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PREDICTING THE ONSET OF ACUTE CORONARY SYNDROME EVENTS AND 

IN-HOSPITAL MORTALITY USING MACHINE LEARNING APPROACHES 

ABSTRACT 

Acute coronary syndrome (ACS) represents a significant health concern, and its risk 

increases with exposure to environmental factors, particularly air pollution. Understanding 

this association is crucial given the increasing prevalence of air pollution in many regions, 

particularly in Malaysia, which is affected by air pollution. This study used a comprehensive 

methodology to investigate the relationship between air pollution and ACS patient outcomes 

utilizing machine learning (ML) algorithms, including: 1) Linear Regression, 2) Logistic 

Regression, 3) Support Vector Machine (SVM), 4) Random Forest (RF), 5) XGBoost, 6) 

Naïve Bayes (NB), and 7) Stacked Ensemble ML utilizing data from the National 

Cardiovascular Disease Database (NCVD) Malaysia registry and air quality data from the 

Department of Environment (DOE) Malaysia. The ML models for regression and 

classification were developed and optimized; the regression models aimed to predict ACS 

patients’ hospitalization and mortality rates, while the classification models were designed 

to predict the mortality risk of ACS patients under the influence of air pollution. The 

regression models reported an RMSE of 1.701 (RF) for predicting hospitalization rate and 

0.440 (XGBoost) for predicting cardiac mortality rate on daily basis. The classification 

models demonstrated an AUC of 0.843 (95% CI: 0.813 – 0.873) (RF) with the in-hospital 

dataset and 0.840 (95% CI: 0.828 – 0.862) (XGBoost) using the emergency dataset, 

outperforming the conventional TIMI risk score, and the features importance is visualized 

using SHAP summary plots, whereby Nitrogen Oxides (NOx) and Ozone (O3) were 

identified as significant features impacting the ACS patient’s outcome for hospitalization, 

mortality rate and mortality risk. The best-performing ML models were then integrated into 
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the 'My Heart ACS Air' web system (https://myheartacsair.uitm.edu.my/home.php), ensuring 

predictions are visualized and made accessible for healthcare professionals. This web system 

was developed using a prototype-driven approach, emphasizing user feedback, and evaluated 

using the System Usability Scale (SUS). The models not only provide accurate predictions 

but also outperform established risk scores in the presence of air pollution. The study's 

findings hold relevance for Malaysia, illustrating the importance of adopting such models in 

regions with significant air pollution. By visualizing these predictions via a web system, 

healthcare professionals can gain actionable insights, potentially leading to improved patient 

outcomes. 

 

Keyword: Acute coronary syndrome (ACS), Air pollution, Machine learning, Visualization, 

Web system, Malaysia 
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MERAMALKAN PERMULAAN KEJADIAN SINDROM KORONARI AKUT DAN 

KEMATIAN DALAM HOSPITAL MENGGUNAKAN PENDEKATAN 

PEMBELAJARAN MESIN  

ABSTRAK 

Sindrom koronari akut (ACS) merupakan satu kebimbangan kesihatan yang penting, dan 

risikonya meningkat dengan pendedahan kepada faktor persekitaran, terutamanya 

pencemaran udara. Memahami hubungan ini adalah penting memandangkan semakin 

meningkatnya prevalens pencemaran udara di banyak kawasan, terutamanya di Malaysia 

yang dipengaruhi oleh pencemaran udara. Kajian ini menggunakan metodologi yang luas 

untuk menyiasat hubungan antara pencemaran udara dan hasil pesakit ACS dengan 

menggunakan pelbagai model pembelajaran mesin: 1) Linear Regression, 2) Logistic 

Regression, 3) Support Vector Machine (SVM), 4) Random Forest (RF) 5) XGBoost, 6) 

Naïve Bayes (NB), dan 7) Stacked Ensemble Machine Learning menggunakan data dari 

Pangkalan Data Penyakit Kardiovaskular Kebangsaan (NCVD) Malaysia dan data kualiti 

udara daripada Jabatan Alam Sekitar (JAS) Malaysia. Model pembelajaran mesin untuk 

regresi dan pengelasan telah dibangunkan dan dioptimalkan; model regresi bertujuan untuk 

meramalkan kadar hospitalisasi dan kadar kematian jantung pesakit ACS, manakala model 

pengelasan direka untuk meramalkan risiko kematian pesakit ACS di bawah pengaruh 

pencemaran udara. Model regresi melaporkan RMSE sebanyak 1.701 (RF) untuk kadar 

hospitalisasi dan 0.440 (XGBoost) untuk kadar kematian jantung. Model pengelasan 

menunjukkan AUC sebanyak 0.843 (95% CI: 0.813 – 0.873) (RF) dengan set data di hospital 

dan 0.840 (95% CI: 0.828 – 0.862) (XGBoost) dengan set data kecemasan, melebihi 

konvensional risiko skor TIMI, dan kepentingan ciri-ciri divisualisasikan dengan plot 

ringkasan SHAP, di mana Nitrogen Oksida (NOx) dan Ozon (O3) dikenal pasti sebagai ciri-
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ciri yang signifikan mempengaruhi hasil pesakit ACS. Model ML yang berprestasi terbaik 

kemudian diintegrasikan ke dalam sistem web 'My Heart ACS Air' 

(https://myheartacsair.uitm.edu.my/home.php), memastikan ramalan divisualisasikan dan 

dijadikan mudah diakses untuk profesional penjagaan kesihatan. Sistem web ini dibangunkan 

dengan pendekatan berdasarkan prototaip, menekankan maklum balas pengguna, dan dinilai 

menggunakan Skala Ketergunaan Sistem (SUS). Model-model ini bukan sahaja 

menyediakan ramalan yang tepat tetapi juga melebihi skor risiko yang telah ditetapkan, 

menjadikannya alat yang bernilai untuk klinikal dan pembuat dasar. Penemuan kajian ini 

mempunyai kepentingan untuk Malaysia, menunjukkan kepentingan mengadopsi model 

seperti ini di kawasan dengan pencemaran udara yang signifikan. Dengan memvisualisasikan 

ramalan melalui sistem web, profesional penjagaan kesihatan boleh mendapatkan pandangan 

yang dapat diambil tindakan, yang berpotensi membawa kepada hasil pesakit yang 

ditingkatkan. 

 

Kata kunci: Sindrom Kronari Akut (ACS), Pencemaran udara, “machine learning”, 

Visualisasi, Sistem web, Malaysia. 
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CHAPTER 1:  INTRODUCTION 

The title of the study is 'Predicting the Onset of Acute Coronary Syndrome (ACS) Events 

and In-Hospital Mortality using Machine Learning Approaches', aims to examine the 

relationship between air pollution and ACS in Malaysia and construct predictive models 

applying machine learning (ML) techniques and visualize the results using geospatial map. 

Malaysia shares the global concern that air pollution causes to public health. High levels of 

air pollution have had an adverse effect on health, including an increased risk of ACS in low-

middle income countries. The findings of this study contribute to the management of ACS in 

areas where cardiologists have become scarce, particularly in rural areas. 

Chapter 1.0 provides an overview of the study, beginning with the study's background, 

problem statements, research questions and objectives, research scope, significance of the 

study, and an outline of the thesis. 

1.1 Background of the Study 

Air pollution is commonly defined as the presence of unwanted particulates, gases, and 

aerosols in the lower atmosphere (Bradstreet, 1995). According to Hertel et al. (2020), it is 

caused by both natural and human-induced sources and can have negative effects on human 

health. Certain populations, such as the elderly, children, and individuals with heart or lung 

conditions, may be more vulnerable to the negative impacts of air pollution. To address these 

negative health impacts, many countries have established regulations to reduce air pollution 

levels. Research suggests that reducing air pollution can lead to improved health outcomes. 

According to the World Health Organization (WHO) (2022), 37% of air pollution-related 

premature deaths in 2019 were caused by ischemic heart disease (IHD) and stroke. The 

highest burden is found in Southeast Asia and Western Pacific Regions. The recent burden 

estimates the significant role that air pollution can cause serious cardiovascular health issues 
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and even death. Air pollution consists of both gaseous pollutants (such as carbon monoxide, 

oxides of nitrogen, ozone, and sulphur dioxide) and particulate matter (PM). The presence of 

these pollutants has become a major concern for cardiologists and specialists in 

environmental medicine due to their potential negative impacts on human health. 

According to previous research, ambient particulate matter (PM) in air pollution has been 

strongly associated with an increased risk of cardiovascular diseases (CVD) (Zhao et al., 

2016; Du et al., 2016; Franchini & Mannucci, 2012; Brook et al., 2010). In Southeast Asia 

countries, including Malaysia, transboundary haze caused by forest fires can release acid 

smoke, dust, and PM into the atmosphere, contributing to public health problems. In 

Malaysia, outdoor air pollution is a significant contributor to the majority of deaths from 

heart disease (WHO, 2018). Recent studies have also demonstrated an association between 

nitrogen oxides (NOx) and ozone (O3) with CVD events (Zhao et al., 2016; Chen et al., 2018; 

Santurtún et al., 2017).  

Time lags are commonly used in air pollution studies to observe short-term and long-term 

exposures and reveal immediate and cumulative health effects. Short-term exposures may 

lead to acute respiratory issues and ACS (Samoli et al., 2008; Dockery & Pope, 1994, Gestro 

et al., 2020), while long-term exposures might be associated with chronic respiratory and 

cardiovascular disease (Zanobetti et al., 2003). This study focuses the impact of long-term 

and short-term exposure of air pollution on ACS hospitalization and mortality rates. 

Furthermore, the association between air pollution and the risk of ACS mortality was studied 

with the emphasis on the effects of short-term exposure (time lag 0). 

Most air pollution and ACS study are based on conventional statistical methods. ML has 

been shown to be more effective than conventional methods in studies on CVD mortality, 

particularly ACS (Kasim et al., 2022a; Kasim et al., 2022b; Ke et al., 2022; Wu et al., 2021; 
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Aziz et al., 2021; Aziida et al., 2021; Aziz F. et al., 2019). However, limited study existed on 

ACS and air pollution using ML approach (Lin et al., 2021). ML are able to accurately model 

the complex interactions between ACS and other risk factors. As a result, this study aims to 

fulfil the research gap by developing a more advanced ML algorithms to model relationship 

between ACS and air pollution for the Southeast Asia population, particularly Malaysian.  

Visualization techniques can effectively convey essential information, especially when 

compared to numerical values. Data visualization is a useful tool for effectively 

communicating and interpreting information through graphical means (Krum, 2013; 

Grainger et al., 2016), which is not supported by conventional statistics or ML. Google Earth 

provides a platform for visualizing information that can be used to disseminate information 

on specific sites. To the best of knowledge, there is a lack of research in the literature on the 

use of ML and visualization in relation to CVD and air pollution in Southeast Asia. 

Hence, the aim of this study is to introduce a preliminary novel approach in integrating 

ML algorithms with geospatial visualization tools to analyse and present the impact of air 

pollution and ACS outcomes through web system utilizing the data from the National Heart 

Association Malaysia (NHAM) and Department of Environment (DOE), Malaysia. 

The final outcome of this study is to integrate ML algorithms with visualization capability 

into a web system. This is an interactive web system that allows users to generate predictions, 

visualization, data management of ACS patients in relation with Air pollution in Malaysia. 

The web system can also serve as a platform for policymakers in formulating health strategies 

in managing ACS patients.  
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1.2 Overview of the Study 

Ischemic heart disease (IHD) is a significant cause of hospitalization and mortality in 

Malaysia, A study carried out from 1985 to 2000, IHD accounted for 25% to 33% of 

admissions and 27% to 35% of deaths in Malaysia (Zambahari, 2004).  

Recent studies have suggested that exposure to poor air quality is associated with an 

increased risk of developing ACS (Kuźma et al., 2021; Dominguez-Rodriguez et al., 2017; 

Huang et al., 2017), In Southeast Asian countries, including Malaysia, outdoor air pollution 

is a significant contributor to most deaths from heart disease (WHO, 2018). Thus, it is a 

significant public health concern that requires urgent attention.  

Despite the known association between air pollution and ACS, there has been limited 

research conducted in Southeast Asia on this topic, especially considering that certain areas 

have high levels of air pollution (Rani et al., 2018; Makmom Abdullah et al., 2012). The 

problem is further exacerbated by transboundary haze from forest fires and industrial 

activities (Abdullah et al., 2020; Aghamohammadi & Isahak, 2018, Jones, 2006). In addition, 

there is currently no web-based system available that can predict, visualizing data and 

managing data related to ACS and air pollution in Malaysia. 

With the emergence of ML and the development of various algorithms, such as logistic 

regression, support vector machine (SVM, ensemble learning (EL), etc. These techniques 

have become capable of capturing and analyzing complex data to produce accurate results 

compared to conventional statistical methods. Despite the fact that the majority of individual 

ML-based prediction models for mortality prediction post-ACS have outstanding 

performance, a number of challenging issues remain. First, no single ML algorithm is 

superior compared to others in the same domain. Second, the combination of multiple 

algorithms may provide improved performance to a single algorithm, especially in the 
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medical field, where precise results are required, the accuracy of the outcome determines the 

diagnostic efficacy and patient survival rate. 

Identifying risk factors for mortality improves clinical patient care. To better understand 

ML’s “black box” nature, Shapley Additive Explanations (SHAP) were used to interpret ML 

model by measuring the contribution of input features to the output of a ML model at the 

global level. 

It is important to develop a tool that can predict ACS hospitalization, ACS mortality rates, 

and mortality risks based on ACS and air quality features specific to the Malaysian 

population using ML and stacked EL. The web system developed in this study aims to fill 

this gap by incorporating ML and data visualization techniques to accurately predict and 

communicate the risk of developing ACS based on the selected features. 

1.3 Problem Statements 

Air pollution is the leading environmental risk factor for global health and the fourth 

leading cause of mortality globally (Roth et al., 2020). It is a well-established risk factor for 

cardiovascular morbidity and mortality (O'Toole et al., 2008), but its specific impact on ACS 

is still poorly understood.  

In Southeast Asia, especially in Malaysia, limited research has been conducted using both 

conventional statistical techniques and ML methods. The burden of ACS is high in Malaysia 

with 20-25% of all deaths in public hospitals are attributed to coronary artery diseases with 

higher mortality rate reported for the 30-day mortality following myocardial infarction 

(Ministry of Health Malaysia, 2017). According to the WHO (2018), air pollution caused 

6,251 deaths in Malaysia in 2012, and mainly attributed to heart disease. 

Conventional statistical techniques have limitations in modeling the complex interactions 

which can be done by ML and stacked EL algorithms. Furthermore, previous studies have 
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shown that ML and EL is more effective than traditional methods in predicting ACS mortality 

in Malaysia and other population specific registry (Kasim et al., 2023; Aziida et al., 2021; 

Aziz F. et al., 2019; Aziz F. et al., 2021; Kasim S. et al., 2022a; Kasim S. et al., 2022b; Kasim 

S. et al., 2021)  

Due to their black-box nature, it is difficult to implement ML models in clinical medicine. 

Since ML models are agnostic, perturbing input and observing predictions can reveal the 

behavior of the underlying model (Kasim S. et al., 2022; Zhang et al., 2022). 

In addition, data visualization is crucial for effectively communicating the relationship 

between air pollution and heart disease. However, there is a lack of literature on the use of 

ML, EL and visualization in relation to CVD and air pollution in Malaysia, particularly in 

the context of ACS. 

1.4 Research Questions 

This study seeks for the answers to the following research questions: 

1. What factors contribute to the occurrence of ACS in Malaysia, and what are the most 

significant air pollution aspects related with this condition? 

2. Is it possible to develop ML and EL models that can accurately predict the 

hospitalization and mortality rate of ACS patients associated with ACS in Malaysia, 

implementing air pollution and other relevant variables? 

3. Is it feasible to develop a web system with integrated ML models and data 

visualization techniques to better understand the relationship between air pollution 

and ACS in Malaysia? 
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1.5 Research Objectives 

The study aims to develop a web system that visualizes the association between air 

pollution and ACS onsets in Malaysia. The system will utilize ML algorithms to predict the 

occurrence and outcome of ACS in the presence of air pollution features and display the 

results on a geographical map. 

By utilizing conventional statistical methods and ML algorithms to better stratify poor 

outcomes in patients with ACS in the presence of air pollution. To address the research 

questions and achieve the aim of the study, following are the objectives: 

1. To evaluate the effectiveness of ML models in assessing the effects of air pollution 

index with the incidences of ACS in Malaysian population.  

2. To develop ML models that can predict the probability of ACS patients’ mortality, 

the hospitalization, and mortality rate in the presence of air pollution. 

3. To develop a web system that incorporates ML models and provide users with an 

interface to interact with the models and visualize the results on a Google map. 

1.6 Scope of Research 

The focus of this study is to investigate the relationship between air pollution and the onset 

of ACS in Malaysia, which includes its subtypes ST-elevation myocardial infarction 

(STEMI) and Non-ST-Elevation Myocardial Infarction/Unstable Angina (NSTEMI/UA). As 

for the air quality data, the variables of interest are Nitrogen Oxides (NOx), Sulfur Dioxide 

(SO2), Ozone (O3), Particulate Matter 10 (PM10). These pollutants have been identified as 

major contributors to air pollution and have been linked to CVD (Nogueira, 2009; 

Simkhovich et al., 2008; Franchini & Mannucci, 2007). 

This study will employ a retrospective cohort design, utilizing data from patients 

diagnosed with ACS in 25 Malaysian public hospitals consider as the source data provider 
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over the course of 12 years (2016 – April 2017) supported by the National Cardiovascular 

Disease Database (NCVD). The air quality data provided by the Department of Environment 

of Malaysia (DOE) from 2006 to April 2017 will be combined with the NCVD data to 

investigate the association of air pollution with ACS hospitalization rate, ACS mortality rate, 

and ACS patients’ mortality risk. 

Selected features from the NCVD attributes that will be used in developing the ML model 

are based on a previous published journal (Kasim S. et al., 2022) and combined with the air 

pollution data, to investigate its association with the ACS hospitalization rate, mortality rate 

and the ACS patients’ mortality risk. Conventional statistical analysis was performed to 

examine the distribution of the data.  

This study involved the development of ML models using various algorithms, such as 

Linear Regression, Logistic Regression, Support Vector Machine (SVM), Random Forest 

(RF), eXtreme Gradient Boosting (XGBoost), Naïve Bayes (NB) and stacked ensemble 

learning (EL). The SHAP Explainer was used to evaluate these models to obtain insight into 

their prediction processes and enhance the models' transparency and accountability. The 

model with the greatest performance was then selected and incorporated into a web-based 

system for the prediction of ACS hospitalization rate, ACS mortality rate which also includes 

Google Maps-based visualization elements, and ACS patients' mortality calculator with the 

presence of air pollution. 

1.7 Significant of the Study 

The Sustainable Development Goals (SDGs) are a set of global goals adopted by the 

United Nations in 2015 to end poverty, protect the planet, and ensure peace and prosperity 

for all people (Robert et al., 2005). One of the SDGs is to ensure healthy lives and promote 
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well-being for all at all ages, which relates to our study in reducing the number of deaths and 

illnesses from air pollution.  

This study aims to investigate the relationship between air pollution and the onset of ACS 

in Malaysia, using visualization and ML techniques. By understanding the impact of air 

pollution on cardiovascular disease in Malaysia, we can contribute to the achievement of the 

SDG related to health and well-being. The significance of this study in relation to the SDGs 

is discussed below: 

1. SDG 3 - Good Health and Well-being.  

By examining the impact of air pollution on ACS onset in Malaysia, this study has 

the potential to contribute to the goal of ensuring good health and well-being for all. 

If a clear relationship between air pollution and ACS onset is established, this could 

provide evidence for the need to reduce air pollution to protect public health and 

reduce the burden of ACS in Malaysia. 

2. SDG 11 - Sustainable Cities and Communities. 

This study has the potential to contribute to the goal of making cities and communities 

inclusive, safe, resilient, and sustainable. By understanding the relationship between 

air pollution and ACS onset in Malaysia, policymakers and communities may be able 

to develop strategies for improving air quality and reducing the risk of ACS by 

identifying high risk areas. 

3. SDG 13 - Climate Action. 

Air pollution is a major contributor to climate change, and reducing air pollution has 

the potential to help address this global challenge. By examining the relationship 

between air pollution and ACS onset in Malaysia, this study has the potential to 
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provide evidence for the need to reduce air pollution to protect both public health and 

the environment. 

Overall, the significant of this study in relation to the SDGs lies in its potential to 

contribute to the achievement of several key global goals, including improving public health, 

promoting sustainable and inclusive communities, and addressing climate change. 

1.8 Thesis Outline 

This section provides an overview of the structure of the study and summarizes the key 

topics covered in each chapter. 

Chapter 1: Introduction. This chapter provides an overview to the research study studying 

on the impact of air pollution on the onset of ACS in Malaysia. This chapter begins with the 

background of the study, followed by the overview of the study, research objectives, and 

problem statements. The scope of the study and its significance are then discussed, 

highlighting the relevance and importance of this research. The chapter concludes by 

presenting a thesis outline that summarizes the structure of the study and its key components. 

Chapter 2: Literature Review. This chapter discusses in detail of all the relevant topic to 

this study, including ACS, Air Pollution, the effect of air pollution towards onset of ACS in 

Malaysia. Furthermore, it provides an extensive review of existing literature studies on ACS 

hospitalization, ACS mortality rates and ACS mortality risk, ML techniques, and web-based 

implementation of predictive models. 

Chapter 3: Research Methodology. This chapter elaborates on the research data, summary 

statistics, and methodology used to design and develop the ML and stacked EL models for 

predicting ACS’s hospitalization and mortality rates, as well as mortality risks in ACS 

patients with air pollution features. Additionally, the chapter covers the development of the 
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web system prototype and data visualization using geospatial maps, including the design of 

the user interface, hardware and software requirements, and system usability testing. 

Chapter 4: Result. This chapter outlines the findings of the regression and classification 

models, including graphical visualizations, comparisons with TIMI risk score, Net 

Reclassification Index (NRI), SHAP analysis. Furthermore, the development and 

functionalities of the web-based prototype – My Heart ACS Air are highlighted. 

Chapter 5: Discussions. In this chapter presents analysis of the results, as well as an 

interpretation of the outcomes. This comprises conducting additional analysis of the model, 

evaluating the performance of the best ML model, and providing the findings of the web 

system prototype validation and system usability testing. The significance of the study and 

limitations are also included in this chapter. 

Chapter 6: Conclusion. This chapter summarized the findings of the entire study, including 

its strengths, limitations, and future improvements. 
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CHAPTER 2:  LITERATURE REVIEW 

This literature review addresses previous research on air pollution and acute coronary 

syndrome (ACS), as well as machine learning (ML) techniques for predicting cardiovascular 

outcomes. We will also investigate research on health data visualization using maps and web 

applications.  

2.1 Acute Coronary Syndrome (ACS) 

Acute Coronary Syndrome (ACS) is a type of cardiovascular disease (CVD) that involves 

a sudden reduction or blockage of blood flow to the heart due to narrowed or blocked 

coronary arteries (Ghaffari, 2022; Overbaugh, 2009). ACS often triggered by acute changes, 

including superficial erosion or rupture of coronary atherosclerotic plaques, which caused a 

segment of the heart muscle is unable to function properly due to a reduction in blood flow 

in the coronary arteries, resulting in cell death (Amsterdam, et al., 2014; Buja & Butany, 

2022).  

ACS encompasses a spectrum of clinical manifestations, including unstable angina (UA) 

and myocardial infarction (MI), which are further divided into ST-segment elevation 

myocardial infarction (STEMI) and non-ST-segment elevation myocardial infarction 

(NSTEMI).  

STEMI is defined as cardiac ischemia symptoms characteristic with persistent ST-

segment elevation in the resting ECG supported by the presence of raised cardiac biomarker 

(O'gara, et al., 2013). Chest pain of STEMI begins abruptly and lasts for more than thirty 

minutes. It is usually located in the center of the chest and may radiate to the jaw or down 

the left arm. It may occur at rest or with activity (Reigle, 2005). 
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If an electrocardiogram (ECG) does not show ST-elevation, patients may be diagnosed 

with either NSTEMI or UA. NSTEMI is characterized by persistent symptoms of cardiac 

ischemia and elevated cardiac markers, while UA presents with similar symptoms but 

without an elevation in cardiac troponin levels. The chest pain experienced with 

NSTEMI/UA is typically located in the center or left side of the chest and may radiate to the 

jaw or upper limb (Daga, et al., 2011). Table 2.1 summarized types of ACS and in Figure 

2.1, provides an overview of ACS and its classification.  

Table 2.1: Types of ACS 

Types of 
ACS 

Definition Symptoms Diagnosis Illustration 
ST-

segment 
elevation 
in ECG 

Bio-
maker 

ST-
Elevation 
Myocardial 
Infarction 
(STEMI) 

Complete 
occlusion of 
a coronary 
artery 
causing 
ischemia 
and 
myocardial 
infarction 

Severe and 
persistent 
chest pain 
and 
discomfort 

Yes Yes 

(Pleister, et al., 2013) 

Non-ST 
Elevation 
Myocardial 
Infarction 
(NSTEMI) 

Partial 
occlusion of 
a coronary 
artery 
causing 
ischemia 
and 
myocardial 
damage 

Severe and 
prolonged 
chest pain 
and 
discomfort 

Yes No 

 
(Pleister, et al., 2013) 

Unstable 
Angina 
(UA) 

New onset 
chest pain or 
change in 
pattern of 
previously 
stable 
angina 

Chest pain 
and 
discomfort 

No No N/A 
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Figure 2.1: ACS and its Classification (Photo sourced from Chew, et al., 2016 ). 

ACS is commonly known as ischemic heart disease (IHD). The World Health 

Organization (WHO) (2022) stated that CVD (such as IHD and stroke) is accountable for 

most noncommunicable diseases, which is 17.9 million annually (Roth, 2018). Furthermore, 

it is projected that cardiovascular disease mortality will increase from 17 million in 2008 to 

25 million in 2030 annually, making cardiovascular death as the major contributor to global 

morbidity and mortality (Karageorgou, et al., 2015). According to the most recent statistics 

reported by the Department of Statistics Malaysia (DOSM) (2022), ischemic heart disease, 

continued to be the leading cause of death in noncommunicable diseases accounting for 

13.7% in our country in 2021. According to the National Heart Association Malaysia 

(NHAM)'s Annual Report of the Acute Coronary Syndrome (ACS) Registry, 2018–2019, 

20,605 patients are admitted with ACS (Wan Ahmad., 2022). 
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The burden of ACS is high in Malaysia and other similar middle-income countries. In 

Malaysia, 17.2% of all deaths in public hospitals are attributed to ACS and is the primary 

cause of death in Malaysia (DOSM, 2021). Outdoor air pollution caused 6,251 deaths in 

Malaysia in 2012, according to report by the WHO (2018), where the cause of death was due 

to heart disease (3,630), stroke (1773), lung cancer (670), pulmonary disease (148) and lower 

respiratory disease (29). Figure 2.2 depicts the IHD remains the primary causes of death in 

Malaysia in year 2020 adopted from Department of Statistics Malaysia (DOSM, 2021). In 

Figure 2.3 illustrates horizontal bar chart of medically certified causes of death in Malaysia, 

2020-2021.  

 

Figure 2.2: Ischemic heart disease remains the primary causes of death in Malaysia in 
year 2020 (Photo sourced from Department of Statistics Malaysia (DOSM), 2021). Univ
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Figure 2.3: Diseases of the circulatory system ranked first in medically certified causes 
of death in Malaysia, 2020-2021 (Photo source from Department of Statistics Malaysia 
(DOSM) 2022), 

2.2 Risk Factors 

ACS is a multifactorial disease that results from complex interactions between genetic and 

environmental factors (Talmor-Barkan, et al., 2022; Roth, et al., 2020; Nansseu, et al., 2015). 

Risk factors stratification and identification is crucial for devising effective prevention and 

treatment strategies to reduce the incidence and burden of ACS by collecting information 
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from patients about pain characteristics and symptoms, risk factors or a history of CVD, and 

recent medications (Goswami, et al., 2012).  

Study carried out by Ralapanawa, et al. (2019), stated that despite major advances in 

management, IHD remains the most common kind of heart disease and the leading cause of 

early mortality worldwide. Several studies on epidemiology, risk factors, and outcomes of 

ACS in Western countries have been published. Studies indicate that South Asians have 

higher mortality rates and premature deaths attributable to IHD (deaths occurring at least 10–

15 years earlier than expected) than individuals in Western nations (Hughes, et al., 1989; 

Ghaffar, et al., 2004). Unfortunately, there are only a limited number of studies that 

investigate the risk factors of ACS in the Southeast Asia population. Therefore, it is crucial 

to identify the risk factors for the Southeast Asia population, especially in Malaysia where 

the impact of air pollution on ACS is not yet fully studied. 

Risk factors can be classified as either modifiable or non-modifiable. In general context, 

modifiable risk factors include smoking, hypertension, diabetes, dyslipidemia, physical 

inactivity, and obesity (Arnett, et al., 2019). Non-modifiable risk factors are irreversible, 

include age, gender, and family history of cardiovascular disease (Khera & Kathiresan, 

2017).  

Several modifiable risk factors for ACS have been identified, such as hypertension, 

smoking, dyslipidemia, diabetes, obesity, physical inactivity, and poor dietary practices 

(Kong, et al., 2023; Cheema, et al., 2020; Hadjiev, et al., 2003). Hypertension has been 

identified as a major risk factor for heart disease and stroke in Asia, where stroke morbidity 

and mortality rates are exceedingly high compared to Western countries (Chen, et al., 2018). 

In addition, Asian men have a high prevalence of smoking and diabetes, whereas cholesterol 

levels in Asian countries are generally lower than in Western nations (Chen, et al., 2018; 
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Fuster & Kelly, 2010). Obesity is also significant risk factor for cardiovascular disease in the 

Asian population, as determined by research conducted in Malaysia and Singapore (Zheng, 

et al., 2020).  

CVD burden attributable to modifiable risk factors continues to increase globally. Air 

pollution is the leading environmental risk factor for global health and the fourth leading 

cause mortality globally, Oceania, Eastern, Western, and Central Sub-Saharan Africa, and 

South Asia had the highest rates of air pollution, caused by differences in exposure (Roth, et 

al., 2020). Figure 2.4 compares the rankings of CVD disability-adjusted life years attributable 

to modifiable risk factors in 1990 and 2019. 

 

Figure 2.4: Comparison of CVD burden attributable to modifiable risk factors in 1990 
and 2019, air Pollution as the leading environmental/occupational risk (Photo sourced 
from Roth G., 2018). 
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Non-modifiable risk factors, such as age, gender, and family history, also play a crucial 

role in the development of ACS (Varghese & Kumar, 2019). Ageing can induce changes in 

the heart and blood arteries that lead to hypertension, or high blood pressure. Studies 

discovered that older middle-aged age is a significant predictor of adverse cardiovascular 

events, such as myocardial infarction, stroke, and mortality in patients with ACS (Gillis, et. 

al., 2014; Soiza, et. al., 2005; Ahlgren, et. al., 1997). Furthermore, in Ranjith, et al. (2005) 

study found that hospital mortality was low in young and middle-aged patients but higher in 

older patients. 

Research has been carried out by Kasim, et al. (2022) in Asian elderly patient using the 

ML and deep learning approach, and has identified that age, fasting blood glucose, heart rate, 

Killip class, oral hypoglycemic agent, systolic blood pressure and total cholesterol as 

common predictors of mortality in the elderly.  

In the 7th National Cardiovascular Disease – Acute Coronary Syndrome (NCVD-ACS) 

Report, the general risk factors for ACS focusing on the Malaysia cohort includes patient’s 

demographics, status before event, clinical presentation and examination, ACS onset details, 

baseline investigation, electrocardiography (ECG), clinical diagnosis at admission, invasive 

therapeutic procedures, and pharmacological therapy (Ahmad., 2022). Several studies have 

shown that the risk factors for ACS in the western cohort population show different 

cardiovascular profiles, highlighting the need for tailored prevention and treatment strategies 

based on geographic and cultural differences (Ueshima, et al., 2008; Asia Pacific Cohort 

Studies, 2005; Natarajan, 2018; Ohira & Iso, 2013; Nag & Ghosh, 2013). Hence, recognizing 

that the risk factors for ACS may vary across populations is essential for determining the 

most effective prevention and treatment strategies. 
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According to the results released by the National Health and Morbidity Survey (NHMS) 

(2020), which was conducted by the Institute for Public Health (IPH) in Malaysia to 

determine the prevalence of non-communicable diseases, risk factors for non-communicable 

diseases, healthcare demand, and health literacy levels in the country. The findings of the 

survey indicated that CVDs, such as stroke and coronary heart diseases, are the leading 

causes of death in Malaysia.  

High blood sugar, high blood pressure, and high cholesterol are major risk factors for 

cardiovascular disease. The survey received a total of 14,965 responses, with a response rate 

of 87.2%. The key findings of the survey indicated that CVDs are the leading causes of death 

in Malaysia. According to the report, the three primary risk factors are diabetes, high blood 

pressure, and high cholesterol as shown in figure 2.5. According to the report, 1.7 million 

individuals in Malaysia presently live with all three of these major risk factors, and 3.4 

million people in Malaysia currently live with two of these significant risk factors (IPH, 

2020).  

 

Figure 2.5: High Risk Factors in Malaysia Venn diagram (Photo sourced from Institute 
of Public Health (IPH), 2020). 
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Table 2.2 below summarizes existing studies on the common risk factors found in ACS 

patients.  

Table 2.2: Previous research on the common risk factor found in ACS patients. 

Authors Studied 
Populations 

Number of 
Populations 

Risk Factor Findings 

(Ralapanawa, et 
al., 2019) 

Sri Lanka  300 Smoking, alcohol consumption, 
hypertension, diabetes Miletus, 
history of ACS, and dyslipidemia 

(Kasim, et al., 
2022) 

Malaysia 3991  Age, fasting blood glucose, heart rate, 
Killip class, oral hypoglycemic agent, 
systolic blood pressure, and total 
cholesterol 

(Sidhu, et al., 
2020) 

India 651 Age, gender, hypertension, diabetes 
mellitus, dyslipidemia, past history of 
ischemic heart disease, and smoking 

(Martinez-
Sanchez, et al., 
2016) 

Mexico 8296 Age, Gender, STEMI, previous heart 
failure, hypertension, smoking, 
dyslipidemia, previous angina, 
previous myocardial infarction, 
previous PCI and previous CABG 

(Mirza, et al., 
2018) 

Iraq 100  Diabetes Mellitus, Hypertension, 
Smoking, Family history of ACS, 
Obesity, Number of diseased vessels. 

(Lu & Nordin, 
2013) 

Malaysia 13591 Ethnicity, age, gender, BMI, 
smoking, diabetes mellitus, 
hypertension, dyslipidemia, family 
history of premature coronary artery 
disease 

(Juhan, et al., 
2019) 

Malaysia 16673 Diabetes mellitus, hypertension, 
family history of CVD, renal disease, 
PCI, Killip class, and age 

(Alhassan, et al., 
2017) 

Northern 
Saudi Arabia 

156 Sex, Nationality, Age, Hypertension, 
Ischemia Heart Disease, Smoking, 
Family History of IHD, Family 
history of DM, Family History of 
Dyslipidemia 
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Table 2.2, continued 

Authors Studied 
Populations 

Number of 
Populations 

Risk Factor Findings 

(Mansoor, et al., 
2017) 

United States 12047 Age, number of chronic conditions, 
coagulopathy, hypertension, renal 
failure, family history of CAD, 
angiography, PCI, dyslipidemia, 
CAD, smoking, cardiogenic shock 

(Cheema, et al., 
2020) 

Pakistan 300 Sex, Dyslipidemia, Diabetes Mellitus, 
Hypertension, Family history for 
ACS, Smoking 

 (Esteban, et al., 
2014) 

Spain 123 Smoking, Hypertension, Diabetes 
Mellitus, Obesity, Prior dyslipidemia, 
Hypertriglyceridemia, Low HDL-
cholesterol, Total cholesterol, LDL 
cholesterol, HDL cholesterol, 
Triglycerides 

(Suzuki, et al., 
2019) 

Japan 29832 Age, gender, hypertension, 
dyslipidemia, diabetes, heart failure, 
ischemic heart disease, valvular heart 
disease, cardiomyopathy, atrial 
fibrillation. 

(Ke, et al., 2022) China 6482 Killip class, D-Dimer, NT-proBNP, 
LVEF, LDH, Diagnosis, CTnl, age, 
LDL, and HDL. 

(Szabó, et al., 
2021) 

 

Hungary 287 Time to system onset, door to balloon 
time, age, gender, area at risk, 
resuscitation, smoking, diabetes, peak 
creatine kinase level, and 
hemoglobin. 

(Sugane, et al., 
2021) 

Japan 657 Hypertension, chronic kidney disease, 
maintenance hemodialysis, and 
history of PCI. 

(Ahmad, et al., 
2011) 

Malaysia 525 Hypertension, diabetes, dyslipidemia, 
smoking history, previous history of 
CAD, family history of CAD 

(Vernon, et al., 
2019)  

 

Australia  3081 Hypertension, diabetes mellitus, 
hypercholesterolemia, smoking, 
Killip class, cardiac arrest at 
admission, systolic blood pressure, 
and hospital transfer  
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ACS has also been linked to air pollution as a risk factor. According to existing studies, 

exposure to high levels of particulate matter, nitrogen dioxide (NO2), and Sulphur dioxide 

(SO2) in the air can increase the risk of ACS (Murad, 2012; Miller, et al., 2007). Li et al. 

(2017) discovered a significant correlation between long-term air pollution exposure and the 

occurrence of ACS, with each 10 g/m3 increase in PM2.5 concentration associated with a 

12% increase in the risk of ACS. 

In addition, an American study found that exposure to air pollution was associated with 

an increased risk of hospitalization for ACS, with the risk being highest for women and 

elderly adults (Brook, et al., 2010). These results emphasize the significance of minimizing 

air pollution as an approach to prevent ACS and other CVD. The focus of this study, where 

air pollution is one of the risk factors of ACS. 

2.3 Air Pollution 

Air pollution is the presence of one or more contaminants in the atmosphere by any 

chemical, physical, or biological agent, such as dust, fumes, gas, mist, odor, smoke, or vapor, 

in quantities and duration that are detrimental to human health and modify the natural 

characteristics of the atmosphere (WHO, 2022). In short, air pollution can be defined as a 

decrease in the air quality due to the presence and release of inorganic and organic pollutants 

into the environment (Mohamed & Awad, 2022).  

Air pollution is a major environmental health concern, as it can have negative impacts on 

both the natural environment and human health (Manisalidis, et al., 2020). In 2019, 99% of 

the world's population resided in areas that did not meet WHO air quality guidelines. 

Approximately 89% of these premature fatalities occurred in low- and middle-income 

countries, with the majority occurring in the South-East Asia and Western Pacific WHO 

Regions (WHO, 2022). Common sources of air pollution such as household combustion 
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devices, motor vehicles, industrial facilities, and forest fires. Pollutants that pose a significant 

threat to public health include particulate matter (PM), carbon monoxide (CO), ozone (O3), 

nitrogen dioxide (NO2), and sulphur dioxide (SO2).  

Nitrogen oxides (NOx) are a group of gases that are composed of nitrogen and oxygen. 

These gases are formed when fossil fuels are burned and are released into the air through 

various sources, including power plants and vehicles (Nirel & Dayan, 2001). NOx is known 

to cause cardiovascular and respiratory problems and are also harmful to the environment as 

they contribute to the formation of smog and acid rain (Gómez-García, et al., 2005). 

According to Zhang, et al. (2021), NOx would trigger increasing O3 concentration, with 

sectoral emission control, the study demonstrates that in China could reduce more than 1.5-

2% of emergency ACS hospitalizations for cardiovascular and respiratory diseases attributed 

to NOx and O3 exposure. 

Sulphur dioxide (SO2) is a toxic gas that is produced when fossil fuels, such as coal and 

oil, are burned. It is released into the air through various sources, including power plants, 

factories, and vehicles (Joskow, et al., 1998). SO2 is harmful to human health, as it can cause 

cardiorespiratory mortality and morbidity and it is also harmful to the environment as it 

contributes to the acidification of soil and water (Wu, et al., 2020; Wang, et al., 2018; 

Khaniabadi, et al., 2017; Khaniabadi, et al., 2017). 

Ozone (O3) is a highly reactive gas that is formed when sunlight reacts with pollutants in 

the air. O3
 is harmful to human health, as it can cause respiratory problems, and it is also 

harmful to the environment as it can damage crops and forests. O3
 is known as photochemical 

oxidant, and it was identified that the increased risk of heart failure is associated with 

photochemical oxidant level (Zhao, et al., 2016). 
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Particulate matter (PM) is a mixture of tiny particles and droplets that are suspended in 

the air. These particles and droplets can be composed of a variety of substances, including 

dust, dirt, soot, and other pollutants that can be inhale into human respiratory system which 

is harmful to human health, as it can lead to respiratory problems and various health issues, 

and it is detrimental to the environment as it can reduce visibility and cause other 

environmental problems (Fierro, 2000).  

There are two types of PMs, PM10 refers to particulate matter that has a diameter of 10 

micrometers or less, while PM2.5 refers to particulate matter that has a diameter of 2.5 

micrometers or less. PM2.5 is of particular concern because it is small enough to enter deep 

into the lungs and potentially cause health problems (Feng, et al., 2016; Lall, et al., 2004; Lu, 

et al., 2019).  

Addressing air pollution, which is the second highest risk factor for noncommunicable 

diseases, is key to protecting public health. An estimated 4.2 million deaths globally are 

linked to ambient air pollution, with 25% of deaths and diseases attributable to ischemic heart 

disease (WHO, 2022). Although levels have declined in high-income countries (HICs) over 

the past 25 years, they have risen sharply over that same period in China, India, and other 

low- and middle-income countries (LMICs), threatening public health and economic 

development (Stanaway, et al., 2018; Boogaard, et al., 2019). Therefore, urgent action is 

needed to reduce air pollution levels, particularly in LMICs where levels have risen sharply 

in recent years. 

Malaysia is an industrialization-focused developing country. Furthermore, the preferences 

of using private cars are a common practice in Malaysia, resulting in haze and transboundary 

air pollution. Consequently, air pollution has become a significant problem in Malaysia in 

recent years. Air pollution, such as O3 and airborne particles, has been linked to an increase 
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in hospital admissions and mortality (Usmani, et al., 2020) and the short-term exposure of 

high-level air pollution often led to an acute condition (Afroz, et al., 2003). However, there 

is a significant research gap concerning the health effects of air pollution in Malaysia, 

concerning in the lack of comprehensive studies and data collection for environmental 

epidemiological analysis makes determining the full extent of health consequences from air 

pollution in the country difficult. 

2.4 Impact of Air Pollution and Acute Coronary Syndrome (ACS) Onset 

The impact of air pollution on the onset of ACS has been well documented in numerous 

studies. Historically, air pollution research has concentrated on adverse effects on the 

respiratory system (Pope CA & Dockery, 2006); however, numerous epidemiologic studies 

now link long-term exposure to air pollution with cardiovascular morbidity and mortality 

(Hoek, et al., 2013; (Brook, et al., 2010; O'Toole, et al., 2008). 

Air pollution is a known risk factor for cardiovascular events, with both short term and 

long-term exposure associated with an increased risk of cardiovascular events (Yang, et al., 

2019; Roth G. et al., 2018; Franklin, et al., 2015; Koulova & Frishman, 2014; Yamamoto, et 

al., 2014; Chuang, et al., 2011). Short term exposure to air pollution is typically considered 

to be exposure over a period of hours or days, while long term exposure is defined as exposure 

over a period of months or years. 

ACS is the main acute presentation of IHD where there is significant myocardial ischemia 

leading to significant morbidity and mortality (Zhao, et al., 2016). Studies have shown that 

short term exposure to air pollution is associated with an increased risk of ACS events, with 

the risk being highest for those with pre-existing heart conditions (Chen, et al., 2022; Kuźma, 

et al., 2021; Gestro, et al., 2020). The effects of short-term exposure, particularly exposure 
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to fine particulate matter air pollution, have the likelihood of triggering acute coronary 

events, especially patient with severely diseased coronary arteries (Pope III, et al., 2015).  

A study by Dastoorpoor, et al. (2019), found that there is a significant increase in 

cardiovascular admission in the total population in presence of air pollution in the Middle 

East. The results show that PM10, NO2, CO and SO2 significantly increased cardiovascular 

cardiac hospitalizations. Similarly, a study by Yao, et al. (2020) stated that short term 

exposure to ambient air pollutants causes increase in health burden and economic loss in 

China, suggesting that adverse health affect due to short-term exposure of ambient air 

pollutant should not be neglected. In addition, the levels of NOx are positively correlated 

with the number of ACS hospitalization in the Valencia region (Ruvira, et al., 2023).  

Long-term exposure to high levels of PM can increase the risk of respiratory and 

cardiovascular diseases (Chen & Hoek, 2020; Yuan, et al., 2019; Pelucchi, et al., 2009). 

While short-term exposure can result in acute health effects such as coughing, wheezing, and 

difficulty breathing, it also has a significant impact on hospitalizations and mortality (Shang 

et al., 2013; Bae, 2014; Li et al., 2016). 

In addition to its role in triggering the onset of ACS and increasing hospital admissions 

among cardiovascular patients, high levels of air pollution have also been found to have a 

significant impact on the mortality of ACS patients. A study carried out by Bañeras, et al. 

(2018), found a positive association between short-term exposure to high levels of NO2
 and 

higher mortality in STEMI patients in Barcelona. Short-term exposures to PM2.5 and warm-

season ozone were substantially associated with an increased risk of mortality in the US 

Medicare population from 2000 to 2012 (Di, et al., 2017). Likewise, the Chinese population 

exhibited significant associations between air pollution exposure and increased mortality 
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risks (Shang, et al., 2013). In Malaysia, it is found that exposure to PM2.5 was associated 

with the increase premature mortality (Mazeli, et al., 2023).  

While recent research has confirmed the short-term detrimental effects of air pollution on 

cardiovascular morbidity, there is a need for governments and policymakers to implement 

policies to reduce air pollution. However, previous studies have mostly used conventional 

statistical methods, such as general additive Poisson models, to identify the correlation 

between air pollution and ACS. The current study aims to enhance the existing studies by 

employing ML techniques to identify the significant air pollutants for hospitalization and 

mortality among ACS patients. Figure 2.6 below depicts the geographical map of death 

attributable to ambient air pollution in 2016. 

Beverland, et al. (2012) compare the impact of short-term and long-term exposure to air 

pollution on mortality risk. The results showed that short-term exposure-mortality 

associations in cohort participants were of greater magnitude than in comparable general 

population time-series study analyses. Therefore, this study will focus on the short-term 

effects of air pollution exposure on ACS patients, as the studies described in the table below 

are designed based on a daily basis (time lag 0). 
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Figure 2.6: Geospatial map illustrates the death attributable to ambient air pollution in 
2016 (Photo sources from World Health Organization (WHO) 2022). 

 

Table 2.3 summarizes studies on the short-term effects of air pollution on cardiovascular 

mortality, emphasizing the importance of studying deeper into the effects of short-term air 

pollution in the current study. 

Table 2.3: Existing studies on short-term of air pollution on cardiovascular mortality. 

Study 
(Reference) 

Location Study Design Air 
Pollutants 

Result 

(Samet, et al., 
2000) 

United 
States 

log-linear 
regression 

PM10, O3, 
SO2, NO2 

Increase in PM10, the 
rate of cardiorespiratory 
fatalities increased by 
0.68% 

(Katsouyanni, 
et al., 2001) 

Europe Poisson 
regression 

PM10, O3, 
SO2, NO2 

Increase in PM10, the 
rate of cardiorespiratory 
deaths by 0.6%. Slightly 
higher for elderly 
population.  
Increase in NO2, the rate 
of mortality increases by 
0.80% 
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Table 2.3, continued 

Study 
(Reference) 

Location Study Design Air 
Pollutants 

Result 

(Biggeri, et 
al., 2004) 

Italy Generalized 
linear model 

PM10, O3, 
SO2, NO2, 
CO 

Increase in the rate of 
cardiovascular deaths of 
0.40%for each elevation 
in NO2, 0.93% in CO, 
1.11% in SO2, 0.54% in 
PM10 

(Laden, et al., 
2006) 

United 
States 

Cox 
proportional 
hazards 
regression 

PM2.5 Increase in overall 
mortality associated 
with increase in PM2.5 

(Bergmann, 
et al., 2020) 

Worldwide  Literature 
Review 
Analysis 

CO, O3, SO2, 
NO2 

Increase in SO2, cause 
increment 
cardiovascular disease 
by 0.9828%  

(Martins, et 
al., 2006) 

Brazil Generalized 
additive 
Poisson 
regressions 

CO, PM10, 
O3, NO2, SO2 

PM10 and SO2 increased 
congestive heart failure 
by 3.17% and overall 
cardiovascular illnesses 
by 0.89% at lag 0. 

(Zhang, et al., 
2017) 

China Generalized 
additive model 

PM10, SO2, 
NO2 

CVD mortality 
increased by 5.26%, 
2.71%, and 0.68% with 
every SO2, NO2, and 
PM10 increase for lag 03 
exposure. 

 

2.5 Existing Research for CVD Hospitalization Rate and CVD Death Rate in the 

Presence of Air Pollution 

In recent years, there has been an increasing concern regarding the impact that air pollution 

has on the health of the heart and circulatory system, specifically on the incidence of ACS. 

The association between air pollution and CVD has been the subject of research in several 

research, the majority of which have concentrated on mortality and hospitalization rates. 

Table 2.4 summarized existing studies on CVD hospitalization rate and mortality rate with 

the presence of air pollution, majority of studies have employed traditional statistical 

approaches. These conventional methods typically involve linear or logistic regression 
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models, time-series analysis, or case-crossover designs. Most of the previous studies apply 

conventional statistical methods in understanding the association of air pollution and 

hospitalization rate, the mortality rate of CVD patients. Statistical techniques describe the 

relationship between variables based on possibility and statistical average. However, the 

reactions between air pollutants and influential factors are highly non-linear, leading to a 

very complex system of air pollutant formation mechanisms. Therefore, more advanced 

statistical learning (or ML) algorithms are usually necessary to account for a proper non-

linear modelling of air contamination. 

Table 2.4: Existing studies on CVD hospitalization rate and mortality rate summary. 

Authors Location Air 
Pollutants 

Methodology Summary 

(Tian, et al., 
2019) 

China PM2.5 Quasi-Poisson 
regression 
Generalized 
Additive Model 

Short-term exposure to 
PM2.5 can lead to an 
increase in hospital 
admissions for various 
types of cardiovascular 
disease, except for 
hemorrhagic stroke, 
even at levels of 
exposure that are 
within current 
regulatory limits. 

(Phung, et al., 
2016) 

Vietnam PM10, NO2, 
SO2, and O3 

Time-series 
regression 
analysis, 
Generalized 
Linear Model and 
Distributed Lag 
Model 

PM10, NO2 and SO2 at 
lag-0 day shows 
significant association 
with cardiovascular 
admissions 
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Table 2.4, continued 

Authors Location Air 
Pollutants 

Methodology Summary 

(Liu, et al., 
2019) 

24 
Countries 

PM2.5 and 
PM10 

Over dispersed 
generalized 
additive models 
with random-
effects meta-
analysis 

Independent 
correlations between 
daily all-cause, 
cardiovascular, and 
respiratory mortality 
and short-term 
exposure to PM10 and 
PM2.5 in more than 
600 cities worldwide. 

(Chen R. Y., 
2017) 

China PM2.5 Two-stage 
Bayesian 
hierarchical 
models 
 
Overdispersal 
Generalized 
Additive Models 

Each 10-μg/m3 
increase in 2-day 
moving average of 
PM2.5 concentrations 
was significantly 
associated with 
increments in 
mortality. 

(Yitshak-Sade, 
et al., 2018) 

New-
England 

PM2.5 Poisson 
regression 

Impacts of short-term 
exposures to 
temperature, 
temperature 
fluctuation, and 
PM2.5. Compared to 
short-term exposures, 
long-term exposures to 
PM2.5 were associated 
with greater impacts. 

(Wang, et al., 
2020) 

China SO2, NO2, 
O3, PM10 

Time-stratified 
case-crossover 
design combining 
with distributed 
lag nonlinear 
model (DLNM) 

The elderly aged over 
65 years were 
susceptible to extreme 
pollution conditions. 
 

(Zhao, et al., 
2016) 

Japan PM2.5, O3, 
NOx 

Conditional 
logistic 
regression with 
lag 0, lag 1, lag 2 
and lag 3 

53006 emergency 
ambulance cases, 
studies shows that 
PM2.5 (lag3) had 
significant association 
with the incidents 
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Table 2.4, continued. 

Authors Location Air 
Pollutants 

Methodology Summary 

(Chang, et al., 
2005) 

Taiwan PM10, NO2, 
CO, O3, SO2, 
Temperature, 
Humidity 

Odd Ratios and 
Conditional 
logistic 
regression. 

Higher level of 
ambient pollutants 
increases the risk of 
hospital admission for 
CVD, primarily PM10 
in all the pollutant 
models 

(Soleimani, et 
al., 2019) 

Iran CO, O3, SO2, 
NO2, and 
PM10 

linear regression 
(GLM) and 
generalized 
additive model 
(GAM) 
estimating 
Poisson 
distribution. 
 

Among the pollutants, 
CO, NO2 and PM10 
shows association with 
coronary artery disease 
hospital admission. 

(Xu, et al., 
2021) 

China PM2.5 Cox regression 
model 

Long term exposure 
PM2.5 affect 
cardiovascular related 
mortality, especially 
towards CVD patients. 

(Qiu, et al., 
2020) 

New 
England 

PM2.5 and 
O3 

Generalized 
Inverse 
probability 
weighting and 
Linear 
Regression  

PM2.5 had the 
potential to induce 
higher risk of CVD 
hospitalization 

(Işsever, et al., 
2005) 

Istanbul CO, SO2, 
NO, NO2 and 
PM10 

Pearson 
correlation 
coefficient 

Significant association 
between an increase in 
PM10 levels and the 
admission frequency 
for ACS. 

(Dastoorpoor, 
et al., 2019) 

Iran  O3, SO2, 
NO2, CO, 
PM10 and 
NO 

Quasi-Poisson 
regression 

Significant increase in 
hospital admissions for 
cardiovascular diseases 
associated with various 
air pollutants 
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Table 2.4, continued. 

Authors Location Air 
Pollutants 

Methodology Summary 

(Ruvira, et al., 
2023) 

Spain NO2, NO, 
CO, SO2, O3 
and PM 

Mixed-effects 
model 

ACS risk increase is 
related to high level of 
NOx and CO. 

(Rajak & 
Chattopadhyay, 
2020) 

India PM, PM2.5, 
PM10, SO2, 
O3, CO2, CO, 
SPM and 
NO2 

Meta-analysis Significant association 
between ambient air 
pollution exposure and 
increased premature 
mortality risk. 

(Leem, et al., 
2015) 

Korea PM2.5 and 
PM10 

Epidemiology-
based exposure-
response 
functions 

Air pollution was 
responsible for 15.9% 
of total mortality, or 
approximately 15,346 
cases per year. 

 

2.6  Machine Learning in Hospitalization and Mortality Prediction 

Machine Learning (ML) has been widely incorporated in healthcare and clinical studies 

for discovering patterns from medical data sources and providing excellent capabilities to 

predict diseases (Shailaja, et al., 2018). ML has been used in several studies to predict 

hospitalization effectively across various medical conditions and settings. However, most 

existing studies focus on predicting hospitalization rates, with fewer addressing the 

prediction of mortality rates. 

Additionally, there is lack of literature in predicting the hospitalization and mortality rates 

focusing on ACS onset due to air pollution. Further research is necessary, considering the 

potential health implications of air pollution on ACS incidents. Table 25 presents the 

summary of existing literature on ML predictions for hospitalization and mortality.  
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Table 2.5: Summary of existing literature on ML predictions for hospitalization and 
mortality. 

References Prediction Focus Features 
Used 

Methodology Key Findings 

(Usmani, et 
al., 2021) 

Cardiorespiratory 
Hospitalization 
due to air 
pollution 

CO, O3, 
PM10, NOx, 
NO2, NO, SO2  

Time Series ML 
Algorithms - 
ELSTM, LSTM, 
DL, Vector 
Autoregressive 
(VAR) 

ELSTM model 
accurately predict 
cardiorespiratory 
hospitalization 
based on air 
pollution (RMSE: 
0.002). 

(Qiu, et al., 
2020) 

Peak demand days 
of cardiovascular 
diseases 
admissions 

temperature, 
relative 
humidity, 
rainfall, 
PM2.5, PM10, 
SO2, NO2, CO 
and O3 

LR, SVM, 
ANN, RF, 
XGBoost, 
LightGBM. 

LightGBM 
achieved the 
highest AUC 
(0.940) and other 
optimal metrics. 

(Ravindra, 
et al., 
2023) 

Acute respiratory 
infections 
hospitalization on 
outpatients visits 
due to air 
pollution 

PM2.5, NO, 
NO2, NOx, 
NH3, SO2, 
CO, Ozone, 
Toluene, Eth-
Benzene, 
Xylene, 
Benzene, MP-
Xylene, RH, 
WS, WD, SR, 
AT, RF, Year, 
Week, Day, 
Month 

RF, K-Nearest 
Neighbors, 
Linear model, 
LASSO, 
Decision Tree, 
SVM, XGBoost 
and Deep 
Neural Network 
with 5-layers 

RF model 
outperforms the 
studied eight ML 
models with R2 = 
0.606.   

(Miranda, 
et al., 
2021) 

COVID-19 
Hospitalization 

COVID-19 
patients’ 
medical 
history and 
self-reported 
symptoms 

Decision trees, 
neural networks, 
SVM. 

ML models 
achieve 
accuracies 
between 79.1% to 
84.7% 
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Table 2.5, continued. 

References Prediction 
Focus 

Features Used Methodology Key Findings 

(Goto, et 
al., 2018) 

Emergency 
Department 
disposition 
hospitalization 
due to Chronic 
Obstructive 
Pulmonary 
Disease and 
asthma 

Demographics, 
Arrival mode, 
Vital signs, 
Chief complaint, 
Comorbidities 

Lasso 
regression, RF, 
Boosting, 
Deep neural 
network, 
Traditional 
logistic 
regression. 

Boosting provided 
the best prediction 
for critical care 
outcomes with C-
statistics of 0.80. 
For hospitalization 
prediction, the 
random forest 
achieved the 
highest C-statistics 
of 0.83. Both 
outperformed the 
reference model – 
traditional logistic 
regression.  

(Radović, 
et al., 
2022) 

Mortality rate 
for 
haemodialysis 
patients 

Features from 
nephrology 
database 

Kernel support 
vector 
machine, K-
means 
clustering 

The complete 
database predicted 
mortality 94.12% 
accuracy. When 
limited to the three 
most common 
diseases, accuracy 
was 96.77%. 

(Xiao, 
2021) 

Mortality rate of 
reported 
COVID-19 
patients. 

Date of case 
report, age 
group, case 
demographic, 
hospitalization 
status, ICU 
admission, 
gender, race, 
ethnicity 

Logistic 
Regression, 
Decision Tree, 
Neural 
Network, Light 
GBM 

The Light GBM 
model had the best 
predictability 
among the 
evaluated models. 

 

2.6 Mortality Risk Prediction for ACS 

When patients are brought to hospitals, a quick decision must be made to avoid any 

casualties. However, the choice of intervention, treatment plan, and resource allocation must 
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all be considered, and during the last few decades, several general multipurpose mortality 

assessment systems have been developed to meet these economic and therapeutic objectives. 

Hence, mortality prediction is a crucial component of the management of patients with ACS 

because it enables healthcare professionals to identify patients at high risk of adverse 

outcomes and implement appropriate interventions to prevent or manage these outcomes 

(Lee, et al., 2015). It is a useful instrument for ensuring that the intensity of preventive 

therapies corresponds to the level of absolute risk since ACS is a life-threatening condition 

associated with high morbidity and mortality (Yatsuya, 2018). Early identification of patients 

at high risk of mortality allows clinicians to initiate aggressive treatment strategies, including 

timely revascularization, pharmacological therapies, and management of comorbidities. 

Over the last two decades, several prediction models have been developed that statistically 

combine multiple variables to assess the probability of having CVD. These models are also 

being used to anticipate future cardiovascular disease deaths at the population level and in 

specific subgroups, to provide policymakers and health authorities with information about 

these risks. Some of these prediction models are recommended by health policymakers and 

are included in therapeutic management clinical guidelines (Goff Jr, et al., 2014). Several 

studies have found that there is a range of prediction models for various CVD outcomes 

(Wessler, et al., 2015; Beswick, et al., 2011; Matheny, et al., 2011). According to more recent 

assessments, the number of published prediction models has risen substantially since then. 

The development of risk scores typically involves a combination of these methods. The 

initial selection of predictors is often done through statistical analysis, and ML techniques 

are then used to refine the model, using feature selection and identify the most important 

predictors. The resulting risk score is then validated using independent datasets to ensure its 

accuracy and generalizability (Aziida, et al., 2021). 
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The mortality prediction models developed utilized statistical methods and ML in clinical 

studies. These models integrate various clinical, demographic, and laboratory variables to 

provide an accurate estimate of the patient's risk of adverse outcomes. Available studies 

regarding mortality risk score in ACS do not consider as a factor in causing mortality in ACS 

patient. Although, previous studies have shown that air pollution exposure is associated with 

higher mortality rates in ACS patients. Therefore, there is a growing interest in developing 

accurate prediction models for ACS patient mortality based on air pollution exposure. 

Examples of mortality prediction models for ACS include the Global Registry of Acute 

Coronary Events (GRACE) score, GRACE2.0 and the Thrombolysis in Myocardial 

Infarction (TIMI) score. The mortality prediction models (commonly known as risk scores) 

for patients with ACS are discussed further in subchapter 2.7 below. 

2.7 Risk Scores for ACS 

Risk scores for predicting mortality in ACS patients were derived from clinical trials and 

developed using large-scale clinical studies that involve collecting data on a range of patient 

demographics, medical history, and clinical presentation. According to Bawamia, et al. 

(2013), stated that patients with ACS are required to be risk-stratified so deliver the most 

appropriate therapy.  

Risk scores are helpful tools for assessing the risk of ACS patients and allow accurate 

estimations of ischemic and bleeding risk for individual patients (Bueno & Fernández-Avilés, 

2012). There are several risk scores used to assess the risk and mortality of ACS. The GRACE 

ACS Risk and Mortality Calculator estimates admission-6-month mortality for patients with 

ACS, and TIMI Risk Score estimates mortality for patients with ST-segment elevation 

myocardial infarction (STEMI) and non-ST-segment elevation myocardial infarction 

(NSTEMI). 
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2.7.1 Thrombolysis in Myocardial Infraction (TIMI) 

The TIMI (Thrombolysis in Myocardial Infarction) risk score is a widely used risk 

stratification tool for patients with ACS. The TIMI risk score has distinct models that have 

been developed for the two major subtypes of ACS, namely STEMI and NSTEMI. 

The TIMI risk score for STEMI from the Intravenous nPA for Treatment Infarcted 

Myocardium Early II trial to predict the mortality of STEMI patients at 30 days. There are 

eight variables that predict death, each of which contributes points to the scoring when added 

together. 65 to 74 years old, above 75 years old, diabetes, hypertension, or angina history, 

systolic blood pressure, heart rate, Killip class, weight, ST-segment elevation in the anterior 

wall or left bundle branch block, and reperfusion time are the variables (Morrow, et al., 

2000). The higher the point obtained indicated the higher risk which was determined based 

on 8 clinical risk indicators with the possible points around 14. The point for each variable is 

shown in Table 2.6. 

Table 2.6: The variables and points for TIMI for STEMI. 

TIMI (STEMI) Score Variables Point 

Age between 65-74 years old 2 

Age ≥ 75 years old 3 

History of diabetes, hypertension, or angina 1 

Systolic blood pressure < 100 mmHg 3 

Killip classification II to IV 2 

Heart rate > 100 bpm 2 

Weight < 67 Kg 1 

ST-segment elevation in the anterior wall or left bundle branch block 1 

Reperfusion time > 4 hours 1 
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The score will vary from 0 to 14 based on the summation of all the variables presented 

with the patients at admission. TIMI score 0 to 2 as low risk, 3 to 5 as intermediate risk, and 

>5 as high risk (Correia, et al., 2014). 

TIMI risk score for NSTEMI/UA used the TIMI 11B clinical trial for the composite 

endpoint of mortality at 14 days in the year 2000 (Antman, et al., 2000). This risk score is 

used to help patients with suspected ischemic chest pain, usually those with NSTEMI/UA, 

risk stratify. Age >65 years, 3 classical risk factors for coronary artery disease, known as 

CAD (stenosis >50%), use of aspirin in the previous 7 days, severe angina in the previous 24 

hours, elevated cardiac markers, and ST-deviation 0.5 mm are the 7 dichotomous variables 

that made up the scores. Each variable is assigned a point value of 0 or 1, and the total score 

will range from 0 to 7. Patients with a score of 0 to 2 points are deemed low risk, intermediate 

risk at 3-4 points, and high risk at 5-7 points (Rao & Agasthi, 2023). The point for each of 

the variables for patients with NSTEMI/UA is shown in Table 2.7. 

Table 2.7: The list of variables and points for TIMI risk score for NSTEMI/UA patients. 

TIMI (NSTEMI/UA) Score Variables Point 
Age >=65 years 1 
At least 3 risk factors for CAD (family history of CAD, hypertension, 
hypercholesteremia, diabetes or being a current smoker) 

1 

Significant coronary stenosis (prior coronary stenosis >50%) 1 
ST deviation 1 
Severe anginal symptoms (>= 2 anginal events in last 24 h) 1 
Use of aspirin in last 7 days 1 
Elevated serum cardiac biomarkers 1 

 

Morrow et al. (2001) proposed that the TIMI risk score was very suitable in developing 

countries because it has a low-cost risk estimation. It was developed in a clinical trial 
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population. However, it mainly derived from a Western cohort with less participation from 

the non-western population.  

The TIMI risk score is a bedside tool that is easy to calculate and provides a means of risk 

stratification for patients with ACS. TIMI risk score is also an effective risk stratification tool 

for patients with potential ACS in the emergency department (Khan, et al., 2022; Graham, et 

al., 2013; Hess, et al., 2010). Study by Selvarajah, et al. (2012) conducted a study about the 

validation of TIMI risk score for STEMI in the Asian population, comparing to the TIMI 

population, the study population are younger and had more complications, and TIMI risk 

score are applicable for Asian population and can be used for risk stratification of STEMI 

patients.  

Feder, et al. (2015) identified several of the TIMI risk score's strengths, including its 

widespread familiarity among medical professionals, ease of use, and reliability, as 

demonstrated by a vast evidence base of development and validation studies, however the 

respondents felt TIMI lacked crucial risk factors for clinical decision-making in older 

individuals (>= 75 years) with ACS, such as non-traditional cardiovascular risk factors. The 

TIMI risk score has limitations, including those inherent in the trial score and the exclusion 

of high-risk patients. While the lack of risk factor weighting improved usability, it reduced 

discriminatory performance and accuracy.  

Despite the limitations, the simplicity of the TIMI score is recognized in the current 

guidelines. It has also been used in key studies to demonstrate the benefit of clopidogrel at 

all risk levels and to demonstrate graded benefits of tirofiban with increasing risk levels. 
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2.7.2 GRACE 

The Global Registry of Acute Coronary Events (GRACE) risk score is another widely 

used tool for predicting mortality in patients with ACS. The GRACE risk score was 

developed in 2006 based on a multinational registry of 43,810 patients with ACS that 

comprises 94 hospitals in 14 countries recruited in the global registry of acute coronary 

events (GRACE) research between April 1999 and September 2005 and has since been 

validated in multiple independent cohorts (Fox, et al., 2006).  

The objective of GRACE risk score is to help assess and manage ACS patients by 

predicting the cumulative six-month risk of death or myocardial infarction using easily 

identifiable characteristics. The score includes eight variables, including age, heart rate, 

systolic blood pressure, serum creatinine level, Killip class, cardiac arrest upon admission, 

ST-segment deviation, and elevated cardiac enzyme levels. Each variable is assigned a 

weighted point score, and the sum of the points determines the patient's risk of mortality. The 

simplified model proved reliable, with prospectively verified C-statistics of 0.81 for in-

hospital patients’ mortality and 0.73 for death or myocardial infarction from admission to six 

months following discharge (Fox, et al., 2006).  

While there are 9 variables for the 6-month post-discharge mortality prediction are age, 

congestive heart failure, MI, heart rate, systolic blood pressure, ST-segment depression, 

serum creatinine, elevated cardiac markers, and no in-hospital percutaneous coronary 

intervention (PCI). The table 2.8 below shows the comparison between the two prediction 

time points, where The GRACE in-hospital risk score (range 0–372) and GRACE 6-month 

risk score (range 0–263) were developed from the GRACE registry for the endpoint of all-

cause death and consist of eight and nine factors respectively. 
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Table 2.8: The GRACE score comparison of variables between the two points 
predictions. 

GRACE score for in-hospital mortality GRACE score for post-discharge 6 
months mortality 

Age Age 
Heart rate Heart rate 
Systolic blood pressure Systolic blood pressure 
Serum Creatinine level Serum Creatinine 
Elevated cardiac markers Elevated cardiac marker 
Killip class H/o congestive heart failure 
Cardiac arrest at admission H/o myocardial infarction 
ST-segment deviation ST-segment depression 
 No in-hospital PCI 

 

It has been shown that the GRACE mortality risk score has excellent predictive value for 

mortality and adverse cardiovascular outcomes in patients with ACS (Boukerche, et al., 2023; 

Chen, et al., 2022; Neves, et al., 2021; Pieper, et al., 2009). In addition, the GRACE score 

for predicting long-term mortality still maintains its outstanding performance in predicting 

long-term mortality for NSTEMI/UA patients (Bouzas Cruz, et al., 2021).  

According to Chen, et al. (2018), GRACE risk score was more accurate and have good 

discriminatory accuracy in predicting long-tern mortality when compared to TIMI risk score 

due to stratification by the tertials of GRACE provided more prognostic information than the 

TIMI risk assessment. Besides, GRACE is easier to conduct and use. Shuvy, et al. 2018) 

proposed that the GRACE risk score reduced the mortality rate of ACS patient significantly 

due to its ability to stratify the patient.  

Although GRACE was developed on a multinational registry, these scores were derived 

and validated in predominantly Caucasian populations (Bulluck, et al., 2019; Authors/Task 

Force Members, et al., 2012; Morrow, et al., 2000). The performance of the GRACE score 

in predicting all-cause death at 6 months was poor in Kao, et al. (2020) study, most probably 
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because of the population study was ACS patients with diabetes, thus, applying the GRACE 

risk score which does not consider diabetes in the scoring system, proving it less effective in 

predicting the ACS patient’s mortality. Chan, et al. (2011) suggested that recalibration of the 

GRACE score may significantly enhanced risk estimation and may facilitate the adaptation 

of externally developed risk scores to Asian practice. Nevertheless, its clinical application in 

Malaysia is lacking (Sallehuddin, et al., 2017). 

Overall, the GRACE risk score is a useful tool in predicting mortality and adverse 

cardiovascular outcomes in patients with ACS has recently received a class IIa 

recommendation in European guidelines (Collet, et al., 2021), but its accuracy may vary 

depending on the patient population and the specific outcome being predicted. Table 2.9 

shows the GRACE Score interpretation. 

Table 2.9: GRACE risk score mortality risk interpretation. 

GRACE Score Range Mortality Risk 
0-87  0-2% 
88-128 3-10% 
129-149 10-20% 
150-173 20-30% 
174-182 40% 
183-190 50% 
191-199 60% 
200-207 70% 
208-218 80% 
219-284 90% 
>=285 99% 

2.7.3 GRACE2.0 

GRACE 2.0, developed by Fox et al. (2006), is an improved and externally validated 

version of the GRACE score for predicting ACS outcomes over a longer term. The previous 

GRACE version, introduced in 2000, had limited predictive ability up to only 6 months. 
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GRACE 2.0 features improved discrimination and practicality based on linear associations 

and has been validated over a longer term of 1 to 3 years with substitutions possible for 

creatinine values and Killip class, performing almost as well (Fox, et al., 2006). The main 

difference between GRACE and GRACE2.0 is GRACE2.0 allows for substitutions of Killip 

Class for diuretic usage and for serum creatinine with history of renal dysfunction.  

GRACE 2.0 utilizes values obtained from β coefficients of regression models using non-

linear functions from 32,037 patients in the GRACE registry, which were validated in the 

French registry of Acute ST-elevation and non-ST-elevation MI (FAST-MI) 2005. It is 

designed for use in acute and emergency clinical settings as well as electronic devices over 

an extended period, with data entry taking approximately 30 seconds. The values are summed 

up to provide an estimate of the probability of adverse outcomes without conversion to a 

point system (Eggers, et al., 2021). 

A validation study of GRACE2.0 for patients with ACS in-hospital mortality in Canada 

showed that it discriminates well in all patient groupings and accurately predicts adverse 

results in ACS patients across Canada (Elbarouni, et al., 2009). Besides, a study conducted 

based on the Vietnamese cohort, stated that GRACE2.0 has a better performance in 

predicting 1-year post discharged mortality with AUC=0.703 (p<0.001) (Nguyen, et al., 

2021). Similarly, in Akyuz, et al. (2016) study, where GRACE 2.0 exhibits AUC=0.77 for 1 

year mortality risk assessment. Overall, study by Huang, et al. (2016) validate its 

performance in a contemporary multiracial ACS cohort showed strong model discrimination 

across ACS types and racial/ethnic subgroups and may be useful for normal clinical 

management of ACS patients. 

However, the anticipated chance of in-hospital mortality may need to be adjusted based 

on the health care context and therapy advances, additional factors may influence outcome, 

Univ
ers

iti 
Mala

ya



46 
 

especially in geographical populations and healthcare systems not evaluated in the 

multinational GRACE program (Ono, et al., 2021). Furthermore, there are limited studies 

and evidence carried out regarding the application of GRACE2.0 risk score for the Malaysian 

population (Ismail, et al., 2022). 

2.7.4 Comparison of Risk Scores 

Table 2.10 below gives an overview of the risk score mention in the subchapter 2.7.1 to 

2.7.3 

Table 2.10: Overview of the risk score mentioned in this study. 

Features Risk Scores 
TIMI 

(STEMI) 
TIME 

(NSTEMI) 
GRACE GRACE 2.0 

Age ● ● ● ● 
Past Medical 
History 

● ●   

Risk factors  ●   
Medication 
used 

 ●   

CSS/Killip class ●  ● ● 
Signs and 
symptoms 

 ●   

Cardiac arrest 
upon admission 

  ● ● 

Heart Rate ●  ● ● 
Systolic Blood 
Pressure 

●  ● ● 

Weight ●    
ECG Findings ● ● ● ● 
Cardiac 
enzymes 

 ● ● ● 

Creatinine level    ● ● 
Treatment time ●    
Possible range 
of scores 

0 – 14 0 – 7 1 – 372 1 – 336 

Cut-off of high 
risk 

>= 4 >= 3 >= 140 >= 126 
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2.7.5 Limitation of Risk Scores 

Risk scores are widely used tools in clinical practice to aid decision-making for patient 

management. However, they also have several limitations that must be considered. One 

limitation is that risk scores may not be generalizable to all patient populations, particularly 

those with unique demographic or clinical characteristics. The TIMI and GRACE risk scores 

were primarily derived and validated from the Western Cohort mainly Caucasian population 

and may underestimate some multiethnic Asian population (Sia, et al., 2022). Hence, the risk 

scores may not reflect the region’s diversity and maybe only applicable to specific 

populations, and it may lead to inaccurate risk stratification and inappropriate treatment 

decisions (Peng, et al., 2017). Exclusion of the high-risk patients is also another limitation of 

the risk scores (Chen, et al., 2018). Saar, et al. (2018) assessed the risk-treatment paradox in 

NSTEMI patients according to the estimated risk by GRACE score and came with a 

conclusion that NSTEMI patients with higher risk receive less guideline, which linked to a 

worse prognosis. Van der Sangen, et al. (2022) also stated that optimal care was linked to 

lower mortality in intermediate-risk and high-risk patients but was less likely to be provided 

as mortality risk increased. 

Secondly, conventional regression-based CVD prediction algorithms contain common 

and frequently used prognostic parameters such as age, blood pressure, heart rate, diabetes, 

cholesterol, smoking, and heart disease history and do not introduce different prognostic 

factors that might assist in the prediction of the desired outcome as certain risk factor 

combinations may work together synergistically to raise risk in a way that is more than 

additive (Cooney, et al., 2009). According to Kwon, et al. (2019), TIMI and GRACE risk 

scores lack a weight for the risk factors as they only consist of the major prognostic factors, 

important information may not be included. Nevertheless, risk models contain numerous 
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independent variables, which limit their utility. Several simple cardiovascular risk scores 

have been proposed as alternatives (Huang, et al., 2021). 

Although the risk scores models have been widely studied and validated, the accuracy of 

a risk score may also be affected by the quality and completeness of data used to develop and 

validate the score. Recent concern is that some of the risk stratifications were built 20 years 

ago using randomized controlled trials (RCT) data prior to the introduction of drug-eluting 

stents and newer generation antiplatelets, that may not accurately reflect the complexity of 

disease processes and individual patient characteristics (Kwon, et al., 2019).  

Additionally, risk scores may not account for changes in clinical practice or treatment 

modalities over time, which may impact their accuracy in predicting outcomes. In Van der 

Sangen, et al. (2022) research highlighted that the GRACE risk score overestimated the 

absolute in-hospital and 1-year mortality risk in contemporary patients. As a result, according 

to one review of traditional risk stratification models, future models will allow for more exact 

risk stratification (Castro-Dominguez, et al., 2018). 

Another limitation is that risk scores may not capture all relevant factors that contribute 

to a patient's risk of adverse outcomes, the non-linear interactive interactions among 

prognostic factors are oversimplified because each prognostic factor in the regression-based 

CVD prediction model is connected to the incidence of major cardiovascular events, which 

are identified as a composite of death, MI, or repeat coronary revascularization of the target 

lesion (Ahmed & Hannan, 2012).  

As a result, models including these various risk variables and outcomes, as well as the 

usage of AI algorithms, are required (Peng, et al., 2017; Obermeyer & Emanuel, 2016). In 

addition, risk scores may not account for environmental factors such as air pollution 
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exposure, which has been shown to be associated with cardiovascular disease risk. This is 

concerning given the increasing evidence linking air pollution exposure to increased 

mortality in ACS patients (Brook, et al., 2010). The exclusion of air pollution variables from 

risk scores may lead to an underestimation of the true mortality risk for patients in areas with 

high levels of air pollution. Therefore, there is a need to explore the impact of air pollution 

on ACS patients' mortality and to develop new risk scores that consider the effect of air 

pollution. 

Recent studies have demonstrated the potential of ML techniques to construct mortality 

risk prediction models for ACS patients. ML algorithms can identify patterns and 

relationships in large datasets, resulting in accurate risk assessments (Wang, et al., 2021). For 

instance, a study by Shouval, et al. (2017) reported that an ML-based risk score outperformed 

traditional risk scores in predicting the risk of 30-day mortality in STEMI patients. The study 

applied 6 different ML algorithm, where RF achieves the highest AUC of 0.91, compare to 

traditional risk score, TIMI and GRACE, 0.82 and 0.87 respectively, demonstrating the 

viability and efficacy of ML tools for predictive modelling in cardiology's complex data 

scenarios will help clinicians develop tools for more precise patient risk stratification in 

presence of air pollution, which is the aim of the study. In section 2.8 will further be discussed 

about the application of ML. 

2.8 Artificial Intelligence (AI) 

There are numerous applications of artificial intelligence (AI) in the medical field. 

Algorithms and techniques based on artificial intelligence may assist in predicting health 

issues, assessing organ health, and preventing health hazards (Swapna, et al., 2022). AI in 

healthcare utilizes massive amounts of data for analysis and interpretation to support medical 

professionals in making faster, more accurate decisions (Bennett & Hauser, 2013). 
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In clinical research, historical electronic health records (EHRs) are used to create AI 

models that predict patient outcomes. EHR data used for AI models comprises patient 

demographics, health indices, medical conditions, biomedical pictures, and clinical notes, 

however organized medical claims data are rarely employed. Medical claims data may not 

accurately reflect patient health problems, but it does show patient health care access 

frequency and disease prevention or treatment involvement, which affects patient health 

outcomes (Tran, et al., 2021). 

The mortality rate of individuals with CVD has been predicted using a variety of 

algorithms and predictor variables (Kasim S, et al., 2022a; Kasim S, et al., 2022b; Aziida, et 

al., 2021; Sastoeldraijer, et al., 2013). In Tran, et al. (2012) research, compared various AI 

architectures for predicting the mortality rate of patients with CVD using structured medical 

claims data, which could help health professionals choose AI models to accurately predict 

mortality among patients with CVD using only claims data prior to a clinic visit. In addition 

to predicting health issues and assessing organ health, AI prediction, classification, and 

regression algorithms assist the medical sector minimize health risks (Braun, et al, 2020; 

Swapna, et al., 2022). 

AI approaches can overcome the constraints of conventional CVD incidence prediction 

models, that are used to generate conventional risk assessments. AI techniques such as ML 

and deep learning (DL) could contribute to improving cardiovascular care by simplifying 

precision cardiovascular studies (Krittanawong et al., 2017). Table 2.11 presents the 

comparison between conventional risk score and AI based risk prediction. 
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Table 2.11: Comparison between conventional risk scores and AI based prediction 
models. 

Descriptions Conventional Risk Score AI-based Risk Prediction 
Hypothesis Yes No 
Approach Estimates and explain data Practical prediction from 

data 
Measurement Goodness-of-fit, 

coefficients 
Accuracy, root mean square 
error, mean absolute error, 
area under the curve, 
precision, recall, etc.  

Learning ability No Yes 
Data size A proper data size for a 

certain hypothesis 
Big and complex data 

Data type A single type of data, 
structured data 

Multi-modality data, 
structured and unstructured 
data are all supported. 

Model Simple parametric model Complex, non-parametric 
model 

Accuracy Provide reasonable estimate 
of risk, but limit predictive 
ability in certain cohort 

High accuracy in predicting 
risk in various patient 
populations, and can 
identify new risk factors and 
associations 

Output Validate the hypothesis, 
causality 

Predict new data, identify 
new patterns 

Adaptability Require update periodically 
for changing risk factors and 
patient population 

Able to adapt to new data 
and variables in real-time, 
allowing for continuous 
improvement in risk 
prediction 

Limitation Low data dimensionality 
and require assumptions, 
may not capture all relevant 
risk factors or interactions 
between features 

Overfitting, data privacy, 
security issues and require 
large amounts of high-
quality data 

Risk factors Clinical and demographic 
factors only 

Multimodality 
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2.8.1 Machine Learning (ML) 

Machine learning (ML) is an emerging technology that utilizes computational statistics to 

discover optimized algorithms, which can learn from and make predictions based on data 

(Özen, et al., 2009). ML methods have the necessary flexibility to construct classifiers with 

good predictive performance compared with the statistical approach in cardiovascular related 

mortality prediction. It functioned by recognizing a certain pattern from train data to 

construct good and accurate assumption and prediction. It can be considered as part of 

artificial intelligence because it can learn and adapt to the changing environment, providing 

solutions for all possible situations.  

ML is a subset of AI that focuses on the development of algorithms that enable computers 

to learn from data without being explicitly programmed. It involves the use of statistical 

techniques to discover patterns in large datasets and make predictions or decisions based on 

those patterns (Edgar & Manz, 2017). Thus, developing an ML model with the best algorithm 

is vital to assist clinicians and the public to be aware of the presence of air pollution. For 

instance, these ML algorithms have been applied to overcome non-linear limitations and 

uncertainties to achieve better prediction accuracy.  

ML comprises of automatic feature selection that enables manipulation of large numbers 

of predictors and does not require underlying assumptions regarding the relationship between 

input features and output. In the diagnosis of heart disease, ML approaches help to improve 

data-driven decision-making (Ahsan & Siddique, 2022). ML methods such as Linear 

Regression, Logistic Regression, Support Vector Machine (SVM), Random Forest (RF), 

Extreme Gradient Boosting (XGBoost) and stacked Ensemble Learning (EL) has been 

successfully applied to predict the occurrence of several clinical diseases, such as myocardial 

infarction, and the risk of mortality in previous studies (Kasim S, et al., 2023; Kasim S, et 
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al., 2022a; Kasim S, et al., 2022b; Aziida, et al., 2021; Aziz F, et al., 2019; Peng, et al., 2017;  

Wallert, et al., 2017; Kim, 2017; Shouval, et al., 2017). Besides, the use of EL in the 

prediction of coronary artery disease and ACS has grown in popularity as a result of the 

substantial advancements in ML (Kasim S, et al., 2023; Zheng, et al., 2021; Sherazi, et al., 

2021; Jamthikar, et al., 2021). 

ML algorithms can be classified in general into two primary categories: supervised 

learning and unsupervised learning. The primary focus of our study concentrated on 

supervised learning, an ML model where algorithms are trained using labeled data. This 

approach ensures that the model can make predictions based on the input-output pairs, 

making it particularly suitable for tasks where the outcome variable is known. 

(a) Supervised learning 

Supervised learning, as it was name as “supervised” because the learning process 

is done under the seen label of observation variables (Wang, et al., 2021). Supervised 

learning was used to train the model based on sample dataset by giving that targeted 

output provided. In supervised learning, the algorithm is trained using a labelled 

dataset in which the inputs are annotated with the desired results. The computer then 

applies these labelled data to new, unlabeled data to create predictions or assign 

categories (Talabis, et al., 2015).  

Regression and classification are two common techniques of supervised learning 

algorithms used in ML, where the regression is used to predict continuous output 

variables while the latter is used to predict categorical output variables (Wang, et al., 

2021). In this study, prediction models are developed that are able to forecast 

hospitalization rate and mortality rate of ACS patients based on air pollution. 

Classification is used to predict a discrete value, which has been applied in predicting 
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the mortality of ACS patients with selected ACS features in the presence of air 

pollution and forecast the patient’s mortality risk.  

The sample dataset will be divided into a training dataset and testing dataset 

whereby the training dataset was annotated whereas testing dataset was not annotated. 

Features and annotations in the training set are used to predict the outcome in the 

testing set in a model. However, the targeted output was provided to compare with 

the predicted output to increase the accuracy of prediction. If the result was not 

satisfied, the model is going to train again (Fabris, et al., 2017). RF, SVM, decision 

tree, logistic regression, k-nearest neighbour (KNN), gradient boosting are examples 

of supervised learning (Belyadi & Haghighat, 2021). Both regression and 

classification problems are solved using ML in this study. 

(b) Unsupervised Learning 

Unsupervised learning is used to detect naturally occurring patterns or groupings 

in data (Kohonen et al., 2001). This is a challenging task to evaluate, and the utility 

of unsupervised learning groups is frequently determined by their performance in 

subsequent supervised learning tasks. When the instances are unlabeled, these 

algorithms attempt to apply techniques to the input data to mine for rules, find 

patterns, summarize, and aggregate the data points, assisting in extracting useful 

insight and better communicating the data to the user. The Self-Organizing Map 

(SOM) is a well-known unsupervised learning method. 

The following sections describe the ML algorithms that were used in this study. 

2.8.1.1 Linear Regression 

Linear regression is a supervised ML algorithm that models a target prediction value based 

on independent variables introduce by Galton (1886). It is a statistical method used to 
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comprehend the relationship between two variables that are correlated linearly (Vij, 2023), 

involves fitting a line to the provided independent and dependent variables, the formula is 

given below: 

𝑦 = 𝑚𝑥 + 𝑐 (2, 1) 

The most fitted line is identified using the least squares, which minimizes the sum of 

squared differences between the predicted and actual values. Linear regression only applies 

to regression model as to predict the continuous outcome and forecast future trends (Gupta, 

2023).  

In early studies, linear regression has proven its usefulness in cardiovascular studies. In 

(Larsen, et al., 1993), the researchers utilized a linear regression model to predict survival 

rates among patients experiencing out-of-hospital cardiac arrest and demonstrated the 

model's effectiveness in facilitating the planning of community emergency medical services 

programs and systems. Besides, linear regression also applied in predicting in patients with 

heart failure mortality (Du, et al., 2023).  

 

Figure 2.7: Linear regression graph (Photo sourced from Gandhi, 2018). 
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2.8.1.2 Logistic Regression  

Logistic regression models are widely used in a variety of disciplines. It is being well 

known in the medical and health field with the notion of odd ratio applied to the studies such 

as smoking, cardiovascular disease, and other risk events (Hilbe, 2009). LR is a statistical 

method used for modelling a binary response variable by taking the value such 0 and 1 or yes 

and no. large sample sizes are required for LR to provide sufficient numbers in both 

categories of the response variable (Bewick, et al., 2005). 

Assuming a Bernoulli distribution of the dependent outcome (𝑦) that is conditional on a 

set of input predictors (𝑥1, … , 𝑥𝑘)  we can write  𝑦 | 𝑥1, … , 𝑥𝑘 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) . Logistic 

regression (Cox, 1958) then estimates the binary response probability through the function 

as below:  

log [
𝑝𝑖

(1 − 𝑝𝑖
] = β0 +  β1x1 + ⋯ + βkxk (2,2) 

where (𝛽0) is the intercept and (𝛽1, … , 𝛽𝑘) are the estimated coefficients. Therefore, the 

probability of the suspected outcome can be obtained by the equation below: 

𝑝𝑖 = exp( β0 + ⋯ + βixi)/(1 + exp( β0 + ⋯ + βixi) (2,3) 

Usually, logistic regression used a cut-off at 0.5 to generate individual predictive 

probabilities for classification. Logistic regression lacked tuning parameters, which sets it 

apart from the other models. 

In short, the logistic regression model was used to quantify the effect of a predictor in 

terms of a log odds ratio. The term can be explained from probability. Probability is the 

chance of an event likely to occur while odd means to the ratio of two probabilities. 

Therefore, odd ratio can describe an effect over the entire range of risk (Harrell, 2015). 
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Figure 2.8: Logistic regression function to classify two maximum values (0 or 1) (Photo 
sourced from JavaTpoint, 2011). 

 

2.8.1.3 Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a common method of supervising ML (Vapnik, et al., 

1995). SVM labelled each data point in n-dimensional space and classified them by a 

hyperplane. A hyperplane is a line which will generate an output that is divided into two 

classes well. A kernel function is used to transform non-separable data into linear separable 

data. It is very useful in SVM since it is required to separate the data in the n-dimensional 

space (Smola & Schölkopf, 2004).  

In Battineni, et al. (2019) study, they proposed that introducing an optimal hyperplane is 

not easy because different hyperplane produced will influence its accuracy. The parameter 

like gamma and C value helped us to make a correlation between the hyperplane parameter 

to investigate better support-vector. Even in the different kernel function, they varied for 

them. It gives a chance to make an ideal hyperplane. He stated that SVM always chooses the 

optimal hyperplane with low gamma and high C value.   
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The proper parameter setting in the kernels will increase the classification accuracy. The 

main parameters in SVM are gamma and C value. The gamma parameter is used to define 

the distance for the single training data that can be reached. More far distance represented 

with low gamma value while close distance is represented by greater gamma value. The paper 

also showed that varying gamma value influences the model’s performance, higher gamma 

value gives the better result. C value gives the trade-off training examples misclassification 

against decision surface simplicity. Higher C value gives an accurate result whereas lower c 

value ensures a smooth decision surface (Renukadevi & P., 2013).   

SVM can classify and identify syndromes in coronary heart disease. Besides, it performed 

a better result compared to the decision tree algorithm with 82.5% accuracy against 80.4% 

accuracy (Chen, et al., 2007). Various studies also prove that SVM method exhibit good 

results and accurate in clinical diagnosis of cardiac disease (Gong & Wang, 2009; Alty, et 

al., 2003; Hongzong, et al., 2007). In Zhang, et al. (2012), stated that best SVM parameters 

with radial basis function show the highest classification accuracy in diagnosing coronary 

heart disease. 
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Figure 2.9: Support Vector Machine (SVM) separates two different categories that are 
classified using a decision boundary or hyperplane (Photo sourced from JavaTpoint, 
2011). 

2.8.1.4 Random Forest (RF) 

According to Ho (1995), random forest (RF) is a method that will generate multiple 

decision trees based on the training data given. It splits the data into smaller and smaller trees, 

resulting in multiple trees and generates significant predictors that will influence the 

outcome. Nowadays, RF is a common method because it worked well in avoiding overfitting 

and increasing the accuracy in prediction.  

RF is an ensemble method that builds decisions trees and incorporates the important 

predictors and their interaction during the learning process. Hence, there showed a rise in RF 

application in computational biology because it was nonparametric, interpretable, efficiency 

and accuracy for many types of data (Qi, 2012).  

Sammut & Webb (2011) defined that RF is a hybrid of bagging algorithm and random 

subspace method. It used decision trees as the base classifier. Each tree is constructed from 
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a bootstrap sample in the original dataset. The RF method was unpruned, therefore it avoided 

overfitting. Random subset method was used to identify the feature and the subset size is split 

at each branch in the tree to obtain the diversity of the classifiers. Both methods yielded low 

bias and high variance but low correlation trees. Combining the trees to achieve low bias and 

low variance forest. 

Bootstrap aggregation can be short form as bagging. Breiman (2001) demonstrated that 

each tree was built based on random samples from the training set where replacement may 

occur, resulting in different trees. Hence, RF used bagging method to build large and not 

correlated trees and then average them. It draws a random subset of features for training the 

individual trees, resulting in better predictive performance and it is much simpler and easier 

to tune. 

The parameters of random forest affect the result of the machine’s prediction. Out-of-bag 

(OOB) errors are an estimate measuring prediction error in an RF. It can be affected by the 

parameters such as mtry, ntree and nodesize. OOB error is largely influenced by mtry but 

seems not readily affected in ntree and nodesize. Increasing mtry lead to small decreases in 

error rate. Conversely, decreases in mtry will lead to increases in error rate. Ntree gives more 

impact in the feature section. Larger ntree values will generate slightly more stable values of 

feature importance. However, ntree values is directly proportional to the time of execution. 

Change in nodesize values give a negligible effect (Díaz-Uriarte & De Andres, 2006). 

The RF method gave a good performance and played an important role in the medical 

field. It was able to classify normal and congestive heart failure with 100% accuracy 

classification (Masetic & Subasi, 2016). 
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Figure 2.10: The architecture of random forest (RF) algorithm (Photo sourced from 
JavaTpoint, 2011). 

2.8.1.5 Naïve Bayes (NB) 

The Naïve Bayes (NB) algorithm was introduced and developed by Thomas Bayes, in 

1968. It is based on Bayes’ theorem (Bayes, 1968). In the 20th century, statisticians and 

computer scientists improved and popularized the technique (Wu, et al., 2008). NB is a 

probabilistic algorithm primarily used in supervised learning for classification problems. It 

is based on Bayes' theorem and the assumption of independence among the features. 

The algorithm is based on Bayes’ theorem, assuming that |𝐴| ≠ 0 and |𝐵| ≠ 0, which 

states that the probability of an event (A) given the occurrence of another event (B) can be 

calculated as the product of the probability of B given A and the probability of A, divided by 

the probability of B (Berrar, 2018). The formula for NB classification can be written as 

follows: 
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𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 

(2,4) 

Where; 

• P(A|B) is the probability of event A occurring given that event B has occurred. 

• P(B|A) is the probability of event B occurring given that event A has occurred. 

• P(A) is the prior probability of event A occurring. 

• P(B) is the prior probability of event B occurring. 

NB classifiers use the probability theory to find the most likely classification of an unseen 

(unclassified) instance chooses the class with the highest probability as the prediction. The 

algorithm performs positively with categorical data, but it performs poorly if numerical data 

is present in the training set (Chen, et al., 2020; Vembandasamy, et al., 2015). 

The strength of NB lies in its simplicity and efficiency, as it requires minimal 

computational resources and works well even with small datasets, which can be advantageous 

in situations where data may be limited (Saritas & Yasar, 2019). NB has the ability to handle 

high-dimensional data, and less prone to overfitting, which can be challenging for other 

algorithms (Bai, et al., 2023).  

Vembandasamy, et al. (2015) and Maheswari & Pitchai (2019) applied the NB algorithm 

in developing heart disease prediction system, providing instance guidance for heart disease 

to the user based on the accurate result prediction. Besides, Khennou, et al. (2019) also 

utilized the NB algorithm as one of the techniques for predicting heart disease, along with 

SVM and decision-based systems. The proposed approach achieved an accuracy of 86% 

using the NB algorithm on the Heart Disease Dataset from the UCI machine learning library.   
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2.8.1.6 Extreme Gradient Boosting (XGBoost) 

Extreme Gradient Boosting (XGBoost) is another ML algorithm. It is 10 times quicker 

than existing gradient boosting (Chen & Guestrin, 2016). This is because parallel distribution 

learning tree is used makes the learning process faster than other methods. Large data can be 

used in this method. In general method of boosting, predictors in each tree are achieved by 

weighting. The weighting to all independent variables of each tree will be assigned in each 

iteration. The weight played a role in predicting results. The weight will be increased in some 

predictors if any misclassification occurs. Next, the new individual tree will build on more 

weighting value. Tree is created in sequential form (Redpath & Lebart, 2005). 

XGBoost is available as an open-source package. The main factor behind XGB making it 

a success is its scalability. The scalability of XGB is from several important system and 

algorithmic optimizations such as a novel tree learning algorithm which responsible for 

handling sparse data if and only if there has missing value in the dataset as well as a 

theoretically justified weighted quantile sketch which handling weights value in the tree. 

Besides, it runs with greedy algorithm for split finding. It means that it computed all the 

possible splits for continuous features and worked up with them to build the tree for machine 

learning. Then the weight value is used to meet the second criteria and find the best split 

points (Chen & Guestrin, 2016).  

XGBoost is an implementation of gradient boosting. However, XGBoost gives a more 

accurate result because it used a more regularized form of gradient boosting which improves 

model generalization capabilities that can control overfitting. Besides, it used parallel tree 

learning makes the learning process faster. It is more capable of handling missing value 

compared to gradient boosting. 
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In the study by Li, et al. (2020), the authors applied the XGBoost algorithm to predict the 

likelihood of diabetes in patients. The results of the study showed that the XGB algorithm 

was able to achieve a prediction accuracy of above 80.2% when predicting the likelihood of 

diabetes in patients. The authors also compared the performance of XGBoost with other ML 

algorithms such as RF, Neural Network and SVM, and found that XGBoost outperformed 

these algorithms. Overall, the study provides strong evidence that ML algorithms can be 

effectively applied in the medical field to predict diseases like diabetes, cardiovascular 

disease etc.  

2.8.1.7 Ensemble Learning (EL) 

Ensemble Learning (EL) has gained much popularity in the ML community, due to its 

ability to improve the accuracy and robustness of predictive models. It combines multiple 

models to improve prediction accuracy and reduce the risk of overfitting (Park & Kim, 2021). 

The three main EL methods are stacking, boosting, and bagging (Simske, 2019). Bootstrap 

aggregating, commonly known as bagging, was introduced by Breiman (1996). RF is an 

example of the bagging ensemble method, where decision trees are trained on N random 

subsets of the data, drawn with replacement. The predictions from each model are then 

combined to produce the final prediction. This technique involves training multiple models 

on randomly selected subsets of the data and is useful for reducing overfitting and increasing 

the accuracy of the model (Simske, 2019; Breiman L., 2001).  

Another type of EL is boosting, which includes iteratively training models to rectify the 

errors made by prior models. This allows the system to make the best decision possible by 

considering the results from the samples in proportion to how well they contribute to the 

general accuracy of the system (Simske, 2019). AdaBoost is the most well-known example 
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of EL boosting algorithm, where it trains weak classifiers in a sequence, reweighting the data 

instances each in turn to reflect the difficulty for each of them (Biamonte, et al., 2017).  

Stacking is a more complex EL method that involves training multiple models and then 

combining their predictions using a meta-model. It is complicated where it involves training 

several base models on the same dataset and having a supervisor (meta) model that learns 

how to combine the best predictions of the base models (Gudivada, 2016). Examples of 

stacking algorithms include Meta-Decision Tree (MDT), which uses a decision tree as the 

meta-model, and Stacked Generalization (SG), which uses a linear regression model as the 

meta-model. However, overfitting is common in stacking where the base model is too 

complex.  

Generalized Linear Models (GLMs) is a meta-learner for stacking EL, it is a type of model 

that can be apply in various kinds of outcomes, such as regression and classification outcome 

(Peterson, Baker, & McGaw, 2010). GLMs combine the predictors from multiple models 

into a single model, whereas other EL methods combine the outputs of multiple models. 

GLMs are often preferred for predicting clinical outcomes due to the major weakness of 

ensemble predictors, which typically produce "black box" predictions that are difficult to 

interpret in terms of underlying features.  

GLM is a type of forward-selected regression model that results in highly interpretable 

predictors (Song, et al., 2013). (Kwon, et al., 2019) applied the stacking EL technique for 

classifying breast cancer based on Korean women cohort, where the study proves that 

gradient boosting model and GLM as a meta-learner shows better performance than single 

classifiers. A recent study by Kasim S, et al. (2023) focused on predicting in-hospital 

mortality in Asian women post-STEMI using ML and stacked EL using the same NCVD 

dataset and the models were compared to the conventional TIMI risk score, proven that ML 
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and EL techniques provided more accurate classifications for Asian women with STEMI than 

traditional methods. 

In this study, stacked EL approach was applied. The models mentioned earlier served as 

our base learners, which were then integrated and stacked together. Subsequently, the GLM 

was utilized as the meta learner to enhance the predictive capability of the combined model. 

2.8.1.8 Summary of Machine Learning Algorithms 

Table 2.12 below provides a summary of the ML algorithms applied in this study, 

highlighting both their strengths and drawbacks. 

Table 2.12: Summary of ML algorithms that applied in this study. 

Machine 
Learning 

Algorithms 

Developed 
By 

Strengths Drawbacks 

Linear 
Regression 

Francis 
Galton, 
1886 

- Simple and easy to 
understand. 

- Computationally 
inexpensive to train. 

- Scales well to large 
datasets. 

- Coefficients of the model 
can give insight about the 
importance of features. 

- Suitable for continuous 
output (regression 
problems) 

- Assumes linear 
relationship between 
the features and the 
target. 

- Sensitive to outliers. 
- May suffer from 

overfitting or 
underfitting. 

- Cannot model 
complex relationships 
without 
transformation. 
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Table 2.12, continued. 

Machine 
Learning 

Algorithms 

Developed By Strengths Drawbacks 

Logistic 
Regression  

David Cox, 
1958 

- Simple and 
interpretable model.  

- Fast to train and 
predict.  

- Scales well to large 
datasets.  

- Predictions can be 
made quickly. 

- Widely used and well-
studied. 

- Many resources and 
tools available for it. 

- Linear model, limited 
to linear relationships 
between the features 
and the target.  

- Cannot capture more 
complex relationships 
between the features 
and the target. 

- Sensitive to the scale 
of the features. 

- Sensitive to the 
presence of outliers, it 
can have a large 
influence on the 
model. 

- Only for classification 
model. 

Support 
Vector 
Machine 
(SVM) 

Vladimir 
Vapnik and his 
colleagues, 
mid-1990s 

- Effective in high-
dimensional spaces  

- Effective when the 
number of features is 
greater than the number 
of samples. 

- Effective where the 
data is heavily 
imbalanced. 

- Versatile, and different 
kernel functions can be 
used to specify the 
similarity between 
samples.  

- Used in a variety of 
applications. 

- Sensitive to the choice 
of kernel and 
parameters. 

- Difficult to find the 
right combination. 

- Slow to train and 
predict, particularly 
on large datasets. 

- Do not provide 
probabilities for the 
outcomes, which can 
be useful in certain 
contexts. 
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Table 2.12, continued 

Machine 
Learning 

Algorithms 

Developed 
By 

Strengths Drawbacks 

Random 
Forest (RF) 

Leo Breiman 
and Adele 
Cutler, early 
2000s 

- Effective models. 

- Able accurately predict 
outcomes in many 
cases. 

- Fast to train and predict. 

- Handle large datasets 
with many features. 

- Handle data with 
missing values and data 
with imbalanced 
classes. 

- Provide a good balance 
between bias and 
variance. 

- Generally, have good 
generalization 
performance. 

- Easy to use. 

- Require little pre-
processing of the data. 

- Difficult to interpret. 

- Hard to understand 
why a particular 
prediction was made. 

- Difficult to extract 
insights from the 
model. 

- Prone to overfitting if 
not properly tuned.  

- Slower to train and 
predict especially 
when working with 
very large datasets. 

Extreme 
Gradient 
Boosting 
(XGBoost) 

Tianqi Chen 
and his 
colleagues, 
2014 

- Fast and efficient. 

- Able to handle large-
scale data sets.  

- Can effectively deal 
with high-dimensional 
data. 

- Has a number of useful 
hyperparameters that 
can be tuned to improve 
model performance. 

- Complex algorithm. 

- Difficult to interpret. 

- Prone to overfitting. 

- Sensitive to 
hyperparameters. 
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Table 2.12, continued 

Machine 
Learning 

Algorithms 

Developed 
By 

Strengths Drawbacks 

Naïve Bayes 
(NB) 

Thomas 
Bayes 

- Simple and efficient 

- Performs well on high 
dimensional datasets. 

- Small amount of data 
is required for 
training data. 

- Handles irrelevant 
features well. 

- Works well in 
classification 
problems. 

- Assume independence 
between features. 

- Does not work well with 
numerical values. 

- Sensitive to outliers. 

- Requires careful pre-
processing and feature 
selection to ensure optimal 
performance.  

 

Ensemble 
Learning (EL) 

Various - Improve the 
performance of the 
individual models by 
combining them. 

- Robust and less prone 
to overfitting.  

- Able to handle wide 
range of data types 
and structures. 

- Stable and less noisy. 

- Computationally 
expensive, especially large 
dataset.  

- Difficult to interpret and 
understand the underlying 
relationship data. 

- Requires careful selection 
and tuning of individual 
models to ensure optimal 
performance. 

 

2.8.2 Explainable Artificial Intelligence (XAI) 

Explainable Artificial Intelligence (XAI) is an emerging research field that aims to bring 

explanation to ambiguous and extremely complex ML models (Weber, et al., 2022). The 

interpretation of ML models is a crucial aspect of constructing predictive models in the field 

of data science. While ML models excel at discovering complex patterns in large datasets, 

they frequently suffer from the "black box" problem, in which they are difficult to interpret 
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and offer little insight into the underlying relationships between the input features and the 

output predictions (Rodríguez-Pérez & Bajorath, 2019). Ekanayake et al. (2022) investigated 

the complexities of machine learning's 'black box' nature, focusing on predicting compressive 

strength with SHAP and XGBoost. Their investigation revealed how these forecasts capture 

the intricate relationships between the constituents. SHAP also provides unified measures on 

feature importance and the impact of a variable for a prediction. 

To improve the transparency and accountability of ML models, model interpretation 

techniques have been developed that aim to provide more intuitive explanations for model 

predictions. Interpretation methods are often divided into two categories: global and local 

interpretation. Global interpretation methods aim to provide an overall understanding of the 

model by analyzing its overall performance and feature importance.  

2.8.2.1 Shapley Additive exPlanations (SHAP) 

Shapley Additive exPlanations or SHAP explainer is a mathematical method, that uses 

Shapley values to explain how individual predictions are made by the ML model. SHAP was 

introduce and developed by (Lundberg & Lee, 2017). SHAP provides a global interpretation 

of a model by assigning an important score to each feature based on its contribution to the 

model's output. It considers all possible feature combinations and their impact on the model's 

output. SHAP addresses the 'black box' issue in machine learning, as depicted in Figure 2.11 

The SHAP values for a particular feature indicate how much that feature contributed to 

the predicted outcome, either positively or negatively. Positive SHAP values indicate that the 

feature increased the prediction, while negative SHAP values indicate that the feature 

decreased the prediction. The sum of the SHAP values for all features adds up to the 

difference between the actual predicted value and the average predicted value across all 

samples in the dataset. 

Univ
ers

iti 
Mala

ya



71 
 

 

Figure 2.11: Illustration of SHAP interpreting the ML “black box” nature (Photo 
sourced from SHAP, 2017). 

The SHAP summary plot is a visualization tool that helps to interpret the SHAP values. It 

shows the contribution of each feature to the final prediction in a single plot. The horizontal 

axis represents the SHAP value, and the vertical axis represents the feature value. The points 

in the graph represent individual data points, and their position on the vertical axis indicates 

the value of the feature for that data point. The color of the points indicates the value of 

another feature that is correlated with the feature being plotted. Red indicates high feature 

value, whereas blue represents low feature value. Figure 2.12 below illustrates an example 

of the SHAP graph adapted from (SHAP, 2017). 

Thus, XAI is addressed by SHAP to provide easily understood graphical interpretations 

of results obtained from conventional AI approaches.  Univ
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Figure 2.12: Illustrations of SHAP summary plots (Photo sourced from Tran K., 2021). 
SHAP has grown in popularity and has become a widely used method for interpreting the 

ML models in various field (Lin & Gao, 2022), prevention of hypoxemia during surgery, 

where impact of each feature on the model is represented using Shapley values (Lundberg, 

et al., 2018), spatial drought prediction model interpretation that uses SHAP plots to examine 

predictor interactions for various drought conditions (Dikshit & Pradhan, 2021). In Liu, et al. 

(2022) study about diagnosis of Parkinson’s disease, to address the problem of high feature 

dimensionality of Parkinson’s disease in medical data, SHAP value is apply for feature 

selection of Parkinson’s disease. Similarly, Kuno, et al. (2022) uses the SHAP method to 

identify and interpret the important variables that are associated with in-hospital mortality 

for COVID-19 patients. 

2.8.3 Machine Learning (ML) Performance Evaluation  

ML performance evaluation is a critical step in the model development process. Its 

performance is evaluated to determine its effectiveness and identify areas for improvement, 

it also helps to select the most appropriate model for further development. According to Kim 

et al. (2017), the commonly used metrics for evaluating the performance of a diagnostic 
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model included confusion matrix, accuracy, sensitivity, specificity, precision, F1 Score, 

recall, and area under the ROC curve (AUROC). 

However, the performance evaluation for regression and classification problems may 

differ. In regression problems, the most commonly used performance evaluation metrics 

include mean absolute error (MAE), and root mean squared error (RMSE), while in 

classification problems, accuracy, precision, and AUROC are commonly used. The following 

metrics are used in this study to evaluate model performances (Sun, et al., 2021). 

2.8.3.1 Regression Performance Evaluation 

(a) Mean Absolute Error (MAE) 

Mean absolute error (MAE) is used to calculate the accuracy of continuous variables 

generated from regression model (Zhou et al., 2019). MAE represents the average magnitude 

of the error in a set of predictions (Nadakinamani, et al., 2022), MAE represents the average 

absolute difference between the predicted and actual values. The smaller the MAE, the better 

the performance of the model. MAE calculated using the equation as shown below, 

𝑀𝐴𝐸 =  
1

𝑛
∑|𝑦𝑖 − 𝑦𝑖̂|

𝑛

𝐽=1

 

 

(2, 5) 

Where 𝑦𝑖̂  are the predicted values, 𝑦𝑖  are the observed values and 𝑛  is the number of 

observations.  

(b) Root Mean Square Error (RMSE) 

The Root Mean Square Error (RMSE) is one of the performance indicators for ML 

regression model, it measures the average difference between values predicted by a model 

and the actual values. It provides an estimation of how well the model can predict the target 
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value. Thus, the RMSE value ranges from 0 to infinity, where the value is closer to 0 the 

better the performing the regression model (Peter J., et al., 2022). RMSE is the square root 

of the mean square error between the predicted and actual values, it is calculated as shown in 

the equation below: 

𝑅𝑀𝑆𝐸 =  √∑
(𝑦𝑖̂ −  𝑦𝑖)2

𝑛

𝑛

𝑖=1

 (2,6) 

 

Where 𝑦𝑖̂  are the predicted values, 𝑦𝑖  are the observed values and 𝑛 is the number of 

observations.  

In recent years, RMSE has been widely used in the medical domain for various 

applications such as disease prediction, diagnosis, and prognosis. For instance, a study by 

Nadakinamani, et al. (2022) used MAE and RMSE to evaluate the performance of a ML 

model for predicting the risk of CVD, the random tree shows the best result of 0.0011 and 

0.0231 respectively, indicating good predictive performance. 

2.8.3.2 Classification Performance Evaluation 

(a) Confusion Matrix (CM) 

The confusion matrix (CM) was utilized for the performance evaluations. CM the number 

of actual and predicted values, it can be applied to binary classification as well as for 

multiclass classification problems. CM is a widely used evaluation metric in ML, particularly 

in the medical domain (Demir, 2022; Asif, et al., 2021; Hossen, et al., 2021; Imamovic, 

Babovic, & Bijedic, 2020).  
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CM consists of four basic characteristics (numbers) that are used to define the 

measurement metrics of the classifier (Singh, et al,, 2021). These four numbers are: 

1. TP (True Positive): TP represents the number of patients who have been properly 

classified to have malignant nodes, meaning they have the disease. 

2. TN (True Negative): TN represents the number of correctly classified patients who 

are healthy. 

3. FP (False Positive): FP represents the number of patients who have been misclassified 

as having the disease but are actually healthy. FP are also known as Type I errors. 

4. FN (False Negative): FN represents the number of patients misclassified as healthy 

but actually they are suffering from the disease. FN is also known as Type II error. 

The output True Negative (TN) indicates that the number of negative examples that were 

accurately classified as negative. Similarly, True Positive (TP) represents the number of 

positive examples that have been correctly classified. The term False Positive (FP) value, 

which is the number of actual negative examples misclassified as positive, whereas False 

Negative (FN) value, which is the number of actual positive examples misclassified as 

negative. (Kulkarni, et al, 2020). CM also known as the error matrix, is depicted by a matrix 

describing the performance of a classification model on a set of test data as shown in figure 

2.13 below (Sharma, et al., 2022).  Univ
ers
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Figure 2.13: Confusion Matrix Plot (Photo sourced from Sharma, et al., 2022). 

Performance metrics of an algorithm are accuracy, precision, sensitivity, specificity, and 

F1 score, which are calculated based on the above-stated TP, TN, FP, and FN. 

(b) Accuracy (ACC) 

One of the most commonly used metrics while performing classification is accuracy 

(Kulkarni, et al., 2020; Saura 2021). The accuracy is calculated by the number of correctly 

predicted from the total number of samples in the dataset. The accuracy of a model (through 

a confusion matrix) is calculated using the given formula below. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝐹𝑃 + 𝑇𝑃 + 𝐹𝑁
 (2,7) 

The result indicates the ratio of the sample to be correctly classified. Higher accuracy 

leads to a better performance in the model (Story & Congalton, 1986). However, sometimes 

accuracy can be misleading if used with imbalanced datasets, and therefore there are other 

metrics based on confusion matrix which can be useful for evaluating performance (Kulkarni, 

et al., 2020). 
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(c) Precision (P) 

Precision of an algorithm is represented as the ratio of correctly classified patients with 

the disease (TP) to the total patients predicted to have the disease (TP+FP) (Singh, et al., 

2021). In other words, it is the proportion of positive values that were correctly defined 

(Arjaria, et al., 2021). The formula of calculate precision is as follows:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝐹𝑃 + 𝑇𝑃
 (2, 8) 

 

(d) Sensitivity (Sn) / Recall / True Positive Rate 

Sensitivity is defined as the ratio of the predicted genuine positive cases to all positive 

cases and known as recall or true positive rate. Sensitivity is the ability of a test to identify 

those with the disease correctly. If the test has a high sensitivity, and the test result is negative, 

it is nearly certain that they do not have the disease (Jain & Singh, 2018). 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝐹𝑁 + 𝑇𝑃
 (2, 9) 

(e) Specificity / True Negative Rate 

Jain & Singh (2018) defined specificity as the ratio of true negatives to the sum of true 

negatives and false positives. Specificity is used to identify misclassifications in negative 

cases (Veropoulos, et al., 1999). The specificity formula is as follows: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 (2, 10) 
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(f) F1 Score 

F1 score is also known as the F Measure. The F1 score states the equilibrium between the 

precision and the recall. The F-Measure presents a method for combining precision and recall 

into a single measure that can capture both of these features (Taha & Hanbury, 2015). 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 × 2 (2, 11) 

 

(g) Receiver Operating Characteristics (ROC) Curve 

The receiver operating characteristic (ROC) curve is the presentation plot derived from 

the confusion matrix, specificity, and sensitivity with the True positive rate (TP rate) versus 

the False positive rate (FP rate). The area under the ROC curve (AUROC) is an additional 

metric used to evaluate the algorithm's performance efficacy (Dutta, et al., 2023). AUROC 

greater than 0.70 shows that the predictive model proposed a good discriminatory ability, 

whereas AUC less than 0.50 suggests that the predictive model proposed a low 

discriminatory ability (Mpanya, et al., 2021). Figure 2.14 depicts the ROC for each of the 

three ML algorithms RF, XGBoost, and Decision Tree. The graph reveals that, among all 

these ML classifier algorithms, RF's AUROC was the greatest. 

The use of ROC graphs in the ML field has risen steadily, partly due to the recognition 

that basic classification accuracy is typically a poor metric for evaluating performance 

(Faizal, et al., 2021). Ling, et al. (2003) conducted a study which has shown that AUROC is 

much more suitable than using accuracy for balanced and imbalanced data sets. In the study 

by Wallert, et al. (2017), AUROC is taken as the performance metric for their models 

developed as classes were heavily unbalanced, as it is not imbalance sensitive. With the 

values ranging from 0 to 1, 0.5 corresponds to random guessing, and any feature or variable 
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with AUROC > 0.7 might be a potentially useful clinical classifier. However, the judgement 

is also made along with the consideration on base rate incidence, consequences of false 

negatives/positives, test risk, cost, etc. According to Seliya, et al. (2009), a large area under 

the curve is much preferable than a small area under the curve for a classifier. 

 

Figure 2.14: Example of ROC curve that shows the performance of the machine 
learning models (Photo sourced from Seliya, et al., 2009). 

Table 2.13 below presents the comparison of model evaluation between regression and 

classification ML model. 

Table 2.13: Comparison of model evaluation between regression and classification 
machine learning model. 

Evaluation 
Metric 

Description Regression Classification 

Root Mean Square 
Error (RMSE) 

The square root of the average 
of the squared differences 
between predictions and actual 
values. 

✓  
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Table 2.13, continued. 

Evaluation Metric Description Regression Classification 

Mean Absolute 
Error (MAE) 

The average of the absolute 
differences between predictions 
and actual values. 

✓  

Area Under Curve 
(AUC) 

The probability that a classifier 
will rank a randomly chosen 
positive instance higher than a 
randomly chosen negative one. 

 ✓ 

Sensitivity Measures the proportion of 
actual positives that are 
correctly identified. 

 ✓ 

Specificity Measures the proportion of 
correctly predicted positive 
observations out of the total 
predicted positives. 

 ✓ 

Accuracy Measures the proportion of 
correct predictions over total 
predictions. 

 ✓ 

(✓) indicates the metric is commonly used for the respective model type. 

2.9 Existing Study on Machine Learning (ML) for CVD Patients in Presence of Air 

Pollution 

The study of CVD remains intriguing. The literature shows that ML approaches have been 

widely used to predict mortality risk and risk of CVDs. However, despite the success of ML 

in CVD risk prediction, most existing studies do not take environmental factors, such as air 

pollution, into account. As a result, the mortality risk may be inaccurately estimated, leading 

to suboptimal clinical decision-making and potentially harmful outcomes for patients. This 

gap in the current research needs to be addressed in future studies.  

However, with a well-developed model, the majority of the model does not further 

develop into a visualization system that fully utilizes the developed model; thus, in this study, 
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the developed model is further developed and implemented into a web-based system that can 

generate predicted results for the user as an inference.  

Table 2.14 below presents a summary of available studies on ML in CVD research, 

highlighting the effectiveness of ML models in predicting mortality risk and CVDs and able 

to produce promising result in compared to result produce by conventional statistical method 

and risk scoring method. However, no papers have been published on mortality risk in the 

presence of air pollution using the ML method, which is the identified as the research gap 

that aim to fill in this study. 
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Table 2.14: A summary of the available studies on machine learning in CVDs. 

Research Journal and 
References 

Data Sources Number of 
Instances 

Input 
Variables 

Model Performances Metrics 

Machine Learning Outperforms 
ACC/AHA CVD Risk Calculator 
in MESA. 

(Kakadiaris, et al., 2018) 

MESA (the Multi‐Ethnic 
Study of Atherosclerosis) 

6459 11 variables AUC Score: 

ACC/AHA (0.71) 

SVM (0.92) 

Cardiovascular disease risk 
prediction using automated 
machine learning: A prospective 
study of 423,604 UK Biobank 
participants.  

(Alaa, et al., 2019) 

UK Biobank 423,604 473 variables AUC-ROC: 

Framingham Risk Score (0.724) 

Cox PH model (7 core-Var :0.734) 

Cox PH model (all: 0.758) 

SVM (0.709) 

RF (0.730) 

Neural networks (0.755)  

AdaBoost (0.759) 

Gradient Boosting (0.769) 

Auto-Prognosis 

(7 core-Var: 0.744) 

(369 non-Lab Var: 0.761) 

(104 Lab Var: 0.735) 

(All: 0.774) 
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Table 2.14, continued. 

Research Journal and 
References 

Data Sources Number of 
Instances 

Input 
Variables 

Model Performances Metrics 

Machine learning adds to 
clinical and CAC 
assessments in predicting 
10-year CHD and CVD 
deaths. 

(Nakanishi, et al., 2021) 

Coronary Artery Calcium 
(CAC) Consortium 

66,636 77 Variables AUC 

ML (0.845) 

ASCVD Risk Score (0.821) 

CAC Risk Score (0.781) 

ML CT (0.804) 

ML CHD death (0.860) 

ASCVD death (0.835) 

CAC death (0.816) 

ML CT (0.827) 

Multiclass machine learning 
vs. conventional calculators 
for stroke/CVD risk 
assessment using carotid 
plaque predictors with 
coronary angiography 
scores as gold standard: a 
500 participants’ study. 

(Jamthikar, et al., 2021) 

Kingston General Hospital’s 
Cardiac Catheterization 
Laboratory, Ontario, Canada 

500 39 variables AUC 

FRS (0.62) 

SCORE (0.60) 

ASCVD (0.59) 

SVM-rbf (0.92) 

RF (0.94) 

XGBoost (0.93) 
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Table 2.14, continued. 
Research Journal and 

References 
Data Sources Number of 

Instances 
Input 

Variables 
Model Performances Metrics 

A data-driven approach to 
predicting diabetes and 
cardiovascular disease with 
machine learning. 

(Dinh, et al., 2019) 

National Health and Nutrition 
Examination Survey 
(NHANES) dataset 

5000 131 variables AUC: 

RF (0.829) 

XGBoost (0.830) 

SVM (0.816) 

LR (0.822) 

Ensemble (0.831) 

Identification of 
cardiovascular diseases 
using machine learning 

(Louridi, Amar, & El 
Ouahidi, 2019) 

UCI heart disease dataset 303 13 variables Accuracy for 70:30 Train-Test 
split 

SVM (linear: 81.01%) (RBF: 
61.11%) 

KNN (84.44%) 

Bayes Naif (83.33%) 
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Table 2.14, continued 

Research Journal and 
References 

Data Sources Number of 
Instances 

Input 
Variables 

Model Performances Metrics 

In-hospital risk stratification 
algorithm of Asian elderly 
patients 

(Kasim, et al., 2022) 

Malaysian National 
Cardiovascular Disease Acute 
Coronary Syndrome (NCVD-
ACS) registry 

3991 elderly patients 50 variables AUC Score 

TIMI (0.75) 

LR (0.91) 

RF (0.91) 

SVM (0.91) 

XGB (0.89) 

DL (RF selected variables: 0.956) 

In-hospital mortality risk 
stratification of Asian ACS 
patients with artificial 
intelligence algorithm. 

(Kasim, et al., 2022) 

Malaysian National 
Cardiovascular Disease Acute 
Coronary Syndrome (NCVD-
ACS) registry 

68528 patients 54 variables AUC Score - STEMI  

DL (SVM selected var: 0.96) 

DL (RF selected var: 0.96) 

NSTEMI Patient 

DL (SVM selected var: 0.96) 

DL (RF selected var: 0.95) 
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Table 2.14, continued. 
Research Journal and 

References 
Data Sources Number of 

Instances 
Input 

Variables 
Model Performances Metrics 

Deep-learning-based risk 
stratification for mortality of 
patients with acute 
myocardial infarction 

(Kwon, et al., 2019) 

Korean Myocardial Infraction 
(KorMI) registry  

22874 14 variables AUROC - STEMI patient 

DL (0.905) 

RF (0.890) 

LR (0.873) 

GRACE (0.851) 

ACTION (0.852) 

TIMI (0.781) 

AUROC - NSTEMI patient 

DL (0.870) 

RF (0.851) 

LR (0.845) 

GRACE (0.810) 

ACTION (0.806) 

TIMI (0.593) 

Acute coronary syndrome 
prediction in emergency 
care: A machine learning 
approach 

(Emakhu, et al., 2022) 

Urban emergency department 
(ED) state of Michigan 

362138 58 variables AUC Result 

XGBoost (0.97) 

Gradient Boosting (0.98) 

Adaboost (0.85) 
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Table 2.14, continued. 
Research Journal and 

References 
Data Sources Number of 

Instances 
Input 

Variables 
Model Performances Metrics 

A Stacking Ensemble 
Prediction Model for the 
Occurrences of Major 
Adverse Cardiovascular 
Events in Patients with 
Acute Coronary Syndrome 
on Imbalanced Data 

(Zheng, et al., 2021) 

Korea Acute Myocardial 
Infarction Registry National 
Institutes of Health (KAMIR-
NIH) 

13104 60 variables AUC Result 

LR (0.6647) 

SVM (0.6585) 

KNN (0.8245) 

DT (0.9367) 

RF (0.9696) 

XGBoost (0.9696) 

AdaBoost (0.9569) 

Ensemble Stacking (0.9863) 

Predicting Acute Onset of 
Heart Failure Complicating 
Acute Coronary Syndrome: 
An Explainable Machine 
Learning Approach 

(Ren, et al., 2022) 

Guangdong Second Provincial 
General Hospital 

1563 128 variables AUC Result  

BRF (full features) (0.760) 

BRF (first 20% features) (0.785) 

LLR (full features) (0.604) 

LLR (first 20% features) (0.658) 

 

 

87 

Univ
ers

iti 
Mala

ya



88 
 

 
Table 2.14, continued. 

Research Journal and 
References 

Data Sources Number of 
Instances 

Input 
Variables 

Model Performances Metrics 

Machine learning-based in-
hospital mortality prediction 
models for patients with 
acute coronary syndrome 

(Ke, et al., 2022) 

Emergency department of 
Fujian Provincial Hospital  

6482 25 variables AUC Result 

LR (0.884) 

GBDT (0.918) 

RF (0.913) 

SVM (0.896) 

Predicting 30-Day Mortality 
after an Acute Coronary 
Syndrome (ACS) using 
Machine Learning Methods 
for Feature Selection, 
Classification and 
Visualisation 

(Aziida, et al., 2021) 

Malaysian National 
Cardiovascular Disease Acute 
Coronary Syndrome (NCVD-
ACS) registry 

302 patients 54 variables AUC Score 

RF-varImp-SBS (0.80) 

TIMI (0.60) 

Mortality prediction of 
elderly Asian patients with 
acute coronary syndrome 
(ACS) using interpretable 
machine learning algorithm 

(Kasim S. S., et al., 2022) 

National Cardiovascular 
Disease Database (NCVD) 

4305 10 variables AUC Result 

XGBoost-STEMI (0.8116) 

XGBoost-NSTEMI (0.8471) 
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2.10 Geospatial Mapping  

Both statistical and ML models do not include visualization elements for better 

dissemination of information. Geographic Information Systems (GIS) is an essential 

scientific tool for health data processing, analysis of geographical distribution and variation 

of diseases, mapping, monitoring and management of health epidemics. Epidemiologic 

studies have adopted GIS to explore the health impact of air pollutants on asthma. GIS can 

significantly improve epidemiologic research in terms of definition of source and routes of 

possible exposure and approximation of environmental levels of target contaminants in the 

exposure assessment process (Nuckols, et al., 2004).  

Data visualization is an essential tool for effective communication and interpretation of 

information. Visualization of information in terms of image is easier as compared to 

numerical values. Furthermore, vast availability of data requires effective and efficient ways 

to access and communicate information (de Vries, Land-Zandstra, & Smeets, 2019). 

Visualization is essential for data analysis and data representation (Xu, et al., 2010). 

Google Earth provides a platform for a which supports a visualization system online from 

GIS. According to Silberbauer (2009), Google Earth interface allows rapid changes of scale 

from global to local and back and it is user friendly. Furthermore, Google’s massive 

centralized spatial database keeps updates for users.  

According to McGranaghan (1993), graphic visualization is essential in setting 

communication objectives because different data users will have different data quality 

visualization needs. Map users rely on graphic quality to assess map accuracy and data 

quality.  
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The goal of visualization in this study is to combine the strengths of human vision, 

creativity, and general knowledge with the storage capacity and the computational power of 

modern computers to explore extensive environmental and healthcare data. This is 

implemented in this study by presenting graphical representations of the data to the user, 

which allow users to interact with the data to gain insight and to draw conclusions quickly 

(Keim, 2005). 

Graphical analysis is necessary to identify patterns, trends, and other features that are not 

noticeable from numerical summaries. Data visualization is important because it allows for 

the clear and effective communication of information through graphical means. It is useful 

to analyze data and identify geographic areas with the highest pollution rates and the most 

number of patients.  

The use of geospatial analysis in Parkinson’s disease (PD) research has exhibited 6% of 

spatial dependence for a small but significant proportion of patients in the Canton of Geneva, 

Switzerland, provides new insights into environmental epidemiology research in PD (Fleury, 

et al., 2021). In addition, geospatial analysis is essential for identifying potential 

environmental risk factors and developing effective public health interventions, as 

demonstrated in Deaths from cholera in Soho, London (late July to end of September 1854) 

which revealed the epidemiology of the disease and demonstrated the application of 

geospatial analysis by highlighting the shortest path principle followed by local residents 

when they drank water from a contaminated pump (Walford, 2020). 

In the case of COVID-19, there is substantial spatial variation in the spread of the disease 

and localized distinctions in transmission. Infections propagate more rapidly in urban and 

well-connected regions than in rural and poorly connected regions, thus, to design effective 

control programs, it is essential to comprehend the local geospatial variation of COVID-19 
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transmission (Cuadros, et al., 2020). Overall, geospatial mapping has become a valuable tool 

for disease studies, allowing for better understanding and control of disease transmission 

patterns. 

Hence, in this study, the impact of air pollution on ACS patients was studies using ML 

approach, comparing the ML model performance with existing risk scoring method. 

Moreover, GIS concept in combination with Google map will also be used to provide 

graphical outcome of air pollution and ACS in Malaysia. 

2.11 System Development Life Cycle (SDLC) 

The System Development Life Cycle (SDLC) referred as the systematic approach for plan, 

analysis and designing an information system (Kendall & Kendall, 2002). It is a systematic 

approach to software development that guides the development team through the planning, 

deployment, and maintenance phases of the software development process. Each of the six 

phases of the SDLC has its own set of activities and deliverables. These phases include 

Feasibility study, System investigation, System analysis, System design, System 

implementation, Review, and system maintenance (Stefanou, 2003). Figure 2.15 illustrates 

the SDLC workflow.  

(a) Feasibility Study 

The feasibility study examines existing systems in consideration of emerging 

demands and considers alternative solutions. System analysts determine whether a 

newly identified system or application requirement is essential for the organization 

(Stefanou, 2003). 

(b) System Investigation 
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System investigation phase is a comprehensive examination of the functional 

requirements, performance, and limitations of the existing system, if one is presently 

in operation, and the intended system's requirements. At this juncture, a more 

comprehensive analysis will be conducted, taking into consideration the data types, 

volumes, and transactions that the new system will need to process. 

(c) System Analysis 

In this phase of SDLC and this phase aims to understand the client’s requirements 

of the system/application. It is used to identify what is needed for the system 

(Radack, 2009). All the information needed to be processed, transmitted, and stored 

is evaluated and the purpose of the system is documented in this phase (Conrad, 

Misenar, & Feldman, 2016). 

(d) System Design 

In this phase, alternative technical solutions are evaluated, and the hardware, 

software, human resources, and procedures for the new system are specified. This 

phase also includes creating a prototype of the system and reviewing it with 

stakeholders to ensure it meets their needs. 

(e) System Implementation 

System implementation phase is the activity of installing according to 

specifications and delivering into operation a computer system, it involves 

programming, system testing, documenting, and delivering the system into 

operational use.  

Univ
ers

iti 
Mala

ya



93 
 

During this phase where coding, debugging, and developing the software occurs 

in this phase. This includes creating the user interface (UI) and integrating the 

system with other systems as required (TutorialsPoints, 2023).  

Testing is a crucial subphase for determining the quality and efficacy of the 

developed information system. A few categories of tests include unit test, integration 

test, volume test, system-test and user-acceptance test.  

(f) Review and System Maintenance 

Once the system has been implemented, it is reviewed to ensure it meets the 

specified requirements. This includes testing the system and bugs, performing user 

acceptance testing, and conducting a final review with stakeholders.  

The post-implementation evaluation and review activities are essential for 

determining the system's usefulness, any necessary modifications, and the extent to 

which it meets the project's objectives. 
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Figure 2.15: The conventional SDLC model (Photo sourced from Stefanou, 2003). 

2.11.1 SDLC Methodology 

Software Development Life Cycle (SDLC) methodologies are structured approaches to 

developing software systems. There are several types of SDLC methodologies, including 

prototyping, waterfall, Rapid Application Development (RAD), Dynamic Systems 

Development Method (DSDM). Each methodology has its unique set of characteristics and 

phases that dictate how software development should proceed from planning to deployment. 

In this study, the prototyping methodology is utilized in developing the web system, which 

is further explained under the following subsection 2.11.1.1. 

2.11.1.1 Prototyping  

Prototyping is a software development methodology that emphasizes the use of 

continuously refined working models based on end-user feedback. Most frequently, 

prototyping is used to develop systems with substantial end-user interaction and complex 

user interfaces (Naimish, 2023).  
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According to Earl (1978) study stated that prototype methodology is viewed as a "process-

enabler" and a tool for action researchers to learn more about information system design. 

Since it requires the developers to create an initial prototype of the software or application 

before developing the final product, it involves constant discussion between the end-users or 

stakeholders, which this model can help to reduce the risk of developing of software product 

that does not meet the requirements. The phase of the prototyping model is explained as 

follows: 

1. Requirement gathering and analysis: 

The objectives of the system are precisely defined. Discussion and interviews are 

conducted between the developers and system users to determine their requirements 

for the system. 

2. Design 

Design is the second phase that comprises a preliminary design of the system. The 

system fundamental design is established, where it only provides the user with a quick 

overview of the system. This phase facilitates the development of the prototype.  

3. Build a Prototype 

During this stage, the prototype is developed based on the quick design created in 

the previous stage. The prototype is to support and validate the knowledge gained 

during the design stage.  

4. Initial user evaluation 

The developed prototype is presented to the end-user for preliminary testing. In 

addition, it permits the developers to evaluate the performance of the initial model, 
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thereby identifying its strengths and weaknesses. End-users and developers interact at 

this stage, discussing the system prototype and providing feedback on the design and 

functionality. This is done to ensure that the final product fulfils the requirements and 

expectations of the end user. 

5. Refining prototype 

The process of refining a prototype is a crucial step in the software development 

process, which allows for the iterative improvement of the design based on user 

feedback and suggestions. This process involves making changes and improvements to 

the prototype based on user feedback, such as adjustments to the user interface and 

functionality. Once the prototype has been refined, it is presented to the user again for 

evaluation. If the user is satisfied with the upgraded model, a final system based on the 

approved final type is created.  

6. Implement Product and Maintenance  

After the end-users are satisfied with the refined prototype developed moving on to 

the development phase of the system. The final phase where the final system was fully 

tested and distributed to production after it was developed. 

The prototyping methodology is selected because it allows developers to quickly create a 

working prototype of the software, which can be used to test and refine the system's 

requirements. This methodology also enables in identifying potential issues early in the 

development process, which can save time and money in the long run. Figure 2.16 below 

shows an illustration of the prototype model development cycle.  
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Figure 2.16: Prototype development cycle. 
2.11.2 Comparison of SDLC Methodology 

In section 2.11.2, we will compare the prototyping methodology with commonly used 

SDLC methodologies. The strengths and weaknesses of each methodology are evaluated and 

determined. This analysis will help us to make an informed decision about which SDLC 

methodology to use for our software development project (Alshamrani & Bahattab, 2015). 

Table 2.15 below summarizes the advantages and disadvantages of software development 

methodologies and table 2.16 below shows the overview of existing SDLC methodology. 
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Table 2.15: Summary of advantages and disadvantages of existing software 
development methodologies. 

Software Development 
Methodology 

Advantages Disadvantages 

Waterfall Model - Simple  

- Well-understood 

- Well-defined stage 

- Stable 

- Easy to manage. 

- Resources and expertise 
are available. 

- Easy for testing and 
analysis 

- Easy documentation 

- Suitable for small projects 

- Rigid 

- High risk and uncertainty 

- Not suitable for object-
oriented projects. 

- Not suitable for long and 
ongoing project. 

- Cannot allow 
modification. 

- The project should be 
precise. 

- One-time project 

Agile Development 
Software Model 

- Adaptive approach 

- Allow changes and 
modification. 

- Allow direct 
communication. 

- Able to fix bugs quickly. 

- Improve quality and fast 
review. 

- Fast delivery 

- User focused 

- Accept uncertainty 

- Poor documentation 

- The outcome is not clear. 

- Get side-tracked easily. 

- Unable to complete 
within the allocated time. 

- Additional cost 

- Time-consuming Univ
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Table 2.15, continued 

Software Development 
Methodology 

Advantages Disadvantages 

Rapid Application 
Development (RAD) 

- Focus on the all the 
advantages of 
development. 

- Fast delivery 

- Low Cost 

- High quality outcomes 

- Encourage feedback.  

- Improvement can be 
done 

- Dependent on developer 
team 

- Modular system 

- Required skilled 
expertise. 

- Complex 

- Not suitable for small 
projects.  

Dynamic System 
Development Model 
(DSDM)   

- Iterative 

- Evolutionary  

- Incremental  

- Fast delivery of 
functionality 

- Easy access for users 
and developers 

- Results are direct and 
visible. 

- Users are actively 
involved. 

- Costly 

- Not suitable for small 
projects 
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Table 2.15, continued. 

Software Development 
Methodology 

Advantages Disadvantages 

Prototype - Fast delivery of 
working software 

- Enables ongoing 
feedback and 
collaboration between 
developers and users. 

- Direct and visible result 

 

- Not suitable for small 
projects 

- Potential for scope creep 
if there is no clear 
understanding of 
requirements and goals. 

- Lead to technical dept if 
is not properly designed 
and tested.  

 

Table 2.16: SDLC Methodologies Overview 

SDLC 
Methodology 

Waterfall AGILE RAD DSDM Prototype 

Specification 
of All the 
Requirements 
in the 
beginning 

Yes Not all and 
Frequently 
Changed    

Not all and 
Frequently 
Changed    

Not all and 
Frequently 
Changed    

Not all and 
Frequently 
Changed    

Long term 
project 

Inappropriate Appropriate Appropriate Appropriate Appropriate 

Complex 
Project   

Inappropriate Appropriate Appropriate Appropriate Appropriate 

Frequently 
Changed 
Requirements 

Inappropriate Appropriate Appropriate Appropriate Appropriate 

Cost Low High High High High 

Cost 
estimation 

Easy to 
estimate 

Difficult Difficult Difficult Difficult 

Flexibility Low High High High High 

Simplicity Simple Moderate Complex Complex Moderate 
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Table 2.16, continued. 

SDLC 
Methodology 

Waterfall AGILE RAD DSDM Prototype 

Supporting 
High Risk 
Project 

Inappropriat
e 

Appropriate Appropriat
e 

Appropriate Appropriat
e 

Guarantee of 
Success 

Less High Moderate High High 

Customer 
Involvement 

Low High, after 
each iteration 

High High High 

Testing Late Execute 
during 
implementati
on phase 

Fast After each 
phase 

After 
prototype is 
developed 

Maintenance Least 
maintainabl
e 

Maintainable Least 
maintainabl
e 

Maintainabl
e 

Least 
maintainabl
e 

Ease of 
Implementatio
n 

Hard Easy Easy Easy Easy 

 

2.12 Existing Web Application 

Numerous digital systems have been developed to combat the growing incidence of CVD 

and the consequential impact it has on human health (Cornell, et al., 2023; Feigin, et al., 

2022; Gjeka, et al., 2021; Urrea & Venegas, 2020; Brown, 2005). In addition, the negative 

impacts that air pollution has on human health (Brook R., et al., 2004; Kumar, et al., 2023) 

have further spurred the demand for geospatial analysis tools that can assist in identifying 

groups that are at risk and provide information that can inform targeted actions (Mazeli, et 

al., 2023; Zhalehdoost & Taleai, 2022). 

In this section, the existing web systems are reviewed that are related to cardiovascular 

risk calculators and air pollution geospatial maps. Evaluating these existing systems is 

necessary to gain ideas and examples for developing cardiovascular web systems. Although 
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these web-based cardiovascular risk tools were generally simple to use, only one-third 

provided risk modification advice. A well-chosen online cardiovascular risk assessment tool 

can help patients manage their health (Roshan, et al., 2023). 

2.12.1 Existing Mortality Prediction Calculator Web Application 

2.12.1.1 The Cleveland Heart Disease Risk Calculator 

The Cleveland Heart Disease Risk Calculator is a tool developed by the Cleveland Clinic 

Department of Quantitative Health Sciences, United States. The department is a 

multidisciplinary group of biostatisticians, epidemiologists, outcomes researchers, database 

developers and programmers using biomedical research to improve patient care. Apart from 

heart disease risk calculator, the team also developed various risk calculators for other 

diseases such as brain cancer, bladder cancer, colorectal cancer, etc. The objective of the risk 

calculators developed is mainly to assist and convenience service only to physicians’ medical 

advice.  

The utility of the Cleveland Heart Disease Risk Calculator is significant, as it allows 

individuals to assess their risk of heart disease and make informed decisions about their 

health. Under the heart disease condition, Cleveland Clinic developed four risk calculators 

to meet the requirements and condition, which as follows: 

(a) For Acute Coronary Syndrome Patients Recently Discharged 

(b) For Patients Hospitalized with ACS Receiving PCI Treatment 

(c) For Patients about to Undergo Transvenous Lead Extraction 

(d) For Patient with Suspected Coronary Artery Disease and a Normal 

Electrocardiogram 
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The user is required to select a risk calculator according to their condition, we will review 

the risk calculator “For Acute Coronary Syndrome Patients Recently Discharged”, where it 

is relevant to our study. The 30 days risk prediction model was constructed using logistic 

regression and Cox proportional hazards were used to model the 1-year outcomes with 2681 

patients. The c-indices for these models ranged from 0.73 to 0.82, then model developed is 

then incorporated into an easy-to-use online calculator (Kumbhani, et al., 2013). The 

calculator can be accessed online for free and the user interface is user-friendly, the results 

include 30 days risk of mortality, 30 days risk of myocardial infraction or revascularization, 

1 year risk of mortality, 1 year risk of myocardial infraction or revascularization are displayed 

in a clear and understandable format, however the calculator only meant for patient with the 

age ranged from 30 to 85, and the metric unit could not be change. Figure 2.17 – Figure 2.20 

are the screenshots of Cleveland Clinic ACS mortality risk calculator. The risk calculator 

could be access through this URL as follows: 

URL: https://riskcalc.org/. 
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Figure 2.17: The Cleveland Clinic Risk Calculator Library homepage. 

 

 

Figure 2.18: Available heart disease calculator from Cleveland Clinic calculator. 
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Figure 2.19: Risk calculator for ACS patients recently discharged that predicts 3 days 
and 1-year risks of mortality, myocardial infraction, or revascularization. 

 

Figure 2.20: Result generated from the risk calculator that shows the probability of 
mortality, myocardial infraction, and revascularization. 

 

2.12.1.2 MDCalc for GRACE ACS Risk and Mortality Calculator 

The GRACE ACS Risk and Mortality Calculator estimates the estimates the mortality rate 

from admission to six months for patients with ACS. This risk score calculator is created by 

Dr Joel Gore and Dr Keith A. A. Fox on MDCalc website (Gore & Fox, 2023). 

The calculator is created based on (Fox, et al., 2006), the MDCalc for GRACE ACS Risk 

and Mortality Calculator consists of 8 indicators in the mortality prediction which includes 
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the patient’s age, heart rate, systolic blood pressure, creatinine level, cardiac arrest at 

admission, ST segment deviation, abnormal cardiac enzymes, and Killip class. GRACE risk 

scores come with some nonspecific features, such as patient’s history, electrocardiogram, 

and troponin, which can be more objectively risk stratified and comes with better 

management and prognostication.  

The website is simple and well-designed, the user just required to provide the input 

information, and the probability of death from admission to 6 months and the GRACE score 

points result will be calculated automatically as shown in Figure 2.21. Under the “evidence” 

tab, it will display the facts and figures interpreting the result generated as shown in Figure 

2.22.  

URL: https://www.mdcalc.com/calc/1099/grace-acs-risk-mortality-calculator  

 

Figure 2.21: Screenshot of MDCalc GRACE ACS risk and mortality calculator. 
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Figure 2.22: Result generated of the GRACE Score along with the probability of death 
from admission to 6 Months. 
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2.12.1.3 OMNI Health Calculator for TIMI (STEMI) and TIMI (NSTEMI/UA) 

OMNI Calculator is a Polish founded startup and developed custom built calculators for 

everyday use to solve mathematical problem. Part of it, is the OMNI Health Calculator, which 

is a web-based tool that consist of various health calculators, like body measurements 

calculator, dietary calculators, urology and nephrology calculators, cardiovascular 

calculators, etc. comes with explanation of medical terms and assist in calculating the result.  

There are two versions of the TIMI score available on the OMNI Health Calculator under 

the cardiovascular system calculators, since the score calculated for STEMI and 

UA/NSTEMI patients are different: 

(a) TIMI Score Calculator for STEMI Calculator 

The calculator predicts 30-day all-cause mortality for STEMI patients, created by 

Aleksandra Zajac, it is solely developed based on Morrow, et al. (2000) study. The 

calculator comes with the drop-down list box, then the user is required to answer 

“Yes” or “No”, moving on to the next criteria. The result will display automatically 

after the user fill in the final field (Zając, 2023).  

The calculator has an interface and comes with explanation of the calculator, 

including “When and why to use the TIMI score for STEMI calculator”, “Using TIMI 

Score for STEMI”, “TIMI Score for STEMI risk score criteria”, “Killip class – close-

up”. Figure 2.23 and figure 2.24 are the screenshots of the website and the URL of 

the website is given below: 

URL: https://www.omnicalculator.com/health/timi-stemi  
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Figure 2.23: OMNI TIMI score for STEMI Calculator. 

 

Figure 2.24: The result shown the estimated 30-Day-all-cause mortality for STEMI 
patient based on TIMI risk score criteria. 
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(b)  TIMI Score Calculator for UA/NSTEMI Calculator 

This score calculator is a simple tool meant for patients with UA or NSTEMI to 

determine the 14 days risk of death or major health complications (Zając, TIMI Score 

Calculator for UA/NSTEMI, 2023b). It was created by Aleksandra Zajac, based on the 

study by (Antman, et al., 2000). The research has shown that TIMI score correlates 

with the risk of an adverse outcome and is a valuable and simple prognostic tool. 

The interface is similar to TIMI score calculator for STEMI patients as mentioned 

at part (a), the differences are the risk score factors, and the result estimates the patient 

risk at 14 days. Figure 2.25 and 2.26 shows the print screen of the TIMI score calculator 

for UA/NSTEMI Calculator. 

URL: https://www.omnicalculator.com/health/timi-ua-nstemi  

 

Figure 2.25: OMNI TIMI score for UA/NSTEMI Calculator. 
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Figure 2.26: The result shown the estimated 30-Day-all-cause mortality for 
UA/NSTEMI patient based on TIMI risk score criteria. 

2.12.2 Existing Air Quality Monitoring Web Application 

According to the findings of numerous studies, air pollutants interfere with various human 

physiological systems, which has a negative impact not only on health but also on climate 

change. human capital and the economy on a global scale (Giri, et al., 2023; Fisher, et al., 

2021; Liao, et al., 2021; Manisalidis, et al., 2020; De Marco, et al., 2019). Air pollution and 

its detrimental impact on human health have become a growing concern for public health 

officials and policymakers around the world. To address this issue, several air monitoring 

systems that track and report on pollution levels in various geographic regions have been 

developed. There are several existing online air monitoring systems, including AirNow, 

World Air Pollution Index, and BreezoMeter. 
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2.12.2.1 AirNow 

AirNow is developed to provide the public with real-time data to allow them to make 

lifestyle decisions to reduce or avoid exposure to poor air quality (Dickerson, 2012). AirNow 

is a centralized data management center that receive real-time zone and particle pollution 

data from 500 U.S. cities and an informational website for source and facts regarding air 

quality data and air quality forecast comes along with suggestions. The site consists of an 

interactive map that allows users to interact to obtain a better overall perspective and view 

data for an individual air quality monitor. Besides, the website emphasizes local air quality 

and provides air quality information (White, et al., 2004). 

AirNow is a US government-run web system that monitors air quality across the United 

States using the official U.S. Air Quality Index (AQI) which calculated using data from a 24-

hour period applying the NowCast algorithm where it is designed to be responsive to rapidly 

changing air quality conditions. It primarily utilizes data from government monitoring 

stations to report on pollutant levels, including PM2.5, ozone, NO2, and SO2 focusing on the 

United States and Canada, other countries and region do not have information regarding the 

forecasted air quality. Figure 2.27 is the homepage of AirNow web application. To access 

the website, the website address is given below. 

URL: https://www.airnow.gov/ Univ
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Figure 2.27: AirNow homepage that shows air quality in Miami beach along with air 
quality forecast of the selected location. 
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2.12.2.2 World Air Quality Index 

The World Air Quality Index is a web system that provides transparent air quality 

information for more than 130 countries, covering more than 30,000 stations in 2000 major 

cities, the data is collected and process via these websites: aqicn.org and waqi.info.  

The World Air Quality Index project is a non-profit project started in 2007. Its mission is 

to promote air pollution awareness for citizens and provide unified and world-wide air quality 

information. This project is founded by several contributors in the domain environmental 

sciences, system engineering, data science, as well as visual design located in Beijing, China 

(WAQ, 2020).  

The Air Quality Index is based on measurement of particulate matter (PM2.5 and PM10), 

Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2) and Carbon Monoxide (CO) 

emissions. Most of the stations on the map are monitoring both PM2.5 and PM10 data, but 

there are few exceptions where only PM10 is available. The calculated AQI is then 

categorized according to the air quality scale as shown in Figure 2.28. The colors of the flags 

are also shown on the map, that allows user to have an overall picture of which location has 

poor air quality. To get more information about a specific city, user is required to move over 

any of the flags in the above map, then click to get the full air pollution historical data shown 

in Figure 2.29 (WAQ, 2020). 

All the Air Quality data seen on World Air Quality Index are the official data from each 

country respective Environmental Protection Agency (EPA). Data from each EPAs is 

measured using professional monitoring equipment, and only stations with particulate matter 

(PM10/PM2.5) readings are published. For Malaysia, though the system has the full coverage 

of the country, only pre-calculated AQI is provided. No detailed Individual pollutant AQI 

(IAQI) is available (WAQ, 2020). 
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URL: https://waqi.info/ 

 
Figure 2.28: World Air Quality Index (WAQI) homepage. 
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Figure 2.29: Air Quality information once the user clicks on interested location on the 
interactive map. 
2.12.2.3 Breezometer  

BreezoMeter is a web application that offers location-based, real-time environmental data 

on weather, wildfires, pollen, and air pollution covering more than 100 countries founded in 

2014. BreezoMeter utilizes Google Cloud to support its comprehensive environmental 

intelligence platform, thereby making the invisible visible and mitigating the global effects 

of air pollution (Fisher & Korber, 2014). 

BreezoMeter is a proprietary algorithm-based web system that tracks air quality globally, 

using data on pollutants including PM2.5, PM10, ozone, and NO2. It offers health 

recommendations, pollen data, and a mobile app. However, it does not rely on government 
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monitoring stations or provide historical data, as the accuracy of BreezoMeter is measure by 

developing a cross-validation model based on the “Leave one out” method, remove the data 

from one government sensor out of the script every hour, calculate, and compare it to what 

the sensor is reading. This method works continuously behind the scenes of our information, 

ensuring accuracy and early detection of irregularities (Breezometer, 2023).  

On the BreezoMeter Real-time & Street-level Air Quality Information in Kuala Lumpur 

webpage, it shows an interactive map that allows users to view real-time air quality data at 

street-level resolution, by placing the marker on the map, on the sidebar, it will display 

information regarding pollutant levels, hourly forecast, health advice, and air pollution 

sources. The data is presented using a color-coded system, which indicates the level of air 

pollution in each area. The color scheme ranges from green (good air quality) to red 

(hazardous air quality). 

The homepage of Breezometer comes with the interactive map as shown in Figure 2.30. 

By scrolling down the sidebar, a detailed measurement on the air pollutant (CO, NOx, SO2, 

O3 and PMs) are displayed as shown in Figure 2.31 below.  

URL: https://www.breezometer.com/air-quality-map/air-quality/ 
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Figure 2.30: Breezometer homepage along with air pollution interactive map. 
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Figure 2.31: Air pollutants readings on Breezometer. 
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2.12.3 Comparison of Existing Web Application 

Table 2.17 below summarized and compared the web application discussed previously: 

Table 2.17: Overview of the existing mortality prediction calculator and air quality monitoring web system. 

Web 
Application / 

Systems 

Purpose and 
Functionality 

User 
Interaction 

Geographic 
Coverage 

Methods 
Used / Data 

source 

Availability Data Visualization Drawbacks 

Cleveland 
Clinic Risk 
Calculator 

Predicts 30-day and 
1-year risks of 
mortality, 
myocardial 
infarction, or 
revascularization 
for ACS patients 
recently discharged 

Minimal Worldwide Logistic 
Regression 

Free and 
available to 
public 

Risk of mortality, 
myocardial 
infraction, and 
revascularization 
for 30 days and 1 
year. 

Does not 
include 
visualization 
element.  
Environmental 
factors are not 
considered.  

MDCalc for 
GRACE ACS 
Risk and 
Mortality 
Calculator 

Estimates 
admission-6 months 
mortality for 
patients with acute 
coronary syndrome. 

Minimal Worldwide GRACE risk 
score 

Free and 
available to 
public 

Simple risk score 
and mortality 
prediction based on 
GRACE risk score. 

Does not 
include 
visualization 
element.  
Environmental 
factors are not 
considered. 
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Table 2.17, continued. 
Web 

Application / 
Systems 

Purpose and 
Functionality 

User 
Interaction 

Geographic 
Coverage 

Methods 
Used / Data 

source 

Availability Data Visualization Drawbacks 

OMNI Health 
Calculator for 
TIMI (STEMI) 
and TIMI 
(NSTEMI/UA) 

To predict mortality 
and cardiovascular 
risk in ACS patients 

Moderate Worldwide TIMI risk 
score for 
STEMI and 
UA/NSTEMI 

Free and 
available to 
public 

Simple risk score 
and mortality 
prediction on TIMI 
risk score. 

Does not 
include 
visualization 
element.  
Environmental 
factors are not 
considered. 

AirNOW Provide real-time 
air quality 
information 

Moderate United 
States 

Environmental 
Protection 
Agency (EPA) 

Free and 
available to 
public 

Current air quality 
reading with non-
interactive map, 
and air quality 
forecast of primary 
pollutants. 

Limited to 
United states 
region.  
Does not 
include 
prediction 
element.  

World Air 
Quality Index 
(WAQI) 

Provide real-time 
air quality 
information 

Moderate Worldwide Various 
government 
and private 
organizations 

Free and 
available to 
public 

Interactive map 
with real-time air 
quality index and 
colored markers 
that indicate the air 
quality. 

Does not 
include 
prediction 
element. 
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Table 2.17, continued. 

Web 
Application / 

Systems 

Purpose and 
Functionality 

User 
Interaction 

Geographic 
Coverage 

Methods 
Used / Data 

source 

Availability Data Visualization Drawbacks 

Breezometer Provide real-time 
and street-level air 
quality information 

Easy Worldwide Multiple data 
sources, 
including 
satellites 

Free and 
available to 
public 

Interactive map that 
shows real-time and 
street-level air 
quality information 
with color scheme 
ranges from green 
to red. 

Does not 
include 
prediction 
element. 
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2.13  Summary of Literature Review 

In conclusion, this review of the literature has demonstrated the significant impact that air 

pollution can have on the incidence of ACS. Several key air pollution features that are most 

strongly associated with the onset of ACS were identified through an extensive review of 

previous research. This chapter discussed the potential of ML models for predicting ACS 

hospitalization and mortality rates in the presence of air pollution, as well as predicting the 

risk of mortality in ACS patients. Furthermore, the conventional risk scoring method was 

presented and compared to existing ML studies in predicting the mortality rate of ACS 

patients.  

Several significant gaps in the literature were identified, including the need for additional 

research on the effects of air pollution exposure on ACS incidence through ML approach, as 

well as the potential impact of air pollution. More research on the development of web 

applications and visualization tools for presenting air pollution and health data to 

stakeholders is required. In addition, using ML to predict the occurrence of ACS in the 

presence of air pollution is vital for the Southeast Asia population.   

Overall, this review lays the foundation for future research into the relationship between 

air pollution and ACS, highlighting the potential of ML models and visualization tools to 

improve our understanding of this public health issue. The findings of this study are expected 

to be useful to healthcare professionals, policymakers, and other stakeholders working to 

improve air quality and public health in Malaysia and Southeast Asia.
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CHAPTER 3:  MATERIALS AND METHODS 

3.1 Introduction 

This chapter summarizes the materials and research methodologies used in this study. The 

primary goal of this study is to determine the effect of air pollution on hospitalization and 

mortality rates in acute coronary syndrome (ACS) patients. Furthermore, the objective of this 

study is to develop a mortality risk prediction calculator in the presence of air pollution using 

machine learning (ML) and stacked ensemble learning (EL) approach. The best 

performing ML models are integrated into an interactive web system with visualization 

features for user understanding and interaction. 

This chapter is divided into several sections that outline the study design, study data and 

data preprocessing procedures, ML algorithms applied, and web system development process 

was designed to achieve the research objectives. The flowchart of the research process is 

depicted in Figure 3.1 below.  
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Figure 3.1: General flowchart of the study. 

 

3.2 Study Data 

The data for this study was collected from two primary sources: The National 

Cardiovascular Disease Database (NCVD) for ACS data and the Department of Environment 

(DOE), Malaysia for air quality data. Both datasets were received as structured data. 

1. Acute Coronary Syndrome (ACS) data  

The National Cardiovascular Disease Database (NCVD) is a service supported 

by the Ministry of Health (MOH) to collect information about cardiovascular 

disease in Malaysia, enabling the determination of the incidence of cardiovascular 

disease (CVD) in the country. The national cardiovascular disease database 

(NCVD-ACS) registry data will be used from 2006 – 2017. NCVD-ACS is a 
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collaborative multicenter registry involving 25 hospitals across Malaysia 

(Appendix A). The registry collects data on a standardized set of clinical, 

demographic, and procedural variables, along with outcomes, for consecutive 

patients treated at participating institutions.  

The Medical Review & Ethics Committee (MREC) of Malaysia's Ministry of 

Health (MOH) approved the NCVD registry in 2007 (Approval Code: NMRR-

07-20-250). MREC waived informed patient consent for NCVD. The UiTM 

ethics committee (Reference number: 600-TNCPI (5/1/6)) and the National Heart 

Association of Malaysia (NHAM) both granted their approval for data collection. 

Deaths were confirmed on a yearly basis through record connections with the 

Malaysian National Registration Department of Deaths. 

Data were collected using a standardized case report from the time ACS 

patients were admitted to the hospital until they discharged from the hospital and 

the follow-up afterward, along with the patients' outcome, which is alive or dead. 

The data included patient's demographic, clinical presentation, baseline 

investigation, electrocardiography, treatment, and pharmacological therapy. A 

unique identification number was assigned to each patient to prevent any 

duplication (Ahmad, et al., 2011). A copy of the case report is attached in 

Appendix B. 

The hospital cardiologist decided the ACS diagnosis based on clinical 

symptoms, electrocardiogram as well as cardiac biomarkers. The initial 54 

variables were selected by the cardiologist. In this study, 14 features were 

selected from the NCVD registry. The features are patient’s age, heart rate, ECG 

abnormalities past 2 weeks, cardiac catheterization, coronary artery bypass graft 

Univ
ers

iti 
Mala

ya



127 
 

(CABG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein 

cholesterol (LDL-C), fasting blood glucose (FBG), Killip class, chronic angina, 

intake of statin, oral hypoglycemic agent, anti-arrhythmic and lipid lowering 

agent medications.   

The classification model in this study was based on selected features from 

previous study (Kassim et al., 2022). Using a similar registry dataset NCVD, 

Kasim et al. (2022) found that only 14 SVM features with deep learning classifier 

features are highly associated with ACS mortality (refer to Appendix L). 

Thus, ACS patient mortality using these 14 ACS variables and air pollution 

parameters is studied. 

2. Air quality data 

The air quality data for this study was obtained from the Department of 

Environment (DOE), Malaysia, covering the period between 1st January 2006 

and 13th April 2017. The dataset includes daily air quality measurements for key 

air pollutants such as Nitrogen Oxides (NOx), Sulphur Dioxide (SO2), Ozone 

(O3), and Particulate Matter 10 (PM10). It is important to highlight that PM2.5 

statistics were not available during this timeframe, due to unavailable technical 

resources by DOE, Malaysia.   

A total of 61,816 instances of air quality data were collected during this 

period. This data was further processed, subsequently merged with NCVD-ACS 

data based on the geographical location of the hospitals, specifically within a 15 

km radius (Khir, et al., 2018), covering an area of 706.85 km2. To further support 

our findings, the locations of the monitoring stations and hospitals were plotted 
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and analyzed using Google Earth. This step enhanced our understanding of the 

spatial relationship between these entities and aided in the accurate merging of 

the air quality and NCVD-ACS datasets. For a comprehensive view of the 

mapped locations, please refer to the images included in Appendix C. 

DOE operates a network of air quality monitoring stations across Malaysia to 

provide representative measurements of ambient air quality. The dataset used in 

this study comprises the 24-hour mean concentrations for each of the pollutants, 

accounting for daily variations in pollutant levels. 

The data has been divided into four levels of exposure to air pollution: lag 0 

represents daily exposure, lag 03 represents exposure three days before the event, 

lag 07 represents average weekly exposure, and lag 30 represents monthly 

exposure. The time lag 00 is used in the classification model to predict mortality 

risk of ACS patients, as are the four time-lags are applied in the regression model 

to study the ACS hospitalization and mortality in the presence of air pollution. 

3.3 Research Design Overview 

To develop a visualization tool integrated into Google Map for easy access and 

understanding of the data, there are four main stages. Firstly, the data will be collected from 

various sources, such as air quality monitoring stations, hospital records, and demographic 

data of the population. Then, the ML algorithms will be used to analyze the data and 

determine the correlation between air pollution and the onset of ACS. The results of this 

study will provide valuable insights into the impact of air pollution on public health in 

Malaysia and can be used to inform policy decisions and interventions to mitigate the effects 

of air pollution on cardiovascular health. 
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Below is a brief explanation of each phase of this study. 

1. Data Preparation and Requirements: In this phase, ACS in-hospital data provided 

by the NCVD registry, while the air quality data is obtained from the DOE, 

Malaysia. The data will be cleaned, processed, and analyzed to ensure its suitability 

for the study. This phase also involves identifying and obtaining any additional data 

needed for the research.  

(a) Data Preparation for Regression Model: The hospitalization rate and mortality 

rate are acquired and derived from NCVD-ACS cohort with the air pollution 

data arranged by 4 different time lags. This allowed us to explore both 

immediate and lagged relationships between air pollution exposure and ACS-

related outcomes. 

(b) Data Preparation for classification: Two separate dataset is prepared for the 

classification models to enhance the specificity, as follows: 

a. In-Hospital Selected Features: 14 selected features from previous study 

(Kasim, et. al., 2022) that shows significance with ACS mortality risk is 

merged with lag 00 (daily) exposure which reflects the immediate effect 

of air pollution. 

b. Emergency Selected Features: The dataset is further reduced into 9 

selected features by cardiologist for their relevance and utility in 

emergency settings, where invasive procedure and baseline investigation 

features were excluded due to the immediacy of emergency settings and 

combine with lag 0 (daily) air pollution exposure. 

2. Machine Learning Algorithm Design and Development: This phase involves two 

types of ML algorithms design to analyze the data collected in the first phase. This 
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phase also includes testing and fine-tuning the algorithms to ensure their accuracy 

and effectiveness in analyzing the data. 

a. Regression Model Development: The algorithms will be used to determine 

the ACS hospitalization rate and mortality rate in the presence of air pollution 

are linear regression, SVM, RF, XGBoost and stacked EL (meta-learner: 

GLM).  

b. Classification Model Development: 6 ML algorithms are integrated to predict 

the mortality risk of ACS patients in the presence of air pollution, including: 

logistic regression, SVM, RF, XGBoost, Naïve Bayes and stacked EL (meta-

learner: GLM). 

3. Prototype Development on a Local Host: The third phase involves converting the best 

algorithm into a web system with geographical visualization. This phase includes 

implementing the ML model developed in the second phase into a web application, 

incorporating geographical visualization capabilities for a map-based data format. 

Additionally, new data will be obtained from the DOE and NCVD for model 

validation.  

4. System Development, Testing, Conversion, and Evaluation: The fourth and final 

phase involves prototyping, testing of the web system and the ML model on a local 

host to ensure correct and effective functioning. Prototyping allows for refining the 

user interface and overall design of the web application, ensuring that it meets the 

needs of the end-users. Any bugs or issues will be identified and resolved during this 

phase. Furthermore, the web system will be converted and deployed on the Google 

Map platform for easy access and understanding of the data. The final stage of this 

phase system usability using SUS matrix.  
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The following flowchart in Figure 3.2 demonstrates the basic overview of the study 

project on the visualization and impact of air pollution on ACS onset in Malaysia. Each phase 

builds upon the previous one and is essential for the overall success of the study.  
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Figure 3.2: Flowchart diagram illustrating the research methodologies employed in this 
study. 
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Figure 3.3 shows a detailed overview of Phase 2, which focuses on the development of 

ML algorithms that will be integrated into the web system. 

ML development for this study consists of regression and classification models. The 

regression analysis aims to predict continuous outputs, specifically the ACS hospitalization 

rate and mortality rate, in relation to air pollution. On the other hand, the classification aspect 

focuses on determining the ACS mortality risk in the presence of air pollution. The 

performance of ML algorithms is evaluated, and the best performing model will then be 

incorporated into a web-based system.  

 
Figure 3.3: Detailed summary of the study's second phase. 

3.4 Data Pre-processing 

Data cleaning, curation, and the removal of redundant features are carried out during the 

data preprocessing stage to ensure the data's quality and reliability. The preprocessing 

techniques used for regression and classification problems differ due to differences in input 

variables and expected outputs. The data is organized for future analysis using ML algorithms 

by adapting the preprocessing techniques to each problem type. The regression problem that 

predicts the number of ACS hospitalizations and mortality is examined in Section 3.4.1. The 

classification model used in this study, on the other hand, is described in Section 3.4.2. 
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3.4.1 Data Preprocessing for ML Regression  

This study utilizes data from two different datasets: NCVD-ACS and DOE air quality 

data. Data from both sources were combined to examine the impact of air pollution on ACS 

patients. The regression model's goal is to predict the number of ACS hospitalizations and 

deaths among ACS patients in the presence of air pollution. In this study, air pollutant 

variables such as NOx, SO2, O3, and PM10 are examined in relation to hospitalization and 

mortality occurrences in ACS patients. 

Previous research has demonstrated that both short-term and long-term exposure to air 

pollution can trigger the onset of ACS (Huynh, et al., 2018; Huynh, et al., 2021). Hence, four 

time-lags were used for the ML regression model development. There is no missing data for 

the air pollution data due to the daily collection of the air quality monitoring station. Lag00, 

representing daily exposure, consists of 57,694 data points. Lag03, which is arranged by 

exposure three days before the event, has two fewer data points. For lag07 and lag30, 

representing the average weekly and monthly data, there are 8,372 and 1,904 data points, 

respectively. Table 3.1 below summarizes the dataset for regression ML model that predicts 

hospitalization and mortality rate of ACS patients.  

Table 3.1: Summary of ML Regression Analysis Dataset 

 Lag00 Lag03 Lag07 Lag30 

Dataset Characteristics Multivariate Multivariate Multivariate Multivariate 

Number of Instances 57,694 57692 8,372 1,904 
Attribute Characteristics Integer, Real Integer, Real Integer, Real Integer, Real 
Number of Attributes 5 5 5 5 
Associated Task Regression Regression Regression Regression 
Missing Values None None None None 
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3.4.2 Data Preprocessing for Classification 

In this section, the data preprocessing for the classification ML model is discussed in 

accordance with the research objective of identifying the impact of air pollution on ACS 

patients and developing a classification model that predicts ACS patient mortality risk in the 

presence of air pollution. 

The raw dataset, obtained from the NCVD registry, comprises 54 variables. Two 

classification models are developed in this study: using 14 input features identified in a 

previous study by (Kasim, et al., 2022) and features used in emergency setting were further 

identified by cardiologist from the pre-selected 14 features.  

This emergency dataset incorporates air quality variables but excludes baseline 

investigation features such as high-density lipoprotein (HDL-C), low-density lipoprotein 

(LDL-C), fasting blood glucose (FBG) levels, and invasive therapeutic procedures such as 

cardiac catheterization and coronary artery bypass graft (CABG). These characteristics 

required additional laboratory investigation, which is not available in emergency situations. 

For the development of the ML model, the selected cardiac features are combined with air 

pollution variables. The air pollution readings are based on time lag 00 (daily) readings 

because ACS onset is reported daily in the patient record, therefore corresponds to the patient 

record. 

The merged datasets are examined for potential errors, missing values, or outliers, 

addressing them accordingly. The rows with incomplete data and outliers are removed, and 

only data with complete cases are retained. NCVD data with 54 variables total up to 54,000 

records, since in this study, we have selected 14 variables this rendered in in-hospital dataset 

with 14,145 instances for model development. The emergency dataset with 22,466 instances, 

covering data from 2016 to 2017 for the entire Malaysian population. By removing these 
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problematic rows, the quality and accuracy of the data used in the ML and EL model while 

minimizing the risk of introducing biases or inaccuracies (Psychogyios, et al., 2022). Table 

3.2 shows the number of cases for selected variables and emergency variables, and Table 3.3 

shows the percentage of missing values for the variables used in this study. 

Table 3.2: Number of cases for selected variables and emergency variables. 

 Selected Variables Emergency Variables 
Raw Data 50429 50429 
Records with missing outcome 36284 27963 
Data with complete cases 14145 22466 

 

Table 3.3: The total and percentage of missing values in selected in-hospital variables 
and emergency variables. 

Variables In-Hospital Variables Emergency Variables 
Total 

missing 
value 

Percentage of 
missing value 

(%) 

Total 
missing 
value 

Percentage of 
missing value 

(%) 
Patient Age at Notification 0 0 0 0 
Chronic Angina (>= 2 
Weeks)  4998  9.91 4998  9.91 

Heart Rate 1369 2.71 1369 2.71 
Killip Class 12628  25.04 12628  25.04 
High-density lipoprotein 
cholesterol (HDLC) 

14006 27.77   

Low-density lipoprotein 
cholesterol (LDLC) 

14055 27.87   

Fasting Blood Glucose 14034 27.83   
ST-segment elevation >= 
1mm (0.1mV) in >= 2 
contiguous limb leads* 

0 0 0  0 

Cardiac Catheterization 2421 4.80   
Coronary Artery Bypass 
Graft (CABG) 

4085 8.10   

Statin 1803 3.58 1803 3.58 
Other Lipid Lowering 
Agent 6113 12.12 6113 12.12 
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Table 3.3, continued. 

Variables In-Hospital Variables Emergency Variables 
Total 

missing 
value 

Percentage of 
missing value 

(%) 

Total 
missing 
value 

Percentage of 
missing value 

(%) 
Oral Hypoglycaemic 
Agent 

5414  10.74 5414  10.74 

Anti-arrhythmic Agent 6248 12.39 6248 12.39 
Nitrogen Oxides 6702  13.29 6702  13.29 
Sulphur Dioxide 6702  13.29 6702  13.29 
Ozone 6702  13.29 6702  13.29 
Particulate Matter 10 6702  13.29 6702  13.29 

 

Table 3.4 displays the dataset summary with the in-hospital variables selected from the 

previous NCVD cohort study and the emergency variables combined with daily air pollutant 

exposure. Both datasets are arranged together with the air pollutants in time lag 00 (daily) 

value. 

Table 3.4: Classification analysis dataset summary 

 In-hospital Variables Emergency Variables 

Dataset Characteristics Multivariate Multivariate 

Number of Instances 14145 22466 
Attribute Characteristics Integer, Real Integer, Real 
Number of Attributes 19 14 
Associated Task Classification Classification 
Missing Values  None None 

 
The summary statistics for both in-hospital patient and emergency Patient variables are 

presented in Table 3.5. The dataset has been cleaned and merged with air pollution data 

obtained from the NCVD Registry and the DOE, Malaysia. This integrated dataset serves as 

the study's foundation, providing important insights into the relationship between air 

pollution and ACS patient outcomes. 
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Table 3.5: Summary statistics for in-hospital selected and emergency patient with the 
time lag 00 exposure of air pollution. 

Variables Label Data 
Domain 

Mean Std 
Dev. 

Data Type 

Demographic 
Patient Age at 
Notification* 

ptageatnotification 19.89 – 
101.94 

58.2 12.14 Continuous 

Status Before Event 
Chronic 
Angina (>= 2 
Weeks) * 

Canginapast2wk 0: No 
1: Yes 

  Categorical 

Clinical Presentation and Examination 
Heart Rate* Heartrate 27 – 170 

beats/min 
83.18 20.42 Continuous 

Killip Class* Killipclass 1: Killip 
Class I 
2: Killip 
Class II 
3: Killip 
Class III 
4: Killip 
Class IV 

  Categorical 

Baseline Investigation 
High-density 
lipoprotein 
cholesterol 
(HDLC) 

Hdlc 0.05 – 
3.900 
mmol/L 

1.086 0.3174 Continuous 

Low-density 
lipoprotein 
cholesterol 
(LDLC) 

Ldlc 1.00 – 
7.92 
mmol/L 

3.296 1.192 Continuous 

Fasting Blood 
Glucose 

Fbg 3.00 – 
20.9 
mmol/L 

7.937 3.287 Continuous 

Electrocardiography (ECG) 
ST-segment 
elevation >= 
1mm (0.1mV) 
in >= 2 
contiguous 
limb leads* 

ecgabnormtypestelev1 0: No 
1: Yes 

  Categorical 

Invasive Therapeutic Procedure 
Cardiac 
Catheterization 

Cardiaccath 0: No 
1: Yes 

  Categorical 

Coronary 
Artery Bypass 
Graft (CABG) 

Cabg 0: No 
1: Yes 

  Categorical 
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Table 3.5, continued. 
Variables Label Data 

Domain 
Mean Std 

Dev. 
Data Type 

Pharmacological Therapy 
Statin* Statin 0: No 

1: Yes 
  Categorical 

Other Lipid 
Lowering 
Agent* 

Lipidla 0: No 
1: Yes 

  Categorical 

Oral 
Hypoglycaemic 
Agent* 

Oralhypogly 0: No 
1: Yes 

  Categorical 

Anti-
arrhythmic 
Agent* 

Antiarr 0: No 
1: Yes 

  Categorical 

Air Pollutants 
Nitrogen 
Oxides* 

nox 0 – 
209.22 
ppb 

89.81 86.13 Continuous 

Sulphur 
Dioxide* 

so2 0 – 
192.05 
ppb  

77.49 76.68 Continuous 

Ozone* o3 0 – 
148.71 
ppb  

85.03 77.47 Continuous 

Particulate 
Matter 10* 

pm10 0 – 390 
μg/m3 

50.59 27.14 Continuous 

In-Hospital Outcome 
Patient 
Outcome* 

ptoutcome 0: non-
survive 
1: 
survive 

  Categorical 

* Emergency Dataset Variables 

 
3.5 Software Packages 

The main language that was used throughout the study is R, where R packages offers a 

series of collections of R function which are stored under a directory called “library” in R 

(Harvard Chan Bioinformatics Core, 2023). Processes such as data pre-processing, data 

normalization, data balancing and the ML models’ development are performed using R. The 

ML models were developed with R package version 3.3.0. 
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Python was used to generate SHAP plots that provides further insight of the ML model. 

The python version used in this study is Python 3.10. Table 3.6 summarizes the libraries and 

packages that were used in this study. 

Table 3.6: R and Python libraries used in this study. 

Library/Packages Functions 
R 
caret The acronym stands for Classification and Regression Training.  

ML tools for training regression and classification models, including 
pre-processing, training, tuning, and evaluating predictive models. 

mlbench Testing and comparing different ML algorithms. 
pROC Use for visualizing, smoothing, and comparing the ROC curves. 
rstudioapi Set working directory automatically. 
plumber Transform the developed ML model into web services. 

Integrates ML model with other applications.  
dplyr Simplify data manipulation and transformation data. 
rose The acronym stands for Random-Over Sampling Examples. 

Use to balance class distribution in binary distribution classification 
tasks.  

ggplot2 Data visualization task, by creating graphs and charts. 
caretEnsemble Create ML model ensembles by combining the predictions of 

multiple models to improve the overall performances. 
Python 
sklearn The acronym stands for Scikit-learn. 

Data analysis and ML tasks including classification and regression. 
numpy The acronym stands for Numerical Python. 

Mathematical operations on arrays. 
pandas Data manipulation, such as data cleaning, data transformation and 

visualization. 
matplotlib Data visualization task, use for creating line plots, histograms of the 

import data.  
shap Interpret ML model using Shapley values, which gives an overall 

context of the ML model. 
 

3.6 Data Partitioning 

Following the data pre-processing stage, the cleaned data is organized and prepped for use 

in both ML regression and classification models. Data partitioning, or known as data 
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splitting, is performed. 70% of the data was allocated for model training, and the remaining 

30% was reserved for model testing as shown in Figure 3.4. The 7:3 ratio for data splitting is 

a common practice and widely accepted in ML practice, since it provides adequate data for 

model training, allowing the model to discover the data's underlying patterns and 

relationships (Hastie, et. al., 2009). From the raw data to the finalized training and testing 

data used in each of the model development, Figure 3.4 summarizes the data cleaning process 

for both in-hospital selected variables and emergency variables.  

 

Figure 3.4: The flowchart indicating the raw number of instances before and after data 
cleansing in NCVD-ACS and air pollution data for (a) In-Hospital Variables (b) 
Emergency Variables. 

Besides, the allocation of 70% - 80 % of original data for training and 30% - 20% for 

testing gives the best outcomes for several empirical results. In Figure 3.5 below is the 

suggested optimal ration of the train-test split according to the size of the dataset, as our 

dataset ranges at ~10,000 cases or more, in our study, data is split into 70:30 manner 

(Gholamy, et al., 2018).  

(a) (b) 
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Figure 3.5: The suggested optimal ratio of the train-test split according to the size of the 
dataset (Photo source from Gholamy, et. al., 2018). 

Instead of dividing the data into training, validation, and test subsets and conducting 

holdout cross-validation on the validation set. The data was partitioned into training and 

testing sets, and k-fold cross-validation was performed. This method is considered more 

effective than the traditional train-validation-test split cross-validation (Hsieh, et al., 2019). 

In K-fold cross-validation, the input data is divided into ‘k’ number of folds, such as k=5, 

where the dataset will be split into 5 folds and the model will be iterated, trained and 

evaluated for 5 times, with each fold used once for testing and the remaining folds used for 

training (Ajitesh, 2023). It is used to validate the performance of the developed ML models 

to ensure the best model is selected (Figure 3.6) (Rukshan, 2020).  Univ
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Figure 3.6: An illustration of 5-fold cross-validation for evaluating machine learning 
(ML) model's performance (Photo sourced from Rukshan, 2020). 

5-folds cross validation is applied in this study, the lower number of folds may affect the 

model suffer from high bias, where only a smaller portion of the dataset are trained. On the 

other hand, higher number of folds could lead to higher variance, where there is possibility 

training the entire dataset may result in overfitting. Hence, cross-validation with 5 folds 

provides a decent balance between bias and variance, ensuring that the model performs well 

with unseen data (Kohavi, 1995). Furthermore, applying 5-folds cross-validation is 

computationally less expensive in compared to higher number folds, result in faster and better 

performance during model development (John Lu, 2010).  

3.7 Data Balancing 

Data imbalance can be defined as discrepancy in the number of instances for each class 

within a dataset, which causes classifiers performance to deteriorate as the model are not able 

to learn the features of the less represented class, often found in medical domain (Domingues, 

et al., 2018). Data balancing is important in ML development, particularly in classification 

tasks, where the outcome of the study is binary. The input data must be balanced to ensure 
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the accuracy and the performance of the developed ML model. An imbalanced dataset may 

lead to biased predictions and affect the accuracy and the model performance, as the 

developed model becomes biased towards the majority class (Batista, et al., 2004).  

In this study, data balancing is applied in the classification model that predicts the 

probability of ACS mortality in ACS patients in presence of air pollution. In the in-hospital 

features dataset consists of 14,145 instances, and in the emergency selected features consists 

of 22,466 instances, with two classes: ‘survive’ and ‘non-survive’. The distribution of the 

target features we observed in the selected feature dataset, ‘survive’ patients has 9,300 

instances, while ‘non-survive’ patients have only 601 instances shown in Figure 4(a). For the 

emergency dataset, ‘survive’ patients consist of 14,319 instances, while ‘non-survive’ 

patients only consist of 1,407 instances shown in Figure 4(b). The number of ACS’s patients 

that are labelled as ‘survive’ is higher than the ‘non-survive’ patients, and this might cause 

significant imbalanced in the dataset and may lead to biased when making predictions in our 

classification model. 

There are several data balancing approaches to improve the ML classifier performance:  

1. Oversampling: Suitable for small dataset, by increasing the number of minority class 

samples by duplication or resampling randomly (Domingues, et al., 2018). 

2. Under sampling: Suitable for big dataset, by deleting the majority class instances 

(Jadhav, et al., 2022). 

3.  Synthetic Data Generation: New instances are generated based on samples of the 

minority classes, such as by using the ROSE algorithm (random over-sampling 

examples) 
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The ROSE method is used to perform data balancing in our study, ROSE package contains 

functions for handling binary classification problems with imbalanced classes. A smoothed 

bootstrap method is used to make artificially balanced samples that can help with both the 

estimation and accuracy evaluation parts of a binary classifier when there is a rare class. This 

package has well-defined accuracy functions for quickly completing tasks. ROSE can 

maintain the overall data structure while generating synthetic samples for both classes. It can 

also deal with both continuous and categorical data (Lunardon, et al., 2014). 

Oversampling and under sampling approaches in not chosen our study due to their 

inherent drawbacks. The oversampling method can lead to overfitting of the ML model as it 

duplicates information from the minority class. Conversely, the under-sampling method 

removes many instances randomly until the dataset is balanced, which could result in the loss 

of potentially useful and important information. In cases where the data is heavily 

imbalanced, as in this study, these two approaches are deemed unsuitable, since it could 

negatively impact the performance of our classification model (Jadhav, et al., 2022).  

3.8 Data Normalization 

In ML, data normalization is an important data pre-processing step that converts 

continuous variables in a dataset into a common scale to ease comparison and analysis. 

Normalization can make classification and grouping more accurate by eliminating of various 

scales and units of measurement in the original data (Starovoitov & Golub, 2021).  

Min-max normalization is a linear scaling technique that scales feature values to the range 

of [0, 1], where the minimum and maximum value of a feature will normalize to be in the 

range 0 to 1 (Serafeim, 2020). The formula for min-max normalization is as follows: 
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𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =  
𝑥 − min (𝑥)

max(𝑥) − min(𝑥)
 

(3,1) 

Data normalization was applied to continuous variables, including age, heart rate, high-

density lipoprotein, low-density lipoprotein, fasting blood glucose, NOx, SO2, O3, and PM10, 

using the min-max normalization approach. Research has demonstrated that data 

normalization can significantly enhance the accuracy and efficiency of ML algorithms (Tina 

& Sherekar, 2013; Jiawei, et al., 2012; Pedregosa, et al., 2011). Given these findings, the 

min-max normalization technique was considered a suitable choice for our study. 

3.9 Baseline Characteristics  

Baseline characteristics are the descriptive information collected at the initial stage of a 

study about the participants. Baseline data include medical, demographic, and other types of 

information (Norwegian Research Council, 2017). It has the potential to increase statistical 

efficiency by improving the ability to derive meaningful conclusions from given data 

(Holmberg & Andersen, 2022). 

Statistical Package for the Social Sciences (SPSS) version 26.0 was utilized to conduct all 

analyses of baseline characteristics for the four distinct models. Continuous variables are 

presented as mean ± standard deviation, whereas categorical variables are shown as 

frequency and percentage. 

In this study, the baseline characteristics in the regression model were analyzed to estimate 

the ACS patients' hospitalization and mortality rate in relation to air pollution. Multiple linear 

regression was employed to identify significant variables, given the continuous nature of the 

predictors.  

In the classification model, a univariate analysis was conducted to identify significant 

factors. Our dataset includes both continuous and categorical inputs; as such, the Chi-square 
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test was applied for categorical variables like Killip class, statin, and others. The normality 

of continuous data variables such as patients’ age, heart rate, HDLC, LDLC, FBG and air 

pollutants was tested using the Kolmogorov-Smirnov (K-S) Test (p<0.05). Based on these 

normality tests, the data are not normally distributed, the Mann-Whitney test was applied to 

these continuous variables that were not normally distributed. A p-value of <0.05 from the 

K-S test indicates a deviation from normality. Histograms and test results are presented in 

appendix D. This approach ensures a clear structured analysis of the data in our study.  

3.10 Machine Learning (ML) Model Development 

Two types of ML model are developed, regression and classification. Algorithms that are 

used to develop the models are those commonly cited in literature; the summary of the ML 

models used is as shown in Table 3.7:  

(a) Regression Models: The regression algorithms are used to predict ACS’s 

hospitalization and mortality rate in the presence of air pollution. The five regression 

algorithms are: linear regression, SVM, RF, XGBoost and ensemble learning. The 

naïve bayes algorithm is not used for the regression model, as naïve bayes is only 

used in classification setting (Leung, 2007).  

(b) Classification Models: The classification algorithms are developed to predict the 

post ACS mortality risk for in-hospital and emergency patients with daily air 

pollution readings. Classification models predict categorical or binary outcomes, the 

models are trained based on selected features and classify ACS’s patients into two 

categories: “Survive” or “Non-survive”. The ML classification algorithms 

developed are logistic regression, naïve bayes, SVM, RF, XGBoost and ensemble 

learning.  
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Table 3.7: Summary of objectives, expected outcomes, and ML type and algorithms 
utilized in this Study. 

Objectives Expected Outcome Machine 
Learning 

Type 

Machine Learning 
Algorithm 

Predict ACS 
hospitalization 
rates 

Number of ACS 
admission cases per 
day 

Regression 1. Linear Regression 
2. Support Vector 

Regression  
3. Random Forest 
4. Extreme Gradient 

Boosting 
5. Ensemble Learning - 

GLM 
Predict ACS 
mortality rates 

Number of ACS 
mortality cases per day 

Regression 1. Linear Regression 
2. Support Vector 

Machines  
3. Random Forest 
4. Extreme Gradient 

Boosting 
5. Ensemble Learning - 

GLM 
Predict 
probability of 
mortality for 
ACS patients 
based on 
selected 
variables 

Probability of mortality 
of ACS’s patient. 

Classification 1. Logistic Regression 
2. Support Vector 

Machines  
3. Naïve Bayes 
4. Random Forest 
5. Extreme Gradient 

Boosting 
6. Ensemble Learning - 

GLM 
Predict 
probability of 
mortality for 
ACS patients 
based on 
emergency 
variables 

Probability of mortality 
of ACS’s patient. 

Classification 1. Logistic Regression 
2. Support Vector 

Regression  
3. Naïve Bayes 
4. Random Forest 
5. Extreme Gradient 

Boosting 
6. Ensemble Learning - 

GLM 
 

The ML model development flowchart is shown in Figure 3.7 below. The process begins 

with data preparation, that involves cleaning, partitioning, balancing and normalization, then 

proceeds to model development, model hyper parameter tuning. 
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Figure 3.7: Machine learning (ML) development workflow. 

Figure 3.8 illustrates the detailed flow for regression model development. Figure 3.9 

shows the detailed flow for classification model development. These figures detail the 

sequence of steps in our ML application, including model development, hyper parameter 

tuning, and the selection of the best-performing model. 

Univ
ers

iti 
Mala

ya



150 
 

 
Figure 3.8: The flowchart of the regression ML predictive models' development. 
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Figure 3.9: The flowchart of the classification ML predictive models' development. 
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3.10.1 Algorithm Overview 

The regression models in this study utilize linear regression instead of logistic, aimed to 

predict the ACS’s hospitalization and mortality rate. Conversely, the classification models 

employed logistic regression to replace linear regression, focusing on classifying outcomes 

into categories. Despite the difference in outcomes, continuous for regression and categorical 

for classification, the structure and development process of both types of models were largely 

parallel. 

The selection of ML algorithms for both model types was determined by their diverse 

underlying methodologies, which allowed for the exploration of a variety of approaches in 

capturing relationships within the data. Additionally, Generalized Linear Model (GLM) was 

employed as a meta-learner in the EL model. This approach was consistent across both the 

regression and classification tasks, further highlighting the similarities in our model 

development process.  

(a) Linear Regression 

The linear regression model was fitted using lm() function to predict 

hospitalization rates and number of mortalities of ACS patients in the presence of air 

pollution. The lm() function lacks tuning option, thus the default value of standard 

linear model directly with the dataset. Despite the lack of hyper parameters in linear 

regression, the model was enhance through resampling with the trainControl() 

function through 5-fold cross-validation to increase the robustness of our model. This 

process splits the data into five subsets, validating the model systematically, thereby 

achieving a reliable performance of the model across varied data samples. Linear 

regression is only applied in the development of the regression model.  

(b) Logistic Regression 
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The logistic regression is built using the glm() function to fit the classification 

model. (Kassambara, 2018) stated that there are no tuning hyper parameters in logistic 

regression. Hence, the default parameter was used to conduct binary classifications 

on the selected variables and emergency variables for the ACS dataset in the presence 

of air pollution. Similar to linear regression model, we enhance the model 

performance through resampling method. The tunelength function was set 10, where 

the longer the tune length allows the algorithm to examine more potential models and 

possibly find a better one, however, this process is computationally expensive. 5-fold 

cross-validation was also carried out in the model building. 

(c) Support Vector Machine (SVM) 

The SVM (Cortes & Vapnik, 1995) model is used for both regression and 

classification. SVM algorithm is capable of handling linear and non-linear 

relationships between the predictor and target variables (Rana, 2015).  

‘svmLinear’ was used to develop the model. SVM can utilize different types of 

kernels, including linear and radial basis function (RBF) kernels. The linear kernel 

corresponds to linear mapping, while RBF kernel is commonly used to handle non-

linear relationships. 

The hyper parameter for SVM is Cost, C, which determines the possibilities of 

misclassifications in the SVM model, therefore, it is critical to implement a penalty 

for the model's inaccuracy. When the cost value is increased, the SVM model is less 

likely to misclassify a point. Optimum C value can be chosen via the highest ROC 

value. 

(d) Random Forest (RF) 

RF (Breiman, 2001) algorithm is used for both regression and classification. It is 

one of the ensemble learning methods that operates by constructing multiple decision 
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trees (Fawagreh, et al., 2015). The RF approach is a regression tree method that 

enhances prediction accuracy by aggregating bootstrap data and randomizing 

predictors (Rigatti, 2017).  

There are two tuning parameters in RF: ntree and mtry. ‘ntree’ is the number of 

trees to grow, which must be large enough to provide OOB error stabilization. The 

default value is 500 in the caret package, the larger number of trees can lead to a more 

robust model. However, after a certain number of trees, the model's predictive 

performance may not significantly improve since the additional trees tends to be 

highly correlated with predictions made by the existing trees (Breiman, 2001).  

‘mtry’ is the maximum number of features considered for splitting a node, which 

can range from 1 to the total number of variables. The default value of mtry is √N, 

where N is the total number of variables. In general, using the default values for ntree 

and mtry can yield good results.  

During the model development process, the model is trained with varying numbers 

of trees (ntree), specifically 500, 1000 and 1500. To determine the optimal number 

of variables to be considered at each split (mtry), grid search with a tuneLength of 10, 

combined with 5-fold cross-validation was applied.  

(e) Naïve Bayes (NB) 

NB (Bayes, 1968) algorithm is only applied in classification model for this study. 

It is a probabilistic algorithm based on applying Bayes' theorem with strong 

independence assumptions, commonly used for classification tasks.  

To implement the NB classification model, the ‘nb’ function from the ‘caret’ 

package in R was used. This allows the function to begin training the model and 

perform prediction tasks. The hyper parameters of the NB algorithm are ‘fit_prior’, 

were tuned to optimize the model’s performance. 'Fit_prior' was modified to 
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determine if the model should learn the prior probabilities from the training data or 

presume uniform prior probabilities (Chong & Shah, 2022). 

(f) Extreme Gradient Boosting (XGBoost) 

XGBoost (Chen, et al., 2017) is used for both regression and classification model 

development in this study. It is a widely used ensemble learning technique that utilizes 

gradient boosting decision trees to produce reliable predicted performance. ‘xgbTree’ 

function is used to build the model from the caret package in R. Unlike other ML 

algorithms, XGBoost offers a larger set of hyper parameters to tune, providing an 

opportunity for fine-tuned model optimization.  

The specific hyper parameters we tuned in this study include 'max_depth', 

'min_child_weight', 'gamma', 'subsample', and 'colsample_bytree'. Each 

hyperparameter plays a distinct role in the model.  

• ‘max_depth’: maximum depth of the individual regression estimators. 

• ‘min_child_weight’: a regularization parameter that helps control overfitting. 

• ‘gamma’: specify minimum loss reduction required to make further partition on 

a leaf node of the tree. 

• ‘sub_sample’: the fraction of observations to be randomly sampled for each tree, 

introducing randomness into the model building process. 

• ‘colsample_bytree’: the fraction of columns to be randomly sampled for each tree 

to prevent overfitting as well. 

The tuning of these parameters is an iterative process, guided by cross-validation 

to ensure that the selected values were relevant to unobserved data. Tuning these 

parameters can help prevent overfitting and improve the accuracy of the model 

(Saraswat, 2016). 
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(g) Ensemble learning (EL) 

EL was developed for both regression and classification as well to improve the 

strengths of multiple models, thereby improving predictive accuracy and reliability. 

This approach combines the predictions from several base learners to generate a final 

output. The base learners for regression model used are linear regression, SVM, RF, 

and XGBoost. For classification model, the base learner used are logistic regression, 

NB, SVM, RF, and XGBoost.  

In ensemble learning, the 'meta-learner' is used to combine the predictions from 

the base learners. The Generalized Linear Model (GLM) is selected as meta-learner 

for both models. The choice of GLM was based on its flexibility and its ability to 

handle various types of distributions, linear relationships, and non-linearity compared 

to other meta-learners such as RF and Gradient Boosting Methods (GBM) (Song, 

2013). 

The process of creating an ensemble model involved training the base learners on 

the dataset, each producing a set of predictions. These predictions were then used as 

input features for the meta-learner, the GLM, which was trained to make the final 

prediction. The library ‘caretEnsemble’ is used to ensemble the base models, using 

the ‘glm’ as our method in building the ensemble model. 

To ensure optimal performance, the hyper parameters of the GLM meta-learner 

were also tuned using a grid search cross-validation approach. The ensemble model 

was then evaluated and validated using the same performance metrics and procedures 

applied to the base learners.  
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3.10.2 Machine Learning Model Hyperparameter Tuning 

Hyperparameter tuning is a crucial step in the ML process. It is selecting a set of 

optimal hyperparameters for a learning algorithm. It has the potential to improve a model’s 

performance by getting the right combination of hyperparameters, different ML models 

require the tuning of different hyperparameters. If these are not explicitly defined, the 

algorithm defaults to pre-set values. This approach ensured that the ML models were robust 

and accurately represented the relationship between air pollution and ACS incidence in our 

study. 

The ‘caret’ package in R is applied for the development of both ML models for regression 

and classification. The package contains functions to streamline the model training process 

for complex regression and classification problems (Kuhn & contributors, 2023). Caret 

package is used instead of other library and packages offer in R, is to ensure the consistent 

outcomes regardless of the model complexity and ease our analysis. The functions used are: 

(a) train_control(method = , number = , search = , savePredictions = TRUE , 

classProbs = TRUE, summaryFunction = twoClassSunmmary, allowParallel = 

TRUE): To specify the resampling scheme and used to set parameters and control 

the training process. 

Method = “cv”: specified cross-validation resampling method used. 

Number = 5: indicates the number of resampling iterations which is the number of 

folds in k-fold cross-validation. In our study, 5-fold cross-validation is applied. 

Search = “grid”: defines the type of grid search performs when tuning model 

parameters. 

classProbs = “TRUE”: The class probabilities for each prediction will be saved, this 

is only applicable in classification models.  
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summaryFunction = “twoClassSummary”: It computes class probabilities in addition 

to the class predictions, this is only applicable in classification models.   

allowParallel = TRUE: It allows for parallel processing, which speeds up the 

computation. 

(b) train(x, y, method=, trControl = train_control, metric= , tuneGrid =): Act as the 

workhorse of caret, handling several parameters crucial to our model development. 

x, y: are the features and the target variables. 

Method: the modelling method is defined, such as “rf”, “glm”, “xgbTree”. 

trControl = train_control(): is where ‘trControl()’ object is passed, which specifies the 

resampling method. 

metric: It is used to optimize the model. “RMSE” is used for regression models, “AUC” 

is used in classification models.  

tuneGrid: used to specify the hyperparameter grid to search over, the hyper parameters 

tuned is presented in table 7. 

The application of these functions allowed us to fine-tune models and select the best model 

by tuning the algorithms hyperparameters. Cross-validation was used to avoid overfitting and 

increase generalizability of the developed models. In this study, 5-fold cross-validation (k=5) 

was applied. 

The grid search was used to find the best model by choosing the tuning of the values of 

the parameters. The parameters for each model were chosen based on recommendations from 

the literature and the default settings in the respective R packages.  

Table 3.8 presents the summary of the main hyperparameters utilized in our study. The 

optimized parameters for each regression and classification ML models are shown in Table 

3.9 and Table 3.10 respectively.  
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Table 3.8: Summary of the main hyperparameters utilized in this study. 

Algorithm (R 
packages) 

Key Hyperparameters Suitable Task 

Linear Regression 
(lm) 

None  Regression 

Logistic 
Regression (glm) 

None  Classification 

SVM (svmLinear) cost (Penalty parameter C of the error term), 
gamma (Kernel coefficient for 'rbf', 'poly' and 
'sigmoid' 

Classification, 
Regression 

Random Forest 
(randomForest) 

ntree (Number of trees to grow), mtry (Number of 
variables randomly sampled as candidates at each 
split) 

Classification, 
Regression 

Naive Bayes (nb) Fit_prior (Fit Prior), usekernel (Whether kernel 
density estimates should be computed for numeric 
attributes) 

Classification, 
Regression 

XGBoost 
(xgboost) 

eta (Learning rate), max_depth (Max depth per 
tree), min_child_weight (Minimum sum of 
instance weight), subsample (Subsample ratio of 
the training instances), colsample_bytree 
(Subsample ratio of columns when constructing 
each tree), nrounds (Number of boosting rounds), 
gamma (Minimum loss reduction), alpha (L1 
regularization), lambda (L2 regularization) 

Classification, 
Regression 

GLM Ensemble 
(glmnet) 

alpha (Elastic net mixing parameter), lambda 
(Regularization parameter) 

Classification, 
Regression 

 

Table 3.9: The hyperparameters values for optimum ML model performance for 
regression models. 

Regression Machine Learning (ML) 
ACS Hospitalization Rate Model 

ML Algorithm Parameters 
Linear Regression Default 
Random Forest (RF) Mtry = 1 

Ntree = 1000 
Support Vector Machine (SVM)  Kernal = Linear 

C = 3 
XGBoost max_depth = 8 

min_child_weight = 12 
nrounds = 100 
eta = 0.3 
subsample = 0.6 
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Table 3.9, continued. 
ML Algorithm Parameters 

Ensemble learning (EL) Base learner: linear regression, RF, SVM, 
NB, XGBoost 
Meta learner: glm 

ACS Mortality Rate Model 

ML Algorithm Parameters 

Linear Regression Default 
Random Forest (RF) Mtry = 2 

Ntree = 1000 
Support Vector Machine (SVM)  Kernal = Linear 

C = 5 
XGBoost max_depth = 5 

min_child_weight = 8  
nrounds = 300 
eta = 0.2 
subsample = 0.6  

Ensemble learning (EL) Base learner: linear regression, RF, SVM, 
NB, XGBoost 
Meta learner: glm 

 

Table 3.10: The hyperparameters values for optimum ML model performance for 
classification models. 

Classification ML 

In-Hospital Model 

ML Algorithm Parameters 

Logistic Regression Default 

Random Forest (RF) Mtry = 2 
Ntree = 1000 

Support Vector Machine (SVM)  Kernal = Linear 
C = 3 

Naïve Bayes (NB) Fit_prior = TRUE 
useKernal = TRUE 

XGBoost max_depth = 7 
min_child_weight = 3 
nrounds = 300 
eta = 0.02 
subsample = 0.7 

Ensemble learning  Base learner: logistic regression, RF, SVM, 
NB, XGBoost 
Meta learner: glm 
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Table 3.10, continued. 

Emergency Model 

ML Algorithm Parameters 

Logistic Regression Default 

Random Forest (RF) Mtry = 2 
Ntree = 1000 

Support Vector Machine (SVM)  Kernal = Linear 
C = 3 

Naïve Bayes (NB) Fit_prior = TRUE 
useKernal = TRUE 

XGBoost max_depth = 7 
min_child_weight = 3 
nrounds = 300 
eta = 0.02 
subsample = 0.7 

Ensemble learning (EL)  Base learner: logistic regression, RF, SVM, 
NB, XGBoost 
Meta learner: glm 

 

3.11 Model Evaluation 

These metrics provide a comprehensive evaluation of the performance of the ML models 

in both regression and classification tasks. 

3.11.1 Regression Algorithm Performance Metrics 

Evaluating the performance of regression models primarily involves the assessment of the 

predicted values' closeness to the actual values. Two metrics were used to evaluate the 

performance of the regression models: Root Mean Squared Error (RMSE) and Mean 

Absolute Error (MAE). 

1. Root Mean Squared Error (RMSE): RMSE is a commonly used evaluation metric 

for regression models. It measures the square root of the average of the squared 

differences between the predicted and actual values. It is useful in determining how 
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far off the predictions are from the actual values. Hence, the lower the RMSE 

indicates the better performance of the model.  

2. Mean Absolute Error (MAE): MAE measures the average magnitude of the errors 

in a set of predictions. The difference between MAE and RMSE, MAE uses the 

absolute value of error, rather than the squared error. Thus, MAE is suitable for data 

that is not normally distributed and when there are outliers in the data. Like RMSE, 

a lower MAE indicates a better predictive performance of the regression model. 

While both RMSE and MAE are the evaluation metrics for regression model performance. 

According to Hyndman & Koehler (2006), RMSE is generally preferred over MAE because 

it emphasizes significant errors, which can be more significant in forecasting scenarios. 

Furthermore, RMSE is commonly used for evaluating regression models due to its ability to 

penalize large errors more significantly (Palacio-Niño & Berzal, 2019).  

In this study, both RMSE and MAE are used to gain insights into the model’s overall 

performance, providing valuable insights into their predictive capabilities and identifying any 

potential areas for improvement. 

3.11.2 Evaluation of Classification Models 

For classification models, the model's ability to correctly classify the target variable was 

assessed using the following metrics: Accuracy, Precision, Recall, F1-Score, and the Area 

Under the Receiver Operating Characteristic Curve (AUROC). 

In this study, the classification model is used to predict the mortality of ACS patients in 

the presence of air pollution. The model's features are based on previous research (Kasim et 

al., 2022) and emergency features identified by cardiologists, which are combined with air 
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pollution variables. These features are used to estimate the mortality of ACS patients in the 

presence of air pollution.  

The commonly used evaluation for classification model is the AUROC. According to 

Huang & Ling (2005) and Fawcett (2006), the AUROC has been utilized in medical diagnosis 

since 1970s, instead of accuracy, AUROC should be used to and compare classifiers because 

AUROC is a more accurate measure in general, and simple classification accuracy is usually 

a poor statistic for evaluating performance. This is because AUROC will more directly and 

correctly reflect the ranking than accuracy values from both columns of the confusion matrix 

are used in metrics including accuracy, precision, recall, and F1 score. Even if the core 

classifier performance does not change, these measurements will alter when the class 

distribution changes. ROC graphs are not dependent on class distributions because they are 

based on TP and FP rates, with each dimension being a strict columnar ratio. 

Furthermore, AUROC was employed as an indicator in many of the medical diagnoses to 

assess the performance of the model they constructed. In Suzuki, et al. (2019) study, AUROC 

is used as comparative performance of ML models for predicting early mortality in acute 

heart failure, logistic regression performed better than other ML models with the AUC of 

0.794. Similarly, the AUROC is employed to discuss and compare the result of several 

supervised ML algorithms for predicting the risk of coronary heart disease (Beunza, et al., 

2019). AUROC is used as an evaluation metric for ML models because it is a measure of the 

probability that a model will correctly classify a positive instance as positive. AUROC is not 

affected by the prevalence of the positive class, which makes it a more robust metric than 

accuracy. All in all, these studies chose AUROC due to it is unaffected by class imbalances. 

Apart from AUROC, confusion matrix is one of the performance measurements for ML 

classification, where it is a table with 4 different combinations of predicted and actual values, 
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the output can be binary or more classes. In R, the library ‘ggplot’ was used to construct the 

confusion matrix table. In this study, the true positive class of our outcome was set to be 0 

(died). The four main values in a confusion matrix are:  

i) True Positives (TP): The model accurately classifies the patients as non-survivors. 

ii) False Positives (FP): The model incorrectly classifies survival patients as non-

survivors. 

iii) True Negatives (TN): The model accurately classifies that the patients are survivors. 

iv) False Negatives (FN): The model incorrectly classifies non-survivor patients as 

survivors. 

Table 3.11: Confusion matrix for classifying the ACS patients' outcome. 

  Actual Outcome 

Predicted Outcome 

 0 (Dead) 1 (Alive) 

0 (Dead) TP FP 

1 (Alive) FN TN 

 

False Negatives (FNs) must take priority over False Positives (FPs) in our predictive 

model due to the critical nature of the medical domain. This is because the cost of incorrectly 

classifying an ill patient as healthy (FN) can result in a failure to provide essential medical 

treatment, which is significantly greater than the cost of incorrectly classifying a healthy 

person as sick (FP). 

In addition to the AUROC and the confusion matrix, several other performance metrics 

were utilized to evaluate the performance of the models within the context of this study. 
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1. Accuracy: Measures the proportion of true results (both true positives and true 

negatives) in the population. 

2. Precision (Specificity): Precision evaluates the proportion of true positives out of the 

predicted positives. It is also known as true positive rate. 

3. Recall (Sensitivity): Recall measures the proportion of actual positives that are 

correctly identified. It is known as true negative rate. 

4. F1-Score: The F1-score is the harmonic mean of precision and recall, providing a 

balanced measure when class distribution is uneven. 

3.12 Explainable Artificial Intelligence (XAI) 

Due to the black box nature of ML algorithms, there was a lack of understanding when 

using ML in the medical domain. This makes it difficult to understand how ML models make 

decisions, which can be problematic in critical areas such as medical decision-making. The 

release of explainable Artificial Intelligence (XAI) offers a solution in providing 

transparency and explaining the complex ML models on how it makes their decisions. 

Implementing XAI in the medical domain is critical because it provides transparency to 

healthcare professionals, allowing them to understand and trust the ML models' predictions 

(Rao, et al., 2022; Zeng, 2022). In this study, SHapley Additive exPlanations (SHAP) is used 

to interpret the ML model prediction.  

The 'shap' library is used for computing SHAP values. The 'shap' library offers a unified 

measure of feature importance and effects. The code implementation involved first training 

our selected ML models and making predictions. Then, the SHAP explainer was fitted on the 

trained model and computed the SHAP values for the predictions. 
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SHAP values provide a fair allocation of each feature's contribution to each prediction in 

comparison to the baseline prediction. It offers both global interpretability (overall 

importance of features). 

The use of XAI improved the interpretability and trustworthiness of the ML models, 

increasing their potential applicability in the medical field, particularly in predicting ACS 

hospitalization rates, ACS mortality rates, and the probability of mortality for ACS patients. 

SHAP was used to analyze the models that performed the best based on the evaluation 

metrics. Chapter 4 presents the findings and discussions from these analyses. 

3.13 Comparison of ML Classification Models with the TIMI Risk Score for 

Predictive Validation 

In this study, the ML classification models were compared to the TIMI risk score to 

validate the ML predictive abilities. This comparative study was designed to demonstrate the 

advantage of the ML models in predicting ACS patient mortality risk in the presence of air 

pollution. The 30% from the original dataset is reserved for testing and comparison with the 

TIMI score, the testing dataset is further divided into two distinct categories: ST-elevation 

myocardial infarction (STEMI) and non-ST-elevation myocardial infarction (NSTEMI) to 

align the evaluation with the clinical application of the TIMI Score. This facilitated alignment 

with the patient risk category cutoff points specific to TIMI clinical practice. 

The ROC curves for each ML model as well as the TIMI risk score are derived to compare 

the performance specifically for patients with STEMI and NSTEMI. Additionally, graphs on 

the mortality rate in relation to the TIMI risk score and the best performing ML models’ 

percentile values were derived to differentiate between the high- and low risk patients based 

on clinical practice and existing literature (Correia, et al., 2014). A high risk of mortality was 

defined as a probability risk of mortality of more than 8% like reported by Correia et al. 
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(2014). To further determine the statistical significance of the trend analysis, the rate of 

mortality graphs was also then tested for the trend in terms of a p-value. 

3.14 Net Reclassification Improvement Index (NRI) for Classification Model 

Net Reclassification Improvement (NRI) is a statistical measure used to evaluate the 

performance of predictive models. It measures the improvement in classification of 

individuals into higher or lower risk categories when a new model is compared to an existing 

risk strategy (Zhou, et al., 2022). The NRI facilitates a comparative analysis of the best ML 

classification models and the conventional TIMI risk score in predicting the risk associated 

with ACS in the presence of air pollution.  

Correia et al. (2014) discovered a cut-off value between low and high-risk patients on 

mortality for the best ML models based on the percentage of mortality using NRI. Morrow 

et al. (2000) and Antman et al. (2008) define appropriate cut-off points for STEMI and 

NSTEMI/UA patients, respectively, for the TIMI risk score.  

NRI quantifies how well a new mortality risk assessment approach inspires appropriate 

categorization between categories. It essentially assesses the net improvement in patient 

classification by employing an unconventional approach (Pencina, et al., 2008). NRI was 

used to distinguish between the traditional TIMI risk score and ML classification algorithms 

in terms of discrimination power. 

NRI employs reclassification tables to examine the additive benefit derived from 

reclassifying patients using a different mortality assessment methodology. Given that the 

study targets a binary variable, the two-category NRI was used to assess the efficacy of the 

best models.  
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An NRI of zero signifies equal discriminatory abilities between the new and old models. 

A negative NRI suggests that the new model failed to discriminate as well as the old model 

between high-risk and low-risk categories, while a positive NRI indicates superior 

discrimination by the ML model. The NRI scale extends from -2 to 2, with 2 signifying 

perfect discrimination by the new model and complete failure by the old, and -2 indicating 

the reverse. Finally, the ANOVA test was used to calculate the p-value, comparing the 

probability of mortality predictions, and identifying its significance from our ML models 

with the established TIMI risk score. 

3.15 Web System Analysis and Design 

The web system integrates the best ML models for regression and classification. This 

section covers web system design and development, including requirement analysis, system 

architecture, user interface design, and website wireframes. To evaluate the usability of the 

web system, system usability testing was carried out. This web system's primary goal is to 

visualize and predict ACS events related to air pollution. 

3.15.1 Prototyping Model 

The prototyping model is used to develop the web system. It is an iterative process where 

the web prototype is built, tested, and refine until the user is satisfied with the design (Martin, 

2023). The prototype is iteratively refined with user involvement. The final prototype was 

converted into the web system. Below are the phases of the prototyping model and the 

flowchart is shown in Figure 3.10.   

1. Requirement Analysis 

The prototyping model starts with requirement analysis. In this phase, the 

requirements of the system are gathered and stated clearly. During this phase, the 
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users of the system are interviewed to understand the expected outcomes of the 

system. 

2. Design 

After understanding the user requirements, the second phase is considered as a 

preliminary design of the system, which gives a brief description of the system 

created based on the user’s request. In this phase, the basic layout of the website and 

architecture is designed, the wireframes are created to help in visualizing the design.   

3. Prototyping 

The core features are implemented during this phase. The basic functionality of the 

system is created, including integration of ML models, geospatial mapping, and basic 

mortality calculators.  

4. User Evaluation 

The prototype is then presented to users for evaluation. During this phase, the users 

are encouraged to interact with the system and provide feedback on the design, 

functionality, and overall experience. The feedback and suggestions are gathered for 

further discussion at the later phase. 

5. Refining Prototype 

The prototype is further refined and improved according to the user’s feedback and 

suggestions.  

Step 2 to step 5 is iterated as necessary until the end users are satisfied with the design 

prototype.  

6. User Approval 

The final prototype is deployed based on the approval by the users once all the 

requirements set are met.  
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7. Deployment 

With the approved final prototype, moving on into the deployment phase. During this 

phase, the approved system prototype is deployed on a live server, with all necessary 

integrations and setups. 

8. Testing 

Testing is the last phase of the prototyping modeling process, the final web system is 

evaluated and tested. The usability of the system and user experience is tested using 

the system usability scale (SUS). Final improvement of the system is carried out 

based on the comments from the SUS questionnaire.  

9. Release 

After completing the testing phase and addressing the remaining issues, the web 

system is released for the users. 

 
Figure 3.10: The prototyping cycle of the web system development. 

3.15.2 Requirement Analysis 

The requirement analysis is the initial stage of developing the web system for our research. 

This process is essential as it ensures that the web system meets the needs of the users, and 
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it is an effective way of meeting the user needs and reducing the cost of implementation. The 

requirement analysis covers the area of functional requirements and non-functional 

requirements for this research.  

Both functional and non-functional requirements describe the specific requirements of the 

web system must have, the difference is where the functional requirements describe about 

what the web system functionality instead the non-functional requirements specify on the 

quality attributes of the system (Altexsoft, 2022).  

3.15.2.1 Functional Requirements 

Functional requirements the capabilities of the system to satisfy and to be accepted by the 

users. The requirements are typically expressed in terms of inputs, outputs, and processes. 

The following table (Table 3.12) describes the functional requirements for the system 

prototype. 

Table 3.12: Functional requirements of ACS and air pollution web system. 

Functional Requirements Descriptions 

Homepage - Serves as the main entry point to the website. 

User Login page - Only registered and verified users are allowed to use 

the system.  

- The user’s detailed are maintained and stored in the 

database, it could only be viewed and monitored by 

administrator. 

New User Registration page - New user registration form, including fields for 

username, email, password, confirm password, and 

organization.   

About Us page - Contains information about the web system, such as 

the background of the system, purpose of the system, 

FAQ, and team members.  
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Table 3.12, continued. 

Functional Requirements Descriptions 

Dashboard page - Serves as the landing page once the user successfully 

login into the system, including access to all 

functionality of the website.  

Single Site Hospital Location 

page 

- Allows users to select a hospital and input air 

pollution readings in the required field. 

- The acquired information will then be processed by 

the ML model API and stored in the database. 

- The predicted results along with the geospatial map 

will be displayed to users once the API processes the 

information provided by the user.  

Multiple Site Hospital 

Location page 

- Users can view multiple locations and associated air 

pollution readings. 

- The system will return the predicted results on 

geospatial map. 

ACS Hospitalization and 

Mortality Rate Calculator 

page 

- The air pollutions readings as the input. 

- The API will process the provided input and return 

the predicted ACS hospitalization and ACS 

mortality rate.  

- This is a basic calculator; the data will not be stored 

in the database.  

In-hospital Mortality Risk 

Calculator page 

- Patient’s details, such as heart rate, ECG 

abnormalities and air pollution readings are required.  

- The data acquired will be passed to the ML API and 

stored in the database.  

- The predicted mortality risk result will be displayed 

once the ML is processed.  
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Table 3.12, continued. 

Functional Requirements Descriptions 

Emergency Mortality Risk 

Calculator page 

- Similar to ‘Mortality Risk Calculator (Selected 

Variables)’ page but requires fewer input. 

- This page focused on ‘emergency’ variables to 

provide the mortality risk prediction quickly. 

Data Management page  - The location information can be edited, viewed, and 

deleted by the user. 

- A new location can be added and managed. 

- Patients’ information can be viewed, updated, 

deleted, and downloaded from the system. 

 

3.15.2.2 Non-functional Requirements 

Non-functional requirements describe a system operation capability and constraints to 

improve its functionality. It specifies the quality attributes of the system to ensure the 

usability and effectiveness of the software system we developed. For example, the 

performance of the system, security, usability, and reliability. Table 3.13 below shows the 

non-functional requirements of the system we proposed. 

Table 3.13: Non-functional requirements of ACS and Air Pollution web system. 

Non-functional 
Requirements 

Descriptions 

Performance - The system should respond quickly to users’ actions. Elements 
such as user inputs, loading pages and processing requests that 
require a longer pre-loading time should be reduced and 
within an acceptable timeframe.  

Security - Only authorized users are allowed to access the system. No 
third party has the right to access the data. This ensures the 
privacy of the patients and prevents data breaches. 

- New users are required to register and login to access the web 
system and its functionalities. The new users are verified by 
the administrator.  
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Table 3.13, continued. 

Non-functional 
Requirements 

Descriptions 

Usability - The system is designed to be intuitive and easy to navigate.  
- A navigation bar is provided for the users to navigate and 

access other pages. 
- Clear instructions and guide are provided for the users. 

Reliability - The web system must be available and accessible always, with 
minimal downtime. 

- The web system should be reliable and can be accessed by 
various browsers including Google Chrome, Microsoft 
EDGE, Safari, and other web browsers. 

- The ML models are trained, tested, and validated before 
implement into the web system to ensure that the accuracy of 
the calculator is the same as in the developed models.  

Efficiency - The web system is expected to have sufficient processing 
power and storage space to ensure smooth operation.  

- The web system should have efficient data storage and 
retrieval.  

Understandability - The overall system should be easy to understand, both for 
users and developers. 

- Clear and consistent interface design, the input form is easy to 
understand and fill in by the users. 

- Long sentences in acquiring information from the users is 
avoided. Precise and straight-to-the-point sentences should be 
used. 

- Explanation of the site functionality is kept minimal; FAQ and 
upload template is provided for users as guide. 

 

3.15.3 System Process Model 

In this section, we discuss various process models used to design our web system and 

database. These include the workflow diagram, functional decomposition diagram, data flow 

diagram, data dictionary and website wireframes. Each of these models is important for a 

clear understanding of our system design and functionality. 
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3.15.3.1  Workflow Diagram 

The workflow diagram gives the overall visualization of the project and system layout. It 

serves multiple purposes, such as tracing the system's processes, identifying, and removing 

unneeded or repetitive tasks, and enhancing the project's accountability and efficiency. The 

workflow diagram proposed in our study is depicted in Figure 3.11 below: 

 
Figure 3.11: Workflow diagram of the proposed ACS and air pollution web system. 
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The workflow begins with the processing of the acquired data, these processed data is 

applied in the ML model development, to identify the best ML model. The best performing 

model is selected and embedded into the web system, serving as the predictive model for 

users. The API development was executed using R in RStudio.  

The system architecture was developed after analyzing user requirements. The user 

interface is then designed to incorporate the proposed system's features. The prototype is 

created to ensure that the system is functional and effectively aligns with the needs of the 

users. 

The prototype is the setup and installed on the server after the users are satisfied with the 

prototype. The system is then presented to prospective users, and feedback is gathered via a 

usability testing questionnaire. Any issues that are discovered are debugged, and 

improvements are made based on this feedback, resulting in the completion of the final web 

system. 

3.15.3.2 Functional Decomposition Diagram 

The functional decomposition diagram (FDD) is a hierarchical method that breaks down 

a system into its key functions and sub-functions. Starting from the overall system function 

at the top, it outlines the primary functions and then further subdivides these into more 

detailed functionalities. This approach helps to organize the system's activities, identify 

overlaps, and ensure no functionality is overlooked (Inmon, et al., 2019). The FDD of our 

ACS and air pollution system is presented in Figure 3.12 below. 
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Figure 3.12: Functional decomposition diagram for ACS and air pollution web system. 

The top level of this system covers its overarching function: providing a platform for 

examining the impact of air pollution on ACS patients. This is broken down into three main 

second-level functions: 'About Us', 'Homepage', and 'Dashboard'. The ‘About Us’ page 

encompasses information regarding our study, such as the background and the purpose of 

this web system, the developers, and Frequently Asked Questions (FAQ). 

The 'Homepage' function is further divided into two sub-functions: 'User Login' and 'New 

User Registration', which manage user access to the system. 

The 'Dashboard' function, a crucial part of the system, is subdivided into five specific 

functionalities. These include pages for 'Single Location Prediction' and 'Multiple Location 

Prediction', and calculators for 'Admission and Mortality', 'Mortality Risk for In-Hospital 

ACS Patients' and 'Mortality Risk for Emergency ACS Patients'. Each of these sub-levels 

further encompasses minor functionalities that, collectively, contribute to the efficient 

operation and user experience of the web system.  

By using functional decomposition, we were able to ensure a comprehensive and user-

friendly design, covering all necessary components of our web system. 
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3.15.3.3  Data Flow Diagram 

Data flow diagram (DFD) is a graphical tool that shows the flow of data in a system. The 

DFD includes several components which are the data flow, process, data store and entities. 

To depict the flow of data in the system, a context diagram and level 0 diagram are 

constructed.  

(a) Context Diagram 

A context diagram is the first level of the DFD, which contains the main process of the 

overall system. It is the most abstract view of a system, displaying the overview of ACS and 

air pollution web system. As depicted in Figure 3.13, the context diagram highlights the main 

process, inputs, and outputs, along with their interactions with external systems. 

 

Figure 3.13: ACS and air pollution web system context diagram. 

The ACS and Air Pollution web system is the core of the study; thus, it is in the center of 

diagram. It interacts with medical personnel who provide necessary input information, such 

as air pollution readings and ACS patient information. The system processes these inputs, 

yielding predictive results and geospatial maps as outputs. These results are then 

communicated back to the users completing the cycle of information exchange.  
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Furthermore, the web system administrator is responsible for managing the users who 

access the system. As a result, only authorized users can access the web system, and new 

registered users can only access the system with administrator approval. 

(b) Level 0 Diagram 

Diagram 0, shown in Figure 3.14, provides a more detailed view of the system. It expands 

upon the main processes, data flows, and data stores that were introduced in the context 

diagram. Essentially, Diagram 0 repeats and breaks down the elements of the context 

diagram, making it easier to understand the different parts of the system.  

 
Figure 3.14: Diagram 0 for the ACS and air pollution web system. 

The following walkthrough explained the DFD Diagram 0 illustrated in Figure 3.15:  

1. In the initial process of DFD level 1, a registered and verified medical professional 

logs into the system. This process is initiated when the user inputs their login details. 
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Following this, the login system authenticates the provided details by cross-verifying 

them with the user information stored in the database. If the provided information 

aligns with the stored details, the login is approved, and the user gains access to the 

system. Once logged in, the user can access the five distinct sub-modules, each 

serving a unique function within the system. 

2. In the single prediction web module, users input air quality readings. The system 

processes this data, stores it in the database, and subsequently generates prediction 

results. These results are then passed to another process responsible for generating a 

geospatial map. The system ultimately provides the user with both the prediction 

results and the corresponding geospatial map. 

3. In the multiple site prediction web module, the system presents the user with both the 

prediction results and corresponding geospatial map. The data is acquired from 

geolocation database and air pollution database, then the system will display the 

multiple sites based on the input from the Single site prediction web module. 

4. The ACS Hospitalization and Mortality Prediction Calculator is another key 

component of the system. It offers a straightforward functionality wherein the user 

inputs air pollution readings. The system subsequently processes these readings and 

promptly returns predicted results. It should be noted that this process does not 

involve storing information in the database. 

5. Processes 6 and 7 relate with the Mortality Risk Calculator and the Emergency Risk 

Calculator, respectively. The process itself of these two processes is fundamentally 

similar, with the only difference being the amount and type of data input. The 

Emergency Risk Calculator takes less input data than the Mortality Risk Calculator. 

After users provide the required data, the system analyses it and stores it in the proper 

databases before creating and returning predictions to the user. 
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3.15.3.3 Data Dictionary 

The data dictionary is a repository that describes the characteristics of the data elements 

stored in the database. In the context of our study, databases are used to store the user input 

information, the list of these databases along with their respective descriptions are as follows: 

1. Hospital_location: Stores the hospital location information. 

2. Hospital_admit_mortality: Stores the predicted result of the ACS hospitalization rate 

and mortality rate.  

3. Hospital_air: Stores the process predicted readings of ACS hospitalization and 

mortality information. 

4. Patient_sel: Stores the information for the mortality risk calculator of in-hospital 

patients. 

5. Patient_emer: Stored the information for the mortality risk calculator of emergency 

patients. 

6. Users: Stored the user information. 

Tables 3.14 - 3.19 present the data dictionary for the web system, elaborating on the 

attributes and characteristics of the data elements used within these databases. 

Table 3.14: Hospital_location data dictionary. 

Column Name Data Type Name Max Length Description 
Sdp_id (PK) int 11 Source Data 

Provider ID 
Hospital_name varchar 50 Name of hospital 
Hospital_state varchar 40 State of the hospital 

located 
Lat varchar 30 Latitude  
lng varchar 30 Longitude  
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Table 3.15: Hospital_admit_mortality data dictionary. 

Column Name Data Type Name Max Length Description 
Sdp_id int 11 Source Data 

Provider ID 
Hospital_name varchar 50 Name of hospital 
Hosp_date date  Recorded input date 
admit int 11 Predicted ACS 

hospitalization rate 
mortality Int 11 Predicted ACS 

mortality rate 
 

Table 3.16: Hospital_Air data dictionary. 

Column Name Data Type Name Max Length Description 
Id (PK) Int 11 Auto Increment ID 
Sdp_id int 11 Source Data Provider ID 
Hospital_name varchar 50 Hospital Name 
date date  Recorded date  
Nox Float  Nitrogen Oxides 

Reading 
SO2 Float  Sulphur Dioxide reading 
O3 Float  Ozone reading 
PM10 Float  Particulate Matter 10 

reading 
 

Table 3.17: In-hospital patient data dictionary 

Column Name Data Type Name Max Length Description 
Id (PK) Int 11 Auto Increment ID 
Username int 11 Username of the login 

user 
Date Date  Record date of input 
Pic Int 25 Patient Identification ID 
ptageatnotification Int 11 Patient Age 
Canginapast2wk Int 11 Chronic angina past 2 

weeks 
Heartrate float  Heart Rate 
Killipclass Int  11 Killip class 
Hdlc float  High density lipoprotein 

cholesterol 
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Table 3.17, continued. 

Column Name Data Type Name Max Length Description 
Ldlc float  Low density lipoprotein 

cholesterol 
Ldlc float  Low density lipoprotein 

cholesterol 
fbg float  Fast Blood Glucose 
Ecgabnormtypestelev1 Int 11 ECG abnormal ST-

elevation Type 1 
Cardiaccath Int 11 cardiac catheterization 
cabg Int 11 Coronary artery bypass 

graft 
Statin Int 11 Statin medication 
Lipidla Int 11 Lipid Lower Agent 

medication 
Oralhypogly Int 11 Oral Hypoglycemic 

medication 
Antiarr Int 11 Antiarrhythmics 

medication 
Nox Float  Nitrogen Oxides 

Reading 
SO2 Float  Sulphur Dioxide reading 
O3 Float  Ozone reading 
PM10 Float  Particulate Matter 10 

reading 
mortality Float  The probability of the 

ACS patient mortality. 
Mortality_percentage int 25 The percentage of 

patient mortality risk. 
Real_inhosp varchar 25 Update by user whether 

the patient is ‘Alive’ or 
‘Dead’ 

Remarks varchar 1000  
Last_updated Date  Current time stamp 
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Table 3.18: Emer_patient data dictionary. 

Column Name Data Type Name Max Length Description 
Id (PK) Int 11 Auto Increment ID 
Username int 11 Username of the login 

user 
Date Date  Record date of input 
Pic Int 25 Patient Identification ID 
ptageatnotification Int 11 Patient Age 
Canginapast2wk Int 11 Chronic angine past 2 

weeks 
Heartrate float  Heart Rate 
Killipclass Int  11 Killip class 
Ecgabnormtypestelev1 Int 11 ECG abnormal ST-

elevation Type 1 
Statin Int 11 Statin medication 
Lipidla Int 11 Lipid Lower Agent 

medication 
Oralhypogly Int 11 Oral Hypoglycemic 

medication 
Antiarr Int 11 Antiarrhythmics 

medication 
NOx Float  Nitrogen Oxides 

Reading 
SO2 Float  Sulphur Dioxide reading 
O3 Float  Ozone reading 
PM10 Float  Particulate Matter 10 

reading 
Prob_emer Float  The probability of the 

emergency ACS patient 
mortality. 

Mortality_percentage int 25 The percentage of 
emergency patient 
mortality risk. 

Real_inhosp varchar 25 Update by user whether 
the patient is ‘Alive’ or 
‘Dead’ 

Remarks varchar 1000  
Last_updated Date  Current time stamp 
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Table 3.19: Users data dictionary. 

Column Name Data Type Name Max Length Description 
Id (PK) Int 11 Auto generated ID 
Date Date  Date of registered 
Email varchar 255 Email of the user 
Username varchar 255 Username of the user 
Password varchar 255 Password used 
Registered varchar 5 Approval for the user to 

access the system 
 

3.15.4 User Interface Design and Human Computer Interaction 

The design of the user interface (UI) is a fundamental aspect of web system development, 

where it affects how the user interacts with the system and their experience. A well-designed 

UI contributes significantly to the overall usability of the system, enhancing user satisfaction 

and engagement.  

The eight golden rules proposed by (Shneiderman & Plaisant, 2004) serves as our 

guideline and starting point in design the user interface for the ACS and air pollution system. 

The 8 golden rules are as listed in Table 3.20 below:  

Table 3.20: 8 golden rules for designing ACS and air pollution user interface. 

8 Golden Rules Descriptions 
Strive for consistency.  The design across the system is kept uniform, we 

used the same color scheme, typography, and button 
styles throughout the web system.  

Cater to universal usability. Ensure the system user friendly, where the design 
of our system is simple and intuitive. 

Offer informative feedback. Clear responses to user actions, when a user 
interacts with the system, the system will receive 
immediate and clear messages, such as “Data 
successfully uploaded”. 

Design dialogs to yield closure. Group actions into task units with clear beginnings 
and ends. Each user task, such as data input, has a 
distinct start and endpoint, guiding the users go 
through the entire process. 

Univ
ers

iti 
Mala

ya



186 
 

Table 3.20, continued. 

8 Golden Rules Descriptions 
Prevent errors. Minimize user errors by including warnings, and set 

requirements of the data input, and the range of data 
input, reducing the risk of unintentional mistakes. 

Permit easy reversal of actions. Users can easily modify their input data without any 
adverse effects to the system’s function. 

Support internal locus of control. Users have complete control over all actions while 
navigating through the system. 

Reduce short-term memory load. Relieve user’s memory load by providing prompts 
on each data input in each field, make use of visual 
aids.  

 

The user interface design of the ACS and air pollution system followed the eight golden 

rules of interface design, which enhanced usability and overall system quality. Though the 8 

golden rules are introduced in 2004, it is widely used in improving the usability and quality 

of UI design (Aottiwerch & Kokaew, 2017; Masmuzidin & Aziz, 2019). 

The wireframes of our web system, shown in Figures 3.15 to 3.27. However, the design 

is subject to change based on the user feedback and evolving needs.  
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Figure 3.15: Web system homepage website wireframe design. 

 
Figure 3.16: Login page website wireframe design. 
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Figure 3.17: New user registration website wireframe design. 

 
Figure 3.18: About Us website wireframe design. 
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Figure 3.19: Dashboard website wireframe design. once the user successfully registered 
and login. 
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Figure 3.20: Single site data input website wireframe design. 
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Figure 3.21: Multiple site view map and view data website wireframe design. 

 

Figure 3.22: Geospatial map visualization page website wireframe design. 
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Figure 3.23: Mortality risk calculator input page website wireframe design. Univ
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Figure 3.24: Mortality risk result page website wireframe design. after the user 
provided the required input. 

 
Figure 3.25: ACS hospitalization and ACS mortality event calculator website 
wireframe design. 
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Figure 3.26: ACS hospitalization and ACS mortality event calculator display result 
website wireframe design. 

 
Figure 3.27: Data management website wireframe design that allows user to manage 
data. 
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3.15.5. Development Environment 

This section outlines the hardware software requirement that was used to develop the ACS 

and air pollution web system. Table 3.21 below shows the hardware and software 

specifications in this study.  

Table 3.21: Hardware and software requirements 

Hardware Requirement Descriptions 
Edition Windows 11 Professional 
System Type 64-bit operating system, x64-based processor 
Processor AMD Ryzen 7 5700U with Radeon Graphics (1.80 

GHz) 
Installed RAM 8.00 GB 

Software Requirement Descriptions 
Data Processing Microsoft® Excel® for Microsoft 365 MSO 

(Version 2304 Build 16.0.16327.20200) 
Diagrams and flowcharts Draw.io 

Figma 
Statistical Analysis IBM SPSS Statistics 26 
Machine Learning Model 
Development 

Language: R 
Coding Environment: RStudio 2023.03.1 +446 

Machine Learning Model Analysis Language: Python 
Coding Environment: Jupyter Notebook 

Coding environment Notepad++ 7 
Coding environment  VS Code 1.78 
PHP Development Environment XAMPP 8.2.4 

 

3.15.5 Machine Learning Implementation 

The key component of this study is the integration of ML into the web system. After 

determining the ML model that delivered the best performance, the model was saved and 

serialized into RDS format using the saveRDS function. This format enables efficient storage 

and retrieval of the ML model. 

Subsequently, the 'plumber' package in R was utilized to integrate the ML models into the 

web-based environment. The plumber package allows developers to create web APIs directly 
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from R scripts, serving as a pivotal tool in integrating and exposing static ML models as 

dynamic, web-accessible resources. Once the ML models were loaded, the plumber package 

transformed functions into accessible APIs, creating routes that corresponded to specific R 

functions. In this study, four models were loaded to perform prediction functions, forecasting 

the ACS hospitalization rate, ACS mortality rate, and ACS mortality risk for both in-hospital 

and emergency patients. 

Finally, to facilitate interactive testing and documentation of the API, Swagger (OpenAPI) 

was employed. This tool provided an essential step towards ensuring the system's 

functionality and the successful integration of the ML model. Once the API was prepared 

and operational, it was made accessible for user interaction and testing via Swagger's user-

friendly interface. This pivotal stage allowed us to confirm that the ML model was correctly 

integrated and delivering the expected outputs. 

3.15.6 System Testing 

The testing phase is the last phase before launching the web system. It is an important 

stage for system validation, and to ensure the deliverables adhere to the design specification. 

It facilitates the identification of defects that may surface upon complete system assembly 

and integration. Besides, testing is conducted to ensure all the modules are functioning well 

and integrate with other components. In the context of the ACS and air pollution system 

examined in this study, the testing phase encompassed unit testing, system testing, integration 

testing and acceptance testing listed down below: 

1. Unit Testing 

Each module is subjected to unit testing to ensure its functionality is accurate and 

bug-free. Each element of the module is tested to ensure that the source code for the 

module is functional. When an error arises, it must be addressed. 
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In this study, unit testing is run through the login functionality, data input module, 

prediction calculation module, geospatial visualization module, data management 

module and result display module to ensure each module is well-functioned.   

2. System Testing 

System testing is carried out after unit testing is completed. System testing aims to 

ensure that all the system modules can seamlessly interoperate, thereby functioning. 

During testing, an error is detected, the affected module is debugged and tested again. 

The system is fed with input data to determine whether the information processing 

corresponds to the correct output, thereby verifying that the system performance adheres 

to the specified parameters. 

3. Integration Testing 

Upon completion of system testing, the subsequent phase is integration testing. The 

aim of this stage is to ensure that the individual modules of the ACS and Air Pollution 

system can work with the existing system error-free. In the context of this integration 

testing, specific modules, including the geospatial mapping for ACS hospitalization rates 

and ACS mortality rates, along with the various risk calculators, are integrated into the 

entire web system. A key aspect of this testing phase is to validate that these modules 

can accurately retrieve and store data within the system's database. 

4. Acceptance Testing 

Acceptance testing represents the final stage of system testing, functioning as a 

quality assurance process to verify that the developed system aligns with end-user 

expectations, in terms of both functional and non-functional requirements. This involves 

presenting the complete web system to users, providing an overview of its functionality, 

and requesting them to explore and evaluate the system. User feedback and suggestions 

collected via a system evaluation form are then analyzed, serving as valuable insights 
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for rectifying issues and enhancing existing features. In the case of our web system, the 

acceptance test employs the System Usability Scale (SUS), a metric established by John 

Brooke in 1986, the details of which are elaborated in section 3.15.7.1.  

3.15.7.1 System Usability Scale (SUS) 

The System Usability Scale (SUS) developed by John Brooke in 1986 is used as the 

acceptance test for our ACS and Air Pollution system. It is a low-cost assessment, fast and 

reliable to measure the usability in the system which only comprises 10 questions (Brooke, 

1986). It is the most widely used standardized questionnaire for the assessment of perceived 

usability (Lewis, 2018). Table 3.22 presents the comparison of original SUS questionnaire 

from (Brooke, 1986) and the modified SUS statements that suits our study. 

Table 3.22: The original SUS statements by Brooke (1986) and edited SUS statements. 

Original SUS Statements Edited SUS Statements 
I think that I would like to use this system 
frequently. 

I think that I would like to use ACS and Air 
Pollution system frequently. 

I found the system unnecessarily complex. I found that ACS and Air Pollution system 
unnecessarily complex. 

I thought the system was easy to use. I thought the ACS and Air Pollution system 
was easy to use. 

I think that I would need the support of a 
technical person to be able to use this 
system. 

I think that I would need the support of a 
technical person to be able to use this ACS 
and Air Pollution system. 

I found the various functions in this system 
were well integrated. 

I found the various functions in this ACS 
and Air Pollution system were well 
integrated. 

I thought there was too much inconsistency 
in this system. 

I thought there was too much inconsistency 
in this ACS and Air Pollution system. 

I would imagine that most people would 
learn to use this system very quickly. 

I would imagine that most people would 
learn to use this ACS and Air Pollution 
system very quickly. 

I found the system very cumbersome to use. I found the ACS and Air Pollution system 
very cumbersome (awkward) to use. 
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Table 3.22, continued. 

Original SUS Statements Edited SUS Statements 
I felt very confident using the system. I felt very confident using the ACS and Air 

Pollution system. 
I needed to learn a lot of things before I 
could get going with this system.  

I needed to learn a lot of things before I 
could get going with this ACS and Air 
Pollution system.  

 

The SUS consists only of 10 questions which are scored on a 5-point scale of the strength 

of agreement. The range goes from “strongly agree’ to ‘strongly disagree” and because the 

statements fluctuate between positive and negative, additional attention must be used when 

responding to the survey. 

The users will rank each of the questions as the following, with the score of 1 indicating 

“Strongly Disagree”, 2 indicates “Disagree”, 3 indicates “Neutral”, follow by a score of 4 

indicating “Agree” and 5 indicating “Strong Agree”. The scores are then converted into 

numbers and calculated the usability score using SUS. According to Bangor, et al. (2009), 

the SUS score acceptability ranges from 70 and above, according to Figure 3.28 of the SUS 

score shown below: 

 

Figure 3.28: SUS scores grade rankings (Photo sourced from Bangor, et al., 2009) 
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SUS is chosen as a usability test based on its wide advocacy, its relatively quick processing 

time, where the respondents can give rapid feedback and comments, as an outcome of which 

the information collected is processed quickly. SUS is versatile and its wide application for 

various programs and application systems. The SUS score can be interpreted easily, and 

improvements can be made to improve the system's performance (Bhat, 2018). In Bangor, et 

al. (2009) study, it was found that SUS is highly reliable (alpha=0.91) and useful in wide 

range of tasks based on the results of 2324 SUS surveys collected from 2016 usability 

experiments over a decade.  

The users are encouraged to explore and navigate through the system before completing 

the questionnaire to provide an accurate usability evaluation. The SUS questionnaire was 

created using Google Forms.  The results of the SUS questionnaire are then analyzed and 

discussed in Chapter 4 "Results" and Chapter 5 “Discussion”. A copy of the questionnaire is 

included in the appendix of this thesis as well (Appendix F)
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CHAPTER 4:  RESULTS 

This chapter presents the outcomes from the study on the impact of air pollution on Acute 

Coronary Syndrome (ACS) patients, considering ACS hospitalization rates, ACS mortality 

rates, and mortality risk. Alongside, it also presents the results of the web-based prototype 

development, aiming at the effective use and visualization of these models by medical 

personnel. The results are organized into three main parts. 

Section 4.1 presents the outcomes of the regression models, developed to predict 

hospitalization and mortality rates related to ACS. Section 4.2 presents the results of the 

classification models designed to predict mortality risk. Finally, section 4.3 of this chapter 

introduces the web system development prototype. 

4.1 Regression Model Result 

In this study, machine learning (ML) models were constructed to predict the rate 

hospitalization and mortality in ACS patients. Given the temporal nature of air pollution 

effects on health outcomes, the models were developed at four distinct time lags. These time 

lag phases were implemented to control potential delayed impacts and to provide deeper 

understanding of the association between air pollution and ACS outcomes. The models were 

designed to predict these two outcomes based on four key air quality parameters: Nitrogen 

Oxides (NOx), Sulfur Dioxide (SO2), Ozone (O3), and Particulate Matter 10 (PM10) on four 

varying timeframes of air pollution exposure, referred to as 'time lags'. Based on our 

preliminary study, time lag 00 demonstrated the best performance for ACS hospitalization 

and ACS mortality for all ML models. In addition, time lag 00 allows for easier integration 

and the air quality readings are easier to obtain. Therefore, this study focuses on presenting 

the results for time lag 00. 
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The time lag 00 accounts for daily air pollution exposure, time lag 03 accounts for three 

consecutive days of exposure, time lag 07 represents the average weekly exposure, and time 

lag 30 stands for the average monthly exposure. Where time lag 00 and time lag 03 are 

considered as short-term, and time lag 07 and time lag 30 as long-term. 

Section 4.1.1 describes the baseline characteristics of the input and output variables across 

the four-time lag phases, evaluate the overall performance of the models, and present the 

importance of each feature using SHAP summary plots. The primary findings and 

implications of the regression analysis will be highlighted, providing insights into the 

significant effects of air quality on ACS patient outcomes. 

4.1.1 Baseline Characteristics 

The dataset used for the regression model comprised several attributes related to air 

quality, including NOx, SO2, O3, and PM10. Each attribute was analyzed for its potential 

association with the ACS hospitalization rate and ACS mortality rate among ACS patients. 

A significant test was performed for each attribute against the ACS hospitalization rate 

and ACS mortality rate. The results indicated a high level of statistical significance for most 

of the air quality attributes, as evidenced by their p-values being less than 0.001. However, 

an exception was noted for PM10 in correlation with the admission rate, where the p-values 

for different lag times demonstrated no significant association. Specifically, at lag 00, the p-

value was 0.096; at lag 03, the p-value was 0.056; at lag 07, the p-value was 0.336; and at 

lag 30, the p-value was 0.230. The p-values for PM10 at all lags (lag 00, lag 03, lag 07, and 

lag 30) are all above 0.05. This implies that the correlation between PM10 and the ACS 

hospitalization rate at these lag times is not statistically significant.  
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Analysis of the data reveals a mean daily admission rate of 1.22, with a standard deviation 

of 2.07. For the mean of daily ACS mortality rate is 0.08, with a standard deviation of 0.304. 

Table 4.1 provides an overview of the dataset used for the regression model, outlining the 

range and units of each attribute. In addition, the table summarizes the p-values for each 

attribute, thus showcasing their statistical significance in relation to both the admission rate 

and mortality rate of ACS patients. 

Table 4.1: Baseline characteristics for air quality readings and hospitalization rate and 
mortality rate of ACS patients. 

Variables Attributes 
Time lag 00 Time lag 03 Time lag 07 Time lag 30 

Value Value Value Value 
N Total  57693 57692 8372 1904 
Nitrogen 
Oxides (ppb) 

Mean 89.81 89.81 
 

89.77 89.81 

 Std Dev 86.13 86.13 84.69 84.31 
 Range 0 – 209.22 0 – 209.22 0 – 152.25 0 – 134.02 
 p-value <0.001 <0.001 <0.001 <0.001 
Sulphur 
Dioxide (ppb) 

Mean 77.49 77.49 77.44 77.78 

 Std Dev 76.68 76.68 75.62 75.09 
 Range 0 – 192.05 0 – 192.05 0 – 139.13 0 – 119.88 
 p-value <0.001 <0.001 <0.001 <0.001 
Ozone (ppb) Mean 85.03 85.03 84.99 85.03 
 Std Dev 77.47 77.47 84.99 85.03 
 Range 0 - 148.71  0 - 148.71  0 – 114.31  0 – 107.11 
 p-value <0.001 <0.001 <0.001 <0.001 
Particulate 
Matter 10 
(μg/m3) 

Mean 48.58 48.58 48.47 48.53 

 Std Dev 23.64 23.64 20.29 16.66 
 Range 0 – 515.0  0 – 515.0  0 – 285.14  0.54 – 

169.77  
 p-value 0.096 0.056 0.336 0.230 
ACS 
Hospitalization 
Rate 

Mean 1.22 1.22 8.43 48.0 
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Table 4.1, continued. 

Variables Attributes 
Time lag 00 Time lag 03 Time lag 07 Time lag 30 

Value Value Value Value 
ACS 
Hospitalization 
Rate 

Std Dev 2.07 2.07 11.49 48.0 

 Range 0 - 26 0 - 26 0 - 96 0 – 332 
ACS Mortality 
Rate 

Mean 0.08 0.08 0.57 2.5 

 Std Dev 0.304 0.304 1.026 3.384 
 Range 0 – 4 0 – 4 0 – 8  0 – 24 

 

4.1.2 Regression Models Performance 

4.1.2.1 Model Performance 

In the development of predictive models for hospitalization and mortality rates among 

ACS patients, this study utilized five distinct ML algorithms: Linear Regression, Support 

Vector Machine (SVM), XGBoost, Random Forest (RF), and an ensemble learning (EL) 

method with Generalized Linear Model (GLM) as the meta-learner. Each model was 

evaluated based on its Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), 

with the lower values indicating greater predictive accuracy.  

The time lag 00 model demonstrated better performance matrices used in this study, 

presenting the lowest RMSE and MAE for both ACS hospitalization and ACS mortality rates 

among all the time lag phases assessed.  

Table 4.2 and Table 4.3 below present a comparison of ML algorithms across four 

different time lags to predict the hospitalization and mortality rates for ACS patients. The RF 

model demonstrated the highest performance in predicting ACS patient hospitalization rates, 

attaining the lowest RMSE of 1.701 and MAE of 1.115 in time lag 00. Conversely, for 
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predicting the ACS mortality rate, XGBoost provided the most accurate results, achieving 

the lowest RMSE of 0.440 and MAE of 0.194.  

Table 4.2: Performance metrics (RMSE and MAE) of ML algorithms for predicting 
ACS patients’ hospitalization rate across different time lags. 

Time lag 00 03 07 30 
Performance 
Metrics 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

Linear 
Regression 

1.982 1.292 1.922 3.692 10.14 102.81 38.91 1514.2 

Support Vector 
Machine 
(Linear) 

2.089 1.213 2.003 4.013 10.53 110.99 41.59
  

1729.4 

Random Forest 1.701 1.115 1.936
  

3.751 9.243 85.43 33.93
  

1151.3 

XGBoost 1.846 1.202 1.888
  

3.566 9.169 84.07 35.86 1285.6 

ENSEMBLE 
(GLM) 

1.922 3.694 1.922
  

3.694 9.819 96.40 37.41 1399.2 

 

Table 4.3: Performance metrics (RMSE and MAE) of ML algorithms for predicting 
ACS patients’ mortality rate across different time lags. 

Time lag 00 03 07 30 
Performance 
Metrics 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

Linear 
Regression 

0.443 0.197 0.444
  

0.197 0.995
  

0.990 3.101
  

9.617 

Support Vector 
Machine (Linear) 

0.461
  

0.213 0.461
  

0.213 1.125
  

1.266 3.354  11.246 

Random Forest 0.442
  

0.195 0.444
  

0.197 0.979
  

0.959 2.724
  

7.419 

XGBoost 0.440
  

0.194 0.447
  

0.200 0.964
  

0.929 2.841
  

8.073 

ENSEMBLE 
(GLM) 

0.444
  

0.197 0.444
  

0.197 0.989
  

0.978 2.981
  

8.889 

 

Figure 4.1 and Figure 4.2 describe the relative importance of features associated for 

predicting hospitalization rates and mortality rates in ACS patients, respectively, as 

determined by ML models in this study.  
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NOx and O3 consistently ranked as the most influential factors in all of ML models. Except 

in the RF model, where O3 and SO2 were ranked the highest for predicting ACS mortality 

rates. Furthermore, PM10 exhibited minimal impact across all ML models.  

 

Figure 4.1: Relative feature importance for predicting hospitalization rate in ACS 
patients using different ML models at time lag 00. 

 

Univ
ers

iti 
Mala

ya



207 
 

 

Figure 4.2: Relative features importance for predicting mortality rate in ACS Patients 
using different ML models at time lag 00. 

 

Figure 4.3 offers a boxplot of the distribution of actual versus predicted hospitalization 

rates for ACS patients for time lag 00, as determined by each ML model using air quality 

readings at time lag 00. Similarly, Figure 4.4 provides a visual comparison of the actual and 

predicted mortality rates in ACS patients, based on data from the various ML models at time 

lag 00. 
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Figure 4.3: Boxplot illustrates the distribution of actual versus predicted hospitalization 
rates for ACS patients, derived from various ML models using time lag 00 air pollution 
data. 
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Figure 4.4: Boxplot illustrates the distribution of actual versus predicted mortality rates 
in ACS patients, as determined by different ML models using time lag 00 air pollution 
data. 

The boxplot below, Figure 4.5 and Figure 4.6, provide a clearer picture of the best model's 

performance. Specifically, Figure 4.6 presents a boxplot of actual and predicted 

hospitalization rates for ACS patients based on the RF model. Similarly, Figure 4.7 

showcases the XGBoost model's ability to predict the mortality rates of ACS patients at time 

lag 0, as relative with the actual rates. 
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Figure 4.5: Boxplot depicting the actual versus predicted hospitalization rates of ACS 
patients at time lag 0, as predicted by the RF model. 

 

 

Figure 4.6: Boxplot illustrating the actual versus predicted mortality rates of ACS 
patients at time lag 0, as predicted by the XGBoost model. 
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4.1.2.2 SHAP Analysis 

Shapley Additive Explanations (SHAP) was implemented after model training for ML 

model interpretation. 

Figure 4.7 presents the SHAP summary plot which visualizes the top features of the RF 

model’s output which is the hospitalization rate of ACS patients. Each instance is represented 

by a single dot on each feature row, the x-axis shows the SHAP value, and the y-axis shows 

the feature name.   

In the context of predicting ACS hospitalization rates, the SHAP summary plot (Figure 

4.7(a)) shows that NOx and O3 significantly impact the model's predictions. Higher values 

of NOx and O3, indicated in red, contribute to an increase in hospitalization rate predictions, 

implying a positive effect on the model.  

The same analysis was applied to the prediction of ACS mortality rates, and the results 

were similar. The SHAP summary plot (Figure 4.7(b)) indicates that NOx and O3 are the 

most influential features, while compared against SO2 and PM10. 

 
Figure 4.7: SHAP summary plot for the regression ML model. (a) The RF model 
predicting the hospitalization rate and (b) the XGBoost model predicting mortality rate 
of ACS patients, illustrating the impact of each feature on the model's predictions. 
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4.2 Classification Model Result 

This section presents the results of the developed classification models to predict in-

hospital and emergency mortality risk of ACS patients in the presence of air pollution. The 

classification models are developed incorporating features related to in-hospital and 

emergency settings and include daily air quality measurements for ACS patients.  

The in-hospital features selected were adapted from our previous study, which used a 

SVM model with a variable importance sequential backward elimination method to identify 

the top 14 variables for predicting mortality risk in the same ACS cohort (Kasim, et al., 2022). 

These features were combined with air quality variables, underlining the study's focus on the 

impact of air pollution on ACS patients. Conversely, the emergency features consist of a 

reduced set of variables that are easily accessible in Malaysia hospital emergency settings, 

without the need for extensive testing or patient history.  

The results include the baseline characteristics of our patient cohort and summary of 

model performance matrices, including detailed breakdown of model performance, Receiver 

Operating Characteristics (ROC) curves, and SHAP values.  

In addition, the classification model based on ML is compared with the Thrombolysis in 

Myocardial Infarction (TIMI) Score, using the Net Reclassification Improvement (NRI) and 

the risk cut-off point that differentiates between low and high-risk patients.  

4.2.1 Baseline Characteristic 

Table 4.4 presents the summary statistics of 14,145 in-hospital and 22,466 emergency 

ACS patients, selected from the complete dataset. The in-hospital dataset comprises 18 

features while the emergency dataset includes 12, chosen particularly for their relevance to 

emergency situations.  
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In the ACS patient dataset, the only demographic feature considered was age. This feature 

showed that the average age of ACS patients was 59 years (SD = 39), a statistic consistent 

across both in-hospital and emergency cases.  

A statistical difference (p<0.001) was observed between survivors and non-survivors, 

however, between the in-hospital and emergency features, the survival determinant factors 

differed slightly. In in-hospital selected variables, age, heart rate, Killip class, fasting blood 

glucose, HDLC, LDLC, usage of statins, oral hypoglycemic agents, anti-arrhythmic agents, 

and exposure to NOx and O3 showed a statistically significant association (p<0.001). 

In the emergency selected variables identified a different group of influential factors, these 

included age, heart rate, Killip class, ECG abnormalities, use of statins, oral hypoglycemic 

agents, anti-arrhythmic agents, and exposure to NOx and O3 where all variables have p-

values <0.001. Particularly, ECG abnormalities, which were not significant in the in-hospital 

dataset, emerged as an important variable in the emergency dataset.  

The mortality rates were 6.1% and 8.9% for in-hospital and emergency cases respectively, 

indicating the need for data balancing for accurate model development. Among the ACS 

patients, 58.47% of in-hospital and 55.38% of emergency cases were diagnosed with STEMI. 

NSTEMI and Unstable Angina (UA) together accounted for the remaining cases in both 

datasets, and both groups were compared against the TIMI risk score. 
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Table 4.4: Summary statistics for in-hospital selected variables and emergency 
variables. 

Variables Features In-Hospital Selected Variables Emergency Variables 
All cases 
(14145) 

Survivors 
(13287) 

Non-
survivors 
(858) 

p-value All cases 
(22466) 

Survivors 
(20457) 

Non-
survivors 
(2009) 

p-value 

ACS 
Stratum  

STEMI  8271 
(58.5%) 
 

7659 
(57.6%) 
 

612 
(71.3%) 

<0.001  12441 
(55.4%)  

11020 
(53.9%) 

1421 
(70.7%) 

<0.001  

  NSTEMI 3460 
(24.5%) 

3244 
(24.4%) 

216 
(25.2%) 

  5878 
(26.2%) 

5373 
(26.3%) 

505 
(25.1%) 

  

  UA  2414 
(17.1%) 

2384 
(17.9%) 

30 
(3.5%) 

  4147 
(18.5%)  

4046 
(19.8%) 

83 
(4.1%) 

  

Age*   20.9 
±96.6  

20.9±96.6  23.2 
±92.2  

<0.001  20.9 
±97.6  

20.9±97.6  21.1 
±96.9  

<0.001  

Heart 
Rate* 

  22±200  27±200  22±182  <0.001  20±200  20±200  22±194  <0.001  

Chronic 
Angina  
(<2 weeks) 

  9610  
(67.9%) 

9031 
(68.0%) 

579 
(67.5%) 

0.767  15121 
(67.3%) 

13799 
(67.5%) 

1322 
(65.8%)  

0.133  

Killip 
class* 

I:   9767 
(69.0%) 

9561 
(72.0%) 

206 
(24.0%)  

<0.001  15234  
(67.8%) 

14722 
(72.0%)  

512 
(25.5%)  

<0.001  

  II:  2712 
(19.2%)  

2520 
(19.0%) 

192 
(22.4%) 

  4344 
(19.3%)  

3887 
(19.0%) 

457 
(22.7%) 

  

  III:  659 
(4.7%)  

545 
(4.1%)  

114 
(13.3%) 

  1080 
(4.8%) 

851 
(4.2%) 

229 
(11.4%) 

  

  IV:  1007 
(7.1%)  

661 
(5.0%) 

346 
(40.03%) 

  1808 
(8.0%) 

997 
(4.9%) 

811 
(40.4%) 

  

ECG 
Abnor-
malities** 

  3967 
(28.0%) 

3688 
(27.8%)  

279 
(32.5%) 

0.003  6068 
(27.0%) 

5411 
(26.5%)  

657 
(32.7%) 

<0.001  

HDL*   0.50 
±4.94  

0.50±4.94  0.50 
±3.00  

<0.001          

LDL*    0.50 
±18.0  

0.60±18.0  0.50 
±9.44  

<0.001          

Fasting 
Blood 
Glucose* 

  3.00 
±49.0  

3.00±49.0  3.00 
±46.4  

<0.001          

Cardiac 
Catheter-
ization  

  5166 
(36.5%) 

4878 
(36.7%)  

288 
(33.6%) 

0.064          

Coronary 
Artery 
Bypass 
Graft 
(CABG)  

  124 
(0.9%) 

114 
(0.9%) 

10 
(1.2%) 

0.349          
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Table 4.4, continued. 

Variables Features In-Hospital Selected Variables Emergency Variables 
All cases 
(14145) 

Survivors 
(13287) 

Non-
survivors 
(858) 

p-value All cases 
(22466) 

Survivor
s (20457) 

Non-
survivors 
(2009) 

p-value 

Statin*   13278 
(93.9%) 

12533 
(94.3%) 

745 
(86.8%) 

<0.001  20597 
(91.7%)  

19038 
(93.1%) 

1559 
(77.6%)  

<0.001  

Other 
Lipid 
Lowering 
Agent   

  434 
(3.1%) 

422 
(3.2%) 

12 
(1.4%) 

0.003  774 
(3.4%) 

726 
(3.5%) 

48 
(2.4%) 

0.007  

Oral Hyp-
oglycemic 
Agent* 

  3424 
(24.2%) 

3340 
(25.1%) 

84 
(9.8%) 

<0.001  5296 
(23.6%) 

5115 
(25.0%) 

181 
(9.0%) 

<0.001  

Antiar-
rhythmic 
agent* 

  680 
(4.8%) 

570 
(4.3%) 

110 
(12.8%) 

<0.001  272 
(1.2%) 

997 
(4.9%) 

1269 
(63.2%) 

<0.001  

Nitrogen 
Oxides* 

  0±209.22 0±137.74 0 
±187.87  

<0.001  0±137.74 0±137.74 0 
±159.39 

<0.001  

Sulfur 
Dioxide 

  0±192.05 0±207.03  0 
±211.81 

0.024  0±178.13 0±178.13 0 
±211.81 

0.062  

Ozone*   0±148.71
  

0±129.91 0 
±124.71 

<0.001  0±129.91  0±129.91
  

0 
±124.71 

<0.001  

Particulate 
Matter 10  

  0±390  0±390  0 
±322  

0.643  0±390  0±390  0±372  0.016  

The asterisk (*) indicated that the variable difference between the survivor and non-survivor groups is statistically significant (p-value 
<0.001). Particularly, the double asterisk (**) indicated for ECG Abnormalities, indicating that this variable was found statistically 
significant within the emergency-selected variables dataset. The significant values are given in bold. HDL: High Density Lipoprotein; LDL: 
Low Density Lipoprotein. 

 

4.2.2 Classification Models Performance  

4.2.2.1 Algorithm Performance Evaluation 

Table 4.5 illustrates the classification model performances developed in this study using 

the selected in-hospital and emergency features based on the remaining 30% testing dataset. 

The results show that ML algorithms and EL approach significantly outperformed the TIMI 

risk scores in predicting both STEMI and NSTEMI outcomes in the presence of air pollution. 

In the context of in-hospital selected features, the RF model demonstrated the high 

predictive performance of achieving an AUC of 0.843 (95% CI: 0.813 - 0.873) (p-value < 

0.001). For emergency selected features, XGBoost algorithm yielded the highest AUC, 

achieving a score of 0.845 (95% CI: 0.828 - 0.862) (p-value < 0.001).  
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The TIMI risk score showed a comparatively lower performance for both feature sets. In 

the in-hospital settings, the AUC for TIMI was found to be 0.791 and 0.565 for STEMI and 

NSTEMI respectively. In emergency settings, the AUC for TIMI was lower, with scores of 

0.797 and 0.583 for STEMI and NSTEMI respectively. It is noticeable that TIMI predicting 

the risk of mortality of STEMI patients are still within the acceptable range, whereas the 

AUC for TIMI NSTEMI patients performed poorly as compared to the other predictive 

models. 

Detailed performance evaluation of the best ML model against TIMI risk score for in-

hospital and emergency selected features are presented in Table 4.6.  

Table 4.5: The AUC of ML models and TIMI risk score for in-hospital selected features 
and emergency selected features based on 30% testing dataset. 

Predictive Models 
The area under the ROC Curve (95% CI) 

In-Hospital Selected Features Emergency Selected Features 

Logistic Regression 0.834 (0.803 - 0.865) 0.842 (0.825 - 0.859) 

SVM (Linear) 0.833 (0.803 - 0.864) 0.842 (0.825 - 0.86) 

Random Forest 0.843 (0.813 - 0.873) 0.843 (0.826 - 0.86) 

Naïve Bayes 0.838 (0.807 - 0.869) 0.834 (0.816 - 0.852) 

XGBoost 0.836 (0.804 - 0.868) 0.845 (0.828 - 0.862) 

Ensemble (GLM) 0.842 (0.812 - 0.873) 0.844 (0.828 - 0.862) 

TIMI (STEMI) 0.791 (0.757 - 0.825) 0.797 (0.774 - 0.82) 

TIMI (NSTEMI) 0.565 (0.505 - 0.625) 0.583 (0.543 - 0.622) 
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Table 4.6: Detailed performance metrics of ML model for in-hospital and emergency selected features for ACS patients. 

No. Predictive 
Models Accuracy Sensitivity Specificity PPV NPV McNemar 

Test 
Balanced 
Accuracy 

Precision 
Recall 

Accuracy 

In- Hospital Selected Features Dataset 

1. Logistic 
Regression 0.82 (0.804 - 0.834) 0.684 0.829 0.227 0.973 0 0.757 0.354 

2. SVM (Linear) 0.821 (0.805 - 0.836) 0.673 0.832 0.226 0.972 0 0.752 0.347 

3. Random Forest 0.849 (0.834 - 0.863) 0.632 0.865 0.255 0.970 0 0.748 0.372 

4. Naïve Bayes 0.875 (0.862 - 0.888) 0.538 0.900 0.283 0.964 0 0.719 0.357 

5. XGBoost 0.847 (0.832 - 0.861) 0.667 0.860 0.259 0.972 0 0.763 0.364 

6. Ensemble 
(GLM) 0.846 (0.832 - 0.86) 0.643 0.861 0.253 0.971 0 0.752 0.374 

7. TIMI (STEMI) 0.807 (0.791 - 0.822) 0.585 0.823 0.195 0.964 0 0.704 0.240 

8. TIMI 
(NSTEMI) 0.936 (0.923 - 0.947) 0.035 0.982 0.094 0.951 0 0.509 0.061 
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Table 4.6, continued. 

No. Predictive 
Models Accuracy Sensitivity Specificity PPV NPV McNemar 

Test 
Balanced 
Accuracy 

Precision 
Recall 

Accuracy 

Emergency Selected Features Dataset 

1. LogisticReg 0.804 (0.794 - 0.813) 0.709 0.813 0.271 0.966 0 0.761 0.445 

2. SVMLinear 0.807 (0.798 - 0.817) 0.713 0.817 0.276 0.967 0 0.765 0.442 

3. RandomFore
st 0.809 (0.799 - 0.818) 0.724 0.817 0.279 0.968 0 0.771 0.434 

4. NaiveBayes 0.869 (0.86 - 0.877) 0.581 0.897 0.356 0.956 0 0.739 0.433 

5. XGBoost 0.813 (0.803 - 0.822) 0.704 0.824 0.281 0.966 0 0.764 0.451 

6. Ensemble_G
LM 0.804 (0.794 - 0.813) 0.724 0.811 0.274 0.968 0 0.768 0.448 

7. TIMI 
(STEMI) 0.792 (0.778 - 0.805) 0.656 0.809 0.305 0.949 0 0.733 0.375 

8.  TIMI 
(NSTEMI) 0.923 (0.913 - 0.932) 0.022 0.981 0.069 0.940 0 0.501 0.075 
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The ROC curve for the predictive models based on the testing dataset is shown in Figure 

4.8.  ROC curves for in-hospital and emergency mortality predictions, stratified by STEMI 

and NSTEMI, are presented in Figures 4.9 and 4.10, respectively. 

 

Figure 4.8: ROC curve for ML and EL models in testing dataset for (a) in-hospital 
selected variables and (b) emergency selected variables. 

 

Figure 4.9: ROC Curves of ML models, EL model and TIMI for in-Hospital selected 
variables mortality prediction for (a) STEMI and (b) NSTEMI patients.  

(a) (b) 

(a) (b) 

Univ
ers

iti 
Mala

ya



220 
 

 

Figure 4.10: ROC Curves of ML models, EL model and TIMI for emergency selected 
variables mortality prediction for (a) STEMI and (b) NSTEMI patients. 

4.2.2.2 SHAP Analysis 

Figures 4.11 and 4.12 display the SHAP summary plots for the RF with in-hospital 

selected features and XGBoost with emergency selected features, respectively. These plots 

offer a detailed view of feature importance, merging it with the effects of each feature on the 

testing dataset. The gradient color indicates the variable’s initial value. In Booleans, it can 

contain two colors, but in numbers, it can contain the entire color spectrum. Each point 

corresponds to a row in the initial dataset. The color of the dots denotes the value of the 

feature (Blue: low value; Red: Higher blue). Features are well-organized depending on their 

importance during the interaction. The y-axis indicates the variable name in descending order 

of importance, with Killip classification having the highest importance in both models. On 

the x-axis indicates the SHAP value.  

Considering the SHAP summary plot for the RF model (Figure 4.11) with in-hospital 

selected variables, features such as Killip Class, Fasting Blood Glucose (FBG), patient's age, 

heart rate, and usage of oral hypoglycemic agents are linked with higher negative effects on 

(a) (b) 
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the outcome. This association suggests that an increase in these features correlates with an 

increase mortality risk. In addition, NOx was found to have the strongest association with 

mortality risk among in-hospital ACS patients.  

 
Figure 4.11: SHAP summary plot of RF model based on in-hospital selected features. 

The XGBoost model SHAP summary plot for the emergency features dataset (Figure 

4.12) revealed that the most significant features were Killip Class, patient's age, heart rate, 
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intake of oral hypoglycemic agents, and statins. In the context of air pollutants, higher NOx 

values are associated with higher mortality risk. Overall, the SHAP summary plots provide 

a comprehensive understanding of the influence and importance of different variables in our 

ML models.  

 
Figure 4.12: SHAP summary plot of XGBoost model based on emergency selected 
features. 
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4.2.2.3 Comparison of Machine Learning (ML) to Thrombolysis in Myocardial 

Infarction (TIMI) Risk Score to the Validation Dataset 

The TIMI score for STEMI categories patients as low risk at the score of ≤5 and a high-

risk score of > 5 (Morrow, et al., 2000) while TIMI risk score for NSTEMI/UA categorizes 

patients to be in low-risk at the score of <5 and the score of ≥5 to be in the high-risk category 

(Antman, et al., 2000). As for the ML models used in this study, the classification of patients 

into low- and high-risk categories was achieved based on the Receiver Operating 

Characteristic (ROC) curve approach, effectively measuring the trade-off between sensitivity 

and specificity across a series of cut-off points for model performance assessments (Kumar 

& Indrayan, 2011). Hence, the cut-off points between the low- and the high-risk patients for 

TIMI risk score and all the best ML models are presented in Figure 4.13 below. 
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Figure 4.13: TIMI risk score and best performing ML models cut-off point between 
low-risk and high-risk group (Antman, et al., 2000; Morrow, et al., 2000; Kumar & 
Indrayan, 2011). 

Figures 4.14 and 4.15 illustrate the comparison of the best ML model for (RF model) 

mortality risk against the TIMI risk score for both STEMI and NSTEMI. Similarly, in Figures 

4.16 and 4.17 are for emergency selected features mortality rate. TIMI Risk Score for STEMI 
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has a scale of 0–14 while TIMI Risk Score for NSTEMI has a scale of 0–7. We categorized 

ML score patients as low risk with the probability <50% and high-risk stratum as ≥50%. This 

is equivalent to TIMI low risk of score ≤5 and a high-risk score of > 5 for both STEMI and 

NSTEMI risk scores (Basra, et al., 2016; Kumar & Cannon, 2009). 

 
Figure 4.14: Performance breakdown of the TIMI risk score for in-hospital selected 
variables mortality prediction for both STEMI and NSTEMI patients. 

 
Figure 4.15: Performance breakdown of the ML model (RF model) for in-hospital 
selected variables mortality prediction for both STEMI and NSTEMI patients. 
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Figure 4.16: Performance breakdown of the TIMI risk score for emergency selected 
variables mortality prediction for both STEMI and NSTEMI patients. 

 
Figure 4.17: Performance breakdown of the ML model (XGBoost model) for emergency 
selected variables mortality prediction for both STEMI and NSTEMI patients. 
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In the context of in-hospital selected features, the RF model correctly classified 25.53% 

of STEMI patients and 18.37% of NSTEMI patients as high risk (risk probability greater than 

50%), in comparison with TIMI score, it correctly classified 19.53% for STEMI patients and 

9.38% for NSTEMI patients. The XGBoost model correctly classified 31.54% of STEMI 

patient and 16.85% for NSTEMI patient, where TIMI scores correctly classified 30.38% for 

STEMI patients and 6.01% for NSTEMI patients. 

Table 4.7 tabulates the percentage of mortality in the patients with predicted low-risk 

(TIMI score: <5; ML (STEMI) probabilities: <0.5; ML (NSTEMI) probabilities: <0.4) and 

high-risk (TIMI score: >5; ML (STEMI) probabilities: ≥0.5; ML (NSTEMI) probabilities: 

≥0.4).  

Hence, the ML models demonstrated better predictive accuracy for mortality among high-

risk patients compared to the TIMI risk score. Furthermore, ML models demonstrated the 

greatest improvement in predicting mortality among NSTEMI patients in the context of air 

pollution exposure. 

Table 4.7: Percentage distribution of patient mortality as classified by TIMI Score and 
ML models across in-hospital selected features and emergency selected features 
datasets. 

Dataset Predictive 
Models 

High-Risk 
Threshold Low-Risk (%) High-Risk (%) 

In-Hospital 
Selected 
Features 

TIMI (STEMI) >5 0.85 19.53 
TIMI 
(NSTEMI) >5 4.86 9.38 

RF (STEMI) >0.5 3.03 25.53 
RF (NSTEMI) >0.4 1.78 18.37 

Emergency 
Selected 
Features 

TIMI (STEMI) >5 5.14 30.38 
TIMI 
(NSTEMI) >5 6.90 6.01 

XGBoost 
(STEMI) >0.5 4.19 31.54 

XGBoost 
(NSTEMI) >0.4 2.07 16.85 
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4.2.2.4 Net Reclassification Index (NRI) Analysis 

The ML models had significantly better accuracy as assessed by Net Reclassification 

Index (NRI). NRI for the in-hospital selected features, the net reclassification for STEMI 

patients using the RF was 8.71%, as shown in Table 4.8, indicating a statistically 

improvement over the initial TIMI risk score (p<0.001). The NRI for NSTEMI patients, as 

shown in Table 4.9, shown that the RF model improved net reclassification by 86.94%, 

substantially outperforming the original TIMI risk score (p<0.001).
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Table 4.8: Net Reclassification Improvement (NRI) of the RF Model compared to the 
TIMI risk score using the in-hospital selected features dataset. The table depicts the 
comparative performance of the RF model against the TIMI Risk Score for STEMI 
patients. 

In-hospital Selected Features   
Number of 
individuals Reclassification 

Net correctly 
reclassified (%) 

Random 
Forest Increased 

risk 
Decreased 

risk Low 
risk 

High 
risk 

Individuals with events (died) (n = 171) 

  

TIMI 
score   

34 
  

26 
  

8/171 = 4.68% Low 
risk 37 34 

High 
risk 26 74 

Individuals without events (alive) (n = 2334) 

  

TIMI 
score   

124 
  

218 
  

94/2334 = 4.03% 
  Low 

risk 1798 124 

High 
risk 218 194 

Net 
Reclassification 
Index (NRI) 

 4.68 + 4.03 = 8.71% 

Z, p-value 
𝑍 =  

8.71

√34 + 26
1712 +  

124 + 218
23342

=  189.41 

189.41, p < 0.001  

Conclusion 

It was statistically significant. The predictive power of the RF model 
was improved as compared to the TIMI Risk Scores Model in 
predicting the mortality rate of ACS STEMI patients in the presence 
of air pollution, and the proportion of correct classification increased 
by 8.71% 
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Table 4.9: Net Reclassification Improvement (NRI) of the RF Model Compared to the 
TIMI Risk Score using the In-Hospital Selected Features Dataset. The table depicts the 
comparative performance of the RF model against the TIMI Risk Score for NSTEMI 
Patients. 

In-hospital Selected Features 
    Number of 

individuals Reclassification 
Net correctly 
reclassified 

(%) 

Random 
Forest Increased 

risk 
Decreased 

risk Low 
risk 

High 
risk 

Individuals with events (died) (n = 86) 

  

TIMI 
score   

54 2 52/86 = 95.35% Low 
risk 29 54 

High 
risk 2 1 

Individuals without events (alive) (n = 1653) 

  

TIMI 
score   

162  23 − 139/1653 = − 
0.084 Low 

risk 1462 162 

High 
risk 23 6 

Net 
Reclassification 
Index (NRI) 

95.35 + (−0.084) = 86.94% 

Z, p-value 
𝑍 =  

86.84

√54 + 2
862 +  

162 + 23
16532

=  994.7 

994.7, p < 0.001 

Conclusion 

It was statistically significant. The predictive power of the RF 
model was improved as compared to the TIMI Risk Scores 
Model in predicting the mortality rate of ACS NSTEMI patients 
in the presence of air pollution, and the proportion of correct 
classification increased by 86.94% 
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While the emergency features, the XGBoost model exhibited the best performance. As 

shown in Table 4.10, the net reclassification of STEMI patients improved by 5.95%, 

surpassing the original TIMI risk score. In contrast, the net reclassification improvement for 

NSTEMI was 50.75% (Table 4.11), a significant improvement compared to the original TIMI 

risk score (p<0.001). Concerning the impact of air pollution, all the ML models outperformed 

the TIMI risk score. 
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Table 4.10: Net Reclassification Improvement (NRI) of the XGBoost model compared 
to the TIMI Risk Score using the emergency selected features dataset. The table depicts 
the comparative performance of the XGBoost model against the TIMI Risk Score for 
STEMI patients. 

Emergency Selected Features 
    Number of 

individuals Reclassification 
Net correctly 
reclassified 

(%) 
XGBoost 

Increased 
risk 

Decreased 
risk Low 

risk 
High 
risk 

Individuals with events (died) (n = 419) 

  

TIMI 
score   

70 41 29/419 = 
6.92% 

Low 
risk 

74 70 

High 
risk 41 234 

Individuals without events (alive) (n = 3287) 

  

TIMI 
score   

249 217 − 32/3287 = 
−0.97% Low 

risk 2410 249 

High 
risk 217 411 

Net 
Reclassification 
Index (NRI) 

6.92 + (−0.97) = 5.95%  

Z, p-value 
𝑍 =  

5.95

√70 + 41
4192 +  

249 + 217
32872

=  228.95 

228.95, p < 0.001 

Conclusion 

It was statistically significant. The predictive power of the XGBoost 
model was improved as compared to the TIMI Risk Scores Model in 
predicting the mortality rate of ACS STEMI patients in the presence of 
air pollution, and the proportion of correct classification increased by 
5.95% 
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Table 4.11: Net Reclassification Improvement (NRI) of the XGBoost Model compared 
to the TIMI Risk Score using the emergency selected features dataset. The table depicts 
the comparative performance of the XGBoost model against the TIMI Risk Score for 
NSTEMI patients. 

Emergency Selected Features 
    Number of 

individuals Reclassification 
Net correctly 
reclassified 

(%) 
XGBoost 

Increased 
risk 

Decreased 
risk Low 

risk 
High 
risk 

Individuals with events (died) (n = 183) 

  

TIMI 
score   

117 1 
116/183 = 
63.69% 

Low 
risk 62 117 

High 
risk 1 3 

Individuals without events (alive) (n = 2851) 

  

TIMI 
score   

408 39 − 369/2851 = 
−12.94 

Low 
risk 2389 408 

High 
risk 39 15 

Net 
Reclassification 
Index (NRI) 

63.69 + (−12.94) = 50.75% 

Z, p-value 

𝑍 =  
50.75

√117 + 1
1832 +  

408 + 39
28512

=  848.37 

  
848.37, p < 0.001 

Conclusion 

It was statistically significant. The predictive power of the XGBoost 
model was improved as compared to the TIMI Risk Scores Model in 
predicting the mortality rate of ACS NSTEMI patients in the presence 
of air pollution, and the proportion of correct classification increased 
by 50.75% 

 

Univ
ers

iti 
Mala

ya



234 
 

4.3 Web System Prototype 

This section focuses on the web-based system that integrates the optimal ML models 

outlined in Sections 4.1 and 4.2. For ACS hospitalization prediction, the RF model 

outperforms other ML algorithms that are utilized in this study, as for predicting ACS 

mortality rates, XGBoost shows better performance among the evaluated ML algorithms. For 

the classification models that predict the mortality risk for ACS patients, the RF model has 

better performance with the in-hospital selected features, whereas XGBoost demonstrated 

better performance using the emergency selected features dataset.  

An overview of the system's functionality, including its outcomes and user interface 

features, is presented, and discussed in Section 4.3.1. In addition, section 4.3.2 will elaborate 

on the results of a usability evaluation conducted using the System Usability Scale (SUS). 

The developed web system is known as MyHeart Air. It is an AI-powered tool designed 

to predict cardiovascular outcomes by integrating both cardiac and air quality data. By 

considering environmental factors, this tool provides a more comprehensive and 

contextualized prediction tailored to the Malaysian population.  

4.3.1 Web System Design and Functionality 

Section 4.3.1 presents an overview of the design and functionality of 'MyHeart ACS Air'. 

The web system has been designed with intuitive navigation to ensure easy use by hospital 

administrators and healthcare professionals.  

Various features have been integrated into the system, including calculators for predicting 

patient outcomes in the presence of air pollution, such as ACS hospitalization and mortality 

rates, and ACS patients’ mortality risk in the presence of air pollution. The design of the web-

based system includes an interactive element, enabling users to manipulate input data and 
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instantly receive corresponding predicted outcomes. In addition, the system includes a 

comprehensive patient database. This feature enables users to efficiently manage and update 

the records of ACS patients. 

4.3.1.1 MyHeart ACS Air Homepage 

The homepage of ‘MyHeart ACS Air’ web system is shown in Figure 4.18 below, where 

it is the first page users see when they visit the website and prompts the user for registration 

and login. It hosts a navigation bar at the top, which contains links to different sections of the 

system such as “Home”, “Login” and “About”. 

 
Figure 4.18: MyHeart ACS Air homepage 

4.3.1.2 MyHeart ACS Air Registration and Login 

The ‘MyHeart ACS Air’ system requires users to register and login to gain full access to 

its features. As seen in Figure 4.19 shows the login and registration page. 

Existing users simply require entering their registered email and password to access the 

system. The entered details match the records, and the account has been approved by the 

admin, the users are granted access to the system’s features.  
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For new users, during the registration process, users are prompted to provide their 

username, email, password, confirmation of the password, and their respective organizations. 

Once the registration is completed users have to wait for admin approval of their account. 

This verification process enhances the system’s security and prevents unauthorized access.  

 
Figure 4.19: Login and registration of 'MyHeart ACS Air' for accessing the system 
features. 

4.3.1.3 MyHeart ACS Air About Us and FAQ 

The ‘About Us’ page is accessible via the navigation bar of the MyHeart ACS Air, it 

informs the users about the background of the system, illustrated in Figure 4.20 below. The 

page outlines the reasons for its development, information about its creators, 

acknowledgment for the assistance received during the development process and a FAQ 

section. 
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Figure 4.20: About Us page of 'MyHeart ACS Air' provide the reasons about the 
system's development, information of the developers, acknowledgements, and FAQ. 

The FAQ section is included in the ‘About Us’ page. The FAQ covers the information and 

reliability about the ‘MyHeart ACS Air’ system’s features, the accuracy, and the Receiver 

Operating Characteristic (ROC) incorporated into the system. The detailed version of the 

FAQ is included in the Appendix G of the thesis. Figure 4.21 presents a snapshot of the FAQ 

available within the ‘About Us’ page.  
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Figure 4.21: A snapshot of the FAQ for 'MyHeart ACS Air', addressing the frequently 
asked questions about the system's features, the model accuracy, and the ROC. 

4.3.1.4 MyHeart ACS Air Dashboard  

The 'MyHeart ACS Air' dashboard works as the system's primary hub, providing hospital 

administrators and healthcare professionals with various AI-powered predictive 

functionalities (Figure 4.22). The features of the system are as follows:  

1. Hospital (Single) Geo-Location Prediction: This feature combines patient health data 

and local air quality information to estimate expected ACS hospitalization and mortality 

rates for a single selected location. 
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2. Hospital (Multiple) Geo-Location Prediction: Working similarly to the single geo-

location prediction, this feature provides estimates for multiple hospital locations at 

once, further displaying the results on an interactive map for easy visualization and 

comparison. 

3. ACS hospitalization and Mortality Event Calculator: This calculator presents an 

enhanced risk assessment by predicting ACS hospitalization and mortality rates based 

on air quality readings. 

4. ACS Mortality Prediction (In-hospital): This feature aims at aiding in ACS patient care 

by estimating the probability of cardiac mortality for in-patients, based on their 

individual cardiac features and the level of air pollution in their location. 

5. ACS Mortality Prediction (Emergency): Tailored specifically for emergency settings, 

this feature gives a quick risk assessment of cardiac mortality for emergency ACS 

patients, offering potentially lifesaving insights to healthcare professionals. 

 
Figure 4.22: Overview of the 'MyHeart ACS Air' interface, presenting various features 
based on artificial intelligence predictive functionalities available for user interaction. 

Univ
ers

iti 
Mala

ya



240 
 

4.3.1.5 MyHeart ACS Air Calculators 

The "MyHeart ACS Air" system features several custom tools, each of which is created 

to satisfy the requirements of a certain user. These calculators serve as the system's 

foundation, providing users with personalized predictions using ML. Their primary goal is 

to predict ACS hospitalization rates, mortality rates, and the mortality risk for ACS patients 

in the presence of air pollution. 

While each calculator has unique functions, they all contribute to a comprehensive system 

that attempts to support medical practitioners in providing better patient care. The subsections 

that follow will provide a full description of each calculator's particular functioning. 

4.3.1.5.1 Hospital (Single) Geo-Location Prediction 

The 'Hospital (Single) Geo-place Prediction' is a feature that enables users to predict ACS 

hospitalization rates and mortality rates based on air quality data for a chosen location. The 

only input required for this feature's user interface is the date and hospital location, which 

can be chosen from a predetermined list in the database. 

User-level access to this feature allows for data input via Google Forms, while admin-

level access provides additional control, including the ability to add new locations to the 

database. This design decision maintains the integrity of the location data by minimizing 

potential user-induced discrepancies. 

Once the location is selected, users are then asked to input air quality data, including 

measures of nitrogen oxides, sulfur dioxide, ozone, and particulate matter 10. For users 

unsure of the air quality readings, a helpful link to an external webpage 

(https://www.breezometer.com/air-quality-map/air-quality/malaysia/kuala-lumpur) is 

provided for reference. Figure 4.23 below shows the input page interface. 
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Figure 4.23: The Hospital (Single) Geo-Location Prediction interface prompting users 
to input date, location, and air quality data. 

Once the data is entered, the system generates a figure that displays the selected location, 

as well as the predicted hospitalization rate and mortality rate for ACS patients in the 

presence of the entered air quality data as presented in Figure 4.24. 
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Figure 4.24: The Hospital (Single) Geo-Location Prediction calculator output, showing 
the chosen location and the predicted hospitalization and mortality rates for ACS 
patients. 

4.3.1.5.2 Hospital (Multiple) Geo-Location Prediction 

The 'Hospital (Multiple) Geo-Location Prediction' is designed to provide users with visual 

representations of ACS hospitalization rates and mortality rates for multiple hospital 

locations simultaneously, the user interface is shown in Figure 4.25.  

The Hospital (Multiple) Geo-Location Prediction page provides users with two main 

functionalities, which are 'VIEW MAP' and 'VIEW DATA'. The 'VIEW MAP' option enables 

users to view the geographical distribution of predicted ACS hospitalization and mortality 

rates for different hospital sites. The predictions displayed on the map are based on the data 

previously input on the single hospital location prediction page, as shown in Figure 4.26.  

On the other hand, the 'VIEW DATA' option allows users to inspect the data that has been 

input and stored in the database. This includes information pertaining to the various hospital 

locations and corresponding air quality data. Further details regarding the management and 

accessibility of this stored data are discussed in Section 4.3.1.6.2 'Hospital Location and Air 

Quality Database'. 
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Figure 4.25: User interface of the 'Hospital (Multiple) Geo-Location Prediction' in 
'MyHeart ACS Air' System, providing users with options to 'VIEW MAP' or 'VIEW 
DATA'. 

 
Figure 4.26: Predicted ACS hospitalization and mortality rates for multiple hospital 
locations displayed on the Google Map. 

4.3.1.5.3 Cardiac Hospitalization and Mortality Event Calculator 

The ‘ACS hospitalization and Mortality Event Calculator’ is a basic calculator that 

displays the predicted cardiac hospitalization and mortality rate due to ACS events based on 

air quality readings. This tool is specifically calibrated to utilize air quality data from 
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Malaysia. Therefore, the generated predictions are particularly relevant and applicable to 

healthcare scenarios in the Malaysian context. Figure 4.27 and figure 4.28 below depict the 

user interface, which prompts users to input air quality data, and the subsequent predicted 

outcomes generated by the ML algorithms. 

 
Figure 4.27: User interface of the 'ACS Hospitalization and Mortality Event Calculator' 
allows users to input air quality readings. 
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Figure 4.28: The result is display of predicted ACS hospitalization and ACS mortality 
rates, generated by 'ACS Hospitalization and Mortality Event Calculator' after user 
provide inputs air quality readings. 

4.3.1.5.4 ACS Mortality Prediction (In-Hospital) 

The 'ACS Mortality Prediction (In-Hospital)' function is a specialized tool within the 

‘MyHeart ACS Air’ web system designed specifically for hospitalized ACS patients that 

estimates the probability of mortality among ACS patients admitted to the hospital, 

particularly in the context of air pollution. 

This feature provides a user interface that prompts medical personnel to input ACS patient 

details including patient details, status before event, clinical presentation and examination, 

baseline investigation, electrocardiography, invasive therapeutic procedure, pharmacological 

therapy, and air quality readings. The snapshot of the user interface is shown in Figure 4.29.  

The web system with integrated ML model processes the submitted data to estimate the 

risk of mortality of ACS patients in the presence of the specified air pollution levels. The 

expected output is displayed as a percentage, the risk percentage above 50% is considered as 

high-risk patient, as shown in Figure 4.30 below. 
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The high-risk indicator alerts medical personnel to be aware of the patients. By providing 

an accurate assessment of the potential risk incurred by a patient, it is possible to make better 

care decisions, eventually enhancing patient safety and health outcomes. 

 
Figure 4.29: User interface for input patient data into the 'ACS Mortality Prediction 
(in-hospital)' page. 

 
Figure 4.30: “High-Risk Patient” is displayed in the predicted risk of mortality for 
hospitalized ACS patient in the presence of air pollution, generated by the 'ACS 
Mortality Prediction (In-hospital)' feature upon user inputs. 
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4.3.1.5.5 Cardiac Mortality Prediction (Emergency) 

The 'ACS Mortality Prediction (Emergency)' tool is another part of the 'MyHeart ACS 

Air' web system, designed for assessing ACS patients in emergency situations. It is specially 

designed for emergency hospitalized patients, which requires fewer inputs than the version 

designed for in-hospital patients. Hence, the users are required to important patient 

information, such as patient details, status before event, clinical presentation and 

examination, electrocardiography, pharmacological therapy, and air quality, which excluded 

the baseline investigation and invasive therapeutic procedure.  

Once the data is submitted, the system's integrated ML model processes the information 

to predict the patient's risk of ACS mortality in the current air pollution conditions (Figure 

4.31). The result of the risk prediction is displayed in percentages, similar to the ACS 

mortality risk calculator for in-hospital patients (Figure 4.32).  

This immediate risk indicator assists healthcare professionals in quickly understanding the 

patient's condition, guiding urgent medical decisions and patient management strategies. This 

quick assessment tool aids in optimizing patient care in emergency situations. 
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Figure 4.31: User interface for input patient data into the 'ACS Mortality Prediction 
(Emergency)' page. 

 
Figure 4.32: The result page of the 'ACS Mortality Prediction (Emergency)' feature, 
displaying the predicted mortality risk. 

4.3.1.6 MyHeart ACS Air Databases 

Apart from the calculators that generate predicted results supported by ML, the ‘MyHeart 

ACS Air’ web system is supported by data management system, which comprises five 
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primary databases. Each of these databases serves distinct yet interrelated functions, to 

support the various predictive features of the system.  

Each database serves its unique purpose and functionality, to ensure the ‘MyHeart ACS 

Air’ system provides precise predictions to assist in better healthcare decision making. A 

detailed description of each database and its functionalities is provided in the subsequent 

section.  

4.3.1.6.1 Hospital Location Database 

The hospital location database features geographical information of the various hospital 

locations. It is primarily managed by administrative-level users to maintain data integrity and 

ensure accurate location-based predictions.  

The database contains information related to the Source Data Provider (SDP) ID acquired 

based on the NCVD-ACS Annual Report, name of the hospital, the state in which it is located 

and its geographical coordinates (latitude and longitude). Additionally, the interactive 

database allows the administrator to add, edit, and delete records when necessary. This is to 

ensure that the geographical location and the system’s predictions are based on the most 

accurate and updated location data. Figure 4.33 depicts the snapshot of the ‘Hospital Location 

Database’ page and Figure 4.34 is the ‘Edit Location Data’ page, where user can edit and 

update the specific location data.  Univ
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Figure 4.33: The 'Hospital Location Database' page, displaying key information related 
to various hospital locations. 

 
Figure 4.34: The 'Edit Location Data' page, accessible only by the admin, allows for 
vigilant modifications of location data in the database. 
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4.3.1.6.2 Hospital Location and Air Quality Database 

This database combines specific location data with corresponding air quality readings. 

The ‘Hospital Location and Air Quality Database’ contains key information including the 

SDP ID, date, hospital name, and air quality readings, such as nitrogen oxides, sulfur dioxide, 

ozone, and particulate matter 10. 

The input of the data is from the 'Hospital (Single) Geo-location Prediction' feature. This 

allows the system to constantly update air quality data for each location. Furthermore, users 

can edit, update, and delete the air pollution data as needed. Figure 4.35 presents the user 

interface of the ‘Hospital Location and Air Quality Database' page, and Figure 4.36 presents 

'Edit Air Quality Data' page.  

 
Figure 4.35: The 'Hospital Location and Air Quality Database' page, displaying 
location-specific air quality readings. 
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Figure 4.36: The 'Edit Air Quality Data' page, where users can update air quality 
readings in the database. 

4.3.1.6.3 In-hospital ACS Patients Database 

The ‘In-hospital ACS Patients Database’ serves as the data repository for hospitalized 

ACS patients. This database contains hospitalized patient-specific data, acquired through the 

'ACS Mortality Prediction (In-hospital)' feature. It features patient information, including ID, 

date, assigned doctor, patient IC, calculated mortality probability, and the mortality 

percentage (Figure 4.37). There is an ‘EXPORT’ button on the bottom of the table, which 

allows users to download the stored information in CSV format.  

Besides, the database allows users to 'VIEW' and 'UPDATE' individual patient records. 

When users click on “VIEW”, the page will display the details of the patients’ health data as 

shown in Figure 4.38. When there are any changes to the patient’s status, the users can easily 

update the relevant patient record as well (Figure 4.39).  
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Figure 4.37: User interface of the 'In-hospital ACS Patients Database', showing a 
summary of patient data and available user interactions, including the “VIEW”, 
“UPDATE” and “EXPORT”. 
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Figure 4.38: Detailed patient record view within the 'In-hospital ACS Patients 
Database', displaying patient information. 
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Figure 4.39: Update interface within the 'In-hospital ACS Patients Database', allowing 
updates and remarks for the specific patients as needed. 

4.3.1.6.4 Emergency ACS Patients Database 

The 'Emergency ACS Patients Database' is a subsystem of the 'MyHeart ACS Air' website. 

Similar to the ‘In-hospital ACS Patients Database’, this database focuses on emergency ACS 

patients, where the data collected from 'ACS Mortality Prediction (Emergency)' feature. This 

database is essential for emergency patient data management for calculating risk predictions 

during emergency situations. Figures 4.40 – 4.42 show the screenshots of the emergency 

ACS patient database pages. 

Univ
ers

iti 
Mala

ya



256 
 

 
Figure 4.40: The 'Emergency ACS Patients Database' page, featuring an overview of 
emergency patient data and user-interaction options. 
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Figure 4.41: Detailed view of an individual patient record within the 'Emergency ACS 
Patients Database'. 
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Figure 4.42: The 'Update Patient Information' interface within the 'Emergency ACS 
Patients Database', allows users to update and include remarks when necessary. 

4.3.1.6.5 Users Database 

The ‘Users Database’ maintains a record of all users registered on the ‘MyHeart ACS Air’ 

system (Figure 4.43). This database is exclusively accessible by the system administrator and 

contain user registered information including the user ID, registration data, email address, 

username, associated organization, registration status, access level, and last updated 

timestamp. The users’ passwords are encrypted and protected from the access of 

administrator.  

Aside from providing an overview of user information, this database allows for interactive 

user management. In the 'Actions' column, the admin has options to 'VIEW' individual user 

profiles (Figure 4.44) and 'UPDATE' user details as required (Figure 4.45). 

The 'VIEW' option opens a detailed page with a user's complete profile. On the other hand, 

the 'UPDATE' option takes the admin to a separate interface where changes to the user's 

profile, such as access level adjustments or account activation, can be made. 
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Figure 4.43: The 'Users Database' page, displaying an overview of registered user 
information and interactive management options. 

 
Figure 4.44: Detailed view of an individual user profile within the 'Users Database'. Univ
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Figure 4.45: The 'Update User Information' interface within the 'Users Database', 
designed for simplified user administration and profile updates. 

4.3.2 System Usability Scale (SUS)  

The system user usability test evaluation form is created based on the System Usability 

Scale (SUS), developed by (Brooke, 1996), was employed to evaluate the usability of the 

‘MyHeart ACS Air’ web system. The SUS is a reliable tool for measuring the usability and 

functionality of a website. It only comprises 10 questions with five response options from 

“Strongly Agree” to “Strongly Disagree”, each respond corresponds to a specific score, as 

shown in Table 4.12 below.  

Table 4.12: System Usability Scale (SUS) score distribution. 

Strongly Disagree Disagree Neutral Agree Strongly Agree 
1 2 3 4 5 

 

The system usability questionnaire is given to potential users of the website via Google 

Forms. These users mainly include medical personnel - especially cardiologists, as well as 

researchers. Upon deployment of the web system, we collect responses from the users and 

calculate scores based on the System Usability Scale (SUS) methodology. The 'MyHeart 
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ACS Air' web system achieved an average SUS score of 75. For more details on the SUS 

questionnaire, please refer to Appendix E. 

The SUS survey consists of 10 questions, where each question contributes equally to the 

final SUS score. Each question is alternately positive and negative, to make sure that the 

users read through the questionnaire thoroughly. Question 1, 3, 5, 7, and 9 are positive 

questions, the higher the scores are better. As for question 2, 4, 6, 8, and 10 are negative 

questions, lower scores are better. 

Table 4.13 presents the SUS detailed breakdown of SUS questions with the question type, 

the mean rating and percent agree, that gives clearer insights in which aspects of the system 

users find particularly usable or problematic. 

Table 4.13: Detailed breakdown of SUS questions, question type, mean rating, and 
percentage agreement based on user responses. 

SUS Questions Question 
Type 

Mean 
Rating 

Percent Agree 
(%) 

1. I think that I would like to use MyHeart 
ACS Air System frequently. 

Positive 4.5 91 

2. I found MyHeart ACS Air System 
unnecessarily complex. 

Negative 2.5 18 

3. I feel that MyHeart ACS Air System 
was easy to use 

Positive 4.3 82 

4. I think I would need the support of a 
technical person to be able to use 
MyHeart ACS Air System. 

Negative 2.5 18 

5. I found the various functions in 
MyHeart ACS Air System were well 
integrated. 

Positive 4.5 91 

6. I thought there was too much 
inconsistency in MyHeart ACS Air 
System. 

Negative 2.0 0 

7. I would imagine that most people 
would learn to use MyHeart ACS Air 
System very quickly. 

Positive 4.3 82 
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Table 4.13, continued. 

SUS Questions Question 
Type 

Mean 
Rating 

Percent Agree 
(%) 

8. I found MyHeart ACS Air System 
very cumbersome (awkward) to use. 

Negative 1.7 0 

9. I felt very confident using MyHeart 
ACS Air System. 

Positive 4.2 91 

10. I need to learn a lot of things before I 
could use MyHeart ACS Air System. 

Negative 2.4 18 

*Percent Agree (%) = Agree (4) and Strongly Agree (5) responses combined. 

According to Bangor, et al. (2009), a SUS score of 68 or higher is considered above 

average and acceptable by the user, as illustrated in Figure 4.47 below. As a result, a score 

of 75 corresponds to a 'B' grade. This shows a high level of usability. The system is acceptable 

to users, and users evaluated the system to be user-friendly and useful based on its 

functionality, however the system can yet be enhanced. The SUS test collects user feedback 

and identifies areas where future system versions can seek to improve usability and user 

experience even further. 

 
Figure 4.46: SUS scores grade rankings from “Determining what individual SUS scores 
mean: Adding an adjective rating scale.” (Photo sourced from Bangor, et al., 2009)
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CHAPTER 5:  DISCUSSIONS 

Air pollution has been widely acknowledged as a significant health risk, especially for 

cardiovascular diseases (CVD) such as Acute Coronary Syndrome (ACS) (Zhao, et al., 2023; 

Rus & Mornoş, 2022; Kuźma, et al., 2019). However, most studies on this topic are limited 

in the context of Southeast Asia, particularly Malaysia (Liu, et al., 2022; Kuźma, et al., 2021; 

Santurtún, et al., 2017),  

The database used for this study is unique in that it includes the three major ethnicities in 

Asia: Chinese, Indian, and Malay. Previous research relied on a homogeneous population 

database, raising concerns about its applicability to the Asian continent. Given the unique 

environmental and demographic characteristics of the country (Swee-Hock, 2015). 

Moreover, traditional risk scoring models (TIMI and GRACE) often overlook environmental 

factors (Antman, et al., 2000; Granger, et al., 2003), thus offering potential for improved 

predictive accuracy by incorporating these important variables. 

This study addresses these gaps by using machine learning (ML) and stacked ensemble 

learning (EL) models to predict the (i) hospitalization, (ii) mortality rate of ACS and (iii) the 

ACS mortality risk in relation to air pollution in Malaysia guided by the objectives and 

research questions. This novel approach enables better predictive accuracy and 

understanding of the effects of various air pollutants on the incidence of ACS using ML, 

stacked EL and SHAP analysis. 

The web system is developed by integrate the best performing ML models from this study. 

This system provides an interface where users can interact with the predictive models and 

visualize the predicted ACS hospitalization and mortality cases, displayed via Google Maps. 

Moreover, it encompasses a mortality risk calculator, thus allowing users to gain insight into 

the ACS mortality risk in the presence of air pollution. 
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This web system facilitates a better understanding of the impact of air pollution on ACS 

patients and demonstrate the significance of including environmental factors in risk 

assessment models. Besides, it also highlights the potential of ML and stacked EL in 

generating prediction that are more accurate and comprehensive. As a result, it contributes to 

research on the onset of ACS in Malaysia, potentially guiding more effective prevention and 

management strategies. 

5.1 The Impact of Air Pollution on Acute Coronary Syndrome (ACS) Hospitalization 

and Mortality Rate: A Regression Analysis 

These models utilized air pollution metrics as key predictive variables, examined over 

four specific time lags (00, 03, 07, and 30 days). Time lag 00 and time lag 03 are associated 

with short term exposure to patients, meanwhile time lag 07 and time lag 30 are associated 

with long term exposure (Bourdrel, et al., 2017). The choice of these time lags was guided 

by literature, which often reported immediate (lag 00) and short-term (lag 03) impacts of air 

pollution on ACS incidence (Zhao, et al., 2023; Liu, et al., 2022). This study also included 

longer average time lags of 07 and 30 days to capture potential weekly and monthly patterns 

in the relationship between air pollution and ACS events. Longer time lags produce models 

with higher RMSE value compared shorted time lag for prediction ACS hospitalization and 

mortality rate. The RMSE reported for time lags 03, 07 and 30 are higher, lower RMSE 

indicates better model performance (Ameer, et al., 2019). Conventional statistical methods, 

such as conditional logistic regression, are commonly used to investigate the effect of short-

term air pollution exposure on ACS, but ML research on this topic is limited (Zhao, et al., 

2023; Kranc, et al., 2021). As a result, this study focuses on short-term (time lag 00) air 

pollution exposure with ACS using ML for real-time predictions and web system integration. 

This study's discussion is based on short-term exposure to air pollution (time lag 00). 
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As a results, the findings for section 5.1 presents several insights based on time lag 00: (i) 

In comparison to time lags 03, 07, and 30, time lag 00 demonstrated the best ML predictive 

performance for ACS hospitalization and mortality based on air pollution features, (ii) ML 

outperformed EL in predicting ACS hospitalization and mortality rate, (iii) The RF model 

outperforms the other ML models in terms of predictive performance for ACS 

hospitalization, with an RMSE of 1.701, (iv) XGBoost model demonstrated better 

performance for ACS mortality rate prediction with the RMSE of 0.440, and (v) the SHAP 

summary plot indicated that nitrogen oxides (NOx) and ozone (O3) is associated with increase 

of hospitalization and mortality rate in ACS patients.  

The RMSE of 1.701 for ACS hospitalizations using RF model suggests an average 

prediction deviation of 1 to 2 hospitalized patients per day. Meanwhile, the RMSE of 0.440 

for the predicted ACS mortality rate by the XGBoost model indicates that predictions 

typically deviate by 0 to 1 predicted mortality rate. 

The ability of the RF algorithm to capture complex nonlinear relationships and handle 

large datasets with higher dimensionality contributed to its better performance in this study. 

RF is less sensitive to noise and outliers in the data and generates mean prediction of the 

individual tree derived from a large number of decision trees (Breiman L., 2001).  

The XGBoost model demonstrated to be the best algorithm for predicting ACS mortality 

rate. XGBoost is an optimized gradient-boosting ML algorithm, it can effectively capture 

minor variances in the data and provide more accurate predictions by refining its predictions 

through multiple iterations especially for constrained ranges (Chen, et. al., 2016).  

While all the developed models performed similarly in predicting ACS-related 

hospitalizations and mortality rates at lag 0, the RF and XGBoost models performed better, 
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which agrees with existing literature that uses ML in hospitalization and mortality 

rate predictions (Kim, et al., 2022; Angraal, et al., 2020; Goto, et al., 2019).  

In this study, stacked EL is used to improve predictive performance by integrating the 

base ML models (Jason, 2021). Despite the fact that a stacking ensemble model with GLM 

as the meta learner did not show a significant improvement in RMSE (ACS Hospitalization 

= 1.922; ACS Mortality = 0.444) when compared to the individual models in our study. This 

could be attributed to the individual base models' competent performance in predicting 

outcomes, resulting in limited improvement through stacked EL (Kalcheva, et al., 2020).  

ML models are frequently regarded as black-box models. SHapley Additive exPlanations 

(SHAP) is a novel methodology for examining the influence of predictor variables and their 

interactions in ML models and breaking the "black box" paradigm that underpins the 

application of automatic ML techniques (Lundberg & Lee, 2017). The SHAP summary plots 

in Figures 4.7(a) and 4.7(b) were used to interpret the ACS hospitalization and mortality rate 

based on air pollutants such as nitrogen oxides (NOx), sulphur dioxides (SO2), ozone (O3), 

and particulate matter 10 (PM10) much easier and clearer in this study. 

According to the SHAP summary plots, NOx and O3 were the top two contributors. A 

high concentration (shown in red) of these pollutants in the plot's positive SHAP value area. 

This implies that high levels of NOx and O3 in the atmosphere significantly increase the risk 

of hospitalization and mortality among ACS patients, providing clear evidence of their 

negative health effects, which is consistent with previous research on the negative health 

effects of these pollutants (Zhao, et al., 2023; Cheng, et al., 2020; Butland, et al., 2016; Raza, 

et al., 2014). 
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In Rus & Mornoş (2022) study on the pathophysiological mechanisms of air pollutants, 

stated that NOx contributes to endothelial dysfunction, as well as prothrombotic and 

proinflammatory effects, which can lead to ACS. Furthermore, researchers discovered there 

is a correlation between NO2 exposure and the incidence of NSTEMI (Butland, et al., 2016; 

Wang, et al., 2015). This study aligns with Jiang, et al. (2023) study, affirming that acute 

exposure of O3 was associated with increased cardiac hospitalization, however, the exact 

mechanism by which ozone affects ACS patients is not fully understood, since most of the 

existing literature addressed the statistical correlation, leaving the biological pathways 

unclear. 

In contrast, the SHAP summary plots of SO2 and PM10 revealed no significant influence 

of these pollutants on the outcomes, exhibiting a near-central tendency with no significant 

deviation. This observation presents an intriguing contrast to some existing literature that 

suggests potential adverse health effects of SO2 and PM10 (Díaz-Chirón, et al., 2021; Kuźma, 

et al., 2019; Zhao, et al., 2016; Lippi, et al., 2010). 

Using the SHAP summary plots, this study was able to identify and isolate the effects of 

each air pollutant, providing a clearer understanding of each feature's contribution in ACS 

events. 

5.2 Predicting Mortality Risk in Patients with ACS in the Context of Air Pollution: A 

Classification Machine Learning (ML) Approach 

To the best of our knowledge, no studies that incorporate environmental factors into a 

mortality risk prediction model have been conducted. This is the first study to show that in-

hospital and emergency mortality in Malaysian patients with ACS is predicted with air 

pollution. To predict the mortality risk of patients with ACS in Malaysia, multivariate clinical 
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features with air pollution features were used to develop ML models with stacked EL. The 

ML and stacked EL models were also validated using traditional risk scores (TIMI).  

The findings of this study can be summarised as follows: i) RF (AUC = 0.840) outperform 

other ML and EL models when using in-hospital selected features. ii) In emergency selected 

features dataset, the XGBoost algorithm outperforms other ML and EL models with the 

highest AUC (AUC = 0.844). iii) Both ML model and stacked EL developed using in-hospital 

and emergency features (AUC ranging from 0.82 – 0.84) outperformed conventional risk 

scoring score TIMI in in-hospital features (STEMI AUC = 0.791 and NSTEMI AUC = 0.659) 

and TIMI in emergency features (STEMI AUC = 0.797 and NSTEMI AUC = 0.659) iv) 

SHAP summary plots illustrate the model’s explainability, among the air pollutants, NOx 

and O3 shows impacts towards the mortality risk in ACS patients. 

Previous research has shown that models based on ML perform better in classification 

tasks than models based on conventional risk scores in ACS mortality studies (Kasim et al., 

2022a; Kasim et al., 2022b; Ke et al., 2022; Wu et al., 2021; Aziz et al., 2021; Aziida et al., 

2021; Aziz F. et al., 2019).Similar findings were reported in our study as well; this study 

introduces a novel approach by integrating environmental factors, specifically air pollution 

features, with clinical features to enhance mortality risk prediction using ML and stacked EL 

approach. The absence of environmental factors in conventional risk scoring method is 

notable, given the growing evidence of the influence of environmental factors, specifically 

air pollution, on cardiovascular health (Pope, et al., 2011). 

In this study the best ML prediction model, RF resulted in an AUC of 0.843 (95% CI: 

0.813 – 0.873) for STEMI and 0.842 for NSTEMI (95% CI: 0.795 – 0.889), based on the in-

hospital selected features dataset. Meanwhile the TIMI risk score achieved an AUC of 0.791 

(95% CI: 0.757 – 0.825) for STEMI and 0.565 (95% CI: 0.505 – 0.625) for NSTEMI.  
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In the emergency selected features dataset, the best performing ML prediction model, 

XGBoost yielded an AUC of 0.841 (95% CI: 0.821 – 0.862) for STEMI and 0.84 (95% CI: 

0.809 – 0.872) for NSTEMI. The TIMI risk score obtained an AUC of 0.797 (95% CI: 0.774 

– 0.82) for STEMI and 0.583 (95% CI: 0.543 – 0.622) for NSTEMI.  

Application of ML algorithms is promising for predicting the in-hospital and emergency 

mortality of ACS patients in the presence of air pollution, particularly the RF algorithm and 

XGBoost algorithm that exhibited superior performance. According to Liaw & Wiener 

(2002), the RF algorithm is known for its robustness in handling high-dimensional data and 

complex inter-feature interactions. In VanHouten, et al. (2014) study, RF model (AUC = 

0.848) outperforms elastic net, ridge regression, and conventional TIMI and GRACE risk 

scores in predicting ACS mortality risk, which are similar to the classification model findings 

in predicting in-hospital mortality risk of ACS patients in this study.  

The XGBoost (AUC = 0.958 [95% CI: 0.938 – 0.978]) showed promising performance in 

predicting mortality risk in patients with ACS (Wu, et al., 2021). In Ke, et al. (2022) study 

aimed to identify in-hospital mortality risk factors in ACS patients and compare the 

performance of ML prediction models. The XGBoost has the highest AUC value (AUC = 

0.918) among all other predictive models including RF (AUC = 0.913), logistic regression 

(AUC = 0.884) and SVM (AUC = 0.896). The key risk factors identified included NT-

proBNP, D-dimer, and Killip class. However, the study does not include air pollution 

features.  

The reason for the high performance of the XGBoost models can be explain by its gradient 

boosting mechanism, which enhances the predictions gradually, the algorithm generated a 

series of decision trees in a gradient boosting manner, and produced the next decision tree 

based on the current one to better predict the outcome (Chen & Guestrin, 2016). This feature 
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is especially suited to the less complex, streamlined emergency dataset, where iterative error 

correction can lead to highly accurate predictions.  

Stacked EL was also employed in this study to potentially enhance the performance of the 

ML models. However, given the robust performance of our base models, the EL did not 

demonstrate significant improvements. This is consistent with previous research by Zhang, 

et al. (2022), in which stacked EL provided limited improvement when base models already 

provided higher predictive value, owing to its complexity in model interpretation. A recent 

study by Kasim S, et al. (2023) focused on predicting in-hospital mortality in Asian women 

post-STEMI using ML and stacked EL using the same NCVD dataset and the models were 

compared to the conventional TIMI risk score, proven that ML and EL techniques provided 

more accurate classifications for Asian women with STEMI than traditional methods. SVM 

Linear, an individual ML model, outperformed the best stacked EL model.  

The TIMI score’s simplicity is recognized in current guidelines and is frequently used in 

Asia hospitals for risk assessment of patients with ACS. The TIMI risk score, originally 

established to predict mortality outcomes, its application has since been extended and it is 

widely employed to predict various mortality post-ACS onset (Chimparlee, et al., 2018; 

Timbol, et al., 2015; Correia, et al., 2014; González-Pacheco, et al., 2012; Ahmad, et al., 

2011). It was reported that the TIMI score is better than GRACE score calibration because it 

has more variables associated with ACS mortality, a balanced distribution of low, 

intermediate, and high-risk patients, and more accurate estimation (Lee, et al., 2018). In a 

comparative analysis with the widely accepted TIMI risk score, ML models in this study 

demonstrated improved predictive performance compared to TIMI risk score, especially for 

NSTEMI patients. 
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Even though the TIMI risk score is widely used in the Asian population, it was developed 

using data from a Western Caucasian cohort with limited data from an Asian population. A 

previous validation study in the Asian population reported a modest accuracy for risk 

prediction for TIMI risk score in STEMI with an AUC of 0.78 (Selvarajah, et al., 2013). 

Other conventional risk scores also performed modestly when validated in Korean registry 

study for STEMI and NSTEMI patients using AUC as a performance metric GRACE (0.851 

0.810), ACTION (0.852, 0.806) and TIMI score (0.781, 0.593) (Lee, et al., 2021). Similar 

moderate results of TIMI risk score were also demonstrated in this study, the TIMI score had 

a validation performance of 0.83 for STEMI and 0.55 for NSTEMI using the in-hospital 

dataset, and 0.79 for STEMI and 0.59 for NSTEMI using the emergency dataset.  

This is further supported from the findings from net reclassification improvement (NRI) 

of STEMI and NSTEMI patients using the in-hospital selected variables produced a NRI of 

8.71%, and 86.94% respectively when compared to the original TIMI risk score. As for 

emergency selected variables shows an improvement of 5.95% for STEMI and 50.75% for 

NSTEMI in the context of air pollution. Despite its low NRI value for STEMI patients, we 

can see that significant improvement is added to the NSTEMI population, a cohort that 

accounts for half or more of all ACS cases worldwide. In medical field, a small increase in 

the performance of predictive models is vital and capable of giving a significant impact 

(Alahmar, Mohammed, & Benlamri, 2018). In this study, we found that TIMI underestimated 

mortality risk in both lower and higher risk groups. This may cause treatment to be delayed, 

increasing avoidable deaths.  

The TIMI score has several notable limitations. First, TIMI was developed using data from 

fibrinolytic-eligible patients with STEMI where reperfusion therapy and drug-eluting stents 

were not regular treatment (Morrow, et al., 2000). Stains and antiplatelet medicines like 
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prasugrel and ticagrelor are now part of our daily routine. Because TIMI risk scores only 

reflect the key prognostic indicators, valuable information maybe missed (Kwon, et al., 

2019). Exclusion of high-risk patients is also another limitation of the risk score (Chen, et 

al., 2018). The TIMI risk score lacks risk factors associated with environmental health, 

specifically, it does not consider the impact of air pollution, which is increasingly recognised 

as a significant contributing factor in the health risks associated with ACS.  

Also, the Asian cohort was found to be carrying an overall higher disease burden and risk 

compared to TIMI cohort. The situation is worsened by the environmental factors that are 

commonly found in the Asia, as studies have shown that Asian countries are heavily impacted 

by air pollution and significantly contributes to premature mortality (Lelieveld, et al., 2015; 

Kan, et al., 2012; Gurjar, et al., 2010).  

The lack of assessment for the risk factors, reduced the TIMI risk score discriminatory 

performance (Feder, et al., 2015; Bawamia, et al., 2013). In addition, there are different 

scoring systems for STEMI cases and NSTEMI cases. The conventional TIMI score requires 

two distinct scores; TIMI for STEMI 8 risk factors include age, systolic blood pressure, heart 

rate, Killip class, anterior or left bundle infarction, prior history of angina, diabetes, or 

hypertension, and weight. Meanwhile, the TIMI Risk Score for patients with UA or NSTEMI 

is composed of seven equally weighted, binary variables (Aragam, et al., 2009). Age, aspirin 

use during the previous seven days, coronary artery disease (CAD) risk factors, known CAD, 

recent anginal episodes; ST-segment alterations of at least 0.5mm on the ECG at the time of 

initial presentation, and elevation of serum cardiac markers (Feder, et al., 2015). Kasim et al. 

(2022) have successfully identified 14 risk factors pertinent to mortality in Asian ACS 

patients, outperforming models developed via traditional statistical approaches.  
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The 14 features in ascending order based on the outcome in optimum AUC starting with 

Killip class, fasting blood glucose (FBG), heart rate, age, low density lipoprotein (LDL-C), 

oral hypoglycaemic agent, cardiac catheterization (CA), high density lipoprotein (HDL-C), 

antiarrhythmic agent, statin, chronic angina past 2 weeks, lipid lowering agent, ST-segment 

elevation ≥ 1mm in ≥ 2 contiguous limb leads and lastly is coronary artery bypass grafting 

(CABG), were subsequently included in our dataset, were subsequently included in our 

dataset and combined with the air pollution features based on the day of ACS onset. As for 

the emergency dataset, it is identical to the in-hospital dataset with lesser features, features 

that are excluded are baseline investigations (HDL-C, LDL-C, and FBG) and invasive 

therapeutic procedures (CA and CABG), the emergency features consist of a reduced set of 

variables that are easily accessible in emergency situations determined by the cardiologist, 

without the need for extensive testing or patient history. When integrated with air pollution 

parameters, these risk factors enhance the predictive accuracy of the ML models in discerning 

the impact of air pollution on ACS patients. 

The SHAP allows us to understand and make logical inferences about how these variables 

were chosen as well as their impact on outcomes of for the best model. According to the 

SHAP summary plot (Figure 4.11 and Figure 4.12), patients with higher feature values of 

Killip class, fasting blood glucose, age, and heart rate all are associated with poorer outcome 

or non-survival, where similar findings are reported in literature (Van Den Berg & Body, 

2018; Tang, et al., 2007). Statin and Oral hypoglycaemic medications also contribute 

significantly to managing patients with ACS, this finding also reflected in our SHAP analysis, 

where these pharmacological medications emerged as top features in determining mortality 

risk. Studies suggested that patients with ACS who took statins demonstrated a lower risk of 

subsequent cardiovascular events and mortality. For instance, in a research study by Sposito 
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& Chapman (2002), it was revealed that early initiation of statin therapy in ACS patients after 

an acute coronary event was associated with improved clinical outcomes.  

In ACS patients with concurrent diabetes, oral hypoglycaemic medications are crucial for 

achieving good glycaemic control, which is associated with improved outcomes in ACS 

(Prattichizzo, et al., 2020). In line with this, the in-hospital dataset identified Fasting Blood 

Glucose (FBG) as a significant risk factor for ACS mortality. This is reflective in the SHAP 

analysis where statins and oral hypoglycaemic medication emerged as a top feature in 

predicting mortality risk, underlining their critical role in the management and prognosis of 

ACS patients.  

As for air pollution association with the patient mortality, higher feature value of NOx 

and O3 also contributes the ACS mortality risk. This findings from SHAP analysis 

corresponds to the baseline characteristics derived from conventional statistics in Table 4.4 

indicates that there is significant association between mortality risk and these significant 

variables. There was a clear association observed between NOx and O3 and the probability 

of mortality in patients with ACS. From the plots we can see that in red represent high value 

of NOx and O3 contributes to the risk of mortality clearly. The results of this study align with 

the observation made in section 5.1, which identified NOx and O3 as important factors that 

have impacts on the mortality risk of ACS patients, and on the rates of ACS hospitalizations 

and mortality and may trigger the onset of ACS. Given these results also similar with in Zhao, 

et al. (2023) study, stating that positive association between NO2 and ACS patients, 

particularly patients with NSTEMI (Butland, et al., 2016). A study in China investigated the 

impact of six major air pollutants on CVD. The COX proportional hazards model showed 

that these pollutants had the greatest short-term effects, especially on the first day of 

exposure, notably, PM2.5, PM10, NO2, and CO air pollutants. Given these consistent results, 
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there's a compelling case for intensified mitigation strategies, specifically targeting 

reductions in NOx and O3 emissions. Such measures could be instrumental in lowering the 

associated mortality risks for ACS patients.  

In the broader landscape of research into the effects of air pollutants on ACS patients, 

much of the existing literature has underscored the impact of PM2.5 (Chen, et al., 2022; Zhao, 

et al., 2016; Meng X., et al., 2016). However, this study brings into focus the significant 

influence of NOx and ozone O3. While PM2.5 remains a crucial focal point in many studies 

due to its known adverse health effects, our findings emphasize that other pollutants, 

specifically NOx and O3, also warrant considerable attention, especially in areas where their 

concentrations are particularly high or on the rise. 

The findings of this study are novel because this indicates the potential importance of 

including environment factors, which have been overlooked in conventionally risk 

assessment models. Although there is limited number of studies that have integrated 

environmental factors with conventional clinical features, our findings enhance the current 

understanding of ACS by providing a more comprehensive examination of the risk factors. 

5.3 Web System Development and Evaluation 

The web system was named "My Heart ACS Air" has been developed that uses ML to 

predict ACS events and mortality risk in Malaysia while emphasizing the impact of air 

pollution on the ACS cohort. The web system enables users to generate predictions, visualize 

data, and manage ACS patients in relation to Malaysian air pollution. 

The prototyping method was utilised during the development of the 'My Heart ACS Air' 

system. The iterative approach started with the initial set up of the web system on a local 

server. Subsequently, the primary users were engaged in the evaluation and enhancement of 
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the system, offering feedback and suggestions regarding its usability and functionality. The 

website had modifications and refinements based on the insights acquired from these 

sessions. The iterative process of testing and refinement continued until the system achieved 

user expectations and fulfilled the necessary requirements. The prototyping approach ensured 

that the end-product was both functional and user-centric. 

The user interface was designed taking into consideration the wide range of potential 

users, including medical professionals, cardiologist, nurses, general practitioners, 

researchers, and possibly government policymakers. The My Heart ACS Air system’s user 

interface is designed based on Schneiderman’s Eight Golden Rules ensuring the efficiency 

and user-friendliness of the system (Shneiderman, 1986). 

According to the Schneiderman’s Eight Golden Rules of Interface Design, the system 

maintain consistency in the design elements with nice colour scheme and provides navigation 

bar for users to enhance overall efficiency. Besides, the system also provides informative 

feedback when engaging with the system, especially the ACS mortality calculator, after users 

provides the necessary input, if the patients are considered as high-risk, it will return “HIGH 

RISK PATIENT”, informing the user that the patient required attention and extra 

treatment/care.  

Furthermore, the interface has been designed to provides users with a sense of completion 

with every action sequence, while simultaneously reducing the potential errors through input 

validation, where each input is a required question, to ensure the user fill up all the input 

space, and for ‘Yes’ and ‘No’ question, the use radio buttons, that minimize error in input. 

Feedback messages to the user was also integrated to the system for example, once the user 

fill out the location information form and click the “Submit” button, the user will be directed 

to a new page stating that the data has been “Data Successfully Added”. 
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The platform’s designed is kept simple with clear instructions, thereby ensuring that users 

consistently experience a sense of control. Lastly, the system is optimized to reduce cognitive 

and memory load by keeping the data entry minimal, as evidenced by its performance in 

website speed and page insight tests. Detailed results from these tests can be found in the 

Appendix H and Appendix I. 

The System Usability Scale (SUS) was used as an assessment to evaluate the usability of 

"My Heart ACS Air”. The SUS was originally developed by Brooke (1996), it offers a 

reliable, yet 'quick and dirty', tool for assessing the usability of a system and has been widely 

use in usability testing (Grier, et al., 2013). The SUS focuses on the effectiveness, efficiency, 

and satisfaction of the user's experience, making it a crucial instrument for the post-

development phase. The SUS Questionnaire was distributed using Google Form and 

feedback was sought from a diverse set of users, including cardiologists, nurses, and 

researchers as list out in Appendix F. Thus, the SUS matrix is capable of identifying potential 

areas for improvement by utilising user feedback. The feedback was received on unexpected 

system behaviours and error handling, which often neglected by the developers.  

The system achieved a score of 77, equivalent to a grade of 'B’. Within the context of SUS 

evaluations, this score is indicative of a 'Good' user experience. This demonstrates the 

effectiveness of the iterative and prototype-driven development approach, which prioritised 

user feedback. Furthermore, the score reaffirms the system's high usability and aligns it with 

platforms that meet general user acceptability standards.  

In essence, the SUS results indicate 'My Heart ACS Air's' success in achieving its 

objective: developing a web system that incorporates ML and visualization elements to 

provide users with a better understanding of the relationship between air pollution and ACS 

in Malaysia. 
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5.4 Significant of the Study 

This study evaluating the impact of air pollution on the incidence of ACS using advanced 

ML which are integrated into a web-based system. This enables a wider user base to interact 

with and utilize the predictive model effectively. It provides a more holistic view of the 

potential triggers for ACS, which has not been traditionally considered. This study not only 

improves the accuracy of the risk assessment but also contributes to the field by highlighting 

the potential influence of environmental factors on health outcomes. Significantly, the study 

focuses on the Malaysian context, considering the unique geographical, environmental, and 

demographic factors of the region thereby enhancing its relevance and applicability for local 

healthcare providers and policymakers. 

In considering the implications of our research, several significant benefits were 

highlighted as follows: 

(i) Comprehensive Risk Assessment and Improved Prediction Models 

This prospective study provides a comprehensive understanding of ACS cases 

by incorporating environmental risk factors, typically overlooked in risk 

assessments, to evaluate the risk of mortality and hospitalization in ACS patients. 

This method allows for the improvement of prediction, prevention, and management 

strategies. 

From a clinical perspective, this research provides significant insights into 

variable factors affecting ACS mortality, presenting potential therapeutic targets. In 

terms of methodology, it demonstrates the application of ML predictive algorithms 

for healthcare professionals, particularly cardiologists and healthcare planner. 

The ML models employed in this study offer more accurate and reliable 

predictions than the TIMI risk score. As such, the ML models algorithms outperform 
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conventional risk models (Gibson, et al., 2020), which has significant implications 

for risk stratification and treatment, potentially improve measures and management 

strategies in ACS patients. 

Even though the ML models utilised in this study are quite effective at 

predicting outcomes, it is important to note that such predictions are based on 

probabilities rather than certainties. Therefore, although these models can provide 

valuable guidance, they cannot ensure specific individual results. They are intended 

to supplement the clinical judgement of healthcare professionals, not substitute for 

it. 

(ii) Interactive Web System Development 

The website is designed to simplify the instructions and operability of the 

website. The simple layout and design of the "My Heart ACS Air" are user friendly 

and versatile. The system includes functionalities like prediction calculators and 

interactive databases. All menus and control buttons were included and labelled 

clearly for user navigation. Instructions are simple to understand, and descriptions 

and explanations are provided for users who are unfamiliar with how to use the 

website. A disclaimer notice is also included on each page of the website. 

Two separated modules of admin and user are available. It increases the ease of 

the management process since the administrator can manage the registered users via 

“Users” page on the website. Therefore, all user identifications are verified and 

without the occurring of illegal user that improperly used the system and ensures 

the privacy and confidentiality of user data.  

The system is capable to store and insert the patient’s data into the database. It 

allows user to manage patient information, functions such edit, delete, and update 
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patients’ record. This is convenient for the users to make a follow-up on the 

condition of the patient after a certain time interval.  

The creation of the "My Heart ACS Air" web application allows for more 

accessible, user interaction with the results of the research, making it easier for both 

medical professionals and the public to understand the correlation between air 

pollution and ACS. This can lead to increased awareness, informed decision-

making, and proactive measures by the public regarding their health. 

In addition, the web system is accessible via mobile phone, allowing users to 

quickly navigate to the system; the print screen of the mobile version interface is 

included in Appendix J. 

(iii) Comprehensive Dataset 

This study makes use of extensive dataset from the National Cardiovascular 

Database (NCVD) and air quality data from Department of Environment (DOE) 

Malaysia that covers a period of 12 years (2006–2017). The National Heart 

Association of Malaysia (NHAM) and the DOE Malaysia were responsible for its 

curation and management. Moreover, the NCVD-ACS patient information has been 

anonymized to protect their privacy and confidentiality.  

The extensive duration of data collection allows the ML models to be trained on 

a wide range of various instances, which enhances the accuracy and reliability of 

the predictions.  

(iv) Enhanced Visualization Tool 

The “My Heart ACS Air” system consists of spatial visualization tool. Users are 

able choose the hospital location and input corresponding air quality data. In 

response, the system generates an interactive Google Map display that illustrates the 

predicted ACS hospitalization and mortality cases at the selected hospital. In 
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addition, the "Hospital (Multiple) Geo-Location Prediction" page, allows for 

simultaneous visualization of multiple hospital locations along with their predicted 

outcomes based on the user input. 

The system also aids in identifying high-risk patients, categorizing any patient 

with a mortality risk exceeding 50% as a "high-risk patient." This level of data 

presentation, accessible and easy to understand, can facilitate a deeper 

comprehension of the study's implications among medical professionals and 

government policy makers. This combination of specific geolocation-based 

prediction and risk categorization underscores the practical utility and user-friendly 

nature of this visualization tool. 

(v) Resource Allocation Guidance and Public Health Awareness 

The outcomes of this study hold profound implications for public health, 

environmental protection efforts, and resource allocation in healthcare. By 

underlining the impact of air pollution on ACS incidence, the study could potentially 

enlighten public awareness and guide policymaking in both public health and 

environmental domains. It emphasises the need for integrated health management 

that considers individual and environmental factors. 

Based on the validated ML models, the study’s predictions can help allocate 

healthcare resources to regions with a high concentration of ACS high-risk patients. 

This is significant because Malaysia has few well-equipped cardiac care facilities. 

Thus, the findings can improve the delivery of healthcare by guiding resource 

allocation., possibly improved ACS management. 

Though the research is primarily focused on the Malaysian context, its 

implications may also resonate with countries at similar stages of their evolution in 

cardiovascular healthcare delivery. The demonstrated impact of this study, thus, 
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extends beyond immediate clinical applications and can potentially influence 

broader strategies for air pollution control and cardiovascular disease management, 

leading to improved public health outcomes not only in Malaysia but also in 

comparable contexts globally. 

5.5 Limitations of the Current Study 

While the current research offers significant insights, it is also necessary to acknowledge 

the limitations inherent in our study that need to be addressed in future studies, the limitations 

are as follows: 

(i) Dependence on Manual Data Input and Limited Real-Time Data 

The primary limitation of the study is that the system depends on the manual 

input of air quality data by users. This requirement not only introduces potential 

inaccuracies and inconsistencies in the data but also adds a layer of complexity 

and redundancy for the users. Although a link to the air quality webpage for ease 

of data access is provided, the process of manual data entry is still required. Due 

to security restrictions that prevent the automatic acquisition of data readings 

from third-party sources, the data entry process is more cumbersome and less 

user-friendly than desired. 

Additionally, the inability to automatically source real-time data from the 

Department of Environment limits the system's effectiveness in providing 

immediate and up-to-date risk assessments. 

(ii) Limited Scope of Environmental Factors  

The limited range of environmental factors incorporated into the model is one 

of the study’s limitations. The lack of Particulate Matter 2.5 (PM2.5) and Carbon 

Monoxide (CO) data in our dataset limits the scope of environmental 
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considerations in our analysis. This is crucial that PM2.5 and CO are prominent 

pollutants that have been evidenced to impact the onset of ACS (Liu, et al., 2022; 

Qiu, et al., 2020; Zhao, et al., 2016; Meng, et al., 2016; Qorbani, et al., 2012). 

The unavailability of PM2.5 and CO data is due to the air quality monitoring 

station unable to capture these particular reading during the research period (2006 

– 2017) (Department of Environment Malaysia, 2021). Therefore, the lack of 

these key pollutants in our environmental considerations potentially restricts the 

full scope of our ACS risk assessment model, underscoring a crucial area for 

future research expansion. 

5.6 Future Study 

The methodology and findings can be utilized in future research to evaluate the impact of 

other environmental factors on various health conditions, potentially contributing to the 

broader field of environmental health research. Additionally, the findings can be used to 

inform public health policies related to air pollution control and cardiovascular disease 

management, potentially leading to improved public health outcomes in Malaysia, perhaps 

in Southeast Asia region as well. 

Based on the results and implications from this study, several suggestions and 

enhancements can be worked on the future work in the project to improve the efficiency and 

the performance of the model and system developed. The recommended enhancements are 

described in the following:  

(i) Develop Data Automation 

Future research should prioritise the development of data automation, particularly 

by integrating an Application Programming Interface (API) or an automated system to 

retrieve real-time air quality data from the DOE Malaysia. Thus, enhance user 
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convenience instead of manual data input and increase the accuracy of predictions by 

providing real-time environment information for the ML models. The process would 

require planning and collaboration with the relevant department to ensure consistent 

information extraction, making the system more user-friendly and reliable. Such 

improvements might substantially enhance the system's real-time prediction, 

improving our model's comprehensiveness and accuracy in predicting ACS onset. 

(ii) Further Validation of Predictive Models 

It is recommended in future research should conduct further validation and 

optimization of the ML models used in this study, testing on real-word current dataset. 

Comparison across diverse geographical and demographic contexts such as rural and 

urban hospitals in relation to local air quality readings would be able to provide new 

findings as well.  

Furthermore, apart from validation using TIMI risk score, it is encouraged to 

validate the models against other reputable risk scores, such as GRACE risk score. The 

effort in continuous validation of risk score will enhance the models’ predictive 

accuracy and reliability.  

(iii) Regular Upgrades to Web System and ML Models 

The web system and ML models should be subject to regular updates and upgrades, 

this will ensure that the tools remain accurate, relevant, and user-centric enhancing its 

overall usability and impact. 

The model could be update and retrain with the most recent datasets, which keeps 

the validity and efficacy of the models in will with the varying real-world conditions 

and relevant to current public health conditions. 

Besides, in the future can further work on the expansion of dataset parameter. The 

inclusion of additional environmental and meteorological variables into the model in 
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subsequent studies is encouraged. Incorporating measures such as PM2.5, CO, 

temperature, and humidity would provide a broader perspective on the understanding 

of the diverse environmental factors influencing the onset of ACS, further enhancing 

healthcare precision.  

For web system improvements could include practical suggestion following high-

risk prediction. Areas with high forecasted admission rates or severe cardiac risk, the 

system could suggest strategic next steps such as directing resources to the nearest 

cardiac laboratories or suggest hospitalization monitoring for high-risk patients, these 

upgrades will eventually improve the overall utility and contribution. 

(iv) Collaboration with Hospitals and Policymakers 

Future research should suggest and facilitate the application of research findings in 

hospitals and among policymakers. By putting these findings into practice, ACS 

prevention, treatment, and management strategies may be improved on a larger scale.  
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CHAPTER 6: CONCLUSION 

This study has successfully met its primary goals, providing insights on the relationship 

between Acute Coronary Syndrome (ACS) hospitalization, mortality rates, and air pollution 

in Malaysia. It has demonstrated the efficacy of Machine Learning (ML) models in predicting 

in-hospital mortality risk among ACS patients, using ACS and air quality data. These 

developments have been cohesively integrated into a web system, offering a visual 

representation of the potential health effects of air pollution.  

By integrating environmental factors to healthcare predictive models and creating an 

interactive web platform, these models can predict air pollution-related hospitalisation and 

mortality risks, revolutionising healthcare delivery. The visualization tool equips healthcare 

providers and policymakers with crucial data, enabling a deeper understanding of the impact 

of air pollution on ACS hospitalization and mortality. 

While this study is a significant step forward, its scope was limited by the timeframe of 

the input data and was limited to patients with ACS. The development and deployment of a 

system within hospital settings that allows direct data collection from healthcare professional 

users is an essential component of this future application. This system will allow for the 

continuous collection of patient data, significantly expanding our dataset for the model's 

ongoing refinement and practical application. Considerable additional research should be 

conducted on validating and updating the ML models with the most recent readings, allowing 

the ML models and web system to remain relevant and accurately reflect current trends. This 

study contributes to the larger goal of understanding and mitigating the health effects of air 

pollution by expanding the utility and applicability of these models. 
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