South China continental fragment with Sarawak and 

thereafter developed into a passive continental margin (Madon, 1999a; Madon, 1999b). 

The development of the Sarawak Basin started in the Late Oligocene and has undergone 

phases of rifting and sea-floor spreading, evolving from deep foreland basin phase pre- 

Oligocene to shallow marine shelf progradation phase from post-Oligocene to the present 

day (Mat-Zin & Swarbrick, 1997; Madon et al., 2013). 

 
According to Ho (1978), the entire sedimentary succession in Sarawak Basin from 

Early Eocene to the Pleistocene consists of eight sedimentary cycles that are separated by 

regressive sequences. Lunt & Madon (2017) provides a historical overview of the 

sedimentary cycles identified in the Sarawak Basin. Based on tectonostratigraphic 

history, the onshore Sarawak Basin can be classified into three zones: Miri, Sibu and, 

Kuching Zones (Madon, 1999b). The Kuching Zone reportedly comprises Carboniferous 

to Triassic marine limestones which are overlain by Jurassic-Cretaceous sediments while 

the Miri Zone is comprised of thick Paleogene to Neogene sedimentary successions 

(Madon, 1999b; Hennig-Breitfeld et al., 2019). The Sibu Zone is underlain mainly by the 

low-grade metamorphosed Late Cretaceous to Eocene sediments of the Rajang Group 

(Madon, 1999b). Additionally, seven structural-stratigraphic provinces have been 

identified in the Sarawak Basin, namely SW Sarawak, Tatau, Balingian, Tinjar, Central 

Luconia, West Luconia, and North Luconia (Madon, 1999a; Figure 3.2). 
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Figure 3.1: Regional map showing the location of study areas in onshore Sarawak 
Basin (modified from Wan Hasiah, 1999). 

 
 
 

 
Figure 3.2: Regional map showing Basins and Provinces of northern and eastern 
continental margins of Sarawak and Sabah (from Madon, 1999a). 

Mukah Coalfield 
Balingian Coalfield 
Merit-Pila Coalfield 
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The study areas considered in this research are in the onshore part of the Balingian 

Province, which lies between the West Balingian and West Baram lines and are bounded 

to the north and south by the Central Luconia and Tinjar Provinces, respectively (Figure 

3.2). The onshore Sarawak Basin coals have generally been mined for energy and industry 

uses. The dominant coal seams occur in four main Tertiary coalfields: Bintulu, Merit- 

Pila, Mukah-Balingian, and Silantek coalfields (Kiat et al., 1987; Johari et al., 1994). 

Currently, the coal mined at the Merit-Pila, Mukah, and Balingian coalfields are used as 

feeding coals of the Sejingkat, Mukah, and Balingian coal-fired power stations, 

respectively, while the coal mined at the Silantek coalfield is exported. Sia & Abdullah 

(2012) documents the history of coal exploration and mining in the Basin. This research 

investigated the Balingian Formation and Liang Formation coals from the Mukah- 

Balingian coalfield and the Nyalau Formation coals from the Merit-Pila coalfield. The 

Balingian Formation, Liang Formation, and Nyalau Formation coals are commonly 

referred to as Mukah, Balingian, and Merit-Pila coals, respectively. Abdullah (2002) 

classified the Mukah-Balingian and Merit-Pila coals as autochthonous and 

hypautochthonous deposits, respectively. 

 
Although no commercial accumulation of petroleum has been discovered onshore, 

petroleum is currently produced in the offshore areas of the Sarawak Basin and the source 

sediments consist of coals, fluvial and estuarine channel sands, and clays of tidal and 

coastal plain deposits (Madon & Abolins, 1999; Amir Hassan et al., 2017). The Nyalau 

Formation from the Bintulu area is an onshore extension of the offshore Balingian 

Province that is known to possess coaly source rocks from Cycles I and II (Du Bois, 

1985). Petrographic study and source rock evaluation of the coals and carbargillites from 

the Bintulu area indicate good oil-generating potential for the coals and carbargillites 

(Wan Hasiah, 1999; Abdullah, 2001; Hakimi et al., 2013). Furthermore, geochemical 

analysis of crude oils from offshore Sabah and Sarawak has established that the oils were 
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derived from mature terrigenous source rocks that were deposited in the peatlands 

environment (Awang Jamil et al., 1991). 

 
Important earlier studies of foraminifera assemblages prompted Wolfenden (1960) and 

Liechti et al. (1960) to assign probable ages of Late Oligocene to Miocene, Late Miocene, 

and Late Pliocene to Pleistocene to the Nyalau, Balingian and Liang Formations, 

respectively. However, based on new data, recent studies have reviewed the stratigraphy 

of the Sarawak Basin and reassigned ages to the formations (Abdullah, 2001; Sia et al., 

2014; Murtaza et al., 2018; Ramkumar et al., 2018; Hennig-Breitfeld et al., 2019; 

Breitfeld et al., 2020; Lunt, 2020). For example, based on the results of palynology studies 

of the Balingian Formation, Sia et al. (2014) and Murtaza et al. (2018) have both revised 

the earlier ascribed Late Miocene age to Early Miocene and Early to Middle Miocene 

ages, respectively. 

 
Similarly, based on a stratigraphy and paleogeography study of north-western Borneo 

using Zr and U-Pb dating and biostratigraphy, Hennig-Breitfeld et al. (2019) assigned an 

Oligocene to Early Miocene, uppermost Early to Middle Miocene, and latest Middle 

Miocene age to the Nyalau, Balingian and Liang Formations, respectively. Hennig- 

Breitfeld et al. (2019) identified the Nyalau Unconformity, a main event at c. 17 Ma, that 

is characterised by a change in the provenance of the Nyalau and Balingian Formations 

and change of the coastline to NE-SW orientation. Consequently, the researchers 

concluded that the top of the Liang Formation is approximately c. 11 Ma. Additionally, 

Hennig-Breitfeld et al. (2019) posited that their conclusion is corroborated by the 

Ramkumar et al. (2018) study which associated the presence of an extensive tephra layer 

interbedded within thick coal beds in the Balingian coalfield with an explosive volcanic 

event that occurred between 11.44 and 11.76 Ma in the Middle Miocene. However, the 

latest Middle Miocene age assigned to Liang Formation by Hennig-Breitfeld et al. (2019) 
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contradicts the Late Pliocene to Pleistocene age assigned by other workers (Wolfenden, 

1960; Liechti et al., 1960; de Silva, 1986; Madon, 1999b, Sia & Abdullah, 2012). Hence, 

discussions by workers on the stratigraphy in Figure 3.3, and in particular the appropriate 

age, of the clastic formations of the Sarawak region are still ongoing (Hennig-Breitfeld 

et al., 2020; Lunt, 2020). 
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Figure 3.3: Generalised stratigraphy column of the study areas in the Sarawak 
Basin. 
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3.1.1 Nyalau Formation coals in Merit-Pila coalfield 
 
 

The Merit-Pila coalfield covers an area of about 260 km2 and is elongated in an E-W 

direction (Hutchison, 2005). The deposits are hosted in the Nyalau Formation, a Miocene 

outlier of the older Eocene Belaga Formation and located in the upper reaches of the 

Rajang River, about 50 km south of Bintulu and 75 km upstream of Kapit Division. The 

coal seam in its eastern and western boundaries are split into separate wedges by the 

uplifted and intensely folded Belaga Formation, which consists predominantly of dark 

shales that have been metamorphosed into argillite and phyllite (Chen, 1993; Hutchison, 

2005). The main deposits of the Merit-Pila coal seam are found within the Nanga Merit 

and Iran River beds, which underlie the central and western parts, respectively, of the 

coalfield. The Nanga Merit beds, however, contain the most important deposits and 

consist of a homicidally dipping succession of conglomerate, sandstone, mudstone, and 

coal while the Iran River beds are made up of a slightly deformed succession of 

conglomerate, sandstone, shale, and coal (Chen, 1986). 

 
The Nyalau Formation at Merit-Pila coalfield is approximately 1000 m thick and 

divided into five stratigraphic units, consisting of upper sandstone, upper coal zone, 

middle shale sandstone, lower coal zone, and lower sandstone units, with the thickness of 

the units varying from 100 m to 300 m. The coalfield is underlain by the Belaga Formation 

which forms the basement rock and it is overlain by the lower sandstone unit (Kiat et al., 

1987). The lower coal zone, which overlies the lower sandstone unit, consists of a 

sandstone-mudstone sequence that hosts 18 coal seams. The middle shale sandstone unit 

overlies the lower coal zone but no coals are found within the unit. The upper coal zone 

overlies the middle shale sandstone unit, consisting mainly of a sandstone-siltstone 

sequence that hosts four coal seams. The upper and lower coal zones are exposed at 

Belawie Mujan and Tebulan Block mining sites. Samples MP1L to MP2U are from the 
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lower coal zone in the Tebulan Block outcrops exposed at latitude 2°18’667” N and 

longitude 113°02’687” E. Samples MP3L to MP7U are from the upper coal zone exposed 

in the Belawie Mujan area at latitude 2°17’N and longitude 113°05’E. The Nyalau 

Formation coals are dominated by huminites but contain a significant amount of liptinite 

macerals (Abdullah, 1997; Wan Hasiah, 1999). 

 
 
 

3.1.2 Liang Formation and Balingian Formation coals in Mukah-Balingian Coalfields 
 
 

The Liang Formation and Balingian Formation coals and coaly sediments occur in the 

Mukah-Balingian coalfields which are in the low-lying coastal plain between Mukah and 

Balingian rivers and about 260 km northeast of Kuching (Chen, 1986; Sia & Abdullah, 

2012). Coal seams in the Mukah and Balingian coalfields are underlain by the Lower 

Miocene Balingian Formation and Upper Pliocene Liang Formation, respectively, and are 

separated by the Lower Pliocene Begrih Formation. The Mukah-Balingian area is flat in 

the north and gently undulating in the south, where the Balingian Formation is separated 

from the Begrih Formation by an unconformity (Sia & Abdullah, 2012; Sia et al. 2014). 

Based on sedimentological and palynological data, Murtaza et al. (2018) described seven 

facies association observed in the Miocene-Pleistocene Formations in the Mukah- 

Balingian area. 

 
The Lower Miocene Balingian Formation consists of sandstone, clay, shale, and coal, 

and is estimated to be 3000-3600 m thick but only approximately 1900 m of the topmost 

section is exposed in the study area. The Formation which unconformably underlies the 

Begrih Formation was deposited in coastal and inland peat mires (Hutchison, 2005; Sia 

et al, 2014). The coals contain varying amounts of ash, high amounts of argillaceous 

mineral matter, low abundance of pyrites, and are dominated by huminite macerals with 
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varying amounts of liptinitic macerals and minor amounts of inertinites (Sia et al, 2014; 

Zainal Abidin et al., 2022). 

 
The Upper Pliocene Liang Formation is ca. 950 m thick and made up of clay, sand, 

and intercalations of coal. The Formation overlies the Eocene Belaga Formation in the 

south and Lower Pliocene Begrih Formation in the North (Hutchison, 2005). According 

to Sia et al. (2012), the coals are dominated by huminite maceral and are characterised by 

low sulfur, low ash, and high moisture content. 

 
 
 

3.2 Benue Trough, Nigeria 
 
 

Coal is Nigeria’s earliest fossil fuel and was used to power the economy until the 

discovery of oil in the late 1950s. Nigeria is reported to have coal reserves of 190 million 

tonnes, most of which are deposited within the Benue Trough (Figure 3.4). The Benue 

Trough constitutes a part of the West and Central African rift system of Niger, Chad, 

Cameroon, and Sudan (Genik, 1993), and consists of a series of rift basins that trend 

SSW-NNE for about 1,000 km (Figure 3.5). The Trough is bounded in the north and south 

by the Chad and Niger Delta Basins, respectively, and its depth increases south-westward 

and decreases north-eastward (Nwachukwu, 1985). 

 
The opening of the South Atlantic Ocean due to the continental separation of Africa 

and South America led to the accumulation of up to 6000 m of Cretaceous-Tertiary 

sedimentary rocks in the Trough (Nwachukwu, 1985; Abubakar et al., 2008; Obaje et al., 

2004b). The deposition of the mostly marine Albian-Santonian sediments was terminated 

by a deformation episode in the Middle Santonian (Fitton, 1980; Obaje et al., 2004b). 

Hence, the pre-Middle Santonian sediments are folded, faulted, and uplifted in several 

locations (Jauro et al., 2007; Edegbai et al., 2019a). These eroded marine sediments were 
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overlain by deltaic sediments. The accumulation of deltaic sediments persisted until a 

transient but widespread marine transgression in the Maastrichtian. The origin, evolution, 

and stratigraphy of the Benue Trough are described by Olade (1975), Fitton (1980), 

Petters & Ekweozor (1982), Ofoegbu (1985), Benkhelil (1989), Obaje et al. (2004b) and 

Edegbai et al. (2019a) among others. 
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Figure 3.4: Geological map of Nigeria showing inland basins and coal sites. Inset: 
geographical Map showing Nigeria and bordering countries (modified from Fatoye 
& Gideon, 2013). 
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Figure 3.5: Regional tectonic map of West and Central African rift basins (from 
Obaje et al., 2004b). 

 
 
 

Based on lithostratigraphic and geographical differences, the Trough can be divided 

into three sub-divisions: Upper, Middle, and Lower Benue Trough (Figure 3.4). The 

Lower Benue Trough consists of the Anambra and Abakaliki Basins while Gongola and 

Yola Basins make up the Upper Benue Trough. The Middle Benue Trough occupies the 

area north of the Gboko regional fracture system (Obaje et al., 2004b). Lignite and 

bituminous coals are found in Mamu and Gombe Formations, respectively, of the Lower 

and Upper Benue Trough while bituminous coals are found within the Agwu Formation 

in the Middle Benue Trough (Obaje et al., 2004b; Fatoye and Gideon, 2013). Samples 

were collected from the Maiganga coal mine in Gongola Basin, Upper Benue Trough, 

and coal sites across the Trough. The detail of the studied samples in this research are 

presented in Table 4.1. 
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3.2.1 Gombe and Lamja Formations in Upper Benue Trough 
 
 

The Upper Benue Trough, which is divided into the north-south trending Gongola 

Basin and the east-west trending Yola Basin, is underlain by Precambrian basement rocks 

and the overlying Albian Bima and Cenomanian Yolde Formations (Abubakar et al, 

2008). According to Jauro et al. (2007), the Yolde Formation represents the onset of 

marine transgression into the Upper Benue Trough. In the Gongola Basin, the Yolde 

Formation is overlain by the Pindiga, Gongila, and Fika Formations, whilst it underlies 

the Dukul, Jessu, Sekuliye, Numanha, and Lamja Formations in the Yola Basin 

(Abubakar et al., 2008). Post-Santonian sediments are only limited to the Gongola Basin 

with the Maastrichtian Gombe Formation and the Paleogene Kerri-Kerri Formation. The 

Stratigraphy of the Upper Benue Trough is shown in Figure 3.6 and further described by 

Jauro et al. (2007) and Abubakar et al. (2008). 

 
Research interests have recently increased in sediments of the Upper Benue Trough 

following the discovery of commercial oil reserves in the Doba Basin, Chad, and 

Logome-Birni Basin, Cameroon. These basins and the Upper Benue Trough share similar 

structures and are a part of the West and Central African rift system (Genik, 1993). Hence, 

three exploration wells have thus been drilled in the Upper Benue Trough. Well Kolmani 

River-I, drilled by Shell Nigeria Exploration and Production Company (SNEPCo) in 

1999, encountered gas and little oil while two other wells (Kuzari-I and Nasara-I) were 

dry (Obaje et al., 2004a). Following ongoing exploratory work on the Kolmani River 

blocks in the Gongola Basin, the Nigerian National Petroleum Corporation (NNPC) 

announced in 2019 the discovery of gas, condensate, and oil in the Kolmani River-II well. 
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Figure 3.6: Stratigraphy of the Upper Benue Trough (modified after Obaje et al., 
2004b). 

 
 

Earlier studies of the Upper Benue Trough sediments include Pearson & Obaje, 

(1999), Obaje et al. (2004a), Obaje et al. (2004b), Jauro et al. (2007), and Abubakar et al. 

(2008). According to Pearson & Obaje (1999), the similar levels of thermal maturity 

between the pre-Santonian Pindiga Formation and post-Santonian Gombe Formation 

indicate little erosion following the Middle Santonian deformation. Shaly sediments of 

the Bima, Yolde, Pindiga, and Gombe Formations in the Gongola Basin were analysed 
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by Abubakar et al. (2008). Rock-Eval pyrolysis data implies that the Gombe and Pindinga 

Formations are immature for hydrocarbon generation while the Yolde Formation is 

marginally mature and Bima Formation is at a peak maturity stage (Abubakar et al., 

2008). Furthermore, the pyrolysis data suggests the presence of both terrigenous and 

marine/algal organic matter in the Upper Benue Trough samples. 

 
 
 

3.2.1.1 Gombe Formation 
 
 

The Gombe Formation is made up of siltstones, claystones, mudstones, sandstones, 

and shales in the Maiganga coalfield, which is located in the Gongola Basin of the Upper 

Benue Trough and covers an area of 48 km2 (Ayinla et al. 2017a). Four seams were 

observed in the coalfield with a total estimate of 4.5 million tons of coal (Ayinla et al., 

2017a). The Gombe Formation is approximately 35 m thick in the Maiganga area and a 

Maastrichtian age has been assigned (Obaje et al., 2004b; Jauro et al., 2007). The 

Formation is reportedly a continental deposit that resulted from the extensional uplift in 

the Maastrichtian (Pearson & Obaje, 1999). 

 
Previous geochemical, petrographic, and stratigraphic studies have concluded that the 

Maiganga coals possess good to excellent generating potential, are thermally immature, 

and deposited in a transitional deltaic environment (Jimoh & Ojo, 2016; Ayinla et al., 

2017a; Ayinla et al. 2017b). Maceral analysis by Ayinla et al. (2017b) indicates that the 

coals are dominated by huminites but contain subordinate abundances of liptinite and 

inertinite macerals. 
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3.2.1.2 Lamja Formation 
 
 

The Lamja Formation is the youngest sedimentary unit and coal-bearing layer in the 

Yola Basin. The Formation consists of sandstones, mudstones, limestones, and thin coal 

interbeds deposited in a brackish-water environment (Edegbai et al., 2019a). The Lamja 

Formation coals are in the peak oil generation window and dominated by Type-III 

kerogen, suggesting potential for gas generation (Obaje et al., 2004b; Sarki Yandoka et 

al., 2015b). 

 
 
 

3.2.2 Agwu Formation in Middle Benue Trough 
 
 

The Agwu Formation coals occur in the Middle Benue Trough and a Turonian- 

Coniacian age has been assigned to the Formation (Akande et al., 20212). The Middle 

Benue Trough is underlain by the Precambrian to Lower Palaeozoic basement rocks and 

the Asu River Group, which consists of Uomba Arufu, and Awe Formations that 

unconformably overlies the basement rocks (Figure 3.7). The Asu River Group is overlain 

unconformably by Keana, Makurdi, and Agwu Formations. The Agwu Formation is 

unconformably overlain by the Lafia Formation (Ehinola et al., 2002; Akande et al., 2012 

Adedosu et al., 2012). Ehinola et al. (2002) recognised six periods within the Middle 

Benue Trough sediments. The periods include Albian, Cenomanian, Turonian, Coniacian, 

Campanian-Maastrichtian and Paleocene. In contrast, Akande et al. (2012) categorized 

the sediments in the Lower and Middle parts of the Benue Trough into three 

unconformity-bounded cycles: Aptian/Albian-Cenomanian, Turonian-Coniacian, and 

Campanian-Maastrichtian. 
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Figure 3.7: Stratigraphy of the Lower and Middle Benue Trough (modified after 
Petters & Ekweozor, 1982; Obaje et al., 2004b). 

 
 
 

The Agwu Formation consists of shales, limestones, and sandstones interbedded with 

coal seams (Ehinola et al., 2002). Geochemical and isotopic studies of the Formation by 

Ehinola et al. (2002), Obaje et al. (2004b), and Adedosu et al. (2012) indicate high thermal 

maturity in the oil generation window range, a mixed terrestrial and marine organic matter 

input, and fluvial/deltaic depositional environment. However, recent review work by 

Edegbai et al. (2019a) reports a marine environment. 
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3.2.3 Mamu Formation in Lower Benue Trough 
 
 

The Mamu Formation in the Anambra Basin, Lower Benue Trough is characterised by 

the intercalation of shale and sandstone facies with coal beds (Ogala et al., 2009; Akande 

et al., 2012). The Mamu Formation coals in the Basin outcrops mainly in Enugu, Okaba, 

and Orukpa areas. The Anambra Basin is bounded in the south by the Tertiary Niger Delta 

Basin. The Basin contains post-Santonian deformation sedimentary strata beginning with 

the marine Nkporo and Enugu Formations which are overlain by the deltaic Mamu 

Formation whilst the marginal marine Ajali Formation overlies the Mamu Formation 

(Figure 3.7). Source rock evaluation study by Akande et al. (2012) and Obaje et al. 

(2004b) concluded that the Sub-Bituminous Mamu Formation coals are immature to 

marginally mature for hydrocarbon generation but with the capacity to generate oil and 

gas at higher maturity. 
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CHAPTER 4: SAMPLES AND METHODS 
 
 

4.1. Samples 
 
 

A total of sixty coal samples comprising forty Tertiary Sarawak Basin coals and twenty 

Late Cretaceous Benue Trough coals were analysed for this study. The coals were 

collected from mine faces and outcrops and sufficient care was taken to avoid weathered 

outcrop samples. The sample identification as well as their age and location are provided 

in Table 4.1. 

 
 

Table 4.1: List of analysed samples 
S/N Sample Basin Location/Coalfield Formation Age 

1 B01-1* Sarawak Balingian Liang Pliocene 
2 B01-4 Sarawak Balingian Liang Pliocene 
3 B01-5 Sarawak Balingian Liang Pliocene 
4 B02-4 Sarawak Balingian Liang Pliocene 
5 B03-2* Sarawak Balingian Liang Pliocene 
6 B03-3 Sarawak Balingian Liang Pliocene 
7 B03-6* Sarawak Balingian Liang Pliocene 
8 E55-2* Sarawak Balingian Liang Pliocene 
9 L04A-1* Sarawak Balingian Liang Pliocene 
10 L04B-1 Sarawak Balingian Liang Pliocene 
11 ML46A-6 Sarawak Balingian Liang Pliocene 
12 ML46A-7* Sarawak Balingian Liang Pliocene 
13 BG1* Sarawak Balingian Liang Pliocene 
14 BG2* Sarawak Balingian Liang Pliocene 
15 0464A* Sarawak Mukah Balingian Miocene 
16 M03-2* Sarawak Mukah Balingian Miocene 
17 MK1* Sarawak Mukah Balingian Miocene 
18 MK2* Sarawak Mukah Balingian Miocene 
19 MK3A* Sarawak Mukah Balingian Miocene 
20 MK3B Sarawak Mukah Balingian Miocene 
21 MP1L* Sarawak Merit-Pila Nyalau Miocene 
22 MP1M* Sarawak Merit-Pila Nyalau Miocene 
23 MP1U* Sarawak Merit-Pila Nyalau Miocene 
24 MP2L* Sarawak Merit-Pila Nyalau Miocene 
25 MP2U* Sarawak Merit-Pila Nyalau Miocene 
26 MP3L Sarawak Merit-Pila Nyalau Miocene 

*selected for principal component analysis 
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Table 4.1, continued. 
S/N Sample Basin Location/Coalfield Formation Age 
27 MP3M* Sarawak Merit-Pila Nyalau Miocene 
28 MP3U Sarawak Merit-Pila Nyalau Miocene 
29 MP4L* Sarawak Merit-Pila Nyalau Miocene 
30 MP4M Sarawak Merit-Pila Nyalau Miocene 
31 MP4U* Sarawak Merit-Pila Nyalau Miocene 
32 MP5L Sarawak Merit-Pila Nyalau Miocene 
33 MP5M* Sarawak Merit-Pila Nyalau Miocene 
34 MP5U Sarawak Merit-Pila Nyalau Miocene 
35 MP6L* Sarawak Merit-Pila Nyalau Miocene 
36 MP6M* Sarawak Merit-Pila Nyalau Miocene 
37 MP6U Sarawak Merit-Pila Nyalau Miocene 
38 MP7L* Sarawak Merit-Pila Nyalau Miocene 
39 MP7M Sarawak Merit-Pila Nyalau Miocene 
40 MP7U Sarawak Merit-Pila Nyalau Miocene 
41 MGL3A Benue Trough Maiganga Gombe Late Cretaceous 
42 MGL4A* Benue Trough Maiganga Gombe Late Cretaceous 
43 MGL1C* Benue Trough Maiganga Gombe Late Cretaceous 
44 MGL2A Benue Trough Maiganga Gombe Late Cretaceous 
45 MGL2B* Benue Trough Maiganga Gombe Late Cretaceous 
46 MGL2H Benue Trough Maiganga Gombe Late Cretaceous 
47 MGL2I* Benue Trough Maiganga Gombe Late Cretaceous 
48 MGL2O* Benue Trough Maiganga Gombe Late Cretaceous 
49 MGL2P Benue Trough Maiganga Gombe Late Cretaceous 
50 MGL2T* Benue Trough Maiganga Gombe Late Cretaceous 
51 AFZ* Benue Trough Afuze Mamu Late Cretaceous 
52 ENG* Benue Trough Enugu Mamu Late Cretaceous 
53 IMG* Benue Trough Imeagba Mamu Late Cretaceous 
54 OGB* Benue Trough Ogboligbo Mamu Late Cretaceous 
55 OKB* Benue Trough Okaba Mamu Late Cretaceous 
56 WKP* Benue Trough Owukpa Mamu Late Cretaceous 
57 CKL* Benue Trough Chikila Lamja Late Cretaceous 
58 LMZ1* Benue Trough Lamza Lamja Late Cretaceous 
59 LFO* Benue Trough Lafia-Obi Agwu Late Cretaceous 
60 SKJ* Benue Trough Shankodi-Jangwa Agwu Late Cretaceous 
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4.2 Sample Preparation 
 
 

The coal samples were brushed to remove surface dirt and thereafter separated into 

three portions where possible. The first portion, about 60-100 g of each sample, was 

ground to powder (< 150 µm ) using a rotary mill at the Geology Department of the 

University of Malaya. The second portion about 10-20 g of each sample was crushed into 

fragments (~ 2 mm), while the third portion was stored in a cool and dry environment. 

 
 
 

 
Figure 4.1: A schematic of employed analytical techniques. Abbreviations are 
defined in Table 4.2 Univ
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Table 4.2: Partial list of utilized analytical techniques. 
Abbreviation Definition 
TOC-S Total organic carbon and sulfur 
Py-GC Pyrolysis-gas chromatography 
GC-MS Gas chromatography-mass spectrometry 
Py-GC-MS Pyrolysis-gas chromatography mass spectrometry 

THM-GC-MS 
Thermally assisted hydrolysis and methylation-gas 
chromatography mass spectrometry 

EA-IRMS Elemental analysis-isotope ratio mass spectrometry 

ATR-FTIR Attenuated total reflection-Fourier transform infrared 
spectroscopy 

ICP-MS Inductively coupled plasma mass spectrometry 
PCA Principal component analysis 

 
 
 

4.3 Vitrinite Reflectance Analysis 
 
 

The coal samples were crushed into fragments (~ 2 mm), mounted in epoxy resin 

mixed with hardener (methyl ethyl ketone peroxide), and allowed to harden overnight. 

The hardened coal blocks were thereafter grinded on a wet diamond lap to produce a flat 

surface. The coal blocks were subsequently polished using silicon carbide papers (grades 

320, 800, and 1200), and colloidal alumina suspension. 

 
The vitrinite reflectance (%Ro) of the samples was measured on a LEICA CTR 6000 

Orthoplan microscope using x50 oil immersion objectives with a refractive index of 1.518 

at 23 °C. The measurements were carried out under reflected white light and calibrated 

using a sapphire glass standard with a refractive value of 0.589%. Huminite/vitrinite 

reflectance values were determined in random mode on ulminite maceral at a wavelength 

of 546 nm and the mean values were calculated after 100 measurements. 
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4.4 Total Organic Carbon and Sulfur Analysis 
 
 

Prior to total organic carbon (TOC) and total sulfur (ST) content determination, the 

powdered coal samples were treated with sufficient 4M hydrochloric acid to remove 

carbonates, rinsed with deionized water to remove residual acid, oven-dried at 

temperature of 65 C, and subsequently analysed using a Leco CS832 Carbon - Sulfur 

analyser at organic geochemistry laboratory of the Department of Geology, University of 

Malaya, Kuala-Lumpur, Malaysia. 

 
 

4.5 Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy 
 
 

Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR) 

analysis, which is a commonly used non-destructive technique to determine the 

distribution of functional groups in coal samples (Ganz & Kalkreuth, 1991; Mastalerz et 

al., 2013), was performed on a PerkinElmer Spotlight 300 FT-IR microscope system at 

the organic geochemistry laboratory of the Department of Geology, University of Malaya, 

Kuala-Lumpur, Malaysia. 5 mg of the powdered samples were placed on the 

Diamond/ZnSe crystal plate of the PerkinElmer Universal ATR accessory unit. The 

infrared spectra were measured in both transmittance and absorbance modes at 4000 cm- 

1 to 650 cm-1 wavelength frequency and the peaks were assigned based on published 

spectra (Ganz & Kalkreuth, 1987; Ganz & Kalkreuth, 1991; Mastalerz et al., 2013; Wang 

et al., 2013; Patricia et al., 2020). 
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4.6 Pyrolysis-Gas Chromatography 
 
 

Pyrolysis-gas chromatography (Py-GC) analysis was carried out on all the coal 

samples to determine their petroleum-generating potential, the probable composition of 

generated hydrocarbons, and kerogen type. 4 mg of each sample was pyrolyzed using a 

double-shot Frontier Lab Pyrolyzer (PY-2020iD) connected to an Agilent Technologies 

5975 gas chromatograph fitted with an ultra-alloy capillary column (30 m x 0.32 mm I.D. 

x 0.25 µm) and flame ionisation detector (FID). The open system pyrolysis was 

programmed to start at 330 ℃, increased to 600 °C at the rate of 25 °C/min, and held for 

3 minutes at 600 °C (Weiss et al., 2000). The pyrolysate corresponds to the Rock Eval’s 

S2 peak. The major compounds and components of the chromatograms were identified 

by comparing their relative retention times with standard samples and published spectra 

(Horsfield, 1989; Wan Hasiah, 1999; Weiss et al., 2000; Sykes, 2004). 

 
 
 

4.7 Rock-Eval Pyrolysis 
 
 

Rock-Eval pyrolysis is a geochemical technique employed to estimate the petroleum 

potential of source rocks by heating under non-isothermal conditions (Behar et al., 2001). 

The coal samples were pyrolyzed using the Rock-Eval 6 equipment at Core Laboratories 

offices in Shah Alam, Selangor, Malaysia, and Houston, Texas, USA. About 10-20 mg 

of the powdered coal samples were initially heated at 300 C for three minutes in an inert 

atmosphere to release the thermovapourised free hydrocarbons. The temperature was 

thereafter steadily increased to 650 C at 25 C/min to release accumulated hydrocarbons 

(Figure 4.2). For further detail on the instrumentation of the Rock-Eval 6, refer to Behar 

et al. (2001) and Carvajal-Ortiz & Gentzis (2015). 
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Figure 4.2: Rock-Eval pyrolysis temperature profile of a representative sample. 
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Geochemical data obtained by Rock-Eval pyrolysis includes: the amount of free 

hydrocarbons in the rocks (S1), amount of hydrocarbons generated from thermal cracking 

of sedimentary organic matter (S2), amount of organic CO2 released during pyrolysis (S3) 

and the temperature at which maximum amount of hydrocarbons was produced during 

pyrolysis (Tmax; Behar et al., 2001). Additionally, geochemical parameters calculated 

from Rock-Eval pyrolysis data include: genetic potential (GP), production index (PI), 

hydrogen index (HI), oxygen index (OI), bitumen index (BI), and quality index (QI). The 

parameters are defined in Table 4.3. 

 
 

Table 4.3: Calculated Rock-Eval parameters. 
Parameter Definition Formula Unit 
Production 
index (PI) 

Indicates level of thermal 
evolution of organic matter 

𝑆1 
 

𝑆1 + 𝑆2 

 

Bitumen index 
(BI) 

Amount of free hydrocarbon 
relative to organic carbon 

𝑆1 x 100 
 

TOC 
mg HC/g TOC 

Hydrogen 
index (HI) 

Relative amount of hydrogen 
to organic carbon 

𝑆2 x 100 
 

TOC 
mg HC/g TOC 

Oxygen index 
(OI) 

Relative amount of oxygen to 
organic carbon 

𝑆3 x 100 
 

TOC 

mg CO2/g 
TOC 

Genetic 
potential (GP) 

Amount of free and generated 
hydrocarbons 𝑆1 + 𝑆2 mg HC/g rock 

Quality index 
(QI) 

Total genetic potential per unit 
of organic carbon 

(𝑆1 + 𝑆2) x 100 
 

TOC 
mg HC/g TOC 

TOC: total organic carbon 
 
 
 
 

4.8 Proximate Analysis 
 
 

Proximate analysis was carried out on the studied coals to determine their moisture, 

volatile matter, fixed carbon, and ash contents using a PerkinElmer Diamond 

Thermogravimetric/Differential Thermal Analyzer (TG/DTA) at the organic 

geochemistry laboratory of the Department of Geology, University of Malaya, Kuala- 

Lumpur, Malaysia. 5-10 mg of the coal samples were heated to 900 °C in presence of 
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nitrogen. The analytical procedure is described by Donahue & Rais (2009). The 

temperature was programmed to start at 25 °C, increased to 110 °C at the rate of 85 

°C/min, and then held at 110 °C for 6 min. Successively, the temperature was increased 

from 110 °C to 900 °C at the rate of 80 °C/min and then held for 5 min at 900 °C. 

Following Donahue & Rais (2009), the instrument software was employed to determine 

the percentages of moisture, volatile matter and fixed carbon whilst the ash content was 

obtained by subtracting the sum percentages of moisture, volatile matter, and fixed carbon 

from 100 percent. 

 
 
 

4.9 Inductively Coupled Plasma Mass Spectrometry 
 
 

Thirty-five coal samples were analysed for major and trace element concentrations at 

the Mineral Laboratories of Bureau Veritas (AcmeLabs), Vancouver, Canada. For trace 

element analysis, 0.5g of the powdered samples were digested with a modified aqua regia 

mixture of HCl, HNO3, and H2O (1:1:1 v/v/v) and thereafter analysed for 37 elements 

using inductively coupled plasma mass spectrometry (ICP-MS). To measure the 

abundances of major element oxides, 5g of the pulverized samples were dissolved with 

the lithium borate fusion technique and subsequently investigated with ICP-MS analysis. 

Analysis of reference materials (DS11 and OREAS262) and duplicate samples were 

carried out to ensure optimal working conditions and accurate results. 

 
 
 

4.10 Bitumen Extraction and Hydrocarbon Fractionation 
 
 

About 8-10 g of each powdered sample was extracted with 250 ml of an azeotropic 

mixture of dichloromethane (DCM) and methanol (93:7, v/v) in a Soxhlet apparatus for 
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a minimum of 72 hours or until the solvent became colourless. Activated copper and anti- 

bumping granules were however added to the azeotropic mixture before extraction to 

remove elemental sulfur and prevent violent releases of vapour, respectively. The extracts 

were rotatory evaporated to about 1 ml and consequently decanted into clean weighed 

vials. The total extractable organic matter (EOM) concentrations of the coal samples were 

determined via gravimetric measurements. 

 
Liquid column chromatography was thereafter used to separate aliquots of the coal 

extracts into aliphatic, aromatic, and polar fractions by using solvents of increasing 

polarity; petroleum ether (100 mL), DCM (100 mL), and methanol (50 mL), respectively. 

The ca. 10 m column was made with a slurry of silica in petroleum ether. About 70 to 

100 mg of the coal extracts were added to alumina and then subsequently introduced into 

the column. The three fractions were evaporated under reduced pressure on the rotatory 

evaporator and with a stream of nitrogen gas to remove excess solvent until constant 

weights were obtained. Fractions of aliphatic and aromatic hydrocarbons were thereafter 

concentrated with DCM for gas chromatography-mass spectrometry (GC-MS) analysis. 

 
 
 

4.11 Gas Chromatography Mass Spectrometry 
 
 

The aliphatic and aromatic hydrocarbons were analysed using an Agilent 5890 gas 

chromatograph coupled to an Agilent 5975B mass selective detector set at electron 

ionisation energy of 70 eV, 100 mA filament emission current, and 230 °C source 

temperature. The gas chromatograph (GC) was equipped with flexible silica capillary 

columns (30 m x 0.32 mm I.D. x 0.25 µm) using helium as carrier gas. The GC 

temperature, which was programmed to start at 40 ℃, increased to 310 °C at the rate of 4 

°C/min and was then held at 310 °C for 30 min. For aliphatic biomarker analysis, mass 
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chromatograms for n-alkanes and isoprenoids (m/z 85) and terpenoids (m/z 123 and m/z 

191) were recorded. Aromatic biomarker data were acquired via mass chromatograms for 

phenanthrene and anthracene (m/z 178), methylphenanthrenes (m/z 192), 

dimethylphenanthrenes (m/z 206), fluorene (m/z 166), methylfluorenes (m/z 180), 

dibenzofuran (m/z 168), methyldibenzofurans (m/z 182), naphthalene (m/z 128), 

methylnaphthalenes (m/z 142), dimethylnaphthalenes (m/z 156), trimethylnaphthalenes 

(m/z 170), tetramethylnaphthalenes and dibenzothiophene (m/z 184), 

methyldibenzothiophenes (m/z 198), cadalene (m/z 183), 6-isopropyl-1-isohexyl-2- 

methylnaphthalene (ip-iHMN; m/z 197), and retene (m/z 219). Compounds in mass 

chromatograms were identified by comparing their relative retention times with 

Norwegian geochemical standard (NGS) samples and published mass spectra (Noble et 

al., 1986; Weston et al., 1989; Killops et al., 1995; van Aarssen et al., 1999, 2000; Radke 

et al., 2000; Weiss et al., 2000; Ahmed et al., 2009; Nakamura et al., 2010; Romero- 

Sarmiento et al., 2011; Marynowski et al., 2013; Stojanović & Životić, 2013; Escobar et 

al., 2016; Jiang & George, 2018; Jiang & George 2019; Cesar & Grice, 2019; Yan et al., 

2019; Zakrzewski et al., 2020). 

 
 
 

4.12 Thermochemolysis- and Pyrolysis-Gas Chromatography Mass Spectrometry 
 
 

Thermochemolysis, or thermally assisted hydrolysis and methylation (THM) is an 

analytical technique that combines pyrolysis and derivatization in presence of 

derivatizing agents such as tetramethylammonium hydroxide (TMAH), producing less 

polar and lower molecular weight compounds more suitable for GC-MS analysis. The 

THM-GC-MS analysis of coals reportedly yields n-alkanes, n-alkenes, alkenes, fatty acid 

methyl esters (FAMEs), and polycyclic aromatic compounds (PAHs). A comparative 

study by Kaal et al. (2017) established that Py-GC-MS and THM-GC-MS techniques 
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provide an improved understanding of the chemistry of resin-derived materials and about 

polymethylene compounds, respectively. Challinor (2001) and He et al. (2020) 

summarizes the historical applications of THM-GC-MS analysis and its complementarity 

with other analytical techniques such as Py-GC-MS. 

 
1-2 mg of fifteen powdered coals samples were introduced, with the aid of quartz wool, 

into quartz tubes and analysed using a CDS Analytical Pyroprobe AS5250 instrument. 

The temperature of the Pyroprobe was set at 325 °C and increased to 750 °C at 10 °C ms- 

1. For THM-GC-MS analysis, aliquots of 25% aqueous TMAH were added to the coal 

samples in the quartz tubes and thereafter allowed to react for a minimum of 30 min 

before pyrolysis. For both Py-GC-MS and THM-GC-MS, the pyrolysates were moved 

under helium flow into an Agilent 6890 GC instrument in 1:50 split mode and equipped 

with a non-polar HP-5MS capillary column (30 m x 0.25 mm I.D. x 0.25 µm). The 

separated compounds were thereafter detected by the connected Agilent 5977 mass 

spectrometer. The operating conditions and procedures for Py-GC-MS and THM-GC-MS 

analyses are further described in detail by Kaal et al. (2017). 

 
Similarly, compounds were identified by comparing their retention times and mass 

fragments with published literature and the NIST 05 library. The identified compounds 

were semi-quantified based on the relative proportions of the peak areas of dominant and 

characteristic m/z fragments. For both Py-GC-MS and THM-GC-MS analytical 

techniques, the relative proportions of identified compounds are expressed as a 

percentage of the total quantified peak area (TQPA). 
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4.13 Elemental Analyser Isotope Ratio Mass Spectrometry 
 
 

The elemental analyser isotope ratio mass spectrometry (EA-IRMS) analysis was 

carried out on a flash Elemental Analyzer linked to a Sercon Geo 20-20 continuous flow 

mass spectrometer. Before analysis, the samples were oven-dried and thereafter stored in 

a desiccator. The dried samples were finally weighed and wrapped in tin capsules. The 

reference material, pure Graphite, with a carbon isotopic (δ13C) value of -15.99‰ on the 

Vienna Pee Dee Belemnite (VPDB) scale, was used to calibrate the system. The carbon 

isotopic ratios were measured in triplicates and the average δ13C values were reported. 

For hydrogen isotope measurements, the samples were analysed in duplicates and the 

mean hydrogen isotopic (δD) values were recorded. A reference standard material, 

polyethylene with a δD value of 100.30‰, was used to calibrate the system. All bulk 

isotopic measurements were carried out at the Department of Chemistry, Malaysia. The 

standard deviation of replicate measurements is < 0.3‰ and ± 2‰ for δ13C and δD values, 

respectively. 

 
 
 

4.14 Statistical Analysis 
 
 

Statistical analysis was carried out to identify the strength of relationships between 

geochemical parameters and to also identify the principal components. The analyses were 

performed on JASP 0.16 for macOS. For linear correlation analysis, Pearson’s correlation 

coefficient was employed. Coefficients (r) > ± 0.7, ± 0.5 to 0.7, ± 0.3 to 0.5, and < ± 0.3 

are accordingly regarded as strong, moderate, weak, and very weak correlations. 

 
The above-listed geochemical analyses were not carried out on all sixty coal samples. 

Hence, forty-one samples were selected for principal component analysis (PCA). The 

selected samples are asterisked in Table 3.1. The number of components was auto-derived 
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based on the distribution of components, and up to six principal components were 

obtained for each PCA run. In addition, the rotation method applied was Promax, an 

oblique rotation method that allows factors to be correlated. 

 
 
 

 
Figure 4.3: Screenshot of JASP software showing input features and outputs of the 
principal component analysis. 
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CHAPTER 5: RESULTS AND INTERPRETATIONS 
 
 
 

5.1 Coal Rank and Chemical Properties 
 
 

5.1.1 Proximate Analysis 
 
 

The result of the proximate analysis, which indicates the moisture, fixed carbon, ash, 

and volatile matter contents of the studied Sarawak Basin and Benue Trough coals, is 

given in Table 5.1 and the average values for both groups of coals are compared in 

Figure 5.1. 

 
The total moisture content (as received) of the Sarawak Basin coals varies widely 

between 3.3 and 42.3 wt.% with an average value of 15.0 wt.%. In contrast, the 

moisture content of the Benue Trough coals is relatively higher, varying widely from 

2.3 to 60.2 wt.% with an average value of 21.0 wt%. Within the Sarawak Basin coals, 

the moisture content is relatively higher for the Liang Formation (avg. 22.4 wt.%) coals 

than for the Balingian Formation (avg. 7.0 wt.%) and Nyalau Formation (avg. 12.2 

wt.%) coals whilst the Gombe Formation coals have the highest the moisture content 

(avg. 27.1 wt.%) of the Benue Trough coals (Table 5.1). 

 
The ash content (on dry-basis) of the studied samples ranges widely in both groups 

of coals, varying from 0.8 to 37.5 (avg. 9.5 wt.%) and 6.3 to 34.9 (avg. 16.3 wt.%) in 

the Sarawak Basin and Benue Trough coals, respectively. The average ash content of 

the coals indicates generally low mineral matter content in the Sarawak Basin coals and 

low to medium mineral matter content in the Benue Trough coals. Correlation analysis 

of proximate and vitrinite reflectance data for all the studied coals indicates that the ash 

content moderately correlates (-0.619) with volatile matter content and strongly 

correlates (-0.780) with fixed carbon content (Table 5.2). 
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Table 5.1: Vitrinite Reflectance (Ro), Total organic carbon (TOC) and total sulfur 
(ST) content and proximate analysis data of the studied Cenozoic Sarawak Basin 
and Upper Cretaceous Benue Trough coals. 

Sample Basin/ 
Formation 

Ro 
(%) 

ST 
(%) 

TOC 
(%) 

TOC/ 
ST 

Mad Ad Vd Cd 

B01-1  
 
 
 
 
 

Sarawak/ 
Liang 

0.30 0.29 61.0 210 7.9 6.3 54.2 39.5 
B01-4 0.29 0.16 61.6 385 17.6 6.4 45.3 48.3 
B01-5 0.32 0.17 60.3 355 12.2 6.9 44.2 48.9 
B02-4 0.32 0.46 62.8 137 21.2 4.3 42.1 53.6 
B03-2 0.30 0.17 61.4 361 21.0 5.0 49.7 45.2 
B03-3 0.27 0.15 63.9 426 42.3 6.1 53.7 40.2 
B03-6 0.28 0.13 61.5 473 25.3 14.9 46.1 39.0 
E55-2 0.34 0.23 62.4 271 20.4 8.4 46.1 45.5 

L04A-1 0.31 1.48 53.1 36 15.9 19.3 42.1 38.6 
L04B-1 0.32 1.18 58.6 50 40.4 11.1 43.8 45.1 

ML46A-6 0.36 0.18 61.0 339 40.0 5.5 49.5 45.0 
ML46A-7 0.34 0.58 60.8 105 31.1 5.1 47.3 47.6 

BG1 0.36 0.23 65.0 283 7.9 1.0 52.0 47.0 
BG2 0.35 0.13 61.4 472 10.2 1.7 47.2 51.2 
046A  

 
Sarawak/ 
Balingian 

0.40 0.85 65.2 77 - - - - 
M03-2 0.38 0.20 46.9 235 3.3 37.5 33.3 29.2 
MK1 0.39 0.31 52.1 168 5.4 22.5 37.6 39.8 
MK2 0.38 0.27 66.3 246 5.4 5.8 43.9 50.3 

MK3A 0.39 0.34 68.0 200 4.1 0.8 46.5 52.8 
MK3B 0.41 0.36 65.1 181 - - - - 
MP1L  

 
 
 
 
 
 
 
 

Sarawak/ 
Nyalau 

0.42 0.17 80.4 473 16.2 6.3 45.1 48.6 
MP1M 0.41 0.12 66.0 550 14.4 0.9 48.1 51.0 
MP1U 0.39 0.20 62.3 312 18.1 4.0 45.6 50.5 
MP2L 0.39 0.15 66.5 443 13.3 6.6 52.0 41.4 
MP2U 0.37 0.20 65.6 328 13.4 6.6 52.0 41.4 
MP3L 0.40 0.21 67.3 320 10.6 27.3 43.4 29.3 
MP3M 0.38 0.22 51.6 235 9.4 16.0 54.0 30.1 
MP3U 0.41 0.21 62.0 295 10.3 23.9 42.6 33.5 
MP4L 0.40 0.22 56.7 258 12.3 5.9 51.9 42.2 
MP4M 0.38 0.30 63.3 211 10.3 14.5 46.2 39.3 
MP4U 0.38 0.12 61.7 514 12.1 9.4 49.4 41.3 
MP5L 0.37 0.27 61.4 228 13.9 9.4 48.6 42.1 
MP5M 0.36 0.22 61.9 281 5.7 15.1 47.6 37.3 
MP5U 0.41 0.19 67.8 357 13.8 8.7 48.1 43.2 
MP6L 0.40 0.21 63.2 301 13.5 6.0 48.8 45.1 
MP6M 0.43 0.17 63.2 372 13.4 4.9 46.0 49.1 
MP6U 0.41 0.20 61.5 314 14.1 9.8 50.8 39.3 
MP7L 0.39 0.12 66.7 556 7.7 4.7 51.1 44.3 
MP7M 0.39 0.09 63.1 701 11.2 3.8 50.2 45.9 
MP7U 0.37 0.23 65.1 283 10.6 8.5 47.1 44.4 
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Table 5.1, continued. 

Sample Basin/ 
Formation 

Ro 
(%) 

ST 
(%) 

TOC 
(%) 

TOC/ 
ST 

Mad Ad Vd Cd 

MGL3A  
 
 
 

Benue Trough/ 
Gombe 

0.35 0.53 67.8 128 9.6 16.7 35.2 48.1 
MGL4A 0.36 0.34 71.8 211 19.4 11.0 32.9 56.0 
MGL1C 0.32 0.90 65.6 73 60.2 12.6 53.6 33.8 
MGL2A 0.35 0.43 67.3 157 25.4 11.0 44.4 44.5 
MGL2B 0.28 0.32 67.0 209 25.9 13.3 44.8 41.9 
MGL2H 0.33 0.51 65.2 128 36.9 7.7 47.4 44.9 
MGL2I 0.32 0.29 64.8 223 19.7 15.4 40.6 43.9 
MGL2O 0.30 0.46 60.6 132 19.7 14.5 42.7 42.8 
MGL2P 0.35 0.42 52.7 125 27.3 34.2 39.5 26.3 
MGL2T 0.32 0.55 50.2 91 26.7 34.9 42.3 22.8 

AFZ  
 

Benue Trough/ 
Mamu 

- 1.29 78.7 61 - - - - 
ENG 0.36 1.36 56.7 42 7.3 9.8 44.6 45.6 
IMG 0.43 2.50 25.3 10 - - - - 
OGB - 2.48 34.7 14 - - - - 
OKB 0.32 2.20 59.6 27 7.6 10.5 44.2 45.3 
WKP - 0.52 69.0 133 - - - - 
CKL Benue Trough/ 

Lamja 
0.57 0.58 58.7 101 2.3 29.5 29.4 41.0 

LMZ1 0.61 0.60 63.7 106 - - - - 
LFO Benue Trough/ 

Agwu 
0.33 1.94 68.6 35 6.5 6.3 53.5 40.2 

SKJ - 2.21 72.8 33 - - - - 
Mad: moisture, as received (% wt.); Ad: ash, dried basis (% wt); Vd: volatile matter, 
dried basis (% wt); Cd: fixed carbon, dried basis (% wt). 
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Figure 5.1: The average content of moisture, ash, volatile matter, and carbon in 
the studied coals 
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Table 5.2: Correlation coefficients of vitrinite reflectance, and proximate analysis 
data 

Variable Ro Mad Ad Vd Cd 

Ro 1.000     
Mad -0.482 1.000    
Ad 0.130 -0.045 1.000   
Vd -0.216 0.179 -0.619 1.000  
Cd -0.063 -0.111 -0.780 0.012 1.000 

Ro: vitrinite reflectance; Mad: moisture, as received; Ad: ash, dried basis; Vd: volatile 
matter, dried basis; Cd: fixed carbon, dried basis. 

 
 
 

Volatile matter in coals consists of methane, carbon monoxide and other 

incombustible gases. Therefore, the volatile matter content is a measure of the gaseous 

fuels present in coals and high values indicate rapid ignition. Measured values of 

volatile matter (dried basis) are similar for both groups of coals, varying from 33.3 to 

54.2 (avg. 47.3 wt.%) and 29.4 to 53.6 (42.5 wt.%) in the Sarawak Basin and Benue 

Trough coals, respectively (Table 5.1). The fixed carbon content is an imprecise 

estimate of coal’s heating value. The fixed carbon content varies from 29.2 to 53.6 wt.% 

and 22.8 to 56.0 wt.% with average values of 43.7 wt.% and 41.2 wt.% for the Sarawak 

Basin and Benue Trough coals, respectively. The slightly higher average volatile matter 

and fixed carbon contents for the Sarawak Basin coals suggest better combustion 

properties than the Benue Trough coals. 

 
 
 

5.1.2 Huminite/Vitrinite Reflectance 
 
 

Huminite/vitrinite reflectance in coals reflect its level of coalification. The measured 

reflectance values of the coal samples are recorded in Table 5.1 and Appendix A. The 

Benue Trough (0.28-0.61%) coals have relatively higher %Ro values than the Sarawak 

Basin (0.27-0.43%) coals (Figure 5.2). According to the ASTM standard classification 

of coals by rank, the reflectance values show the Sarawak Basin coals are Lignite to 
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sub-bituminous B while the Benue Trough coals are Lignite to high volatile bituminous 

C (Orem & Finkelman, 2003). 
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Figure 5.2: Bar plot of the average vitrinite reflectance value of analysed coal 
formations. 

 
 
 

5.2 Total Organic Matter (TOC) and Total Sulfur (ST) contents 
 
 

The total organic matter (TOC) content of sedimentary rocks is a measure of organic 

richness (Peters & Cassa, 1994). TOC values for the analysed Sarawak Basin coals 

range between 46.9 and 80.4 wt.% with an average value of 62.4 wt.%. Similarly, the 

TOC values for the Benue Trough coals range between 25.3 and 78.7 wt.% with aan 

average value of 61.0 wt.%. Generally, the TOC values show that the Sarawak Basin 

coals are marginally richer than the Benue Trough coals. Within the Sarawak Basin, 

TOC values are generally slightly higher for the Nyalau Formation (avg. 63.9 wt.%) 

than for the Liang Formation (avg. 61.1 wt.%) and Balingian Formation (avg. 60.6 

wt.%) coals. 
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Measured total sulfur (ST) values range between 0.09 and 1.48% and 0.29 and 

2.50%, respectively, for the Sarawak Basin and Benue Trough coals. TOC and ST 

values are plotted in Figure 5.3, showing mostly low (< 0.5%) ST values for Sarawak 

Basin coals that are typical for coals, in which the precursor peat was deposited in a 

freshwater environment (Chou 2012). The relatively higher (avg. 1.02%) ST values 

recorded for the Benue Trough coals could possibly signify marine influence 

during/after the accumulation of the precursor peat in the Late Cretaceous (Sykes et al., 

2014). The TOC/ST ratio is a proxy for paleoredox conditions and higher values indicate 

oxidizing conditions (Algeo & Liu, 2020). Ratios for coals are quite higher for the 

Sarawak Basin coals (avg. 308) than the Benue Trough coals (avg. 102), which signifies 

relatively less oxidizing depositional conditions for the Benue Trough coals. 
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Figure 5.3: Cross-plot of total sulfur and total organic carbon contents for the 
studied coals. 
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5.3 Rock-Eval Pyrolysis 
 
 

Bulk organic parameters obtained from the Rock-Eval pyrolysis of the Sarawak 

Basin and Benue Trough coals are given in Tables 5.3 and 5.4, respectively. The quality 

of the organic matter as shown by the TOC values is marginally higher in the Benue 

Trough coals with values between 23.0 and 74.5 (avg. 59.1 wt.%) than in the Sarawak 

Basin coals with values varying from 27.0 to 63.1 (avg. 54.7 wt.%). The TOC values by 

the Rock-Eval 6 equipment are mostly slightly lower than the values measured by Leco 

CS832, particularly for the Sarawak Basin coals (Figure 5.4). Nevertheless, the Rock- 

Eval 6 TOC values were used for calculating the other Rock-Eval parameters. 
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Figure 5.4: Average total organic carbon (TOC) values obtained from Leco CS832 
and Rock-Eval 6 equipment for the studied coal formations. 

 

 
 

The quantity of free hydrocarbons in the coals, as indicated by S1 values, varies 

between 0.9 to 18.7 (avg. 4.7 mg HC/g rock) in the Sarawak coals and is considerably 

higher than in the Benue Trough coals with values ranging from 1.3 to 7.6 (avg. 3.1 mg 

HC/g rock). Conversely, the potential hydrocarbon content (S2) is relatively higher in 

the Benue Trough coals with values in the 32.1 to 331.6 (avg. 136.7 mg HC/g rock) 

A
ve

ra
ge

 to
ta

l o
rg

an
ic

 c
ar

bo
n 

(w
t. 

%
) 

Univ
ers

iti 
Mala

ya



58  

range. The Sarawak Basin coals show lower S2 values that vary between 37.0 and 259.2 

(avg. 111.4 mg HC/g rock). Resultantly, the genetic potential (S1 + S2) of the coals 

varies widely from 40.2 to 277.9 and 33.4. to 337.4 mg HC/g rock in the Sarawak Basin 

and Benue Trough coals, respectively. Furthermore, the hydrogen index (HI) range is 

generally similar with values varying broadly from 68 to 456 (avg. 202 mg HC/g TOC) 

and 50 to 445 (avg. 231 mg HC/g TOC) in the coals from Sarawak Basin and Benue 

Trough, respectively. The Tmax values of the Benue Trough coals (avg. 424 °C) are 

higher than the values for the Sarawak Basin coals (avg. 411 °C). Additionally, 

production index (PI) values for all the studied coals are < 0.1, varying from 0.01 to 

0.09 and thus indicative of generally low thermal maturity (Peters & Cassa, 1994). 
 
 

Evaluation of the Sarawak Basin coals shows that TOC values generally increase 

from Liang Formation (avg. 51.5 wt.%) and Balingian Formation (avg. 50.9 wt.%) to 

Nyalau Formation (avg. 56.9 wt.%) coals. Similarly, S2 values increase from Liang 

Formation (avg. 68.0 mgHC/g rock) to Balingian Formation (avg. 103.3 mgHC/g rock) 

and to Nyalau Formation (avg. 129.0 mgHC/g rock). Expectedly, the HI values are 

higher for the Nyalau Formation (avg. 226 mg HC/g TOC) than for the Liang 

Formation (avg. 131 mg HC/g TOC) and Balingian Formation (avg. 204 mg HC/g 

TOC) coals. The Tmax values of the studied coals are similar and generally increase from 

Liang Formation (avg. 403 °C) to Nyalau Formation (avg. 412 °C) and to Balingian 

Formation (avg. 418 °C). Univ
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Table 5.3: Rock-Eval parameters of the studied Sarawak Basin coals. 
 

Sample 
 

Formation Tmax 

(°C) 
TOC 

(wt. %) 
S1 S2 GP S3 

(mg CO2/g rock) 
BI HI HI’ QI OI 

(mg CO2/g 
TOC) 

 
PI S2/ 

S3 (mg HC/g rock)  (mg HC/g TOC) 
E55-2 Liang 407 53.3 3.9 85.4 89.4 49.1 7.4 160 299 168 92 0.04 1.7 

L04A-1 Liang 405 47.2 3.1 52.6 55.7 43.7 6.5 111 253 118 93 0.05 1.2 
L04B-1 Liang 401 51.4 1.5 39.9 41.3 86.8 2.9 77 214 80 169 0.04 0.5 

ML46A-6 Liang 401 53.4 3.5 87.9 91.4 54.4 6.5 165 276 171 102 0.04 1.6 
ML46A-7 Liang 402 50.9 4.8 76.0 80.8 59.4 9.4 149 260 159 117 0.06 1.3 

BG1 Liang 396 53.7 5.7 90.9 96.6 31.5 10.7 169 280 180 59 0.06 2.9 
BG2 Liang 407 50.8 0.9 43.0 43.9 39.2 1.8 85 228 87 77 0.02 1.1 
046A Balingian 411 60.5 4.1 129.0 133.0 35.8 6.7 213 308 220 59 0.03 3.6 
M03-2 Balingian 424 27.0 2.3 49.4 51.7 5.6 8.5 183 262 191 21 0.04 8.8 
MK1 Balingian 411 39.7 1.6 102.4 104.0 15.1 4.1 258 350 262 38 0.02 6.8 
MK2 Balingian 419 57.1 1.1 104.9 106.0 20.5 1.9 184 254 186 36 0.01 5.1 

MK3A Balingian 424 61.4 3.1 123.6 126.7 33.0 5.0 201 246 206 54 0.02 3.7 
MK3B Balingian 416 59.7 2.2 110.6 112.8 32.7 3.6 185 268 189 55 0.02 3.4 
MP1L Nyalau 420 61.8 5.4 152.2 157.6 47.5 8.7 246 295 255 77 0.03 3.2 
MP1M Nyalau 422 59.5 2.9 93.4 96.3 50.6 4.9 157 263 162 85 0.03 1.8 
MP1U Nyalau 414 54.7 3.2 37.0 40.2 56.6 5.9 68 209 73 104 0.08 0.7 
MP2L Nyalau 410 62.6 5.8 196.4 202.2 39.5 9.2 314 404 323 63 0.03 5.0 
MP2U Nyalau 403 57.7 7.6 137.6 145.2 43.4 13.2 239 348 252 75 0.05 3.2 

TOC: Total Organic Carbon Tmax: Temperature at Maximum S2 PI: Production Index = S1/(S1 + S2) 
S1: Free Hydrocarbons GP: Genetic Potential = S1 + S2 HI: Hydrogen Index = (S2/TOC) x 100 
S2: Remaining Hydrocarbon generative potential BI: Bitumen Index = (S1/TOC) x 100 OI: Oxygen Index = (S3/TOC) x 100 
S3: Organic CO2 QI: Quality Index = [(S1 + S2)/TOC] x 100 HI’: Effective HI Univ
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Table 5.3, continued. 
 

Sample 
 

Formation Tmax 

(°C) 
TOC 

(wt. %) 
S1 S2 GP S3 

(mg CO2/g rock) 
BI HI HI’ QI OI 

(mg CO2/g 
TOC) 

 
PI S2/ 

S3 (mg HC/g rock)  (mg HC/g TOC) 
MP3L Nyalau 420 47.6 3.3 155.3 158.6 29.2 6.8 327 365 333 61 0.02 5.3 
MP3M Nyalau 383 56.8 18.7 259.2 277.9 37.1 32.9 456 523 489 65 0.07 7.0 
MP3U Nyalau 422 46.9 2.8 111.3 114.1 35.4 5.9 237 281 243 76 0.02 3.1 
MP4L Nyalau 415 59.7 5.2 175.8 181.0 42.9 8.7 295 365 303 72 0.03 4.1 
MP4M Nyalau 410 57.2 4.2 126.3 130.5 45.0 7.4 221 321 228 79 0.03 2.8 
MP4U Nyalau 408 53.8 8.8 90.5 99.4 47.0 16.4 168 307 185 87 0.09 1.9 
MP5L Nyalau 417 63.1 6.7 148.8 155.5 45.0 10.5 236 300 246 71 0.04 3.3 
MP5M Nyalau 415 56.3 7.2 183.5 190.7 37.5 12.7 326 396 339 67 0.04 4.9 
MP5U Nyalau 414 56.6 6.4 114.5 120.9 46.1 11.2 202 289 213 81 0.05 2.5 
MP6L Nyalau 428 57.2 5.0 115.0 119.9 49.4 8.7 201 262 210 86 0.04 2.3 
MP6M Nyalau 417 58.0 3.0 80.1 83.1 50.4 5.1 138 280 143 87 0.04 1.6 
MP6U Nyalau 414 53.7 2.9 71.0 73.9 49.3 5.4 132 272 137 92 0.04 1.4 
MP7L Nyalau 403 58.6 5.3 113.1 118.4 53.1 9.1 193 304 202 91 0.05 2.1 
MP7M Nyalau 413 60.6 6.8 151.7 158.5 44.7 11.3 250 334 262 74 0.04 3.4 
MP7U Nyalau 390 55.8 5.1 66.5 71.6 60.0 9.2 119 261 128 107 0.07 1.1 
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Table 5.4: Rock-Eval parameters of the studied Benue Trough coals. 
 

Sample 
 

Formation Tmax 

(°C) 
TOC 

(wt. %) 
S1 S2 GP S3 

(mg CO2/g rock) 
BI HI HI’ QI OI 

(mg CO2/g 
TOC) 

 
PI S2/ 

S3 (mg HC/g rock)  (mg HC/g TOC) 
MGL3A Gombe 420 61.2 1.9 73.1 75.0 32.9 3.1 120 237 123 54 0.03 2.2 
MGL4A Gombe 420 64.0 1.3 32.1 33.4 22.0 2.0 50 193 52 34 0.04 1.5 
MGL1C Gombe 427 57.8 1.6 101.6 103.2 32.6 2.8 176 241 179 56 0.02 3.1 
MGL2I Gombe 424 58.7 2.7 104.6 107.2 28.9 4.5 178 259 183 49 0.02 3.6 

AFZ Mamu 431 74.5 5.8 331.6 337.4 7.4 7.8 445 435 453 10 0.02 44.9 
ENG Mamu 419 58.0 3.8 163.2 166.9 28.2 6.5 282 337 288 49 0.02 5.8 
IMG Mamu 429 23.0 2.3 63.7 66.0 2.1 10.0 277 295 287 9 0.03 30.5 
OGB Mamu 422 43.4 2.2 104.4 106.5 11.2 5.0 241 300 246 26 0.02 9.4 
OKB Mamu 420 68.6 3.4 119.8 123.2 27.6 5.0 175 269 180 40 0.03 4.3 
WKP Mamu 424 67.7 2.8 183.6 186.3 14.5 4.1 271 312 275 21 0.01 12.7 
CKL Lamja 438 59.5 5.4 216.7 222.1 4.1 9.1 364 374 374 7 0.02 52.3 

LMZ1 Lamja 435 53.7 1.3 51.9 53.2 31.3 2.4 97 151 99 58 0.02 1.7 
LFO Agwu 422 63.0 7.6 277.3 284.8 20.0 12.0 440 453 452 32 0.03 13.9 
SKJ Agwu 409 74.3 2.1 90.3 92.4 16.6 2.8 122 303 124 22 0.02 5.4 

TOC: Total Organic Carbon Tmax: Temperature at Maximum S2 PI: Production Index = S1/(S1 + S2) 
S1: Free Hydrocarbons GP: Genetic Potential = S1 + S2 HI: Hydrogen Index = (S2/TOC) x 100 
S2: Remaining Hydrocarbon generative potential BI: Bitumen Index = (S1/TOC) x 100 OI: Oxygen Index = (S3/TOC) x 100 
S3: Organic CO2 QI: Quality Index = [(S1 + S2)/TOC] x 100 HI’: Effective HI 
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5.4 Distribution of Functional Groups 
 
 

The spectra of representative samples (Figure 5.5) show distinct bands in the 

aliphatic stretching, aromatic C-H stretching, and aromatic bending regions at 3000 to 

2800 cm-1, 3100 to 3000 cm-1, and 1460 to 1350 cm-1, respectively. In addition, the 

three distinct peaks in the 900-1100 cm-1 spectral region can be assigned to minerals in 

the coals (Wang et al., 2013). The absorbance of the peaks in the region is highest for 

sample CKL from Lamja Formation, Upper Benue Trough (Figure 5.5a). Furthermore, 

the peaks near 2920 cm-1 and 2850 cm-1 were assigned to methylene (CH2) groups while 

the peaks near 1590 cm-1 were assigned to aromatic C=C stretching groups. The spectra 

also display the asymmetric CH3 stretching peak at 2955 cm-1 and the carboxy/carboyl 

group peak at 1710 cm-1. Peaks at 1375 cm-1 and 1450 cm-1 were assigned to symmetric 

methyl bending and aliphatic chain CH3 deformation vibration, respectively, while the 

3750-3600 cm-1 region is assigned to H2O in clay minerals (Geng et al., 2009; Patricia 

et al., 2020). 

 
According to Ganz & Kalkreuth (1987), Ganz & Kalkreuth (1991), and Misra et al. 

(2018), FTIR parameters such as the A-factor (AF), C-factor (CF), aliphaticity index 

(IAL), aromaticity index (IAR), and hydrocarbon generation index (IHG) are useful for 

evaluating hydrocarbon generation potential and classifying kerogen type. The AF is a 

ratio of the abundance of aliphatic over aromatic bands while CF is a measure of the 

relative abundance of carboxyl over carboxyl and aromatic bands. The IAL and IAR, 

respectively, quantify the relative intensities of aliphatics and aromatics to total 

aliphatics and aromatics in the coals (Ganz & Kalkreuth, 1991; Biswas et al., 2020). In 

addition, Misra et al. (2018) proposed the index for hydrocarbon generation (IHG) to 

estimate the aliphatic proportion of the remaining hydrocarbon in the samples. 

Univ
ers

iti 
Mala

ya



63  

A 

 
0.185 

0.18 
1010 

 
0.17 

 
0.16 

 
0.15 

 
0.14 

 
0.13 

 
0.12 

 
0.11 

 
0.10 

 
0.09 

 
0.08 

 
0.07 

 
0.06 

 
0.05 

 
0.04 

 
0.03 

 
0.02 

 
0.01 

0.002 
4000.0 3600 3200 2800 2400 2000 1800 1600 1400 1200 1000 800 650.0 

Wavenumbers (cm-1) 
 
 
 

0.0600 
 
 

0.055 
 
 

0.050 

 
 

(b) 

 
 
 

2955 cm-1 

(asymmetric CH3) 

2920 cm-1 

(symmetric CH2) 

 
 

2850 cm-1 

(symmetric CH2) 

 

0.045 
 

0.040 
 

0.035 
 

0.030 
 

0.025 
 

0.020 
 

0.015 
 

0.010 
 
 

0.005     MP2U (Nyalau Fm) LFO (Agwu Fm) CKL (Lamja Fm) 
 

0.0000 
MGL2P (Gombe FM) MK2 (Balingian FM) OKB (Mamu FM) BG2 (Liang FM) 

3000.0 2960 2920 2880 2840 2800.0 

Wavenumbers (cm-1) 
 

Figure 5.5. FTIR spectra of the representative coals from Sarawak Basin and 
Benue Trough. 
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The FTIR parameters (Table 5.5) were calculated using the equations below: 
 
 

AF = [(2930 + 2860) cm-1] / [(2930 + 2860 + 1630) cm-1] (5.1) 
 

CF = [1710 / (1710 + 1630) cm-1] (5.2) 
 

IAL = [(2950 + 2920 + 2850)] / [(2950 + 2920 + 2850 + 3030 + 1600) cm-1] (5.3) 
 

IHG = IAL x HI (5.4) 
 
 

The AF vary considerably in the Benue Trough coals (0.29-0.65) but over a narrower 

range in the Sarawak Basin coals (0.39-0.65). The CF ranges from 0.28 to 0.48 with 

average values of 0.41 for both groups coals. 
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Table 5.5: FTIR parameters for the studied coal samples. 
Sample AF CF CL1 CL2 DAC IAL AF x TOC x 10 IHG 

B01-1 - - 0.88 0.82 1.86 - - - 
B01-4 0.48 0.35 0.96 1.11 1.47 0.48 295 79 
B01-5 0.61 0.43 0.97 1.02 1.11 0.57 370 105 
B02-4 0.54 0.41 0.97 1.05 1.08 0.51 337 87 
B03-2 0.62 0.46 0.96 1.04 1.11 0.58 381 101 
B03-3 0.61 0.46 0.96 1.00 1.09 0.57 390 92 
B03-6 0.58 0.44 1.00 1.10 1.26 0.55 357 103 
E55-2 0.59 0.41 0.96 1.05 1.18 0.55 368 89 

L04A-1 0.58 0.43 0.99 1.05 1.47 0.54 310 61 
L04B-1 0.60 0.48 0.95 1.00 0.99 0.56 353 43 

ML46A-6 0.61 0.47 0.95 1.00 1.18 0.56 372 92 
ML46A-7 0.59 0.47 0.94 1.02 1.16 0.56 360 83 

BG1 0.47 0.28 1.07 1.25 1.28 0.48 307 81 
BG2 0.46 0.30 1.00 1.11 1.34 0.45 281 38 

0464A 0.58 0.42 1.09 1.13 1.18 0.55 380 117 
M03-2 - - 0.95 0.84 4.08 - - - 
MK1 0.58 0.38 1.12 1.17 1.71 0.56 304 143 
MK2 0.52 0.34 1.14 1.17 1.41 0.50 347 93 

MK3A 0.53 0.36 1.01 1.05 1.30 0.51 358 102 
MK3B 0.58 0.38 1.00 1.05 1.13 0.54 377 99 
MP1L 0.39 0.43 1.18 1.26 1.28 0.44 317 108 
MP1M 0.45 0.40 1.11 1.20 1.26 0.46 294 73 
MP1U 0.50 0.45 1.03 1.12 1.34 0.47 309 32 
MP2L 0.67 0.41 1.01 1.06 1.18 0.60 443 187 
MP2U 0.59 0.39 1.05 1.14 1.09 0.56 384 132 
MP3L 0.65 0.42 1.04 1.10 1.29 0.59 435 193 
MP3M 0.64 0.44 0.99 1.12 1.35 0.61 333 280 
MP3U 0.58 0.42 1.08 1.18 1.41 0.56 359 132 
MP4L 0.59 0.42 1.06 1.13 1.21 0.56 334 164 
MP4M 0.59 0.42 1.06 1.15 1.20 0.56 373 124 
MP4U 0.58 0.42 1.03 1.10 1.17 0.55 357 92 
MP5L 0.58 0.41 1.08 1.16 1.15 0.55 357 130 
MP5M 0.65 0.43 1.06 1.14 1.14 0.60 403 195 
MP5U 0.67 0.44 1.02 1.07 1.19 0.60 452 122 
MP6L 0.55 0.42 1.05 1.11 1.47 0.54 350 108 
MP6M 0.55 0.36 1.02 1.07 1.27 0.52 351 72 
MP6U 0.65 0.43 0.99 1.03 1.36 0.58 399 76 
MP7L 0.55 0.41 1.03 1.14 1.19 0.53 368 102 
MP7M 0.49 0.38 0.94 1.11 1.25 0.49 307 122 
MP7U 0.57 0.44 1.02 1.11 1.42 0.54 371 65 

AF: A-factor = (2930 + 2860)/(2930 + 2860 + 1630) cm-1 
CF: C-factor = [1710/(1710+1630) cm-1] 
CL: Chain Length. CL1 = 2850/2955 cm-1. CL2 = 2920/2950 cm-1 
DAC: Degree of Aromatic Ring Condensation = 720/1600 cm-1 
IAL: Aliphaticity Index = [(2950 + 2920 + 2850) cm-1] / [(2950 + 2920 + 2850 + 3030 + 
1600) cm-1] 
IHG: Index for Hydrocarbon Generation = IAL x Hyde3rogen Index (HI) 
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Table 5.5, continued. 
Sample AF CF CL1 CL2 DAC IAL AF x TOC x 10 IHG 

MGL3A 0.57 0.42 1.03 1.07 1.17 0.52 387 63 
MGL4A 0.54 0.45 1.03 1.03 1.93 0.51 386 26 
MGL1C - - 0.92 0.95 3.34 - - - 
MGL2A 0.57 0.40 0.99 1.04 1.15 0.52 382 - 
MGL2B 0.57 0.40 1.09 1.18 1.18 0.54 371 - 
MGL2H 0.41 0.38 1.03 1.14 1.52 0.42 268 75 
MGL2I 0.29 0.33 1.32 1.43 1.73 0.33 177 - 
MGL2O 0.52 0.39 1.13 1.25 1.48 0.50 272 - 
MGL2P - - 0.96 0.91 3.17 - - - 
MGL2T 0.57 0.40 0.99 1.04 1.15 0.52 382 - 

AFZ 0.62 0.41 1.14 1.21 1.29 0.58 486 259 
ENG 0.57 0.43 1.06 1.12 1.27 0.55 326 154 
IMG 0.65 0.41 0.97 1.08 3.21 0.60 163 166 
OGB 0.61 0.42 1.05 1.13 1.90 0.57 210 138 
OKB 0.55 0.43 1.02 1.06 1.62 0.53 330 92 
WKP 0.61 0.42 1.07 1.11 1.19 0.56 422 152 
CKL 0.65 0.40 1.10 1.16 1.47 0.60 381 217 

LMZ1 0.50 0.39 0.95 1.01 1.67 0.48 319 46 
LFO 0.61 0.43 1.07 1.17 1.25 0.58 418 255 
SKJ 0.55 0.43 1.12 1.16 1.83 0.54 400 65 

 
 
 
 
 
 
 

5.5 Elemental Composition 
 

The concentrations of major and trace elements have been widely applied as proxies 

for past redox, climatic and depositional conditions in coals (Goodarzi & Swaine, 1993; 

Goodarzi & Swaine, 1994; Spears & Tewalt, 2009; Spears, 2017; Krzeszowska, 2019; 

Li et al., 2019; Lv et al., 2019; Liu et al., 2021; Zhou et al., 2021), marine sediments 

(Jones & Manning, 1994; Algeo & Maynard, 2004; Tribovillard et al., 2006; Kombrink 

et al., 2008; Cao et al., 2012; Roy & Roser, 2013; Adegoke et al., 2014; Tao et al., 

2017; Algeo & Liu, 2020; Bennett & Canfield, 2020; Han et al., 2020; Samad et al., 

2020), and crude oils (Galarraga et al., 2008). 

Univ
ers

iti 
Mala

ya



67  

Given that coals are only formed in non-marine environments with comparably low 

detrital inputs, the concentrations of elements in the studied coals are normalized to 

their global average concentrations, following the method by Kombrink et al. (2008): 
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(5.5) 
 
 

The concentration coefficient (CC) is defined as the ratio of abundance of a 

particular element in a coal sample relative to the reported global average abundance. 

The concentrations of the major element oxides in studied coals were compared with 

their reported abundances in Chinese coals by Dai et al. (2012) while the trace elements 

were compared with global average concentrations reported by Ketris & Yudovich 

(2009). The CCs of major element oxides and trace elements in the coals were 

calculated, and coefficients < 0.5 and > 5 indicate that the elements are depleted and 

significantly enriched, respectively. Furthermore, CCs over the 0.5-2.0 and 2.0-5.0 

range indicate normal and slightly enriched abundance, respectively. 

 
 
 

5.5.1 Major Element Geochemistry 
 
 

The loss on ignition (LOI) and abundances of major element oxides in the analysed 

coals are shown in Table 5.6. The abundances of the major oxides in both the Malaysian 

and Nigerian coals are either relatively depleted or comparable to the values reported 

for Chinese coals by Dai et al. (2012), which suggests low quartz content in the studied 

coals (Liu et al., 2021). In addition, the average concentrations of the major oxides are 

relatively higher in the Benue Trough coals than in the Sarawak Basin coals as the 

Sarawak Basin coals are depleted in all the major oxides except K2O, MgO and MnO 
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(Figure 5.6). The relatively higher concentration of major oxides in the Benue Trough 

coals indicates a higher input of terrestrial detrital materials during peat accumulation. 

 
 

Table 5.6: Concentration of major oxides (% on ash), and ash yield (Ad), and total 
sulfur (ST) content (% whole coal basis) for the studied coals. 

Major Oxides 
 Sarawak Basin  Benue Trough 

Min. Max. Mean (n=23) Min. Max. Mean (n=12) 
Ad 0.8 22.5 7.38 6.3 29.4 14.39 
ST 0.05 0.99 0.17 0.11 1.81 0.75 

Al2O3 0.05 5.99 1.01 0.47 6.21 1.79 
CaO 0.03 1.46 0.44 0.05 1.54 0.55 

Fe2O3 0.12 1.19 0.67 0.30 3.98 1.54 
K2O 0.01 0.87 0.21 0.06 0.43 0.25 
MgO 0.03 0.72 0.26 0.01 0.83 0.23 
MnO 0.01 0.02 0.02 0.01 0.04 0.03 
Na2O 0.02 0.14 0.05 0.06 0.12 0.09 
P2O5 0.01 0.05 0.03 0.01 0.18 0.04 
SiO2 0.04 10.80 1.96 0.83 38.02 7.29 
TiO2 0.03 0.22 0.09 0.04 2.43 0.34 
LOI  80.5 99.3 95.5  51.2 95.7 88.2 

LOI = loss on ignition 
 
 
 
 

2.0 
 
 
 

1.5 
 
 
 

1.0 
 
 
 

0.5 
 
 
 

0.0  
Al2O
3 

 
CaO 

 
Fe2O
3 

 
K2
O 

 
MgO 

 
MnO Na2O 

 
P2O
5 

 
SiO
2 

 
TiO2 

 
Figure 5.6: Correlation coefficients of major oxides in the studied Sarawak Basin 
and Benue Trough coals, normalized to the Chinese averages reported by Dai et al. 
(2012). 
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The distribution of major element oxides in both groups of coal is dominated by 

SiO2, Al2O3 and Fe2O3 with subordinate abundances of CaO, MgO, and K2O and low 

abundances of TiO2, Na2O, MnO and Cr2O3. The abundance of SiO2 in the studied coals 

ranges from 0.04 to 38.02% with average values of 1.96% and 7.29% in the Sarawak 

Basin and Benue Trough samples, respectively. The abundances of Al2O3 are relatively 

lower, ranging from 0.05 to 6.21%, respectively, with average values of 1.01% and 

1.79% in the Sarawak Basin and Benue Trough samples, respectively. Consequently, 

the SiO2/Al2O3 ratios in the studied Sarawak Basin and Benue Trough vary from 0.18 to 

7.30 and 1.32 to 9.36, respectively. The average SiO2/Al2O3 ratios of 2.09 and 3.42 for 

the Malaysian and Nigerian coals are higher than those of Chinese coals (1.42; Dai et 

al., 2012) and the theoretical value of kaolinite (1.18; Zhou et al., 2021). For the 

Malaysian coals, the average SiO2/Al2O3 ratios are relatively higher in the Liang 

Formation (2.84) than in the Nyalau Formation (1.96) and Balingian Formation (1.18). 

The relatively lower SiO2/Al2O3 ratios of the Sarawak Basin coals, particularly the 

Miocene Balingian and Nyalau Formations, are probably due to a higher abundance of 

al-rich clay minerals such as kaolinite and illite (Figure 5.7). Conversely, the higher 

SiO2/Al2O3 ratios of the Benue Trough coals suggest the presence of quartz in high 

abundance relative to other minerals (Cullers, 2000). Furthermore, Fe2O3/Al2O3 ratios 

are higher in the Sarawak coals, varying widely between 0.07 and 15.60 (avg. 4.39), and 

lower in the Benue trough Coals with ratios ranging narrowly from 0.18 to 3.41 (avg. 

1.20). Univ
ers
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Figure 5.7: Cross-plots of (a) – Al2O3 vs. SiO2, and (b) – Al2O3 vs. Fe2O3 in the 
studied coal samples (after Cullers, 2000). 
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Elements in coals are associated with the organic or mineral parts (Vejahati et al., 

2010; Spears, 2017). In general, lithophile elements such as Si, Al, K, and Ti are 

associated with the mineral factions. Several studies have employed different statistical 

analytical techniques to determine elemental associations in coals (Spears & Tewalt, 

2009; Bai et al., 2015; Spears 2017; Ameh, 2019). Results of the correlation analysis of 

the concentrations of major element oxides and organic carbon and sulfur contents for 

the Malaysian and Nigerian coals are presented in Tables 5.7 and 5.8. Significant 

correlations were observed between elements in both groups of coals. The ash content 

in the Sarawak Basin is positively correlated with SiO2 (0.949), Al2O3 (0.912), K2O 

(0.848), and TiO2 (0.829), and negatively correlated with TOC (-0.418). Similarly, the 

ash content in the Benue Trough coals is positively correlated with SiO2 (0.804), Al2O 

(0.809)3, and TiO2 (0.431), and negatively correlated with TOC (-0.293). The strong, 

positive correlations imply that Si, Al, K and Ti originate from clay minerals. However, 

the relatively weaker coefficients for the Benue Trough coals suggest the Si, and Al are 

derived from a mixed clay assemblage (Bai et al., 2015). 

 
Furthermore, the no correlation (0.063) and strong correlation (0.856) between the 

ash content and MgO concentration in the Malaysian and Nigerian coals, respectively, 

are suggestive of mineralogical controls as Mg is present in illite and mixed-layer clays 

(Spears & Tewalt, 2009). In addition, the weak relationships of LOI with CaO and MgO 

in both groups of coals suggest the absence of carbonate minerals (Tao et al., 2017). 

The positive correlation (0.698) between S and Fe2O3 in the Benue Trough coals 

suggests the presence of pyrites. In contrast, S and Fe2O3 are negatively correlated (- 

0.410) in the Sarawak Basin coals, which implies the absence of pyrites in the coals. 

This is corroborated by the mostly low ST values (< 0.5 wt.%) in the Sarawak coals 

which implies the predominance of organic sulfur that is derived mostly from parent 

plant materials (Casagrande, 1987; Chou, 2012). 
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Table 5.7: Pearson’s correlation coefficients of major element oxides, loss on ignition (LOI), ash content (Ad), sulfur (S), and total organic 
carbon (TOC) contents in the studied Sarawak Basin coals. 

Variable TOC S Ad SiO2 Al2O3 Fe2O3 CaO MgO K2O TiO2 MnO P2O5 LOI 
TOC 1.000             

S -0.264 1.000            
Ad -0.418 0.448 1.000           

SiO2 -0.400 0.337 0.949 1.000          
Al2O3 -0.411 0.219 0.912 0.969 1.000         
Fe2O3 0.208 -0.410 -0.369 -0.293 -0.290 1.000        
CaO -0.483 -0.271 -0.064 -0.107 -0.086 -0.069 1.000       
MgO -0.458 -0.188 0.063 0.048 0.088 -0.304 0.896 1.000      
K2O -0.835 0.070 0.848 0.891 0.951 -0.385 0.213 0.637 1.000     
TiO2 -0.365 0.719 0.829 0.817 0.645 -0.405 -0.489 -0.257 0.572 1.000    
MnO 0.527 -0.385 -0.139 -0.177 -0.118 0.322 -0.080 -0.261 -0.459 -0.524 1.000   
P2O5 0.135 0.072 0.254 0.234 0.236 -0.427 -0.171 0.054 -0.230 -0.033 -0.730 1.000  
LOI 0.464 -0.232 -0.939 -0.984 -0.977 0.252 -0.035 -0.184 -0.945 -0.715 0.148 -0.202 1.000 
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Table 5.8: Pearson’s correlation coefficients of major element oxides, loss on ignition (LOI), ash content (Ad), sulfur (S), and total organic 
carbon (TOC) contents in the studied Benue Trough coals. 

Variable TOC S Ad SiO2 Al2O3 Fe2O3 CaO MgO TiO2 MnO P2O5 LOI 
TOC 1.000            

S -0.051 1.000           
Ad -0.293 -0.715 1.000          

SiO2 -0.662 0.360 0.804 1.000         
Al2O3 -0.428 -0.014 0.809 0.765 1.000        
Fe2O3 -0.298 0.698 0.217 0.760 0.588 1.000       
CaO -0.173 -0.405 -0.076 -0.396 -0.463 -0.402 1.000      
MgO -0.281 -0.562 0.856 -0.074 0.130 -0.170 0.770 1.000     
TiO2 -0.638 0.515 0.431 0.942 0.517 0.712 -0.358 -0.237 1.000    
MnO 0.497 0.561 -0.741 -0.28 -0.382 0.180 -0.290 -0.696 -0.139 1.000   
P2O5 0.005 -0.018 -0.091 -0.146 -0.277 -0.165 0.387 0.075 -0.042 -0.470 1.000  
LOI 0.655 -0.338 -0.825 -0.994 -0.805 -0.786 0.360 0.002 -0.910 0.301 0.131 1.000 
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In addition, the negative and positive correlations of ST and Fe2O3 for the Sarawak 

Basin (-0.410) and Benue Trough (0.698) coals, respectively, are suggestive of pyritic 

sulfur abundance in the Benue Trough coals (Spears & Tewalt, 2009). This is 

corroborated by the moderate to strong, positive correlations of Fe2O3 with SiO2 

(0.760), Al2O3 (0.588) and TiO2 (0.712) in the Benue Trough coals and the weak, 

negative correlations of Fe2O3 with SiO2 (-0.293), Al2O3 (-0.290) and TiO2 (-0.415) in 

the Malaysian coals. 

 
Calcium is present in the coal ashes in minor abundances and no significant 

correlations were observed between CaO and the aluminosilicate-affiliated elements for 

both groups of coals. However, CaO and MgO are strongly correlated in the Malaysian 

(0.896) and Nigerian (0.770) coals. 

 
 
 

5.5.2 Trace Element Geochemistry 
 
 

The abundance of trace elements in the studied coals is tabulated in Appendix B. 

Based on the CC ratios, the Sarawak Basin coals are depleted in all monitored trace 

elements except Au, B, Ba, Mn and Pt (Figure 5.8). Whilst the Malaysian coals are 

slightly enriched in Pt, the abundances of Au, B, Ba and Mn are comparable to the 

average global concentrations reported by Ketris & Yudovich (2009) as shown in 

Figure 5.8. Similarly based on the CC ratios, the studied Benue Trough coals are 

relatively depleted in elements such as As, Au, Bi, Cd, Ce, Cs, Hf, La, Li, Mo, Nb, Rb, 

Sb, Ta, Tl, U, W, Zn and Zr whilst the abundances of Ag, B, Ba, Be, Co, Cr, Cu, Ga, 

Ge, Hg, Mn, Ni, Pb, Sc, Sr, Sn, Th, Ti, V and Y are normal when compared with the 

average global concentrations. Furthermore, the Nigerian coals are slightly and 

significantly enriched in Se and Pt, respectively (Figure 5.9). 
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The abundances of major oxides and trace elements across the Sarawak Basin coal 

formations were also compared (Figure 5.10). Again, the coals are relatively depleted in 

elements. The Liang Formation, however, coals show enrichment for B which is 

suggestive of relatively saline depositional conditions due to mild brackish-water 

influence (Dai et al., 2020). It is important to however note that B enrichment is not 

only related to paleosalinity. Coals from the Waikato region, New Zealand have 

elevated B concentrations, up to 7000 ppm, which Moore et al. (2005) attributed to a 

hydrothermal source. However, the significantly lower concentration (47-248 ppm) of B 

in the Balingian Formation coals is possibly due to saline paleoconditions. In general, 

the observed relative depletion of trace elements in the studied coals is indicative of low 

detrital input during mire development. According to Shotyk (1988), elemental 

abundance reflects the composition of precipitation and dust in ombrotrophic peats, and 

the composition of source area rocks and sediments in minerotrophic peats. 

 
Elemental ratios are often employed as proxies to estimate depositional conditions 

within paleomires (Dai et al., 2020). Hence, ratios of elemental abundance in the studied 

coals are given in Table 5.10. 
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Table 5.9: Concentrations (ppm) of selected minor and trace elements in the 
studied coals. 

Elements Sarawak Basin Benue Trough 
Min. Max. Average (n = 23) Min. Max. Average (n = 12) 

Ag* 5 140 25 8 1136 161 
As 0.1 3.9 0.8 0.1 4.1 1.5 

Au* 0.3 9.3 3.3 0.4 3.0 1.4 
B 24 248 94 22 72 49 
Ba 9.4 326.1 108.1 11.0 277.8 89.5 
Be 0.1 2.6 0.6 0.4 6.1 3.1 
Bi 0.02 0.94 0.29 0.02 1.01 0.34 
Cd 0.01 0.17 0.08 0.02 0.07 0.04 
Ce 0.1 74.2 5.3 0.8 26.6 9.4 
Co 0.4 12.8 5.0 1.0 15.2 5.2 
Cr 1.4 13.1 5.0 2.6 27.5 9.0 
Cs 0.03 1.10 0.32 0.02 0.56 0.12 
Cu 0.6 11.7 3.8 2.2 22.8 11.4 
Ga 0.1 2.9 1.1 0.6 6.9 3.2 
Ge 0.1 0.1 0.1 0.3 15.7 2.8 
Hf 0.02 0.19 0.04 0.03 0.79 0.20 

Hg* 5 31 16 6 443 158 
La 0.5 20.7 5.3 1.0 9.6 4.5 
Li 0.1 4.8 0.7 0.1 7.1 1.3 
Mo 0.01 0.94 0.17 0.11 0.88 0.41 
Nb 0.03 1.32 0.24 0.07 6.92 1.56 
Ni 0.1 11.6 4.7 1.6 17.4 8.2 
Pb 0.19 9.83 1.83 1.00 10.85 4.44 
Pt* 2 303 110 182 3468 807 
Rb 0.1 6.0 0.8 0.2 3.2 0.6 
Sb 0.02 0.12 0.08 0.02 0.07 0.04 
Se 0.1 0.6 0.2 0.3 12.0 3.3 
Sc 0.2 3.0 1.2 0.6 6.2 2.3 
Sr 4.0 129.3 43.2 5.1 292.4 58.2 
Sn 0.1 1.0 0.3 0.1 1.1 0.6 
Te 0.02 0.03 0.02 0.02 0.05 0.03 
Th 0.1 2.4 0.6 0.6 5.5 2.5 
TI 0.02 0.07 0.03 0.02 0.55 0.18 
U 0.1 0.2 0.2 0.1 5.6 1.0 
V 1 17 8 3 41 13 
W 0.1 0.4 0.3 0.1 0.9 0.3 
Y 0.05 40.70 3.80 0.89 18.81 5.67 
Zn 0.7 88.1 10.0 0.4 34.7 11.4 
Zr 0.1 5.4 0.7 1.0 31.7 7.2 

*in pp 
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Figure 5.8: Correlation coefficients of trace elements in the studied Sarawak Basin coals, normalized to the global averages reported by Ketris 
& Yudovich (2009). 
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Figure 5.9: Correlation coefficients of trace elements in the studied Benue Trough coals, normalized to the global averages reported by Ketris 
& Yudovich (2009). 
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Figure 5.10: Correlation coefficients of major oxides and trace elements in the studied Sarawak coal formations, normalized to their Chinese 
and global averages reported by Dai et al. (2012) and Ketris & Yudovich (2009), respectively. 
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Table 5.10: Selected elemental parameters for the studied coals. 

Sample SiO2/ 
Al2O3 

(Fe2O3 + CaO + MgO)/ 
(SiO2 + Al2O3) 

Al2O3/ 
TiO2 

TiO2/ 
Zr 

Sr/ 
Ba 

Th/ 
U Fe/S 

B01-1 1.58 1.91 17.3 55.6 13.76 6.0 1.72 
B03-2 6.60 4.03 - - 1.24 - 6.22 
E55-2 3.73 4.79 - - 5.27 - 2.50 

L04A-1 2.78 0.03 12.5 1294.1 2.13 6.5 0.09 
ML46A-7 1.00 6.92 - - 1.41 - 2.16 

BG1 2.43 8.42 - - 4.28 - 4.13 
BG2 1.80 13.57 - - 3.99 - 4.78 
046A 0.35 0.30 - - 0.40 - 0.24 
MK1 1.80 0.09 37.4 1600.0 0.64 12.0 1.21 
MK2 1.45 0.66 31.3 750.0 0.74 6.0 2.30 

MK3A 1.11 5.95 - - 0.35 - 3.88 
MP1L 0.31 4.53 - - 0.09 - 7.17 
MP1M 1.63 3.67 - - 0.09  7.83 
MP1U 0.18 1.40 - - 0.13 - 2.67 
MP2L 7.30 0.70 3.3 857.1 0.12 - 6.56 
MP2U 2.57 0.64 5.6 1666.7 0.10 - 6.09 
MP3M 2.06 0.12 30.1 1833.3 0.19 11.0 2.27 
MP4L 2.29 0.25 13.2 1800.0 0.13 - 4.18 
MP4U 1.29 0.19 43.6 714.3 0.07 - 3.19 
MP5M 2.15 0.18 28.0 2000.0 0.20 - 6.56 
MP6L 1.28 0.78 22.5 1333.3 0.24 - 5.30 
MP6M 1.88 8.57 - - 0.28 - 9.86 
MP7L 0.59 2.96 - - 0.20 - 13.00 

MGL3A 1.32 1.45 15.8 111.1 1.05 18.0 1.04 
MGL1C 1.61 0.61 21.8 277.8 0.31 6.0 1.04 
MGL2I 5.57 0.65 6.7 388.9 0.68 12.0 2.73 

AFZ 2.88 0.13 7.3 464.3 0.39 0.2 0.45 
ENG 2.81 0.46 8.2 187.0 0.21 4.7 1.15 
OGB 9.36 1.23 1.7 1021.0 0.21 3.2 1.18 
OKB 3.18 1.11 5.6 88.3 0.20 4.2 0.87 
WKP 2.21 0.19 9.2 600.0 0.16 5.3 0.90 
CKL 2.95 0.22 18.8 2750.0 0.77 11.8 11.00 

LMZ1 3.22 0.10 14.4 458.3 8.40 5.0 3.08 
LFO 2.61 0.37 10.2 428.6 0.46 10.0 0.82 
SKJ 3.29 0.07 6.5 1200.0 0.28 - 1.33 Univ
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Table 5.10, Continued. 

Sample Ni/ 
Co 

V/ 
Ni 

V/ 
Cr 

Sr/ 
Cu 

Ga/ 
Rb 

C- 
Value 

Fe/ 
Mn 

Ca/ 
Mg 

Ba/ 
Ti 

B01-1 2.20 3.64 1.48 99.0 10.0 0.24 64.6 2.94 0.09 
B03-2 0.17 - - 79.2 - 1.06 69.1 2.71 3.78 
E55-2 2.25 - - 108.1 2.0 0.29 59.3 1.95 0.80 

L04A-1 2.03 2.30 1.07 11.1 2.9 2.72 128.6 - 0.06 
ML46A-7 1.25 4.00 0.56 27.5 0.5 2.68 106.5 1.73 1.58 

BG1 - - - 24.0 - 0.37 55.9 1.50 - 
BG2 - - - 21.8 - 0.48 78.2 1.55 - 
046A 2.57 0.18 0.36 1.5 - 1.67 250.0 - 0.99 
MK1 1.10 3.70 1.72 7.7 0.4 0.27 37.0 1.75 0.28 
MK2 1.47 0.43 1.28 31.9 1.4 0.28 32.4 1.89 2.04 

MK3A 2.18 - - 2.2 2.0 6.94 48.2 2.00 - 
MP1L 0.67 - - 2.1 - 4.00 102.4 4.00 - 
MP1M 2.44 - - 7.0 - 4.03 95.9 2.67 - 
MP1U 1.58 0.49 0.71 1.1 - 2.78 118.5 4.50 - 
MP2L 0.74 0.17 0.43 4.3 2.0 2.53 44.4 2.14 2.32 
MP2U 1.22 1.13 0.63 4.3 16.0 2.85 45.9 2.67 2.97 
MP3M 0.83 4.67 1.57 4.2 0.7 0.50 30.1 1.81 2.17 
MP4L 0.59 0.92 1.04 7.5 3.3 2.16 47.9 3.00 1.99 
MP4U 0.77 2.71 2.03 1.6 4.0 3.38 40.2 1.80 1.73 
MP5M 0.90 3.18 1.54 5.3 1.6 1.32 49.6 3.20 3.48 
MP6L 0.53 1.02 0.98 30.9 3.3 0.89 37.6 2.80 10.87 
MP6M 10.00 - - 29.0 - 1.09 40.8 2.26 - 
MP7L 0.45 0.35 0.48 20.3 3.0 1.97 60.2 2.88 9.96 

MGL3A 1.60 1.88 1.03 132.9 7.0 0.27 41.8 3.81 1.74 
MGL1C 1.89 1.47 1.14 10.0 23.0 0.78 27.8 3.92 0.72 
MGL2I 3.65 0.32 0.91 20.9 3.0 0.46 37.3 3.50 0.34 

AFZ 2.05 2.22 1.96 0.2 19.5 12.74 272.7 - 0.04 
ENG 2.28 2.42 1.44 2.2 15.3 5.73 29.0 6.50 0.11 
OGB 1.14 2.36 1.49 0.9 9.7 28.27 295.8 5.00 0.04 
OKB 2.00 2.23 1.56 1.6 17.7 10.12 51.0 6.00 0.10 
WKP 2.96 1.56 1.15 0.5 - 4.05 41.9 - 0.05 
CKL 1.58 2.56 1.68 0.4 0.6 3.75 183.3 0.29 0.12 

LMZ1 2.03 0.61 1.34 15.3 1.4 0.26 153.8 2.30 0.07 
LFO 0.73 0.61 0.68 3.7 9.0 3.17 68.5 5.00 0.41 
SKJ 0.88 0.48 1.15 2.5 7.0 4.06 116.5 3.43 0.75 Univ
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Table 5.10, Continued. 

Sample Th/ 
Sc 

Zr/ 
Sc 

Th/ 
Co 

Th/ 
Cr 

La/ 
Sc 

La/ 
Th 

Zr/ 
Hf 

Y/ 
Ni 

Cr/ 
V 

Cr/ 
Ni 

B01-1 1.50 6.75 2.40 0.44 1.25 0.83 28.4 1.58 0.68 2.45 
B03-2 1.33 1.67 0.67 0.24 - - 16.7 0.70 - 17.00 
E55-2 1.33 2.00 1.00 0.21 - - 30.0 0.31 - 2.11 

L04A-1 0.93 1.21 0.43 0.10 9.64 10.38 21.3 0.65 0.94 2.15 
ML46A-7 0.57 1.43 1.00 0.11 - - 33.3 1.90 1.80 7.20 

BG1 0.67 1.00 - 0.14 - - - 0.40 - 7.00 
BG2 1.00 1.50 - 0.11 - - 15.0 0.25 - 9.50 
046A 0.21 0.32 0.09 0.07 10.89 51.75 30.0 3.60 2.80 0.50 
MK1 0.80 0.33 0.57 0.24 1.13 1.42 20.0 0.89 0.58 2.15 
MK2 0.25 0.17 0.08 0.15 0.67 2.67 20.0 0.54 0.78 0.34 

MK3A 0.67 0.67 0.05 0.09 - - - 0.04 - 0.27 
MP1L 0.33 0.67 0.01 0.05 - - - 0.04 - 0.38 
MP1M 0.50 1.50 0.06 0.03 - - - 0.03 - 0.90 
MP1U 0.33 0.33 0.08 0.07 - - - 0.22 1.40 0.68 
MP2L 0.60 1.40 0.04 0.13 - - 17.5 0.11 2.30 0.40 
MP2U 0.23 0.23 0.10 0.05 - - 15.0 1.10 1.59 1.79 
MP3M 0.50 0.27 0.31 0.12 0.41 0.82 20.0 0.43 0.64 2.97 
MP4L 0.50 0.36 0.05 0.10 0.36 0.71 12.5 0.39 0.96 0.88 
MP4U 0.42 0.29 0.13 0.13 0.42 1.00 17.5 0.80 0.49 1.34 
MP5M 0.40 0.20 0.20 0.11 - - 25.0 0.18 0.65 2.07 
MP6L 0.36 0.21 0.05 0.08 - - - 1.48 1.02 1.03 
MP6M 0.33 0.33 0.20 0.06 - - - 0.03 - 0.32 
MP7L 0.67 0.67 0.03 0.10 - - 20.0 0.08 2.10 0.74 

MGL3A 2.57 5.14 1.80 0.62 4.71 1.83 21.2 1.79 0.97 1.81 
MGL1C 1.33 2.00 0.67 0.27 1.11 0.83 20.0 1.23 0.88 1.29 
MGL2I 2.00 3.00 0.46 0.36 6.83 3.42 20.0 0.09 1.10 0.35 

AFZ 0.41 0.88 0.59 0.25 3.00 7.38 31.1 2.35 0.51 1.13 
ENG 1.08 4.73 0.97 0.25 2.65 2.46 35.1 1.17 0.69 1.68 
OGB 0.89 3.84 0.36 0.20 0.65 0.73 50.6 0.41 0.67 1.58 
OKB 0.81 6.10 0.75 0.26 1.12 1.38 40.1 1.68 0.64 1.43 
WKP 1.17 1.67 0.81 0.20 - - 30.0 0.22 0.87 1.35 
CKL 1.68 0.43 0.90 0.38 3.21 1.91 20.0 0.31 0.60 1.52 

LMZ1 2.14 1.71 0.41 0.45 2.50 1.17 30.0 0.30 0.74 0.45 
LFO 0.77 1.08 0.11 0.17 0.92 1.20 35.0 0.67 1.48 0.89 
SKJ 0.86 1.43 0.08 0.23 1.43 1.67 33.3 0.44 0.87 0.41 

 
 
 

5.6 Atomic and Bulk Isotopic Composition 
 

5.6.1 Atomic Abundances and Ratios 
 
 

The hydrogen content of the Sarawak Basin and Benue Trough coals varies widely 

from 4.7 to 7.1 (avg. 5.5 wt.%) and 4.0 to 7.2 (avg. 5.1 wt.%), respectively (Table 5.11). 
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The average hydrogen content suggests the studied coals are generally orthohydrous 

(Diessel, 1992). 

 
The atomic C/N ratios for the Sarawak Basin coals vary widely between 33.0 and 

 
57.4 while ratios for the Benue Trough coals vary between 35.4 and 51.4 (Table 5.11). 

 
The wider variation in C/N ratio for the Sarawak Basin coals is suggestive of greater 

heterogeneity, probably due to differing paleoflora and environmental factors. In 

contrast, the atomic H/C ratios for the analysed coals range from 0.10 to 0.19 and 0.11 

to 0.28, respectively, for the samples from Sarawak Basin and Benue Trough (Table 

5.11). The H/C ratio is a reliable proxy for organic matter type as lignin-rich vascular 

plants have greater C contents than lipid-rich materials (Lopez-Dias et al., 2013). 

Hence, the generally similar H/C ratios (Figure 5.11) for all the coals are indicative of 

the predominant contribution of vascular plants to peat formation. 
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Figure 5.11: Cross-plot of atomic ratios for the studied coals. 
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Table 5.11: Atomic and isotopic composition of the studied coals. 
Sample δ13C (‰) δ2H (‰) %C %H %N %O C/N H/C 
B01-1 -28.7 -104.7 34.5 6.4 0.9 57.9 42.8 2.22 
B03-6 -27.7 -107.8 35.0 6.0 0.9 58.0 46.8 2.05 
E55-2 -28.7 -104.3 53.6 7.1 1.4 37.6 44.0 1.58 

L04A-1 -27.9 -103.1 32.0 5.5 0.7 60.3 54.2 2.06 
ML46A-7 -27.3 -125.3 46.7 4.7 1.2 46.9 46.0 1.20 

BG1 -28.0 -133.6 37.9 4.8 0.9 56.2 51.1 1.50 
BG2 -27.4 -123.8 31.5 4.7 0.7 63.0 51.6 1.77 

0464A -27.6 -130.0 34.4 5.1 1.0 58.6 40.0 1.77 
M03-2 -26.8 -91.0 24.4 4.8 0.7 69.9 38.8 2.32 
MK1 -27.6 -110.3 31.3 5.8 0.9 61.6 39.2 2.23 
MK2 -24.2 -128.5 40.2 5.6 1.2 52.7 40.6 1.67 

MK3A -27.4 -129.9 44.0 4.7 1.3 49.7 39.5 1.28 
MP1L -26.7 -128.7 39.3 5.6 0.9 54.0 49.3 1.70 
MP1U -28.0 -122.4 37.7 4.8 0.9 56.3 49.6 1.53 
MP2L -28.6 -145.2 36.7 5.4 0.8 56.9 55.2 1.75 
MP2U -29.4 -153.2 33.8 5.5 0.7 59.8 56.6 1.95 
MP3M -28.0 -173.5 38.9 5.8 0.7 54.4 65.6 1.78 
MP4L -28.2 -154.7 39.6 5.8 0.9 53.5 50.4 1.74 
MP5M -29.3 -144.4 37.8 5.3 0.8 55.9 54.2 1.67 
MP6M -28.3 -139.0 40.1 5.0 1.0 53.8 48.0 1.49 
MP7L -28.0 -129.6 37.9 6.1 0.7 55.2 66.9 1.93 

MGL1C -25.9 -115.5 32.5 5.2 0.7 60.7 50.8 1.89 
MGL2B -25.0 -112.1 42.3 4.7 0.9 51.8 56.4 1.33 
MGL2I -25.8 -117.0 40.2 4.9 0.8 53.8 59.9 1.45 
MGL2O -25.7 -116.8 36.8 4.8 0.8 57.1 53.7 1.55 
MGL2T -25.8 -116.9 31.2 4.3 0.7 63.1 48.7 1.65 
MGL3A -25.2 -113.8 38.8 4.5 0.8 55.4 59.6 1.37 

ENG -25.2 -101.4 36.8 6.3 1.0 54.5 41.3 2.03 
IMG -24.7 -102.7 15.7 4.4 0.4 77.0 47.0 3.30 
OGB -26.8 -114.6 21.8 4.0 0.6 71.2 46.2 2.20 
OKB -25.2 -102.5 37.7 5.9 1.1 53.2 41.4 1.87 
WKP -25.3 -98.8 40.5 5.7 1.1 52.1 42.2 1.69 
CKL -24.7 -94.1 36.4 4.4 1.0 57.6 45.0 1.45 

LMZ1 -24.8 -66.4 45.5 5.2 1.1 47.6 48.5 1.35 
LFO -26.1 -124.1 41.1 7.2 0.9 48.8 52.6 2.10 

C: carbon; H: hydrogen; O: oxygen; N: nitrogen. %O = 100 – (C + H + N + ST) 
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5.6.2 Bulk Carbon Isotopes 
 
 

The bulk stable carbon isotopic (δ13C) values for the coals vary between -29.4 and - 

24.2‰, with mean values of -27.8‰ and -25.4‰ for the Sarawak Basin and Benue 

Trough coals, respectively (Table 5.11). These values show that the Benue Trough coals 

are isotopically heavier than the Sarawak Basin coals and thus indicative of different 

paleoflora and/or environmental conditions. Furthermore, within the Sarawak Basin, 

coal samples from Mukah coalfield have more positive δ13C values that suggest slightly 

different vegetation. 

 
 
 

5.6.3 Bulk Hydrogen Isotopes 
 
 

The hydrogen isotopic (δ∆) values of the analysed samples vary widely between a 

maximum -66.4‰ and minima -173.5‰. The Sarawak Basin coals are relatively 

depleted in deuterium with δ∆ values ranging from -173.5‰ to -91.0‰. In contrast, the 

Benue Trough coals are relatively enriched in deuterium and show more positive δ∆ 

values, fluctuating between -117.0‰ and 66.4‰ (Table 5.11). Both groups of coals 

show wide variation in δ∆ values, which are suggestive of fluctuating environmental 

conditions. However, the marked difference in δ∆ values of the Sarawak Basin (mean - 

127.8‰) and Benue Trough (mean -106.9‰) implies relatively distinct conditions. 

 
 
 

5.7 Pyrolysis-Gas Chromatography 
 
 

The representative pyrolysate gas chromatograms of the studied Sarawak Basin and 

Benue Trough coals are shown in Figure 5.12. 
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Figure 5.12: Representative pyrolysate gas chromatograms of the studied coals. 
Cx: n-alkane + n-alk-1-ene doublets; Tol: toluene P: phenol; m+p Xyl: meta- + 
para-xylene. 
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Figure 5.12, continued. 
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The pyrograms show that prist-1-ene is the most abundant hydrocarbon in most of 

the Sarawak Basin coals. However, its abundance is comparably lower in the Benue 

Trough coals. In addition, the pyrograms display abundant aromatic compounds such as 

toluene, xylene, phenol, and cresols. Geochemical parameters based on the relative 

abundances of identified compounds in the Py-GC pyrograms are presented in Table 

5.12. 

 
 

Table 5.12: Py-GC parameters for the studied coals. 
Sample Type Index C8/xy cad/xy C8 (%) xy (%) Phenol (%) 
B01-1 2.08 0.48 0.08 29.4 61.2 9.4 
B01-4 2.17 0.46 0.08 28.6 61.9 9.5 
B01-5 2.21 0.45 0.07 28.1 62.2 9.6 
B02-4 2.80 0.36 0.07 23.7 66.3 10.1 
B03-2 1.74 0.58 0.05 33.3 57.9 8.8 
B03-3 1.68 0.60 0.05 34.2 57.5 8.2 
B03-6 2.94 0.34 0.05 22.7 66.7 10.7 
E55-2 2.13 0.47 0.05 28.8 61.3 9.9 

L04A-1 1.79 0.56 0.07 32.2 57.5 10.3 
L04B-1 1.77 0.57 0.03 33.3 59.0 7.7 

ML46A-6 1.49 0.67 0.05 36.9 54.9 8.2 
ML46A-7 1.91 0.52 0.03 31.2 59.6 9.2 

BG1 1.38 0.73 0.09 37.2 51.2 11.6 
BG2 - - - - - - 

0464A 1.88 0.53 0.11 31.1 58.5 10.4 
M03-2 1.89 0.53 0.31 30.6 58.1 11.3 
MK1 0.83 1.20 0.20 48.0 40.0 12.0 
MK2 0.63 1.58 0.33 51.4 32.4 16.2 

MK3A 0.92 1.09 0.35 43.1 39.7 17.2 
MK3B - - - - - - 
MP1L 1.70 0.59 0.06 31.7 53.8 14.5 
MP1M 1.64 0.61 0.05 29.7 48.6 21.6 
MP1U - - - - - - 
MP2L 2.08 0.48 0.07 29.9 62.1 8.0 
MP2U 1.49 0.67 0.16 36.2 54.0 9.8 
MP3L 1.09 0.92 0.14 42.7 46.6 10.7 
MP3M - - - - - - 
MP3U 0.79 1.27 0.13 50.0 39.3 10.7 
MP4L 1.42 0.71 0.14 36.6 51.9 11.5 
MP4M 1.49 0.67 0.15 35.6 52.9 11.5 
MP4U 1.71 0.58 0.10 32.8 56.3 10.9 

C8: n-1-octene; xy: m(+p)-xylene; cad: cadalene; Type Index = m(+p)-xylene/n-1- 
octene; C8 (%) = [C8/(C8 + xy + Phenol) x 100]; xy (%) = [xy/(C8 + xy + Phenol) x 
100]; Phenol (%) = [Phenol/(C8 + xy + Phenol) x 100]. 
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Table 5.12, continued. 
Sample Type Index C8/xy cad/xy C8 (%) xy (%) Phenol (%) 
MP5L 1.55 0.65 0.13 34.4 53.3 12.2 
MP5M 1.22 0.82 0.12 39.8 48.4 11.8 
MP5U 1.96 0.51 0.09 29.4 57.8 12.8 
MP6L 1.50 0.67 0.04 35.8 53.8 10.4 
MP6M 1.94 0.51 0.07 30.5 59.3 10.2 
MP6U 1.87 0.53 0.05 31.1 58.1 10.8 
MP7L 1.91 0.52 0.06 30.9 59.0 10.1 
MP7M 1.52 0.66 0.09 35.5 54.1 10.5 
MP7U 1.57 0.64 0.10 34.6 54.2 11.2 

MGL3A 1.33 0.75 0.10 38.3 51.1 10.6 
MGL4A 0.83 1.21 0.07 49.2 40.7 10.2 
MGL1C 1.21 0.83 0.09 40.6 48.9 10.6 
MGL2A 0.79 1.27 0.13 50.9 40.0 9.1 
MGL2B 1.20 0.83 0.11 41.7 50.0 8.3 
MGL2H 0.94 1.06 0.06 47.3 44.6 8.0 
MGL2I 0.77 1.30 0.05 52.2 40.3 7.5 
MGL2O 0.94 1.06 0.06 47.1 44.3 8.6 
MGL2P 0.55 1.81 0.09 57.6 31.8 10.6 
MGL2T 0.97 1.03 0.09 43.6 42.3 14.1 

AFZ 0.90 1.11 0.14 34.2 30.9 34.9 
ENG 1.19 0.84 0.11 38.1 45.2 16.7 
IMG 0.82 1.23 0.18 46.3 37.8 15.9 
OGB 0.86 1.16 0.16 30.5 26.3 43.1 
OKB 0.85 1.18 0.11 48.6 41.3 10.1 
WKP 0.74 1.36 0.17 50.9 37.4 11.7 
CKL 0.87 1.15 0.24 47.0 40.9 12.1 

LMZ1 1.86 0.54 0.10 30.6 56.9 12.5 
LFO 3.00 0.33 0.07 11.4 34.2 54.4 
SKJ 2.70 0.37 0.04 12.7 34.2 53.2 

 
 
 
 

5.8 Pyrolysis- and Thermochemolysis-GC-MS Products 
 
 

5.8.1 Pyrolysis-GC-MS 
 
 

Over 230 compounds were identified in the Py-GC-MS-derived products of the 

analysed coals. The proportions of the compounds relative to the total quantified peak 

areas (TQPA) are listed in Appendix C while the average proportions of the main 

groups of products and maturity ratios are presented in Table 5.13. 
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Table 5.13: Average proportion (% TQPA) of major groups and maturity ratios of 
the products derived from Py-GC-Ms and THM-GC-MS analyses. 

Analysis Compound Groups and Ratios Sarawak 
Basin 

Benue 
Trough 

Pyrolysis- n-Alkanes (%) 21.36 33.62 
gas n-Alkenes (%) 12.31 17.01 

chromatography- 
Isoprenoid Alkanes (%) 1.71 3.48 

mass spectrometry 
Isoprenoid Alkenes (%) 4.08 1.17 

(Py-GC-MS) 
Monocyclic aromatic hydrocarbons (%) 13.54 15.99 

 Lignin (%) 0.81 0.07 
 Phenols (%) 19.81 9.14 
 Catechols (%) 3.05 0.13 
 Sesquiterpanes (%) 5.21 1.86 
 Alkyl-substituted PAHs (%) 6.89 7.60 
 Oxygen-substituted PAHs (%) 1.78 0.92 
 non-substituted PAHs (%) 1.02 1.69 
 Total O-aromatics (%) 12.80 9.88 
 Total resin-aromatics (%) 23.67 9.34 
 Total methylene chain compounds (%) 39.57 55.28 
 Pristane Formation Index (PFI) 0.04 0.47 
 Alkylation index of phenols (AI_phen) 0.20 0.38 
 Dehydroxylation index (DHI-2) 0.21 0.25 
 Cadinene aromatization index (CAI) 0.41 0.64 

Thermochemolysis- Alkenes and alkanes (%) 22.02 49.29 
gas Isoprenoids (%) 4.77 5.92 

chromatography- 
Benzenecarboxylic acid methyl esters (%) 7.67 13.08 

mass spectrometry 
< C20 Fatty acid methyl esters (%) 4.50 10.97 

(THM-GC-MS) 
≥ C20 Fatty acid methyl esters (%) 36.55 7.62 

 Polycyclic aromatic hydrocarbons (%) 5.16 6.81 
 Methoxybenzenes (%) 12.42 3.57 
 Sesquiterpanes (%) 2.65 1.62 
 Total fatty acid methyl esters (%) 41.05 18.59 
 Total methylene chain compounds (%) 67.84 73.81 
 Pristane Formation Index (PFI) 0.03 0.47 
 Phytane Oxidation Index (POI) 0.54 0.13 
TQPA: total quantified peak areas; PAHs: polycyclic aromatic hydrocarbons; AI_phen: 
alkylation index of the phenols = C2–C4/C0–C4 alkylphenols; DHI-2: dehydroxylation 
index = alkylphenols/alkyl-MAHs; Pristane Formation Index = pristane/(pristane + 
pristenes); Phytane Oxidation Index = homophytanic acid/phytane. 
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The products derived from the Py-GC-MS analysis of the Sarawak Basin and Benue 

Trough coals are dominated by C9 to C35 n-alkanes, C10 to C33 n-alkenes, and isoprenoid 

alkanes and alkenes (Figure 5.13). However, aromatic moieties also constitute a 

significant proportion of the pyrolysates. The relative proportions of n-alkanes and n- 

alkenes are higher in the Benue Trough coals (avg. 50.64%) than in the Sarawak Basin 

coals (avg. 37.77%), whilst the proportions of total aromatic hydrocarbons are relatively 

higher in the Py-GC-MS-derived products of the Sarawak coals. 
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Figure 5.13: Surface density plots showing relative proportions of Py-GC–MS 
products of representative samples. 
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Monocyclic aromatic hydrocarbons (MAHs) with up to 5-carbon atoms in methyl 

groups account accordingly for an average of 13.54% and 15.99% of the TQPA of the 

Sarawak Basin and Benue Trough coal pyrolysates. Other identified compounds are 

phenols and sesquiterpenes, which were observed in relatively higher proportions in the 

coals from Sarawak Basin (avg. 19.81% and 5.21%) than from Benue Trough (avg. 

9.14% and 1.86%). Additionally, long-chain alkylbenzenes, alkyl-substituted PAHs, O- 

substituted PAHs, non-substituted PAHs, methoxyphenols, catechols, and S-containing 

compounds were observed in lower proportions (Appendix C). Although most of the 

alkyl-PAHs and sesquiterpenes can be attributed to polymerized resin derivatives, 

phenols, catechols, and perhaps O-substituted PAHs are mostly derived from the lignin- 

containing tissues of vascular plants (Kaal et al., 2017). 

 
 
 

5.8.2 THM-GC-MS 
 
 

The THM-derived products of the studied Sarawak Basin and Benue Trough coals 

are generally dominated by n-alkanes, n-alkenes and fatty acid methyl esters (FAMEs). 

Other major groups of compounds observed include isoprenoids, sesquiterpanes, 

diterpanes, methoxybenzenes, benzenecarboxylic acid methyl esters (BCAs), polycyclic 

aromatic hydrocarbons (PAHs) and terpenoids (Appendix D). Of note, carbohydrate 

products were below the detection limit in all the analysed coal samples. The relative 

proportions of these major groups are shown in Figure 5.14. 

 
The summed proportion of C11 to C35 n-alkanes and n-alkenes relative to the total 

quantified peak area (TQPA) for the analysed Sarawak Basin and Benue Trough coals. 

The relatively higher proportion of n-alkanes and n-alkenes in the Benue Trough 

samples is possibly due to their relatively higher thermal maturity. In contrast, the 
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proportion of isoprenoid hydrocarbons for both groups of coals is similar, ranging 

accordingly from 1.06 to 7.54 (avg. 4.77%) and 1.87 to 11.04 (avg. 5.92%) for the 

Malaysian and Nigerian coals. The isoprenoid hydrocarbons include 4,8,12,16- 

tetramethylheptadecan-4-olide, an isoprenoid fatty acid derivative and phytane 

oxidation product that is observed in low-rank coals (Kaal et al., 2017). Furthermore, 

the abundances of short-chain (< C20) FAMEs are comparably higher in coals from 

Benue Trough (1.94-20.13%) than in Sarawak Basin (1.86-9.57%) whilst the 

abundances of long-chain (≥ C20) FAMEs are relatively higher in the Sarawak Basin 

(10.56-59.27%) than the Benue Trough (0.17-35.37%). 
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Figure 5.14: Surface density plots showing relative proportions of THM-GC–MS 
products of representative samples. 
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The relative abundance of FAMEs is vastly higher in the Sarawak Basin coals (avg. 

41.05%) than in the Benue Trough coals (avg. 18.59%), possibly indicating the relative 

proportion of plant epicuticular waxes. However, the summed abundances of methylene 

chain compounds (MCC) relative to the TQPA are slightly higher in coals from Benue 

Trough (avg. 73.81%) than in Sarawak Basin (avg. 67.84%; Figure 5.15). The 

proportion of PAHs in the coals shows similar trends with average relative abundances 

of 5.16% and 6.81% for the Sarawak Basin and Benue Trough samples, respectively. 
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Figure 5.15: Bar graphs of the average relative proportion of major compounds in 
products obtained from (a) – Py-GC-MS and (b) – THM-GC-MS analysis of the 
analysed coals. MAHs: monocyclic aromatic hydrocarbons; PAHs: polycyclic 
aromatic hydrocarbons; FAMEs: fatty acid methyl esters; BCAs: 
Benzenecarboxylic acid methyl esters. 
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Additionally, the BCAs which possibly reflect the oxidized aromatic kerogen 

fractions in the analysed coals are observed in relatively similar abundances, varying 

widely from 2.19 to 26.96% and 1.98 to 23.47%. Furthermore, for both Py-GC-MS and 

THM-GC-MS products, the Nyalau Formation coals show the highest proportions of 

sesquiterpenoid derivatives (12–15% of TQOA) when compared with other samples (< 

4% of TQPA), which mostly reflects the abundance of resinite maceral. This finding is 

supported by the petrographic study of the Merit-Pila coals by Abdullah (1997) which 

concluded that the coals are rich in liptinitic macerals. Additionally, sample IMG 

(Mamu Formation of Benue Trough) contains the highest proportion of organosulfur 

compounds (1.0 % of TQPA), producing a significant peak of elemental sulfur upon 

pyrolysis. This generally indicates high abundances of pyritic and organic sulfur in the 

coal. 

 
The diagenetic effect on coals often varies for different constituents, and therefore, 

principal component analysis (PCA) is an improved technique to evaluate the overall 

maturity or rank effects on molecular composition (Kaal et al., 2017). PCA results of 

the distribution of Py-GC-MS and THM-GC-MS products are presented in Appendix E. 

The RC1 scores are mostly positive and negative for the Benue Trough and Sarawak 

Basin coals, respectively, and are thus indicative of a narrow range of coal rank and 

relatively distinct organic matter source inputs (Figure 5.16; Kaal et al., 2017). This is 

possibly due to the greater input of terrigenous organic matter in the Sarawak coals as 

some of the compounds with negative loadings on RC1 include plant-derived 

compounds such as methoxyphenols, catechols, phenols, and terpenoids. Conversely, 

the Benue Trough coals are positively loaded possibly due to the predominant inputs of 

short-chain alkanes and alkenes, isoprenoid alkanes and alkyl-PAHs that suggest a 

substantial algal organic matter contribution. 
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Figure 5.16: RC1 scores of Py-GC-MS and THM-GC-MS products. 
 
 
 

Maturity parameters based on the abundance of specific compounds such as the 

alkylation index of phenols (Al_phen), pristane formation index (PFI) and phytane 

oxidation index (POI) were calculated for the coals and the ratios presented in Table 

5.13. Al_phen ratios of Py-GC-MS products for the studied coals are relatively higher 

for the Benue Trough coals (0.11-0.65) than the Sarawak Basin coals (0.07-0.31), 

indicating relatively higher diagenetic impact (Kaal et al., 2017). The PFI is based on 
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the preferential increase in pristane abundance and the accompanying loss of pristenes 

with burial whilst the POI is based on the relative loss of homophytanic acid (methyl 

ester) gamma-lactone over phytane during early diagenesis (Goossens et al. 1988; Kaal 

et al., 2017). As expected from Ro values, the relatively lower PFI and higher POI and 

CAI ratios for the Sarawak Basin coals reflect relatively lower thermal maturity. 

Additionally, the cadinene aromatization index (CAI), which reflects the degree of resin 

condensation shows the highest values (>0.7) for the Mamu Formation coals and lowest 

values for Nyalau Formation coals. 

 
 
 

5.9 Molecular Composition 
 
 

The extractable organic matter (EOM) yield and relative proportions of aliphatic 

hydrocarbons, aromatic hydrocarbons and NSO compounds are recorded in Table 5.14. 

The EOM yield for the Sarawak coals (avg. 63532 ppm) is considerably higher than the 

yield for Benue (avg. 37352 ppm) coals. For the Sarawak Basin samples, the EOM 

yield for the Nyalau Formation coals (30643 to 224779 ppm) is considerably higher 

than the yield for Balingian Formation (21596 to 54551 ppm) and Liang Formation 

(26312 to 49695 ppm) coals. Additionally, the fractionated extracts are composed 

mainly of NSO compounds with a low proportion of hydrocarbons, typical of samples 

with generally low thermal maturity (Miles, 1994; Peters et al., 2005). The proportion 

of hydrocarbons in the extracts varies between 6.4 and 36.8% and with average values 

of 12.8% and 17.6% in the Sarawak Basin and Benue Trough coals, respectively. 

Aromatic hydrocarbons predominate over aliphatic hydrocarbons in all the coal 

samples. However, the average proportion of aliphatic hydrocarbons in the Benue 

Trough (15.7% of EOM) coals is relatively higher than in the Sarawak Basin (8.0% of 

EOM) coals (Figure 5.17). 
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Table 5.14: Group compositional data for the studied coals. 

Sample EOM 
(ppm) 

HC 
(ppm) %Sata %Aroa %Polara %HCa Sat/ 

Aro 
HC/ 

Polar 
B01-1 28889 4690 8.9 35.4 55.7 44.3 0.25 0.80 
B01-4 43946 5630 9.8 28.2 62.0 38.0 0.35 0.61 
B01-5 36988 4521 9.0 31.8 59.2 40.8 0.28 0.69 
B02-4 48590 3871 6.6 25.7 67.6 32.4 0.26 0.48 
B03-2 34500 4556 7.8 38.5 53.7 46.3 0.20 0.86 
B03-3 41740 4479 7.2 30.8 62.0 38.0 0.23 0.61 
B03-6 45537 5374 9.7 30.8 59.5 40.5 0.31 0.68 
E55-2 36992 3541 8.2 21.5 70.4 29.6 0.38 0.42 

L04A-1 26312 4334 16.9 31.5 51.6 48.4 0.54 0.94 
L04B-1 35313 3685 11.2 30.2 58.7 41.3 0.37 0.70 

ML46A-6 30628 3962 7.1 33.2 59.8 40.2 0.21 0.67 
ML46A-7 43353 4066 6.7 30.0 63.2 36.8 0.22 0.58 

BG1 49695 5919 6.3 15.2 78.5 21.5 0.41 0.27 
BG2 26634 2763 4.5 11.1 84.4 15.6 0.41 0.19 

0464A 54551 5126 7.8 24.1 68.1 31.9 0.32 0.47 
M03-2 21596 4964 10.7 35.7 53.6 46.4 0.30 0.86 
MK1 26066 5480 21.0 10.5 68.5 31.5 2.00 0.46 
MK2 32255 5315 17.5 20.2 62.3 37.7 0.86 0.61 

MK3A 48867 6312 10.2 42.2 47.6 52.4 0.24 1.10 
MK3B 47364 4834 7.2 27.2 65.6 34.4 0.26 0.52 
MP1L 71612 6015 7.7 12.9 79.4 20.6 0.60 0.26 
MP1M 43708 4513 8.9 19.8 71.3 28.7 0.45 0.40 
MP1U 30643 3699 12.4 15.3 72.4 27.6 0.81 0.38 
MP2L 142516 9848 3.0 7.0 90.0 10.0 0.43 0.11 
MP2U 148241 9506 3.8 8.7 87.5 12.5 0.43 0.14 
MP3L 70296 11180 6.1 15.2 78.7 21.3 0.40 0.27 
MP3M 224779 58922 9.8 31.7 58.5 41.5 0.31 0.71 
MP3U 40421 6569 13.9 29.1 57.1 42.9 0.48 0.75 
MP4L 107776 11891 4.0 11.0 85.0 15.0 0.36 0.18 
MP4M 94824 11408 3.2 11.5 85.3 14.7 0.28 0.17 
MP4U 81734 11651 10.0 21.9 68.1 31.9 0.45 0.47 
MP5L 84252 9298 5.5 9.9 84.7 15.3 0.55 0.18 
MP5M 78705 10955 5.3 12.6 82.1 17.9 0.42 0.22 
MP5U 102254 14661 5.2 16.3 78.4 21.6 0.32 0.28 
MP6L 56064 11823 4.5 22.0 73.5 26.5 0.20 0.36 
MP6M 85058 5973 1.9 6.2 91.9 8.1 0.31 0.09 
MP6U 47027 5675 7.4 20.6 72.0 28.0 0.36 0.39 
MP7L 97668 9216 3.1 9.9 87.0 13.0 0.31 0.15 
MP7M 110059 10546 3.4 9.2 87.5 12.5 0.37 0.14 
MP7U 63820 9903 7.1 34.0 58.9 41.1 0.21 0.70 

EOM: Extractable organic matter; HC: Hydrocarbons; Sat: Saturated Hydrocarbons; 
Aro: Aromatic Hydrocarbons; Polar: Polar Compounds. anormalised without 
asphaltenes 
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Sarawak Basin 
Nyalau Fm 
Balingian Fm 
Liang Fm 

Benue Trough 
Agwu Fm 
Lamja Fm 
Mamu Fm 
Gombe Fm 

Table 5.14, continued. 

Sample 
EOM 
(ppm) 

HC 
(ppm) 

%Sata %Aroa %Polara %HCa 
Sat/ 
Aro 

HC/ 
Polar 

MGL3A 18576 3058 12.5 27.8 59.7 40.3 0.45 0.68 
MGL4A 13296 1794 12.7 21.8 65.6 34.4 0.58 0.53 
MGL1C 27977 3041 6.2 21.5 72.3 27.7 0.29 0.38 
MGL2A 37025 4886 15.2 26.8 58.0 42.0 0.56 0.72 
MGL2B 17112 2184 10.8 19.1 70.1 29.9 0.56 0.43 
MGL2H 40994 3271 6.5 19.0 74.5 25.5 0.34 0.34 
MGL2I 21240 4182 14.4 26.2 59.4 40.6 0.55 0.68 
MGL2O 23374 4209 11.4 29.3 59.3 40.7 0.39 0.69 
MGL2P 28280 3439 9.5 26.7 63.7 36.3 0.36 0.57 
MGL2T 18974 2241 12.2 19.5 68.3 31.7 0.63 0.46 

AFZ 60014 15366 18.5 39.8 41.8 58.2 0.46 1.39 
ENG 46062 5635 13.8 25.3 60.9 39.1 0.55 0.64 
IMG 24443 8901 29.6 35.0 35.4 64.6 0.85 1.83 
OGB 29377 5958 16.5 30.8 52.7 47.3 0.54 0.90 
OKB 46222 8701 23.3 29.0 47.7 52.3 0.80 1.10 
WKP 26526 4961 14.9 35.4 49.7 50.3 0.42 1.01 
CKL 52204 19210 15.9 50.2 33.9 66.1 0.32 1.95 

LMZ1 28621 5534 18.7 28.7 52.6 47.4 0.65 0.90 
LFO 125596 23650 41.7 11.1 47.2 52.8 3.75 1.12 
SKJ 61121 5491 10.2 20.3 69.5 30.5 0.50 0.44 

 
 
 

Saturates (%) 

Aromatics (%) NSO (%) 
 

Figure 5.17: Ternary diagram of the molecular composition of the studied coals. 
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5.10 Aliphatic Hydrocarbons 
 
 

5.10.1 n-Alkane Distribution 
 
 

The n-alkane distribution for all the coals generally ranges from n-C15 to n-C35. 

Representative m/z 85 chromatograms are shown in Figure 5.18. The coals are 

dominated by high molecular weight (MW) alkanes (≥ n-C27) with strong odd-even 

predominance (except in samples CKL and LMZ1), indicating the dominant 

contribution of vascular plants to paleovegetation (Peters et al., 2005). Whilst n-C29 is 

the most abundant alkane in the Nigerian coals, the alkane distribution in the Malaysian 

coals is mostly dominated by n-C31, thus, suggesting varying paleovegetation and 

paleoclimate (Schwark et al., 2002). Medium MW n-alkanes (n-C21 to n-C26) are present 

in subordinate abundance in the samples while low MW alkanes ( n-C20) are only 

present in low concentrations (Figure 5.19). 

 
n-alkane ratios have been widely used to determine the maturity and organic matter 

input in sediments (Marzi et al., 1993; Bourbonniere & Meyers, 1996; Zheng et al., 

2007). The carbon preference index (CPI) and odd-over-even predominance (OEP) 

values of all studied coals are ≥ 1, ranging from 1.1 to 5.9 and 1.0 to 6.9, respectively 

(Tables 5.15-5.16). The CPI values are, however, relatively higher in the coals from 

Sarawak Basin (avg. 2.9) than from Benue Trough (avg. 2.3). Similarly, the OEP values 

for the Sarawak Basin coals (avg. 3.2) are generally higher than the Benue Trough coals 

(avg. 2.9). The values of the terrigenous aquatic ratio (TAR), a relative measure of 

organic matter input from land and lake flora, range from 2.5 to 32.4 and 2.2 to 20.9, 

with average values of 15.8 and 7.4 in the studied Sarawak Basin and Benue Trough 

samples, respectively. 
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Figure 5.18: m/z 85 chromatograms of saturated hydrocarbon fractions of selected 
samples showing the n-alkane and isoprenoid distribution. 
Numbers indicate carbon number. Pr = Pristane and Ph = Phytane. 

27 

MP2U 
Nyalau Fm. 
 

Pr 

23 

17 
Ph 19 

35 

Retention Time (min) 

B03-3 
Liang Fm. 27 

23 

18 
21 

17 Ph 

35 

Retention Time (min) 

Pr MK3A 
Balingian Fm. 

31 

27 

16 

23 

21 18 
17 

Ph 

35 

Re
la

tiv
e 

In
te

ns
ity

 
Re

la
tiv

e 
In

te
ns

ity
 

Re
la

tiv
e 

In
te

ns
ity

 

Univ
ers

iti 
Mala

ya



102  

LFO 
Agwu Fm. 

Pr 25 

15 33 
17 18 

Ph 21 

Retention Time (min) 

29 

 
Pr 

 
 

Pr 

 
 

29 

 

Figure 5.18, continued. 
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Sarawak Basin 
Nyalau Fm 
Balingian Fm 
Liang Fm 

Benue Trough 
Agwu Fm 
Lamja Fm 
Mamu Fm 
Gombe Fm 

Low MW 

Medium MW High MW 
 

Figure 5.19: Ternary plot of n-alkane distribution in the studied coals showing 
proportion of high (C27-33), medium (C21-26) and low (C15-20) molecular weight 
(MW) homologues. 

 
 
 

The relative abundance of acyclic isoprenoids pristane (Pr) and Phytane (Ph) is 

widely used to infer redox conditions during sedimentation and diagenesis (Didyk, 

1978). Although the Pr/Ph parameter is affected by thermal maturity (Peters et al., 

2005), such effect is negligible since the studied coals are generally of low rank. Pr and 

Ph are observed in all the studied samples, and Pr/Ph ratios are relatively higher in the 

Sarawak Basin coals, varying from 0.6 to 14.0 (avg. 4.8). The Benue Trough coals show 

relatively lower Pr/Ph ratios, ranging from 1.5 to 4.8 and with an average of 3.0. In 

addition, n-C18 predominates over Ph in most of the samples (except BG1, AFZ and 

IMG), while Pr generally predominates over n-C17 except in some Liang and Gombe 

Formation coals (Tables 5.15-5.16). 
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Table 5.15: n-Alkane parameters for coals from Sarawak Basin, Malaysia. 

Sample Cmax CPI OEP TAR WI ACL Paq Pwax 
Pr/ 
Ph 

Pr/ 
C17 

B01-1 C31 3.3 4.0 22.6 12.9 29.2 0.21 0.84 3.7 1.4 
B01-4 C27 3.0 3.7 8.6 6.8 29.0 0.41 0.71 4.0 0.9 
B01-5 C31 3.5 3.8 29.3 14.4 29.2 0.30 0.77 2.0 0.8 
B02-4 C31 2.4 2.7 10.5 6.5 29.0 0.25 0.82 1.8 0.6 
B03-2 C31 3.5 3.6 22.7 13.2 29.4 0.21 0.83 1.0 0.5 
B03-3 C31 2.3 2.8 5.3 4.6 29.3 0.34 0.73 1.0 0.5 
B03-6 C31 3.3 3.5 32.4 16.0 29.4 0.21 0.84 0.7 0.2 
E55-2 C31 2.6 3.1 13.3 9.3 29.1 0.28 0.79 2.8 0.7 

L04A-1 C31 5.0 4.9 30.0 13.8 29.3 0.15 0.89 2.0 0.7 
L04B-1 C31 3.4 3.6 - - 29.4 0.19 0.85 - - 

ML46A-6 C31 2.6 3.1 13.0 9.3 29.1 0.30 0.77 2.0 0.7 
ML46A-7 C27 2.5 2.6 11.9 9.2 29.0 0.32 0.77 5.0 2.5 

BG1 C31 5.9 6.6 31.7 24.8 29.4 0.12 0.91 0.9 0.6 
BG2 C27 3.7 4.2 17.1 14.9 28.8 0.28 0.81 2.7 0.7 

0464A C27 1.3 1.8 2.7 2.5 28.8 0.49 0.63 1.2 1.1 
M03-2 C31 3.5 4.6 3.4 2.4 29.0 0.32 0.77 2.3 1.8 
MK1 C27 3.9 4.2 19.9 14.0 28.9 0.27 0.81 4.7 4.7 
MK2 C31 2.9 3.6 4.7 3.4 29.2 0.26 0.81 4.2 3.1 

MK3A C31 2.0 2.4 3.0 2.9 29.1 0.43 0.67 6.3 6.3 
MK3B C31 2.1 2.9 2.5 2.2 29.2 0.35 0.73 7.7 4.8 
MP1L C31 3.3 3.2 3.6 3.9 29.0 0.32 0.77 3.7 1.0 
MP1M C29 4.7 6.9 9.4 8.2 28.7 0.27 0.81 4.0 1.7 
MP1U C25 1.6 1.3 13.2 13.2 28.3 0.69 0.52 0.6 1.5 
MP2L C29 2.1 2.7 11.3 11.2 29.2 0.31 0.75 12.5 9.4 
MP2U C31 1.9 2.2 12.4 11.6 29.1 0.35 0.73 14.0 8.3 
MP3L C31 2.4 2.4 16.6 14.5 29.4 0.23 0.81 5.7 4.7 
MP3M C31 3.9 3.7 22.3 17.6 29.9 0.17 0.85 3.0 2.6 
MP3U C31 2.3 2.1 26.0 21.4 29.4 0.22 0.83 4.4 2.7 
MP4L C31 1.8 1.8 8.1 9.0 29.3 0.32 0.74 8.8 3.5 
MP4M C31 1.8 1.9 8.4 8.5 29.3 0.36 0.72 4.6 4.3 
MP4U C31 2.6 2.7 23.2 18.7 29.6 0.22 0.81 7.1 3.6 
MP5L C31 3.0 2.9 22.9 19.6 29.7 0.17 0.86 9.4 6.0 
MP5M C31 2.3 2.2 14.6 13.6 29.4 0.26 0.80 4.1 3.5 
MP5U C31 2.4 2.5 24.0 20.5 29.5 0.21 0.83 5.3 3.3 
MP6L C31 2.8 3.1 19.5 16.5 29.5 0.19 0.84 5.0 2.5 
MP6M C31 2.3 2.5 10.8 10.8 29.2 0.41 0.68 7.1 7.1 
MP6U C31 2.8 2.9 20.4 16.3 29.4 0.24 0.81 6.5 3.3 
MP7L C31 2.9 2.6 23.6 16.9 30.0 0.16 0.86 6.4 3.8 
MP7M C31 2.8 3.2 17.1 14.5 29.5 0.26 0.79 11.0 4.4 
MP7U C31 3.2 3.1 23.9 21.7 29.9 0.14 0.88 7.3 4.8 

Cmax: n-alkane maxima; Pr: Pristane; Ph: Phytane; CPI: Carbon Preference Index = 
1/2[((C23 + C25 + C27 + C29+ C31)/(C24 + C26 + C28 + C30 + C32)) + ((C25 + C27 +C29 +C31 + 
C33)/( C24 + C26 + C28 + C30 + C32))]; OEP: Odd Even Predominance = [C29 + 6C29 + 
C31]/[4C28 + 4C30]; TAR: Terrigenous Aquatic Ratio = [C27 + C29 + C31] / [C15 + C17 + 
C19]; WI: Wax Index = C21-31/C15-20; ACL: Average Chain Length = [(27 * C27) + (29 
* C29) + (31 * C31)]/[C27 + C29 + C31]; Paq: Proxy Aqueous = [C23 + C25] / [C23 + C25 + 
C29 + C31]; Pwax: Proxy Wax = [C27 + C29 + C31] / [C23 + C25 + C27 + C29 + C31]. 
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Table 5.15, continued. 

Sample Ph/ 
C18 

C17/(C17 
+ C27) 

C23/(C27 
+ C31) 

C23/ 
C25 

C23/ 
C29 

C23/ 
C31 

C27/ 
C31 

C29/ 
C31 

C33/ 
C29 

C33/ 
C31 

B01-1 0.2 0.04 0.08 0.42 0.19 0.14 0.79 0.72 0.71 0.51 
B01-4 0.1 0.08 0.13 0.35 0.53 0.27 1.01 0.50 1.55 0.78 
B01-5 0.1 0.03 0.12 0.43 0.36 0.20 0.74 0.56 0.70 0.40 
B02-4 0.2 0.10 0.09 0.46 0.26 0.18 0.96 0.71 0.94 0.67 
B03-2 0.2 0.05 0.09 0.48 0.24 0.14 0.53 0.57 1.18 0.68 
B03-3 0.3 0.16 0.19 0.57 0.46 0.31 0.67 0.67 1.11 0.74 
B03-6 0.2 0.05 0.08 0.42 0.20 0.13 0.60 0.63 0.98 0.62 
E55-2 0.1 0.07 0.13 0.47 0.26 0.24 0.90 0.91 0.57 0.52 

L04A-1 0.2 0.05 0.03 0.23 0.09 0.05 0.67 0.59 0.82 0.48 
L04B-1 - - 0.07 0.39 0.17 0.10 0.55 0.59 1.25 0.74 

ML46A-6 0.1 0.06 0.15 0.53 0.32 0.29 0.91 0.92 0.65 0.59 
ML46A-7 0.3 0.06 0.15 0.52 0.35 0.29 1.02 0.85 0.86 0.74 

BG1 1.7 0.04 0.04 0.34 0.09 0.06 0.59 0.69 0.76 0.53 
BG2 0.3 0.05 0.09 0.35 0.21 0.20 1.24 0.93 0.93 0.86 

0464A 0.4 0.29 0.39 0.82 0.83 0.91 1.35 1.10 0.73 0.81 
M03-2 0.8 0.28 0.14 0.51 0.35 0.28 0.98 0.79 0.55 0.43 
MK1 0.9 0.05 0.08 0.31 0.18 0.17 1.14 0.95 0.79 0.75 
MK2 0.5 0.21 0.11 0.50 0.33 0.19 0.75 0.57 1.64 0.94 

MK3A 0.6 0.17 0.27 0.64 0.68 0.51 0.88 0.76 1.01 0.77 
MK3B 0.4 0.24 0.21 0.67 0.53 0.37 0.76 0.70 1.02 0.71 
MP1L 0.4 0.17 0.15 0.57 0.43 0.30 0.99 0.69 0.89 0.61 
MP1M 0.5 0.07 0.11 0.38 0.16 0.29 1.59 1.79 0.27 0.48 
MP1U 0.2 0.01 0.31 0.39 1.52 1.08 2.47 0.71 0.73 0.52 
MP2L 0.9 0.10 0.16 0.43 0.27 0.27 0.75 1.02 0.82 0.83 
MP2U 0.4 0.08 0.18 0.49 0.38 0.33 0.88 0.87 0.72 0.63 
MP3L 0.9 0.07 0.11 0.50 0.26 0.17 0.55 0.65 1.01 0.66 
MP3M 0.8 0.08 0.05 0.30 0.19 0.06 0.25 0.33 1.83 0.60 
MP3U 0.6 0.05 0.09 0.42 0.21 0.14 0.59 0.67 0.91 0.61 
MP4L 0.5 0.13 0.16 0.51 0.42 0.26 0.63 0.62 0.94 0.59 
MP4M 0.6 0.11 0.19 0.55 0.52 0.32 0.64 0.60 0.92 0.55 
MP4U 0.5 0.07 0.09 0.40 0.22 0.13 0.37 0.58 0.89 0.52 
MP5L 0.6 0.06 0.07 0.40 0.15 0.09 0.34 0.63 0.82 0.52 
MP5M 0.9 0.06 0.12 0.53 0.35 0.19 0.58 0.54 1.44 0.78 
MP5U 0.6 0.06 0.10 0.48 0.21 0.15 0.50 0.69 0.86 0.59 
MP6L 0.5 0.07 0.08 0.38 0.16 0.11 0.46 0.70 0.99 0.69 
MP6M 0.9 0.10 0.19 0.45 0.61 0.33 0.72 0.54 1.33 0.72 
MP6U 0.4 0.06 0.10 0.43 0.24 0.16 0.60 0.67 0.78 0.52 
MP7L 0.5 0.09 0.05 0.32 0.21 0.06 0.23 0.27 2.04 0.56 
MP7M 0.5 0.09 0.10 0.37 0.26 0.15 0.48 0.58 0.90 0.53 
MP7U 0.5 0.07 0.05 0.41 0.17 0.06 0.25 0.38 1.47 0.55 
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Table 5.15, continued. 

Sample (C27 + C29)/(C23 + 
C25 + … + C33) 

% 
C27 

% 
C29 

% 
C31 

% 
LMW 

% 
MMW 

% 
HMW 

B01-1 0.43 31.6 28.6 39.8 6.2 20.6 73.2 
B01-4 0.35 40.2 20.1 39.8 10.8 30.7 58.5 
B01-5 0.39 32.1 24.5 43.4 5.8 27.3 66.9 
B02-4 0.43 36.0 26.5 37.5 11.4 23.2 65.3 
B03-2 0.34 25.1 27.3 47.6 5.7 19.7 74.6 
B03-3 0.34 28.6 28.6 42.7 15.0 27.4 57.6 
B03-6 0.37 26.9 28.2 44.9 4.8 18.8 76.4 
E55-2 0.44 32.1 32.4 35.5 8.6 26.6 64.8 

L04A-1 0.41 29.5 26.2 44.3 5.7 13.0 81.3 
L04B-1 0.35 25.7 27.7 46.6 2.6 17.3 80.2 

ML46A-6 0.43 32.1 32.4 35.5 8.5 27.9 63.5 
ML46A-7 0.42 35.5 29.7 34.8 8.4 26.5 65.2 

BG1 0.42 25.9 30.4 43.7 3.2 11.9 84.9 
BG2 0.45 39.2 29.3 31.5 5.2 21.5 73.3 

0464A 0.39 39.1 31.9 28.9 26.6 36.7 36.7 
M03-2 0.44 35.5 28.4 36.1 27.1 22.3 50.6 
MK1 0.46 37.0 30.6 32.4 5.6 19.5 74.9 
MK2 0.35 32.3 24.7 43.0 18.4 20.0 61.6 

MK3A 0.35 33.3 28.7 38.0 22.5 31.4 46.1 
MK3B 0.36 31.1 28.3 40.6 27.6 26.8 45.5 
MP1L 0.41 37.0 25.6 37.4 18.0 24.0 58.1 
MP1M 0.57 36.3 40.8 22.9 10.1 24.2 65.7 
MP1U 0.37 59.1 17.1 23.9 6.8 53.0 40.2 
MP2L 0.39 27.0 36.9 36.2 7.0 29.0 64.0 
MP2U 0.40 32.0 31.6 36.4 6.9 32.3 60.7 
MP3L 0.36 24.9 29.5 45.6 5.3 20.8 73.9 
MP3M 0.24 16.1 20.7 63.2 4.1 16.0 79.9 
MP3U 0.38 26.1 29.6 44.2 3.7 19.3 77.0 
MP4L 0.35 28.0 27.6 44.4 8.6 29.3 62.1 
MP4M 0.34 28.6 26.9 44.5 9.2 32.7 58.1 
MP4U 0.33 19.0 29.9 51.2 4.1 20.2 75.7 
MP5L 0.35 17.4 31.9 50.7 4.0 16.7 79.3 
MP5M 0.33 27.4 25.6 47.0 5.4 22.6 72.0 
MP5U 0.37 22.6 31.7 45.7 3.8 20.4 75.8 
MP6L 0.36 21.4 32.5 46.2 4.6 18.3 77.1 
MP6M 0.31 31.9 23.9 44.2 7.2 34.0 58.9 
MP6U 0.38 26.5 29.4 44.1 4.9 22.8 72.3 
MP7L 0.22 15.3 18.2 66.4 4.3 17.5 78.2 
MP7M 0.34 23.3 28.3 48.4 5.5 25.2 69.4 
MP7U 0.26 15.2 23.2 61.6 3.4 15.8 80.8 

%C27 = C27/(C27 + C29 + C31) x 100; %C29 = C29/(C27 + C29 + C31) x 100; %C31 = 
C31/(C27 + C29 + C31) x 100; %LMW = (C15-20 / C15-33) x 100; %MMW = (C21-26 / 
C15-33) x 100; %HMW = (C27-33 / C15-33) x 100. 
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Table 5.16: n-Alkane parameters for coals from Benue Trough, Nigeria. 

Sample Cmax CPI OEP TAR WI ACL Paq Pwax 
Pr/ 
Ph 

Pr/ 
C17 

Ph/ 
C18 

C17/(C17 
+C27) 

C23/(C27 
+C31) 

C23/ 
C25 

C23/ 
C29 

C23/ 
C31 

MGL3A C25 3.7 4.4 16.0 12.5 28.4 0.48 0.65 3.3 3.3 0.7 0.06 0.09 0.09 0.10 0.38 
MGL4A C29 3.6 5.2 11.3 5.9 28.6 0.25 0.82 3.2 2.1 0.4 0.11 0.08 0.24 0.09 0.28 
MGL1C C29 1.5 1.9 2.6 2.5 29.0 0.36 0.72 2.3 0.7 0.3 0.28 0.27 0.73 0.43 0.52 
MGL2A C29 3.1 3.8 7.6 6.3 28.7 0.19 0.86 4.8 2.9 0.5 0.07 0.06 0.27 0.07 0.18 
MGL2B C29 1.8 2.9 3.0 3.1 28.6 0.45 0.66 2.0 2.0 0.7 0.19 0.33 0.54 0.39 1.00 
MGL2H C29 1.9 2.3 3.0 2.8 28.8 0.31 0.77 3.0 1.6 0.4 0.20 0.17 0.58 0.28 0.40 
MGL2I C29 2.1 3.0 2.9 2.8 28.9 0.34 0.75 2.8 3.1 0.9 0.21 0.22 0.61 0.31 0.50 
MGL2O C29 2.0 2.3 4.1 4.0 28.8 0.32 0.77 3.3 1.6 0.5 0.19 0.20 0.67 0.32 0.47 
MGL2P C29 1.6 1.9 2.6 2.9 28.9 0.34 0.75 2.5 0.5 0.2 0.30 0.24 0.77 0.39 0.54 
MGL2T C27 1.9 1.9 6.1 5.0 28.9 0.29 0.80 3.0 1.4 0.3 0.11 0.13 0.51 0.27 0.28 

AFZ C29 1.2 1.3 11.4 9.0 29.1 0.32 0.75 3.1 27.4 2.8 0.06 0.23 0.76 0.38 0.43 
ENG C29 3.6 4.8 13.8 7.1 28.7 0.16 0.89 3.4 5.4 0.7 0.08 0.09 0.50 0.08 0.26 
IMG C29 1.1 1.2 3.5 4.1 28.9 0.46 0.64 1.5 13.4 2.2 0.09 0.41 0.86 0.73 0.88 
OGB C27 1.7 1.8 3.6 3.4 28.9 0.41 0.70 3.0 5.2 1.0 0.21 0.30 0.83 0.59 0.66 
OKB C29 4.3 6.2 20.9 10.0 28.7 0.12 0.91 3.4 5.7 0.6 0.05 0.07 0.46 0.06 0.21 
WKP C29 2.5 2.9 12.2 8.1 28.7 0.28 0.80 3.5 4.0 0.6 0.07 0.14 0.46 0.19 0.36 
CKL C28 1.1 1.0 2.8 4.0 28.7 0.55 0.57 3.1 6.9 0.9 0.14 0.56 0.97 1.05 1.47 

LMZ1 C26 1.1 1.1 2.2 3.1 28.7 0.56 0.56 2.4 9.2 0.8 0.12 0.59 0.95 1.05 1.56 
LFO C29 2.9 3.5 5.3 3.4 28.7 0.23 0.85 3.8 2.5 0.5 0.12 0.10 0.47 0.15 0.26 
SKJ C29 3.0 3.7 12.5 6.4 28.6 0.22 0.85 2.9 2.9 0.4 0.07 0.10 0.51 0.14 0.32 

Cmax: n-alkane maxima; Pr: Pristane; Ph: Phytane; CPI: Carbon Preference Index = 1/2[((C23 + C25 + C27 + C29+ C31)/(C24 + C26 + C28 + C30 + C32)) + 
((C25 + C27 +C29 +C31 + C33)/( C24 + C26 + C28 + C30 + C32))]; OEP: Odd Even Predominance = [C29 + 6C29 + C31]/[4C28 + 4C30]; TAR: Terrigenous 
Aquatic Ratio = [C27 + C29 + C31] / [C15 + C17 + C19]; WI: Wax Index = C21-31/C15-20; ACL: Average Chain Length = [(27 * C27) + (29 * C29) + (31 
* C31)]/[C27 + C29 + C31]; Paq: Proxy Aqueous = [C23 + C25] / [C23 + C25 + C29 + C31]; Pwax: Proxy Wax = [C27 + C29 + C31] / [C23 + C25 + C27 + C29 + 
C31]; %C27 = C27/(C27 + C29 + C31) x 100; %C29 = C29/(C27 + C29 + C31) x 100; %C31 = C31/(C27 + C29 + C31) x 100; %LMW = (C15-20 / C15-33) x 
100; %MMW = (C21-26 / C15-33) x 100; %HMW = (C27-33 / C15-33) x 100. Univ
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Table 5.16, continued. 

Sample C27/ 
C31 

C29/ 
C31 

C33/ 
C29 

C33/ 
C31 

(C27 + C29)/(C23 + 
C25 + … + C33) %C27 %C29 %C31 %LMW %MMW %HMW 

MGL3A 3.42 3.92 0.03 0.12 0.57 41.0 47.0 12.0 7.3 37.1 55.6 
MGL4A 2.31 3.22 0.08 0.25 0.67 35.4 49.3 15.3 14.1 22.2 63.7 
MGL1C 0.93 1.22 0.51 0.63 0.43 29.5 38.7 31.8 25.6 28.9 45.5 
MGL2A 1.70 2.50 0.15 0.38 0.66 32.7 48.1 19.2 12.8 16.7 70.5 
MGL2B 2.02 2.54 0.10 0.26 0.53 36.4 45.6 18.0 23.7 36.8 39.5 
MGL2H 1.33 1.41 0.32 0.45 0.52 35.5 37.8 26.7 24.4 25.1 50.5 
MGL2I 1.27 1.59 0.22 0.34 0.52 32.8 41.3 25.9 25.4 28.7 46.0 
MGL2O 1.34 1.49 0.25 0.38 0.53 34.9 39.0 26.1 18.9 27.8 53.3 
MGL2P 1.24 1.39 0.34 0.48 0.49 34.2 38.3 27.6 24.1 27.9 48.0 
MGL2T 1.21 1.05 0.64 0.67 0.47 37.1 32.3 30.6 14.3 22.0 63.8 

AFZ 0.91 1.14 0.33 0.38 0.46 29.9 37.3 32.8 9.1 30.7 60.2 
ENG 1.97 3.19 0.08 0.26 0.72 31.9 51.8 16.2 11.8 16.9 71.3 
IMG 1.14 1.21 0.39 0.47 0.41 34.1 36.0 29.9 18.1 38.4 43.5 
OGB 1.21 1.11 0.49 0.54 0.44 36.5 33.5 30.0 21.1 31.7 47.2 
OKB 1.89 3.82 0.06 0.21 0.75 28.2 56.9 14.9 8.8 14.8 76.4 
WKP 1.64 1.91 0.16 0.30 0.59 36.1 41.9 22.0 10.4 25.6 63.9 
CKL 1.64 1.40 0.23 0.33 0.41 40.6 34.6 24.8 19.0 42.4 38.6 

LMZ1 1.65 1.49 0.23 0.35 0.41 39.9 36.0 24.1 23.7 42.7 33.6 
LFO 1.62 1.76 0.23 0.41 0.60 37.0 40.2 22.8 21.5 18.9 59.7 
SKJ 2.07 2.25 0.14 0.32 0.66 38.9 42.3 18.8 12.9 21.4 65.8 
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For the Sarawak Basin coal samples, the CPI values are generally similar for the 

Balingian (avg. 2.6) and Nyalau (avg. 2.6) formations but are relatively lower than the 

Liang Formation (avg. 3.4). Pristane/phytane ratios generally increase from Liang (avg. 

2.3) to Balingian (avg. 4.4) and Nyalau Formation (avg. 6.5). In addition, TAR values 

are generally lowest in the Balingian Formation coals (avg. 6.0) and highest in the 

Liang Formation coals (avg. 19.1) while the Nyalau Formation coals have intermediate 

TAR values (avg. 16.6; Table 5.15). 

 
 
 

5.10.2 Hopanoids and Steroids 
 
 

5.10.2.1 Hopanoids 
 
 

Hopanoids are abundant in the studied coals and representative m/z 191 

chromatograms of the samples are shown in Figure 5.20. The hopanoids distribution for 

the studied coals is generally similar and characterized by the abundance of neohop- 

13(18)-enes, hop-17(21)-enes, -hopanes and subordinate abundances of -hopanes 

ranging from C27 to C31 without C28. C27 -trinorhopane was observed in most of the 

samples, while tricyclic terpanes, -moretanes and gammacerane were either absent or 

present in low abundance (except in the Lamja Formation samples). C29 neohop-13(18)- 

ene is the most abundant hopanoid in most of the coal samples, whereas C30 -hopane 

and C31 -homohopane (22R) predominates in a few samples (Figure 5.20). The 

relative abundances of hopanoids, which are widely employed as maturity and source 

input indicators (Peters et al., 2005), are presented in Table 5.17. 
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Figure 5.20: Partial chromatograms of m/z 191 of aliphatic fractions of the 
representative coal samples, showing the distribution of hopanoids. Selected peaks 
are labelled with their carbon number and stereochemistry.  = 17(H),21(H)- 
hopanes,  = 17(H),21(H)-norhopanes, Δ13(18) = neohop-13(18)-enes, and 
Δ17(21) = neohop-17(21)-enes. 
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Figure 5.20, continued. 
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Table 5.17: Hopanoid parameters for the studied coals. 

Sample C29 αβ/ 
C30 αβ 

(C29+C31)/ 
C30 αβ 

C31 R/ 
C30 αβ 

C31 αβ 
S/(S+R) 

C30 ββ/ 
(αβ+ββ) 

C31 ββ/ 
(ββ+αβ) pH 

B01-1 - - - 0.16 - 0.12 3.7 
B01-4 3.26 5.0 1.55 0.11 0.55 0.27 4.5 
B01-5 - - - - - 0.17 4.0 
B02-4 1.68 2.6 0.87 0.10 0.46 0.29 4.6 
B03-2 5.26 7.4 1.85 0.15 0.45 0.21 4.2 
B03-3 5.93 10.1 3.64 0.12 0.62 0.17 4.0 
B03-6 - - - 0.16 - 0.14 3.9 
E55-2 8.70 17.9 8.10 0.12 0.79 0.19 4.1 

L04A-1 3.80 9.7 4.80 0.18 0.40 0.10 3.7 
L04B-1 - - - 0.14 - 0.12 3.8 

ML46A-6 9.61 20.3 9.26 0.14 0.79 0.17 4.0 
ML46A-7 6.21 10.1 3.43 0.11 0.67 0.25 4.4 

BG1 4.94 6.1 0.94 0.20 0.39 0.29 4.6 
BG2 - - - 0.22 - 0.36 5.0 

0464A 4.15 20.0 12.70 0.20 0.76 0.12 3.8 
M03-2 5.50 7.9 1.92 0.19 0.56 0.17 4.0 
MK1 4.46 7.3 2.85 - 0.73 0.27 4.5 
MK2 2.40 4.8 1.95 0.19 0.76 0.33 4.9 

MK3A 4.08 5.7 1.25 0.21 0.77 0.42 5.3 
MK3B 1.71 3.4 1.17 0.29 0.72 0.38 5.1 
MP1L 1.32 5.5 3.89 0.07 0.81 0.28 4.6 
MP1M 2.45 5.8 3.30 - 0.81 0.35 5.0 
MP1U - - - - - - - 
MP2L 1.47 5.9 4.11 0.08 0.81 0.34 4.9 
MP2U 1.76 5.3 3.04 0.14 0.74 0.27 4.5 
MP3L 3.47 8.2 3.85 0.19 0.73 0.24 4.3 
MP3M 2.71 5.8 2.33 0.25 0.45 0.20 4.1 
MP3U 7.13 13.6 5.06 0.21 0.84 0.32 4.8 
MP4L 2.36 6.4 3.40 0.17 0.76 0.30 4.7 
MP4M 2.08 7.7 4.81 0.14 0.77 0.24 4.3 
MP4U 4.70 8.9 3.15 0.24 0.83 0.36 5.0 
MP5L 2.93 11.3 6.93 0.17 0.78 0.23 4.3 
MP5M 3.88 12.5 7.28 0.16 0.82 0.26 4.5 
MP5U 4.91 15.8 8.27 0.24 0.83 0.21 4.2 
MP6L 4.56 16.8 9.67 0.21 0.85 0.26 4.5 
MP6M 7.86 11.6 2.71 0.27 0.84 0.41 5.2 
MP6U 6.93 18.9 10.71 0.11 0.85 0.22 4.3 
MP7L 2.18 10.2 7.00 0.13 0.80 0.19 4.1 
MP7M 2.53 6.8 3.50 0.17 0.83 0.30 4.7 
MP7U 6.44 23.7 13.11 0.24 0.83 0.18 4.1 

-Hopane = 17(H),21(H)-Hopane; -Hopane = 17(H),21(H)-norhopane; R = 
17(H),21(H)-22R-homohopane; S = 17(H),21(H)-22S-homohopane; pH = [5.22 x 
C31 /( + )] + 3.11 
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Table 5.17, continued. 

Sample C29 αβ/ 
C30 αβ 

(C29+C31)/ 
C30 αβ 

C31 R/ 
C30 αβ 

C31 αβ 
S/(S + R) 

C30 ββ/ 
(αβ + ββ) 

C31 ββ/ 
(ββ + αβ) pH 

MGL3A 6.83 10.6 3.0 0.20 0.79 0.31 4.7 
MGL4A - - - 0.22 - 0.26 4.5 
MGL1C 2.24 9.2 4.9 0.29 0.81 0.27 4.5 
MGL2A 0.71 4.1 2.5 0.25 0.75 0.34 4.9 
MGL2B 2.50 4.8 1.9 0.17 0.66 0.29 4.6 
MGL2H 1.32 8.9 5.6 0.26 0.80 0.22 4.3 
MGL2I 2.32 6.4 3.4 0.18 0.70 0.21 4.2 
MGL2O 1.38 7.7 4.6 0.26 0.79 0.20 4.1 
MGL2P 4.43 9.5 3.8 0.25 0.80 0.26 4.5 
MGL2T 1.73 6.4 3.4 0.28 0.79 0.29 4.6 

AFZ 0.86 2.0 0.5 0.53 - - - 
ENG 1.41 3.7 1.8 0.21 0.66 0.29 4.6 
IMG 0.72 1.4 0.3 0.59 - - - 
OGB 0.27 1.5 0.9 0.25 0.22 - - 
OKB 1.75 3.5 1.4 0.21 0.66 0.31 4.7 
WKP 0.48 2.0 1.1 0.23 0.40 0.11 3.7 
CKL 1.07 1.9 0.3 0.60 - - - 

LMZ1 0.91 1.8 0.4 0.59 - - - 
LFO 5.33 14.8 7.3 0.23 0.79 0.18 4.0 
SKJ 3.86 11.4 5.6 0.26 0.77 0.20 4.1 

 
 
 

The values of the C31 -homohopane 22S/(22S+22R) maturity parameter vary from 
 

0.07 to 0.60 with averages of 0.17 and 0.30 for the Sarawak Basin and Benue Trough 

coals, respectively, indicating generally low thermal maturity but relatively higher 

maturity for the Nigerian coals (Farrimond et al., 1998). Additionally, the (C29+C31)/C30 

αβ-hopane parameter, which reflects the relative contributions of terrigenous and 

marine organic matter, ranges from 2.6 to 23.7 (avg. 10.0) and 1.4 to 14.8 (avg. 5.9) for 

the studied Sarawak Basin and Benue Trough coals, respectively. The lower values of 

the (C29+C31)/C30 αβ-hopane parameter suggest greater marine algal OM input in the 

Benue Trough samples (Killops et al., 1994). 
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5.10.2.1 Steroids 
 
 

Steroids with their concentrations above the detection limit were generally not 

observed in the m/z 217 mass chromatograms of the studied coals, except in the Lamja 

Formation coals (samples CKL and LMZ1) from the Upper Benue Trough (Figure 

5.21). The dominating abundance of hopanes over steranes in the analysed samples is 

indicative of low biological productivity and the predominant abundance of terrigenous 

organic matter (Philp & Gilbert, 1986; Killops et al., 1994; Makeen et al., 2019). The 

sterane distribution of the Lamja Formation coals is dominated by regular C29 steranes 

with subordinate abundances of C27 and C28 steranes. In addition, rearranged steranes or 

diasteranes are present in the coals but generally in lower abundance when compared 

with the regular steranes. Ratios of the sterane C29 ααα 20S/(20S+20R) and C29 

αββ/(αββ+ααα) maturity parameters for the two Lamja Formation coals are in the 0.45- 

0.54 and 0.34-0.35 range, respectively (Table 5.18). The ratios are slightly below the 

equilibrium end-point (0.55) of the C29 ααα 20S parameter, which implies an early 

thermal maturity threshold for the studied Lamja Formation coals (Farrimond et al., 

1998; Peters et al., 2005). 

 
 

Table 5.18: Steroid parameters for the Lamja Formation coals. 
Parameters CKL LMZ1 

C29 ααα 20S/(20S+20R) 0.45 0.54 
C29 αββ/(αββ+ααα) 0.35 0.34 

% C27 ααα 20R 15.2 16.8 
%C28 ααα 20R 25.4 27.9 
%C29 ααα 20R 59.4 55.3 

C27 ααα 20R/C29 ααα 20R 0.26 0.30 
C27 ααα 20R/C28 ααα 20R 0.60 0.60 
C27 βα 20R/C27 ααα 20R 1.40 1.68 
C29 βα 20R/C29 ααα 20R 0.36 0.30 

C29 βα/(αββ+ααα+βα) 0.25 0.22 
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LMZ1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Retention Time (min) 
 
 
 
 
 
 
 
 
 
 
 
 

Retention Time (min) 
 

Figure 5.21: Partial chromatograms of m/z 217 of aliphatic fractions of the Lamja 
Formation coals, showing the distribution of steroids. βα = 13β(H),17α(H)- 
diasteranes; αβ = 13α(H),17β(H)-diasteranes; αββ = 5α(H),14β(H),17β(H)-steranes; 
ααα = 5α(H),14α(H),17α(H)-steranes. 
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5.10.3 Aliphatic Terpenoids 
 
 

Terpenoids represent a vastly broad family of biomarkers. They are derived from 

higher plants and are well recognised in petroleum, sediments and coal as 

chemosystematic markers of palaeoflora and palaeoclimate (Killops et al., 1995; van 

Aarssen et al., 2000; Otto et al., 2002a; Otto et al., 2000b; Hautevelle et al., 2006; 

Nakamura et al., 2010; Jiang & George, 2018). Cretaceous sediments are typically 

characterized by a high concentration of diterpenes from gymnosperms, while Tertiary 

sediments are dominated by triterpenes derived from angiosperms (Bechtel et al., 2008; 

Widodo et al., 2009; Jiang & George et al., 2018; Radhwani et al., 2018). Although 

gymnosperm taxa declined rapidly during the Eocene, the evolution of angiospermous 

flora was irregular as there was a short resurgence of gymnosperm at the end of the 

Paleocene (Killops et al., 1995). 

 
Partial chromatograms of aliphatic fractions of the studied coals showing the 

distributions of sesquiterpenoids and diterpenoids (m/z 123) are presented in Figure 5.22 

whilst aliphatic triterpenoids (m/z 191) are shown in Figure 5.23. Diterpenoids mostly 

predominate sesquiterpenoids in the studied coals except in some Balingian, Nyalau and 

Lamja formation samples where sesquiterpenoids predominate, possibly due to their 

relatively higher thermal maturity (Jiang & George, 2018). 
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diterpenoids 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Retention Time (min) 
 

Figure 5.22: Partial m/z 123 chromatograms of the aliphatic hydrocarbon fractions 
showing the distributions of sesquiterpenoids and diterpenoids. 4β(H)-E – 4β(H)- 
Eudesmane; 8β(H)-D – 8β(H)-drimane; 8β(H)-D – 8β(H)-Homodrimane; 8α(H)-H 
– 8α(H)-Homodrimane; 18NIP – 4-18-nor-isoprimaranes; 19NIP – 4-19-nor- 
isoprimarane; R – rimuane; IP – sopimarane; P – 16(H)-phyllocladane; βP – 
16β(H)-phyllocladane; L – 8-labdane; K – ent-16(H)-kaurane; NT – C19-17- 
nortetracyclane. 
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Figure 5.22, continued. 
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dU 
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Figure 5.23: Partial mass chromatograms (m/z 191) of the aliphatic hydrocarbon 
fractions showing the distributions of triterpenoids. dO: 10β(H)-des-A-olenane; 
dL: 10β(H)-des-A-lupane; dU: 10β(H)-des-A-ursane; dH: 18β(H)-des-E-hopane. 
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5.10.3.1 Sesquiterpenoids 
 
 

Bicyclic sesquiterpenoids are ubiquitous components of sediments, peats, coals and 

crude oils with a decahydronaphthalene skeleton substituted by alkyl side chains (Otto 

et al. 1997; Nytoft et al., 2009; Yin et al., 2020). Based on diagnostic fragment ions, 

published gas chromatographic elution orders, and comparison with published mass 

spectra (Böcker et al., 2013; Yan et al., 2019; Yin et al., 2020), C14 to C16 bicyclic 

sesquiterpenoids, 8β(H)-drimane, 8β(H)-homodrimane and 8α(H)-homodrimane were 

identified in the investigated coals (Figure 5.22). In addition, 4β(H)-eudesmane was 

observed in the Cretaceous Benue Trough and the Miocene Nyalau Formation coals 

while noticeably absent in the Pliocene Liang Formation coals. The compound is a 

diagnostic marker for plant input as it is formed from higher plant precursors β- 

eudesmol and γ-selinene (Alexander et al., 1983; Jiang & George, 2018). In contrast, a 

microbial origin has been established for 8β(H)-drimane as it is formed either directly 

from compounds with the bicyclic ring system or from the degradation of higher 

terpenes (Alexander et al., 1983). The presence of bicyclic alkanes in the coals is thus 

suggestive of a bacterial contribution to OM input (Romero-Sarmiento et al., 2011). 

 
Following findings by earlier studies (Noble et al., 1987; Weston et al., 1989) 

establishing a correlation between thermal maturity and the relative abundance of 

rearranged to total drimanes, Yan et al. (2019) simulated the thermal evolution of 

bicyclic sesquiterpenes, and results of the pyrolysis experiments support the postulation 

that ratios of sesquiterpenoid compounds show upward trends with increasing 

temperature. Hence, based on the thermostability of 8β(H)-sesquiterpenoid compounds, 

Yan et al. (2019) proposed three sesquiterpenoid parameters as maturity indicators in 

low maturity samples (Table 5.19). Ratios of the 8β(H)-drimane/8α(H)-homodrimane, 

8β(H)-drimane/8β(H)-homodrimane, and 8β(H)-homodrimane/8α(H)-homodrimane 
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parameters are mostly higher for the Benue Trough coals with mean values of 12.18, 
 

2.14 and 11.90, respectively, and lower for the Sarawak Basin coals with corresponding 

mean values of 4.40, 4.37 and 1.93 (Table 5.19). The sesquiterpenoid parameters imply 

relatively higher thermal maturity for the Benue Trough samples (Noble et al., 1987; 

Yan et al., 2019). 

 
 

Table 5.19: Sesquiterpenoid parameters for the studied coals. 

Sample 8β(H)-D/ 
8α(H)-HD 

8β(H)-D/ 
8β(H)-HD 

8β(H)-HD/ 
8α(H)-HD 

8β(H)-HD/ 
[8β(H)-HD+8β(H)-D] 

B01-1 2.38 2.62 0.91 0.28 
B01-4 9.01 3.11 2.90 0.24 
B01-5 3.10 6.72 0.46 0.13 
B02-4 3.52 3.19 1.10 0.24 
B03-2 1.94 0.84 2.32 0.54 
B03-3 10.80 2.00 5.39 0.33 
B03-6 5.54 3.42 1.62 0.23 
E55-2 6.28 3.89 1.62 0.20 

L04A-1 - - - - 
L04B-1 - 1.23 - 0.45 

ML46A-6 5.34 2.82 1.90 0.26 
ML46A-7 9.42 0.32 29.45 0.76 

BG1 1.34 2.63 0.51 0.28 
BG2 1.78 1.91 0.93 0.34 

0464A 2.08 1.63 1.28 0.38 
M03-2 1.73 1.80 0.96 0.36 
MK1 1.57 3.91 0.40 0.20 
MK2 0.62 1.93 0.32 0.34 

MK3A 1.04 0.57 1.83 0.64 
MK3B 0.77 0.31 2.47 0.76 
MP1L 0.89 1.30 0.69 0.44 
MP1M 0.80 1.53 0.52 0.40 
MP1U - - - - 
MP2L 3.27 5.23 0.63 0.16 
MP2U 2.74 5.28 0.52 0.16 
MP3L 3.44 5.38 0.64 0.16 
MP3M 0.27 1.59 0.17 0.39 
MP3U 23.44 40.95 0.57 0.02 
MP4L 3.94 3.91 1.01 0.20 
MP4M 9.21 8.87 1.04 0.10 
MP4U 2.73 5.49 0.50 0.15 
MP5L 2.93 2.65 1.11 0.27 
MP5M 2.96 6.29 0.47 0.14 
MP5U 4.40 6.61 0.67 0.13 
MP6L 5.37 7.13 0.75 0.12 

D: drimane; HD: homodrimane 
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Table 5.19, continued. 

Sample 8β(H)-D/ 
8α(H)-HD 

8β(H)-D/ 
8β(H)-HD 

8β(H)-HD/ 
8α(H)-HD 

8β(H)-HD/ 
(8β(H)-HD+8β(H)-D 

MP6M 0.97 1.27 0.77 0.44 
MP6U 1.47 1.82 0.81 0.35 
MP7L 1.80 3.77 0.48 0.21 
MP7M 2.31 5.76 0.40 0.15 
MP7U 21.53 6.36 3.39 0.14 

MGL3A 3.37 4.37 0.77 0.19 
MGL4A 5.12 1.58 3.25 0.39 
MGL1C 6.35 5.42 1.17 0.16 
MGL2A 2.14 3.85 0.56 0.21 
MGL2B 153.21 1.38 111.09 0.42 
MGL2H 3.13 0.68 4.57 0.59 
MGL2I 5.50 0.82 6.67 0.55 
MGL2O 8.21 1.20 6.86 0.46 
MGL2P 1.74 0.60 2.90 0.63 
MGL2T 2.98 8.02 0.37 0.11 

AFZ 7.53 0.44 17.06 0.69 
ENG 9.94 2.72 3.66 0.27 
IMG 2.98 0.35 8.45 0.74 
OGB 1.22 1.75 0.70 0.36 
OKB 2.50 4.74 0.53 0.17 
WKP 0.64 1.10 0.58 0.48 
CKL 3.04 0.13 24.23 0.89 

LMZ1 3.39 0.12 27.13 0.89 
LFO 17.85 1.09 16.34 0.48 
SKJ 2.74 2.33 1.17 0.30 

 
 
 
 

5.10.3.2 Diterpenoids 
 
 

Diterpenoids are generally regarded as conifer vegetation biomarkers since they are 

found primarily in gymnosperm species and only in a few angiosperms (Otto et al., 

1997; Nakamura et al., 2010). Diterpenoids are a very diverse class of terpenoids with 

over 2000 compounds and 100 skeletal types identified and proven to belong to 17 

structural classes in conifers (Otto & Wilde, 2001). Based on the number of rings in 

their skeletons, diterpenoids in conifers can be classified into three major classes, 

namely bicyclic, tricyclic, and tetracyclic diterpenoids (Table 5.20). Bicyclic terpenoids 

include the labdanes and clerodanes while tricyclic terpenoids comprise primaranes and 
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abietanes. Tetracyclic diterpenoids, which are derived from the cyclization of some 

tricyclic diterpenoids and their subsequent rearrangement, include phyllocladanes, 

beyeranes, kauranes, atisanes, and trachylobanes (Otto & Wilde, 2001). 

 
 

Table 5.20: Classification of major diterpenoids in conifers (Otto & Wilde, 2001). 
Groups Structural class Occurrence in conifer families 
Bicyclic Labdanes All families 

Clerodanes Araucaria 

Tricyclic Isopimaranes All families 

Pimaranes All families except Phyllocladaceae and 
Taxaceae 

Normal abietanes All families except Phyllocladaceae 

Phenolic abietanes Cupressaceae s.str., Taxodiaceae, 
Podocarpaceae, Cedrus, Pinus, Araucaria 

Totaranes Cupressaceae s.str., Podocarpaceae 
Podocarpanes Podocarpaceae, Pinus 

Rimuene Cupressaceae s.str., Taxodiaceae, 
Podocarpaceae, Phyllocladaceae 

Tetracyclic Phyllocladanes Cupressaceae s.str., Podocarpaceae, Araucaria, 

Taxodiaceae, Phyllocladus, Picea 

Beyeranes Cupressaceae s.str., Podocarpaceae, Araucaria 

Kauranes All families except Taxaceae 
 
 
 

The varying abundance of these three major classes of naturally occurring 

diterpenoid hydrocarbons is presumably associated with the varying resin inputs from 

gymnosperms and/or certain angiosperms (Noble et al., 1985). According to Otto & 

Wilde (2001), diterpenoids occur in all conifer families (Pinaceae, Cupressaceae S. Str, 

Taxodiaceae, Sciadopityaceae, Podocarpaceae, Araucariaceae, Phyllocladaceae, and 

Taxaceae) except in Cephalotaxaceae. However, tetracyclic diterpanes, phenolic 

abietanes, totaranes and rimuene are wholly absent in the Pinaceae family while labdane 

acids are mostly absent. In addition, normal abietanes and primaric acid are absent in 

the Phyllocladaceae and Cupressaceae s.str families, respectively. Although labdane- 

type compounds are the most prevalent in conifers, isoprimaranes and pimaranes are 
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equally common constituents. As a result, labdanes, isopimaranes and pimaranes are 

generally regarded as non-specific conifer biomarkers (Otto & Wilde, 2001). 

 
Aliphatic diterpenoids such as 8β-labdane (βL), 4-19-nor-isoprimarane (19NIP), 

8-labdane (L), 18-norabietane (NA), 4-18-nor-isoprimarane (18NIP), rimuane (R), 

C19-17-nortetracyclane (NT), ent-beyerane (B), isopimarane (IP), 16β(H)-phyllocladane 

(βP), abietane (A), and 16(H)-phyllocladane (P) were observed in varying 

abundances in the studied coals. In contrast, ent-16β(H)-kaurane (βK) and ent-16(H)- 

kaurane (K) were not present in detectable amounts. In addition, the abundance of the 

observed diterpanes is higher and varied in the Benue Trough samples than in the 

Sarawak Basin samples. Nevertheless, the aliphatic diterpenoid distributions are 

generally dominated by 14-18-nor-isoprimarane and 16(H)-phyllocladane, while 18- 

norabietane and abietane are only present in minor abundances. The absence of 

cuparane- and cedrane-class sesquiterpenoids, totarane, phenolic abietanes and most 

tetracyclic diterpenoids in the Tertiary Sarawak Basin coals suggests a predominantly 

Pinaceae family origin for the diterpenoids. In contrast, the presence of pimaranes and 

tetracyclic diterpanes in the Late Cretaceous Benue Trough coals is characteristic of 

contributions from Araucareacea and Podocarpaceae (Weston et al., 1989; Otto et al., 

1997; Bastow et al., 2001; Otto & Wilde, 2001). Similarly, various studies have 

documented the predominant contribution of Araucareacea and Podocarpaceae groups 

to the higher plant communities during the Late Cretaceous and Paleogene in Australia 

and New Zealand coals (Killops et al., 1994; Killops et al., 1995; Jiang & George, 2018; 

Jiang et al., 2020). 

 
Furthermore, the absence or presence in low abundances of 16β(H)-phyllocladane in 

the studied coals is indicative of low thermal maturity (Alexander et al., 1987). 

According to Noble et al. (1985), 16(H)-phyllocladane predominates over 16β(H)- 
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phyllocladane in low-rank coals as the more geochemically stable 16β(H) isomer 

relatively increases with higher thermal maturity. βP/(βP+αP) ratios are slightly higher 

for the Benue Trough coals, ranging from 0.11 to 0.87 and slightly lower for the 

Sarawak Basin coals with values varying between 0.05 and 0.58 (Table 5.21). 

βP/(βP+αP) ratios for the studied coals are suggestive of relatively higher thermal 

maturity for the Benue Trough coals (Noble et al., 1985; Alexander et al., 1987). 

 
 
 

5.10.3.3 Triterpenoids 
 
 

As shown in Figure 5.23, the distributions of aliphatic triterpenoids in the studied 

coals are characterised by the presence in varying proportions of 10β(H)-des-A- 

oleanane (dO), 10β(H)-des-A-ursane (dU), 10β(H)-des-A-lupane (dL), and 18β(H)-des- 

E-hopane (dH), indicating the contribution of angiosperms to paleoflora of the study 

areas (Killops et al., 1994). Conversely, 18α(H)-oleanane (O), a broadly regarded 

diagnostic indicator of angiosperm contribution to paleoflora, was not detected in all the 

studied samples. The unique absence of 18α(H)-oleanane, particularly, in the Tertiary 

Sarawak Basin coals is in agreement with the finding by Murray et al. (1997) that 

Tertiary coals from Southeast Asia contain no oleananes or oleanoid triterpanes 

Similarly, low amount of oleanane was detected in the Early Eocene sediments from 

Northeast India (Chattopadhyay & Dutta, 2014), thus corroborating the conclusion by 

Murray et al. (1997) that the abundance of oleananes is no indicator of the degree of 

angiosperm land plant contribution to organic matter. According to the authors, the 

absence of saturated oleanoids is possibly due to the efficient aromatisation and or 

rearrangement of precursors lipids. In addition, Murray et al. (1997) concluded that the 

abundance of oleananes and rearranged oleananes is primarily influenced by the extent 

of early-diagenetic marine influence. 
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The varying abundances of aliphatic des-A-triterpenes have been employed to infer 

changes in paleovegetation; thus, this could be useful for estimating paleoenvironmental 

conditions (Killops et al., 1995; Jacob et al., 2007; Huang et al., 2008; Jiang & George, 

2018; Jiang et al. 2020). The Sarawak Basin Formation coals are mostly dominated by 

the C24 ring-A degraded ursane derivative while the Benue Trough coals are generally 

dominated by the lupane derivative (Table 5.21). The predominance of 10β(H)-des-A- 

lupane in the Benue Trough coals is generally suggestive of relatively drier conditions 

(Jacob et al., 2007). 

 
 
 

5.10.3.4 Angiosperm-gymnosperm ratios 
 
 

The relative abundances of angiosperm-derived triterpenoid and gymnosperm- 

derived diterpenoid biomarkers have been widely utilized to reconstruct variation in 

past vegetation and climate. Killops et al. (1995) proposed the angiosperm/gymnosperm 

index (AGI) to evaluate flora changes in the Taranaki Basin, New Zealand during the 

Cretaceous and Paleogene. Similarly, based on the analysis of angiosperm fossils from 

Japan, Nakamura et al. (2010) proposed the aliphatic angiosperm/gymnosperm index 

(al-AGI’) and aromatic angiosperm/gymnosperm index (ar-AGI’). In addition, Bechtel 

et al. (2001, 2008) proposed the Di-/Tri-terpenoids and Di-/(Di-+Tri-terpenoids) ratios. 

Furthermore, Haberer et al. (2006) proposed the use of angiosperm-gymnosperm 

aromatic ratio (AGAR) to determine the contribution of angiosperms and gymnosperms 

to paleovegetation. 

 
The AGI, al-AGI’ and Di-/Tri-terpenoids parameters are calculated for the studied 

Sarawak Basin and Benue Trough coals (Table 5.21). Di-/Tri-terpenoids ratios for the 

coals range from 0.12 to 3.49 with average values of 0.74 and 2.20 for the Sarawak 
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Basin and Benue Trough coals, respectively. Additionally, al-AGI’ ratios range from 
 

0.41 to 0.89 and 0.21 to 0.45 with average ratios of 0.60 and 0.33 for the Sarawak Basin 

and Benue Trough coals, respectively. These parameters are suggestive of a 

predominant contribution of angiosperms and gymnosperms, respectively, to the 

paleoflora of the Sarawak Basin and Benue Trough (Killops et al., 1995; Nakamura et 

al., 2010; Bechtel et al., 2008). 

 
Table 5.21: Di- and tri-terpenoid parameters for the studied coals. 

Sample dL/(dL+dO) βP/(βP+αP) IP/TD AGI Al-AGI' Di/Tri 
B01-1 - - 0.23 - 0.72 0.38 
B01-4 0.25 - - 8.44 0.89 0.12 
B01-5 - - - - 0.73 0.37 
B02-4 0.40 - - 1.32 0.57 0.76 
B03-2 0.87 - - 1.13 0.53 0.89 
B03-3 0.84 - - 1.21 0.55 0.82 
B03-6 - - - - 0.61 0.65 
E55-2 0.78 - - 2.34 0.70 0.43 

L04A-1 0.71 - - 2.79 0.74 0.36 
L04B-1 - - - - 0.43 1.35 

ML46A-6 - - - 0.73 0.42 1.38 
ML46A-7 0.84 - - 0.94 0.48 1.06 

BG1 0.80 - 0.13 1.01 0.50 0.99 
BG2 0.67 - 0.25 - 0.56 0.77 

0464A 0.76 0.28 0.08 1.24 0.55 0.80 
M03-2 - - 0.15 1.36 0.58 0.73 
MK1 0.69 0.10 0.03 0.74 0.43 1.35 
MK2 0.32 0.05 0.14 0.77 0.43 1.31 

MK3A 0.33 - 0.40 1.11 0.53 0.90 
MK3B - - 0.40 1.14 0.53 0.88 
MP1L 0.61 - 0.23 1.95 0.66 0.51 
MP1M 0.70 - - 0.97 0.49 1.03 
MP1U - - - - - - 
MP2L 0.11 - - 3.21 0.76 0.31 
MP2U - - - 3.67 0.79 0.27 
MP3L 0.54 0.32 0.11 1.10 0.52 0.91 
MP3M 0.48 - - - - - 
MP3U 0.30 - - 0.70 0.41 1.42 
MP4L 0.32 - 0.27 1.92 0.66 0.52 
MP4M 0.11 0.58 0.13 0.77 0.44 1.30 
MP4U 0.38 - - 2.61 0.72 0.38 

dL: 10β(H)-des-A-lupane; dO: 10β(H)-des-A-oleanane; αP: 16(H)- phyllocladane; βP: 
16β(H)-phyllocladane; IP: isopimarane; TD: total diterpenoids; AGI: 
angiosperm/gymnosperm index (Killops et al., 1995); al-AGI’: aliphatic angiosperm- 
gymnosperm index (Nakamura et al., 2010); Di/Tri: diterpenoids/triterpenoids (Bechtel 
et al., 2001). 
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Table 5.21, continued. 
Sample dL/(dL+dO) βP/(βP+αP) IP/TD AGI Al-AGI' Di/Tri 
MP5L 0.16 - - 1.77 0.64 0.56 
MP5M 0.07 - - 1.57 0.61 0.64 
MP5U 0.17 - - 3.29 0.77 0.30 
MP6L 0.40 - - 1.25 0.56 0.80 
MP6M 0.18 - - 3.63 0.78 0.28 
MP6U - - 0.22 1.53 0.60 0.66 
MP7L - 0.48 - 1.59 0.58 0.63 
MP7M 0.37 - - 1.71 0.63 0.59 
MP7U 0.82 - - 1.59 0.61 0.63 

MGL3A - 0.23 0.10 0.29 0.22 3.47 
MGL4A - 0.24 0.05 - 0.39 1.55 
MGL1C - - - 0.46 0.32 2.17 
MGL2A - - - 0.81 0.45 1.23 
MGL2B - 0.42 0.08 0.29 0.21 3.49 
MGL2H - 0.25 0.11 0.42 0.30 2.37 
MGL2I - 0.17 0.04 0.34 0.25 2.96 
MGL2O - 0.14 0.05 0.40 0.29 2.47 
MGL2P - 0.19 0.05 0.44 0.31 2.27 
MGL2T - - - 0.70 0.41 1.44 

AFZ 0.43 - - 0.64 0.39 1.57 
ENG - 0.30 0.06 0.62 0.38 1.62 
IMG 0.39 0.11 - 0.62 0.38 1.61 
OGB 0.41 - - 0.41 0.29 2.43 
OKB - 0.26 0.07 0.46 0.32 2.16 
WKP 0.57 0.19 0.11 0.38 0.27 2.65 
CKL - 0.85 0.11 0.36 0.26 2.78 

LMZ1 - 0.87 0.09 0.31 0.24 3.18 
LFO - 0.15 0.07 0.83 0.45 1.21 
SKJ - 0.14 0.08 0.72 0.42 1.39 

 
 
 

5.11 Aromatic Hydrocarbons 
 
 

5.11.1 Total aromatic hydrocarbons 
 
 

Aromatic compounds such as dibenzothiophene (DBT), dibenzofuran (DBF), 

phenanthrene (PHE), fluorene (F), naphthalene (Np) and their alkylated homologues 

were identified in the aromatic fractions of the investigated coal samples. The TICs of 

the aromatic fractions of the coals are, however, dominated by naphthalene, 

phenanthrene and their alkylated homologues (Figure 5.24). 
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Figure 5.24: Total ion chromatograms (TICs) of the aromatic fractions of 
representative samples of the Sarawak coals. 
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Figure 5.24, continued. 
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5.11.2 Alkylated Phenanthrenes and Naphthalenes 
 
 

Alkylated homologues of aromatic compounds are abundant in the coals and their 

abundance are useful indicators of thermal maturity (Chakhmakhchev & Suzuki, 1995; 

Chakhmakhchev et al., 1997; Radke et al. 1986), depositional environment and 

lithologies (Pu et al., 1990; Hughes et al., 1995; Li et al., 2013) and source facies 

(Radke et al., 2000; Asif & Wenger, 2019). 

 
 
 

5.11.2.1 Alkylated Phenanthrenes 
 
 

The alkylphenanthrenes observed in the studied coals include methylphenanthrene 

(MP), ethylphenanthrene (EP), and dimethylphenanthrene (DMP) isomers (Figure 

5.25). The Liang Formation coals from Sarawak Basin generally show a dominant 

abundance of 1-MP over other MP isomers, while the Nyalau Formation coals show a 

varying distribution of MPs with significant abundances of 1-MP, 2-MP, and 9-MP. 

The Balingian Formation coals are, however, dominated by 9-MP. Similarly, all the 

Benue Trough samples are dominated by 9-MP, indicating the presence of marine algal 

organic matter (Budzinski et al., 1995). The EPs are in very low abundance when 

compared to the DMPs in all the samples. The DMP are, however, dominated by 1,6 + 

2,5 + 2,9-DMP and 1,7-DMP. Maturity- and source-related parameters based on the 

abundances of phenanthrene, and its alkylated homologues in the Sarawak Basin and 

Benue trough coals are given in Tables 5.21 and 5.22, respectively. 
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Table 5.22: Alkylated phenanthrene-based parameters for the Sarawak Basin coals. 

Sample MPDF MPR MPI-1 %Rc 
MPI-1 MPI-2 DPR Log (1- / 

9-MP) 
Log (1,7-DMP/1-3-+3,9- 

+2,10-+3,10-DMP) 
Log (Retene/ 

9-MP) MP/PHE 

B01-1 0.37 0.46 0.15 0.49 0.19 0.12 0.56 0.18 1.41 0.34 
B01-4 0.01 0.01 0.01 0.41 0.02 - - 1.38 4.22 25.29 
B01-5 0.34 0.35 0.13 0.48 0.15 - 0.80 0.66 1.45 0.30 
B02-4 0.18 0.14 0.12 0.47 0.15 0.09 1.16 0.61 2.49 0.73 
B03-2 0.55 0.91 0.12 0.47 0.14 0.17 0.52 0.25 1.02 0.16 
B03-3 0.02 0.01 0.02 0.41 0.03 - - - - 10.15 
B03-6 0.49 0.74 0.16 0.50 0.20 - 0.59 0.40 0.95 0.25 
E55-2 0.35 0.46 0.26 0.55 0.37 0.02 0.73 0.57 0.97 0.72 

L04A-1 0.58 1.26 0.15 0.49 0.19 - 0.36 0.30 0.79 0.19 
L04B-1 0.56 1.09 0.19 0.52 0.23 - 0.34 0.17 0.80 0.26 

ML46A-6 0.19 0.17 0.11 0.47 0.15 0.07 1.18 0.47 1.33 0.57 
ML46A-7 0.01 0.01 0.02 0.41 0.03 - - 1.52 - 16.50 

BG1 0.03 0.03 0.05 0.43 0.08 - - - - 44.04 
BG2 0.06 0.04 0.09 0.45 0.10 - 1.31 0.21 2.05 14.75 

0464A 0.32 1.08 0.15 0.49 0.17 0.15 -0.49 -0.42 0.34 0.39 
M03-2 0.22 0.53 0.16 0.49 0.19 - -0.31 - 0.06 0.76 
MK1 0.46 1.31 0.63 0.78 0.86 0.21 -0.12 0.07 0.05 1.85 
MK2 0.10 0.10 0.12 0.47 0.06 - -0.40 0.83 0.66 2.95 

MK3A 0.16 0.40 0.22 0.53 0.32 - -0.30 0.05 1.20 4.91 
MK3B 0.13 0.68 0.18 0.51 0.19 0.10 -0.86 -0.24 1.15 4.16 

PHE: Phenanthrene; MP: Methylphenanthrene; MPDF = (3-+2-MP)/(3-+2-+1-+9-MP); MPR = 2-MP/1-MP; MPI-1 = 1.5 x (2-+3-MP)/(PHE+1- 
MP+9-MP); %Rc: Calculated reflectance = (0.6 x MPI-1) + 0.4; MPI-2 = (3 x 2-MP)/(PHE+1-MP+9-MP) ; DPR = (3,5-+2,6-DMP+2,7-DMP)/(1-3- 
+3,9-+2,10-+3,10-DMP+1,6-+2,9-+2,5-DMP); 
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Table 5.22, continued. 

Sample MPDF MPR MPI-1 %Rc 
MPI-1 MPI-2 DPR Log (1- / 

9-MP) 
Log (1,7-DMP/1-3-+3,9- 

+2,10-+3,10-DMP) 
Log (Retene/ 

9-MP) MP/P 

MP1L 0.41 0.76 0.74 0.84 1.21 0.01 0.48 0.72 2.12 4.13 
MP1M 0.26 0.31 0.42 0.65 0.66 - 0.83 0.92 - 5.46 
MP1U 0.17 0.17 0.20 0.52 0.29 - 0.75 0.41 1.92 2.49 
MP2L 0.47 1.20 0.93 0.96 1.42 - 0.10 0.47 - 4.58 
MP2U 0.40 1.03 0.65 0.79 1.00 - 0.01 - - 2.97 
MP3L 0.40 0.84 0.65 0.79 0.83 0.08 0.03 0.36 - 2.99 
MP3M 0.35 0.68 0.39 0.64 0.57 - 0.10 0.52 - 1.50 
MP3U 0.35 0.66 0.51 0.71 0.72 0.05 0.12 0.48 - 2.72 
MP4L 0.39 1.12 0.47 0.68 0.68 0.06 -0.16 0.47 - 1.62 
MP4M 0.41 0.74 0.79 0.87 1.21 - 0.43 - - 5.04 
MP4U 0.44 1.28 0.48 0.69 0.70 - -0.08 0.37 - 1.21 
MP5L 0.45 1.40 0.50 0.70 0.69 0.10 -0.16 0.39 -1.45 1.23 
MP5M 0.39 1.39 0.51 0.71 0.76 0.05 -0.30 0.44 -1.25 1.93 
MP5U 0.48 1.20 0.51 0.71 0.78 - 0.15 0.78 - 1.13 
MP6L 0.53 1.28 1.10 1.06 1.48 - 0.15 0.75 - 4.10 
MP6M 0.49 1.01 1.24 1.14 1.98 - 0.49 - - 12.25 
MP6U 0.48 1.09 0.91 0.95 1.44 - 0.32 0.61 - 3.60 
MP7L 0.46 1.06 1.04 1.02 1.57 - 0.20 0.54 - 7.95 
MP7M 0.53 1.43 1.51 1.31 2.41 - 0.23 - - 17.31 
MP7U 0.56 1.04 1.34 1.20 2.05 - 1.32 0.90 - 5.11 
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Table 5.23 Alkylated phenanthrene-based parameters for the Benue Trough coals. 

Sample MPDF MPR MPI-1 %Rc 
MPI-1 MPI-2 DPR Log (1- / 

9-MP) 
Log (1,7-DMP/1-3-+3,9- 

+2,10-+3,10-DMP) 
Log (Retene/ 

9-MP) MP/PHE 

MGL3A 0.31 1.45 0.29 0.58 0.47 0.21 -0.48 0.32 -0.50 0.84 
MGL4A 0.35 1.52 0.23 0.54 0.32 0.20 -0.51 0.10 -0.22 0.60 
MGL1C 0.39 1.53 0.34 0.60 0.46 - -0.41 0.13 -0.13 0.43 
MGL2A 0.24 0.94 0.29 0.57 0.43 0.11 -0.48 0.31 -0.45 0.86 
MGL2B 0.19 1.03 0.26 0.56 0.34 0.15 -0.75 0.40 -0.64 0.85 
MGL2H 0.26 0.74 0.28 0.57 0.39 0.24 -0.32 0.23 -0.41 0.61 
MGL2I 0.27 0.66 0.41 0.65 0.61 0.15 -0.16 0.42 -0.41 0.72 
MGL2O 0.22 0.42 0.29 0.58 0.39 0.08 -0.10 0.14 -0.32 0.70 
MGL2P 0.21 0.41 0.23 0.54 0.29 - -0.14 0.23 -0.14 0.76 
MGL2T 0.22 0.46 0.30 0.58 0.40 0.08 -0.17 0.03 -0.49 0.67 

AFZ 0.32 0.97 0.48 0.69 0.55 0.12 -0.42 -0.16 0.32 3.31 
ENG 0.29 0.92 0.21 0.52 0.26 - -0.41 -0.13 0.29 0.73 
IMG 0.35 1.01 0.47 0.68 0.59 0.09 -0.30 -0.23 0.35 2.21 
OGB 0.32 0.67 0.47 0.68 0.61 0.07 -0.09 -0.30 0.32 2.94 
OKB 0.29 0.80 0.16 0.50 0.20 - -0.33 0.18 0.29 0.49 
WKP 0.34 0.80 0.31 0.58 0.38 0.08 -0.18 0.13 0.34 1.00 
CKL 0.38 0.81 0.71 0.83 0.76 0.10 -0.16 -0.27 -1.05 5.16 

LMZ1 0.41 1.12 0.67 0.80 0.85 0.22 -0.20 0.00 -1.27 3.19 
LFO 0.28 1.33 0.46 0.67 0.56 - -0.65 -0.14 -1.11 4.62 
SKJ 0.33 0.81 0.19 0.52 0.24 - -0.24 0.03 0.00 0.54 

PHE: Phenanthrene; MP: Methylphenanthrene; MPDF = (3-+2-MP)/(3-+2-+1-+9-MP); MPR = 2-MP/1-MP; MPI-1 = 1.5 x (2-+3-MP)/(PHE+1- 
MP+9-MP); %Rc: Calculated reflectance = (0.6 x MPI-1) + 0.4; MPI-2 = (3 x 2-MP)/(PHE+1-MP+9-MP) ; DPR = (3,5-+2,6-DMP+2,7-DMP)/(1-3- 
+3,9-+2,10-+3,10-DMP+1,6-+2,9-+2,5-DMP). 
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5.11.2.2 Alkylated Naphthalenes 
 
 

The alkylnaphthalenes are mainly composed of methylnaphthalene (MN), 

dimethylnaphthalene (DMN) and trimethylnaphthalene (TMN) and 

tetramethylnaphthalene (TeMN) isomers. (Figure 5.26; Table 5.23). The most abundant 

DMN in the samples is generally 1,6-DMN, while 2,6 + 2,7-DMN predominates in a 

few samples. The distribution of TMNs in most samples is dominated by 1,6,7-TMN 

but with significant abundances of 1,2,5-TMN and 1,3,6-TMN in the Sarawak Basin 

and Benue Trough samples, respectively. The studied coals show a varying distribution 

of MNs, with the methylnaphthalene ratio (MNR; 2-MN/1-MN) ranging from 0.38 to 

7.32 (avg. 1.29) and 0.72 to 2.00 (avg. 1.21) in the Malaysian and Nigerian coals, 

respectively. Other thermal maturity- and source-related alkylated naphthalene 

parameters are accordingly presented in Tables 5.24 and 5.25. 

 
Table 5.24: Alkylnaphthalenes identified in studied coals (Figure 5.26). 

Peak Compounds 
a 2,6- + 2,7-dimethylnaphthalene 
b 1,3- + 1,7-dimethylnaphthalene 
c 1,6-dimethylnaphthalene 
d 1,4- + 2,3-dimethylnaphthalene 
e 1,5-dimethylnaphthalene 
f 1,2-dimethylnaphthalene 
g 1,3,7-trimethylnaphthalene 
h 1,3,6-trimethylnaphthalene 
i 1,3,5- + 1,4,6-trimethylnaphthalene 
j 2,3,6-trimethylnaphthalene 
k 1,6,7-trimethylnaphthalene 
l 1,2,6-trimethylnaphthalene 
m 1,2,4-trimethylnaphthalene 
n 1,2,5-trimethylnaphthalene 
o 1,3,5,7-tetramethylnaphthalene 
p 1,3,6,7-tetramethylnaphthalene 
q 1,2,4,6- + 1,2,4,7- + 1,4,6,7-tetramethylnaphthalene 
r 1,2,5,7-tetramethylnaphthalene 
s 2,3,6,7-tetramethylnaphthalene 
t 1,2,6,7-tetramethylnaphthalene 
u 1,2,3,7-tetramethylnaphthalene 
v 1,2,3,6-tetramethylnaphthalene 
w 1,2,5,6- + 1,2,3,5-tetramethylnaphthalene 
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Retention Time (min) 
 

Figure 5.26: Partial m/z 156 + 170 + 184 mass chromatograms showing distribution 
of dimethylnaphthalene (DMN), trimethylnaphthalene (TMN) and 
tetramethylnaphthalene (TeMN) isomers in the aromatic fractions of the studied 
coals. Labelled compounds are listed in Table 5.23. 
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Table 5.25: Alkylated naphthalene-based parameters for the Sarawak Basin coals. 

Sample MNR %Rc MNR DNRx DMR DNR-1 TNR-1 TNR-2 %Rc TNR-2 TMR TMNr TeMNr Log (1,2,5- / 
1,3,6-TMN) 

B01-1 0.81 0.96 0.29 4.54 2.14 0.60 0.65 0.79 4.48 0.19 - 0.65 
B01-4 0.45 0.90 0.39 3.15 1.36 1.10 0.53 0.72 2.00 0.23 0.16 0.30 
B01-5 0.80 0.96 0.40 3.57 2.31 0.93 0.39 0.64 4.15 - - 0.62 
B02-4 0.39 0.89 0.23 3.92 2.25 0.73 0.51 0.70 4.67 0.11 0.10 0.67 
B03-2 0.64 0.93 1.33 8.50 14.86 0.57 0.63 0.78 6.75 0.11 0.31 0.83 
B03-3 1.48 1.07 0.54 3.38 4.33 0.93 0.48 0.69 2.54 0.25 - 0.40 
B03-6 0.56 0.91 0.38 13.77 1.54 0.89 0.77 0.86 2.87 0.19 - 0.46 
E55-2 1.21 1.02 0.16 3.67 1.60 0.59 0.42 0.65 3.12 0.24 0.31 0.49 

L04A-1 0.38 0.88 1.58 7.50 13.25 - - - - - 0.33 - 
L04B-1 - - - - - - - - - - 0.12 - 

ML46A-6 0.86 0.97 0.22 10.40 5.50 0.41 0.39 0.63 5.83 0.19 - 0.77 
ML46A-7 - - - - - 0.65 0.40 0.64 3.24 0.18 0.28 0.51 

BG1 - - - - -  - - -  - - 
BG2 - - - - - 0.89 0.69 0.81 2.25 0.21 - 0.35 

0464A - - 1.67 2.55 0.79 0.79 0.67 0.80 4.74 0.17 0.14 0.68 
M03-2 1.43 1.06 0.54 1.29 1.93 0.80 0.63 0.78 2.04 0.37 0.23 0.31 
MK1 1.61 1.09 - - - - - - - - 0.39 - 
MK2 2.66 1.27 1.32 - - - - - - - - - 

MK3A 1.69 1.11 0.66 1.91 2.50 - - - - 0.44 0.19 - 
MK3B 1.52 1.08 0.69 1.59 2.17 0.66 1.59 1.36 0.95 0.60 0.13 -0.02 

MN: Methylnaphthalene; DMN: Dimethylnaphthalene; TMN: Trimethylnaphthalene; TeMN: Tetramethylnaphthalene; MNR = 2-MN/1-MN; %Rc 
MNR = (0.17 x MNR + 0.82); DNRx = (2,6-+2,7-DMN)/1,6-DMN; DMR = (1,5-+1,6-DMN)/(1,3-+1,7-DMN); DNR-1 = (2,6-+2,7-DMN)/1,5-DMN; 
TNR-1 = 2,3,6-TMN/(1,4,6-+1,3,5-DMN); TNR-2 = (1,3,7-+2,3,6-TMN)/(1,3,5-+1,3,6-+1,4,6-TMN); %Rc TNR-2 = 0.4 + (0.6 x TNR-2) ; TMR = 
1,2,5-TMN/2,3,6-TMN; TMNr = 1,3,7-TMN/(1,3,7-1,2,5-TMN); TeMNr = 1,3,6,7-TeMN/(1,3,6,7-+1,2,5,6-TeMN). 
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Table 5.25, continued. 

Sample MNR %Rc MNR DNRx DMR DNR-1 TNR-1 TNR-2 %Rc TNR-2 TMR TMNr TeMNr Log (1,2,5- / 
1,3,6-TMN) 

MP1L - - 0.33 2.48 1.71 1.00 0.39 0.63 2.57 0.10 0.08 0.41 
MP1M 0.39 0.89 0.20 2.74 1.05 0.45 0.23 0.54 4.80 0.09 0.09 0.68 
MP1U 1.79 1.12 0.15 3.10 0.54 0.75 0.33 0.60 4.07 0.11 0.18 0.61 
MP2L 0.51 0.91 0.47 1.29 1.66 0.56 0.58 0.75 1.08 0.54 0.18 0.03 
MP2U 1.36 1.05 0.67 2.70 - 0.61 0.44 0.66 3.09 0.19 0.24 0.49 
MP3L 0.98 0.99 0.53 1.91 2.90 1.04 0.87 0.92 1.83 0.31 0.14 0.26 
MP3M 0.86 0.97 0.14 - 2.79 1.13 0.50 0.70 6.22 - 0.12 0.79 
MP3U 1.37 1.05 0.38 4.67 3.30 1.50 0.70 0.82 5.00 0.05 0.08 0.70 
MP4L 0.95 0.98 0.69 4.36 4.00 0.60 0.47 0.68 4.71 0.15 0.21 0.67 
MP4M - - 0.46 - - - - - - - - - 
MP4U - - 0.41 3.88 1.83 0.38 0.18 0.51 - - 0.18 0.71 
MP5L 1.77 1.12 0.26 4.00 1.40 0.70 0.57 0.74 3.71 0.16 0.17 0.57 
MP5M 1.05 1.00 0.32 6.16 3.09 0.95 0.70 0.82 2.80 0.15 0.26 0.45 
MP5U 0.99 0.99 0.17 6.37 1.73 1.00 0.52 0.71 4.13 0.08 0.10 0.62 
MP6L 7.32 2.06 0.15 7.63 1.70 - - - - - - - 
MP6M - - - - - - - - - - - - 
MP6U 0.64 0.93 0.39 3.61 2.75 2.00 0.73 0.84 2.50 0.07 0.08 0.40 
MP7L 0.88 0.97 0.25 - 3.20 3.00 0.89 0.93 4.08 0.08 - 0.61 
MP7M - - 0.15 8.54 3.68 - - - - - - - 
MP7U - - 0.37 - - - - - - - 0.48 - 
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Table 5.26: Alkylated naphthalene-based parameters for the Benue Trough coals. 

Sample MNR %Rc MNR DNRx DMR DNR-1 TNR-1 TNR-2 %Rc TNR-2 TMR TMNr TeMNr Log (1,2,5- / 
1,3,6-TMN) 

MGL3A - - 0.61 1.01 2.48 0.81 0.57 0.74 0.56 0.67 0.71 -0.25 
MGL4A - - 1.10 2.39 - 1.11 0.61 0.76 0.82 0.49 0.50 -0.09 
MGL1C 1.41 1.06 0.53 2.13 4.43 1.28 0.85 0.91 1.10 0.37 0.36 0.04 
MGL2A 1.08 1.00 0.33 1.23 1.25 0.61 0.39 0.63 0.77 0.62 0.74 -0.12 
MGL2B 2.00 1.16 0.35 1.28 1.28 1.00 0.55 0.73 0.67 0.52 0.70 -0.17 
MGL2H 1.32 1.04 0.44 1.29 2.25 0.63 0.45 0.67 1.00 0.51 0.73 0.00 
MGL2I 1.79 1.12 0.40 1.69 1.79 2.10 0.90 0.94 0.54 0.53 0.79 -0.27 
MGL2O 0.98 0.99 0.38 1.38 2.00 1.42 0.76 0.86 0.73 0.48 0.70 -0.14 
MGL2P 0.89 0.97 0.32 1.18 1.48 0.53 0.43 0.66 1.16 0.56 0.61 0.06 
MGL2T - 0.82 0.31 1.92 1.90 0.87 0.64 0.79 1.35 0.46 0.61 0.13 

AFZ 1.55 1.08 0.67 1.44 2.29 - - - - - 0.20 - 
ENG 0.73 0.94 0.37 2.21 2.40 0.86 0.78 0.87 1.66 0.33 0.35 0.22 
IMG 0.72 0.94 0.54 1.10 1.47 0.90 0.69 0.81 3.21 0.16 0.24 0.51 
OGB - - 0.25 1.40 0.46 - - - - - 0.61 - 
OKB - - 0.20 2.91 0.84 1.04 0.87 0.92 2.50 0.22 - 0.40 
WKP 0.99 0.99 0.67 1.12 1.68 0.50 0.44 0.67 2.83 0.20 0.16 0.45 
CKL 1.23 1.03 0.42 1.05 0.95 0.61 0.51 0.71 3.65 0.16 0.24 0.56 

LMZ1 1.15 1.02 0.61 1.00 2.00 0.98 0.77 0.86 1.26 0.37 - 0.10 
LFO 1.15 1.02 0.20 3.07 1.60 0.71 0.44 0.66 1.59 0.35 0.59 0.20 
SKJ - - - - -  - - - - 0.66 - 

MN: Methylnaphthalene; DMN: Dimethylnaphthalene; TMN: Trimethylnaphthalene; TeMN: Tetramethylnaphthalene; MNR = 2-MN/1-MN; %Rc 
MNR = (0.17 x MNR + 0.82); DNRx = (2,6-+2,7-DMN)/1,6-DMN; DMR = (1,5-+1,6-DMN)/(1,3-+1,7-DMN); DNR-1 = (2,6-+2,7-DMN)/1,5-DMN; 
TNR-1 = 2,3,6-TMN/(1,4,6-+1,3,5-DMN); TNR-2 = (1,3,7-+2,3,6-TMN)/(1,3,5-+1,3,6-+1,4,6-TMN); %Rc TNR-2 = 0.4 + (0.6 x TNR-2) ; TMR = 
1,2,5-TMN/2,3,6-TMN; TMNr = 1,3,7-TMN/(1,3,7-1,2,5-TMN); TeMNr = 1,3,6,7-TeMN/(1,3,6,7-+1,2,5,6-TeMN). 
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5.11.3 Fluorene, Dibenzofuran, Dibenzothiophene, and Methyl Derivatives 
 
 

Dibenzofuran (DBF), Dibenzothiophene (DBT), and Fluorene (F) are important 

aromatic compounds in source rocks and crude oils. The compounds are abundant in the 

studied coal samples and their distributions are shown in Figure 5.27. 

 
 

Figure 5.27: Summed partial chromatograms showing the distribution of aromatic 
compounds (m/z 166 + 168 + 178 + 184) in representative samples. 
DBF: dibenzofuran; F: fluorene; DBT: dibenzothiophene; PHE: phenanthrene 
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In addition, their methylated derivatives, methyldibenzothiophenes (MDBT), 

methyldibenzofurans (MDBF) and methylfluorenes (MF), are present in the coal 

extracts (Figure 5.28). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.28: Summed partial chromatograms showing the distribution of aromatic 
compounds (m/z 182 + 180 + 198) in representative samples. 
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The distributions of these heterocyclic compounds have been employed as indicators 

of thermal maturity (Chakhmakhchev et al., 1997), source facies (Radke et al., 2000; Li 

et al., 2013; Asif & Wenger, 2019), lithologies and depositional environments (Pu et al., 

1990; Hughes et al., 1995). For example, the relative abundances of DBT and MDBT 

have been established to predominate in marine sediments, whereas F and MF 

predominate in freshwater lacustrine source rocks. Furthermore, previous studies have 

shown that DBF and MDBF dominate terrigenous organic matter deposited in oxic 

environments due to the enrichment of O-species (Pu et al., 1990; Li et al., 2013; Asif & 

Wenger, 2019). 

 
Compared with PHE, DBT abundances in the studied coals are considerably low 

with DBT/PHE ratios mostly < 1 (Table 5.27), which are typical of source rocks from 

non-marine environments (Hughes et al., 1995). Similarly, DBF/PHE ratios are all < 1, 

with average ratios of 0.11 and 0.09 for Sarawak Basin and Benue Trough samples, 

respectively. In addition, DBF/F ratios for the Sarawak Basin and Benue Trough 

samples range from 0.11 to 47.43 (avg. 4.99) and 0.20 to 3.64 (avg. 1.09), respectively. 

The lower DBF/F ratios for the Benue Trough coals imply a greater influence of the 

freshwater-lacustrine depositional environment. For the Sarawak Basin coals, the 

MDBF distribution of the Nyalau and Liang Formations are generally dominated by a 

high relative abundance of 3+2-MDBF with subordinate abundances of other MDBFs 

(Figure 5.28b). Similarly, the Balingian Formation coals are dominated by 2-MDBF but 

other MDBF are either absent or present in trace amounts. Although MDBTs are either 

absent or present in low abundance in the Liang Formation coals (Figure 5.28a), their 

distributions are mainly composed of 4-MDBT in the Balingian and Nyalau Formation 

coals (Figure 5.28c). 
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Table 5.27: Aromatic parameters based on relative abundance of methylated 
dibenzothiophene and dibenzofuran derivatives. 

Sample DBF/ 
PHE 

DBF/ 
F 

DBT/ 
PHE 

DBT/ 
DBF 

MDBF/ 
MP 

MDBT/ 
MDBF 

MDBF/ 
MF MDR 

B01-1 0.13 25.47 0.01 0.09 0.56 0.06 0.45 - 
B01-4 0.09 1.97 0.03 0.25 0.01 0.32 0.84 - 
B01-5 0.13 5.74 0.04 0.29 1.04 0.10 0.53 - 
B02-4 0.05 0.56 0.05 0.87 0.18 0.34 1.02 - 
B03-2 0.09 3.89 0.04 0.40 3.56 0.08 0.82 - 
B03-3 0.11 4.62 0.06 0.52 0.02 0.10 0.68 - 
B03-6 0.12 5.61 0.04 0.38 1.94 0.07 0.71 - 
E55-2 0.18 8.44 0.04 0.23 0.45 0.12 0.88 2.39 

L04A-1 0.10 4.47 0.06 0.65 1.96 0.05 0.63 - 
L04B-1 0.02 0.90 0.06 2.43 1.17 0.13 0.49 - 

ML46A-6 0.12 47.43 0.03 0.23 0.18 0.15 0.29 - 
ML46A-7 0.03 0.41 0.03 1.16 0.01 1.04 0.80 1.51 

BG1 - - - - - - - - 
BG2 0.13 0.42 0.09 1.66 0.18 0.30 4.79 - 

0464A 0.04 0.46 0.05 1.18 0.25 0.89 0.58 - 
M03-2 0.14 1.09 0.05 0.38 0.36 0.36 0.86 - 
MK1 0.09 0.11 0.55 5.82 0.50 0.81 1.13 - 
MK2 0.04 0.30 0.34 8.52 1.41 - 6.30 - 

MK3A 0.18 1.57 0.36 2.03 0.52 0.46 1.14 0.63 
MK3B 0.05 0.45 0.27 5.35 0.39 0.18 1.35 - 
MP1L 0.54 6.74 0.10 0.36 0.50 0.72 2.34 1.04 
MP1M 0.53 13.28 0.10 0.49 0.37 0.33 2.22 - 
MP1U 0.03 0.90 0.04 5.49 0.24 0.06 0.74 - 
MP2L 0.07 0.44 - - 0.79 0.64 1.96 0.67 
MP2U 0.04 1.46 - - 0.46 0.66 1.76 0.77 
MP3L 0.06 1.61 - - 0.65 0.36 3.99 1.24 
MP3M 0.14 5.44 - - 1.72 0.13 4.88 1.17 
MP3U 0.07 2.81 - - 0.52 0.60 2.48 0.84 
MP4L 0.01 0.65 - - 0.34 1.46 0.82 0.33 
MP4M - - - - 0.69 0.20 5.35 - 
MP4U 0.02 0.93 - - 0.58 0.62 1.19 2.66 
MP5L 0.03 7.36 - - 0.52 0.55 2.47 0.53 
MP5M 0.02 - - - 0.41 0.31 2.42 1.37 
MP5U 0.31 - - - 1.40 0.27 4.12 1.78 
MP6L 0.07 1.31 - - 1.44 0.59 - - 
MP6M - - - - 0.93 0.94 1.82 1.22 
MP6U 0.12 2.95 - - 0.59 0.54 3.12 0.79 
MP7L - - - - 0.53 1.84 2.30 0.92 
MP7M - - - - 0.47 0.70 5.54 0.80 
MP7U - - - - 0.38 0.87 - 0.73 

DBF: dibenzofuran; PHE: phenanthrene; F: fluorene; DBT: dibenzothiophene; MDBF: 
methyldibenzofurans; MP: methylphenanthrenes; MF: methylfluorenes; MDBT: 
methyldibenzothiophenes; MDR: methyldibenzothiophene ratio = 4-MDBT/1-MDBT. 
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Table 5.27 continued. 

Sample DBF/ 
PHE 

DBF/ 
F 

DBT/ 
PHE 

DBT/ 
DBF 

MDBF/ 
MP 

MDBT/ 
MDBF 

MDBF/ 
MF MDR 

MGL3A 0.05 0.83 0.05 0.95 0.09 0.48 0.96 0.71 
MGL4A 0.04 0.52 0.05 1.32 0.40 0.25 1.98 0.96 
MGL1C 0.11 1.50 - - 1.34 0.10 2.40 - 
MGL2A 0.03 2.05 0.05 2.04 0.15 0.49 1.37 - 
MGL2B - 0.20 0.05 9.68 0.08 0.29 1.36 0.14 
MGL2H 0.16 2.78 0.14 0.92 0.86 0.22 2.20 0.06 
MGL2I 0.04 0.70 0.16 4.01 0.30 0.17 1.52 - 
MGL2O 0.16 1.33 0.17 1.05 0.74 0.09 2.07 - 
MGL2P 0.11 3.64 - - 1.61 - 1.90 - 
MGL2T 0.02 0.37 - - 0.44 0.23 1.85 0.40 

AFZ 0.11 0.82 0.06 0.58 0.13 0.27 1.91 - 
ENG 0.05 0.47 0.06 1.05 0.21 - 0.73 - 
IMG 0.02 0.97 0.09 3.62 0.09 1.25 1.26 2.96 
OGB 0.01 0.59 0.04 2.83 0.06 0.64 0.74 - 
OKB 0.08 0.54 0.07 0.86 0.26 - 0.46 - 
WKP 0.09 1.31 0.04 0.46 0.22 0.11 0.56 - 
CKL 0.05 0.74 0.10 1.95 0.07 - 1.72 - 

LMZ1 0.04 0.63 0.04 1.04 0.12 - 0.73 - 
LFO 0.07 1.12 0.33 4.90 0.43 - 2.35 - 
SKJ 0.04 0.77 0.04 0.99 1.21 - 3.16 - 

 
 
 
 

The MF distributions of the studied humic coal are dominated by 4-MF. Other MF 

isomers are generally absent in the Liang and Balingian Formation coals but present in 

the Nyalau Formation coals. For the Benue Trough samples, the distribution of MDBF 

is dominated by 3+2-MDBF in the Mamu and Gombe Formation coals, while 

dominated by 3-MDBF and 1-MDBF in the Lamja Formation coals, and 1-MDBF in the 

Agwu Formation coals (Figure 5.28d-f). In addition, 4-MF and 1-MF are the most 

abundant isomers in the MF distribution. Aromatic parameters based on the abundances 

of F, DBF, DBT and their methyl derivatives are presented in Tables 5.27. 
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5.11.4 Polycyclic Aromatic Hydrocarbons 
 
 

Alkylphenanthrenes and alkylnaphthalenes dominate the total ion chromatograms of 

the aromatic hydrocarbon fractions of the studied coals. Nevertheless, unsubstituted and 

substituted polycyclic aromatic hydrocarbons (PAHs) with 3-7 rings are also present in 

relatively lower abundances (Figure 5.29). Fluoranthene (Fl) and pyrene (Py) were 

observed in the m/z 202 mass chromatograms of the aromatic fractions of the coal 

extracts, and the abundances of fluoranthene mostly predominate that of pyrene in the 

analysed samples. Benzo[a]anthracene (BaA), chrysene (Ch), and triphenylene (Tph) 

were detected in the m/z 228 mass chromatograms. The co-eluting chrysene and 

triphenylene are present in all the samples while benzo[a]anthracene is present in most 

of the samples but particularly absent in the Nyalau Formation coals. 

 
Additionally, benzo[b,j,k]fluoranthene (BFl), benzo[e]pyrene (BePy), 

benzo[a]pyrene (BaPy), and perylene (Per) were identified in the m/z 252 mass 

chromatograms of all Benue Trough and some Sarawak Basin coals. In contrast, 

perylene is markedly absent in the Lamja Formation coals, possibly due to the relative 

higher maturity of the samples as the abundance of perylene has been established to 

rapidly decrease at maturation levels higher than 0.6 %Ro (Marymowski et al, 2015). 

For the Sarawak Basin coals, benzo[b,j,k]fluoranthene, benzo[e]pyrene, and 

benzo[a]pyrene are mainly absent in the Nyalau and Balingian Formations while BaPy 

and perylene are mostly absent in the Liang Formation. Furthermore, ≥ 6-ring PAHs 

such as indeno[1,2,3-cd]pyrene (InPy), benzo[ghi]perylene (BgPer) and coronene (Cor) 

were also detected. These ≥ 6-ring PAHs, which are products of high-temperature 

events (Zakir Hossain et al., 2013; Zakrzewski et al., 2020), were observed in some 

Benue Trough coals but not in the Sarawak Basin coals (Figure 5.29). 

Univ
ers

iti 
Mala

ya



147  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Retention Time (min) 

Figure 5.29: Summed partial chromatograms of the aromatic hydrocarbon 
fractions showing the distribution of combustion-derived polycyclic aromatic 
hydrocarbons (m/z 202 + 228 + 252 + 276 + 300) of representative samples. 1: 
fluoranthene; 2: pyrene; 3: benzo[a]anthracene; 4: chrysene + triphenylene; 5: 
benzo[b]fluoranthene + benzo[k]fluoranthene; 6: benzo[e]pyrene; 7: 
benzo[a]pyrene; 8: perylene; 9: indeno[1,2,3-cd]pyrene; 10: benzo[ghi]perylene; 
11: Coronene 
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Generally, the abundances of PAHs are relatively higher in Benue Trough coals than 

in the Sarawak Basin coals. This finding suggests seasonal drier conditions suitable for 

thermal oxidation or relatively lower water table in the paleomires of the Benue Trough 

during the Late Cretaceous (Jiang et al., 1998; Zakir Hossain et al., 2013). Hence, the 

PAHs evaluated in this thesis were expressly utilized to distinguish between petrogenic 

and pyrogenic origin, and accordingly, to reconstruct environmental conditions. Source 

parameters based on the relative abundances of PAHs are tabulated in Tables 5.27 and 

5.28. 

 
 
 

5.11.5 Higher Plant-derived Aromatic Biomarkers 
 
 

Aromatic biomarkers such as cadalene, retene, and 6-isopropyl-1-isohexyl-2- 

methylnaphthalene (ip-iHMN) are important constituents of sedimentary rocks that 

originate from terrestrial plants due to their structural similarities to precursors (Ellis et 

al., 1996; Otto & Wilde, 2001; Otto et al. 2002a). Aromatic compounds considered for 

this research include sesquiterpenoids and diterpenoids. Conversely, aromatic 

triterpenoid biomarkers are not studied. 

 
The aromatic distributions of the sesquiterpenoids and diterpenoids in the analysed 

coals are dominated by cadalene and retene, respectively (Figure 5.30). Retene was 

identified based on mass fragmentograms of m/z 219 and m/z 234 while cadalene was 

recognized by the intersecting mass fragmentograms of m/z 183 and m/z 198. Retene is 

generally regarded as a conifer vegetation biomarker as it is found primarily in 

gymnosperm species (Otto et al., 1997; Nakamura et al., 2010). In addition, conifer 

resin acids have been found to yield aromatics derivatives after undergoing oxidation 

and decarboxylation processes (Venkatesan et al., 1986). Whilst cadalene has been 
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found to be abundant in angiospermous vegetation (Widodo et al., 2009; Jiang & 

George, 2019), it is a generic and non-specific biomarker (van Aarssen et al., 2000; 

Romero-Sarmiento et al., 2011; Cesar & Grice, 2019) that originates from the 

degradation of cadinenes and cadinols in the resins of vascular plants during diagenesis 

(Hautevelle et al., 2006; Grice et al., 2015). Additionally, ip-iHMN is a marker of 

higher plant input in crude oils and sediments and according to Ellis et al. (1996), the 

compound is derived from the aromatization and rearrangement of terpenoids natural 

products. Additionally, its origin has also been attributed to non-vascular plants such as 

bryophytes which are less affected by climate (Cesar & Grice, 2019). The compound 

was detected in minor proportion in the m/z 197 of the aromatic fractions of some 

Benue Trough coal extracts but mostly absent in the Sarawak Basin coals. Other plant- 

derived aromatic hydrocarbons such as 1,2,3,4-tetrahydroretene, dehydroabietane, 

totarane and simonellite were either absent in the coal samples or detected in minor 

amounts. 

 
The changes in abundances of the plant-derived aromatic biomarkers could be 

applied to track changes in paleoflora due to fluctuating paleoenvironmental conditions 

(van Aarssen et al., 2000; Haberer et al., 2006; Romero-Sarmiento et al., 2011; 

Hautevelle et al. 2006; Marynowski et al., 2013; Grice et al., 2015; Cesar & Grice, 

2019; Jiang & George, 2019; Jiang et al. 2020). The plant-derived biomarker parameters 

for the studied coals are calculated and recorded in Tables 5.28 and 5.29. Univ
ers

iti 
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Figure 5.30: Summed partial chromatograms of the aromatic hydrocarbon fractions showing the distribution of plant-derived PAHs (m/z 183 
+ 197 + 219), of representative samples. ip-iHMN = 6-isopropyl-1-isohexyl-2-methylnaphthalene. 
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Table 5.28: Partial land plant- and combustion-derived polycyclic aromatic 
hydrocarbon (PAH) ratios of the Sarawak Basin coals. 

Sample PHE/ 
A 

A/(A + 
PHE) 

BaA/ 
PHE 

BaA/ 
228 

Fl/(Fl + 
Py) 

Py/(Py + 
Per) 

BFl/(BFl + 
BePy) 

B01-1 - - - - 0.67 - - 
B01-4 - - 0.06 0.35 0.57 - 0.74 
B01-5 252.4 0.00 0.04 0.19 0.69 - 0.75 
B02-4 55.4 0.02 0.10 0.41 0.57 - 0.74 
B03-2 - - 0.05 0.22 0.71 - 0.71 
B03-3 - - 0.02 0.22 0.61 - 0.55 
B03-6 - - - - 0.77 - 0.73 
E55-2 - - 0.04 0.24 0.61 0.95 - 

L04A-1 - - 0.08 0.16 0.77 - 0.71 
L04B-1 - - 0.08 0.20 0.70 - 0.78 

ML46A-6 - - 0.01 0.17 0.62 - - 
ML46A-7 138.0 0.01 0.04 0.39 0.57 0.88 - 

BG1 2.2 0.32 - - 0.58 0.06 - 
BG2 5.0 0.17 - - 0.50 0.10 - 

0464A 9.4 0.10 0.21 0.25 0.49 0.67 0.72 
M03-2 11.0 0.08 0.21 0.26 0.59 0.54 0.73 
MK1 6.2 0.14 0.12 0.21 0.62 0.01 - 
MK2 12.1 0.08 - - 0.57 0.18 - 

MK3A - - 1.06 0.27 0.59 0.42 - 
MK3B - - 0.67 0.25 0.46 - - 
MP1L - - - - 0.34 0.86 - 
MP1M - - - - 0.20 0.92 - 
MP1U 24.6 0.04 0.12 0.27 0.55 0.80 0.63 
MP2L 8.4 0.11 - - 0.92 0.27 - 
MP2U - - 0.18 0.10 0.82 0.26 - 
MP3L - - 0.09 0.12 0.70 0.28 - 
MP3M 7.7 0.11 - - 0.56 0.52 - 
MP3U - - - - 0.60 0.27 - 
MP4L - - - - 0.84 0.20 - 
MP4M - - - - 0.74 0.22 - 
MP4U - - - - 0.78 0.21 - 
MP5L - - 0.01 0.06 0.83 0.56 - 
MP5M - - - - 0.83 0.17 - 
MP5U - - - - 0.60 0.34 - 
MP6L - - - - - - - 
MP6M - - - - - - - 
MP6U - - - - 0.42 0.33 - 
MP7L - - - - 0.81 0.16 - 
MP7M - - - - 0.84 0.13 - 
MP7U - - - - 0.69 0.38 - 

A: anthracene; PHE: phenanthrene; BaA: benzo[a]anthracene; Ch: chrysene; Tph: 
triphenylene; Fl: fluoranthene; Py: pyrene; BbFl: benzo[b]fluoranthene; BePy: 
benzo[e]pyrene; BaPy: benzo[a]pyrene; Per: perylene; Ret: retene; Cad: cadalene; 228 
= BaA + Ch + Tph; 252 = BFl + BePy + BaPy + Per; HPP: higher plant parameter = 
Ret/(Ret + Cad); HPI: higher plant input = (Ret + Cad + ip-iHMN)/1,3,6,7- 
tetramethylnaphthalene; mHPI: modified HPI = (Ret + Cad + ip-iHMN)/( Ret + Cad + 
ip-iHMN + 1,3,6,7-TeMN); PAHr = (PHE + Py + Fl)/(PHE + Py + Fl + Ret + Cad). 
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Table 5.28, continued. 

Sample BePy/ 
1,3,6,7- TeMn 

Cad/1,3,6,7 
- TeMn 

Ret/ 
Cad HPP HPI mHPI PAHr 

B01-1 - - 5.37 0.84 - - 0.57 
B01-4 1.14 20.43 - - 20.43 0.95 0.83 
B01-5 - - 11.50 0.92 - - 0.71 
B02-4 4.61 8.96 - - 8.96 0.90 0.97 
B03-2 4.22 7.23 2.81 0.74 27.56 0.96 0.89 
B03-3 - - 25.98 0.96 - - 0.19 
B03-6 - - 2.91 0.74 - - 0.88 
E55-2 1.01 102.91 0.22 0.18 125.88 0.99 0.35 

L04A-1 6.10 5.42 1.90 0.65 15.69 0.94 0.91 
L04B-1 7.54 5.57 4.64 0.82 31.41 0.97 0.91 

ML46A-6 - - 1.77 0.64 - - 0.64 
ML46A-7 - 19.56 - - 19.56 0.95 0.63 

BG1 - - 3.88 0.80 - - 0.03 
BG2 - - 20.66 0.95 - - 0.06 

0464A 5.68 1.52 22.26 0.96 35.38 0.97 0.86 
M03-2 2.39 7.78 2.09 0.68 25.22 0.96 0.80 
MK1 - 5.69 4.53 0.82 31.47 0.97 0.58 
MK2 - - 23.50 0.96 - - 0.48 

MK3A - 6.55 31.24 0.97 211.16 1.00 0.12 
MK3B - 5.00 91.79 0.99 463.80 1.00 0.24 
MP1L - 9.82 - - 9.82 0.91 0.54 
MP1M - 46.27 - - 46.27 0.98 0.22 
MP1U 0.54 38.04 5.66 0.85 253.50 1.00 0.11 
MP2L - 12.99 0.24 0.19 16.09 0.94 0.63 
MP2U - 12.88 - - 12.88 0.93 0.68 
MP3L - 4.81 - - 4.81 0.83 0.83 
MP3M - 39.64 - - 39.64 0.98 0.37 
MP3U - 9.90 - - 9.90 0.91 0.69 
MP4L - 12.05 - - 12.05 0.92 0.63 
MP4M - - - - - - 0.65 
MP4U - 33.34 - - 33.34 0.97 0.56 
MP5L - 8.78 - - 8.78 0.90 0.86 
MP5M - 4.37 - - 4.37 0.81 0.87 
MP5U - 63.38 - - 63.38 0.98 0.31 
MP6L - - - - - - 0.66 
MP6M - - - - - - 0.30 
MP6U - 29.76 - - 29.76 0.97 0.26 
MP7L - - - - - - 0.18 
MP7M - - 0.17 0.14 - - 0.32 
MP7U - 6.12 - - 6.12 0.86 0.21 
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Table 5.29: Partial land plant- and combustion-derived polycyclic aromatic hydrocarbon (PAH) ratios of the Benue Trough coals. 

Sample PHE/ 
A 

A/(A + 
PHE) 

2-MP/ 
2-MA 

BaA/ 
PHE 

BaA/ 
228 

Fl/(Fl 
+ Py) 

Py/(Py + 
Per) 

Per/ 
252 

BePy/ 
(BePy + Per) 

BaPy/(BePy 
+ BaPy) 

BePy/(BePy 
+ BaPy) 

MGL3A 17.8 0.05 11.5 0.22 0.45 0.84 0.94 0.06 0.71 0.43 0.57 
MGL4A 11.0 0.08 6.3 0.29 0.36 0.60 0.90 0.06 0.71 0.38 0.62 
MGL1C 13.8 0.07 3.8 0.21 0.10 0.43 0.24 0.20 0.50 0.36 0.64 
MGL2A 34.2 0.03 12.0 0.89 0.34 0.86 0.74 0.05 0.77 0.38 0.62 
MGL2B 117.6 0.01 - 1.00 0.43 0.85 0.85 0.05 0.74 0.41 0.59 
MGL2H 27.2 0.04 4.7 0.34 0.11 0.61 0.40 0.35 0.23 0.52 0.48 
MGL2I 32.5 0.03 10.3 1.09 0.17 0.72 0.90 0.05 0.79 0.31 0.69 
MGL2O 28.8 0.03 5.0 0.89 0.13 0.70 0.70 0.09 0.68 0.35 0.65 
MGL2P 14.3 0.07 3.0 1.92 0.13 0.76 0.17 0.10 0.66 0.25 0.75 
MGL2T - - - 0.80 0.18 0.67 0.29 0.39 0.23 0.41 0.59 

AFZ 8.1 0.11 4.6 0.23 0.29 0.42 0.97 0.12 0.63 0.45 0.55 
ENG 9.0 0.10 3.8 0.23 0.22 0.52 0.70 0.18 0.42 0.51 0.49 
IMG 27.0 0.04 8.5 0.17 0.31 0.38 0.97 0.11 0.70 0.41 0.59 
OGB 22.4 0.04 22.5 0.06 0.29 0.62 0.93 0.30 0.28 0.60 0.40 
OKB 7.3 0.12 1.9 0.53 0.24 0.62 0.43 0.19 0.41 0.50 0.50 
WKP 21.2 0.05 5.0 0.04 0.29 0.55 0.99 0.12 0.55 0.51 0.49 
CKL 9.3 0.10 4.7 0.43 0.29 0.38 - - - 0.45 0.55 

LMZ1 29.8 0.03 87.5 0.22 0.09 0.40 - - - 0.19 0.81 
LFO 7.4 0.12 5.3 0.27 0.17 0.57 0.58 0.54 0.10 0.59 0.41 
SKJ 5.7 0.15 3.2 0.12 0.30 0.63 0.78 0.32 0.24 0.53 0.47 

A: anthracene; PHE: phenanthrene; MP: methylphenanthrene; MA: methylanthracene; BaA: benzo[a]anthracene; Ch: chrysene; Tph: 
triphenylene; Fl: fluoranthene; Py: pyrene; BbFl: benzo[b]fluoranthene; BkFl: benzo[k]fluoranthene; BePy: benzo[e]pyrene; BaPy: 
benzo[a]pyrene; Per: perylene; InPy:indeno[1,2,3-cd]pyrene; BgPer: benzo[ghi]pyrelene; Cor: coronene; Ret: retene; Cad: cadalene; 228 = 
BaA+Ch+Tph; 252 = BFl + BePy + BaPy + Per; HPP: higher plant parameter = Ret/(Ret + Cad); HPI: higher plant input = (Ret + Cad + ip- 

iHMN)/1,3,6,7-tetramethylnaphthalene; mHPI: modified higher plant input = (Ret + Cad + ip-iHMN)/( Ret + Cad + ip-iHMN + 1,3,6,7- 
tetramethylnaphthalene); PAHr = (PHE + Py + Fl)/(PHE + Py + Fl + Ret + Cad). Univ
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Table 5.29, continued. 

Sample BbFl/(BbFl 
+ BePy) 

InPy/(InPy 
+ BgPer) 

BgPer/ 
(BgPer + Per) 

Cor/(Cor 
+ BaPy) 

BePy/1,3,6,7- 
TeMn 

Cad/1,3,6,7- 
TeMn 

Ret/ 
Cad HPP HPI mHPI PAHr 

MGL3A 0.84 0.62 0.31 0.14 0.50 0.30 3.88 0.80 1.52 0.61 0.95 
MGL4A 0.81 0.60 0.49 0.07 4.95 1.12 3.38 0.75 4.90 0.83 0.93 
MGL1C 0.71 0.64 0.32 0.14 39.86 1.12 2.13 0.68 4.07 0.80 0.90 
MGL2A 0.81 0.64 0.51 0.07 2.47 1.15 - - 1.42 0.72 0.94 
MGL2B 0.82 0.64 0.41 0.02 2.33 0.04 48.00 0.98 1.83 0.66 0.95 
MGL2H 0.81 0.68 0.08 0.17 1.28 6.36 0.07 0.06 6.99 0.87 0.56 
MGL2I 0.78 0.61 0.52 0.26 2.33 0.53 1.11 0.53 1.37 0.58 0.95 
MGL2O 0.77 0.63 0.39 0.11 4.73 1.27 0.46 0.31 1.99 0.66 0.91 
MGL2P 0.77 0.59 0.36 0.07 18.97 8.46 - - 9.08 0.91 0.53 
MGL2T 0.79 0.60 0.08 0.23 5.97 1.42 0.92 0.48 3.08 0.77 0.91 

AFZ 0.70 - 0.33 - 0.38 14.91 0.05 0.05 15.62 0.94 0.54 
ENG 0.81 0.47 0.27 - 9.40 4.12 1.85 0.65 11.75 0.91 0.88 
IMG 0.61 0.15 0.61 - 0.84 3.77 0.24 0.19 4.79 0.82 0.85 
OGB 0.77 0.32 0.27 - 0.10 5.10 0.04 0.04 5.31 0.84 0.74 
OKB 0.80 0.50 0.25 - 41.21 11.11 1.22 0.55 24.62 - 0.89 
WKP 0.81 0.44 0.37 - 0.27 12.54 0.08 0.07 13.53 0.92 0.84 
CKL 0.56 0.20 - 0.23 0.62 0.19 1.93 0.66 0.68 0.36 0.94 

LMZ1 0.57 0.30 - 0.24 24.80 1.35 2.65 0.73 6.02 - 0.98 
LFO 0.83 0.66 0.04 - 0.16 38.33 0.00 0.00 38.42 - 0.11 
SKJ 0.83 0.42 0.18 - 0.58 58.56 0.04 0.04 61.02 0.99 0.32 
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CHAPTER 6: DISCUSSIONS 
 
 

6.1 Thermal Maturity 
 
 

The thermal maturity of the studied samples was assessed using several maturity 

parameters. First, the generally low vitrinite reflectance values (< 0.5% Ro) for most of 

the samples indicate that all the coals are immature for hydrocarbon generation (Table 

5.1; Peters et al., 2005). Conversely, the Lamja Formation coals (CKL and LMZ1) from 

Benue Trough have relatively higher reflectance values (0.57-0.61% Ro) that indicate 

early thermal maturity. This low to early maturity interpretation is generally supported 

by the low Tmax (<438 ℃) and production index (PI) (< 0.10) values of the coal samples 

(Tables 5.3-5.4; Peters & Cassa, 1994). The generally low thermal maturity nature of 

these coals is shown in the cross-plots of vitrinite reflectance against Tmax, and PI 

against Tmax in Figure 6.1. Although the Lamja Formation coals plot in the early mature 

zones, all other samples plot in the immature zones of the diagrams. Additionally, 

Figure 6.1 indicates that the Benue Trough coals have attained relatively higher thermal 

maturity levels than the Sarawak Basin coals. 

 
Liquid petroleum generation from humic coals is described as a complex three-stage 

process that involves the onset of generation, kerogen/coal matrix saturation, and initial 

expulsion followed by efficient expulsion (Petersen, 2006). The oil generation stage is 

reportedly characterized by a sharp increase in the bitumen index (BI) while the initial 

oil expulsion stage is typified by a decrease in the quality index (QI). The BI, QI and 

Tmax values for the analysed coal samples are plotted in Figure 6.2. The Sarawak Basin 

coals mostly plot away from the oil generation window, while the Benue Trough coals 

mostly plot near the window (Figure 6.2a). Nevertheless, both groups of coals mostly 

plot away from the oil expulsion window (Figure 6.2b), suggesting generally low 

thermal maturity for oil generation and expulsion. In contrast, some coals of the Lamja 
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and Mamu formations from the Benue Trough appear to have generated some oil and 

reached the third stage of initial oil expulsion (Figure 6.2). 

 
The proportion of hydrocarbon fractions in extractable organic matter (EOM) is 

another indicator of thermal maturity (Peters et al., 2005). The coal extracts are 

dominated by polar compounds and the ratio of aliphatic to aromatic hydrocarbons in 

the extracts ranges from 0.20 to 2.00 (avg. 0.41) and 0.29 to 3.75 (avg. 0.68) for the 

Sarawak Basin and Benue Trough Coals, respectively, are mostly lower than ~ 1.5 

found in early mature extracts (Killops & Killops, 2013). The proportion of aliphatic 

hydrocarbon fractions in the Sarawak Basin and Benue Trough coal extracts ranges, 

accordingly, from 1.9 to 21.0 (avg. 8.0%) and 6.2 to 41.7 (avg. 15.7%). The values are 

mostly lower than 25%; thus, consistent with samples with low thermal maturity (Miles, 

1994; Figure 6.3a). In addition, the values show relatively higher thermal maturity for 

the Benue Trough coals. In addition, the CPI and OEP values of the studied coals are ≥ 

1.0, indicating that the samples are mostly immature as CPI and OEP values tend 

towards unity as maturity increases and n-alkanes with no predominance are generated 

(Peters et al., 2005; Killops & Killops, 2013). The CPI and OEP values, however, 

indicate that the Benue Trough coals have higher maturity than the Sarawak Basin 

coals. In addition, the values also indicate that for the Sarawak Basin coals, the Nyalau 

Formation and Balingian Formation have slightly higher thermal maturity than the 

Liang Formation (Figure 6.3b). Univ
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Figure 6.1: Maturity cross-plots of (a) – vitrinite reflectance vs. Tmax, and (b) – 
production index vs. Tmax. 
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Figure 6.2: Plots of (a) – bitumen index (BI) vs. Tmax, and (b) – quality index (QI) 
vs. Tmax. Marked bands are oil generation and expulsion trends of New Zealand 
coals (after Sykes & Snowdon, 2002). 
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Figure 6.3: Cross-plots of (a) – Aliphatic/aromatic ratio vs. %aliphatics in extracts, 
and (b) – n-alkane proxies, showing thermal maturity of the coals. 
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Furthermore, the presence of hopenes and -hopanes, high abundance of C31 - 

homohopane (22R) and no clear presence of steranes in the coal samples (except the 

Lamja Formation) suggests low thermal maturity (Seifert & Moldowan, 1980; van 

Dongen et al., 2008). The C30 /(++) ratio applies over the early maturity to 

peak maturity range and the values decrease as maturity increases (Farrimond et al., 

1998). Given the absence of C30 moretane in most of the samples, the -hopane 

parameter was modified to C30 /(+) (Sinninghe Damsté et l., 1995; van Dongen 

et al, 2008). According to Miles (1994), values > 0.4 indicates immaturity while values 

between 0.4 and 0.05 indicate early maturity. The C30 /(+) hopane ratio ranges 

from 0.85 to 0.39 (avg. 0.72) and 0.81 to 0.22 (avg. 0.69) for the studied Malaysian and 

Nigerian samples, indicating low to early maturity (Table 5.17). 

 
The C31 -homohopane 22S/(22S+22R) parameter attains equilibrium values of 

0.55-0.60 over the low to early maturity range (Farrimond et al., 1998; Peters et al., 

2005). Values of the hopanoid parameter for the Sarawak Basin coals, which generally 

increase from Liang Formation (0.10 to 0.22) to Nyalau Formation (0.07 to 0.27) and 

Balingian Formation (0.19 to 0.29), are significantly lower than the equilibrium values 

and therefore, signifies low thermal maturity. For the studied Benue Trough coals, the 

C31 -homohopane 22S/(22S+22R) ratios range from 0.17 to 0.60 with average values 

of 0.24, 0.36, 0.60, and 0.25 for the Gombe, Mamu, Lamja, and Agwu formations, 

respectively, signifying low to early thermal maturity levels. The parameter equilibrium 

values for the Lamja Formation corroborate the earlier interpretation of early thermal 

maturity. Although these findings are in agreement with earlier studies of the Gombe, 

Mamu, and Lamja Formation coals (Obaje et al., 2004b; Jauro et al., 2007; Akande et 

al., 2012; Ayinla et al., 2017a), the low thermal maturity of the investigated Agwu 

Formation contradicts earlier studies by Ehinola et al. (2002), Obaje et al. (2004b) and 
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Adedosu et al. (2012), which had concluded the coals are in the peak to late thermal 

maturity stage. 

 
In addition, the presence of the less stable 8α(H)-epimers of drimane and 

homodrimane in the Sarawak Basin and Benue Trough coals suggest generally low 

thermal maturity as the 8α(H)-epimers are degraded before the onset of oil generation 

(Weston et al., 1989; Yan et al., 2019). Nevertheless, values of the drimane and 

homodrimane maturity parameters mostly indicate relatively higher thermal maturity for 

the Benue Trough coals (Figure 6.4). 

 

400 
 
 

100 
 
 
 
 

10 
 
 
 
 

1 
 
 
 
 

0. 1  
0. 1 1 10 100 

8β(H)-Drimane/8α(H)-Homodrimane 

 
400 

 

Figure 6.4: Cross-plot of drimane and homodrimane maturity parameters. 
 
 
 

The variation in the distributions of methylated phenanthrenes and naphthalenes has 

been widely applied to evaluate the thermal maturity of sediments and oils (Radke & 

Welte, 1983; Radke et al., 1984; Radke et al. 1986; Alexander et al., 1985; Budzinski et 

al., 1995; van Aarssen et al., 1999). Aromatic maturity parameters are typically based 
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on the thermal stability of compounds as the more stable isomer increases with maturity 

while the less stable isomer decreases (Chakhmakhchev et al., 1997; van Aarssen et al., 

1999). Maturity parameters calculated for the samples include methylphenanthrene ratio 

(MPR), methylphenanthrene indices (MPI-1 and MPI-2), methylphenanthrene 

distribution fraction (MPDF), dimethylphenanthrene ratio (DPR), methylnaphthalene 

ratio (MNR), dimethylnaphthalene ratios (DNR-1, and DNRx), trimethylnaphthalene 

ratios (TNR-2, and TMNr), tetramethylnaphthalene ratio (TeMNr), and 

methyldibenzothiophene ratio (MDR). These and other aromatic maturity-related 

parameters are presented in Tables 5.21-5.24. 

 
The MPR, MPI-1 and MPI-2 ratios for the Sarawak Basin coals range from 0.01 to 

1.43 (avg. 0.73), 0.01 to 1.51 (avg. 0.45), and 0.02 to 2.41 (avg. 0.66), respectively 

(Table 5.21). In contrast, MPR ratios for the Benue Trough coals are relatively higher, 

ranging from 0.41 to 1.53 (avg. 0.92) while MPI-1 and MPI-2 ratios are relatively 

lower, varying from 0.16 to 0.71 (avg. 0.35) and 0.20 to 0.85 (avg. 0.46), respectively 

(Table 5.22). According to Miles (1994), values (< 2.65) of MPR in the coals indicate 

low thermal maturity. Figure 6.5, a cross-plot of methylphenanthrene indices, shows 

that the Sarawak Basin coals have relatively lower thermal maturity than the Benue 

Trough coals. Calculated reflectance values from MPI-1 values range from 0.41 to 1.31 

(avg. 0.67%) and 0.50 to 0.83 (avg. 0.61%) for the Sarawak Basin and Benue Trough 

coals, respectively. The calculated reflectance values are noticeably higher than the 

measured reflected values, especially for Nyalau Formation coals (Table 5. 21). 
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Figure 6.5: Cross-plot of methylphenanthrene ratio (MPR) vs. 
methylphenanthrene distribution fraction (MPDF), showing relative thermal 
maturity. 

 
 

As shown in the merged 156 + 170 +184 mass chromatograms of alkylated 

naphthalene (Figure 5.23) of representative samples, the studied coals are dominated by 

1,6-DMN, 1,3,6-TMN and 1,3,6,7-TeMN, which suggests relatively higher thermal 

maturity (van Aarssen et al., 1999). The MNR, DNRx, TNR-2, TMNr and TeMNr 

ranges from 0.38 to 7.32 (avg. 1.29), 0.14 to 1.67 (avg. 0.50), 0.18 to 1.59 (avg. 0.58), 

0.05 to 0.60 (avg. 0.21) and 0.08 to 0.48 (0.20), respectively, for the Sarawak Basin 

coals (Table 5.24). The MNR, DNRx, TNR-2, TMNr and TeMNr parameters are 

relatively higher for the Benue Trough coals, varying from 0.72 to 2.00 (avg. 1.21), 0.20 

to 1.10 (avg. 0.46), 0.39 to 0.90 (avg. 0.63), 0.16 to 0.67 (avg. 0.41), and 0.16 to 0.79 

(avg. 0.53), respectively (Table 5.25; Figure 6.6a). Additionally, the cross-plots of 

DNRx versus DNR-1 and TMNr versus TeMNr generally show relatively higher 

maturity levels for the Benue Trough coals (Figure 6.6). However, Figure 6.6b implies 
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the highest thermal maturity for the Gombe Formation coals (van Aarssen et al., 1999), 

which contradicts earlier interpretations of vitrinite reflectance, Rock-Eval and aliphatic 

biomarkers data. 
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Figure 6.6: Cross-plots of (a) – dimethylnaphthalene ratios (DNRx and DNR-1), 
and (b) – trimethylnaphthalene ratio (TMNr) vs. tetramethylnaphthalene ratio 
(TeMNr), showing relative thermal maturity of the coal samples. 
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Reflectance values from calibrated MNR and TNR-2 ratios range from 0.82 to 2.06 

(avg. 1.02%) and 0.51 to 1.36 (avg. 0.75%) for the Sarawak Basin coals. Similarly, 

values of calculated reflectance from MNR and TNR-2 vary from 0.82 to 1.16 (avg. 

1.01%) and 0.63 to 0.94 (avg. 0.78%). These calculated reflectance values indicate early 

to peak maturity for the studied Sarawak Basin and Benue Trough coals. Again, the 

calculated reflectance values are noticeably higher than the measured reflected values 

(Appendix F). The aromatic maturity parameters have greater applicability over a wider 

maturity range than aliphatic maturity parameters, while the methylated phenanthrene 

and naphthalene parameters infer anomalously higher maturity than measured vitrinite 

reflectance and aliphatic biomarker maturity parameters. Hence, these results signify 

their non-suitability for low-maturity type-III source rocks. This is mostly due to the 

higher influence of organic matter type on the abundance of aromatic compounds at 

lower maturity levels (Radke et al., 1986; Schou & Myhr, 1988; Strachan et al., 1988). 

In addition, a recent study by Li et al. (2022) attributed the unusual occurrence of the 

alkylnaphthalene isomers in some Australian sediments to microorganisms, considering 

1,3,6-TMN, 1,3,6,7-TeMN and 1,2,3,6,7-PMN to be diagenetic products of drimane- 

type sesquiterpenes or hopanes from bacteria. 

 
In summary, the studied Sarawak Basin and Benue Trough coals rank lignite to high 

volatile bituminous C, indicating generally low thermal maturity levels. However, the 

Lamja Formation coals of the Benue Trough have comparably higher maturity with 

average vitrinite reflectance and Tmax values of 0.60% and 437 °C, respectively, which 

indicates an early level of thermal maturity. 
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6.2 Hydrocarbon Generation Potential 
 
 

Bulk and organic geochemical data were applied to assess the hydrocarbon 

generation potential of the studied Sarawak Basin and Benue Trough coals. The TOC 

contents and S2 values for all coal samples are exceedingly greater than 4 wt. % and 20 

mg HC/g rock, respectively (Tables 5.3-5.4), indicating excellent petroleum generation 

potential (Peters & Cassa, 1994). Similarly, the genetic potential (GP), which ranges 

from 40.2 to 277.9 (avg. 116.0 mg HC/g rock) and 33.4 to 337.4 (avg. 139.8 mg HC/g 

rock), respectively, for the Sarawak Basin and Benue Trough coals, indicate excellent 

hydrocarbon-generating potential (Peters & Cassa, 1994). The cross-plot of TOC versus 

S2, however, shows that some of the Benue Trough coals possess marginally better 

potential than the Sarawak Basin coals (Figure 6.7a). It also shows that for the Sarawak 

Basin coals, the potential generally increases from Liang Formation (avg. 68.0 mg HC/g 

rock) to Balingian Formation (avg. 103.3 mg HC/g rock), and Nyalau Formation (avg. 

129.0 mg HC/g rock). In addition, the Gombe Formation (avg. 79.7 mg HC/g rock) 

have the lowest potential of the Benue Trough coals, with increasing potential from 

Lamja Formation (avg. 137.7 mg HC/g rock) to Mamu Formation (avg. 164.4 mg HC/g 

rock), and Agwu Formation (avg. 188.6 mg HC/g rock). 

 
This interpretation is partly supported by high EOM yields ranging from 21596 to 

224779 ppm and 13296 to 125596 ppm, with average values of 63532 ppm and 37352 

ppm for the Malaysian and Nigerian coals, respectively. The EOM yields for the 

Malaysian coals are generally higher for the Nyalau Formation (avg. 89073 ppm) and 

relatively lower in Liang (avg. 37794) and Balingian (avg. 38450 ppm) Formations. For 

the Benue Trough coals, EOM yields are highest in the Agwu Formation (avg. 93359) 

and lowest in the Gombe Formation (avg. 24685 ppm) while Lamja (avg. 40412 ppm) 

and Mamu (avg. 38774 ppm) Formations show intermediate EOM yields. Similarly, the 
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concentration of hydrocarbons in the investigated Sarawak Basin and Benue Trough 

coals are high, varying from 2763 to 58922 (avg. 8167 ppm) and 1794 to 23650 (avg. 

6786 ppm), respectively. Immature source rocks with extract yield and hydrocarbon 

concentration greater than 4000 ppm and 2400 ppm, respectively, are deemed to possess 

excellent generation potential (Peter & Cassa, 1994). The cross-plot of EOM yield and 

hydrocarbon concentration in Figure 6.7b indicates that Gombe Formation coals from 

Benue Trough possess the least generation potential of the studied coals while the 

Nyalau Formation coals from Sarawak Basin generally have the highest potential for 

hydrocarbon generation. 

Univ
ers

iti 
Mala

ya



168  

1000 
 
 
 

100 
 
 
 

10 
 
 
 

1 
 
 
 

0. 1 
 
 
 

0. 01 
0. 01 0. 1 

 
 

1 10 
TOC (wt.%) 

 
 

100 

 
300000 

 
 

100000 
 
 
 
 
 

10000 
 
 
 
 
 

1000 
 
 
 
 

100  
100 

 
1000 

 
10000 100000 

Extract Yield (ppm) 

 
300000 

 
Figure 6.7: Cross-plots of (a) – total organic carbon (TOC) vs. Rock-Eval S2 (after 
Dembicki, 2009), and (b) – extract yield vs. hydrocarbon concentration (after Peter 
& Cassa, 1994), showing the hydrocarbon generation potential of the studied coals. 
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Furthermore, the studied coals fall mostly within the gas and gas/oil source zones of 

the TOC vs. HI diagram (Figure 6.8), indicating the potential for gas to mixed oil and 

gas generation. Nevertheless, the higher HI values of the Mamu and Nyalau Formation 

coals suggest the capacity for oil generation. This interpretation is corroborated by a 

petrographic study by Abdullah (1997) which found that the Nyalau Formation coals 

contain a considerable amount of liptinitic maceral, suberinite, that may contribute to oil 

generation (Hunt 1991; Fleet & Scott, 1994). In contrast, the Gombe Formation coals 

which possess the least hydrocarbon-generating potential of the investigated coals 

contain a considerable amount of liptinitic macerals (Ayinla et al., 2017b), suggesting 

that the amount of liptinitic content in the Benue Trough coals is no control on its oil- 

generating capacity. 
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Figure 6.8: Cross-plot of total organic carbon (TOC) vs. hydrogen index (HI), 
indicating the oil-generating capacity of the studied coals. 
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Based on a study of Late Cretaceous-Cenozoic coals from New Zealand, Sykes & 

Snowdon (2002) established that the S2 values of coals increase as maturity increases 

towards the expulsion thresholds due to the reorganisation of the coal structure via 

reincorporation of the H-rich volatile components. Hence, the authors concluded that 

early mature samples are more appropriate to assess the potential of coaly source rocks 

as HI values of immature samples underestimate the oil generation potential. 

Consequently, Sykes & Snowdon (2002) postulated that effective HI (HI’) values, 

which are translated from measured HI values at the onset of oil expulsion, are a better 

indicator of petroleum potential. The maturation pathway diagram based on the HI and 

Tmax values of New Zealand coals by Sykes & Snowdon (2002) was employed to 

determine the effective HI values of the analysed coals (Figure 6.9). Estimated effective 

HI values range from 209 to 523 (avg. 302 mg HC/g TOC) and 151 to 453 (avg. 297 mg 

HC/g TOC) for the Sarawak Basin and Benue Trough coals, respectively (Tables 5.3- 

5.4). The effective HI values are slightly higher than HI values for all samples (except 

AFZ). The TOC versus HI diagram in Figure 6.8 was redrawn with effective values 

(Figure 6.10). The coals now plot mainly in the mixed oil and gas zone while some 

samples plot in the fair oil zone, suggesting a greater capacity for liquid hydrocarbon 

generation (Peters & Cassa, 1994). 
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Figure 6.9: Cross-plot of hydrogen index (HI) against Tmax. Marked band is the 
maturation pathway of New Zealand coals (after Sykes & Snowdon, 2002). 
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Figure 6.10: Plot of total organic carbon (TOC) vs. effective hydrogen index (HI). 
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Previous studies have shown that the oil-generating potential of coals depends on the 

length and type of aliphatic chains in its structure (Ganz & Kalkreuth, 1987; Ganz & 

Kalkreuth, 1991; Mastalerz et al., 2013; Petersen, 2005). Hence, FTIR spectra-based 

parameters have been used to evaluate the hydrocarbon-generating potential of the 

Sarawak coals (Wang et al., 2013; Misra et al., 2018; Biswas et al., 2020). First, 

calculated AF values for all the studied coals (except MP1L and MGL2I) are > 0.4, 

which indicates generally good hydrocarbon-generating potential (Patricia et al., 2020). 

In addition, according to Petersen (2005), the relative intensity of CH2 peak at 2850 cm- 

1 indicates the proportion of aliphatic structure in the coal structure and thus the oil- 
 

generating potential. The intensity at 2850 cm-1 is highest in the Nyalau Formation coals 

and lowest in the Liang Formation coals, which suggests the highest and lowest oil- 

generating potential for the Nyalau and Liang Formation coals, respectively (Figure 

5.5). Similarly, the intensity of the CH3 peak at 2955 cm-1, which is indicative of the 

gas-generating potential, is highest for the Nyalau Formation coals and lowest for the 

Balingian coals. 

 
The above interpretation is supported by the IHG values which range from 26 to 280 

mg HC/gTOC and generally increase from Gombe (avg. 54 mg HC/gTOC) to Liang 

(avg. 70 mg HC/gTOC) to Balingian (avg. 111 mg HC/gTOC) to Nyalau (avg. 125 mg 

HC/gTOC), Lamja (avg. 132 mg HC/gTOC), to Agwu (avg. 160 mg HC/gTOC) and 

Mamu Formation (avg. 160 mg HC/gTOC; Table 5.5). In support, the cross-plots of 

Rock-Eval’s GP versus AF in Figure 6.11a shows that the coals plot mostly in the gas to 

gas/oil zones, signifying the potential for gas to mixed oil and gas generation. In 

addition, Figure 6.11b shows that the Nyalau, Mamu and Agwu Formation coals 

possess relatively higher oil-generating potential. 
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Figure 6.11: The correlation plots of genetic potential (GP) vs. (a) – A-factor (after 
Ganz & Kalkreuth, 1991), and (b) index for hydrocarbon generation (IHG; after 
Misra et al., 2018), showing the oil-gas generative character. 
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Overall, Rock-Eval and FT-IR parameters, and the amount of extractable organic 

matter for the studied Sarawak Basin and Benue Trough coals indicate that the coals 

possess excellent potential to generate gas and mixed oil and gas. 

 
 
 

6.3 Kerogen Type and Origin of Organic Matter 
 
 

Source rocks often contain two or more kerogen types and thus, Rock-Eval pyrolysis 

data alone is not sufficient to accurately assess kerogen type (Dembicki, 2009). In this 

study, Rock-Eval, PyGC, FTIR, biomarker and atomic data were combined to determine 

the type and origin of organic matter in the Sarawak Basin and Benue Trough kerogens. 

 
Based on a modified Van Krevelen diagram of HI versus OI (Figure 6.12a), the coal 

samples are dominated by type-III kerogen. Two trends of relatively lower and higher 

OI values were however observed in the modified Van Krevelen diagram. The Liang 

and Nyalau formations form a trend of samples with relatively higher OI values, while 

the Balingian Formation and Benue Trough coals plot along the low OI trend. The 

observed trends are possibly due to the varying OM source inputs. The interpretation of 

dominant type-III kerogen is supported by the S2 versus TOC diagram showing that the 

studied coals plot mainly in the type-III kerogen zone (Figure 6.12b). The relatively 

higher S2 and HI values of some Nyalau, Agwu and Mamu Formation coals possibly 

imply a mixed type III-II kerogen source. This observation is supported by the Tmax 

versus HI diagram (Figure 6.13) which shows a mixed type III-II kerogen source for 

some of the studied coals. Additionally, the correlation diagram of FTIR spectra 

parameters, AF and CF, suggests the presence of some type II kerogen (Ganz & 

Kalkreuth, 1987; Figure 6.14). Hence, whilst dominated by type-III kerogen, the studied 

coals are a mixture, in varying proportions, of type III and type II kerogens. 
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Figure 6.12: (a) – pseudo-Van-Krevelen diagram of Oxygen Index vs. Hydrogen 
Index (after Peters, 1986), and (b) – cross-plot of total organic carbon vs. S2 (after 
Langford & Blanc-Valleron, 1990), showing kerogen type. 
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Figure 6.13: Diagram of Tmax vs. Hydrogen Index showing kerogen type and 
thermal maturity. 
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Figure 6.14: Correlation diagram of A-Factor and C-Factor showing kerogen type 
(after Ganz & Kalkreuth, 1987). 
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Furthermore, the Py-GC results provide additional and more accurate information on 

kerogen type when supplemented with Rock-Eval data. According to Dembicki (2009), 

the pyrograms of typical type-I and type-III kerogens are characterised by abundant 

peaks in the > C15 and < C10, respectively, while the pyrolysate gas chromatograms of 

type-II kerogens are dominated by naphthalenic compounds and large unresolved 

complex mixtures (UCM) in the > C15 zone. The pyrograms of the Sarawak Basin coals 

largely show dominating peaks in the < C10 zone, typical of type-III kerogens. However, 

the pyrograms, particularly those of Balingian and Nyalau Formation coals, also show 

abundant peaks in the > C15 zone, which is indicative of the presence of type-II kerogen 

(Figures 5.12b-c). This interpretation supports the earlier Rock-Eval data interpretation 

of the presence of type-II kerogen. Although the higher HI values of Nyalau Formation 

(avg. 226 mg HC/g TOC) relative to the Balingian Formation (avg. 204 mg HC/g TOC) 

coals suggest a higher contribution of type-II kerogen (Figure 6.12a), the relatively 

higher proportion of peaks in the > C15 zone of the Balingian Formation pyrograms 

indicates a higher proportion of type-II kerogen (Figures 5.12b). Similarly, the 

pyrolysate gas chromatograms of the Benue Trough coals generally show dominating 

peaks in the < C10 zone and subordinate peaks in the > C15 zone, which is characteristic 

of predominant type-III kerogen mixed with varying proportions of type II kerogen. The 

Lamja Formation coals, however, contain relatively lower abundances of < C10 

hydrocarbons and elevated proportions of C10 to C15 hydrocarbons (Figure 5.12h). This 

observation is indicative of the relatively higher contribution of Type-II kerogen to the 

Lamja Formation kerogens. 

 
Additionally, the kerogen types in the analysed coals can be determined based on the 

abundances of n-alkane/alkene doublets and aromatic compounds in the whole-rock 

pyrograms (Larter & Douglas, 1980; Larter, 1984). For example, the Type Index is 

defined as the abundance of m(+p)-xylene relative to n-1-octene (xy/C8) and according 
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to Larter & Douglas (1980), xy/C8 values < 0.4, between 0.4 and 1.3 and > 1.3 are 

characteristic of type I, type II and type-III kerogens, respectively. Calculated values of 

the Type Index are > 0.4, varying from 0.6 to 2.9 (avg. 1.7) and 0.6 to 3.0 (avg. 1.2) for 

the Sarawak Basin and Benue Trough coals, respectively. The values imply a mixture of 

type II and type III kerogens in the coals. However, the relatively lower values for the 

Benue Trough coals suggest a higher proportion of type-II kerogen in the samples. 

 
The C8/xy ratio is reportedly a proxy for estimating the relative abundance of 

aliphatic to aromatic hydrocarbons. The calculated C8/xy ratios range correspondingly 

from 0.34 to 1.58 (avg. 0.66) and 0.33 to 1.81 (avg. 1.02) for the Sarawak Basin and 

Benue Trough coals (Table 5.12). The generally lower C8/xy values for the Sarawak 

coals indicate a higher abundance of aromatic hydrocarbons and input of humic 

materials that is typical of type-III kerogen (Farhaduzzaman et al., 2012; Adegoke et al., 

2015). In agreement with earlier findings, the generally higher C8/xy values for the 

Benue Trough coals indicate a higher abundance of aliphatic hydrocarbons which could 

be related to higher input of type-II kerogen (Dembicki et al., 2009). Larter (1984) 

proposed the ternary diagram of the relative abundances of n-1-octene, m(+p)-xylene 

and phenol to distinguish kerogen types. Whilst some coals plot near the type-II zone, 

the analysed coals mostly plot in the type-III zone of the diagram (Figure 6.15), 

indicating the predominant proportion of type-III kerogen in the coals. Univ
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Figure 6.15: Ternary diagram of the relative abundances of n-1-octene, m(+p)- 
xylene and phenol, showing kerogen classification (after Larter, 1984). 

 
 
 

The distribution of n-alkanes could be a useful indicator of organic matter input. 

High amounts of low MW (< C21) n-alkanes are indicative of lacustrine OM input while 

high amounts of medium MW (C21 – C25) and high MW (> C27) n-alkanes signify 

aquatic macrophytes and terrestrial vascular plant inputs, respectively (Cranwell et al., 

1987; Peters et al., 2005; Zheng et al., 2007). The ternary diagram of the relative 

proportions of the lower, medium, and higher MW n-alkanes is shown in Figure 5.16. 

The studied coals are dominated by higher MW homologues with mean proportions of 

67.0% and 54.8%, respectively, in the Sarawak Basin and Benue Trough coals. The 

predominant abundance of long-chain n-alkanes suggests that the humic coals are 

sourced from highly aliphatic, resistant biopolymers associated with cuticular materials 
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of higher land plants (Collinson et al., 1994; Curry et al., 1994). Although the 

abundances of the medium MW n-alkanes are generally similar for both groups of 

coals, the proportions of lower MW n-alkanes are higher in the Benue Trough (avg. 

17.3%) than in the Sarawak Basin (avg. 8.9%) coals. The Balingian Formation (avg. 

21.3%) coals contain a relatively higher proportion of lower MW n-alkanes when 

compared with coals of Liang (avg. 7.3%) and Nyalau (avg. 6.3%) formations. In 

addition, lower MW n-alkanes are abundant in the Benue Trough coals with the average 

proportion generally increasing from Mamu (avg. 13.2%) to Agwu (avg. 17.2%), 

Gombe (avg. 19.1.3%) and Lamja (avg. 21.3%) formations. These findings are 

suggestive of the elevated contribution of marine algal organic matter to the Balingian 

Formation and Benue Trough coals. 

 
Aquatic algae have been found to show a characteristic n-C17 signature 

(Bourbonniere & Meyers, 1996). Hence, C27/(C17 + C27) and C31/C17 n-alkane ratios are 

veritable proxies for estimating the relative contribution of terrigenous and aquatic 

organic matter. Higher ratios of both proxies signify a higher contribution of terrigenous 

organic matter. Measured C27/(C17 + C27) ratios are relatively higher in the Sarawak 

Basin coals, varying from 0.71 to 0.99 (avg. 0.91), than in the Benue Trough coals with 

lower ratios that vary from 0.70 to 0.95 (avg. 0.86). Similarly, ratios of n-C31/n-C17 are 

higher in the Malaysian coal extracts, varying from 1.84 to 50.50 (avg. 22.25) while 

ratios for Nigerian coals vary between 1.86 and 16.57 (avg. 5.46). The cross-plot of 

C27/(C17 + C27) and C31/C17 n-alkane ratios shows a generally higher terrigenous OM 

input in the Sarawak Basin coals (Figure 6.16). However, the Balingian Formation coals 

plot lower along with the Benue Trough coals, indicating the coals contain a relatively 

lower proportion of terrigenous OM. 
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Figure 6.16: Cross-plot of n-C27/(n-C17 + n-C27) vs. n-C31/n-C17 showing organic 
matter source input. 

 
 
 

The TAR values, which are a measure of the relative contribution of terrigenous and 

aquatic organic matter (Bourbonniere & Meyers, 1996), are higher for the Sarawak 

Basin coals (3.0-32.4) than the Benue Trough coals (2.2-20.9). Similarly, values of the 

wax index (WI) are higher for the Sarawak Basin coals (2.4-24.8) than the Benue 

Trough coals (2.5-12.5). The studied coals all have TAR and WI values > 1, which 

signifies the predominant contribution of terrestrial organic matter (Bourbonniere & 

Meyers, 1996). Nevertheless, the cross-plot of WI versus TAR in Figure 6.17, indicates 

a relatively higher proportion of terrestrial organic matter in the Sarawak Basin coals. 

Furthermore, some of the Balingian Formation and Benue Trough coals have TAR 

values < 4, which again implies that the coals contain a considerable proportion of 

marine algal organic matter. The ratios of isoprenoids over n-alkanes are commonly 

employed to infer the type of organic matter (Shanmugam, 1985). Pr/n-C17 and Ph/n-C18 
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ratios for the coal samples are generally > 1 and < 1, respectively. The cross-plot of 

Ph/n-C18 versus Pr/n-C17 is displayed in Figure 6.18. Even though two Liang Formation 

coals plot in the mixed type II-III to marine algal Type II kerogen zones, the studied 

coals mostly plot in type-III kerogen zone, corroborating the predominant terrestrial 

organic matter origin. 

 
The distributions of alkylated phenanthrenes and naphthalenes have been widely 

employed as indicators of OM origin. Elevated abundances of 9-MP, 2,10-DMP, 3,9- 

DMP and 3,10-DMP have been observed in sediments of marine origin while high 

amounts of 1-MP and 1,7-DMP (pimanthrene) are found in sediments with higher plant 

origin (Budzinski et al., 1995). The cross-plot of Log (1-MP/9-MP) and Log (1,7- 

DMP/1,3+2,10+3,9+3,10-DMP) in Figure 6.19a delineates the organic matter source 

inputs. The Liang and Nyalau Formation coals plot mainly in the top right quadrant, 

signifying a predominant input of 1-MP and 1,7-DMP that is typical of terrestrial 

organic matter input. However, the Balingian Formation and Benue Trough coals plot in 

the bottom zone, signifying high input of 9-MP that is characteristic of considerable 

marine algal OM input (Budzinski et al. 1995). Similarly, the relative abundance of 

1,2,5-TMN and 1,3,6-TMN is reported to reflect source effects in immature to low- 

maturity terrestrial sediments (Strachan et al., 1988; van Aarssen et al., 1999). Hence, 

log (1-MP/9-MP) is plotted against (1,2,5-TMN/1,3,6-TMN) in Figure 6.19b. The 

Benue Trough coals plot mainly in the bottom left quadrant due to the relatively higher 

abundances of 9-MP and 1,3,6-TMN, which is characteristic of a substantial 

contribution of marine organic matter. Conversely, the Sarawak Basin coals plot mostly 

in the top right, indicating high input of 1-MP and 1,2,5-TMN that is characteristics of 

high terrigenous input and low thermal maturity, respectively (Budzinski et al., 1995; 

van Aarssen et al., 1999). 
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Figure 6.17: Cross-plot of wax index (WI) vs. terrigenous aquatic ratio (TAR) for 
the studied coals. 
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Figure 6.18: Diagram of phytane/n-C18 vs. pristane/n-C17 showing organic matter 
type for the Sarawak Basin and Benue trough coals (after Peters et al., 1999). 
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Figure 6.19: Cross-plots of (a) – Log (1,7-DMP/1,3+2,10+3,9+3,10-DMP) vs Log (1- 
MP/9-MP), and (b) – Log (1,2,5-TMN/1,3,6-TMN) vs Log (1-MP/9-MP) for the 
studied coals. 
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Asahina & Suzuki (2018) proposed ratios of alkylated naphthalenes as potential 

indicators of organic matter input and concluded that dimethylnaphthalene (DMR) and 

trimethylnaphthalene ratio (TMR) values greater than 1.0 and 0.8, respectively, in oils 

and condensates indicate terrestrial organic matter origin. Calculated DMR values for 

the studied Sarawak Basin coals are > 1, ranging from 1.3 to 13.8 (avg. 4.6), while the 

TMR values are > 0.8, varying from 1.0 to 6.8 (avg. 3.6). Similarly, DMR values for the 

Benue Trough coals are ≥ 1.0, ranging from 1.0 to 3.1 (avg. 1.6). However, some 

samples show TMR values < 0.8, ranging from 0.5 to 3.6 (avg. 1.5). The cross-plot of 

TMR and DMR illustrates the relatively higher contribution of terrigenous organic 

matter in the Sarawak Basin coals (Figure 6.20). In addition, it shows that the Benue 

Trough coals, particularly the Gombe Formation coals, are sourced mainly from 

terrestrial OM but with a considerable contribution of marine algal OM. 
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Figure 6.20: Plot of trimethylnaphthalene ratio (TMR) vs. dimethylnaphthalene 
(DMR), showing organic matter source input (after Asahina & Suzuki, 2018). 
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Dibenzofuran (DBF) and its methylated derivatives could also be useful indicators of 

organic matter source input as their concentration are higher in terrestrial-sourced OM 

than in marine-derived OM (Radke et al., 2000; Asif & Wegner, 2019). Baydjanova & 

George (2019) proposed the cross-plot of MDBF/MP versus DBF/P to differentiate 

organic matter source and lithology. The DBF/P ratios are relatively higher for the 

Sarawak Basin coals (0.01-0.54) than the Benue Trough coals (0.01-0.16). Similarly, 

MDBF/MP ratios for the Sarawak Basin coals (0.01-3.56) are generally higher when 

compared with the Benue Trough coals (0.06-1.61). The studied coals mostly plot near 

the terrestrial organic matter axis of the Baydjanova & George (2019) diagram (Figure 

6.22). However, some Liang Formation coals from Sarawak Basin plot near the marine 

axis, which corroborates the earlier Ph/n-C18 versus Pr/n-C17 diagram interpretation of 

some marine algal OM input (Figure 6.18). Regardless, this interpretation is 

contradicted by the high TAR, WI, DMR, TMR values and abundance of 1-MP in the 

Liang Formation coals, which all signify the predominant contribution of terrigenous 

organic matter. 

 
The atomic carbon to nitrogen (C/N) ratio is an excellent proxy for organic matter 

source input. Due to the absence of cellulose in algae, its C/N ratios typically range 

from 4-10 while vascular plants with high cellulose content have C/N ratios > 20 

(Meyers, 1994; Meyers 1997). The C/N ratios for all the studied coals are > 20, with 

mean values of 42.1 and 42.4 in the Sarawak Basin and Benue trough coals, 

respectively (Table 5.11). The high C/N ratios indicate the predominant contribution of 

vascular plants to organic matter. This interpretation is supported by cadalene to m(+p)- 

xylene (cad/xy) ratios which vary from 0.03 to 0.35 and 0.04 to 0.24 (Table 5.12). 

These ratios imply a predominant input of higher land plants to peat formation and thus 

kerogen formation (Solli et al., 1984; Adegoke et al., 2015). 
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Figure 6.21: Cross-plot of methyldibenzofurans/methylphenanthrenes 
(MDBF/MP) vs. dibenzofuran/phenanthrene (DBF/PHE) (after Baydjanova & 
George, 2019). 

 
 
 

In summary, the investigated Sarawak Basin and Benue Trough coals are dominated 

by type-III kerogen with varying proportions of type-II kerogen. The coals are derived 

mainly from terrigenous organic matter but with varying inputs of marine algal organic 

matter. Nevertheless, the contribution of marine OM is relatively higher in the Benue 

Trough coals and the Balingian Formation coals of the Sarawak Basin. 

 
 
 

6.4 Provenance of Source Areas 
 
 

The abundances of trace elements have been widely employed to determine the 

provenance of clastic sediments and the composition of their source areas (McLennan et 

al., 1993; Hayashi et al., 1997; Dai et al., 2012; Vosoughi Moradi et al., 2016; Tao et 
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al., 2017; Krzeszowska et al., 2019; Han et al., 2020). Although the abundances of 

elements in sediments may not reflect abundance in parent igneous source rocks, the 

abundances of immobile elements such as Al, Nb, Ti, Hf, Zr, Sn, Th, and REY are 

relatively unchanged during transportation, reworking, deposition, and diagenesis due to 

their low solubility (Kiipli et al., 2017). Hence, the elemental composition of coals is a 

potential information resource on the provenance of their inorganic constituents (Li et 

al. 2019; Lv et al., 2019; Liu et al., 2021). 

 
The Al2O3/TiO2 ratio is a widely utilized proxy for inferring the source area 

composition of sedimentary rocks. According to Hayashi et al. (1997), sedimentary 

rocks derived from mafic, intermediate, and felsic igneous rocks have Al2O3/TiO2 ratios 

ranging from 3 to 8, 8 to 21, and 21 to 70, respectively. The Al2O3/TiO2 ratios are 

comparably higher for the Sarawak Basin coals, ranging from 3.3 to 43.6 with an 

average of 22.3, while the ratios for the Benue Trough coals range from 1.7 to 21.8 with 

an average of 10.5. These ratios suggest that the parent rocks of the Sarawak Basin and 

Benue Trough coals were mostly derived from intermediate to felsic igneous rocks, and 

mafic igneous rocks, respectively (Figure 6.22a). Furthermore, the relative abundance 

of TiO2 and Zr has been employed to evaluate provenance. TiO2/Zr ratios > 200 signify 

mafic igneous rocks, while ratios < 55 indicate felsic rocks (Hayashi et al., 1997). 

TiO2/Zr ratios for the studied Sarawak Basin coals range from 55.6 to 2000.0 (avg. 

1264.0) and are suggestive of a dominantly mafic rock source composition. Similarly, 

TiO2/Zr ratios for the investigated Benue Trough coals vary widely between 88.3 and 

2750.0 (avg. 664..6), which are suggestive of the predominant abundance of 

intermediate to mafic rocks in the Benue Trough areas (Figure 6.22b). 
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Figure 6.22: Source composition discrimination plots of (a) – TiO2 vs. Al2O3, and 
(b) – Zr vs. TiO2 (after Hayashi et al., 1997). 
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Elemental ratios based on the relative abundances of heavier and lighter elements or 

incompatible and compatible elements are also used to determine source composition 

(McLennan et al., 1993; Roy & Roser, 2013). For instance, high (> 1.0) and low (< 0.6) 

Th/Sc ratios imply felsic and mafic igneous rock source composition, respectively 

(McLennan et al., 1993). Th/Sc ratios range from 0.21 to 1.50 (avg. 0.63) and 0.41 to 

2.57 (avg. 1.31) for the Sarawak Basina and Benue Trough coals, respectively. The 

cross plot of Th and Sc in Figure 6.23a suggests the dominance of mafic to intermediate 

rocks in the Sarawak areas, and mostly intermediate to felsic igneous rocks in the Benue 

Trough areas (Krzeszowska, 2019; Han et al., 2020). 

 
In addition, the La/Th ratios of the studied coals show various values, ranging from 

 
0.71 to 51.75 (avg. 8.70) for the Sarawak Basin, and 0.73 to 7.38 (avg. 2.18) for Benue 

Trough (Figure 6.23b). The ratios for most of the Benue Trough samples are lower than 

the La/Th ratio of the upper continental crust (2.8), suggesting a felsic to an 

intermediate source (Taylor & McLennan, 1985). In contrast, the Sarawak Basin coals 

show a wide range across the Formations. The La/Th ratios of the Nyalau Formation are 

< 2.8, which could indicate a felsic to an intermediate source. The Liang and Balingian 

Formations show very high (> 10) ratios that imply an intermediate to mafic igneous 

rock source (Taylor & McLennan, 1985). Furthermore, the bivariate plot of Zr/Sc and 

Th/Sc ratios indicates the lack of sediment sorting and recycling in the source areas of 

the studied samples (McLennan et al., 1993; Figure 6.24). Univ
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Figure 6.23: Binary plots of (a) – Sc vs. Th, and (b) – La vs. Th (after Taylor & 
McLennan, 1985). 
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Figure 6.24: Source-composition discrimination plot of Zr/Sc vs. Th/Sc (after 
McLennan et al., 1993). 

 
 
 

The relative abundance of high field strength trace elements (HFSTE; e.g., Th, La, 

Y, Zr and Hf) to transition trace elements (TTE; e.g., Cr, Co, and Sc) has been shown to 

provide information on the composition of sedimentary rocks (Edegbai et al, 2019b). 

According to Cullers (2000), relatively higher and lower Th/Co, Th/Cr, Th/Sc, and 

La/Sc ratios are indicative of felsic and mafic parent rocks, respectively. The calculated 

ratios for the analysed samples are presented in Table 5.10. Th/Co ratios of the Sarawak 

Basin (avg. 0.36) coals are mostly lower than those of the Benue Trough coals (avg. 

0.66). Similarly, Th/Cr and Th/Sc ratios are lower in the Sarawak Basin (avg. 0.13 and 

1.02) samples than in the Benue Trough samples (avg. 0.30 and 1.31). However, La/Sc 

ratios are in general higher for the Malaysian coals (avg. 3.10) than the Nigerian coals 

(avg. 2.56). In summary, the relatively lower HFSTE/TTE ratios of the Sarawak Basin 

coals generally support the interpretation of mafic igneous parent rocks while higher 

ratios indicate intermediate to felsic igneous parent rocks in the Benue Trough coals 

(Figures 6.25). 
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Figure 6.25: Bivariate plots of (a) – Th/Cr vs. Th/Co (after Cullers, 2000), (b) – 
La/Sc vs. Th/Sc, and (c) – La/Sc vs. Co/Th (after Wronkiewicz & Condie, 1987). 
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The abundance of trace elements in coals is often primarily determined by the nature 

of the sediment-source region (Dai et al., 2012). Overall, the various elemental 

parameters employed in this research generally indicate the abundance of felsic to 

intermediate rocks in the Benue Trough source area and mixed but dominantly mafic 

rocks in the Sarawak Basin source area. 

 
 
 

6.5 Paleovegetation and Paleoclimate 
 
 

The abundance of plant-derived biomarkers in sediments is mainly dependent on the 

original biological source input; therefore it is greatly influenced by prevailing climatic 

conditions during and after deposition (Jiang et al., 1998; van Aarssen et al., 2000; 

Hautevelle et al., 2006; Diefendorf & Freimuth, 2017). Peat-forming plants, generally, 

grow in warm and humid climates, while arid climates are unfavourable for their growth 

(Ortiz et al., 2013). In addition, other factors such as seasonality, proximity to the coast 

and soil conditions also influence vegetation type. Hence, plant macrofossils are 

veritable proxies to reconstruct paleovegetation and consequently, paleoclimate. A 

summary of biomarker proxies for the reconstruction of past vegetation, environment 

and climate is provided by Naafs et al. (2019). 

 
 
 

6.5.1 Bulk Isotopes 
 
 

The carbon isotopic composition of plants is widely used to differentiate between C3 

and C4 land plants (Meyers, 1994; Meyers, 1997; Bi et al., 2005; Diefendorf & 

Freimuth, 2017). C4 plants are isotopically heavier than C3 plants with mean δ13C mean 

bulk values of -13‰ and -25‰, respectively (Stein, 1991). The bulk δ13C values (- 
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29.4‰ to -24.2‰) for the studied coals signify a C3 vegetation origin (Figure 6.26). 

Furthermore, stable carbon signatures are a proven indicator of plant groups (i.e. 

angiosperms and gymnosperms). Plant wax derived from angiosperms are isotopically 

lighter than those sourced from gymnosperm vegetation (Diefendorf et al., 2011) and in 

coals, δ13C values are strongly correlated with the proportion of plant groups (Lücke et 

al., 1999; Widodo et al., 2009; Radhwani et al., 2018). According to Lücke et al. (1999), 

mean δ13C values for fossil wood fragments from angiosperms (-26.0‰) and 

gymnosperms (-23.3‰) in the Garzweiler seam, Lower Rhine Embayment, Germany 

indicate a 2.8‰ isotopic offset between angiosperms and gymnosperms. The 

angiosperms-dominated Miocene Embalut lignite and sub-bituminous samples from 

Kutai Basin, Indonesia show δ13C values between -28.0‰ and -27.0‰ (Widodo et al., 

2009) while the gymnosperm-dominated Miocene lignite deposits from Zillingdorf 

deposit, Austria show δ13C values between -27.2‰ and -24.6‰ (Bechtel et al., 2007). 
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Figure 6.26: Source input diagram of atomic ratio vs. bulk carbon isotopic value 
(after Meyers, 1994). 
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The δ13C values for the Tertiary coals from Sarawak Basin, Malaysia vary between - 

29.4‰ and -24.2‰ with a mean of -27.8‰. δ13C values for the Tertiary coals are lower 

than -26.5‰ except in one sample (MK2) with an anomalous value of -24.2‰ (Table 

5.11). In contrast, δ13C values for the Late Cretaceous coals from Benue Trough, 

Nigeria fluctuate between -26.8‰ and -24.7‰ with a mean of -25.4‰. The Sarawak 

Basin coals are generally isotopically lighter than coals from the Benue Trough with a 

mean isotopic offset of 2.4‰. The studied coals from both basins are mostly of similar 

lignite to sub-bituminous rank, the varying carbon isotopic composition cannot be 

explained by thermal maturity. Additionally, the coals are of different ages and from 

different localities; therefore, the varying isotopic composition can be adduced to 

varying climatic and environmental conditions, and their influence on plant physiology 

(Bechtel et al., 2008). These details all imply that the peat-forming vegetation of the 

Sarawak Basin and Benue Trough areas is considered to be generally dominated by 

angiosperm and gymnosperm taxa, respectively. This is also supported by the reported 

δ13C values of recent higher plants (Smith & Epstein, 1971). Gymnosperm plants such 

as Araucariaceae (-25.9‰), Ginkgoaceae (-25.6‰), and Taxodiaceae (-25.4‰) show 

relatively higher values. 

 
This interpretation is supported by the predominant presence of diterpenoids in the 

Benue Trough coals and their low abundance to near absence in the Sarawak Basin 

coals (Figure 5.19). The distribution of diterpenoids in coals implies a dominant 

angiosperm and conifer contribution to the paleovegetation of the Sarawak Basin and 

Benue Trough, respectively. Furthermore, this interpretation is corroborated by the 

positive relationships between δ13C values and angiosperm-gymnosperm parameters for 

the studied coals (Figure 6.27). The AGI (R2 = 0.576) and di-/tri-terpenoid (R2 = 0.620) 

proxies are moderately and positively correlated with δ13C while the al-AGI’ parameter 

is strongly and positively correlated (R2 = 0.720). 
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Figure 6.27: Plots showing the relationship between bulk carbon isotopic ratios 
(δ13C) and (a) – angiosperm/gymnosperm index (AGI), (b) – di-/tri-terpenoid 
ratios, and (c) – aliphatic angiosperm/gymnosperm index (al-AGI’). 
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Similarly, the stable hydrogen isotopic composition of plants and sediments has been 

employed as a proxy for reconstructing paleoflora and past environmental conditions 

such as precipitation, temperature and humidity (Dawson et al., 2004; Schimmelmann et 

al., 2004; Bi et al., 2005; Hou et al., 2007; Duan & Xu, 2012; Duan et al., 2014). For 

instance, terrestrial plants have been shown to produce n-alkanes that are isotopically 

heavier than aquatic plants whilst woody plants are isotopically heavier than herbaceous 

plants mainly due to the different source water δD values (Sachse et al., 2006; Duan & 

Xu, 2012). Additionally, sediments from low-latitude locations and under humid 

climates are relatively enriched in deuterium than sediments deposited under glacial 

conditions in high-latitude areas (Dawson et al., 2004). The δD values of meteoric water 

reportedly have also been shown to depend on temperature, length of moisture transport 

and amount of moisture. However, the amount of moisture is the most important control 

on δD values in tropical latitudes (Randlett et al., 2017). Furthermore, δD values have 

been shown to mainly reflect continental rainfall fluctuations and, relatively negative 

δD values reportedly indicate wetter conditions (Schefuß et al. 2005; Sachse et al., 

2012). 

 
Paleogeographical and paleoclimatic reconstruction studies have established that 

both the Benue Trough and Sarawak Basin were located within the tropical region and 

under humid climate during the Late Cretaceous and Cenozoic, respectively (Hay & 

Floegel, 2012; Friederich et al., 2016). In addition, the studied coals are dominated by 

C3 land plants; hence, the observed varying hydrogen isotopic composition can be 

attributed to past hydrological conditions. The δD values of the coals are generally 

higher for the Benue Trough samples (-117‰ to -66.4‰) than for the Sarawak Basin 

samples (-173.5‰ to -91‰), which imply relatively wetter conditions during the 

accumulation of the Sarawak peats in the Miocene and Pliocene. However, some of the 

Sarawak Basin coals, particularly the Liang Formation samples, have δD values 
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comparable to those from Benue trough coals, which are suggestive of frequent dry 

episodes in the Pliocene (Figure 6.28). 
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Figure 6.28: Bulk carbon and hydrogen isotopic ratios of the studied coals. 
 
 
 
 

Additionally, bulk δD values varied widely within the Sarawak Basin as coals of the 

Early Miocene Balingian (avg. -117.9‰) and Nyalau (avg. -143.4‰) formations show 

generally distinct values. This is possibly due to the different distances of the coal 

seams from the ocean as the Merit-Pila coalfield is further inland (Figure 3.1). 

According to Dawson et al. (2004), meteoric water becomes increasingly depleted in 

deuterium with increasing distance from the ocean due to the ‘raining out’ of heavier 

isotopes. 
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6.5.2 n-Alkanes 
 
 

Leaf waxes from Sphagnum mosses and terrestrial higher plants are correspondingly 

dominated by medium MW (C23 and C25) and high MW (> C27) n-alkanes (Baas et al., 

2000; Ficken et al., 2000; Nott et al., 2000; Bush & McInerney, 2013). In addition, 

Sphagnum mosses and terrestrial higher plants prevail under wetter and drier bog 

conditions, respectively. Hence, given the abundance of n-alkanes and rapidity of GC- 

MS analysis, various studies have applied n-alkane proxies such as Pwax, Paq, and 

average chain length (ACL) to reconstruct past hydrology and accordingly, the 

vegetation and climate of peatlands (Nichols et al., 2006; Zheng et al., 2007; Bingham 

et al., 2010; Andersson et al., 2011). The use of these proxies is based on the established 

control of hydrology on peatland vegetation and peat decomposition rates (McCabe, 

1987; Moore, 1987; Diessel, 1992). 

 
The distribution of high MW n-alkanes is also an indicator of the diagenetic process 

and paleoenvironment conditions. Maximum abundances of n-C27, n-C29, and n-C31 are 

reportedly suggestive of predominant contributions of deciduous trees, conifers, and 

grasses, respectively. Hence, the relative abundances of n-C27, n-C29, and n-C31 relative 

to their summed abundances are often used to distinguish the type and changes in land 

plant inputs (Schwark et al., 2002; Ortiz et al., 2013). The ternary plot of the relative 

abundances of C27, C29, and C31 n-alkanes is shown in Figure 6.29. The Sarawak Basin 

and Benue Trough samples mostly show maximum abundances at n-C31 and n-C29, 

which are respectively indicative of predominant contributions of herbaceous and 

coniferous vegetation to peat formation (Ortiz et al., 2013). 
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Figure 6.29: Ternary diagram of relative abundances of n-C27, n-C29, and n-C31 

alkanes in the coals. 
 
 
 

The n-C27/n-C31 ratio is also widely used to estimate the contribution of woody 

versus herbaceous inputs to paleovegetation (Schwark et al., 2002; López-Días et al., 

2013). The n-C27/n-C31 ratios indicate a much higher proportion of woody vegetation in 

the Benue Trough (0.91-3.42) than in the Sarawak Basin (0.23-2.47). Similarly, the (C27 

+ C29)/(C23 + C25 + C27 + C29 + C31 + C33) n-alkane ratio was developed by Hanisch et 

al. (2003) to measure the contribution of deciduous trees to paleovegetation. The n- 

alkane ratios of the studied Sarawak Basins coals (0.22-0.57) are lower than in the 

Benue Trough (0.41-0.75). These values indicate a higher abundance of deciduous trees 

and conifers in the Benue Trough areas, which is consistent with a cool and humid 

climate in the Late Cretaceous (Schwark et al., 2002; Jiang et al., 2020). 
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The ACL measures the average length of high MW n-alkanes (Poynter & Eglinton, 

1990). Previous studies have established that plants produce higher MW n-alkanes in 

warmer climates, and that non-woody plants produce leaf wax with longer ACL values 

than woody plants (Rommerskirchen et al., 2006). However, a few studies have noted 

that ACL is more influenced by precipitation than temperature or vegetation type 

(Schefuß et al., 2003; Sachse et al., 2006). ACL values > 27 are reportedly indicative of 

emergent macrophytes and terrestrial plants input (Duan & Xu, 2012; Diefendorf & 

Freimuth, 2017) and values generally increase under warmer and drier conditions 

(Andersson et al., 2011; Silva et al., 2012; Bush & McInerney, 2015). Given these 

conflicting results, Hoffmann et al. (2013) recommend obtaining information on past 

vegetation structures before employing ACL as a proxy for paleoclimatic conditions. 

 
ACL values for the Sarawak Basin and Benue Trough coals vary from 28.3 to 30.0 

(avg. 29.3) and 28.4 to 29.1 (avg. 28.8), respectively. The higher ACL values for the 

Malaysian samples suggest peat accumulation under relatively warmer climatic 

conditions. For all the studied coals, the ACL parameter shows a strong, positive 

correlation with %C31 (r = 0.953) but a strong, negative correlation with %C27 (r = - 

0.865) and a moderate, negative correlation with %C29 (r = -0.575). The strong 

correlations with the %C27 and %C29 parameters, which are proxies for woody and 

herbaceous vegetation, therefore validate the established influence of vegetation type on 

ACL values (Table 6.1). Furthermore, the δD values of leaf waxes reportedly generally 

decrease with increasing ACL values (Duan & Xu, 2012; Duan et al. 2014). The 

moderate, negative correlation (r = -0.519) between ACL and δD values of the studied 

coals supports this finding (Figure 6.30). 
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Table 6.1: Pearson’s correlation coefficients of n-alkane and isotopic parameters for the studied coals. 

Variable TOC HI δ13C δD C/N CPI TAR ACL Paq Pwax %C27 %C29 %C31 
C23/(C27 
+ C31) 

C23/ 
C29 

TOC 1.000               

HI -0.038 1.000              

δ13C 0.012 0.662 1.000             
δD -0.374 0.617 0.566 1.000            

C/N 0.148 -0.419 -0.195 -0.465 1.000           
CPI -0.114 -0.528 -0.192 -0.06 0.053 1.000          
TAR -0.152 -0.706 -0.469 -0.136 0.209 0.762 1.000         
ACL 0.248 -0.615 -0.544 -0.519 0.365 0.297 0.466 1.000        
Paq -0.222 0.519 0.221 0.195 -0.101 -0.733 -0.617 -0.584 1.000       
Pwax 0.182 -0.514 -0.203 -0.167 0.066 0.761 0.613 0.503 -0.99 1.000      
%C27 -0.350 0.479 0.284 0.396 -0.372 -0.355 -0.428 -0.865 0.739 -0.647 1.000     
%C29 0.084 0.429 0.595 0.422 -0.146 -0.006 -0.205 -0.575 -0.056 0.068 0.093 1.000    
%C31 0.160 -0.616 -0.612 -0.554 0.336 0.222 0.413 0.953 -0.413 0.347 -0.682 -0.792 1.000   
C23/(C27 + C31) -0.026 0.637 0.387 0.369 -0.18 -0.777 -0.663 -0.44 0.823 -0.857 0.478 0.101 -0.368 1.000  
C23/C29 -0.165 0.420 0.087 0.147 -0.181 -0.684 -0.488 -0.361 0.874 -0.877 0.619 -0.294 -0.164 0.825 1.000 
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Figure 6.30: Cross-plot of n-alkane average chain length (ACL) and hydrogen 
isotopic ratios of the studied coals. 

 
 
 

The Paq parameter was proposed by Ficken et al. (2000) to measure the abundance of 

non-emergent aquatic plants relative to emergent aquatic and terrestrial plants. Values < 

0.1 and > 0.4 characterise the predominant abundance of terrestrial plants and non- 

emergent aquatic plants, respectively, while values between 0.1 and 0.4 signify mixed 

input of terrestrial plants and aquatic macrophytes. The Paq values for the Sarawak 

Basin and Benue Trough coals vary over the 0.12-0.69 (avg. 0.28) and 0.12-0.56 (avg. 

0.33) range, respectively. The values generally indicate a mixed input of terrestrial 

plants and aquatic macrophytes for the studied coals. Furthermore, Zheng et al. (2007) 

introduced the Pwax parameter to determine the relative proportion of waxy 

hydrocarbons derived from emergent aquatic and terrestrial plants. The calculated Pwax 

values, which are similar for Sarawak Basin (0.52-0.91) and Benue Trough (0.56-0.91) 

coals, are mostly > 0.7 with mean values of 0.79 and 0.75, respectively (Figure 6.31). 
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These values indicate the predominant input of terrestrial plants under relatively lower 

water levels (Zheng et al., 2007). 
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Figure 6.31: Cross-plot of n-alkane proxies Paq and Pwax, showing paleovegetation. 
 
 
 
 

The n-C23/n-C29 and n-C23/n-C31 ratios measure the relative contribution of 

Sphagnum and vascular plants to peat formation (Nichols et al., 2006). Except for a few 

samples, values of the n-C23/n-C29 ratio are < 1, with similar average values of 0.34 and 

0.35 for the Sarawak Basin and Benue Trough coals, respectively (Tables 5.15-5.16). 
 

Similarly, values of the n-C23/n-C31 ratio are mostly < 1, with average values of 0.24 

and 0.55 for the Malaysian and Nigerian coals, respectively. Values of both ratios 

suggest a relatively higher contribution of Sphagnum to the Benue Trough paleo-peats, 

which signifies higher water table levels and thus, relatively wetter mire conditions 

possibly due to rising sea levels. However, n-C23 can supposedly be derived from both 
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aquatic macrophytes and terrestrial plants (Sachse et al., 2006). Hence, the n-C23/n-C29 

ratio can be misleading when Betula and Sphagnum fuscum are abundant in the 

paleopeat (Andersson et al., 2011). Consequently, Andersson et al. (2011) proposed the 

C23/(C27 + C31) n-alkane parameter to improve interpretations of the n-C23/n-C29 proxy 

by more accurately reconstructing past water table levels in peat deposits. According to 

He et al. (2019), n-C23/(n-C27 + n-C31) ratios > 0.2 are indicative of a significant 

contribution of Sphagnum in wetter habitats. The C23/(C27 + C31) n-alkane ratios for the 

Sarawak Basin and Benue Trough coals vary correspondingly from 0.05 to 0.39 (avg. 

0.13) and 0.09 to0.59 (avg. 0.22). In general, the higher average ratio for the Benue 

Trough coals corroborates the interpretation of the higher contribution of Sphagnum to 

paleovegetation and higher water levels in the Benue Trough paleopeats (Figure 6.32). 
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Figure 6.32: Cross-plot of n-alkane paleohydrology proxies. 
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The n-C23/n-C25 ratio is another paleohydrological proxy that was proposed by 

Bingham et al. (2010). This parameter measures the relative abundance of Sphagnum 

species derived from wetter and drier microhabitats in ombrotrophic peat bogs. The 

workers concluded that higher ratios indicate higher input of C23-dominated Sphagnum 

species in wetter conditions. n-C23/n-C25 ratios for all the studied coals are less than 1.0, 

thus indicating predominant input of C25-dominated species under drier peatland 

conditions. However, the ratios are relatively higher for the Benue Trough coals (0.09- 

0.97) than the Sarawak Basin coals (0.23-0.82). The cross plot of C23/(C27 + C31) and 

C23/C25 n-alkane ratios generally indicates relatively wetter conditions in the Benue 

Trough peatlands during the Late Cretaceous (Figure 6.32). 

 
Overall, n-C23/n-C31, n-C23/(n-C27 + n-C31), n-C27/n-C31, and Paq ratios of the 

investigated Sarawak Basin coals are generally highest for the Balingian Formation, and 

lowest for the Liang Formation. These ratios suggest relatively lower and higher water 

levels for paleopeats of the Liang and Balingian Formations, respectively. In addition, 

the widely varying ratios observed for Nyalau Formation imply intermittent low-high 

water table levels during the accumulation of the Merit-Pila paleopeat. When compared 

with Sarawak Basin, the n-alkane proxies mostly signify relatively higher water levels 

in the Benue Trough paleopeats. However, the lower ratios for the Agwu and Gombe 

Formations indicate relatively lower water table levels. 

 
 
 

6.5.3 Land Plants-derived Biomarkers 
 
 

Aromatic hydrocarbon parameters such as plant fingerprint (PF), higher plant 

parameter (HPP), higher plant input (HPI) and the modified higher plant input (mHPI) 

have been employed to evaluate the contribution of land-derived higher plants (van 
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Aarssen et al., 2000; Cesar & Grice, 2019; Zakrzewski et al., 2020), using the relative 

distribution of retene, cadalene, ip-iHMN and 1,3,6,7-TeMN (Tables 5.27-5.28). 

Retene, cadalene and ip-iHMN are higher plant biomarkers, while 1,3,6,7-TeMN is 

mostly derived from microbial action and is abundant in both marine and terrestrial 

sediments (Jiang et al., 1998; van Aarssen et al., 1999). Hence, the abundances of retene 

and cadalene relative to that of 1,3,6,7-TeMN are indicators of land-plant input. 

Retene/1,3,6,7-TeMN and cadalene/1,3,6,7-TeMN ratios for the analysed samples are 

relatively higher for the Sarawak Basin coals, indicating a greater contribution of 

organic matter from terrigenous land plants (Figure 6.33). 
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Figure 6.33: Cross-plot of cadalene/1,3,6,7-TeMN vs. retene/1,3,6,7-TeMN ratios 
for the analysed coals. 

 
 
 

The HPI is applied to evaluate the contribution of land plants to organic matter. The 

index is calculated from the formula (retene + cadalene + ip-iHMN)/1,3,6,7-TeMN. HPI 

values of all samples are > 1, except in sample CKL, varying significantly from 4.4 to 

463.8 (avg. 58.0) and 0.7 to 61.0 (avg. 10.9) for the Sarawak Basin and Benue Trough 
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coals, respectively. The generally high HPI values indicate the predominant input of 

land plants to organic matter. However, the relatively lower HPI values for the Lamja 

(avg. 3.6) and Gombe (avg. 3.6) Formation coals imply a significant contribution of 

marine algae to organic matter. Additionally, the relatively higher HPI values for the 

Sarawak Basin coals corroborate earlier interpretations of the greater contribution of 

terrigenous organic matter. Furthermore, the modified HPI (mHPI) proposed by 

Zakrzewski et al. (2020) and which is calculated from (retene + cadalene + ip- 

iHMN)/(retene + cadalene + ip-iHMN + 1,3,6,7-TeMN) ranges from 0.81 to 1.00 (avg. 

0.94) and 0.40 to 0.98 (avg. 0.79) for the Sarawak Basin and Benue Trough, 

respectively. The mHPI values are indicative of the dominant proportion of higher 

plant-derived terrigenous organic matter. Also, the relatively higher mHPI values for the 

Sarawak Basin coals again corroborate the finding of greater contribution of land plants 

to organic matter. 

 
Previous studies have found that higher plants that adapt to humid and arid climates 

are accordingly the main sources of retene and cadalene (Hautevelle et al., 2006; Grice 

et al., 2015; Cesar & Grice, 2019; Xu et al. 2019). Additionally, Hautevelle et al. (2006) 

established that the retene/cadalene ratio is unaffected by depositional and diagenetic 

conditions but by climatic conditions. Hence, the retene/cadalene ratios for the Sarawak 

Basin and Benue Trough coals range widely from 0.2 to 91.8 (avg. 13.2) and 0.0 to 48.0 

(avg. 3.8), respectively, supporting the interpretation of relatively drier conditions in the 

Benue Trough during the Late Cretaceous. Furthermore, the mostly low retene/cadalene 

ratios for the Campanian-Maastrichtian Mamu Formation and Maastrichtian Gombe 

Formation coals imply an increasingly relatively drier and cooler climate. This 

interpretation is further corroborated by studies that have reported a global cooler 

climate in the Maastrichtian (Linnert et al., 2014; Jiang & George, 2018; Jiang & 

George, 2019). 
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The HPP is expressed as retene/(retene + cadalene) and is often used to estimate the 

proportion of conifer relative to vascular plants (van Aarssen et al., 2000). However, 

recent studies have highlighted two limitations of the HPP. First, the abundance of 

retene has often been associated with gymnosperm contribution to paleoflora; however, 

Grice et al. (2007) found no strong correlation between gymnosperm pollen and the 

relative abundance of retene. Second, variations in the HPP have been associated with 

global sea level fluctuations or aridity (van Aarssen et al., 2000). Nevertheless, a recent 

study by Cesar & Grice (2019) determined that the HPP cannot be applied to ascertain 

global climate effects. The HPP ranges between 0.14 and 0.99 and 0.00 to 0.98 for the 

Sarawak Basin and Benue Trough coals, respectively. For the Late Cretaceous Benue 

Trough, the HPP decreases from Coniacian-Santonian to Campanian and then increases 

in the Maastrichtian, showing a similar trend to the published global sea level curve. 

Global climate studies on the Late Cretaceous established the warmest conditions in the 

Cenomanian-Turonian after which declining atmospheric pCO2 levels resulted in sea 

level fall and major climate cooling from the Late Turonian to Maastrichtian (Ladant et 

al., 2020; Linnert et al., 2018). However, the earliest Campanian was warm but the 

climate further cooled by ca. 7 °C over the Campanian-Maastrichtian period (Linnert et 

al., 2014; DeConto et al., 1999). This Maastrichtian cooling event was characterised by 

high detrital influx, higher δ13C values, high but reducing δ18O values, and low Sr/Ca 

ratios (Stüben et al., 2003). For the Tertiary Sarawak Basin, the HPP generally 

decreases from the Miocene to the Pliocene, thus implying increasingly drier conditions 

(Cesar & Grice, 2019). 

 
Similarly, the PF compares the relative abundances of retene, cadalene and ip-iHMN. 

The Benue Trough coals are generally characterised by high abundances of retene (0- 

99%) and cadalene (2-100%) while ip-iHMN is observed only in low abundance (0- 

20%). Coal samples of the Coniacian-Santonian Lamja Formation show a predominant 
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abundance of retene (avg. 56%) with a subordinate abundance of cadalene (avg. 25%) 

and ip-iHMN (avg. 19%) while the Campanian-Maastrichtian Mamu Formation 

samples are dominated by cadalene (avg. 74%) and retene (avg. 26%). The 

Maastrichtian Gombe Formation show similar abundances of retene (avg. 43%) and 

cadalene (avg. 49%). In the Cenozoic Sarawak Basin, cadalene predominated in the 

earliest Miocene as retene was mostly absent in the Nyalau Formation coals. This was 

perhaps due to the warm and moderately dry climate that prevailed from the Late 

Oligocene to the earliest Miocene (Jablonski, 2005). The Early Miocene Balingian 

Formation coals are, however, dominated by retene (avg. 89%) with a subordinate 

contribution of cadalene (avg. 10%), which coincides with the reported return of humid 

climate around 20 Ma (Morley, 1998; Morley, 2012). The Upper Pliocene Liang 

Formation coals are typified by a mostly dominant abundance of retene (avg. 59%) with 

a significant contribution of cadalene (avg. 41%) and the complete absence of ip-iHMN. 

This finding is supportive of the earlier interpretation of seasonal dry conditions in the 

Sarawak Basin during the Late Pliocene. 

 
 
 

6.5.4 Combustion-derived Biomarkers 
 
 

Combustion-derived polycyclic aromatic hydrocarbons (PAHs) are unsubstituted 

hydrocarbons with 3 or more rings produced by forest and peat fires that result in the 

incomplete burning of biomass (Jiang et al., 1998). The abundance of combustion- 

derived PAHs is therefore dependent on the frequency and extent of fire events, which 

in turn depends on climatic conditions as fire incidents occur mostly during dry periods. 

Volcanic activity and igneous intrusion have also been reported to produce PAHs via 

the recombination at lower temperatures of the small molecular fragments produced at 

abnormal heating rates (Romero-Sarmiento et al., 2011). PAHs are also often produced 
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via catagenetic modification (Zakir Hossain et al., 2013). However, while the thermal 

alteration of sediments during burial produces alkyl-substituted compounds, rapid 

heating due to fire or hydrothermal events accelerates the aromatization process, 

yielding unsubstituted PAHs. 

 
According to H. Huang et al. (2015), the presence of combustion-derived PAHs in 

sediments indicates past high-temperature events and the consequent reworking of 

organic matter. Hence, the presence of PAHs with 5-7 rings in some of the Benue 

Trough coals suggests the occurrence of past fire events (Jiang et al., 1998; Zakir 

Hossain et al., 2013; H. Huang et al., 2015; Xu et al., 2019; Zakrzewski et al., 2020). 

However, Xu et al. (2019) investigated the lacustrine sediments from Bohai Bay Basin, 

China and concluded that the observed PAHs were diagenetically derived from algal 

OM origin. Furthermore, benzo[e]pyrene can also originate from algal and plankton 

sources, and perylene may be diagenetically derived by wood-degrading fungi (Grice et 

al., 2007; Marynowski et al., 2013; Zakrzewski et al., 2020). Nevertheless, the 

significant amount of inertinite maceral in the Benue Trough coals, particularly the 

Gombe Formation samples (Jimoh & Ojo, 2016; Ayinla et al., 2017b; Akinyemi et al., 

2020; Akinyemi et al., 2022), provides evidence in support of fire events (Scott & 

Glasspool, 2007; Romero-Sarmiento et al., 2011) and frequent dry periods during peat 

accumulation. 

 
The relative distributions of ≥ 3-ring unsubstituted PAHs in the studied coals are 

shown in Figure 5.26. The PAHs detected in the studied coals include phenanthrene 

(PHE), anthracene (A), fluorene (F), fluoranthene (Fl), pyrene (Py), benzo[a]anthracene 

(BaA), chrysene (Ch), triphenylene (TPh), benzo[b]fluoranthene (BbFl), 

benzo[k]fluoranthene (BkFl), benzo[e]pyrene (BePy), benzo[a]pyrene (BaPy), perylene 

(Per), indeno[1,2,3-cd]pyrene (InPy), benzo[ghi]perylene (BgPer) and coronene (Cor). 
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The PAHs are present in significant amounts in the Benue Trough samples but mostly 

absent or present in low amounts in the Sarawak Basin samples. The abundance of 

combustion-derived PAHs relative to land plants-derived aromatic biomarkers (PAHr) 

is expressed by the formula (phenanthrene + pyrene + fluoranthene)/(phenanthrene + 

pyrene + fluoranthene + cadalene + retene). The PAHr values of the studied Sarawak 

Basin and Benue Trough coals range broadly from 0.03 to 0.97 (avg. 0.54) and 0.11 to 

0.98 (avg. 0.78), respectively. First, these values support the finding of greater amounts 

of combustion-derived PAHs in the Benue Trough. Within the Sarawak Basin, PAHr 

values are generally highest for the Pliocene Liang Formation (avg. 0.61) with 

relatively lower, similar values for the Miocene Nyalau (avg. 0.49) and Balingian (avg. 

0.51) Formations (Table 5.27). Average PAHr values for the Late Cretaceous Benue 

Trough coals are highest for the Lamja Formation (0.98) and lowest for the Agwu 

Formation (0.22) while Gombe (0.85) and Mamu (0.79) Formations show intermediate 

values (Table 5.28). 

 
Based on the difference in relative thermodynamic stability, various ratios of PAHs 

have been proposed to distinguish between diagenetic/catagenic/petrogenic and 

combustion/pyrogenic origins of PAHs in sedimentary rocks and oils (Yunker et al., 

2002; H. Huang et al., 2015; Xu et al., 2019; Zakrzewski et al., 2020). The relative 

abundance of anthracene to phenanthrene is a widely applied parameter to distinguish 

the sources of PAHs. Phenanthrene predominates in all the studied samples; however, 

anthracene, a linearly fused 3-ring aromatic compound, was mostly absent in the 

Sarawak Basin coals and present in the Benue Trough coals. High abundances of 

anthracene with A/(A+PHE) ratios > 0.10 reportedly signify high-temperature events 

(H. Huang et al., 2015). The measured A/(A+PHE) ratios in the Benue Trough coals 

vary from 0.01 to 0.15. Average A/(A+PHE) ratios indicate petrogenic origins for the 

Lamja (0.07), Mamu (0.08) and Gombe (0.04) Formations, and pyrogenic origin for the 
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Agwu Formation (0.13). The ratio of methylphenanthrenes to phenanthrene (MP/P) is 

another often utilized parameter. MP/P ratios < 1.0 and > 2.0 correspondingly signify 

pyrogenic and petrogenic origins (Yunker et al., 2002; Xu et al., 2019). The calculated 

MP/P ratios vary broadly from 0.2 to 44.0 (avg. 5.5) and 0.5 to 5.2 (avg. 2.3) for the 

Sarawak Basin and Benue Trough coals, respectively. These ratios imply a mixed origin 

of pyrogenic and petrogenic sources for the PAHs in both groups of coals. However, the 

relatively lower ratios for the Benue Trough samples imply that more of the PAHs are 

derived from pyrogenic sources, thus suggesting drier paleoclimatic conditions. 

 
The relative abundances of 4-ring PAHs are important combustion markers (Xu et 

al., 2019). Pyrene and fluoranthene are identified in the m/z 202 mass chromatograms of 

most of the investigated samples. Also, the abundance of fluoranthene mostly 

predominates that of pyrene, except in a few samples where pyrene predominates. 

Fl/(Fl+Py) ratios < 0.4 and > 0.5 indicate petrogenic-related and pyrogenic-related 

sources, respectively (Yunker et al., 2002). The Fl/(Fl+Py) ratio for the Sarawak Basin 

and Benue Trough coals ranges accordingly from 0.20 to 0.92 (avg. 0.64) and 0.38 to 

0.86 (avg. 0.61). The ratios are mostly > 0.5, signifying a pyrogenic or combustion 

origin. Additionally, 4-ring PAHs, benzo[a]anthracene, chrysene and triphenylene, are 

detected in the m/z 228 mass chromatograms of the aromatic fractions. Chrysene and 

triphenylene coelutes, and are observed in all studied samples, while 

benzo[a]anthracene is present in a relatively low amount in the Sarawak Basin coals. 

The summed abundances of chrysene and triphenylene prevail over that of 

benzo[a]anthracene in all samples. Yunker et al. (2002) concluded that 

BaA/(BaA+Ch+TPh) ratios < 0.20 and > 0.35 implies petrogenic and pyrogenic origins, 

respectively. BaA/(BaA+Ch+TPh) ratios are similar for the Sarawak Basin and Benue 

Trough, varying respectively from 0.06 to 0.41 (avg. 0.23) and 0.09 to 0.45 (avg. 0.24). 
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The cross-plots of Fl/(Fl+Py) against MP/P and BaA/(BaA+Ch+TPh) ratios in Figure 
 

6.34 indicate petrogenic to mixed sources for the PAHs. 
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Figure 6.34: Cross-plots of MP/P versus Fl/(Fl+Py) – (a) and BaA/(BaA+Ch+Tph) 
versus Fl/(Fl+Py) – (b). Abbreviations are defined in Table 5.27. 
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The m/z 252 mass chromatograms show the distribution of 5-ring PAHs such as 

benzopyrenes, benzofluoranthenes and perylene (Figure 5.26). Whereas pyrogenic- 

derived PAHs can be altered by the subsequent alkylation process during catagenesis, 

benzopyrenes and benzofluoranthenes have been found to be less susceptible to such 

alteration (Jiang et al., 1998). Hence, the relative abundance of summed 

benzofluoranthenes over benzo[e]pyrene is an effective indicator of the origin of PAHs. 

The (BFl)/(BFl+BePy) values range from 0.55 to 0.78 (avg. 0.71) and 0.56 to 0.84 (avg. 

0.76) for the Sarawak Basin and Benue Trough coals, respectively. According to Xu et 

al. (2019), values > 0.7 imply a pyrogenic or combustion origin. Hence, the calculated 

(BFl)/(BFl+BePy) ratios suggest a predominant combustion source. Furthermore, 6-ring 

PAHs such as indeno[1,2,3-cd]pyrene, benzo[ghi]perylene and coronene were observed 

in the m/z 276 and m/z 300 mass chromatograms of some analysed Benue Trough 

samples. InPy/(InPy+BgPer) ratios < 0.2 and > 0.5 indicate petrogenic and pyrogenic 

origins, respectively (Yunker et al., 2015). The calculated values for the Nigerian coals 

range from 0.15 to 0.68 with average ratios of 0.54, 0.62, 0.38, and 0.25 for the Agwu, 

Gombe, Mamu and Lamja formations, respectively. The coals plot mostly in the mixed 

to pyrogenic source zones of the cross-plot of (BFl)/(BFl+BePy) and 

InPy/(InPy+BgPer), indicating a mixed to pyrogenic/combustion origin (Figure 6.35a). 

However, the relatively lower ratios of the Lamja Formation coals imply a petrogenic 

source for the PAHs, and thus relatively wetter conditions during the Coniacian- 
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Following work by Marynowski et al. (2015) on the thermal degradation of perylene 

and benzo[ghi]perylene, Zakrzewski et al. (2020) proposed the BgPer/(BgPer+Per) ratio 

to estimate the proportion of burnt and unburnt terrigenous OM in immature to low 

thermal maturity sediments. High values (> 0.5) of the ratio signify a higher proportion 

of charred OM and thus, pyrolytically sourced PAHs from high-temperature wildfires. 

The BgPer/(BgPer+Per) ratios for the Benue Trough coals range from 0.04 to 0.61 (avg. 

0.32), suggesting a greater proportion of unburnt OM possibly due to either moderately 

intense and/or shorter-duration wildfires. In addition, Zakrzewski et al. (2020) posited 

that BaPy/(BaPy+BePy) values > 0.5 signify a high influence of paleofire events on 

deposited organic matter. The BaPy/(BaPy+BePy) values of the analysed Benue Trough 

coals vary from 0.19 to 0.60 with average ratios of 0.56, 0.38, 0.50 and 0.32 for the 

Agwu, Gombe, Mamu and Lamja Formations, respectively. The BgPer/(BgPer+Per) 

and BaPy/(BaPy+BePy) ratios are, together, suggestive of limited to moderate influence 

of high-temperature paleo-wildfires or fire events in the Benue Trough during the Late 

Cretaceous (Figure 6.35b). 

 
These findings are all corroborated by the absence, or presence in relatively low 

abundance, of coronene in the Gombe Formation coals. The Cor/(Cor+BaPy) ratios of 

the studied Benue trough coals range between 0.02 and 0.26 (avg. 0.14). In contrast, 

Middle Jurassic sediments from the Polish Basin investigated by Zakrzewski et al. 

(2020) show higher values (0.12-0.67). The cross-plot of the Cor/(Cor+BaPy) ratio and 

total inertinite content for the Nigerian coals and Polish sediments suggests a correlation 

between both parameters as samples with high Cor/(Cor+BaPy) ratios generally contain 

a high amount of inertinite macerals (Figure 6.36). 
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Figure 6.36: Correlation diagram of Cor/(Cor + BaPy) and total inertinite content 
for the studied Benue Trough coals and Polish Basin sediments reported by 
Zakrzewski et al. (2020). Cor = coronene; BaPy = benzo[a]pyrene. 

 
 
 
 

6.5.5 Elemental Composition 
 
 

The abundance of elements in coals provides important information on 

paleoenvironmental conditions and several studies have documented the effect of 

paleoclimate on the elemental composition of coals (Bai et al., 2015; Li et al., 2019; Lv 

et al., 2019; Liu et al., 2021; Zhou et al., 2021; Akinyemi et al., 2022). Elements such as 

Fe, Mn, Co and Ni are often enriched under humid climatic conditions, while Ca, Mg 

and Sr are often enriched under arid conditions (Cao et al., 2012). Hence, bimetal ratios 

such as Sr/Cu, Rb/Sr and Ga/Rb are employed as paleoclimate proxies (Cao et al., 2012; 

Vosoughi Moradi et al., 2016; Krzeszowska, 2019). 
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The low Rb/Sr ratios (<1) for all the coals generally indicate warmer climatic 

conditions (Vosoughi Moradi et al., 2016; Krzeszowska, 2019). Furthermore, the 

relative abundance of strontium over copper has been used to determine climatic 

conditions. Sr/Cu ratios between 1.5 and 5.0 reportedly indicate a humid climate while 

ratios > 5.0 indicate an arid climate (Sarki Yandoka et al., 2015a; Han et al., 2020). The 

Sr/Cu ratio for Sarawak Basin coals varies widely between 1.1 and 108.1, mostly 

increasing from Nyalau Formation (avg. 9.8) and Balingian Formation (avg. 10.8) to 

Liang Formation (avg. 52.8). The Sr/Cu ratios are suggestive of relatively drier climatic 

conditions for the Liang Formation coals and fluctuating wet and dry conditions during 

accumulation of the Nyalau and Balingian Formation paleopeats. Similarly, Sr/Cu ratios 

for the Benue Trough coals vary widely between 0.2 and 132.9, with correspondingly 

average values of 1.1, 3.1, 7.9 and 54.6 for the Mamu, Agwu, Lamja and Gombe 

Formations. These values suggest mostly wetter conditions in the Late Cretaceous until 

drier conditions developed in the Maastrichtian during the accumulation of the Gombe 

Formation paleopeats. 

 
The Sr/Ba ratio is another widely utilized bimetal proxy for paleoclimate, and ratios 

 
< 1 and > 1 generally imply humid and arid climatic conditions, respectively (Dai et al., 

2020). Calculated Sr/Ba ratios range from 0.07 to 13.78 (avg. 1.57) and 0.16 to 8.40 

(avg. 1.09) for the analysed Sarawak Basin and Benue Trough coals, respectively (Table 

5.10). For the Sarawak Basin coals, ratios for the Miocene Balingian (avg. 0.54) and 

Nyalau (avg. 0.15) Formations are < 1 but > 1 for the Pliocene Liang Formation (avg. 

4.58). In contrast, Sr/Ba ratios for the Benue Trough coals are < 1 except in two 

samples (MGL3A and LMZ1). The cross-plot of Sr/Ba and Sr/Cu ratios in Figure 6.37a 

shows that the Malaysian Balingian and Nyalau Formation coals were deposited under 

wetter conditions of a warm and humid climate in the Early Miocene while the Liang 

Formation coals accumulated under relatively drier conditions in Late Pliocene. 
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In addition, Figure 6.37a shows that the Nigerian coals accumulated under humid 

climatic conditions during the Late Cretaceous. However, high Sr/Cu ratios suggest 

frequent drier periods during the accumulation of the Lamja and Gombe Formation 

peats in the Turonian-Coniacian and Maastrichtian, respectively. Furthermore, the C- 

value, defined as [Fe + Mn + Cr + Ni + V + Co]/[Ca + Mg + Sr + Ba + K + Na], is an 

effective proxy of paleoclimate in mudstones and its values reduce with increasing 

aridity (Cao et al., 2012). Ratios of the C-value parameter < 0.2 and > 0.8 corresponds, 

respectively, to arid and humid climate (Cao et al., 2012). The C-value ratios are > 0.2 

in all the studied Sarawak Basin and Benue Trough coals, ranging from 0.24 to 6.94 

(avg. 1.93) and 0.26 to 28.27 (avg. 6.14), signifying accumulation under humid climatic 

conditions (Figure 6.37b). 

 
In a study of coals and shales from Huangxian Basin, China, Lv et al. (2019) 

established that SiO2/Al2O3 ratios are indicative of redox and climatic conditions during 

deposition. According to Lv et al. (2019), SiO2/Al2O3 ratios increase with decreasing 

humidity. The SiO2/Al2O3 ratios are mostly relatively higher for Benue Trough coals, 

varying broadly from 1.32 to 9.36 with an average of 3.42, which indicate relatively 

drier climatic conditions. Similarly, the ratios vary broadly from 0.18 to 7.30 with an 

average of 2.09 for the Sarawak Basin coals. Comparing the SiO2/Al2O3 ratios of the 

Sarawak samples generally shows the highest ratios for the Pliocene Liang Formation 

(avg. 2.84) and the lowest ratios for the Miocene Balingian Formation (avg. 1.18). 

These ratios corroborate the interpretation of less humid and more humid paleoclimate 

during peat accumulation in the Pliocene and Miocene, respectively. Additionally, 

consistent with previous interpretations, the Nyalau Formation coals show varying 

SiO2/Al2O3 ratios (avg. 1.96) that are suggestive of fluctuating wetter-drier conditions. 
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Figure 6.37: Cross-plots of (a) – strontium/barium (Sr/Ba) ratio vs. 
strontium/copper (Sr/Cu) ratio, and (b) – C-value vs. Sr/Cu ratio, showing 
paleoclimatic conditions. 
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The interpretations of considerably drier conditions during the accumulation of the 

Liang Formation peats in the Late Pliocene, and a warm, tropical wet-dry climate when 

peats of the Balingian and Nyalau formations accumulated in the Late Oligocene to 

Early Miocene are corroborated by published paleovegetation (Morley 1998; Barry et 

al., 2002; Widodo et al., 2009) and paleoclimate (Zachos et al., 2001; Jablonski, 2005; 

Morley, 2012; Holbourn et al., 2014; Friederich et al., 2016) studies. According to 

Morley (1998, 2012), plant dispersal in the SE Asia region has been mainly controlled 

by climate since the Eocene and the climate in the Late Oligocene to the earliest 

Miocene was warm and considerably drier. However, moist climate and tropical rain 

forests became widespread in the Early Miocene ( 20 Ma) until the Middle Miocene ( 

15 Ma) when warming peaked. This was followed by a period of gradual cooling, 

increased aridity, the recession of rain forests and, the expansion of grasslands from the 

Middle Miocene to the Early Pliocene (Barry et al., 2002; Chamberlain et al., 2014). In 

contrast, the Early Pliocene was marked by a subtle warming trend that ended in the 

Late Pliocene ( 3.2 Ma) when glaciation resumed with pronounced seasonal climates 

in the Late Pliocene and Quaternary (Morley, 1998; Zachos et al., 2001; Jablonski, 

2005). 

 
The wide variation in values of n-alkane proxies (n-C23/n-C29, ACL, Pwax, Paq) for 

the Nyalau Formation and, to a lesser degree in the Balingian Formation coals suggests 

fluctuating peat hydrological conditions (Zheng et al., 2007). This further suggests that 

the Nyalau Formation coals at Merit-Pila coalfield were deposited under the tropical 

wet-dry seasonal climate that prevailed in the Late Oligocene and earliest Miocene and 

are probably stratigraphically older than the Balingian Formation coals which 

accumulated under the relatively stable humid conditions of the Early to Middle 

Miocene, possibly between 20 and 15 Ma (Morley, 1998; Jablonski, 2005; Morley, 

2012). Palynological and sedimentological investigation of the Balingian Formation by 
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Murtaza et al. (2018) showed the occurrence of Florscheutzia trilobata and 

Florscheutzia levipoli, and based on this finding, the authors assigned an Early to 

Middle Miocene age. In addition, Hennig-Breitfeld et al. (2019) ascribed Oligocene to 

Early Miocene, and uppermost Early to Middle Miocene ages to the Nyalau and 

Balingian Formations, respectively. Hence, the geochemical interpretations of this 

research support the conclusions by Murtaza et al. (2018) and Hennig-Breitfeld et al. 

(2019) of the latest Oligocene to Early age for the Nyalau Formation, and Early to 

Middle Miocene age for the Balingian Formation (Figure 6.38). 
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Figure 6.38: Simplified stratigraphic framework of Mukah-Balingian and Merit- 
Pila coalfields (after A: Hageman, 1987; Madon, 1999b; Mukah et al., 2014; 
Murtaza et al., 2018; this research, and B: Hennig-Breitfeld et al., 2019) 
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Although most studies have ascribed a Late Pliocene to Pleistocene age to the Liang 

Formation (Wolfenden, 1960; Hutchison, 2005), the revised stratigraphy proposed by 

Hennig-Breitfeld et al. (2019) suggests a latest Middle Miocene age. Interpretations of 

n-alkane proxies, bimetal ratios and δD values indicate relatively warmer and drier 

conditions during the accumulation of the Liang Formation paleopeats. This 

interpretation is further corroborated by preliminary results of the oxygen isotopic 

(δ18O) analysis of the studied coals which show a 2‰ decline in δ18O values from the 

Balingian Formation to the Liang Formation that signifies relatively warmer climatic 

conditions (Zachos et al., 2001). However, the Middle Miocene is generally 

characterised by cooler climatic conditions after warming peak at ~ 15 Ma (Holbourn et 

al., 2014). A global climate study by Zachos et al. (2001) established that δ18O values 

increased after Middle Miocene Climate Optimum (MMCO) until the Early Pliocene 

when δ18O values declined due to warming between 6 Ma and 3.2 Ma. Warming events 

are often accompanied by sea level rise and decreasing surface productivity that are 

accordingly reflected by higher Sr/Ca and lower δ13C values (Stüben et al., 2003). 

Average δ13C values of the Sarawak Basin coals are lower for the Liang Formation (- 

28.0‰) than the Balingian Formation (-26.7‰), while average Sr/Ca ratios are higher 

for Liang Formation (0.029) than the Balingian Formation (0.016), validating the 

finding of relatively warmer depositional conditions for the Liang Formation. Although 

the geochemical evidence presented in this thesis does not conclusively support a Late 

Pliocene age for the Liang Formation, elemental and isotope data however contradict 

the latest Middle Miocene age recently assigned by Hennig-Breitfeld et al. (2019). 

 
Nevertheless, the palynological study by Sia et al. (2019) concluded that the Liang 

Formation coals were dominated by palynomorphs, and characterized by a strong 

diversity of species, which according to the authors suggests wet climatic conditions. 

Furthermore, a review of the climate in the Cenozoic by Morley (2012) concluded that 
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the Borneo Island areas have, without interruption, experienced ever-wet climates since 

the Late Miocene. These petrography and palynology interpretations of ever-wet 

conditions in the Late Pliocene contradict this research’s biomarker and elemental data 

interpretation of relatively drier conditions. This is possibly due to the highly seasonal 

climate in the Late Pliocene which limited peat fires and ensured minimal diversity of 

species (Jablonski, 2005). 

 
 
 

6.6 Paleodepositional Conditions 
 
 

6.6.1 Paleoenvironments 
 
 

Previous studies have shown that variations in the relative abundances of aromatic 

compounds such as phenanthrene (PHE), naphthalene (Np), dibenzofuran (DBF), 

fluorene (F), and dibenzothiophene (DBT) are effective markers of facies and 

depositional environments (Pu et al., 1990; Hughes et al., 1995; Radke et al., 2000; Li et 

al., 2013; Asif & Wenger, 2019). In general, the relative abundances of PHE, F and 

DBF are higher in source rocks from freshwater sedimentary environments than in those 

from marine environments whilst the abundances of DBT and Np are relatively higher 

in source rocks from marine environments. 

 
The analysed Sarawak Basin and Benue Trough coals are dominated by PHE with 

subordinate abundances of DBF and DBT (Figure 6.39a), generally signifying non- 

marine depositional environments (Pu et al., 1990); however, the elevated abundance of 

DBT observed in a few samples is suggestive of marine influence (Radke et al., 2000). 

Although the dominance of MPs over MDBFs and MDBTs is less pronounced (Figure 

6.39b), the moderately high abundance of MDBFs supports the interpretation of a non- 

marine depositional environment (Radke et al., 2000). 
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Figure 6.39: Ternary diagrams showing relative abundances of (a) – phenanthrene 
(PHE), dibenzofuran (DBF), and dibenzothiophene (DBT), and (b) – 
methylphenanthrenes (MP), methyldibenzofurans (MDBF) and 
methyldibenzothiophenes (MDBT) in the studied coals. 

 
 
 

Furthermore, Asif & Wegner (2019) utilized the ternary diagram of the relative 

abundances of F, DBF and DBT to differentiate source facies. The authors reported that 
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abundances of F, DBF and DBT, respectively. The relative abundance of F, DBF and 

DBT in the Sarawak Basin coals vary broadly from 0.0 to 100.0%, 0.0 to 100.0, and 0.0 

to 66.6%, respectively, while varying accordingly from 13.1 to 73.0%, 6.4 to 78.5%, 

and 0.0 to 72.1% in the Benue Trough coals. The ternary plot of %F, %DBF and %DBT 

mostly shows similar average abundances of F (34.2%), DBF (30.7%) and DBT 

(35.1%) in the Benue Trough samples that is typical of freshwater to brackish-water 

lacustrine environment (Figure 6.40a). In contrast, the Sarawak Basin samples are 

characterised by predominant abundances of DBF (avg. 46.3%) and F (avg. 38.9%) 

which indicates terrestrial organic matter deposited in freshwater- to lacustrine-mire 

environment (Pu et al., 1990; Radke et al., 2000; Li et al., 2013; Asif & Wenger, 2019). 

Additionally, the higher variance in the abundances of the heterocyclic compounds in 

the Sarawak Basin coals is indicative of fluctuating depositional conditions during peat 

accumulation in the Tertiary. For example, the Nyalau and Balingian Formation coals 

are dominated by DBF (avg. 50.1%) and DBT (avg. 44.1), which suggests peat 

accumulation occurred under relatively oxidizing and less-oxidizing conditions of a 

deltaic environment (Pu et al., 1990). 

 
The methylated homologue distributions of the heterocyclic compounds are slightly 

comparable for both groups of coals (Figure 6.40b). The Sarawak Basin coals are 

dominated by MF (avg. 35.9%) and MDBF (avg. 45.7%), with a subordinate abundance 

of MDBT (avg. 18.4%). Similarly, MF (avg. 38.1%) and MDBF (avg. 51.9%) 

predominate in the Benue Trough coals with a low abundance of MDBT (avg. 10.0%). 

However, MDBF/MF ratios range from 0.29 to 6.30 and 0.46 to 3.16 for the Sarawak 

Basin and Benue Trough coals, respectively. Within the Sarawak Basin, MDBF/MF 

ratios are highest for the Nyalau Formation (avg. 2.75) and lowest for the Liang 

Formation (avg. 1.00). The wider range of MDBF/MF ratios for the Sarawak Basin 

coals supports the finding of varying depositional sub-environments as higher 
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MDBF/MF ratios imply peat mire paleoenvironment for Nyalau Formation, while lower 

ratios suggest freshwater lacustrine paleoenvironment for the Liang Formation (Li et al., 

2013; Asif & Wegner, 2019). 
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Figure 6.40: Ternary plots of the relative proportions of (a) – fluorene (F), 
dibenzofuran (DBF), and dibenzothiophene (DBT) and (b) – methylfluorenes 
(MF), methyldibenzofurans (MDBF), and methyldibenzothiophenes (MDBT) in 
the studied Sarawak Basin and Benue Trough coals. 
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Hughes et al. (1995) utilized the cross-plot of dibenzothiophene/phenanthrene 

(DBT/PHE) and pristane/phytane (Pr/Ph) ratios to differentiate five distinct 

environments and lithologies. DBT/PHE and Pr/Ph ratios for the studied coals are 

plotted in Figure 6.41a. The Sarawak Basin coals plot across zones C, D and E, 

corresponding to lacustrine (sulfate-poor), marine and lacustrine, and fluvio-deltaic 

depositional environments, respectively. However, the Benue Trough coals mostly plot 

in the boundary between zones D and E, which indicates marine/lacustrine to fluvial- 

deltaic depositional environments. Again, the Sarawak Basin coals show broad ranges 

of DBT/PHE and Pr/Ph ratios that indicate differing sub-depositional environments. 

Whereas the Liang Formation plots across zones C, D and E, the Balingian Formation 

plot in zones D and E, and the Nyalau Formation mostly within zone E of the Hughes et 

al. (1995) diagram (Figure 6.41a). 

 
Due to the dominant abundance of PHE over DBT in terrestrial sedimentary 

environments (Figure 5.24), Radke et al. (2000) modified the Hughes et al. (1995) 

diagram to differentiate high-rank coals and mature mudstones by plotting Pr/Ph ratios 

against MDBT/MDBF ratios. Similarly, the studied coals plot in the zones C, D and E 

of the modified diagram (Figure 6.41b), thus corroborating the interpretation of peat 

accumulation in a lacustrine swamp to fluvial/deltaic depositional environments. 
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Figure 6.41: Cross-plots of pristane/phytane ratios vs. (a) – 
dibenzothiophene/phenanthrene ratios (after Hughes et al., 1995) and (b) – 
methyldibenzothiophenes/methyldibenzofurans (MDBT/MDBF) ratios (after 
Radke et al., 2000), indicating depositional environment of the studied coals. 
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6.6.2 Paleoredox Conditions 
 
 

The pristane-to-phytane (Pr/Ph) ratio is an important indicator of paleoredox 

condition (Didyk et al., 1978). Pr/Ph values < 0.8 indicate saline to hypersaline 

conditions, while values > 3 suggest terrigenous organic matter deposited under oxic 

conditions (Peters et al., 2005). The Pr/Ph ratios for the studied Sarawak Basin and 

Benue Trough range from 0.6 to 14.0 (avg. 4.8) and 1.5 to 4.8 (avg. 3.0), respectively 

(Tables 5.15-5.16). The ratios are mostly indicative of terrestrial organic matter 

deposited under fully oxidizing conditions. The Pr/Ph ratios for the Liang Formation are 

> 1 (except in samples B03-6 and BG1) with an average of 2.3, which indicate 

deposition under suboxic to dysoxic paleoenvironmental conditions. Coals of the 

Balingian and Nyalau formations have Pr/Ph ratios > 3 (except in M03-2, 046A and 

MP1U) with respective average values of 4.4 and 6.5 that signify oxic conditions. 

 
The abundances of trace elements and bimetal proxies such as V/Cr, V/Ni and Ni/Co 

have been widely used to infer paleoredox conditions (Jones and Manning, 1994; Algeo 

& Maynard, 2004; Tribovillard et al., 2006; Kombrink et al., 2008; Bennet & Canfield, 

2020). For instance, the concentrations of Mo, U and V have been found to increase 

under reducing conditions (Rimmer, 2004; Tribovillard et al., 2006), while V and Ni are 

more abundant in minerotrophic than ombrotrophic peats (Shotyk, 1988). However, a 

recent study by Algeo & Liu (2020) re-examined the thresholds for bimetal proxies 

established by Jones & Manning (1994). The authors noted that the universal adoption 

of proxy thresholds established for sediments of specific formations and ages is 

problematic, and concluded that thresholds must be applied cautiously. Although these 

paleoredox proxy thresholds may not be suitable for determining the specific redox 

conditions in coal depositional environments, the parameters are nonetheless useful for 

a comparative evaluation of the degree of varying redox conditions. 
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The low concentrations of Mo (< 1 ppm), U (< 0.2 ppm), V (< 20 ppm), and Ni (< 20 

ppm) in the studied coals indicate oxic to suboxic depositional conditions (Tribovillard 

et al., 2006; Galarraga et al., 2008). However, the relatively higher Zn, U, and V 

abundances in some of the studied coals suggest intermittent relatively less oxidizing 

conditions (Algeo & Maynard, 2004; Kombrink et al., 2008). Furthermore, according to 

Jones & Manning (1994), Ni/Co and V/Cr ratios < 5 and < 2, respectively, indicate oxic 

conditions, while ratios > 5 and > 2 imply reducing conditions. V/Cr ratios vary from 

0.36 to 2.03 (avg. 1.06) and 068 to 1.96 (avg. 1.30), respectively, for the Malaysian and 

Nigerian coals. The Ni/Co ratios for the studied coals (except MP6M) are < 5.0, with an 

average ratio of 1.71 and 1.90 for the Sarawak Basin and Benue Trough samples, 

respectively. Hence, the V/Cr and Ni/Co ratios for the studied coals generally indicate 

oxic depositional conditions (Figure 6.42). 
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Figure 6.42: Cross-plot of nickel/cobalt (Ni/Co) and vanadium/chromium (V/Cr) 
ratios, showing paleoredox condition. 
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The Fe/Al ratio is another indicator of paleoredox condition as Fe enrichment is 

favoured by reducing conditions (Tribovillard et al., 2006; Algeo & Liu, 2020). Fe/Al 

ratios for the Sarawak Basin and Benue Trough coals vary widely from 0.14 to 28.00 

and 1.47 to 15.21, respectively. Within the Sarawak Basin, Fe/Al ratio generally 

increases from Balingian (avg. 4.7) to Nyalau (avg. 5.2) and Liang (avg. 13.4) 

formations. For the Benue Trough coals, Fe/Al ratios are generally lower for Lamja 

(avg. 2.10) and Gombe (avg. 3.48) Formations and higher for Mamu (avg. 7.54) and 

Agwu (avg. 9.58) Formations. These ratios suggest that the Liang, Agwu, and Mamu 

Formation coals accumulated under relatively less oxidizing conditions (Tribovillard et 

al., 2006). 

 
 
 

6.6.3 Paleosalinity and Marine Influence 
 
 

The Sr/Ba ratio could also be a useful indicator of freshwater and seawater influence 

in depositional environments, and ratios > 1 and < 1 are indicative of marine-influenced 

and freshwater-influenced environments, respectively (Gayer et al., 1999; Dai et al., 

2020). For the Sarawak Basin coals, the Sr/Ba ratios are > 1 in the Liang Formation 

(1.4-13.8) and < 1 for the Balingian Formation (0.4-0.7) and Nyalau Formation (0.1- 

0.3), suggesting some marine-influence in the Liang Formation coals. Sr/Ba ratios for 

the Benue Trough coals are mostly < 1, except in two Gombe and Lamja Formation 

samples (MGL3A and LMZ1), indicating a mostly freshwater-influenced depositional 

environment. Furthermore, the total abundance of B is an effective indicator of 

paleosalinity (Diessel, 1992; Dai et al., 2020). According to Goodarzi & Swaine 

(1994), boron concentrations in coals < 50 ppm and > 110 ppm, respectively, indicate 

freshwater and brackish water influence, while concentrations between 50 and 110 ppm 

indicate mildly brackish water influence. Boron concentration in the studied Sarawak 
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Basin and Benue Trough coals, which ranges from 24 to 248 ppm and 22 to 72 ppm, 

respectively, are suggestive of some degree of brackish water influence. 

 
For the Sarawak Basin coals, B concentration in the Nyalau Formation is generally 

below the detection limit of 20 ppm, with only one sample (MP1M) recording an 

abundance of 24 ppm. However, B concentration ranges from 47 to 248 (avg. 119 ppm) 

and 53 to 91 (avg. 68 ppm), respectively, for the Liang and Balingian Formations. 

Hence, the low (< 50 ppm) concentration of boron in the Nyalau Formation coal is 

indicative of low salinity typical of a freshwater depositional environment, while higher 

concentrations (> 50 ppm) in the Liang Formation and Balingian Formation coals infer 

brackish-water influenced depositional environments (Goodarzi & Swaine, 1994). 

Within the Benue Trough, B concentration is below the detection limit in the 

investigated Lamja Formation coals but its concentration generally increases from 

Gombe Formation (22-31 ppm) to Agwu Formation (33-72 ppm) and Mamu Formation 

(34-71 ppm) coals. The measured B concentrations in the Benue Trough coals are 

indicative of freshwater-influenced environments for the Lamja and Gombe Formations, 

and brackish-water-influenced environments for the Agwu and Mamu Formations. The 

cross-plot of B concentration and Sr/Ba ratio in Figure 6.43 shows that the studied coals 

mostly accumulated in freshwater-influenced depositional environments. However, the 

high B concentration and Sr/Ba ratios of the Liang Formation coals suggest a mild but 

increasingly brackish-water-influenced environment. 

 
The elevated abundance of U and low Th/U ratios in coals have also been linked to 

sea-water influence (Gayer et al., 1999). U concentrations in the studied are 

considerably lower in the Sarawak Basin coals (0.1-0.2 ppm) than in the Benue Trough 

coals (0.1-5.6 ppm). Similarly, Th concentrations are relatively lower for the Sarawak 

coals (0.1-2.4 ppm) and higher for the Benue Trough samples (0.6-5.5 ppm) and 
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accordingly, Th/U ratios range from 6.0 to 12.0 (avg. 8.3) and 0.2 to 18.0 for (avg. 7.3). 

Therefore, the low (< 0.1 ppm) U concentration and high (> 4.8) Th/U ratios for the 

Sarawak coals suggests little or no marine influence on the coals (Gayer et al., 1999; 

Kombrink et al., 2008). Conversely, the relatively higher U concentrations and lower 

Th/U ratios in some Benue Trough samples, particularly the Mamu Formation coals 

with an average Th/U ratio of 3.5, suggest some marine influence on the coals (Table 

5.10; Gayer et al., 1999). 
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Figure 6.43: Plot of strontium/barium (Sr/Ba) ratio vs. boron concentration in the 
studied coals. 

 
 

The generally low sulfur and uranium abundances and high Th/U ratios for the Liang 

Formation coals suggest no marine influence, while high B concentration and Sr/Ba 

ratios signify brackish-water marine influence on the coals (Figure 6.44). These 

contradictory interpretations highlight the drawbacks of the use of elemental 

paleosalinity proxies, which are summarized by Dai et al. (2020). 
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Figure 6.44: Plots of Sr/Ba ratio vs. sulfur content in the studied coals. 
 
 
 

High B concentrations with no syngenetic marine influence have been reported for 

some New Zealand coals. Moore et al. (2005) attributed the high B concentration (up to 

7000 ppm) in the Waikato region coals to a hydrothermal source. Similarly, Gürdal & 

Bozcu (2011) reported high ST content (up to 12.2 wt.%) in some Miocene Çan Basin 

coals from Çanakkale, Turkey. The authors concluded that organic sulfur is the 

dominant sulfur form in the coals and therefore attributed the high ST content to 

regional volcanic activity. Hence, ST content in coals is no indicator of the type/time of 

marine influence. The average boron concentration (1838 ppm) for the New Zealand 

coals investigated by Moore et al. (2005) is two orders of magnitude higher than the 

global average value (52 ppm) reported by Ketris & Yudovich (2009). In contrast, B 

concentrations (< 248 ppm) in the studied Liang Formation coals are significantly lower 

and can thus be plausibly explained by post-burial marine influence. This hypothesis is 

corroborated by the reported presence of cleat-filling epigenetic pyrite in the Liang 

Brackish-water influence 

Fresh-water influence     

Sarawak Basin 
Nyalau Fm 
Balingian Fm 
Liang Fm 

Benue Trough 
Agwu Fm 
Lamja Fm 
Mamu Fm 

    Gombe Fm 

S 
(%

) 

Univ
ers

iti 
Mala

ya



238  

Formation coals (Sia & Abdullah, 2012), which are incorporated after 

compaction/partial consolidation (Widodo et al., 2010). 

 
Sulfur abundance in coal depends primarily on the degree of seawater influence 

during peat accumulation and diagenesis. Hence, ST content is a widely applied proxy 

for marine influence on coal seams (Casagrande, 1987; Chou, 2012; Dai et al., 2020), 

and according to Sykes et al. (2014), ST content > 0.5 wt.% indicates some degree of 

seawater influence. The authors regarded ST contents between 0.5 and 1.5 wt.%, and > 

1.5 wt.% as respectively indicating slight and strong marine influence (Sykes et al., 

2014). ST contents are generally < 0.5 wt.% for the coal formations in the Sarawak 

Basin, thus indicating freshwater conditions with slight or no marine influence. 

Conversely, average ST contents are generally > 0.5 wt.% for the Benue Trough coals, 

with average values of 2.08, 0.59 and 1.73 wt.% for the studied Agwu, Lamja and 

Mamu Formation coals, respectively. However, the ST content is marginally lower in 

the Gombe Formation coals, averaging 0.48 wt.%. Hence, the ST content generally 

indicates a slight to strong brackish-water influence on the Benue Trough coal seams. 

Furthermore, the ST contents also indicate that sulfur incorporation in the Sarawak 

Basin seams was primarily through an assimilatory reduction process by plant 

precursors while incorporation in the Benue Trough peats was through parent plant 

material and sulfate-rich seawater during accumulation and diagenesis (Lowe & Bustin, 

1985; Casagrande, 1987; Haszeldine, 1989; Chou, 2012). 

 
In addition, the Fe content of coals has been closely related to the abundance of 

pyritic sulfur (Kombrink et al., 2008; Spears & Tewalt, 2009; Widodo et al., 2010). The 

correlation coefficient (r = -0.40) between Fe and S content of the studied Sarawak 

Basin coals is negative and weak (Figure 5.45a). In contrast, the correlation coefficient 

(0.70) for the Benue Trough coals is positive and moderate (Figure 5.45b). Furthermore, 
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strong and positive relationships (0.86 and 0.92) were reported by Widodo et al. (2010) 

for the Indonesian coals from Sebulu and Central Busang mines, and by Spears & 

Tewalt (2009) for the marine-influenced British Parkgate coals from Yorkshire- 

Nottinghamshire coalfield. Hence, the weak, negative correlation between Fe and S 

corroborates the near absence of pyritic sulfur and the finding of little or no seawater 

influence in Sarawak Basin coals while the moderate, positive correlation supports the 

finding of brackish-water influence in the Benue Trough coals. 
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Figure 6.45: Correlation plot of elemental sulfur (S) and iron (Fe) in the studied 
Sarawak Basin and Benue Trough coals. 
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The availability of Fe has also been shown to be an important control on S 

geochemistry in mires (Dellwig et al., 2001; Marshall et al., 2015; Uguna et al., 2017). 

In a study of the Holocene coastal peats in Germany, Dellwig et al. (2001) concluded 

that pyrite formation is enhanced by the combination of sulfate-rich groundwater and 

Fe-rich mire waters. Furthermore, Marshall et al. (2015) established that the supply of 

sulfate-rich groundwater must be greater than Fe-rich mire waters to create a system 

that is Fe-deficient and thus with excess sulfur. Given that the atomic Fe/S ratio for 

pyrite (FeS2) is 0.87, all available sulfur in peats with Fe/S ratios > 0.87 are presumably 

sequestered as pyrite and the excess Fe precipitated as Fe-carbonates (Marshall et al., 

2015). However, with additional supplies of sulfate-rich groundwater, the Fe/S ratio 

becomes < 0.87, which creates excess sulfur that ultimately forms organosulfur 

compounds (Sinninghe Damste & De Leeuw, 1990; Marshall et al., 2015). 

 
Calculated Fe/S ratios are relatively higher for the Sarawak Basin coals, ranging 

from 0.09 to 13.00 (avg. 4.52), and lower for the Benue Trough coals with values 

varying from 0.45 to 11.00 (avg. 2.13). Within the Sarawak Basin, Fe/S ratios are 

generally highest in the Nyalau Formation coals (avg. 6.22) and lowest in the Balingian 

Formation coals (avg. 1.91). These ratios suggest the absence of excess S required to 

form organosulfur compounds in the paleopeats. This is corroborated by the low 

DBT/PHE ratios of both groups of coals (Table 5.26). In addition, the Fe/S ratios 

suggest a relatively higher supply of sulfate-rich sea water into the Benue Trough mires, 

which corroborates the finding of higher marine influence in the seams. The higher 

average abundance of Fe in the Benue Trough (0.88 wt.%) relative to the Sarawak 

Basin (0.44 wt.%) coals also suggests peat accumulation under more minerotrophic 

conditions in the Benue Trough areas as Fe is more abundant in fen plants than in bog 

plants (Shotyk, 1988). 
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The ash content of coals has been found to correlate strongly and positively with 

mineral and ST contents (Widodo et al., 2010). Ombrotrophic peats are often typified by 

low ST and mineral contents, while rheotrophic peats are subjected to regular flooding 

and thus characterized by high ash content (Anderson 1964; Dehmer, 1993). Hence, the 

generally low ST (avg. 0.29 wt.%) and low to moderately high ash (avg. 9.5 wt.%) 

contents of the Sarawak Basin coals indicate the presence of ombrotrophic and 

rheotrophic peat deposits, and their proportion connotes the evolutionary development 

of its paleopeats. In contrast, the considerably higher ST (avg. 1.02 wt.%) and ash (avg. 

16.3%) contents of the Benue Trough coals are indicative of peat accumulation under 

varying but prevailing rheotrophic conditions. 

 
Within the Sarawak Basin, the varying ash content suggests different peat types. 

Lower ash contents in the basal layers of the Nyalau Formation suggest that peat 

accumulation in the Merit-Pila coalfield possibly originated under ombrotrophic mire 

settings but morphed into rheotrophic mire settings with the observed higher ash 

contents in samples of the upper coal zone. These fluctuations from ombrogenous to 

rheotrophic mire settings, possibly due to base level fluctuations, were established by 

Morley (2013) from the Southeast Asian peat mires. Similarly, the Balingian Formation 

coals are characterised by varying ash content (avg. 16.6 wt.%) which also suggests the 

presence of multiple mire facies. This finding is corroborated by Zainal Abidin et al. 

(2022), which found that due to rising water table levels during accumulation, peat 

accumulated originally in ombrotrophic mires but ultimately in rheotrophic mires. In 

contrast, the Liang Formation coals generally contain low ash (avg. 7.3 wt.%) and ST 

(avg. 0.40 wt.%) contents, typical of ombrogenous peats (Anderson, 1964; Moore, 

1987; Dehmer, 1993). This interpretation is corroborated by the observed absence of 

non-coal epiclastic partings in the seams (Sia & Abdullah, 2012). 
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6.6.4 Acidity of Paleomire 
 
 

The ST content of coals has been associated with the pH conditions of peat-forming 

mires (Casagrande, 1987; Bechtel et al., 2003). In addition, the acidity of peatlands is 

negatively correlated with the abundance of pyritic sulfur (Diessel, 1992). Therefore the 

generally low sulfur content in the studied Sarawak Basin coals signifies mostly low pH 

conditions during peat formation. The inundation of mostly freshwater severely limited 

the availability of sulfate-reducing bacteria, which ultimately created an oxidizing and 

acidic environment (Casagrande, 1987). In contrast, the higher ST content of the Benue 

Trough coals indicates flooding by oxygenated and slightly less acidic or nearly neutral 

waters, which resulted in slight pyritic sulfur enrichment in the paleopeats (Esterle & 

Fern, 1994). 

 
Hopanoids are important pentacyclic triterpenoids and their distribution could be 

useful for estimating depositional conditions. The presence of C31 -22R-homohopane 

in immature peats has been observed to be strongly dependent on pH (Dehmer, 1995; 

Bechtel et al., 2003). Inglis et al. (2018) established a significant, positive correlation 

between the C31 /( + ) ratio and pH, and established that -hopanes are 

products of the acid-catalyzed oxidation and subsequent decarboxylation reactions of 

bacteriohopanetetrol. Values of the C31 /( + ) ratio for the low-rank Sarawak 

Basin and Benue Trough coals show considerable variation from 0.10 to 0.42 and 0.11 

to 0.34, respectively. The corresponding calibrated pH values vary from 3.7 to 5.3 and 

3.7 to 4.9 and (Table 5.17), signifying a slightly acidic depositional environment for the 

studied coals. Within the Sarawak Basin, the average calibrated pH value for the Liang 

Formation (4.2), Balingian Formation (4.6), and Nyalau Formation (4.5) signify 

relatively less acidic conditions in the Mukah paleopeats. 

Univ
ers

iti 
Mala

ya



243  

6.7 Controlling Influences on Hydrocarbon Generation 
 
 

A significant number of oil-prone coal-bearing sequences are found in Australasia 

and Southeast Asia (Isaksen et al., 1998). According to Macgregor (1994), these coal- 

bearing sequences can be classified into two broad paleoclimatic and paleobotanical 

associations: Tertiary tropical coals and Late Jurassic-Eocene coals. The first group is 

dominated by coal-bearing basins in Southeast Asia countries which were presumably 

supported by the tropical ever-wet climate in the Tertiary (Macgregor, 1994; Thompson 

et al., 1994). A recent regional study by Friederich et al. (2016) concluded that the 

combination of factors such as humid paleoclimate, depositional settings suitable for 

peat accumulation, and tectonics settings suitable for the development of extensive 

basins resulted in the formation of the extensive Cenozoic coal deposits in Indonesia. 

Plant growth and biomass production are markedly aided by warm and humid climates. 

In contrast, humification generally proceeds faster under cooler climates and in low- 

nutrient, highly acidic environments with less fluctuating hydrologic conditions 

(McCabe, 1987; Moore, 1987; Dehmer, 1993). Additionally, Moore & Shearer (2003) 

investigated four New Zealand peat mires and found no direct relationship between 

depositional environment, tectonic setting, climatic condition, and peat types. 

Furthermore, the oil-generating capacity of New Zealand humic coals depends primarily 

on the volume and type of mire petrofacies (Sykes et al., 2014;). Petrofacies are mainly 

classified based on the association of plant tissues and matrix types, and rheotrophic, 

planar mire facies have been shown to possess higher oil-generating potential than 

ombrotrophic, raised mire facies (Sykes,1994; Sykes et al., 2014). 

 
In summary, studies have established that humification and the liquid hydrocarbon 

generation capacity of coals are dependent on factors such as stratigraphic age, 

paleobotany, paleoclimate, and depositional conditions (Collinson et al., 1994; Isaksen 
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et al, 1998; Wilkins & George, 2002; Petersen & Nytoft, 2006). Since both the 

Cenozoic Sarawak Basin and Upper Cretaceous Benue Trough coals are sourced mainly 

from terrigenous organic matter and of similar thermal maturity, the coals vary in age, 

and are derived from different paleoflora, and deposited under varying environmental 

conditions. Hence, a comparative analysis of their geochemical data should provide 

insight into the controlling influence(s) on the distribution of hydrocarbons in humic 

coals. These potential controlling factors were appraised by undertaking multivariate 

data analysis of relevant geochemical proxies. For each probable controlling factor, two 

runs of principal component analysis (PCA) were carried out. The first run compared 

the geochemical proxies, identifying correlations among the proxies while the second 

run compared proxies of hydrocarbon-generating potential and probable controlling 

factors, which include thermal maturity, source input, flora, hydrological, climatic and 

environmental conditions. 

 
PCA result of 15 selected hydrocarbon-generating potential parameters shows that 

100% of the total variance was accounted for by the two rotating components (RCs). 

Component 1 comprises of Rock-Eval and solvent extraction parameters of 

hydrocarbon potential. However, TOC and FTIR parameters such as chain length (CL1 

and CL2), A-factor (AF), and aliphaticity index (IAL) show weak correlations with other 

generation potential parameters and thus are loaded on component 2 (Figure 6.46). 

Hence, 10 parameters, S2, GP, HI, BI HImax, QI, AF, IHG, extract yield, and hydrocarbon 

concentration was preferred for correlation analyses with proxies of the identified 

probable controlling factors. 
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Figure 6.46: Rotated loadings of hydrocarbon potential parameters. 
 
 
 
 

6.7.1 Thermal Maturity 
 
 

The studied coals are mostly immature. Nonetheless, the Lamja Formation coals 

from the Benue Trough are in the early maturity stage. Hence, the effect of thermal 

maturity on the hydrocarbon-generating potential of the coals is evaluated. First, PCA 

results of the maturity parameters show that molecular parameters are weakly associated 

with measured vitrinite reflectance (Figure 6.47a). 

 
Additionally, the result of the PCA analysis of thermal maturity and hydrocarbon 

potential parameters shows that thermal maturity is not a control on the petroleum 

potential of the studied coals (Figure 6.47b). The two principal components account for 

100.0% of the total variance of the data distribution. The thermal maturity parameters 

are strongly loaded on RC2 while the petroleum potential parameters are positively and 

strongly loaded on RC1, therefore showing no correlation between thermal maturity and 

petroleum potential. 
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Figure 6.47: Rotated loadings of (a) – maturity parameters, and (b) – maturity and 
petroleum potential parameters for the studied coals. 
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6.7.2 Organic Matter Input 
 
 

Organic matter of marine and terrigenous origin are generally regarded as oil-prone 

and gas-prone, respectively. Hence, the proportion of marine algal and terrigenous 

organic matter in kerogens is related to its hydrogen richness. The result of the principal 

component analysis of organic matter source parameters is shown in Figure 6.48a, with 

the first two components accounting for 71.6% of the total variance. Clusters 3 and 4 

consist of parameters with the highest loadings on RC1 while clusters 1 and 2 are 

composed of parameters with the highest loadings on RC2. Py-GC source input 

parameters such as the Type Index and %n-1-octene are correlated with both RC1 and 

RC2, which suggests they are effective indicators of source inputs. 

 
Furthermore, principal component analysis of the petroleum-potential and source 

input parameters was also carried out. The result indicates that the first two components 

account for 75.9% of the total variance, with the variance relatively higher for RC1 

(41.7%) than RC2 (33.9%). The source input and petroleum potential parameters are 

mostly loaded on RC2 and RC1, respectively, which indicates little correlation (Figure 

6.48b). However, source parameters such as CF, cadalene/xylene ratio and the Type 

Index are positively loaded on RC1, suggesting some correlation. 
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Figure 6.48: Rotated loadings of (a) – source input parameters, and (b) – source 
input and petroleum potential parameters for, the studied coals. 
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6.7.3 Paleoflora 
 
 

The concentration of long-chain n-alkanes is generally lower in sediments derived 

from gymnosperms than from angiosperms (Diefendorf et al., 2011, Diefendorf et al., 

2015; Lane, 2017). Hence, flora type has been identified as a possible control on the 

petroleum potential of coals. 

 
The PCA result of the paleoflora proxies indicates that the proxies are mostly loaded 

on RC1 (Figure 6.49a). In contrast, HPP, %retene, %cadalene and retene/cadalene ratio 

are loaded on RC2, showing little or no correlation with paleoflora parameters loaded 

on RC1. This finding agrees with the conclusion by Grice et al. (2007) of no strong 

correlation between gymnosperm pollen and the relative abundance of retene. 

Consequently, the retene and cadalene parameters were excluded from the second 

principal component analysis of paleoflora and petroleum potential parameters (Figure 

6.49b). The plotted rotated components account for 100.0% of the variance with similar 

variation for the RCs (RC1, 50.6%; RC2, 49.4%). 

 
As shown on the loadings cross-plot in Figure 6.49b, paleoflora proxies (clusters 2 

and 3) load strongly on RC1 while the petroleum potential parameters (cluster 1) load 

positively and strongly on RC2. Hence the loadings plot indicates no correlation 

between paleoflora and petroleum potential, thus rejecting hypothesis two (H2). Univ
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Figure 6.49: Rotated loadings of (a) – paleoflora proxies, and (b) – paleoflora and 
petroleum potential parameters, for the studied coals. 
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6.7.4 Paleohydrology and Paleoclimate 
 
 

As discussed in Section 6.7 above, hydrological and climatic conditions are possible 

controls on the oil-generating potential of humic coals. PCA result indicates that 

paleohydrology and paleoclimate proxies are mostly positively loaded on RC1 and 

RC2, respectively, which both account for 74.7% of the total variation around the RCs 

(Figure 6.50a). Additionally, elemental paleoclimate ratios Sr/Cu and Sr/Ba are 

clustered with HPP and %retene and HPP, suggesting that the abundance of retene is 

more suitable as paleoclimate and not as paleoflora proxy (Hautevelle et al., 2006). 

 
Rotated loadings of the paleohydrology, paleoclimate and petroleum potential 

parameters indicate three clusters (Figure 6.50b). Two clusters (1 and 3) of 

paleohydrology and paleoclimate proxies are mostly loaded on the RC2 while one 

cluster (2) of petroleum potential indicators is loaded positively on RC1 (Figure 6.50b). 

The plotted rotated components account for 77.5% of the total variation around the RCs. 

The paleohydrology cluster 1 shows no correlation with the petroleum potential cluster 

2. However, paleoclimate cluster 3 is centred around the origin, which is indicative of 

weak correlations with both RC1 and RC2. This result is therefore suggestive of minor 

climatic control on the petroleum potential of the studied coals. Furthermore, the result 

fails to reject hypothesis three (H3). 
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Figure 6.50: Rotated loadings of (a) – paleohydrology and paleoclimate proxies, 
and (b) – paleohydrology, paleoclimate and petroleum potential parameters, for 
the studied coals. 
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6.7.5 Paleodepositional conditions 
 
 

Paleodepositional conditions such as marine influence and redox setting have been 

established to influence the petroleum-generating capacity of humic coals (Flores & 

Sykes, 1996; Sykes et al., 2014). PCA result of the paleodepositional environment 

proxies indicates that the first two RCs account for 71.9% of the total variance (Figure 

6.51a). Proxies of seawater influence such as ST, %DBT, and TOC/S are highly loaded 

on RC1 while redox proxies such as V/Cr and V/Ni are loaded on RC2, thus implying 

no association. However, another redox proxy, Ni/Co loads slightly away from the 

origins of RC1 and RC2, and plots in cluster 1 with other proxies such as Pr/Ph, Fe/S 

and pH (Figure 6.51a). This result implies that Ni/Co is a more effective bimetal redox 

indicator than V/Cr and V/Ni for peat depositional environments. 

 
PCA study of 29 selected parameters of depositional environment and petroleum 

potential showed that 80.6% of the total variance is accounted for by the first two RCs 

(RC1, 48.8%; RC2, 31.3%). Additionally, four clusters were identified on the loadings 

plot of RC1 and RC2 (Figure 6.51b). Cluster 1 includes parameters mostly affected by 

sea-water influence while cluster 2 consists of petroleum potential indicators. Clusters 1 

and 2 are positively and highly loaded on RC2 and RC1, respectively, thus signifying 

that marine influence has little or no influence on the petroleum potential of the studied 

humic coals. Clusters 3 and 4 consist mostly of redox and lithology/environment 

proxies and are loaded positively on RC1 and negatively on RC2 (Figure 6.51b). The 

result shows that petroleum potential is slightly influenced by redox conditions and 

depositional lithology/environments. 
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Figure 6.51: Rotated loadings of (a) – proxies for paleodepositional conditions, and 
(b) – paleodepositional conditions and petroleum potential parameters, for the 
studied coals. 
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Overall, the PCA result of 35 selected geochemical parameters indicates that 67.9% 

of the total variance in the dataset is accounted for by RC1 and RC2 (Figure 6.52; 

Appendix G). The loadings plot of RC1 and RC2 shows that the petroleum potential of 

the coals is not influenced by paleoflora, marine incursions, and hydrological conditions 

of the paleopeats. However, both climatic conditions and depositional sub-environments 

appear to slightly affect the petroleum potential of the investigated humic coals from 

Sarawak Basin and Benue Trough. 
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Figure 6.52: Rotated loadings of selected geochemical parameters of the studied 
coals. 
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CHAPTER SEVEN: CONCLUSION 
 
 

7.1 Conclusion 
 
 

Tertiary Sarawak Basin and Upper Cretaceous Benue Trough coals were analysed 

using organic geochemical techniques to determine their thermal maturity, petroleum 

generation potential, organic matter input, kerogen type and paleodepositional conditions. 

In addition, the paleovegetation and paleoclimate of the study areas were appraised. 

Furthermore, the distributions of hydrocarbons and non-hydrocarbon compounds in the 

Sarawak Basin and Benue Trough coals were compared and using statistical analytical 

tools, the geochemical controls on the distribution of hydrocarbons were determined. The 

summary of findings is presented in Table 7.1. 

 
The studied Sarawak Basin and Benue Trough coals are mostly thermally immature 

and ranked as lignite to high volatile bituminous-C. This finding is supported by %Ro 

values < 0.61%, low Tmax values < 438 °C, production index < 0.10, strong odd-even 

predominance, the abundance of hopenes and  hopanes, and low aliphatic/aromatic 

hydrocarbon ratios. Thermal maturity for the Sarawak Basin coals generally increases 

from Liang Formation to Balingian and Nyalau Formations. For the Benue Trough coals, 

it increases from Gombe and Agwu Formations to Mamu Formation and Lamja 

formations. The Lamja Formation coals show relatively higher maturity and are 

considered at the top of the petroleum generation window. Nonetheless, the Lamja 

Formation coals are thermally immature for significant hydrocarbon generation and 

expulsion. 

 
High TOC (> 20 wt. %), genetic potential (> 30 mg HC/g rock), A-factor (> 0.4), 

extract yield (> 10000 ppm) and hydrocarbon concentration (> 1750 ppm) for all the 

analysed coals indicated excellent potential for petroleum generation. However, the 
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relatively lower HI values (< 300 mg HC/g TOC) for most of the coals suggest the 

capacity for gas and mixed condensate oil and gas generation. 

 
Based on interpretations from Rock-Eval, Py-GC, FTIR, elemental and biomarker 

data, the studied coals are dominated by type-III kerogen but mixed with varying 

proportions of type II kerogen. Lower values of the Type Index parameter and higher n- 

1-octene/m(+p)-xylene ratios indicate the relatively higher contribution of type II kerogen 

in the Benue Trough coals. Furthermore, n-alkane and aromatic biomarker source proxies 

for all the coal samples signify the predominant contribution of terrigenous organic 

matter. However, higher TAR, WI, C27/(C17 + C27) and C31/C17 ratios indicate relatively 

a higher proportion of terrigenous organic matter in the Sarawak Basin coals. This finding 

was corroborated by the higher abundance of aromatic compounds such as 1-MP and 1,7- 

DMP in the Sarawak Basin coals. Additionally, higher DBF/PHE, TMR and DMR values 

for Sarawak Basin coals, particularly the Liang and Nyalau Formations, evidently 

indicate greater input of terrigenous organic matter. 

 
Results of the elemental analysis of the coals show that when compared with the 

published global average abundances, the Sarawak Basin and Benue Trough coals are 

mostly depleted in major oxides and trace elements, which reflects low input of detrital 

materials during mire development. Nevertheless, the average concentrations of the major 

oxides and trace elements are relatively higher in the Benue Trough coals than in the 

Sarawak Basin coals. Furthermore, provenance proxies based on the ratios of major 

oxides and trace elements generally indicate the abundance of felsic to intermediate rocks 

in the Benue Trough source area and mixed but dominantly mafic rocks in the Sarawak 

Basin source area. 
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Table 7.1: Summary of findings. 
Basin/ 

Formation 
Sarawak Basin Benue Trough 

Liang Balingian Nyalau Gombe Mamu Lamja Agwu 

Epoch/Age Late Pliocene Early Miocene Oligocene- 
Early Miocene Late Cretaceous Late Cretaceous Late 

Cretaceous 
Late 

Cretaceous 

Coal rank Lignite Lignite to Sub- 
bituminous B 

Lignite to Sub- 
bituminous B Lignite Sub-bituminous 

C, B Bituminous C Lignite to Sub- 
bituminous C 

Thermal maturity Immature Immature Immature Immature Immature Early mature Immature 
Generation 

capacity Excellent Excellent Excellent Very good to 
excellent Excellent Excellent Excellent 

Petroleum 
potential Gas Gas to mixed oil 

and gas 
Gas to mixed 
oil and gas Gas Gas to mixed oil 

and gas Gas Gas 

 
Kerogen type 

 
Predominantly 

Type III 

Predominantly 
Type III with 
considerable 

Type II 

 
Predominantly 

Type III 

Predominantly 
Type III with 

considerable Type 
II and Type IV 

 
Predominantly 

Type III 

Predominantly 
Type III with 
considerable 

Type II 

 
Predominantly 

Type III 

Paleovegetation Angiosperms Angiosperms Angiosperms Gymnosperms Gymnosperms Gymnosperms Gymnosperms 
 

Paleomire setting Dominantly 
ombrotrophic 

ombrotrophic 
and rheotrophic 

ombrotrophic 
and 

rheotrophic 

Dominantly 
rheotrophic 

Dominantly 
rheotrophic 

Dominantly 
rheotrophic 

Dominantly 
rheotrophic 

 
Paleoclimate 

Warm, Humid, 
strongly 
seasonal 

 
Warm, Humid 

Warm, Humid 
with wet-dry 
conditions 

Cooler, Humid 
with drier 
conditions 

 
Cooler, Humid 

 
Warm, Humid 

 
Warm, Humid 

Paleoredox Suboxic to 
dysoxic Dysoxic to oxic Oxic Dysoxic to oxic Dysoxic to oxic Dysoxic to 

oxic 
Dysoxic to 

oxic 
Marine influence Slight None None Slight Strong Slight Strong 

Paleoenvironment Lower delta 
plain 

Lower delta 
plain 

Upper delta 
plain Lower delta plain Lower delta 

plain 
Lower delta 

plain 
Lower delta 

plain 
 
 
 
 
 
 
 

258 

Univ
ers

iti 
Mala

ya



259  

Stable bulk carbon isotopic ratios and the distribution of aliphatic and aromatic 

terpenoid biomarkers in the coals both indicate that paleovegetation of the Benue Trough 

was dominated by gymnosperm taxa while angiosperm taxa predominated in the Sarawak 

Basin. Additionally, the distribution of combustion-derived polycyclic aromatic 

hydrocarbons (PAHs) signifies a mixed to dominant origin of pyrogenic sources. 

However, the predominant input of terrigenous organic matter, a higher proportion of 

unburnt organic matter and low abundances of 6- and 7-ring PAHs such as 

benzo[ghi]perylene and coronene in the Benue Trough coals all suggest the occurrence 

of low-temperature wildfires and thus, prevailing humid paleoclimate with frequent 

drying episodes. In contrast, the absence of ≥ 6-ring PAHs in the Sarawak Basin coals 

signifies a mostly humid climate. However, n-Alkane and elemental paleoclimate proxies 

indicate that the Nyalau and Balingian Formation coals were deposited under humid and 

warm paleoclimate with wet-dry conditions in the Early Miocene while the Liang 

Formation coals were deposited under humid but strongly seasonal paleoclimate in the 

Late Pliocene. 

 
The relative abundances of heterocyclic aromatic hydrocarbon imply freshwater to 

brackish-water lacustrine environment for the Benue Trough coals and freshwater- to 

lacustrine-swamp environment for the Sarawak Basin coals. Additionally, calculated 

DBT/PHE and Pr/Ph ratios for the Sarawak Basin and Benue Trough generally indicate 

deposition under oxic and sub-oxic conditions of a deltaic system, respectively. Sulfur 

content and bimetal ratios indicate slight to strong marine influence on the Benue Trough 

coal seams, and little or no marine influence on the Sarawak Basin coals. Within the 

Sarawak Basin, the Nyalau Formation coals were deposited in a freshwater environment 

with no marine influence while the Liang and Balingian Formation coals were deposited 

in fresh-water to mildly brackish-water swamp environment. 
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Principal component analysis result of over 100 geochemical proxies of thermal 

maturity, organic matter source input, paleoflora, paleoclimate and paleoredox indicates 

that the petroleum potential of the coals is not influenced by thermal maturity, source 

input, marine incursions, peat hydrology and paleoflora. Conversely, the fluctuating 

paleoclimatic conditions and distinct sub-environments appear to be the controlling 

influence on the oil generation capacity of the coals. 

 
 
 

7.2 Limitations and Future Work 
 
 

This research work employed various geochemical analytical techniques to resolve the 

research questions posed in Section 1.2. Nevertheless, the work was limited in a few 

ways. First, the relatively smaller sample size of the Benue Trough coals makes the 

interpretations quite tentative. Second, the work focused comprehensively on the 

geochemistry approach, excluding palynology and petrography. 

 
Hence, for future work, facies association studies to identify the different facies and 

petrographic studies on thin sections and polished blocks to observe the shape of the 

minerals are suggested. The combination of this new information will provide valuable 

insights into the time of mineral formation and thus depositional environments. 

Additionally, pollen taxa of the coals will improve discussions on paleovegetation and 

thus paleoclimate. Bulk oxygen isotopic ratio, and carbon and hydrogen isotope ratios of 

n-alkanes will also improve discussions on paleoclimate while compositional kinetics 

study on the coals will provide supporting information on the mechanism and timing of 

hydrocarbon generation and expulsion. 
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