
 
 

PREDICTING MORTALITY OF MALAYSIAN PATIENTS WITH 

ACUTE CORONARY SYNDROME (ACS) SUBTYPES USING 

MACHINE LEARNING AND DEEP LEARNING APPROACHES 

 

 

 

 

MUHAMMAD FIRDAUS BIN AZIZ 

 

 

 

 

FACULTY OF SCIENCE 

UNIVERSITI MALAYA 

KUALA LUMPUR 

 

 

 

2022 

Univ
ers

iti 
Mala

ya



 
 

PREDICTING MORTALITY OF MALAYSIAN 
PATIENTS WITH ACUTE CORONARY SYNDROME 

(ACS) SUBTYPES USING MACHINE LEARNING 
AND DEEP LEARNING APPROACHES 

 

 

MUHAMMAD FIRDAUS BIN AZIZ 

 

 

THESIS SUBMITTED IN FULFILMENT OF THE 
REQUIREMENTS FOR THE DEGREE OF DOCTOR 

OF PHILOSOPHY 

 

INSTITUTE OF BIOLOGICAL SCIENCES 
FACULTY OF SCIENCE 
UNIVERSITI MALAYA 

KUALA LUMPUR 
 
 
 

2022 

Univ
ers

iti 
Mala

ya



ii 

UNIVERSITI MALAYA 
ORIGINAL LITERARY WORK DECLARATION 

Name of Candidate: MUHAMMAD FIRDAUS BIN AZIZ     

Matric No: 17051443/4      

Name of Degree: DOCTOR OF PHILOSOPHY 

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”): 

PREDICTING MORTALITY OF MALAYSIAN PATIENTS WITH ACUTE 

CORONARY SYNDROME (ACS) SUBTYPES USING MACHINE LEARNING AND 

DEEP LEARNING APPROACHES 

Field of Study: 

     BIOINFORMATICS 

I do solemnly and sincerely declare that: 

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing and for

permitted purposes and any excerpt or extract from, or reference to or reproduction of 
any copyright work has been disclosed expressly and sufficiently and the title of the 
Work and its authorship have been acknowledged in this Work; 

(4) I do not have any actual knowledge nor do I ought reasonably to know that the making of
this work constitutes an infringement of any copyright work; 

(5) I hereby assign all and every rights in the copyright to this Work to the University of
Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and that 
any reproduction or use in any form or by any means whatsoever is prohibited without 
the written consent of UM having been first had and obtained; 

(6) I am fully aware that if in the course of making this Work I have infringed any copyright
whether intentionally or otherwise, I may be subject to legal action or any other action as 
may be determined by UM. 

Candidate’s Signature              Date: 

Subscribed and solemnly declared before, 

Witness’s Signature       Date: 

Name: 

Designation: 

Univ
ers

iti 
Mala

ya



iii 
 

PREDICTING MORTALITY OF MALAYSIAN PATIENTS WITH ACUTE 

CORONARY SYNDROME (ACS) SUBTYPES USING MACHINE LEARNING 

AND DEEP LEARNING APPROACHES 

ABSTRACT 

The conventional risk score for predicting short- and long-term mortality following Acute 

Coronary Syndrome (ACS) is typically not population-specific and does not accommodate 

for Asian patients. The purpose of this study is to use machine learning (ML) and deep 

learning (DL) algorithms to predict and identify variables linked to short and long-term 

mortality in Asian STEMI and NSTEMI/UA patients and to compare these results to a 

conventional risk score. Model development for STEMI: in-hospital (6299 patients), 30-

days (3130 patients), and 1-year (2939 patients) and NSTEMI/UA: in-hospital (4771 

patients), 30-days (2402 patients), and 1-year (2304 patients) datasets was done using the 

National Cardiovascular Disease Database (NCVD) Malaysia registry of a multi-ethnic, 

heterogeneous Asian ACS population. 50 variables were considered for STEMI and 39 for 

NSTEMI/UA. ML algorithms were used to examine significant variables utilising feature 

selection methods. The ML feature selection approach was then used to develop ML and 

DL models using all and selected variables, which were then compared to the Thrombolysis 

in Myocardial Infarction (TIMI) score. For STEMI patients, the best ML model, a Support 

Vector Machine (SVM) classifier with sequential backward elimination (SBE) selected 

variables, produced AUC values of 0.88 for in-hospital, 0.90 for 30 days, and 0.84 for 1 

year, while the best model for NSTEMI/UA patients produced AUC values of 0.85 for in-

hospital, 0.87 for 30 days, and 0.80 for 1-year mortality prediction. The same variables 

were then used to create the best DL model for STEMI (AUC 0.96 in-hospital, 0.93 for 30 

days, and 0.90 for 1-year mortality prediction) and NSTEMI/UA (AUC 0.97 in-hospital, 
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0.91 for 30 days, and 0.88 for 1-year mortality prediction). TIMI risk score reported lower 

performance for STEMI (In-hospital: AUC=0.81, 30 days: AUC=0.80 and 1-year: 

AUC=0.76) and NSTEMI/UA patients (In-hospital: AUC=0.42, 30 days: AUC=0.49 and 1- 

year: AUC=0.42) as compared to ML and DL algorithms. Age, heart rate, Killip class, 

fasting blood glucose, and diuretics were found to be the common variables across the three 

time points in the STEMI dataset, whereas age, heart rate, Killip class, and intake of Low-

molecular-weight heparin (LMWH) were found to be the common variables in the 

NSTEMI/UA dataset. When compared to the TIMI risk score, both ML and DL were better 

at classifying ACS patients in a multi-ethnic population. ML enables the identification of 

distinct variables in Asian populations to improve mortality prediction. In the future, 

continuous testing and validation will enable improved risk classification, possibly 

modifying management and results. 

 

Keyword: STEMI, NSTEMI/UA, population-specific, deep learning, machine learning, 

mortality prediction, Asian. 
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MERAMAL KEMATIAN PESAKIT SUBJENIS SINDROM KORONARI AKUT 

(SKA) DI MALAYSIA MENGGUNAKAN PENDEKATAN  PEMBELAJARAN 

MESIN DAN PEMBELAJARAN DALAM 

ABSTRAK 

Skor risiko konvensional untuk meramal kematian jangka pendek dan jangka panjang 

berikutan Sindrom Koronari Akut (ACS) biasanya tidak khusus kepada sesebuah populasi 

dan tidak sesuai untuk pesakit Asia. Tujuan kajian ini adalah untuk menggunakan algoritma 

pembelajaran mesin (ML) dan pembelajaran dalam (DL) untuk meramal dan mengenal 

pasti pembolehubah yang dikaitkan dengan kematian jangka pendek dan jangka panjang 

dalam pesakit STEMI dan NSTEMI/UA di Asia, serta untuk membandingkan keputusan ini 

dengan skor risiko konvensional. Pembangunan model untuk STEMI: dalam hospital (6299 

pesakit), 30 hari (3130 pesakit), dan 1 tahun (2939 pesakit) serta NSTEMI/UA: dalam 

hospital (4771 pesakit), 30 hari (2402 pesakit), dan 1 tahun (2304 pesakit) telah 

dilaksanakan menggunakan Pangkalan Data National Cardiovascular Disease (NCVD) 

Malaysia bagi populasi ACS Asia yang berbilang etnik dan heterogen. 50 pembolehubah 

telah dipertimbangkan untuk set data STEMI dan 39 untuk set data NSTEMI/UA. 

Algoritma ML digunakan untuk mengkaji pembolehubah penting menggunakan kaedah 

pemilihan ciri. Pendekatan pemilihan ciri ML kemudiannya digunakan untuk membina 

model ML dan DL menggunakan semua pembolehubah terpilih, yang kemudiannya 

dibandingkan dengan skor Thrombolysis in Myocardial Infarction (TIMI). Bagi pesakit 

STEMI, model ML terbaik, Mesin Vektor Sokongan (SVM) dengan pembolehubah terpilih 

menggunakan penghapusan berurutan dari belakang (SBE), menghasilkan nilai AUC 

sebanyak 0.88 untuk dalam hospital, 0.90 untuk 30 hari dan 0.84 untuk 1 tahun, manakala 

model terbaik untuk pesakit NSTEMI/UA menghasilkan nilai AUC sebanyak 0.85 untuk 
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dalam hospital, 0.87 untuk 30 hari dan 0.80 untuk ramalan kematian 1 tahun. 

Pembolehubah yang sama kemudiannya digunakan untuk membina model terbaik DL 

untuk set data STEMI (AUC 0.96 dalam hospital, 0.93 untuk 30 hari dan 0.90 untuk 

ramalan kematian 1 tahun) dan NSTEMI/UA (AUC 0.97 dalam hospital, 0.91 untuk 30 

hari, dan 0.88 untuk ramalan kematian 1 tahun). Skor risiko TIMI melaporkan prestasi yang 

lebih rendah untuk STEMI (Dalam hospital: AUC=0.81, 30 hari: AUC=0.80 dan 1 tahun: 

AUC=0.76) dan pesakit NSTEMI/UA (Dalam hospital: AUC=0.42, 30 hari: AUC =0.49 

dan 1- tahun: AUC=0.42) berbanding algoritma ML dan DL. Umur, kadar denyutan 

jantung, kelas Killip, glukosa darah puasa dan pengambilan ubat diuretik telahpun dipilih 

sebagai pembolehubah yang serupa merentas tiga titik masa ramalan kematian dalam set 

data STEMI, manakala umur, kadar denyutan jantung, kelas Killip dan pengambilan ubat 

“low-molecular weight heparin” (LMWH) didapati sebagai pembolehubah yang sama 

dalam dataset NSTEMI/UA bagi tiga titik masa ramalan kematian. Jika dibandingkan 

dengan skor risiko TIMI, kedua-dua ML dan DL melaksanakan tugas yang lebih baik 

dalam mengklasifikasikan pesakit ACS dalam populasi berbilang etnik. ML membolehkan 

pengenalpastian pembolehubah yang berbeza dalam populasi Asia untuk meningkatkan 

kebolehan ramalan kematian. Pada masa hadapan, ujian dan pengesahan berterusan akan 

membolehkan klasifikasi risiko yang lebih baik terhadap algoritma yang tersedia ada ini, 

dan mungkin juga dapat mengubah suai pengurusan dan keputusan pesakit ACS. 

 

Kata kunci: STEMI, NSTEMI/UA, khusus populasi, “machine learning”, “deep learing”, 

ramalan kematian, Asia. 
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CHAPTER 1: INTRODUCTION 

1.1 Background of the study 

The title of the study is ‘Predicting Mortality of Malaysian Patients with Acute 

Coronary Syndrome (ACS) Subtypes using Machine Learning and Deep Learning 

Approaches’. As the title suggests, this study introduces new methods of predicting the risk 

of ACS subtypes patient mortality; STEMI and NSTEMI/UA using machine learning (ML) 

algorithms in the short and long-term period using a multi-ethnic Malaysian registry.  

Cardiovascular disease (CVD) is the primary cause of death in the world. This is 

despite recent advances in health care systems, pharmacotherapy including fibrinolytic and 

revascularization options such as percutaneous coronary intervention (PCI) with the use of 

drug-eluting stents and Coronary Artery Bypass Surgery (CABG) (Reddy et al., 2015; 

WHO, 2020). Acute coronary syndrome (ACS) is a type of CVD that is defined as unstable 

angina (UA), ST-Elevation Myocardial Infarction (STEMI), and non-ST-Elevation 

Myocardial Infarction (NSTEMI) (Damman et al., 2017). According to World Health 

Organization (WHO), cardiovascular disease is responsible for 16% of the world's 

mortality and this disease has been the highest contributor to the increase in death since the 

year 2000, rising by more than 2 million to 8.9 million deaths in 2019 (WHO, 2020). CVD 

was also the leading cause of death in Asia in 2019, causing 10.8 million deaths, which 

were approximately 35% of the total deaths in Asia and 39% in South-East Asia 

specifically (IHME, 2020). Ischemic heart disease remained the leading cause of death in 

Malaysia in 2019, accounting for 15% of the 109,164 medically certified deaths (DOSM, 

2020). 20-25% of all deaths in public hospitals are attributed to coronary artery diseases 

(CAD) with a higher mortality rate reported for 30-day mortality following ACS (Hoo et 

al., 2016). 
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It is critical to recognise a patient with ACS as soon as possible since the right 

treatment and monitoring can significantly improve the patient's prognosis. Identifying a 

patient’s risk of complications or death is necessary to make decisions on escalating or de-

escalation of treatment. To do this, risk scores derived from cohorts of patients are used in 

creating models. Risk scores such as Thrombolysis in Myocardial Infarction (TIMI) or the 

Global Registry of Acute Cardiac Events (GRACE) are frequently used to predict the 

mortality risks associated with ACS. These traditional risk scores are derived from research 

involving mostly Caucasian individuals and just a small number of Asian patients (Peng et 

al., 2017). Younger patients with myocardial infarction (MI), a larger burden of diabetes 

mellitus, hypertension, and renal failure, as well as a higher prevalence of delayed 

presentation for medical care, are more common in Asian nations. Premature mortality in 

Asia (39%) significantly greater than premature CVD deaths in the United States (23%), 

Europe (22%), and the rest of the world (34%) (IHME, 2020). Malaysia is unique in that it 

is heterogeneous owing to innate genetic differences in a multi-ethnic population that is 

already diversified. Any study of disease among distinct ethnic groups is challenged by 

other factors such as lifestyle, geography, and socioeconomic level. Ethnicity variations 

will result in different disease rates and risk variables from one country to another (Anand, 

1999; Peng et al., 2017). This demonstrates that these risk scores are not population-

specific and may be unable to account for regional differences in disease burden, healthcare 

resources, and management options. The inability to accurately classify patients into 

appropriate risk scores may underline the differences in outcomes. These factors may 

explain the discrepancy of outcomes amongst Asian patients being treated for ACS. 

When TIMI scores were examined between Asians and Caucasians, it was shown that 

Asians had a greater incidence of STEMI with similar mortality risk. This disparity is 

difficult to explain, especially given the fact that Asian patients have a greater disease 
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burden (Selvarajah et al., 2012). Aside from that, traditional cardiovascular disease risk 

assessment models presume a linear relationship between risk factors and clinical 

outcomes, resulting in an oversimplification of an actually complicated relationship. 

Models that take into account these various risk variables and outcomes, such as the 

application of Artificial Intelligence (AI), are needed (Kim & Groeneveld, 2017; 

Obermeyer & Emanuel, 2016). 

AI techniques such as ML and Deep Learning (DL) may play a key role in the 

advancement of cardiovascular therapy by facilitating precision cardiovascular 

investigations (Krittanawong et al., 2017). Traditional regression-based prediction models 

of CVD occurrences are used to create conventional risk scores, while AI techniques are 

known as strategies to overcome their shortcomings. The key aims of AI-based mortality 

prediction models are to establish connections between diverse illnesses, achieve high 

prediction accuracy, and interpret missing and outlier data well. It is also feasible to 

undertake data analysis with dependent variables on limited and incomplete training data 

sets, which is a drawback of the regression-based model (logistic regression and Cox 

proportional hazard regression models) (Hsieh et al., 2019). 

ML algorithms are equipped to handle complex data and provided accurate risk-

prediction models at the population-specific level (Wallert et al., 2017). ML algorithms also 

requires feature selection methods to achieve higher model performance accuracy (Chen & 

Ishwaran, 2012). To conduct ML, there are three things needed, namely, input data points, 

examples of the expected output, and performance metrics (Chollet, 2018).  

On the other hand, DL enables computational models that consisted of multiple layers 

of processing to learn data representations with multiple abstraction levels. According to 

LeCun et al. (2015), DL does not perform feature selection but instead uses feature 

learning. Feature learning can only learn all of the variables that have been presented and 
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do the tasks that have been assigned to it, such as classification and detection, in order to 

gain relevant variables that can be used to predict the outcome. However, finding a limited 

number of variables related to mortality is critical for identifying characteristics of high-risk 

patients in clinical practice and improving patient care. Hence, this study employed the 

features selected by the best ML model into the DL model for the precision of the outcome. 

There have been some previous studies that employed both ML and DL algorithms to 

develop predictive models in predicting the risk mortality of patients with ACS from 

countries such as United States of America (Frizzell et al., 2017), Sweden (Wallert et al., 

2017), Israel (Shouval et al., 2017), Korea (Lee et al., 2021; Sherazi et al., 2021) and China 

(Li et al., 2020). The results of their studies showed that DL or ML models that they 

developed outperformed the conventional risk scores such as TIMI and GRACE risk scores 

by achieving higher AUC values. Some of the common algorithms used for the ACS 

patient’s mortality prediction are Naïve Bayesian Network, Random Forest, Support Vector 

Machine, Gradient Boosting, Extreme Gradient boosting, Ada Boost, Alternating Decision 

Tree, and Deep Neural Network. 

Based on the promising performance of the ML and DL algorithms in previous studies, 

these algorithms were employed as an alternative to the present conventional risk scoring 

approach in the real world. This study will aid in the management of patients as well as 

potentially improve patient outcomes and reduce treatment costs for both patients and 

hospitals. 

Advances in the identification and management of those high-risk patients with CVD 

risk factors have resulted in substantial reductions in mortality rates in high-income 

countries (Leong et al., 2017). This finding emphasises the importance of developing 

population strategies that focus on reducing the incidence of death, as well as the primary 

and secondary prevention of CVD.  
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Hence, obvious economic constraints must be acknowledged, and the capital expense of 

these high-priority approaches must be viewed in a broader context. Compatibility studies 

can help pick which treatment and prevention activities to adopt given the restricted 

financial resources for healthcare. This approach will help make healthcare services more 

efficient in the future. 

In evaluating the effectiveness of the medical intervention, several outcome points may 

be considered. Surrogate outcomes such as patients’ biomarker readings can reflect a short-

term change in response to treatment. This however may not matter if it fails to improve 

health care or individual finances. As such, death is useful as a hard outcome. It is well 

documented by Malaysian National Registration Department, captured in the 

Cardiovascular Registry, and commonly used as an outcome measure to benchmark 

standards of care. Using in-hospital death reflects the care received by patients by the 

healthcare system prior to arriving at the health care facility (pre-hospital care). This 

reflects the strength of community care, emergency medical services as well as acute 

medical care (emergency departments). The use of 30 days death reflects care received 

during the acute phase in the hospital and reflects the quality of the hospital, sufficient 

manpower as well as access to interventions that could save lives. 1-year death reflects the 

care received by patients during the post-acute care in the community. It is during this 

period that the intervention directed to medication adherence and lifestyle intervention are 

reflected.  

Many middle- and low-income countries will have significant challenges in applying 

proven treatments. Cost and lack of personnel negate the implementation of optimised 

strategies to improve health (Joseph et al., 2017). These challenges affect health systems, 

practitioners, or patients, resulting in large evidence-practice gaps. Thus, health systems 

must integrate research findings into practice in order to reduce the burden of CVD. To 

Univ
ers

iti 
Mala

ya



6 
 

achieve maximum potential, the best available evidence must be combined with an efficient 

governance framework to close the knowledge gap, and this study may aid in addressing 

such issues and improving the country's healthcare system administration. 

1.2 Overview of the study 

This study was carried out since there has been limited research on ML-based mortality 

prediction models in clinical ACS patients, particularly in a multi-ethnic country such 

as Malaysia, implying the need to assess and forecast mortality. Numerous conventional 

risk scores are still used to objectively assess a patient's risk-benefit ratio following ACS 

occurrence, but the development of the risk stratification method is not population-specific 

since the majority of risk scores were developed nearly two decades ago and were based on 

a predominantly Caucasian population, and as different cultures and lifestyles may 

influence the predictors and outcome of a patient from another region of the world. Hence, 

with the growing use of ML methods as a classifier in the medical field, this study 

considers it as an alternative in developing a risk prediction method for multi-ethnic 

Malaysian patients with ACS subtypes. The ML-based prediction model additionally 

adjusts the prediction models to be more population-specific by combining pre-selected 

variables from the current traditional technique with other relevant predictors. 

These past few years, the emergence of a branch of ML method called deep learning 

(DL) has been widely used in the medical field, but it has a small number of applications in 

predicting mortality of ACS patients, especially in Asia counterpart. Hence, this study also 

used DL to compare its effectiveness together with ML methods for predicting mortality of 

ACS patients in Malaysia. 
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Patients with ACS subtypes had their mortality predicted at three separate time points: 

in-hospital, 30 days, and 1-year. In the future, this algorithm will be tested in a real-world 

setting using a web-based system. 

 

1.3 Problem statement  

The best method to minimise ACS-related deaths in Malaysia is to take preventative 

measures and provide appropriate treatment to ACS patients (Ho et al., 2008). This 

alternative can be assisted by the building of a predictive model to calculate the mortality of 

patients while being treated in the hospital.  

Extension of the medical field with the aid of the AI method may be an evolutional way 

of predicting mortality after the ACS. The main purpose of developing the model is to 

assist medical practitioners in Malaysia in taking further precautions after a patient's first 

ACS to prevent a second attack that could result in death, based on fitting data of coronary 

illnesses in the Malaysian population. Hence the problem statement to this study arises 

from these statements which are: 

 Inability to identify the factors that give a high contribution to ACS occurrence. 

 

 Lack of precise prediction model of patient mortality after ACS for Malaysian 

population in medical practices. 

 

 Limitation in the existing conventional risk score. 
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1.4 Research questions 

RQ1: What are the factors affecting the mortality of ACS patients after their ACS 

occurrence? 

RQ2:  Which ML and DL predictive model is suitable to predict mortality in ACS patients? 

RQ3: What is the difference in performance between the ML and DL predictive model 

with the existing conventional predictive model used in Malaysia? 

 

1.5 Research objectives 

This study aims to develop a prediction model using ML methods to predict the 

mortality of the patients after their ACS episode using a list of predictors. The objectives of 

the study are as follows: 

 To identify factors affecting the mortality of ACS patients after their ACS 

occurrence using ML methods. 

 To build a predictive model that is suitable to predict mortality after the first ACS 

for the Malaysian population.  

 To compare the performance of the ML and DL predictive model with the 

conventional existing model. 

 

1.6 Scope of research 

This study focused on the ACS subtypes STEMI and NSTEMI/UA, as these are two 

categories that account for the majority of CVD mortality. The sample dataset in this study 

consisted of demographic, patient's status before the event, clinical representation, baseline 
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investigation, electrocardiography, treatment, and pharmacological therapy data from 

Malaysians diagnosed with ACS from the National Cardiovascular Disease Database 

(NCVD) from 2006 to 2016. This is to ensure the features observed, and the predictive 

model is suitable for the use of the Malaysian population. The outcome of the dataset is the 

survival or non-survival of patients during the period of in-hospital, 30 days and 1 year 

from the ACS occurrence.  Three ML models were developed using Random Forest (RF), 

Support Vector Machine (SVM), and Logistic Regression (LR), and two feature selection 

methods were used for each of the ML models which are Sequential backward elimination 

(SBE) and Recursive Feature Elimination (RFE). The development of the DL model were 

based on the variables selected by the best ML model because DL cannot perform feature 

selection. The results of all of these models were then be compared to the TIMI risk score, 

a widely used risk scoring system in Malaysia. The best performing models built using ML 

and DL will be chosen to be incorporated into the proposed system among the developed 

models.  

1.7 Thesis Outline 

Chapter 1: Introduction. This chapter describes the cardiovascular event in Malaysia and 

how crucial it is to overcome the issue. It also expresses the current methods being used 

and how obscure it is to the Malaysian population. A few alternative methods of prevention 

are being introduced and considered based on the current technology.  Research problems, 

objectives, and scopes are clearly stated in this chapter. 

Chapter 2: Literature Review. This section entails the study's full details. It presents an 

overview of STEMI and NSTEMI/UA, as well as their conventional risk scores and the risk 

variables that influence STEMI and NSTEMI/UA patient mortality. It also assesses 
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previous research and studies on ML and DL model development for heart disease patients, 

as well as existing mortality prediction systems. A background review of the proposed 

methodologies is also included in this chapter, which encompasses preprocessing, 

development, parameter tuning, model performance evaluation, and statistical analysis.  

Chapter 3: Methodology. This chapter elaborates on the methodologies and steps to 

develop the proposed ML and DL models together with the evaluation of the best models’ 

performances.  

Chapter 4: Results. This chapter summarised the prediction outcome and the 

performance of each ML and DL method.  

Chapter 5: Discussion. This chapter evaluates the performance of the best model and 

compares the prediction results with the TIMI risk score. It also discusses the predictors 

that lead to mortality of STEMI and NSTEMI/UA patients with the predictors from other 

risk scores. Secondary analyses of the best prediction models are also discussed in this 

chapter.  

Chapter 6: Conclusion. This chapter summarised the whole study, including the 

strengths, limitations, and further improvements to this study. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Acute Coronary Syndrome (ACS) 

According to the most recent WHO data, 34,766 people died in Malaysia from coronary 

heart disease in 2018, accounting for 24.69% of all deaths (WHO, 2020). With a death rate 

of 157.39 per 100,000 inhabitants, Malaysia is ranked 64th in the world. CVD is 

responsible for 16% of global mortality, and it has been the leading cause of death increase 

since 2000, with more than 2 million deaths in 2019 compared to 8.9 million in 2000. In 

2019, ischemic heart disease (IHD) was the largest cause of mortality in Asia, accounting 

for 10.8 million deaths, or about 35% of all deaths in Asia and 39% in South-East Asia 

(IHME, 2020). According to Malaysia's Department of Statistics, IHD was the biggest 

cause of death in 2019, accounting for 15% of the country's 109,164 medically certified 

deaths. According to the National Heart Association Malaysia (NHAM)'s Annual Report of 

the Acute Coronary Syndrome (ACS) Registry, 2014–2015, 46.1% of all patients admitted 

with ACS in 2014–2015 had ST-elevation myocardial infarction (STEMI), 25.2% had non-

STEMI (NSTEMI), and 28.7% had unstable angina (UA) (Ahmad, 2017). 

IHD presents itself clinically as ACS. A condition in which a segment of the heart 

muscle is unable to function properly due to a reduction in blood flow in the coronary 

arteries, resulting in cell death, is known as ACS (Amsterdam et al., 2014). Fatty deposits 

in and on the walls of the coronary arteries - the arteries that supply the cell with oxygen 

and nutrients – cause this to happen (Acharya et al., 2017). Even if the diminished blood 

flow does not result in myocardial necrosis, it changes the function of the heart and leads to 

MI. 

 

Univ
ers

iti 
Mala

ya



12 
 

MI is a subset of the ACS, causes the death of cardiac muscle indicated by elevated 

cardiac biomarkers levels in the setting of acute ischemia (Barstow et al., 2017). The 

patients usually presented with chest pain. Various combinations of the chest, upper 

extremity, jaw, or epigastric discomfort during exertion or at rest are also possible ischemic 

signs. Acute MI causes discomfort that lasts at least 20 minutes. Discomfort is frequently 

widespread, not localised, positional, or affected by the movement of the region, and it 

might be followed by dyspnoea, diaphoresis, nausea, or syncope. These symptoms are not 

exclusive to myocardial ischaemia and might be mistaken for gastrointestinal, neurological, 

pulmonary, or musculoskeletal problems. MI might present with atypical symptoms or 

possibly go unnoticed, with only an ECG, biomarker elevations, or cardiac imaging to 

detect it (Thygesen et al., 2007). 

The diagnosis of MI can only be confirmed based on the presence of myocardial injury 

(myocardial necrosis) in a clinical setting together with myocardial ischemia indicated by 

the cardiac biomarker value fluctuation (preferably cardiac troponin) with at least one value 

above 99th percentile of upper reference limit (Thygesen et al., 2018). In addition, there 

should be at least one of the following: 

 Clinical history is consistent with chest pain or ischaemic origin. 

 ECG changes of new ST-T changes or new left bundle branch block (LBBB) 

indicative of new ischaemia. 

 Development of pathological Q waves in the ECG. 

 Imaging evidence of new loss of viable myocardium or new regional wall motion 

abnormality. 

 Identification of an intracoronary thrombus by angiography or autopsy. 
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After a few revisions on MI definitions, medical practitioners have divided MI into five 

smaller subgroups based on pathological and clinical features (Thygesen, 2007). 

Table 2.1:Types of MI. 

Type Description 

1: Spontaneous 
MI 

Spontaneous MI is related to atherosclerotic plaque rupture, 
ulceration, fissuring, erosion, or dissection with resulting intraluminal 
thrombus in one or more of the coronary arteries leading to decreased 
myocardial blood flow or distal platelet emboli with ensuing myocyte 
necrosis. 

2: MI secondary 
to an ischaemic 
imbalance 

In instances of myocardial injury with necrosis where a condition 
other than CAD contributes to an imbalance between myocardial 
oxygen supply 

3: MI resulting 
in death when 
biomarker 
values are 
unavailable 

Cardiac death with symptoms suggestive of myocardial ischaemic and 
presumed new ischaemic ECG changes or new LBBB, but death 
occurring before blood samples could be obtained before cardiac 
biomarker could rise, or in rare cases, cardiac biomarkers were not 
collected 

4 a: MI 
related to 
PCI 

MI associated with PCI is arbitrarily defined by the elevation of 
cardiac troponin (cTn) values > 5 x 99th percentile upper reference 
limits (URL) in patients with normal baseline values  
99th percentile URL) or a rise of cTn values > 20% if the baseline 
values are elevated and are stable or falling. 

b: MI 
related to 
stent 
thrombosis 
 

MI associated with stent thrombosis is detected by coronary 
angiography or autopsy in the setting of myocardial ischaemia and 
with a rise and/or fall of cardiac biomarkers values with at least one 
value above the 99th percentile URL. 
 

5: MI related to 
CABG 
 

MI associated with CABG is arbitrarily defined by the elevation of 
cardiac biomarker values 10 x 99th percentile URL in patients with 
normal baseline cTn values (99th percentile URL). 

 

2.1.1 Classification of ACS  

MI is a subset of ACS which is defined based on its spectrum of clinical presentation 

upon admission or cardiac arrest. Patients who are diagnosed with MI are further classified 

into ST-Elevation Myocardial Infarction (STEMI) and non-ST Elevation ACS, which 
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comprises of unstable angina (UA) and non-ST-Elevation Myocardial Infarction 

(NSTEMI). These subsets of ACS differ from each other based on the three parameters 

evaluated prior to diagnosis; presenting signs and symptoms, rapid electrocardiography 

(ECG), and cardiac biomarkers. 

STEMI is defined as cardiac ischemia symptoms characteristic with persistent ST-

segment elevation in the resting ECG supported by the presence of raised cardiac 

biomarker (O’gara et al., 2013). STEMI chest pain starts suddenly and lasts for more than 

thirty minutes. It commonly starts in the middle of the chest and radiates down the left arm 

or to the jaw. It might happen when patients are at rest or when doing something active 

(MOH, 2019). Rapid access to coronary revascularization techniques is advocated and 

reducing door-to-balloon times for these patients remains a top focus. The chosen cardiac 

biomarker in individuals with clinical symptoms and an ECG diagnosis of STEMI is CK-

MB. Troponins are not needed in this case because there is already evidence of myocardial 

damage on the ECG. 

If there was no ST-elevation in the ECG, the patients are to be diagnosed either with 

NSTEMI or UA. NSTEMI is the persistent symptoms with elevated cardiac biomarker 

without ST-segment elevation while UA produces the same suggestive symptoms of 

cardiac ischemia but no elevation in the cardiac troponin level. In most individuals with 

NSTEMI/UA, chest pain is a presenting symptom. Retrosternal, central, or left chest pain 

or discomfort is common, and it might radiate to the mouth or down the upper limb. 

Crushing, pressing, or burning are examples of natural processes. The intensity of the pain 

varies (MOH, 2011). Troponins - cTn (I or T) are the recommended biomarkers if the 

clinical symptoms and ECG are suggestive but not definitive of MI. 
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This more comprehensive definition of MI, which incorporates updated cardiac 

biomarkers and imaging tools, improves the sensitivity of MI diagnosis (Salomaa et al., 

2005).  Figure 2.1 below shows the summary of patient MI classification upon presentation 

and Figure 2.2 depicts the ECG pattern of the different ACS subtypes. 

        

Figure 2.1: Procedure for assessing patients suffering from chest pain. (Antman et al., 
2008).                     
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Figure 2.2: The depiction of ECG pattern of normal, STEMI, NSTEMI (ST 
depression), and NSTEMI (T inversion). (Pleister et al., 2013).                                                                                                                                                                                                                                                          
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A STEMI heart attack occurs when a blood clot develops abruptly and totally blocks a 

heart artery. This can cause damage to the heart muscle that reaches deep into it and covers 

a huge portion of the heart. The goal of STEMI heart attack treatment is to open the artery 

as rapidly as possible, preserving as much heart muscle as feasible. PCI, which includes 

both angioplasty and stenting, as well as clot-busting medicines and CABG, are all 

alternatives for treatment (MOH, 2019).  

NSTEMI/UA heart attacks differ from STEMI heart attacks in several ways, the most 

notable of which is how they appear on an ECG. Damage from a heart attack caused by 

NSTEMI/UA does not always reach the whole depth of the heart muscle. Different forms 

of blood clots, with varying quantities of clotting proteins and platelet blood cells, cause 

NSTEMI/UA heart attacks, much as STEMI heart attacks. As a result, treatment for 

NSTEMI/UA heart attacks differs from that for STEMI heart attacks. Clot-busting drugs, 

for example, are inefficient, and while PCI may be utilised as part of the treatment, the 

primary objective is not to open the artery in less than 90 minutes. As a result, medications 

to protect the heart and reduce its workload (beta-blockers, nitroglycerin, and possibly an 

angiotensin-converting-enzyme (ACE) inhibitor or angiotensin-receptor blocker) will be 

continued, and the patient will only be transferred for coronary angiography with the goal 

of revascularization if the condition worsens (MOH, 2011).   

UA and NSTEMI elevation myocardial infarction are frequently accompanied with a 

white, platelet-rich, and only partly occlusive thrombus. Microthrombi can detach and 

embolize downstream, resulting in MI and ischaemia. STEMI, on the other hand, has a 

more stable occlusive thrombus that is red and fibrin rich.  

NSTEMI and UA are loosely related conditions with similar pathophysiologic origins 

and clinical manifestations, albeit their severity differences (Reed et al., 2017). Due to the 
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clinical entities in the acute coronary syndrome spectrum of disease overlap, many trials 

include participants with either UA or NSTEMI, allowing for similar treatment options 

(Grech & Ramsdale, 2003). Following that statement, in this ACS subtype mortality 

prediction study, NSTEMI and UA were placed in the same patient category and STEMI in 

its stand-alone category. 

2.2 Risk factor of ACS  

Risk stratification and identification are crucial in lowering CVD burden by gathering 

information from patients about pain features and symptoms, risk factors or a history of 

cardiovascular disease, and recent medication usage. Risk factors for MI include 

demographic factors, patient's status before the event, clinical representation, baseline 

investigation, electrocardiography, treatments, and pharmacological therapy (Torpy et al., 

2009).  

CVD burden and mortality are also unequally distributed in the population, with 

substantial differences by age, sex, and race or ethnicity, which is why these variables are 

critical for predicting mortality (Mensah et al., 2005).  Aging can cause changes in the heart 

and blood vessels that cause high blood pressure, or hypertension (Ahlgren et al., 1997). 

The difference in gender plays an important role. Men tend to suffer from a heart attack at 

an earlier age compared to women. Women, however, have a worse outcome compared to 

men and often present with atypical chest pain and take a longer time to seek medical care 

(Khesroh et al., 2017). Ethnicity, particularly South-East Asians, has a unique 

cardiovascular risk profile, with high rates of insulin resistance, glucose intolerance, central 

obesity, and diabetes, as well as elevated blood levels of other CAD risk factors 

(Chaturvedi, 2003). In Malaysia, Malays have a higher body mass index (BMI), whilst 
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Chinese have a greater incidence of hypertension and hyperlipidemia, and Indians have a 

higher prevalence of diabetes mellitus and a family history of early CAD (Lu & Nordin, 

2013). 

According to the National Health and Morbidity Survey (NHMS), Malaysia’s top 

morbidity diseases that lead to cardiovascular disease are diabetes mellitus, hypertension, 

hypercholesterolemia, and smoking (IPH, 2015). Hence, patients' representations prior to 

admission are also crucial for mortality determination (IPH, 2015). This is because a high 

level of fats or glucose in the blood causes blood vessels to constrict, disrupting the flow of 

oxygen to the heart muscles, and ultimately resulting in MI. Smoking, on the other hand, 

may also contribute to vessel hardening including calcification of the artery wall.  

Patients' clinical presentation, such as systolic and diastolic blood pressure and Killip 

class is essential.  Intra-cavitary pressures and the shear stress force of muscle contraction 

against an inert and necrotic region are affected by blood pressure, resulting in laceration 

and finally rupture (Birnbaum et al., 2003). The Killip class predicts survival in individuals 

who have had an acute heart attack, with a higher class indicating a greater risk of death 

(Juhan et al., 2019).  

Lipid profile and glucose level in blood are essential for the prediction of mortality since 

these are the indicators of the common morbidity disease such as diabetes and 

hypertension. The observed decrease in cardiac events after lipid treatment is linked to 

changes in both LDL and HDL levels (Meeusen et al., 2017). Hence it is important for risk 

stratification. Additionally, there is growing evidence that glucose parameters are 

independent CVD risk factors (Hryhoriy, 2016). 
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The electrophysiology of the heart is measured by an ECG. ECG abnormalities reveal 

the myocardium's electrical instability; hence, ECG can be utilised to screen for susceptible 

myocardium that could lead to acute MI (Myers et al., 2017). Quantitative metrics derived 

from resting ECG, ambulatory ECG, and stress ECG have been used to predict CVD events 

and death in the past. 

In stable CAD, the goal of therapy is to improve symptoms and survival. This mostly 

entails lifestyle adjustments and the most appropriate medical treatment. In patients with 

left main stem stenosis or complicated three or more vessel coronary artery disease, CABG 

has been shown to have a survival benefit over PCI, particularly in diabetic patients (Mohr 

et al., 2013). Angioplasties, also known as PCI, are non-surgical procedures that involve 

catheter to insert a tiny device called a stent into the heart to widen blood arteries that have 

been restricted due to the buildup of atherosclerotic plaque while CABG bypasses the 

restricted or blocked coronary arteries by connecting blood vessels from another section of 

the body to blood vessels above and below the affected artery (Levine et al., 2016).  

ACE inhibitors, beta-blockers, diuretics, calcium channels blockers, Angiotensin 

receptor blockers (ARB), and antiarrhythmic agents are important to ACS patients because 

they relieve symptoms, slow disease progression, prevent hospitalisation, and, most 

importantly, reduce mortality, which is why medications are taken into account when 

predicting patients' mortality (Packer, 2017). Diabetic patients with cardiovascular risk are 

also treated with a statin, lipid-lowering agent, and insulin which can dramatically reduce 

the morbidity and mortality associated with ischaemia, heart failure and control the blood 

glucose and cholesterol level of patients with diabetes or hypertension (Tran et al., 2020). 

Table 2.2 summarises prior studies from around the world on the risk factors for ACS. 
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Table 2.2: List of previous studies conducted in finding the risk predictors that are 
associated with ACS. 

Authors The 
population 

studied 
(location) 

Number of 
populations 

Risk factor finding 

(Ralapanawa 
et al., 2019) 

Sri Lanka  300 Smoking, alcohol consumption, 
hypertension, diabetes miletus, history 
of ACS, and dyslipidemia 

(Borrayo-
Sanchez et al., 
2018)  
 

Mexico 21,827  Age, gender, BMI, smoking status, 
hypertension, diabetes mellitus, 
dyslipidemia, metabolic syndrome 
(VCEPATPIII), cardiovascular history 
(previous myocardial infarction, 
previous angina, cerebrovascular 
accident), clinical manifestations 
(typical chest pain, dyspnea, syncope, 
neurovegetative symptoms) and 
hemodynamic assessment (heart rate, 
respiration rate, systolic blood 
pressure, and diastolic blood pressure) 

(Szabó et al., 
2021) 

Hungary 287 Time to system onset, door to balloon 
time, age, gender, area at risk, 
resuscitation, smoking, diabetes, peak 
creatine kinase level, and hemoglobin. 

(Sugane et al., 
2021) 

Japan 657 Hypertension, chronic kidney disease, 
maintenance hemodialysis, and history 
of PCI. 

(Vernon et al., 
2019) 

Australia 3081 Hypertension, diabetes mellitus, 
hypercholesterolemia, smoking, Killip 
class, cardiac arrest at admission, 
systolic blood pressure, and hospital 
transfer 

(Burazeri et 
al., 2007) 

Albania  467 Family history of coronary heart 
disease, waist-to-hip ratio, 
hypertension, and smoking status 

 

Univ
ers

iti 
Mala

ya



22 
 

Table 2.2, continued. 

Authors The 
population 

studied 
(location) 

Number of 
populations 

Risk factor finding 

(Yadav et al., 
2010) 

India  200 Smoking status, hypertension, diabetes, 
family history of CHD, obesity, and 
dyslipidemia. 

(Singh et al., 
2020) 

India  240 Age, height, weight, BMI, diabetes 
mellitus, hypertension, dyslipidemia, 
Medication history, level of exercise, 
diet, tobacco use, and hospitalization 
detail. 

(Juhan et al., 
2019) 

Malaysia  16,673 Diabetes mellitus, hypertension, family 
history of CVD, renal disease, PCI, 
Killip class, and age  

(Ponniah et 
al., 2012) 

Malaysia 603 Age, history of diabetes mellitus, 
peripheral vascular, renal failure, and 
previous percutaneous coronary 
intervention 

(Ahmad et al., 
2011) 

Malaysia  525 Hypertension, diabetes, dyslipidemia, 
smoking history, previous history of 
CAD, family history of CAD 

 

2.3 Mortality prediction  

When patients are brought to hospitals, a quick decision must be made to avoid any 

casualties. However, the choice of intervention, treatment plan, and resource allocation 

must all be considered, and during the last few decades, several general multipurpose 

mortality assessment systems have been developed to meet these economic and therapeutic 

objectives. Hence, mortality prediction can be extremely useful in the medical field since it 
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can help with disease prevention, early detection, and more successful treatment (Lee et al., 

2015).  

Methods for mortality prediction can be divided into three ways, according to 

Stoeldraijer et al. (2013): extrapolation, explanation, and expectation.  

 Extrapolative methods imply that future trends will largely mirror those of the past. 

This is usually a fair assumption in mortality forecasting because of historical 

regularities.  

 When the important external determinants are known and can be measured, the 

explanation technique uses structural or epidemiological models of mortality from 

specific causes of death. As a result, critical medical knowledge and data on 

behavioural and environmental change are put to good use.  

 The expectation technique is based on the subjective opinions of experts, which can 

be formal or informal. It's worth mentioning that some mortality prediction systems 

combine aspects from a variety of methodologies. 

Since expert expectations are usually cautious, the expectation approach is not a 

suitable basis for mortality projection. The same may be said for the explanation technique, 

which is limited to established causes of death. As a result, rather than models built largely 

for age-specific validation, most developments have been in extrapolative methods that 

employ statistical techniques. This strategy takes data from previous patients with the same 

condition and repurposes it to forecast the outcomes of future patients. Medical claims data 

is vital for portraying patient health care access regularity and involvement in illness 

treatment or prevention, which both have a significant influence on patient health outcomes 

(Tran et al., 2021). 
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This method is frequently employed in the construction of prediction models. 

Prediction models represent the distribution of outcomes among people who share a set of 

traits (Maley et al., 2020). Clinical practice has evolved through time to incorporate the 

development of predictive models to predict the severity of patient problems and the 

outcome of treatment measures. Predictive modeling can be thought of as a subset of 

concurrent analytics, which combines two or more forms of statistical analysis at once. 

Statistical analyses of huge datasets utilising multivariate risk factor models are typically 

used to develop such a tool (Mohammed et al., 2014). These assumptions are considered by 

predictive models in the health industry, which examine patient preferences, demographics, 

lifestyles, and psychographics. 

Over the last two decades, several prediction models have been developed that 

statistically combine multiple variables to assess the probability of having CVD. These 

models are also being used to anticipate future cardiovascular disease deaths at the 

population level and in specific subgroups, in order to provide policymakers and health 

authorities with information about these risks. Some of these prediction models are 

recommended by health policymakers and are included in therapeutic management clinical 

guidelines (Goff et al., 2014). Several studies have found that there is a range of prediction 

models for various CVD outcomes (Beswick et al., 2011; Matheny et al., 2011; Wessler et 

al., 2015). According to more recent assessments, the number of published prediction 

models has risen substantially since then. 

The mortality prediction models (commonly known as risk scores) for patients with 

CVD are discussed further in subchapter 2.4 below. 
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2.4 Risk Score  

Risk scores correspond to multivariate models used in clinical practice to estimate the 

individual probability of unwanted outcomes. Risk estimates have implications for clinical 

management, particularly with regard to broad-spectrum diseases, such as ACS (Correia et 

al., 2014). 

This issue is normally happening in the emergency department (ED) and it is not only to 

identify patients who are at the greatest risk but also to identify patients who have non-

urgent conditions or even no disease at all. Patients at low risk for ACS could be identified 

earlier in the diagnostic process, which could lower patient burden, duration of stay in the 

ED, hospitalisation frequency, and expenditures (Six et al., 2012). 

Normal values of troponin and a normal ECG still do not exclude ACS completely. As a 

result, many patients presenting with chest pain are currently hospitalized and extensively 

evaluated with non-invasive stress testing or imaging, or with an invasive coronary 

angiography (Poldervaart et al., 2017). Although specific demographic and clinical features 

may be linked to an elevated risk of a negative outcome, the capacity to effectively quantify 

risk requires the consideration of multiple factors at the same time (Khera et al., 2021). 

To be practical clinically, a risk stratification tool should be simple and easily applied at 

the bedside and should make use of clinical data that are routinely available at hospital 

presentations. However, to perform accurately, the tool should use data that offer 

independent prognostic information and must consider the complex profile of patients with 

multiple risk factors (Correia et al., 2014). 

National cardiac guidelines state that chest pain patients presenting to the ED should be 

assessed with a risk stratification tool or risk score (Damman et al., 2017; MOH, 2011, 
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2019; Thygesen et al., 2012). These regression-based conventional risk scores were created 

based on expert opinion and included criteria that the expert considered were more 

important to clinically diagnose patients by converting prognostic indicators into risk 

indices. Below is the list of risk scores that have been developed over the years for patients 

with chest pain in ED. 

2.4.1 Thrombolysis in Myocardial Infarction (TIMI) Score 

TIMI risk has different models developed for the ACS subtypes; STEMI and NSTEMI, 

which were validated in distinct samples. 

Morrow et al. (2000) established the TIMI risk score for STEMI from the Intravenous 

nPA for Treatment Infarcted Myocardium Early II trial to predict the mortality of STEMI 

patients at 30 days. There are eight variables that predict death, each of which contributes 

points to the scoring when added together. 65 to 74 years old, above 75 years old, diabetes, 

hypertension, or angina history, systolic blood pressure, heart rate, Killip class, weight, ST-

segment elevation in the anterior wall or left bundle branch block, and reperfusion time are 

the variables. The point for each variable is shown in Table 2.3 below. 

Table 2.3: The variables and points for TIMI for STEMI. 

TIMI Score Variables Point 

Age between 65-74 years old 2 

Age ≥ 75 years old  3 

History of diabetes, hypertension, or angina  1 

Systolic blood pressure < 100 mmHg  3 
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Table 2.3, continued. 

TIMI Score Variables Point 

Killip classification II to IV  2 

Heart rate > 100 bpm  2 

Weight < 67 Kg  1 

ST-segment elevation in the anterior wall or 

left bundle branch block  

1 

Reperfusion time > 4 hours  1 

 

The score will vary from 0 to 14 based on the summation of all the variables presented 

with the patients at admission. TIMI score 0 to 2 as low, 3 to 5 as intermediate, and >5 as 

high (Correia et al., 2014). 

Antman et al. (2000) used the TIMI 11B clinical trial for the composite endpoint of 

mortality at 14 days to build the TIMI risk score for NSTEMI/UA in the year 2000. This 

risk score is used to help patients with suspected ischemic chest pain, usually those with 

NSTEMI/UA, risk stratify. Age >65 years, 3 classical risk factors for coronary artery 

disease (CAD), known CAD (stenosis >50%), use of aspirin in the previous 7 days, severe 

angina in the previous 24 hours, elevated cardiac markers, and ST-deviation 0.5 mm are the 

7 dichotomous variables that made up the scores. Each variable is assigned a point value of 

0 or 1, and the total score will range from 0 to 7. Patients with a score of 0 to 2 points are 

deemed low risk, intermediate risk at 3-4 points, and high risk at 5-7 points. The point for 

each of the variables for patients with NSTEMI/UA is shown in Table 2.4 below.  
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Table 2.4: The list of variables and points for the TIMI risk score for NSTEMI/UA. 

TIMI Score Variables Point 

Age more than 65 years 1 

At least 3 risk factors for CAD (family 

history of premature CAD, hypertension, 

elevated cholesterols, active smoker, 

diabetes)  

1 

Known CAD (coronary stenosis of > 50%)  1 

Aspirin use in within 7 days  1 

ST-segment deviation (>0.5mm) on ECG  1 

At least 2 anginal episodes in prior 24h  1 

Elevated serum cardiac biomarkers  1 

 

The TIMI risk score, according to Morrow et al. (2000), is ideal for developing countries 

since it allows for low-cost risk estimates. It was created in the context of a clinical trial. 

However, it was primarily taken from a Western cohort, with non-western participants 

contributing less. It was able to accurately predict 30-day and one-year mortality. In their 

analysis, Feder et al. (2015) identified several of the TIMI risk score's strengths, including 

its widespread familiarity among medical professionals, ease of use, and reliability, as 

demonstrated by a vast evidence base of development and validation studies. The TIMI risk 

score has limitations, including those inherent in the trial score and the exclusion of high-
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risk patients. While the lack of risk factor weighting improved usability, it reduced 

discriminatory performance. 

Despite the limitations, the simplicity of the TIMI score is recognized in the current 

guidelines. It has also been used in key studies to demonstrate the benefit of clopidogrel at 

all risk levels and to demonstrate graded benefits of tirofiban with increasing risk levels. 

2.4.2 Global Registry of Acute Coronary Events (GRACE) Score 

The GRACE score was developed in the year 2003 by Granger et al. (2003) from a 

multinational registry of 11, 398 patients ACS patients. Data registration was done 

prospectively and retrospectively. The GRACE score is based on participants in a registry 

who did not get any experimental treatment. Patients in this registry, on the other hand, had 

to have a definitive diagnosis of ACS and were only included if they exhibited ECG 

abnormalities indicating ACS, a sequential increase in cardiac enzymes, or confirmed 

CAD. Then, multivariate LR was adopted in building the risk score which is used for the 

prediction of in-hospital and post-discharge death at 6 months. There are 8 variables for the 

mortality prediction of patients in in-hospital which are Killip class, age, blood pressure, 

resuscitated cardiac arrest, positive cardiac marker findings, creatinine level, ST-segment 

deviation, and heart rate. While the variables for the 6-month post-discharge mortality 

prediction are age, congestive heart failure, MI, heart rate, systolic blood pressure, ST-

segment depression, serum creatinine, elevated cardiac markers, and no in-hospital PCI. 

The comparison between the two prediction time points can be seen in Table 2.5 below. 

The GRACE in-hospital risk score (range 0–372) and GRACE 6-month risk score (range 

0–263) were developed from the GRACE registry for the endpoint of all-cause death and 

consist of eight and nine factors respectively. 
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Table 2.5: The GRACE score comparison of variables between the two points 
prediction. 

GRACE score for in-hospital mortality GRACE score for post-discharge 6 

months mortality 

Age Age 

Heart rate H/o congestive heart failure 

Systolic blood pressure H/o myocardial infarction 

Serum creatinine level Heart rate  

Killip class Systolic blood pressure 

Cardiac arrest at admission ST-segment depression 

Elevated cardiac markers Serum Creatinine 

ST-segment deviation Elevated cardiac marker 

 No in-hospital PCI 

 

According to the research done by Shuvy et al. (2018), due to its capacity to stratify 

patients, the GRACE risk score considerably lowered the death rate of ACS patients. As a 

result, high-risk individuals were able to obtain medical care and preventable treatment at 

the right moment. According to Khalill et al. (2009), GRACE had a better performance 

compared with other risk scores because it is a powerful predictor to calculate the risk more 

precisely and the associated mortality rate. Moreover, GRACE is easier to conduct and use. 
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According to Bassand et al. (2007), in the prediction of in-hospital mortality rate, ACS 

patients are at low risk when the GRACE risk score is lower or equal to 108, with the 

probability of in-hospital death of lower than 1 %. The patients are at intermediate risk if 

the GRACE risk score falls between 109 to 140, with the probability of in-hospital death of 

1 to 3%. However, the patients who score more than 140 will fall into the high-risk 

category with in-hospital death of more than 3%.  

On the other hand, in the prediction of post-discharge to 6 months mortality rate, ACS 

patients are at low risk when the GRACE risk score is lower or equal to 88, with the 

probability of post-discharge to 6 months death of lower than 3%. The patients are at 

intermediate risk if the GRACE risk score falls between 89 to 118, with the post-discharge 

to 6 months probability of death of 3% to 8%. ACS patients who score more than 118 will 

fall into the high-risk category post-discharge to 6 months probability of death with of more 

than 8%. 

2.4.3 Platelet glycoprotein IIb/IIIa in Unstable angina: Receptor Suppression 

Using Integrilin (eptifibatide) Therapy (PURSUIT) Score 

The PURSUIT score was developed in the year 2000 in a multinational randomized 

clinical trial with 9,461 patients (Platelet glycoprotein IIb/IIIa in Unstable Angina: 

Receptor Suppression Using Integrilin (eptifibatide) Therapy) comparing eptifibatide 

(Integrilin) to placebo in the management of UA or NSTEMI (Boersma et al., 2000). This 

population is representative of a wide range of patients, hospital settings, and treatment 

policies, making it ideal for the creation of a clinical risk model. 

Using multivariate regression analysis, the researchers revealed seven risk factors 

for mortality and MI in ACS patients. Higher age, gender, the worst Canadian 

Cardiovascular Society class of angina, heart failure symptoms, and ST-segment depression 
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on the index ECG were all factored into the scoring system. The researchers did not 

consider tachycardia or low systolic blood pressure in their final risk score (Table 2.6) 

(Investigators, 1998). The PURSUIT score predicts the risk of death or MI at 30 days after 

admission. 

Table 2.6: List of variables for PURSUIT score prediction. 

PURSUIT variables Points 

Age (decade) 50 8 

 60 9 

 70 11 

 80 12 

Sex Male 1 

 Female 0 

Worst CCS class passed 6 weeks No angina/CCS I, II 0 

 CCS III/IV 2 

Signs of heart failure  2 

ST depression on ECG  1 

 

According to the PURSUIT score, ACS patients are classified as low (0 to 5 points), 

intermediate (6 to 9), or high risk (10 and above), “with the early release”, “watchful 

waiting,” and “aggressive antiplatelet/early invasive procedures as proposed therapy”, 

respectively (de Araújo Gonçalves et al., 2005). 
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PURSUIT score is giving a moderate result in predicting in-hospital mortality, all-cause 

mortality, and 1-year follow-up all occurrence or non-ACS occurrence mortality with AUC 

more than 0.7.  

2.4.4 HEART Score 

The HEART risk score was created to stratify patients who presented to the emergency 

department with suspected NSTEMI (Six et al., 2008). Patients with a higher risk of MACE 

(all-cause death, myocardial infarction, or coronary revascularization) in the next 6 weeks 

are identified in this study. The HEART score was created using decision-making clinical 

factors rather than multivariate regression analysis, according to expert judgment. The 

European Society of Cardiology created this to anticipate ACS in order to improve health 

and reduce risks in people with cardiovascular issues. The HEART score is made up of five 

clinical judgment parameters: history, ECG, age, risk factors, and troponin to which its 

acronym makes up the name of it – HEART. The HEART score was verified in 122 

patients in a single centre retrospective study and 880 participants in a multicenter 

retrospective analysis (Backus et al., 2010). Each of the variables in the score will have 

given 0,1 or 2 points which its summation will range from 3 to 10 (Table 2.7). 

Table 2.7: The variables and their attributes in the HEART Score. 

HEART Score variables Points 

History  Highly suspicious 3 

Moderately suspicious  2 

Slightly or non-suspicious 1 
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Table 2.7, continued. 

HEART Score variables Points 

ECG  Significant ST-depression 3 

Non-specific repolarization 2 

Normal 1 

Age ≥65  3 

46-64 2 

≤45 1 

Risk factors  

(Diabetes, current or 

recent (less than one 

month) smoker, 

hypertension, 

hypercholesterolemia, 

family history of CAD and 

obesity) 

≥ 3 risk factors or history of 

CAD 

3 

1 or 2 risk factor(s) 2 

No risk factor 1 

Troponin ≥ 3x normal limit 3 

> than 1 to < than 3 normal 

limits 

2 

≤ normal limit 1 
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The HEART score categorises individuals into three risk groups: low (0-3), intermediate 

(4-6), and high (7-10), with mean event risks of 0.9%, 12%, and 65%, respectively. As a 

consequence, an evidence-based decision on whether the patient should be released from 

the ED (low-risk patient), hospitalised for clinical observation (intermediate-risk patient), 

or immediately treated with invasive therapy (high-risk patient) may be made. Despite the 

fact that the authors do not suggest that patients with a HEART score of 3 or below should 

be safely discharged without further examination, they do claim that the HEART score can 

be used to "triage" patients with chest discomfort because it is a "reliable predictor of 

prognosis" (Fesmire et al., 2012). 

2.4.5 Fast Revascularization in Instability in Coronary Disease (FRISC) Score 

The FRISC score (Fast Revascularization in Instability in Coronary Disease) II study is 

the basis for the FRISC score (Lagerqvist et al., 2005). A multicenter, randomised clinical 

study including individuals with unstable CAD in Scandinavia was used to establish this 

risk score. Using multivariate regression analysis, data from 1,235 patients in the non-

invasive cohort were used to identify seven factors as independent predictors of 1-year 

mortality or death/MI in patients with UA. The FRISC score is made up of seven 

parameters: age 70, male gender, diabetes, previous MI, ST-segment depression on 

admission, increased Troponin, and elevated Interleukin 6 or CRP levels. Each of these 

elements is worth 0 or 1 point, giving in a total score of 0-7 (Table 2.8). 

Table 2.8: The variables in the FRISC score model.  

FRISC Score variables Points 

Age ≥70 years  0 

 1 
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Table 2.8, continued. 

FRISC Score variables Points 

Male sex 0 

 1 

Diabetes  0 

 1 

Previous MI 0 

 1 

ST-depression on ECG 0 

 1 

Elevated Troponin levels 0 

 1 

Elevated Interleukin 6 or CRP 0 

 1 

 

The FRISC scores of 0-2, 3-4, and 5-7 were used to divide patients into low, middle, and 

high-risk groups, respectively. According to Lagerqvist et al. (2005), the FRISC score, 

which is based on seven criteria, is widely available in UA and is extremely effective for 

risk classification and selecting patients for an early invasive procedure. Patients who have 

three or more of these criteria should be treated with an early invasive strategy, but those 
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who have 0–2 criteria have low event rates regardless of the treatment method. The FRISC 

score seems to be the only risk assessment in ACS that focuses on the early invasive 

approaches' treatment effect. 

Table 2.9: The common conventional risk scores for heart risk prediction. 

Variables Conventional risk score 

TIMI for 
STEMI 

TIMI for 
NSTEMI/UA 

GRACE PURSUIT HEART FRISC 

Age ● ● ● ● ● ● 

Sex    ●  ● 

Past 
medical 
history 

● ●   ● ● 

Risk 
factors 

 ●   ●  

Medication 
used 

 ●     

CSS/Killip 
class 

●  ● ●   

Signs and 
symptoms 

 ●  ●   

Patient 
history 

    ●  

Cardiac 
arrest upon 
admission  

  ●    

Heart rate  ●  ●    

Systolic 
blood 
pressure 

●  ●    

Weight  ●      
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Table 2.9, continued. 

Variables Conventional risk score 

TIMI for 
STEMI 

TIMI for 
NSTEMI/UA 

GRACE PURSUIT HEART FRISC 

ECG 
findings 

● ● ● ● ● ● 

Cardiac 
enzymes 

 ● ●  ● ● 

Creatinine 
level 

  ●    

Treatment 
time  

●      

Possible 
range of 
scores 

 0-7 0-372 0-18 0-10 0-5 

Cutoff of 
high risk  

 ≥3 ≥109 ≥10 ≥4 ≥2 

 

2.4.6 The limitation of risk scores. 

The following are some of the major and significant challenges that ACS patients 

experienced in earlier CVD prediction algorithms (risk score). To begin with, most 

previous regression-based CVD prediction models fail to accurately predict and diagnose 

CVD events in moderate-risk people. Nearly half of MIs and strokes, for example, occur in 

people who are not thought to have CVD (Ridker et al., 2008). Even though standards for 

CVD risk diagnosis and prediction are available, doctors frequently treat individuals with 

intermediate-risk unnecessarily. Secondly, conventional regression-based CVD prediction 

algorithms contain common and frequently used prognostic parameters such as age, blood 

pressure, heart rate, diabetes, cholesterol, smoking, and heart disease history and do not 

introduce different prognostic factors that might assist in the prediction of the desired 

Univ
ers

iti 
Mala

ya



39 
 

outcome as certain risk factor combinations may work together synergistically to raise risk 

in a way that is more than additive (Cooney et al., 2009). Additionally, these risk scores 

were derived from the Western Cohort with only limited numbers of participants. Hence, 

the risk scores may not reflect the region’s diversity and maybe only applicable to specific 

populations (Peng et al., 2017). Although these models have been validated and are widely 

used, there have been recent concerns expressed because most traditional risk stratifications 

were built 20 years ago using randomised controlled trials (RCT) data prior to the 

introduction of drug-eluting stents and newer generation antiplatelets (Kwon et al., 2019a). 

Furthermore, the prediction models' outcomes are limited to short-term mortality, such as 

mortality in the hospital, 14-day mortality, and 30-day mortality. As a result, according to 

one review of traditional risk stratification models, future models will allow for more exact 

risk stratification (Castro-Dominguez et al., 2018). Finally, the non-linear interactive 

interactions among prognostic factors are oversimplified because each prognostic factor in 

the regression-based CVD prediction model is connected to the incidence of major 

cardiovascular events, which are identified as a composite of death, MI, or repeat coronary 

revascularization of the target lesion (Ahmed & Hannan, 2012). As a result, models 

including these various risk variables and outcomes, as well as the usage of AI algorithms, 

are required (Obermeyer & Emanuel, 2016; Peng et al., 2017). 

2.5 Artificial intelligence (AI) 

The use of AI algorithms to discover patterns from large data sets in order to better 

predict mortality is a recent trend. (Booth & Tickle, 2008). Historical electronic health 

records (EHRs) are widely utilised to build AI models that predict patient health outcomes, 

according to the medical literature. Patient demographics, health indices, health problems, 
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biological images, and patient records are all common data sources for AI models, 

however, organised medical claims data is rarely used (Tran et al., 2021). 

As it can handle and optimise very complicated datasets existing in very complex 

systems, true AI has a lot of applications in health care. Taking care of patients requires the 

control of numerous processes, each of which is extremely variable and dependent on or 

connected to multiple other steps. While keeping track of so many variables is difficult for 

humans, computers are exceptionally adept at it (Bini, 2018). 

The AI techniques are recognised as ways to get beyond the limitations of standard CVD 

incidence prediction models, which are used to generate traditional risk scores. By making 

precision cardiovascular investigations simpler, AI approaches like ML and DL may play a 

crucial role in the evolution of cardiovascular medicine (Krittanawong et al., 2017).  

Table 2.10: Comparison of conventional risk prediction and AI-based risk prediction 
approach. 

Feature Conventional risk score AI-based risk prediction 

Hypothesis  Yes  No  

Approach Estimates and explain data Practical prediction from data 

Measurement Goodness-of-fit, coefficients Precision, recall, F-measure, 
accuracy, area under the curve 

Learning 
ability 

No Yes 

Data size A proper data size for a certain 
hypothesis 

Big and complex data 

Data type A single type of data, structured 
data 

Multi-modality data, structured 
and unstructured data are all 
supported. 

Model  Simple parametric model Complex, non-parametric model 
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Table 2.10, continued. 

Feature Conventional risk score AI-based risk prediction 

Output  Validate the hypothesis, causality Predict new data, identify new 
patterns 

Limitation  Low data dimensionality and 
require assumptions 

Overfitting, data privacy, and 
security issues 

Risk factors Clinical or demographic factors 
only e.g. age, gender, smoking, 
diabetes 

Multimodality e.g. age, gender, 
ECG variations, treatment, 
features from an image, gene 
expressions 

 

2.5.1 Machine learning (ML) 

According to Bini (2018), the best way to think of ML is as a subset of AI. ML is a 

discipline in computer science that uses a range of computational algorithms to allow 

computers to improve their performance on a particular task incrementally rather than being 

explicitly programmed (Pieszko et al., 2019). Instead of having to predetermine the 

system's mechanical linkages, which could yield more knowledge and information, ML 

techniques use observed data to "learn" information about a system (Li et al., 2020). To 

create a decent classification and prediction, ML learns from its experiences and improves 

its performance over time by recognising a given pattern from training data (Bini, 2018).   

Gibson et al. (2020) in their study stated that ML-based models were able to map 

extremely non-linear input and output patterns even when mechanistic relationships 

between model variables could not be found due to pathologies or complexity. Not only can 

ML algorithms detect interaction, nonlinear, and higher-order effects, but they can also 

estimate complex functions that are not properly represented by a single covariate or 

interaction term (Al'Aref et al., 2019). For its ability to modify performance with each new 
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data sample, ML has become the go-to technology for a range of real-world applications 

(Shaikhina et al., 2015). Different ML algorithms may be required for an application, 

according to Libbrecht and Noble (2015), depending on whether one is interested in 

interpreting the output model or only concerned with predictive power.  

ML is neatly divided into two categories: supervised learning and unsupervised learning 

(Rajkomar et al., 2019). According to Panch et al. (2018), supervised learning is the process 

of training computer systems to learn the relationships between data inputs and outcomes. 

After learning the correlations, they can be used to anticipate future examples based on 

current data. Supervised learning is also known as the development of algorithms that use 

externally given cases to predict the fate of future instances by establishing broad patterns 

and hypotheses (Amanpreet et al., 2016). It focuses on classification and prediction, which 

requires choosing among subgroups to effectively describe a new instance of data (Deo, 

2015). Predictive models for medical diagnosis have been built using supervised ML 

techniques (Maroco et al., 2011). Some of the commonly used ML methods in the medical 

field are logistic regression (LR), support vector machine (SVM), random forest (RF), 

artificial neural network (ANN), k-nearest neighbor (kNN), Naïve Base (NB), and decision 

tree (DT) (Chandralekha & Shenbagavadivu, 2018). 

Unsupervised learning, on the other hand, has no outputs to predict and is used to detect 

naturally occurring patterns or groupings in data (Kohonen et al., 2001). This is a more 

challenging task to assess, and the utility of unsupervised learning groups is frequently 

decided by how well they perform in subsequent supervised learning tasks. When the 

instances are unlabeled, these algorithms attempt to apply techniques to the input data in 

order to mine for rules, find patterns, summarise, and aggregate the data points, which 
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assist in extracting useful insight and better conveying the data to the user. Self-Organizing 

Map (SOM) is a popular unsupervised learning approach. 

The following are some of the most commonly utilised ML algorithms in the 

construction of predictive models which was also used in this study too: 

2.5.1.1 Random forest (RF) 

RF is an ensemble approach that uses bootstrapping samples to create numerous 

decision trees, which are then grouped using a classification or regression algorithm 

(Breiman, 2001). The fact that the RF provides an internal assessment of the relative 

relevance of each feature on the prediction is a unique feature. This model works well for 

almost any situation, regardless of size or whether the data is unbalanced or absent 

(Fernandez-Lozano et al., 2021). Figure 2.3 depicts the RF model development technique. 

 

 

 

Figure 2.3: The architecture of RF (Wu et al., 2019). 
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In RF, there is additional randomness added to it (Liaw & Wiener, 2002). The difference 

between RF and other trees is that in RF, only a subset of predictors is chosen randomly 

from the full set of predictors, p, which is denoted by mtry, at each node, and the best split 

is calculated using Gini index node of impurity, which calculates only among the subset of 

predictors (Genuer et al., 2010). The Gini index of impurity is a metric for class label 

distribution at each node. The Gini impurity values are 0 and 1, with 0 indicating that all 

predictors at the node have the same class history (Khalilia et al., 2011). The smallest Gini 

impurity value among the predictors is used to make the optimal split choice. To lower the 

error rate, mtry=√p (for classification) or mtry=p/3 at each node of the tree (for regression) 

is used. Because no pruning is required in RF, the trees formed are maximum, low-bias, 

and low-correlation (Díaz-Uriarte & De Andres, 2006). RF has several appealing features, 

including a limited number of tunable parameters, automatic calculation of generalisation 

errors, and high resistance to overfitting (Wang et al., 2021). 

The classification algorithm of the RF is as follows:  

1) A bootstrap sample of the training data is used to grow each RF tree.  

2) When constructing a tree, n number of variables are randomly chosen from N predictors 

at each node.  

3) It is proposed that the value of n begins at n=√N and grows until the minimum out-of-

bag (OOB) error is reached. From all n values, one variable with the best split is utilised at 

each node.  

4) The RF model is then used to test data and make predictions. 
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The two most well-known methods for building the tree are boosting (Schapire & 

Singer, 1999) and bootstrap aggregating (also known as bagging) (Breiman, 1996) of 

prediction trees. Boosting operates by producing subset s1 from the training set without 

replacement and training s1. Then, a new subset s2 is produced by taking samples from s1 

with the 50% of samples that were misclassified and s2 is trained. Every subset is 

dependent on each other, and prediction is made by weighted vote. Bagging is a process of 

constructing the tree by producing multiple training sets from the original dataset with 

replacement. The training sets are called the bootstrap samples which then be used to build 

a model. The bootstrap sample is known to be independent of the original sample hence 

each of the bootstrap samples votes with equal weight (Liaw & Wiener, 2002). This method 

is designed to reduce the variance and over-fitting. Thus, most of the base classifiers would 

consistently detect only truly present patterns in the data and the majority votes turn out to 

be good class indicators (Amaratunga et al., 2008). The capacity to accommodate larger 

data inputs, non-linear variables, variable interactions, and minimise overfitting are all 

advantages of RF models (Kruppa et al., 2012; Peng et al., 2010). 

2.5.1.2 Support vector machine (SVM) 

The SVM (Vapnik, 1999) has been used as one of the most powerful classifiers for 

decades because it has proven to outperform other classifiers. The SVM (Cortes & Vapnik, 

1995) is a supervised learning model that uses labelled data to learn. It generates a set of 

labelled input-output mapping functions as well as additional information. The SVM can be 

used as a classification or regression approach (Orbann et al., 2017). 

 

Univ
ers

iti 
Mala

ya



46 
 

 

 

 

Figure 2.4: The depiction of SVM architecture (Zeng et al., 2021). 

 

When using grid search, which is also known as a big margin classifier, SVM uses 

optimization parameters. In simple binary scenarios, the two classes divide linearly, and the 

hyperplane, as shown in Figure 2.4, defines the boundary between the two classes. The 

SVM generates a classification hyperplane in the middle of the most important margin to 

identify the ideal group division margin (Marjanović et al., 2011). These two classes are 

labelled "+1" (positive samples) and "-1" (negative samples), with "+1" denoting a 

circumstance above the hyperplane and "-1" denoting a situation below the hyperplane. The 
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properties of new data can then be utilised to determine which assortment a new record 

should be placed in. The Kernel function, which is analytical and precise, is used to 

transmute the data. The SVM classifier's kernelisation allows the learning to take place in 

the feature space. The inner product of the pictures of two data points in feature space is 

returned by the kernel function (Karatzoglou et al., 2006). This is known as the "kernel 

trick" in literature (Schölkopf et al., 2002). 

The kernel function is a mathematical method that allows the SVM to classify a set of 

originally one-dimensional data into two dimensions. A kernel function, in general, projects 

data from a low-dimensional space to a higher-dimensional space (Cortes & Vapnik, 1995). 

Linear, Radial Basic Function (RBF), and Polynomial are some of the most commonly 

utilised kernels in SVM (Rai & Khanna, 2011).  

When the data is linearly separable, that is, when it can be separated using a single line, 

the Linear Kernel is utilised. It is one of the most often utilised kernels. It is most 

commonly utilised when a data set contains a large number of features. The linear kernel is 

a basic kernel function based on the penalty parameter C, which manages the trade-off 

between error frequencies and decision rule complexity, however, it is not suited for large 

datasets (Cortes & Vapnik, 1995). 

𝜅(𝜒𝚤, 𝜒𝑗) = 1 + 𝜒𝚤
𝜏𝜒𝑗  (2.1) 

Polynomial kernel function, also known as the global kernel, is a non-stochastic kernel 

estimate using two parameters, C, the penalty parameter, and d, the degree of the kernel 

function. The output of the polynomial kernel function depends on the direction of the two 

vectors in low-dimensional space (Prajapati & Patle, 2010). Regardless of its actual 

distance from 𝜒𝚤, each data from the set xi affects the kernel point of the test value 𝜒𝑗. With 
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a small number of support vectors and a low classification error, it provides good 

classification accuracy. 

𝜅(𝜒𝚤, 𝜒𝑗) = (1 + 𝜒𝚤
𝜏𝜒𝑗)𝑑 (2.2) 

Boser, et al. proposed complicated relationships in SVM by changing each dot product 

with different types of non-linear functions (Boser B.E. et al., 1992). One of the most 

widely used kernel functions is Radial Basis Function (RBF) (Cristianini & Shawe-Taylor, 

2000). RBF also known as the local kernel, is equivalent to transforming the data into an 

infinite-dimensional Hilbert space. As a result, the non-linear classification problem is 

simply solved. RBF produces similar results as the polynomial with the lowest training 

error, however the number of support vectors and classification error increase in some 

circumstances (Rojo-Álvarez et al., 2018).  

𝜅(𝜒𝚤, 𝜒𝑗) = 𝑒𝑥𝑝 (−𝛾‖𝜒𝚤, 𝜒𝑗‖
2

) (2.3) 

The free variable of Gaussian RBF is gamma,  𝛾 ; this variable specifies how far a 

training sample's impact spreads. Gamma, 𝛾 variable is the inverse of the radius of the data 

impact chosen by the model as support vectors. This indicates that high Gamma, 𝛾 will 

only evaluate points near the plausible hyperplane, whereas low Gamma will consider sites 

further away. The Cost, C (penalty parameter) variable balances the decision surface's 

simplicity with the misclassification of training data. If C is higher, the optimization will 

choose a narrower margin hyperplane, resulting in a reduced rate of training data 

misclassification. If the C is low, on the other hand, the margin will be large, even if there 

are some incorrectly classified training data samples (misclassification). 

According to Prajapati and Patle (2010), the advantages of SVM are more than two 

predictor variables can be handled using SVM, non-linear curves are considered to separate 
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the points, capable of dealing with clusters that can't be separated, able more than two-

category categorization and SVM can handle a dataset with a large number of attributes. 

2.5.1.3 Logistic regression (LR) 

The purpose of LR is to find the best model to represent the relationship between a set 

of independent variables and a dichotomous characteristic of a dependent variable (Le 

Cessie & Van Houwelingen, 1992). LR is also known to be multinomial if the outcome 

takes more than two values. The coefficients of a formula to predict a logit transformation 

of the probability of the presence of the feature of interest was developed using LR. In 

other words, LR analysis calculates an event's log odds. LR calculates a multivariate linear 

regression function mathematically (Juhan et al., 2019). 

The logistic transformation of the probability for each class in the dependent variable is 

predicted using a sigmoid function in this model. The logged odds assign a binary 

classification to the data points (Hernandez-Suarez et al., 2019). In addition to conjugate 

gradient descent, the lambda parameter utilised in a model is a ridge value of 1.0E-8. The 

cost function of the model is reduced via conjugate gradient descent. 

𝑙𝑜𝑔𝑖𝑡(𝑝) =  log (
𝑝

1 − 𝑝
) =  𝛽0 +  𝛽1𝑥1 +  𝛽2𝑥2 + ⋯ +  𝛽𝑛𝑥𝑛  (2.4) 

Based on equation 2.4, p is the probability of the characteristic of interest present, 𝛽1, is 

the logistic coefficients and 𝑥1, is the independent variable where, i = 1,...,n. 

Stepwise regression analysis is commonly used in building a predictive model of logistic 

regression by finding the variable of importance (Hosmer Jr et al., 2013). It is an approach 

that allows changing the course by removing or adding variables at each stage. The 

significance of the score statistic is used to add variables, and the probability of a 
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likelihood-ratio statistic based on the maximum partial likelihood estimates is used to 

remove variables. If the p-value is less than 0.05, the variable is considered significant. 

2.5.2 Deep Learning (DL) 

DL is defined as a sub-class of ML within the AI technologies that explores many layers 

of non-linear information processing for supervised and/or unsupervised features extraction 

and transformation, and pattern analyses and classification (Dey et al., 2020; Diez-Olivan et 

al., 2019). The concept of successive layers of representations is represented by the word 

"deep" in deep learning. The depth of a model refers to the number of layers that make up 

the model. Furthermore, DL will automate the feature engineering process, learning all 

features in a single pass (Chollet, 2018). Figure 2.5 below summarises the relationship 

between DL, ML and AI. 

 

 

Figure 2.5: The depiction of the relationship between Artificial Intelligence, Machine 
Learning, and Deep Learning. 
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DL approaches allow a computer to process enormous amounts of raw data and discover 

the representations needed for detection or classification. DL methods rely on several layers 

of data representation with repeated modifications that amplify important characteristics of 

the input while suppressing unimportant variations (Panch et al., 2018). 

Due to the availability of massive data and the development of computational methods 

that simplify the training of large neural networks, deep neural network learning has 

resurged considerably in recent years (Schlesinger & Stultz, 2020). 

2.5.2.1 Multilayer Perceptron (MLP) 

An input layer, many hidden layers, and an output layer make up the basic multilayer 

perceptron (MLP) structure. MLP is an artificial neural network that works similarly to the 

human brain in that it learns and stores information in interneuron connection strengths 

known as synaptic weights (Min et al., 2017). MLPs are one of the most widely used neural 

network architectures, having been first defined by Rumelhart et al. (1988). MLP is a 

supervised network because it learns through desired output.  

Error backpropagation is one of the most widely used algorithms in MLP training, 

according to Gurgen et al. (2000). For MLP feedforward networks, it is an optimization 

technique to apply gradient descent in weight space.  

It is trained using only labelled data and is completely supervised. The MLP receives the 

input data first, and the output values are computed progressively alongside the network 

layers. The weighted sum is obtained by multiplying the input vector holding the output 

values of each unit in the layer below by the weight vector for each unit in the current layer. 

The weighted total is then multiplied by a non-linear function such as a sigmoid, hyperbolic 

tangent, or rectified linear unit (ReLU) to determine the layer's output values (Min et al., 
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2017). It is the nature of neural network models to improve their predictions by iteratively 

comparing their forecasts to observed results and then adjusting their weight parameters to 

enhance their predictions (Ramchoun et al., 2016; Sanderson et al., 2019). 

Learning for MLP is the process of modifying the connection weights to achieve the 

smallest difference between the network's output and the desired output. The MLP 

architecture is determined by the number of layers, the number of hidden neurons in the 

hidden layers, and the objective functions (Ramchoun et al., 2016). The components of the 

MLP architecture are depicted in Figure 2.6.  

 

Figure 2.6: The basic structure of MLPs with input units, x1 to x6, five hidden units in 
each layer, and output units, y1 and y2 (Bahi & Batouche, 2018).  
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2.5.2.2 Deep Learning Libraries 

TensorFlow makes it easier and faster to explore and apply neural network models. It's a 

more advanced library for distributed numerical computing. Large neural networks can be 

efficiently trained and run by distributing computations among hundreds of multi-GPU 

(graphics processing unit) computers. TensorFlow is recommended as the default backend 

for most DL purposes due to its widespread acceptance, scalability, and the fact that it was 

mostly production-ready (Chollet, 2018).  

Keras is a high-level DL API that simplifies and accelerates the training and running of 

neural networks. It works with Tensorflow, Theano, and Microsoft Cognitive Toolkit 

(formerly known as CNTK). 

Keras is a DL framework, according to Chollet (2018), that makes it simple to define 

and train practically any type of DL model. Keras was designed with researchers in mind, 

allowing for quick experimentation. Keras has several notable characteristics, including a 

user-friendly API that can support both convolutional and recurrent networks, as well as 

support for arbitrary network designs. 

2.5.2.3 Deep Learning Hyperparameters  

Min et al. (2017) state that adopting a suitable DL architecture is critical for obtaining 

robust and trustworthy outcomes. Choosing a thorough technique for the most appropriate 

or "best fit" DL architecture, on the other hand, remains a challenge that will be studied in 

the future. 

Many hyperparameters in DL architecture can be tweaked, including the number of 

hidden layers, hidden neurons, weight initialization values, learning iterations, and learning 

rate. The setting of these hyperparameters will have a significant impact on the training 
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outcome. For many years, however, hyperparameter tweaking is rarely systematic, and 

hyperparameter tuning is still handled by human-ML professionals. The use of automation 

in hyperparameter tuning is on the rise. 

The input data is mapped to the predictions by the network, which is made up of layers 

that are coupled together. The network's predictions are then compared to the target, 

yielding a loss value: a measure of how closely the network's predictions match what was 

predicted. This loss value is used by the optimizer to adjust the network's weights (Chollet, 

2018). The network, layers, loss function, and optimizer are all shown in Figure 2.7. 

 

 

Figure 2.7: The connection between the network, layers, loss function, and optimizer 
(Chollet, 2018).  
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Below are the examples of the DL hyperparameters that are normally used and tweaked in 

order to have an optimum performing DL model. 

a) Learning rate 

The learning rate, according to Sanderson et al. (2019), is how much the weight 

parameters are altered at each iteration. One of the most significant hyperparameters is the 

learning rate. The optimum learning rate is approximately half of the maximum learning 

rate. One method is to train the model for a few hundred iterations, starting with a very low 

learning rate (e.g., 10-5) and gradually increasing to a huge value (e.g., 10). For the learning 

rate, the range of values to evaluate should be less than 1.0 and more than 10-6. 

b) Optimizer 

Based on the loss function, the optimizer will determine how the network will be 

modified. By adjusting the weights, it will mould the model into the most exact form 

possible. Stochastic gradient descent with momentum, Adagrad, Adam, RMSProp, and 

several other optimizers are examples of optimizers (Chollet, 2018). 

c) Batch size 

Batch size defines the number of samples that will be passed through the network. It is 

the hyperparameter of gradient descent that controls the number of training samples to 

work through before the model's internal parameters are updated (Köse et al., 2020). Higher 

accuracy of the model is achieved when we use a higher number of epochs, however, it will 

result in a longer convergence time and overfitting may occur. 

d) Dropout 
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One of the most frequent regularisation approaches for neural networks is to add a drop-

out layer during training. It is used to remove units (along with their connections) from the 

neural network at random to prevent units from over-co-adapting. This lowers overfitting 

greatly and has significant advantages over other regularisation methods. Dropout is 

applied to a layer by randomly dropping several output features of the layer during training 

as shown in Figure 2.8 below. The rate of a fraction of the features that are zeroed out is 

defined as the dropout rate and is usually set between 0.2 to 0.5 (Srivastava et al., 2014). 

 

Figure 2.8: Image representation of Dropout Neural Net Model. Left: A standard 
neural net with 2 hidden layers. Right: Neural Net that applied dropout where the 
crossed units have been dropped (Srivastava et al., 2014). 

 

e) Epoch 

The number of epochs determines how many times the learning algorithm will run over 

the full training dataset. One or more batches will make up an epoch. When the entire 

dataset is passed forward and backward through the neural network exactly once, an epoch 

is completed (Köse et al., 2020). When a larger number of epochs is applied, the model 
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becomes more accurate; nevertheless, this results in a longer convergence time and the 

possibility of overfitting. 

f) Activation function 

According to Chollet (2018), to get access to a much richer hypothesis space that would 

benefit from deep representations, an activation function that represents the non-linearity is 

needed.  

Without activation function, the dense layer would only consist of two linear operations 

(a dot product and an addition):  

Output = dot (W, input) + b (2.5) 

Hence, the layer could only learn the linear transformation of the input data. The 

hypotheses space of the layer would be the set of all possible linear transformations of the 

input data into a 16-dimensional space, which in turn restricted the hypothesis space. ReLU 

activation function is a good default for all hidden layers. 

2.5.2.4 Deep Learning Features Engineering and Features Selection 

According to Chollet (2018), conventional DL eliminates the necessity for most feature 

engineering. This is due to the neural networks' capacity to extract valuable features from 

the raw data presented automatically. Although a DL model may be fitted by validating 

each weight (Wk), the way DL models interpret the variables and the risk score choice is 

crucial. As a result, it is known as the "black box" (Kwon et al., 2019a). 

2.5.2.5 Overfitting and Underfitting  

According to Brownlee (2018) overfitting is the model learns the training dataset too 

well. The model performs well in the training dataset but not on testing samples. When 

deep network training is adversarial robust, overfitting is a common occurrence, which 
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means that subsequent training will continue to reduce the classifiers' robust training losses 

while increasing test losses at a certain point (Rice et al., 2020). The solution to overfitting 

is to expand the model's capacity. Adding extra nodes or layers to the model is one method 

of increasing its capacity. 

Underfitting was also characterised by Brownlee (2018) as a model that did not learn the 

problem well enough and performed poorly on both training and holdout samples. The 

underfitting model was unable to achieve a low enough error rate on the training set. When 

there are too few neurons in the buried layers, underfitting occurs. 

2.5.2.6 Differences between Machine Learning and Deep Learning  

DL and ML differ in the way that data is presented in the system. ML almost always 

requires structured data while DL will rely on the layers of ANN. Besides that, DL is also 

different from ML in how representations are learnt from the raw data. ML "learn" to act by 

understanding the labelled data and producing new results with more datasets. DL, on the 

other hand, places data in a hierarchy of different concepts in multiple layers, which helps 

them to learn the representations of data with multiple levels of abstraction (Miotto et al., 

2018). 

In DL, feature extraction can be done automatically while in ML, understanding of 

features is needed to represent the data. Hence, DL acts similarly to how the human brain 

works to solve problems. After running the queries through multiple hierarchies of ideas, 

questions will be related to getting the answers. In ML, however, most of the applied 

features need to first be identified by an expert or data scientist.   

Instead of performing feature selection, DL employs feature learning. Feature learning 

can only learn all of the characteristics that have been presented and perform the tasks that 
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have been assigned to it, such as classification and detection, in order to gain significant 

features that can be used to predict the outcome (Kwon et al., 2019a). On the side of 

dependency on data, DL will perform well on large datasets while ML perform well on 

small and medium datasets. Hence, since DL is unable to perform feature selection, the 

goal of this study is to combine ML feature selection with DL. 

2.5.3 Artificial Intelligence Model Development  

According to the literature, there are three fundamental steps of ML building methods in 

health care in general which comprise an exploration phase, solution/design phase, and 

implementation/evaluation phase (Verma et al., 2021). This study adopted similar 

techniques or sequences of model development. This method can be implemented in 

various systems (even though it may slightly differ in the model development phase) 

because the steps are mostly the same. In order to create and deploy machine-learned 

solutions in health care, a multidisciplinary relationship between technical specialists and 

end-users, including physicians, administrators, statisticians, and patients and their families, 

is required. 

 

 

Figure 2.9: Image representation of three basic steps of machine learning model 
development in health care (Verma et al., 2021). 
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The same method is specifically parallel in ML model development generally.  The 

processes in using ML algorithms proposed by Goldstein et al. (2017) included data 

preparation, prediction model execution, model validation, and model testing. The 

summary of the model development steps for ML can be referred to in Figure 2.9 above. 

The outcome must be defined to be predicted as well as the predictor variables that will 

be used in the model developed during the data preparation process. It is possible to test 

algorithms and tuning parameters for testing. After that, a loss function can be specified. It 

is necessary to define rules for imputing and transforming data. 

The cross-validation process is set up when running the model prediction to test the 

tuning parameters and method throughout each iteration. Imputation and standardisation 

can both be done at the same time. After that, each algorithm's loss will be determined. The 

cross-validation process was re-run after assessing the variable importance, the categories 

of cases that were poorly forecasted, and the variable importance. 

The testing process included evaluating the performance of the testing set and 

comparing the metrics to those that were available. Figure 2.10 below summarises the flow 

of an ML model development. 

 

 

Figure 2.10: Fundamental machine learning model development. 
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2.5.3.1 Data Preprocessing 

a) Zero variance  

Columns with only one observation or value are unlikely to be useful for modelling. A 

single value for all rows in a column does not contain any information for modeling. 

Variables with a single value can also cause errors or unexpected results which is 

depending on the choice of data preparation and modeling algorithms. These columns or 

predictors are known as zero-variance predictors because the variance (average value from 

the mean) would be zero if we measured it (Brownlee, 2020). Any variables or columns 

that have a single value should probably be removed from your dataset (Kuhn & Johnson, 

2019).  

In other situations, the columns could consist of only a few numerical unique values. 

This situation commonly happens in categorical and ordinal variables because the dataset 

will only contain numerical values. These columns or predictors are referred to as near-zero 

variance due to their nature that only consists of a small amount in variation (such as two 

values for binary dummy variables) and as their variance is not an actual zero but near to 

the value zero. According to Kuhn and Johnson (2019), near-zero variance columns or 

predictors tends to have near-zero variance value during the resampling process. These 

predictors are likely to have small valuable predictive information and are commonly 

suggested to be removed from the whole dataset. Variables with minimal numerical values 

can also result in errors or unexpected output. 

b) Feature scaling  

Different characteristics have different value ranges, according to Bollegala (2017). As a 

result, feature scaling must be completed prior to the training of any supervised classifiers. 
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Feature scaling has been demonstrated to boost performance in various classification 

methods. 

Normalization and standardisation are two types of feature scaling processes. Data 

normalisation is defined by Singh and Singh (2020) as one of the pre-processing steps in 

which data is scaled or changed so that it contributes evenly to each feature. The 

fundamental goal of normalisation is to reduce the bias of those features whose numerical 

contribution to pattern classification is higher. 

The use of min-max normalisation is a common way to normalise data. The minimum 

value of each character is converted to a 0, the highest value is converted to a 1, and the 

remaining values are turned into a decimal between 0 and 1. The equation of normalisation 

of a variable value can be referred to as equation 2.6 where, X, is the original value, min(X), 

is the minimum value in the variable, and max(X), is the maximum value in the variable.  

𝑋𝑛𝑜𝑟𝑚 =  
𝑋 − min(𝑋)

max(𝑋) − min(𝑋)
 

(2.6) 

On the other hand, standardisation, also known as Z-scores normalisation, is a scaling 

approach in which the values are centred around the mean with a unit of standard deviation, 

implying the attribute's mean in the resultant distribution becomes zero with a unit of 

standard deviation. The µ in equation 2.7 is the mean value in the variable and the σ, is the 

standard deviation of the values in the variable. 

𝑋𝑛𝑜𝑟𝑚 =  
𝑋 −  µ 

𝜎
 (2.7) 
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c) Data balancing 

Class imbalance according to Mpanya et al. (2021), refers to the disproportionality of the 

data classes utilised to train the prediction model, a widespread issue that is not limited to 

medical data. When the training data for the negative outcome (e.g., dead) has much fewer 

observations than the majority class (e.g., alive), the classification algorithm is disposed to 

favour the majority class. This creates complications since the minority class, which bears 

the weight of the outcome, will have a low accuracy score. Fortunately, class imbalance 

concerns can be addressed through data manipulation, algorithm manipulation, or a 

combination of the two (Rekha et al., 2019). 

One of the most direct approaches to address class imbalance is to rebalance class 

distributions. Three fundamental strategies exist for balancing class distributions: 

 Under-sampling: these techniques are intended to balance the data set by excluding 

instances of the dominant class.  

 Oversampling: these techniques replicate instances of the minority group in order 

to achieve a more equal distribution. 

 Both under- and over-sampling: This method generates new minority class 

instances by interpolating between many closely related minority class instances 

and at the same time reducing the number of instances in the majority class that are 

considered unimportant. 

Under-sampling can result in the obliteration of potentially relevant data, while 

oversampling increases the chance of overfitting, as the majority of oversampling 

approaches create perfect copies of minority class samples. Thus, a symbolic classifier, for 

example, may provide rules that appear to be accurate but cover only one replicated case. 
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However, for both under- and over-sampling methods, it generates as many minority 

class instances as necessary to balance the class distributions by allocating 50% of the 

training examples to the minority class. While this method does not always produce 

optimal results, it frequently produces results that are comparable to, if not superior to, 

those produced by using natural class distributions. This method also avoids overfitting and 

result in the minority class's decision boundaries spreading further into the majority class 

space. This heuristic employed in this method is intended to mitigate the disadvantages 

previously discussed. 

d) Cross-validation 

Cross-validation is one of the most extensively used data resampling strategies to 

modify model parameters and determine genuine prediction error of models, according to 

Berrar (2019). Cross-validation is a resampling technique for evaluating ML models on 

small data sets. 

In k-fold cross-validation, the available learning set is first partitioned into k-numbers of 

subsets with approximately equal size. Fold here refers to the numbers of subsets that are 

likely to be randomly partitioned. The model will be trained with the k-1 subset which 

represents the training set. For example, if k= 10 are chosen, the learning set is partitioned 

into 10 partitions. Then, the dataset will be divided into 10 subsets. Next, one subset, s1 

will be used as the testing set while the other 9 (s2,...,s10) sets will be the training set. A 

new predictive model is built based on 9 training observations and a prediction, ^y1 is made 

based on the one subset that is used for the testing set. A smaller variance will be attained 

by using cross-validation rather than a single hold-out of the set evaluator. It also assists in 

the reduction of variance by more than ten divisions. Overfitting is reduced as a result of 

this. In Figure 2.11 below, it demonstrates on how 10-fold cross-validation works. 
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Figure 2.11: Illustration of 10-fold cross-validation where the partitioning of the data 
is done randomly and Dtrain is the subset for training while Dval is the subset for testing 
(Berrar, 2019).  

 

Model building and hyperparameter tuning operations could also benefit from k-fold 

cross-validation in the training set. According to Hsieh et al. (2018), they utilised train-test 

split to split the data and then used k-fold cross-validation with k=10 to do hyperparameter 

selection for configuration on each model they constructed. 

2.5.3.2 Feature engineering   

Chollet (2018) defines feature engineering as "a process of implementing hard-coded 

data changes before data is fed into a model to make algorithms operate better." This is 

accomplished by combining data knowledge with ML methods. 

The feature selection method is only applicable to ML and not to DL, as DL performs 

feature learning. Due to the neural network's capacity to automate the feature extraction 

process from raw data, modern DL has helped to reduce the majority of feature engineering 
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activities. However, when MLP is employed to train a model, feature engineering is 

considered because problems could be solved more elegantly with fewer resources and 

data. The DL models' ability to learn features on their own is reliant on the availability of a 

large amount of training data. As a result, if only a few examples are available for training, 

the usefulness of their characteristics became critical. 

a) Variable importance  

When some features are uninformative or heavily associated with other features, the 

performance of learning algorithms can degrade. Additionally, the ranking of features 

based on their importance might provide significant information to the end-user. Prior to 

feature selection, all variables must be ranked from most important (at the top) to least 

important (at the bottom). The ranking of these variables is essential for the feature 

selection procedure that follows, as several of the methods used to eliminate variables 

during the variable reduction process that either will add (forward direction) or delete 

(backward direction) variables dependent on their ranking (either form the top or the 

bottom). Given that we used SVM, RF, and LR in this investigation, the next section details 

on how each algorithm ranked the variables based on their importance. 

 

i. Variable Importance in Support Vector Machine  

To pick a suitable subset of SVMs, the kernel-based criterion proposed with the 

linear combination of features is suggested. As with linear regression, the ith 

coefficient denotes the fraction of total variance around the mean value of the 

dependent variables that can be explained by the linear relationship between the ith 

variable and the dependent variables. Thus, employing the magnitude of the 
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coefficient as a variable ranking criterion causes individual variables to be ranked 

according to their linear fitness. The matching coefficients are then derived based 

on the highest separability in the feature space. Additionally, the magnitudes of 

these coefficients are used to assign feature importance. The coefficients are 

explained by the nonlinear relationship between the class separability of the ith 

characteristic and its class separability (Kuo et al., 2013). The coefficient of 

separability in the feature space will be determined by the kernel functions (linear, 

polynomial, or radial). 

ii. Variable importance in Random Forest  

Breiman (2001) early prototypes of RF software had a variety of options for 

calculating variable importance. One method for classifying forests involves 

estimating variable importance based on the forest-averaged decrease in Gini 

impurity. However, it has dwindled in popularity over time (Grömping, 2009; 

Louppe et al., 2013). By far the most often utilised measure of importance is a 

measure termed permutation importance developed by the Breiman-Cutler software. 

Unlike Gini importance, which assesses significance using in-sample impurity, 

permutation importance employs a prediction-based technique, utilising the 

variable's prediction error. Instead of employing cross-validation, which is 

computationally costly in forests, permutation importance assesses prediction error 

by utilising out-of-bootstrap cases. Take into consideration that each tree is 

constructed using a bootstrap sample of the initial data. This data is referred to as 

OOB data, and the prediction error derived from it is referred to as OOB error 

(Breiman, 1999). Permutation importance permutes a variable's OOB data and 

compares the resulting OOB prediction error to the original OOB prediction error—
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the rationale being that a large positive value indicates a predictively important 

variable (Ishwaran & Lu, 2019).  

iii. Variable Importance in Logistic Regression  

The LR's feature selection algorithm, which performs stepwise regression analysis, 

employs a different technique for determining the variable's importance without 

ranking. It is further discussed in detail in the “Wrapper method” part on the feature 

selection subchapter below. 

 

a) Feature selection 

The critical difference between statistical and ML methods is that the former primarily 

aids in the understanding of relationships between a small number of variables, whereas the 

latter aids in the identification of new variables from data and improves prediction 

(Shameer et al., 2018). In ML, the relationships between variables might be difficult to 

decipher, especially in a “black box” architecture. The time it takes to analyse the data is 

faster with the use of computational power than with the conventional approach. ML can be 

used to choose features, classify them, or do both. 

Miao and Niu (2016) defined feature selection as a dimensionality reduction strategy. 

Feature selection is the process of identifying a small subset of key features from a larger 

set of characteristics to eliminate redundant, irrelevant, or noisy data and improve learning 

performance. The number of current variables is reduced to a small number, which reduces 

data dimension, increases efficiency, improves classification precision, enhances 

information visualisation, mutual exchange of the derived classification models, reduces 

training time, and improves the accuracy of findings, resulting in more comprehensible and 

acceptable results (Jović et al., 2015; Kumbhar & Mali, 2016). 
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The feature reduction method produces variables that help models perform better. The 

feature selection process can be broken down into four stages: generation (to generate the 

next candidate subset), evaluation (to evaluate the subset under examination), stopping 

criterion (to decide when to stop), and validation (to check whether the subset is valid) as 

seen in the Figure 2.12 below (Liu & Yu, 2005). Filter, wrapper, and embedded are the 

three general approaches to feature selection (Jović et al., 2015). 

 

Figure 2.12: Feature selection architecture (Dash & Liu, 1997). 

 

 

i. Filter Method 

The filter technique incorporates an independent measure for evaluating feature subsets 

without using a learning algorithm (Kumar & Minz, 2014). This method is both efficient 

and quick to compute (computationally efficient). According to Chandrashekar and Sahin 

(2014), variable ranking strategies are used as the primary factor for variable selection by 

ordering in filter methods. Due to their simplicity, ranking algorithms are used, and good 
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results have been recorded in practical applications. The variables are evaluated using a 

suitable ranking criterion, and variables that fall below the threshold are removed. Figure 

2.13 below summarises the steps of the filter method. Since they are used before 

classification to filter out the less important variables, ranking methods are filter methods. 

Some of the examples of filter methods are FOCUS (Almuallim & Dietterich, 1991), ABB 

(Liul et al., 1998), and relief (Kira & Rendell, 1992). 

 

 

 

 

 

 

Figure 2.13: The flow of the filter method in feature selection (John et al., 1994). 

 

A fundamental attribute of a unique feature is that it contains meaningful information 

about the data's many classifications. This property is known as feature importance, and it 

is a measure of a feature's utility in distinguishing between various classes (Kohavi & John, 

1997). When a feature can be independent of the input data but not of the class labels, it is 

regarded as significant; nevertheless, a feature that does not influence the class labels can 

be eliminated (Law et al., 2004). 
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As previously stated, inter-feature correlation is critical in determining unique 

characteristics. The underlying distribution is unknown in real applications; therefore, the 

classifier accuracy is used to assess it. As a result, an ideal feature subset may not be 

unique, as the same classifier accuracy might be achieved with several combinations of 

features. 

Saeys et al. (2007) on the other hand, pointed out that filter methods have a poor lengthy 

interaction with classifier algorithms, and they also stated in their study that because most 

filter methods are univariate in nature, these approaches may not pay attention to the values 

of other variables. The disadvantages of filter methods include redundancy of the selected 

features and the failure to evaluate some crucial correlations between features, as features 

can obtain a poor score when employed by the ranking algorithm. Filter methods also can 

miss features that are not valuable on their own but are extremely useful when paired with 

others (Chandrashekar & Sahin, 2014). 

ii. Wrapper Method  

Evaluation criteria are the only way to distinguish the filter and wrapper approaches. For 

subset evaluation, the wrapper technique employs a learning algorithm (Kumar & Minz, 

2014). The contribution of each feature to the performance of a certain type of classifier is 

taken into account during feature selection. The wrapper methods class uses a set of defined 

criteria to make a step-by-step selection of variables using the forward/backward criterion. 

Despite their slowness, wrapper methods are suitable for final model construction when 

compared to other methods. Sequential Forward Selection, Sequential Backward Selection 

(SBE) (Koller & Sahami, 1996), and Recursive feature elimination (RFE) (Kohavi & John, 

1997) are all common wrapper approaches. 

Univ
ers

iti 
Mala

ya



72 
 

Forward Selection is an iterative approach in which a model starts with no features or an 

empty set, and then features are added to the model in each iteration, improving the model's 

performance until all of the variables are included in the model, or until adding features 

does not affect the model's performance. The predictor that improves the model the most is 

added at each iteration (James et al., 2013; Kabir et al., 2010). SBE is a sequential forward 

selection alternative. To increase model performance, this SBE starts with a full set of 

variables and removes the least significant variable at each iteration. The technique is 

repeated until there is no more improvement in the elimination of characteristics (James et 

al., 2013). Because weaker features are not considered during subset selection, forward 

selection finds a weaker subset of features. Furthermore, forward feature selection has 

lower computational complexity than backward feature selection. Forward feature selection 

method errors made early in the process are not repaired later (Kumar & Minz, 2014).  

Recursive Feature Elimination (RFE) (Guyon et al., 2002) is a wrapper method that aims 

at finding a minimal and best-performing set of variables, which leads to a good prediction 

model. RFE will train the classifier and compute the ranking criteria for all features while 

removing the feature with the smallest ranking criterion or not important. The features that 

are top ranked (eliminated last) are not necessarily the ones that are individually most 

relevant. It repeatedly creates a model and keeps aside the best or the worst performing 

features at each iteration. It then ranks the features based on the order of their elimination. 

It then constructs the next model with the remaining features until all the features are 

exhausted. This iterative procedure is an example of backward feature elimination (Kohavi 

& John, 1997). It should be noted that RFE has no consequence on correlation methods 

since the ranking measure is calculated with information about a single feature.  

Univ
ers

iti 
Mala

ya



73 
 

In R, a set of functions must be specified using rfeControl$functions for each model. 

There are pre-defined sets of functions for a variety of models, including linear regression 

(lmFuncs), random forests (rfFuncs), naive Bayes (nbFuncs), bagged trees (treebagFuncs), 

and functions that may be used with caret's train function (caretFuncs). The latter is 

beneficial if the model involves tuning parameters that must be determined at each iteration 

(such as SVM). The most commonly used function for RFE in the ML model training is the 

“random forest” (rfFuncs) because it has a nice built-in mechanism for computing feature 

importance (Kuhn, 2009). Several studies in the medical fields, including Aziida et al. 

(2021), Das et al. (2020), Bahl et al. (2019), and Macias et al. (2020), have been conducted 

to demonstrate the robustness of the rfFuncs in feature reduction for the benefits of 

reducing the cost of ML model development and, as a result, improving the ML model 

performances. The rfFuncs is further discussed in the Methodology section of the thesis. 

Stepwise regression is a technique for fitting regression models in which the selection of 

predictive variables is automated (Efroymson, 1960). Each stage considers whether a 

variable should be added to or subtracted from the set of explanatory variables based on 

some predetermined criterion (Draper & Smith, 1998). The main approaches for stepwise 

regression are forward selection, backward elimination, and bidirectional elimination. 

Starting with no variables in the model, forward selection involves testing the addition of 

each variable using a chosen model fit criterion, adding the variable (if any) whose 

inclusion gives the most improvement in the fit, and repeating this process until none 

improves the model significantly. Backward elimination entails starting with all candidate 

variables, testing their deletion using a chosen model fit criterion, deleting the variable (if 

any) whose loss results in the least deterioration of the model fit, and repeating this process 

until no more variables can be deleted without an insignificant loss of fit. Bidirectional 
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elimination, a combination of the foregoing, with factors to be included or removed tested 

at each phase. 

Instead of using the traditional way of stepwise regression analysis using t-tests or F-

tests fitting the final selected model based on the p-value, StepAIC is one of the most 

extensively used feature selection for stepwise regression analysis method in R. The Akaike 

information criterion (AIC) is a predictor of prediction error and, as a result, of statistical 

model quality for a given set of data (Aho et al., 2014). AIC measures the quality of each 

model in relation to the other models given a set of data models. As a result, AIC can be 

used to choose a model. The information theory supports AIC. When a statistical model is 

used to describe the process that created the data, it is virtually never accurate; thus, some 

information is lost when the model is used to represent the process. The AIC calculates the 

amount of information lost by a given model: the less information lost, the greater the 

model's quality. AIC considers the trade-off between model goodness of fit and model 

simplicity when assessing the amount of information lost by a model. To put it another 

way, AIC considers both the risks of overfitting and underfitting. The AIC value is 

calculated as follows; 

𝐴𝐼𝐶 = 2𝑘 − 2 ln(𝐿) (2.8) 

where k is the number of the estimated parameters in the model and L is the maximum 

value of the likelihood function for the model (Akaike, 1985).  

The AIC value is examined to see if it is increasing or decreasing as more variables are 

added or discarded. To arrive at the final set of features, the StepAIC value is aimed to be 

as low as possible. Hence, we can say that AIC provides a means for model selection. As a 

result, while AIC rewards goodness of fit (as measured by the likelihood function), it also 
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contains a penalty that grows in proportion to the number of estimated parameters. 

Overfitting is discouraged by the penalty, which is desirable because increasing the number 

of parameters in a model almost always enhances the fit's goodness. 

The wrapper method chooses the most appropriate subset for the learning algorithm. As 

a result, the wrapper technique usually performs better (Kumar & Minz, 2014) than the 

filter method. Figure 2.14 below shows the summary of how wrapper method is performed. 

 

 

 

Figure 2.14: The flow of the wrapper method in feature selection (John et al., 1994). 

 

iii. Embedded Method  

The embedded approach has a lower computing cost than the wrapper approach when 

interacting with the learning algorithm. It also records the interdependencies between 

features (Blum & Langley, 1997). The most common strategy is to include feature selection 

in the training process. It considers not just the correlations between input and output 

attributes, but also looks for features that might help with local discrimination. The best 

subsets for a known cardinality are determined using independent criteria (John et al., 
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1994). The learning process is then used to choose the final optimal subset from among the 

optimal subsets of various cardinalities.  

2.5.3.3 Data imputation 

The majority of statistical and ML techniques are insufficiently robust when dealing 

with missing variables. Missing data has an impact on them. Missing data provides an 

element of ambiguity into data analysis, which can impact statistical estimator qualities, 

resulting in a loss of power and erroneous findings (Schmitt et al., 2015; Somasundaram & 

Nedunchezhian, 2011). Although a number of variables impact the quality of an 

ML algorithm's output, such as feature selection, algorithm selection, sampling techniques, 

training, test, and validation datasets, one of data scientists' main concerns is how to cope 

with missing data (Brown & Kros, 2003). 

Dealing with missing values effectively is a difficult undertaking that necessitates which 

are a thorough review of all instances of data to detect patterns of missingness in the data 

and a thorough understanding of various imputation strategies. 

Data that is missing could be due to equipment failure, data that is conflicting with other 

data and thus destroyed, data that is not recorded due to misunderstanding, or data that is 

not judged important at the time of data collection. 

Before implementing any strategy for dealing with missing data, it is vital to understand 

why it's missing. Missing completely at random (MCAR), missing at random (MAR), and 

missing not at random (MNAR) are three possible missing data techniques proposed (Little 

& Rubin, 2002; Rubin, 1976). 
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 MCAR: It is the highest level of randomization, suggesting that the pattern of 

missing values is fully random and unrelated to any variable in the study. As a 

result, if missingness is unrelated to any data in the dataset, it means data is missing 

at random. The MCAR assumption states that the likelihood of missingness is 

independent of both observed and unobserved values of any variable in the dataset. 

 MAR: In this case, the observed data in the dataset determines the likelihood of 

missing data. It indicates that observable data determines the likelihood of 

missingness, while unobservable data does not. The missing value of any variable in 

the dataset is reliant on the observed values of other variables in the dataset because 

there is a relationship between the attribute carrying the missing value and other 

attributes in the dataset. The observed values in the dataset may reveal the pattern of 

missing data. 

 MNAR: Missingness is determined by unobserved data rather than observable data 

in this scenario. Consequently, missingness is defined by either missing data or the 

item itself, due to the response variable's high sensitivity to answer. When using 

MNAR data, the likelihood of missing data is proportional to the value of the 

missing data. The missing data pattern is not random and is unpredictably different 

from the observed values of the other variables in the dataset. 

 

There are two approaches to dealing with missing data (Han et al., 2011). The first 

technique is to simply ignore missing data, while the second option is to think about 

imputation. 
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a) Ignoring missing data: Missing data ignoring method is a strategy that simply 

ignores occurrences when data is missing. They are frequently utilised, and they are 

often the go-to solution for dealing with missing data. This method has a serious 

problem in that it does not use the entire dataset. This is a suitable choice when the 

dataset includes a small number of missing values. There are two techniques to 

ignore missing data in general: 

 

 Listwise deletion is the method used for the full case analysis. All observations with 

missing values for any variable of interest are removed in a comprehensive case 

analysis. As a result, this method limits the analysis to observations with all values 

recorded, which typically leads to a skewed estimate and a loss of precision 

(Schafer & Graham, 2002). 

 A pairwise deletion analysis is one in which all situations in which the variables of 

interest are present are examined. It does not omit a whole unit, but it does make use 

of as much data as feasible from each unit. Even if any of the variables have 

missing values, this technique has the benefit of saving as much data as possible for 

analysis. The downside of this strategy is that it uses different sample sizes for 

different variables (Schafer & Graham, 2002). Each individual analysis has a larger 

sample size than the entire case study. 

 

b) Imputation of missing values: Imputation of missing values is a process for 

replacing missing values with plausible alternatives (Rubin, 1976). The numerous 

imputation strategies strive to deliver accurate population parameter estimation 

without reducing the capacity of data mining and data analysis techniques. The 
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quantity of data missing determines the appropriate approach for missing data. 

Although there is no hard and fast rule about how much missing data is bad, it is 

usually a good idea to compare the findings before and after imputation if more than 

25% of data is missing. As a result, the imputation method's performance is 

unaffected by the dataset or the percentage of missing values (Jadhav et al., 2019). 

According to Cismondi et al. 2013, deletion of missing values is a typical procedure 

in the medical industry. In some datasets, the percentage of missing data can reach 

50% or higher, and in these cases, imputed data seems to be inherently wrong. 

 

The data scientists' primary focus is data quality. Although data quality is 

influenced by some factors, one of the most important is data incompleteness. As a 

result, data scientists must deal with missing data concerns with rigour before 

analysing data and allowing end-users of data mining initiatives to make viable 

conclusions. Data imputation is a technique for replacing missing values with the 

most plausible values to make data complete and suitable for analysis by replacing 

missing values with the most plausible values. 

 

There are two types of data imputation methods: single imputation methods and 

multiple imputation methods. 

 

i) Single Imputation: A single missing value is replaced by a unique value retrieved 

from the entire data is a part using this procedure (Jerez et al., 2010). Some of the 

examples of single imputation methods are: 
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 Mean imputation: The mean value of each non-missing variable is used to 

fill in missing values for all observations in the general approach to mean 

imputation, which may be thought of as a simple application of regression 

imputation. The disadvantage of this method is that if there are a lot of missing 

values, all of them are replaced with the same imputation value, which is the mean, 

which changes the shape of the distribution. When you compare the standard 

deviation before and after imputation, it gets smaller. The median and modus 

imputation procedures are similar to mean imputation. These techniques were 

developed to account for the imputation of data that was not normally distributed. 

 

 Regression imputation: This is a more advanced version of the single 

imputation technique. Missing values are replaced with predicted data using 

regression based on non-missing data from other variables in this method. This 

strategy is based on the premise that the attributes have a linear connection. 

However, because most relationships are not linear, applying regression to replace 

missing values would bias the model. This approach has the potential to yield 

skewed findings, especially when using MNAR and MAR (Schafer & Graham, 

2002). 

 

 kNN imputation: Missing values are imputed using this method by copying 

values from similar entries in the same dataset. A distance function is used to 

determine how similar the two qualities are. It is not necessary to create a prediction 
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model for each attribute, but it does have drawbacks. Because of the k value 

selection, evaluating huge datasets takes a long time. 

 
 Hot deck imputation: For the imputation of an incomplete instance, hot-deck 

imputation techniques use a completely observed donor case. The donor case's 

related values are used to fill in the gaps. The various hot-deck procedures are 

defined by the various methods of locating a donor case (Molnar et al., 2008). 

 

ii) Multiple imputations: In a nutshell, the objective of this method is to replace each 

missing value, m with m > 1 plausible value. The m complete data sets are then 

evaluated independently using typical full data processes, and the m sets of results are 

then integrated using Rubin (1988) formula to generate a single overall set of results. 

The multiple imputation method anticipates missing data using all of the data set's 

available information. Since variables in the data set are frequently connected with 

insufficient variables or associated with missing value, multiple imputations is often 

better equipped to provide sufficient parameter estimates than ad hoc methods such as 

unconditional mean imputation, which cannot take advantage of this information 

(Schafer & Graham, 2002). The mean of the m estimations is the multiple imputation 

point estimate. The variance estimate is calculated by combining within-imputation 

variability (the mean of the missing values standard error estimates) and between-

imputation variability (the standard deviation of the missing values point estimates). 

The between-imputation variance component directly represents the uncertainty about 

the parameter estimate owing to unobserved information, and as the missing 
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value estimates go closer together, variance becomes bigger, resulting in a broader 

confidence range, and therefore bias about the parameter estimate may be mitigated. 

 Multiple Imputation by Chained Equations (MICE) is an increasingly popular 

method for doing multiple imputations (Royston & White, 2011). Predictive Mean 

Matching (PMM) is a common approach for doing multiple imputations on 

continuous or semi-continuous multivariate (Van Buuren, 2011; Vink et al., 2014). 

This study adopted PMM because according to Morris et al. (2014), the algorithm 

iteratively imputes each missing column (target) by producing synthetic values from 

the dataset's other variables (predictors). Missing value predictors are filled with an 

initial value before being completed with the most recently generated imputations. 

There is a different imputation mode for each column. By imputing an actual 

observed value, PMM is frequently superior to fully parametric multiple 

imputation approaches in preserving the fundamental data distribution and the 

relations within the set of data, and therefore better able to screen any bias caused 

by failed distributional assumptions. 

According to a few studies of the literature, the performance of the proposed imputation 

approaches is highly dependent on the issue domain (e.g., number of instances, number of 

variables, missingness patterns), and there is no clear indication that one method is superior 

to the others (Perez et al., 2002; Taylor et al., 2017). In the design of a scoring system for 

predicting death in ICU patients, Perez et al. (2002) introduced single, hot-deck, and 

multiple imputation approaches to impute missing data. Differences in areas under the ROC 

curve were statistically significant but not clinically important, according to the findings. 

Taylor et al. (2017) investigated the effects of seven alternative imputation approaches on 

multiple biological matrix analyses (half minimum, mean, kNN, local least squares 
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regression, Bayesian principal components analysis, singular value decomposition, and RF) 

and they concluded that no imputation approach is better than the others, but the mean and 

half minimum performs poorly. Table 2.11 summarises the advantages and disadvantages 

of single and multiple imputation (Libasin et al., 2020). 

 

Table 2.11: The advantages and disadvantages of single and multiple imputations. 

Method  Advantage Disadvantage 

Singke 
Imputation 

 Simple to apply and 
understand 

 Quick  
 Applicable to any 

statistical analysis 
 There are no specific 

computational methods 
that must be used. 

 Many statistical 
software programmes 
use it by default. 

 Under the MCAR 
assumption, unbiased 
parameter estimations 

 A significant reduction 
in the sample size 

 Statistical power is 
reduced. 

 Doesn't make use of all 
of the facts 

 If the data is MCAR, 
there is a command 
loss. 

 If the data isn't 
MCAR, the findings 
will be skewed. 

 The relationship 
between variables can 
be influenced. 

Multiple 
Imputation 

 Approach in general 
 Easy to comprehend, but 

difficult to programme 
 Ad hoc techniques lacked 

the legitimacy of unbiased 
estimates. 

 Ensures that sample size 
and statistical power are 
not harmed. 

 There is software available 
for purchase. Estimates' 
standard errors can be 
estimated. 

 Programming is difficult 
(specific software is 
required). 

 Extensive computing 
 The imputation model is 

difficult to regulate for the 
analyst. 

 The variance is 
higher than it is for 
single-imputation 
approaches. 
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2.5.4 Performance Evaluation  

The commonly employed metrics in evaluating the performance of a diagnosis model, 

according to Kim et al. (2017), comprised accuracy, sensitivity, specificity, likelihood ratio, 

and area under the ROC curve (AUC) (Kim et al., 2017). The following metrics are used in 

this study to evaluate model performances. 

2.5.4.1 Confusion Matrix 

A confusion matrix is used to evaluate the performance of classifiers on datasets 

(Hasnain et al., 2020). The confusion matrix is commonly used in ML for supervised 

classification or determining the behaviour of classification models (James et al., 2013). A 

confusion matrix's square structure is represented by rows and columns, according to 

Caelen (2017). 2 × 2 matrices are used to represent a confusion matrix in binary 

classification. In a confusion matrix, four metrics were used: 'true positive' (TP), 'true 

negative' (TN), 'false positive' (FP), and 'false negative' (FN). A confusion matrix with the k 

class has a k x k confusion matrix in the multiclass issue. 

True Positives (TP) show that the patient has a disease with a positive prediction, but 

False Positives (FP) indicate that the patient does not have a condition but does have a 

positive prognosis. True Negative (TN) means the patient does not have an illness and has a 

negative prediction, whereas False Negative (FN) means the patient does have a condition 

but has a negative prognosis. 

The accuracy of a diagnosis model refers to its capacity to correctly identify patients 

with and without the disease. Sensitivity refers to the model's capacity to correctly identify 

patients with the disease, while specificity refers to the model's ability to accurately identify 

patients without the disease. 
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Actual (Yes) Actual (No) 

Prediction (Yes) True positive (TP) False-positive (FP) 

Prediction (No) False-negative (FN) True negative (TN)  

 

Figure 2.15: The confusion matrix. 

 

The diagonal items (TN, TP) in Figure 2.15 are true predictions, whereas the others (FP, 

FN) are false predictions (Catal, 2012). Other performance evaluation metrics will be 

calculated using these values. Wallert et al. (2017) found that when using ML to predict 

two-year survival following a first myocardial infarction, false negatives (non-survived 

patients anticipated to survive) were more expensive than false positives (survived patients 

predicted to die) for mortality prediction. 

 

a) Accuracy 

One of the most popular approaches to assess a model's performance is to look at its 

accuracy. Saura (2021) described accuracy as a model's or method's quality and accuracy. 

The ratio of all correct predictions made to the total number of forecasts made can 

alternatively be described as accuracy (Jain & Singh, 2018). AUC greater than 0.70 shows 

that the predictive model proposed a good discriminatory ability, whereas AUC less than 

0.50 suggests that the predictive model proposed a low discriminatory ability (Mpanya et 

al., 2021). 
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The formula for calculating accuracy is as stated in equation 2.9 below where TP, is true 

positive, TN, is true negative, FP, is false positive and FN is false negative. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
( 𝑇𝑃 = 𝑇𝑁 )

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁 )
 

(2.9) 

 

b) Sensitivity (Recall or True Positive Rate) 

Jain and Singh (2018) defined sensitivity as the ratio of true positive to the sum of true 

positive and false negative. In medical diagnosis, sensitivity is the ability of a test to 

identify those with disease correctly. High sensitivity with negative test results indicated 

that a person may not have the disease.  

According to Veropoulos et al. (1999), sensitivity is used to calculate the 

misclassifications in the positive cases. The formula for sensitivity is shown below. 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2.10) 

 

c) Specificity (True Negative Rate) 

Specificity is defined by Jain and Singh (2018) as the ratio of true negatives to the sum 

of true negatives and false positives. Specificity is utilised to determine the 

misclassifications in the negative instances (Veropoulos et al., 1999). The formula for 

specificity is as follows: 
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 (2.11) 

 

d) Predictive values  

When test findings are provided to clinicians, the two other indices that are helpful in 

clinical practise are the positive predicted values (PPV) and the negative predicted values 

(NPV). PPV is also known as precision. The likelihood of disease for positive test results is 

known as the PPV, whereas the probability of health for negative test results is known as 

the NPV. The preceding prevalence of disease in the population has an impact on these two 

indicators, despite the fact that they are valuable for clinical decision-making. A higher 

prevalence of the disease results in an increased PPV, however a higher prevalence also 

results in a decreased NPV (Hajian-Tilaki, 2013). The equations of PPV and NPV are 

shown in the equations 2.12 nd 2.13 below. 

 

𝑃𝑃𝑉 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2.12) 

  

 𝑁𝑃𝑉 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 (2.13) 
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e) F-Score 

Accuracy in classification is a commonly used metric because it can be reduced to a 

single, straightforward indicator of overall model performance.The F-Measure presents a 

method for combining precision and recall into a single measure that is capable of capturing 

both of these features (Taha & Hanbury, 2015). 

After the scores for precision and recall have been determined for a binary or multiclass 

classification problem, it is possible to combine the two scores in order to determine the F-

measure for the problem. When taken by themselves, neither precision nor recall reflect the 

complete story. It is possible to even have horrible precision but fantastic recall, or it's also 

possible for us to have excellent recall but terrible precision. The F-measure provides a 

method for expressing both of these issues through the use of a single score. 

The equation to calculate F-score is as mentioned in equation 2.14 below. 

 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =  
2. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(2.14) 

 

2.5.4.2 Receiver Operating Characteristics (ROC) curve 

The use of ROC graphs in the ML field has risen steadily, partly due to the recognition 

that basic classification accuracy is typically a poor metric for evaluating performance 

(Faizal et al., 2021). The ROC curve was an effective approach to analyse the effectiveness 

of the diagnosis test (Kumar & Indrayan, 2011). When the diagnostic test is on an ordinal 

scale with a minimum of 5 categories or is continuous, the plot depicted the trade-off 

between sensitivity and (1-specificity) across a succession of cut-off positions. The ROC 
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curve had the advantage of allowing simultaneous display and comparison of one or more 

diagnostic tests in one picture. 

Due to various reasons, such as imbalanced data, too few variables, changing continuous 

variables into categorical data (degree of discrete creating bias), and false positive and false 

negative concerns, accuracy has been determined not to be a good measure of performance 

in several studies. As a result, measuring and comparing the performance of these models 

with the area under the receiver operating curve (AUC) is more accurate (Faizal et al., 

2021). 

To assess the performance of a certain diagnosis test, the AUC was used since it was a 

combined measure of sensitivity and specificity. With the maximum AUC of 1, it indicated 

that the diagnostic test was perfect in classifying into diseased and non-diseased. The 

higher the AUC, the better the performance of the model at distinguishing between the 

positive and negative classes. 

In the study done by Wallert et al. (2017), AUC was taken as the performance metric for 

their models developed as classes were heavily unbalanced, as it is not imbalance-sensitive 

(Wallert et al., 2017). Between 0 and 1, 0.5 denotes random guessing, and any feature or 

variable with an AUC more than 0.7 may be a potentially helpful clinical classifier. In 

mortality prediction, false negatives are considered more disastrous than false positives. 

However, the judgement was also made along with the consideration of base rate incidence, 

consequences of false negatives/positives, test risk, cost, etc. AUC values between 0.7 and 

0.8 are considered acceptable, values between 0.8 and 0.9 are considered excellent and 

values greater than 0.9 are considered outstanding (Mandrekar, 2010). 
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2.5.4.3 McNemar’s test  

According to Sun and Yang (2008), McNemar’s test, named after Q.McNemar, was 

introduced in 1947. It is a non-parametric method used on nominal data to test the equality 

of row and column marginal frequencies.  

McNemar’s test can also be used to determine if there are any differences between two 

groups on a dichotomous dependent variable. According to Omolala & Wilella (2012), 

McNemar’s test can be defined as a type of chi-square test that uses dependent (paired or 

correlated) data instead of independent data (Adedokun & Burgess, 2012). 

2.5.4.4 Net Reclassification Improvement Index (NRI) 

The AUC has evolved as a result of applications in diagnostic testing in radiology back 

in the year 1982 (Hanley & McNeil, 1982).  The study stated that the area under the 

sensitivity vs. ‘one minus specificity' plot for all potential cut-off values is known as the 

AUC. This concept has been proven to be identical to defining AUC as the chance that a 

given diagnostic test (predictive model) assigns a higher probability of an event to those 

who actually experience (or develop) events. The difference in AUCs is determined using a 

model with and without the variable of interest is simply defined as the improvement in 

AUC for a model incorporating a new extra variable. However, the magnitude of this 

increase is frequently insignificant. For example, a study by Shouval et al. (2017) showed 

that the ML methods with new variables added to it predicting 30-day mortality after 

STEMI as compared to GRACE score increase the model AUC from 0.87 to 0.91.   

As a result of the foregoing, some researchers began to investigate various ways for 

assessing the improvement. In the medical literature, reclassification tables are becoming 

increasingly prominent especially in cardiovascular epidemiology (Chattopadhyay et al., 

2018; Kwon et al., 2019a; Mahler et al., 2013; Myers et al., 2017; Wang et al., 2020; 
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Widera et al., 2013). For example, Myers et al. (2017) compared a model developed to 

improve risk stratification after ACS using the conventional risk prediction score, TIMI risk 

score (‘old’ model) with a model that was developed using ANN ('new' model), and the 

AUC values are 0.670 and 0.743 respectively. The two-category NRI with respect to the 

TIMI risk score was 0.065 (6.5%) when they classified the predicted risks obtained using 

their two models (old and new) into three categories and then cross-tabulated these two 

classifications; over the 1000 bootstrap trials, an average of 87 patients was correctly 

reclassified using the ANN model with a standard deviation of 9.4 patient (Myers et al., 

2017). This is similar to the study by Kwon et al., (2019a) that used the DL method in 

building a new prediction model for in-hospital mortality and then compare it to the 

GRACE score, their AUC values are 0.905 and 0.851 respectively. The DL method 

predicted 34 in-hospital mortality patients more accurately than the GRACE score with the 

net reclassification of 0.6% (Kwon et al., 2019a).   

In 2008, Pencina et al. (2008) established the net reclassification improvement index 

(NRI), a novel measure of incremental value. The overall NRI is provided as a statistic, 

which is defined as the sum of the net proportion of people with and without the event of 

interest who were correctly assigned a different predicted risk. The event NRI (NRIe) is 

defined as the net proportion of people who properly assigned a higher predicted risk to the 

event of interest, while the non-event NRI (NRIne) is defined as the net percentage of 

people who correctly assigned a lower predicted risk to the event of interest. A simple 

asymptotic test can be used to determine the significance of the improvement. 
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According to Pencina et al. (2008), the equation for event NRI is: 

 

𝑁𝑅𝐼𝑒 = 𝑃(𝑢𝑝|𝑒𝑣𝑒𝑛𝑡) − 𝑃(𝑑𝑜𝑤𝑛|𝑒𝑣𝑒𝑛𝑡) (2.15) 

 

While the equation for non-event NRI is: 

 

𝑁𝑅𝐼𝑛𝑒 = 𝑃(𝑑𝑜𝑤𝑛|𝑛𝑜𝑛𝑒𝑣𝑒𝑛𝑡) − 𝑃(𝑢𝑝|𝑛𝑜𝑛𝑒𝑣𝑒𝑛𝑡) (2.16) 

 

And the equation of NRI, in general, is the summation of the two previous equations: 

 

𝑁𝑅𝐼 =  𝑃(𝑢𝑝|𝑒𝑣𝑒𝑛𝑡) − 𝑃(𝑑𝑜𝑤𝑛|𝑒𝑣𝑒𝑛𝑡) + 𝑃(𝑑𝑜𝑤𝑛|𝑛𝑜𝑛𝑒𝑣𝑒𝑛𝑡) − 𝑃(𝑢𝑝|𝑛𝑜𝑛𝑒𝑣𝑒𝑛𝑡) (2.17) 

 

Any ‘upward' movement in categories for event subjects (those who are involved in the 

event) indicates better classification, while any ‘downward' movement indicates worse 

reclassification. For those that do not experience events, the interpretation is the polar 

opposite (Pencina et al., 2011). Alternatively, the NRI can be computed by calculating the 

difference between the proportions of individuals moving up and down for those who 

develop events, as well as the equivalent difference in proportions for those who do not 

develop events and then subtracting these two differences.  By way of explanation, “up” 

means that the new risk model assigns a person to a greater risk group than the previous 

one. Similarly, “down” denotes that a person has been assigned to a lower risk category by 
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the new model. The risk prediction model with established predictors is known as the "old" 

model in the definition of " net reclassification indices." The "new" model is one that adds a 

new predictor.  

There are two types of NRI index which are categorical and category free 

reclassification index (Kerr et al., 2014). For example, NRI0.2 is a two-category index with a 

0.20 cut-off separating low and high risk. The NRI0.1,0.2 is a three-category index with cut-

offs of 0.10 and 0.20, indicating low, medium, and high risk. A net reclassification index 

can be defined using any set of risk thresholds. The “category-free net reclassification 

index” (also known as the “continuous net reclassification index”) translates the overall 

definition of NRI to any upward or downward change in expected risks. The category-free 

index is also denoted by NRI>0. 

The net reclassification index is frequently misinterpreted as a proportion. For example, 

interpreting the index as “the proportion of patients reclassified to a more acceptable risk 

category” is inaccurate because it is P (up and event) + P (down and nonevent) (Pickering 

& Endre, 2012). Because NRIe and NRIne represent proportional differences, they are easier 

to interpret than the net reclassification index. The net proportion of events assigned a 

higher risk or risk category is referred to as NRIe. The net proportion of nonevents assigned 

a lower risk or risk category is known as NRIne. The word "net" is key in this case for 

proper interpretation.  

2.6 Machine Learning and Deep Learning as Alternative Mortality Prediction 

Methods 

Advances in computer science, as well as the need for precision medicine, have resulted 

in the accumulation of multidimensional data from several fields (Shameer et al., 2018). 
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This technique has been used for several tasks on a variety of data formats, including 

electronic health records (Jensen et al., 2012), pathologic specimens (Komura & Ishikawa, 

2018), and gene expression microarrays (Pirooznia et al., 2008), as well as for novel 

applications like medical robotics (Kassahun et al., 2016). In all the medical data analysis 

scenarios where ML has been used, it has shown promise as a potentially strong tool for 

detecting data trends and patterns that would otherwise go unreported if traditional 

statistical approaches were used. 

On the other hand, the medical field has also been adopting ML in its practices to assist 

in the diagnosis and prognosis of patients. The development of a predictive model using 

ML is widely used in various medical domains such as diagnosing patients with diabetes 

mellitus (Juneja et al., 2021), predicting prolonged length of stay in newborns (Thompson 

et al., 2018), predicting the length of stay of patients in the Intensive Care Unit (ICU) 

(Picone et al., 2021), early detection of autism (Abbas et al., 2017), diagnosis of arrhythmia 

using images from electrocardiogram (ECG) (Desai et al., 2015) and recently in 

Coronavirus disease (COVID-19) cases analysis (Kwekha-Rashid et al., 2021). These 

predictive models have shown positive feedback in predicting the desired outcomes and 

resulting in better performance.  

The ML methods used in the aid of building a predictive model in the various medical 

domain are summarised in Table 2.12 below.  By analyzing the research done in different 

medical domains, it can be concluded that different ML suited different medical datasets 

when performing predictions. For example, in ML-Based Prediction of Prolonged Length 

of Stay in Newborns by Thompson et al. (2018), RF outperformed other methods with the 

area under the ROC curve of 0.88.  
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Table 2.12: Summary of previous studies that incorporate ML in the medical domain. 

Paper title and 
authors 

Data sources Number of 
instances 

Input 
variables 

Model performances metrics 

Predicting 
Diabetes 
Mellitus with 
Machine 
Learning 
Techniques 

(Zou et al., 
2018) 

Hospital 
physical 
examination 
data in 
Luzhou, 
China 

82,694 14 
variables 

 

Accuracy (all features,blood 
glucose, PCA,mRMR, without 
blood glucose, 11 features): 

Random forest 
(0.81,0.76,0.74,0.75,0.72,0.71) 

J48 
(0.76,0.76,0.74,0.76,0.69,0.69) 

Neural network 
(0.0.78,0.76,0.74,0.76,0.70,0.70) 

 

Machine 
Learning-
based 
Prediction of 
Prolonged 
Length of 
Stay in 
Newborns 

(Thompson et 
al., 2018) 

Healthcare 
Cost and 
Utilization 
Project 
(HCUP) 
dataset. 

17,889  20 
variables  

ROC score: 

ZeroR (0.5) 

Naïve Bayes (0.70) 

Logistic (0.72) 

Multi-layer perceptron (0.72) 

Simple Logistic (0.72) 

SVM (0.58) 

J48 (0.78) 

Random Forest (0.88) 

Random tree (0.67) 

Predicting 
length of stay 
using 
regression and 
Machine 
Learning 
models in 
Intensive Care 
Unit: a pilot 
study 

(Picone et al., 
2021) 

University 
Hospital of 
Naples 
“Federico II” 
adult and 
neonatal ICU 
dataset. 

415 5 variables  Mean absolute error: 

DT (0.70) 

RF (0.53) 

GBT (0.56) 

SVM (0.56) 

KNN (0.62) 

MLP (0.70) 
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Table 2.12, continued. 

Paper title and 
authors 

Data sources Number of 
instances 

Input 
variables 

Model performances 

Machine 
Intelligent 
Diagnosis of 
ECG for 
Arrhythmia 
Classification 
Using DWT, 
ICA and 
SVM 
Techniques 

(Desai et al., 
2015) 

PhysioNet, 
MIT– BIH 
arrhythmia 
database 

110,093 5 variables  SVM kernels (F-Score): 

Linear (59.67) 

Quadratic (76.54) 

Polynomial (64.43) 

RBF (68.36) 

Machine 
learning-
based 
approaches 
for detecting 
COVID-19 
using clinical 
text data 

(Khanday et 
al., 2020) 

Open-source 
data 
repository 
GitHub 

212 24 
variables  

F Score: 

Logistic regression (0.95) 

Multinomial Naïve Bayesian 
(0.95) 

Support Vector Machine 
(0.86) 

Decision tree (0.92) 

Bagging (0.92) 

Adaboost (0.88) 

Random forest (0.93) 

Stochastic gradient boosting 
(0.93) 

 

Additionally, AI-based techniques especially ML are being utilised to aid in the 

development of standardised predictive models that could help cardiologists with patient-

specific guidelines and decision-making. These would, in turn, assist clinical providers in 

reclaiming time and improving patient-provider relationships (Shameer et al., 2018). 
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Based on the literature, research regarding mortality prediction in ACS was widely 

conducted in countries around the globe for the past decade adopting ML as the predictive 

method. Some of the western countries that used this method are the United States of 

America (USA) (Al'Aref et al., 2019; Barrett et al., 2019; Frizzell et al., 2017; Mansoor et 

al., 2017; Myers et al., 2017; VanHouten et al., 2014), Sweden (Wallert et al., 2017), and 

Poland (Pieszko et al., 2019). Countries in Asia are not left out in the advancement of ML 

as Israel (Shouval et al., 2017), China, Korea (Li et al., 2017; Li et al., 2020), and 

Singapore (Bulluck et al., 2019) have been utilizing this method in their research to 

determine the mortality of patients with ACS. In Malaysia, there is only one study 

regarding the mortality prediction in ACS at 30 days using the ML method by Aziida et al. 

(2021) but there has no study yet reported on the ACS subtypes; STEMI and NSTEMI/UA 

specifically. The lack of a dataset applicable to the heterogeneous Malaysian population 

makes adaptation an inaccurate process and may impair patient care. Hence, a model based 

on data from Malaysians should be built to ensure that the mortality of the patient with 

STEMI and NSTEMI/UA can be predicted so that a well-prepared process can be executed 

by clinicians. The summary of the previous studies is summarised in Table 2.13 below. 

Table 2.13: Summary of previous studies that incorporate ML in predicting mortality 
of ACS patients. 

Country Title No. of 
instances 

Input 
variables 

Output 
variables 

Performance metrics 

United 
States of 
America 

Determinants of 
In-Hospital 
Mortality After 
Percutaneous 
Coronary 
Intervention: A 
Machine 
Learning 
Approach 

 

479 804 

patients 

49 variables  Ranking of 
variable 
importance 

AUC (95% CI) 

AdaBoost 

0.927(0.923–0.929) 

XGBoost 

0.913 (0.906– 0.919) 
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Table 2.13, continued. 

Country Title No. of 
instances 

Input 
variables 

Output 
variables 

Performance metrics 

 (Al'Aref et al., 
2019) 

   Logistic regression 

0.908 (0.907–0.910) 

Random Forest 

0.892 (0.889–0.896) 

 

United 
States of 
America 

Building 
Computational 
Models to 
Predict One-
Year Mortality 
in ICU Patients 
with Acute 
Myocardial 
Infarction and 
Post Myocardial 
Infarction 
Syndrome 

(Barrett et al., 
2019) 

5346 
admissions 

 

75 
variables 

No feature 
selection 

AdaBoost 

AUC: 0.849 

 

Bayes Net 

AUC: 0.744 

 

Decision Stump 

AUC: 0.730 

 

Decision Table 

AUC: 0.865 

 

J48 

AUC: 0.843 

 

JRip 

AUC: 0.737 

 

LMT 

AUC: 0.901 

 

Logistic 

AUC: 0.899 
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Table 2.13, continued. 

Country Title No. of 
instances 

Input 
variables 

Output 
variables 

Performance metrics 

     Naïve Bayes 

AUC: 0.768 

 

OneR 

AUC: 0.749 

 

PART 

AUC: 0.869 

 

Random Forest 

AUC: 0.893 

 

Random Tree 

AUC: 0.776 

 

REP Tree 

AUC: 0.845 

 

SGD 

AUC: 0.765 

 

Simple Logistic 

AUC: 0.901 

 

SMO 

AUC:0.751 
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Table 2.13, continued. 

Country Title No. of 
instances 

Input 
variables 

Output 
variables 

Performance metrics 

     Voted Perceptron 

AUC: 0.519 

 

Deep FNN 

AUC: 0.751 

United 
States of 
America 

Machine 
Learning 
Improves Risk 
Stratification 
After Acute 
Coronary 
Syndrome 

(Myers et al., 
2017) 

4935 
patients 

8 variables No feature 
selection 

AUC (95% CI) 

 

Logistic 
RegressionHX 

0.695 (0.581-0.809) 

 

Logistic 
RegressionST 

0.701 (0.587-0.814) 

 

Logistic 
RegressionHX+ST 

0.734 (0.623-0.845) 

 

Logistic 
RegressionHX_MV 

0.727 (0.615-0.839) 

 

Logistic 
RegressionHX+HRV 

0.720 (0.607-0.832) 

 

Logistic 
RegressionHX+DC 

0.705 (0.591-0.818) 

 

Univ
ers

iti 
Mala

ya



101 
 

Table 2.13, continued. 

Country Title No. of 
instances 

Input 
variables 

Output 
variables 

Performance metrics 

     TIMI 

0.670 (0.555-0.786) 

 

Recurrent Neural 
Network 

0.689 (0.575-0.803) 

 

Artificial Neural 
Network 

0.743 (0.633-0.853 

United 
States of 
America 

Risk prediction 
model for in-
hospital 
mortality in 
women with ST-
elevation 
myocardial 
infarction: A 
machine 
learning 
approach 

(Mansoor et al., 
2017) 

12,047 
patients  

 

32 
variables 

11 variables 
for Logistic 
Regression 

 

17 variables 
for Random 
Forest 

Logistic Regression 
(selected variables) 

AUC: 0.85 

 

Random Forest (full 
model) 

AUC: 0.82 

 

Random Forest 
(selected variables) 

AUC: 0.81 

United 
States of 
America 

Prediction of 30-
Day All-Cause 
Readmissions in 
Patients 
Hospitalized for 
Heart Failure 
Comparison of 
Machine 
Learning and 
Other Statistical 
Approaches 

(Frizzell et al., 
2017) 

56 477 
patients 

 

14 
variables 

No feature 
selection 

Tree-augmented 
naïve Bayesian 
network  

AUC: 0.62 

 

Logistic regression  

AUC: 0.62 

 

Least Absolute 
Shrinkage and  
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Table 2.13, continued. 

Country Title No. of 
instances 

Input 
variables 

Output 
variables 

Performance metrics 

     Selection Operator 

AUC: 0.62 

 

Gradient Boost 
model 

AUC: 0.61 

 

Random Forest 

AUC: 0.61 

 

EHR 

AUC: 0.589 

 

United 
States of 
America 

Machine 
Learning for 
Risk Prediction 
of Acute 
Coronary 
Syndrome 

(VanHouten et 
al., 2014) 

8408 
records 

88 
variables 

 

No feature 
selection 

AUC (95% CI) 

Random Forest 

0.848 (0.841-0.857) 

 

Elastic Net 

0.818 (0.808-0.828) 

 

Ridge Regression  

0.810 (0.801-0.820) 

 

Modified TIMI 

0.745 (0.737-0.755) 

 

Modified GRACE 

0.623 (0.615-0.634) 
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Table 2.13, continued. 

Country Title No. of 
instances 

Input 
variables 

Output 
variables 

Performance metrics 

Sweden Predicting two-
year survival 
versus non-
survival after 
first myocardial 
infarction using 
machine 
learning and 
Swedish national 
register data  
 
(Wallert et al., 
2017) 

51,943 
patients 

39 
variables  

Test with 
39, 10 and 5 
variables 
respectively  

(39,10,5) Variables  

 

LR  

Sensitivity: (0.771, 
0.754, 0.749) 
Specificity: (0.770, 
0.758, 0.750) PPV: 
(0.293, 0.278, 0.270) 
NPV: (0.965, 0.961, 
0.960) Detection Rate: 
(0.085, 0.0.83, 0.082) 
Detection incidence: 
(0.290, 0.298, 0.305) 
Accuracy: (0.770, 
0.758, 0.750) 

Boosted C5.0 
Sensitivity: (0.798, 
0.768, 0.758) 
Specificity: (0.739, 
0.757, 0.736) 

PPV: (0.293, 0.278, 
0.270) NPV: (0.965, 
0.961, 0.960) 
Detection Rate: 
(0.088, 0.084, 0.083) 
Detection incidence: 
(0.320, 0.301, 0.319) 
Accuracy: (0.746, 
0.758, 0.738)  

 

RF 

Sensitivity: (0.789, 
0.771, 0.755) 
Specificity: (0.752, 
0.746, 0.703) PPV: 
(0.282, 0.272, 0.239) 
NPV: (0.966, 0.963, 
0.959) Detection Rate: 
(0.087, 0.085, 0.083) 
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Table 2.13, continued. 

Country Title No. of 
instances 

Input 
variables 

Output 
variables 

Performance metrics 

     Detection incidence: 
(0.307, 0.311, 0.348) 
Accuracy: (0.756, 
0.748, 0.708)  

 

SVM  

Sensitivity: (0.784, 
0.751, 0.732) 
Specificity: (0.751, 
0.756, 0.753) PPV: 
(0.280, 0.275, 0.268) 
NPV: (0.966, 0.961, 
0.958) Detection Rate: 
(0.086, 0.083, 0.080) 

Detection incidence: 
(0.308, 0.300, 0.300) 
Accuracy: (0.755, 
0.755, 0.751) 

Poland Predicting Long-
Term Mortality 
after Acute 
Coronary 
Syndrome Using 
Machine 
Learning 
Techniques and 
Hematological 
Markers 

(Pieszko et al., 
2019) 

5053 
patients 

19 
variables  

No feature 
selection 

In-hospital  

Gradient-boosted 
tree  

AUC: 0.89 

GRACE 

AUC: 0.90 

 

6 months 

Gradient-boosted 
tree  

AUC: 0.77 

GRACE 

AUC: 0.73 
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Table 2.13, continued. 

Country Title No. of 
instances 

Input 
variables 

Output 
variables 

Performance metrics 

     1-year 

Gradient-boosted 
tree  

AUC: 0.72 

GRACE 

AUC: 0.71 

 
Israel  Machine 

learning for 
prediction of 30-
day mortality 
after ST-
elevation 
myocardial 
infarction: An 
Acute Coronary 
Syndrome Israeli 
Survey data 
mining study 

(Shouval et al., 
2017) 

2782  
patients  

54 
variables  

Feature 
selection 
with all, 50, 
40, 30, 20, 
15, 10, 5 
variables  

RF  
AUC: 0.91  
 
Naïve Bayes  
AUC: 0.87  
 
AdaBoost  
AUC: 0.87  
 
LR  
AUC:0.86  
 
Alternating Decision 
Tree (ADT)  
AUC :0.84  
 
Pruning rules-based 
classification tree 
(PART)  
AUC:0.64  
 
GRACE Score  
AUC: 0.87  
 
TIMI Score  
AUC: 0.82  

China Machine 
Learning to 
Predict the 1-
Year Mortality 
Rate After Acute 
Anterior 
Myocardial 
Infarction in 
Chinese Patients 

1244 
patients 

29 
variables 

Top 20 
variables 
from the 
random 
forest and 
XGBoost  

Logistic Regression 

AUC all: 0.931; AUC 
selected:0.864 
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Table 2.13, continued. 

Country Title No. of 
instances 

Input 
variables 

Output 
variables 

Performance metrics 

 (Li et al., 2020)    Gaussian Naïve 
Bayes 

AUC all: 0.924; AUC  

selected: 0.909 

 

K Neighbors  

AUC all: 0.709; AUC 
selected: 0.784 

 

Decision Tree 

AUC all: 0.772; AUC 
selected: 0.852 

 

Random Forest 

AUC all: 0.932; AUC 
selected:  

 

XGBoost 

AUC all: 0.942; AUC 
selected: 0.913 

China  
 

Machine 
Learning Models 
to Predict In-
Hospital 
Mortality for St-
Elevation 
Myocardial 
Infarction: From 
China Acute 
Myocardial 
Infarction 
(Cami) Registry  

(Li et al., 2017) 

18744 
patients 

87 
Variables 

No feature 
selection 

Logistic Regression  

AUC (CI):  

0.860 (0.844-0.875)  

 

Random Forest  

AUC (CI): 0.868 
(0.853-0.883)  

 

Bayesian Network  

AUC (CI): 0.861 
(0.846-0.877)  
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Table 2.13, continued. 

Country Title No. of 
instances 

Input 
variables 

Output 
variables 

Performance metrics 

     GRACE Score  

AUC (CI): (0.782, 
0.763-0.800)  

 

TIMI Score  

AUC (CI): 
(0.807,0.788-0.826) 

Korea A soft voting 
ensemble 
classifier for 
early prediction 
and diagnosis of 
occurrences of 
major adverse 
cardiovascular 
events for 
STEMI and 
NSTEMI during 
2-year follow-up 
in patients with 
acute coronary 
syndrome 

(Sherazi et al., 
2021) 

11,189 
subjects 
(5389 
STEMI, 
5800 
NSTEMI) 

 

56 
variables 

Top 10 
variable 
importance 
ranking 
using 
random 

forest, extra 
tree, and 
gradient 
boosting 
machine  

Overall dataset 

 

Random Forest 

AUC: 0.990 

 

Extra tree 

AUC: 0.995 

 

Gradient Boosting 
Machine 

AUC: 0.989 

 

Soft Voting 
Ensemble 

AUC: 0.996 

 

STEMI dataset 

 

Random Forest 

AUC: 0.982 

 

Extra tree 

AUC: 0.990 
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Table 2.13, continued. 

Country Title No. of 
instances 

Input 
variables 

Output 
variables 

Performance metrics 

     Gradient Boosting 
Machine 

AUC: 0.993 

 

Soft Voting 
Ensemble 

AUC: 0.995 

 

NSTEMI dataset 

 

Random Forest 

AUC: 0.988 

 

Extra tree 

AUC: 0.990 

 

Gradient Boosting 
Machine 

AUC: 0.994 

 

Soft Voting 
Ensemble 

AUC: 0.994 

Korea  Machine 
learning 
enhances the 
performance of 
short and 
long‑term 
mortality 
prediction 
models in 
non‑ST‑segment 

- 14,183 
subjects 
(5557 
STEMI, 
8626 
NSTEMI) 

 

 

46 
variables 

Feature 
ranking by 
variable 
importance 

STEMI dataset 

 

In-hospital 

Lasso  

AUC: 0.890 

Ridge 

AUC: 0.889 
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Table 2.13, continued. 

Country Title No. of 
instances 

Input 
variables 

Output 
variables 

Performance metrics 

 elevation 
myocardial 
infarction  

 

(Lee et al., 2021) 

   Elastic Net 

AUC: 0.890 

Random Forest 

AUC: 0.910 

Support Vector 
Machine 

AUC: 0.819 

XGBoost 

AUC: 0.912 

TIMI 

AUC: 0.855 

GRACE 

AUC: 0.896 

ACTION 

AUC: 0.891 

 

 

3 months 

Lasso  

AUC: 0.777 

Ridge 

AUC: 0.779 

Elastic Net 

AUC: 0.777 

Random Forest 

AUC: 0.763 

Support Vector 
Machine 

AUC: 0.667 
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Table 2.13, continued. 

Country Title No. of 
instances 

Input 
variables 

Output 
variables 

Performance metrics 

     XGBoost 

AUC: 0.784 

 

TIMI 

AUC: 0.743 

 

GRACE 

AUC: 0.766 

ACTION 

AUC: 0.709 

 

 

12 months 

Lasso  

AUC: 0.835 

Ridge 

AUC: 0.840 

Elastic Net 

AUC: 0.835 

Random Forest 

AUC: 0.825 

Support Vector 
Machine 

AUC: 0.684 

XGBoost 

AUC: 0.806 

TIMI 

AUC: 0.793 

 

Univ
ers

iti 
Mala

ya



111 
 

Table 2.13, continued. 

Country Title No. of 
instances 

Input 
variables 

Output 
variables 

Performance metrics 

     GRACE 

AUC: 0.826 

ACTION 

AUC: 0.780 

 

NSTEMI dataset 

 

In-hospital 

 

Lasso  

AUC: 0.886 

Ridge 

AUC: 0.885 

Elastic Net 

AUC: 0.886 

Random Forest 

AUC: 0.889 

Support Vector 
Machine 

AUC: 0.760 

XGBoost 

AUC: 0.888 

TIMI 

AUC: 0.669 

GRACE 

AUC: 0.873 
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Table 2.13, continued. 

Country Title No. of 
instances 

Input 
variables 

Output 
variables 

Performance metrics 

     ACTION 

AUC: 0.871 

 

3 months 

Lasso  

AUC: 0.849 

Ridge 

AUC: 0.826 

Elastic Net 

AUC: 0.849 

Random Forest 

AUC: 0.799 

Support Vector 
Machine 

AUC: 0.715 

XGBoost 

AUC: 0.824 

TIMI 

AUC: 0.672 

GRACE 

AUC: 0.777 

ACTION 

AUC: 0.795 

 

12 months 

Lasso  

AUC: 0.860 
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Table 2.13, continued. 

Country Title No. of 
instances 

Input 
variables 

Output 
variables 

Performance metrics 

     Ridge 

AUC: 0.858 

Elastic Net 

AUC: 0.859 

Random Forest 

AUC: 0.836 

Support Vector 
Machine 

AUC: 0.729 

XGBoost 

AUC: 0.851 

TIMI 

AUC: 0.675 

GRACE 

AUC: 0.808 

ACTION 

AUC: 0.790 

Singapore  Independent 
Predictors of 
Cardiac 
Mortality and 
Hospitalization 
for Heart Failure 
in a Multi-Ethnic 
Asian ST-
segment 
Elevation 
Myocardial 
Infarction 
Population 
Treated by 
Primary 
Percutaneous 
Coronary  

11,546 
patients 

 

36 
variables 

7 variables 
for each of 
the time 
frame in-
hospital, 30 
days and 1-
year 

Logistic regression 

AUC (95% CI) 

 

In-hospital 

0.921 (0.910-0.932) 

 

30 days 

0.901 (0.887-0.915) 

 

1-year 

0.881 (0.867-0.896) 
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Table 2.13, continued. 

Country Title No. of 
instances 

Input 
variables 

Output 
variables 

Performance metrics 

 Intervention 

(Bulluck et al., 
2019) 

    

Malaysia  Predicting 30-
Day Mortality 
after an Acute 
Coronary 
Syndrome 
(ACS) using 
Machine 
Learning 
Methods for 
Feature 
Selection, 
Classification 
and 
Visualisation 

(Aziida et al., 
2021) 

302 
patients  

54 
variables  

The number 
of variables 
varies from 
different 
feature 
selection 
(Sequential 
backward 
elimination 
based on 
variable 
important 
for random 
forest, 
support 
vector 
machine 
with radial 
basis 
function, 
logistic 
regression 
and elastic 
net, cluster 
dendrogram, 
Boruta, 
recursive 
feature 
elimination, 
learning 
vector 
quantization, 
and genetic 
algorithm). 

The best model for 
each of the ML 
method  

 

RFimp-SBS-RF 

AUC: 0.79 

 

RFE-SVM 

AUC: 0.77 

 

GA-SBS-EN 

AUC: 0.79 

 

LVQ-SBS-LR 

AUC: 0.75 

 

TIMI Score 

AUC: 0.60 

 

All these studies reported that the ML method outperformed conventional risk scoring 

methods in predicting patient mortality. For an example, in the study by Pieszko et al. 
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(2019) on “Predicting Long-Term Mortality after Acute Coronary Syndrome Using 

Machine Learning Techniques and Hematological Markers”, for six-month mortality, the 

results of the best model and the GRACE score on the test set are 0.77 and 0.73, 

respectively while for 1-year mortality, the AUC for ML model is 0.72 and GRACE score 

of 0.71 indicating that ML performs better than the conventional GRACE score. The same 

situation was reported in the study by Shouval et al. (2017) in predicting mortality of 

patients with STEMI after 30 days. The AUC value of their best ML model, RF, with the 

value of 0.91 is higher compared to the conventional methods GRACE score and TIMI 

score with the value of 0.87 and 0.82 respectively. The ML models achieved significantly 

better performance in predicting in-hospital mortality than the traditional statistical 

analysis, which could improve the treatment decision for STEMI patients. This provides the 

insight that ML might be the better way to build a prediction model. 

However, most of the past studies in Table 2.13 are mostly for ACS or STEMI patients 

and it limits the use of the models and the target groups. Only recently, Sherazi et al. (2021) 

and Lee et al. (2021) researched NSTEMI/UA patients using ML approaches to build a 

prediction model. Both studies still display a good performance by their best ML methods 

where the AUC for NSTEMI mortality prediction was still high in both studies with the 

value of 0.99 and 0.89 respectively. 

To determine the best algorithm for model building, a comparison must be made among 

the ML methods and the conventional statistical method. A study on the 30-days 

readmission of hospitalized patients for heart failure (Frizzell et al., 2017) used several ML 

algorithms to test their prediction. NB, RF, Gradient boosted (GB) and LR were adopted 

for the model building. The results showed that all the ML methods' AUC values are almost 

similar to each other; 0.62, 0.61, 0.61, and 0.62, and the conventional statistical method 
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with only a 0.59 AUC value. According to the study, this set of ML methods are deployable 

for the new study although the result is almost the same which requires a comparison 

among them so that the best model could be selected and later be deployed to a working 

system.  

Based on the list of ML methods above, another study had been conducted to compare 

the performance of each of the ML methods. A study by Wallert et al. (2017) proved that 

SVM outperformed Boosted C5.0 but not significantly higher than LR or RF. This 

statement strengthens the reason for RF and SVM to be used as their performance is among 

the highest in comparison with the others. Apart from that, the study also mentioned that 

the model is preferable due to its vast coverage of sample and the attributes are significant 

to the population of a specific place, resulting in the model being more accurate. 

Bulluck et al. (2019) used ML algorithms to predict characteristics linked to cardiac 

mortality in a multi-ethnic South-East Asian population, resulting in a strong model 

performance for short and long-term prediction. However, just one ML method (LR) was 

used in this work, which is identical to the traditional method of constructing the existing 

risk score for ACS mortality prediction. Overall, this study demonstrated that a multi-ethnic 

South-East Asian population study on ACS mortality prediction is feasible to implement 

and further test with many additional ML methods to reach the best prognostic model 

performance. 

Six of the studies reported in Table 2.13 did not use feature selection to determine the 

variables that are essential in predicting the mortality prediction model for ACS patients 

(Barrett et al., 2019; Frizzell et al., 2017; Li et al., 2017; Myers et al., 2017; Pieszko et al., 

2019; VanHouten et al., 2014) because, during the development of the model, these studies 

stated that they did not wish to lose any information by removing any variables. Bulluck et 
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al. (2019), Al'Aref et al. (2019), Sherazi et al. (2021), and Lee et al. (2021), on the other 

hand, solely ranked the variables based on variable importance to discuss the factors that 

are critical to their full models' performance. Whereas, the rest of the studies, used their 

selected variables from the feature selection method to develop models and compared their 

results to the full models and the traditional risk score. According to Mansoor et al. (2017) 

and Li et al. (2020), the performance of models with all and selected variables is nearly 

identical, however Shouval et al. (2017) and Wallert et al. (2017) found that models with all 

variables performed better than models with selected variables. Only Aziida et al. (2021) 

found that employing the feature selection technique improved the performance of 

mortality prediction using ML with higher AUC values. These studies suggest that the 

feature selection approach is significant to include in this study, even though the outcomes 

varied depending on the dataset used. 

Amid the highly demanding application of ML in mortality prediction, a new method  is 

emerging. DL, a sub-domain of ML, has recently established an interesting new trend in 

ACS prediction. The theoretical foundations are well-established in the literature on neural 

networks. DL provides for the utilisation of deep architectural advantage (multi-layered) 

combined with novel training paradigms, which are the differences (Benjamins et al., 2019; 

Ravì et al., 2016). DL, in a nutshell, is defined as a multi-layered neural network design. 

Table 2.14 summarises the research that has been conducted utilising DL to predict the 

mortality of ACS patients. 
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Table 2.14: Summary of previous studies that incorporates DL in predicting mortality 
of ACS patients. 

Country Title No. of 
instances 

Input 
variables 

Output 
variables 

Performance’s 
metrics 

Korea  A machine 
learning–based 
1-year  
mortality 
prediction model 
after  
hospital 
discharge for 
clinical  
patients with 
acute coronary  
syndrome  
 
(Sherazi et al., 
2020) 

8227 69 
variables 
(refer to 
the paper)  
 

9 variables 
(top nine 
primary 
prognostic 
factors 
according to 
each 
machine 
learning 
models)  
(Refer to the 
paper)  

DNN  
AUC: 0.898  
Precision: 0.977  
Recall: 0.927  
Accuracy: 0.911  
F-score: 0.951  
GBM Gradient 
Boosting Machine  
AUC: 0.898  
Precision: 0.967  
Recall: 0.977  
Accuracy: 0.947  
F-score: 0.972  
GLM Generalized 
Linear Model  
AUC: 0.873  
Precision: 0.972  
Recall: 0.949  
Accuracy: 0.926  
F-score: 0.960  
RF  
AUC: 0.883  
Precision: 0.976  
Recall: 0.954  
Accuracy: 0.935  
F-score: 0.965  
GRACE  
AUC: 0.810  
Precision: 0.970  
Recall: 0.922  
Accuracy: 0.900  
F-score: 0.946  

Korea  Deep learning–
based  
prediction model 
of occurrences 
of major  
adverse cardiac 
events during 1-
year follow-up 
after hospital  
discharge in 
patients with 
AMI using 
knowledge 
mining  

10813 
subjects 

49 
variables  

8 variables  
(Top eight 
primary 
prognostic 
factors 
according to 
each 
machine 
learning 
models) 
(Refer to the 
paper) 

(1M, 6M, 12M)  
DNN  
Accuracy: (95.98, 
95.28, 95.43)  
Sensitivity: (81.25. 
71.43, 88.89)  
Specificity: (96.10, 
95.44, 95.46)  
AUC: (0.97, 0.94, 
0.96)  
Gradient Boosting 
Machine GBM  
Accuracy: (95.80, 
95.15, 81.82)  
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Table 2.14, continued. 

Country Title No. of 
instances 

Input 
variables 

Output 
variables 

Performance’s 
metrics 

 (Kim et al., 
2019) 

   Sensitivity: (68.75,  
57.14, 96.44)  
Specificity: (96.00, 
95.40, 96.36)  
AUC: (0.96, 0.95, 
0.96)  
Generalized linear 
model GLM  
Accuracy: (93.69, 
87.11, 91.96)  
Sensitivity: (22.50, 
17.52, 16.56)  
Specificity: (96.97, 
95.24, 97.32)  
AUC: (0.76, 0.67, 
0.72)  
GRACE  
Accuracy: 
(81.51,89.34, 94.93)  
Sensitivity: (81.36, 
25.71, 76.25)  
Specificity: (82.88, 
92.51, 97.16)  
AUC: (0.75, 0.72, 
0.76) 

Korea  Deep-learning-
based risk 
stratification for  
mortality of 
patients with 
acute myocardial  
infarction  
 
(Kwon, Jeon, et 
al., 2019a) 

22857 36 
variables 

13 variables  
- Age  
- Sex  
- BMI  
- LDL  
- Heart Rate  
- CPR  
- Killip class  
- OHCA  
- Creatinine  
- Glucose  
- SBP  
- ST-
Elevation  
- CK-MB  

STEMI  
Deep Learning 
(MLP)  
AUC: 0.905  
(95%CI): (0.902-
0.909)  
RF  
AUC:0.890  
(95%CI): (0.886-
0.895)  
LR  
AUC:0.873  
(95%CI): (0.869-
0.878)  
GRACE  
AUC: 0.851  
(95%CI): (0.846-
0.856)  

ACTION  
AUC:0.852  
(95%CI): (0.847-
0.857)  
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Table 2.14, continued. 

Country Title No. of 
instances 

Input 
variables 

Output 
variables 

Performance’s 
metrics 

     TIMI  
AUC:0.781  
(95%CI): (0.775-
0.787)  
NSTEMI  
Deep Learning 
(MLP)  
AUC: 0.870  
(95%CI): (0.865-
0.876)  
RF  
AUC:0.851  
(95%CI): (0.845-
0.858)  
LR  
AUC:0.845  
(95%CI): (0.839-
0.851)  
GRACE  
AUC: 0.810  
(95%CI): (0.803-
0.819)  
ACTION  
AUC:0.806  
(95%CI): (0.799-
0.814)  
TIMI  
AUC:0.593  
(95%CI): (0.5850.603) 

Korea  Artificial 
intelligence 
algorithm for 
predicting  
mortality of 
patients with 
acute heart 
failure  
 
(Kwon et al., 
2019b) 

12,654  22 
variables 
(Refer to 
the paper)  

-  Deep Learning 
(MLP)  
AUC: 0.880  
(95%CI): (0.876-
0.884)  
RF  
AUC:0.756  
(95%CI): (0.749-
0.766)  
LR  
AUC:0.720  
(95%CI): (0.712-
0.730)  
SVM  
AUC: 0.723  
(95%CI): (0.714-
0.732)  
Bayesian network  
AUC:0.730  
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Table 2.14, continued. 

Country Title No. of 
instances 

Input 
variables 

Output 
variables 

Performance’s 
metrics 

     (95%CI): (0.721- 
0.739)  
GWTG-HF score  
AUC:0.728  
(95%CI): (0.720-
0.737) 

 

In the studies carried out by Sherazi et al. (2020), Kim et al. (2019), and Kwon et al. 

(2019a), DL models using MLP/DNN outperformed conventional methods by achieving 

higher AUC. 

For example, the research was done by Kwon et al. (2019a) showed that DL achieved 

the highest AUC of 0.905 as compared to conventional risk score GRACE (AUC=0.85), 

ACTION (AUC=0.85), and TIMI (AUC= 0.78) for STEMI patients risk prediction. 

Similarly, DL is the best predictive model for NSTEMI patients with an AUC of 0.870 as 

compared to GRACE (AUC=0.81), ACTION (AUC=0.81), and LR (AUC= 0.59). 

Another example can be seen in the research done by Sherazi et al. (2020), where their 

deep neural network (AUC=0.90) outperformed the conventional risk score GRACE 

(AUC=0.81). 

These performances of DL indicate that a good mortality prediction model for patients 

with ACS can be employed in the future. Hence, in this study, the DL method was used as 

an additional method to the ML method in predicting mortality and can be tested against 

the conventional score as the DL method is lacking in the feature selection component 

(Kwon et al., 2019a). 

Together with statistical modeling and computer science, models of prediction of patient 

mortality after ACS can be built using data from heart disease patients. Further studies and 
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approaches can be conducted regarding the predictors of ACS mortality so that the disease 

could be prevented or stopped in the future. 
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CHAPTER 3: METHODOLOGY 

3.1 Introduction 

All the methods and materials used in this study are detailed in this chapter. As indicated 

in the Figure 3.2 below, this study involved different stages, including: 

 data collecting 

 data splitting 

 data preprocessing 

 model development 

 parameter tuning 

 feature selection, 

 performance evaluation 
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Figure 3.1: The general flowchart of the study. 

 

3.2 Data collection  

This study used data gathered between 2006 and 2016 from the Malaysian National 

Cardiovascular Database (NCVD-ACS) registry. The Medical Review & Ethics Committee 

(MREC) of Malaysia's Ministry of Health (MOH) approved the NCVD registry in 2007. 

(Approval Code: NMRR-07-20-250). MREC waived informed patient consent for NCVD. 

For consecutive patients treated at participating institutions, the registry collects data on a 
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standardised set of clinical, demographic, and procedural variables, as well as outcomes 

(Ahmad et al., 2011). The UiTM ethics committee (Reference number: 600-TNCPI (5/1/6) 

and the National Heart Association of Malaysia (NHAM) both gave their approval for data 

collection. NCDV-ACS is a Malaysian multicenter registry that includes up to 23 hospitals 

(Appendix A). Deaths were confirmed on a yearly basis through record connections with 

the Malaysian National Registration Department of deaths. 

Data were collected using a standardised case report from the time ACS patients were 

admitted to the hospital until they discharged from the hospital and the follow-up afterward, 

along with the patients' outcome, which is alive or dead. The data included patient's 

demographic, clinical presentation, baseline investigation, electrocardiography, treatment, 

and pharmacological therapy. A unique identification number was assigned to each patient 

to prevent any duplication.  

All patients from the ACS registry without exclusion were used including patients who 

received reperfusion such as primary PCI, angiography demonstrating spontaneous 

reperfusion, additional fibrinolysis, or urgent CABG. In this study, STEMI is defined as 

persistent ST-segment elevation ≥ 1 mm in two contiguous electrocardiographic leads, or 

the presence of a new left bundle branch block in the setting of positive cardiac markers 

with ischaemic type chest pain more than 30 minutes while NSTEMI is a prolonged 

ischaemic type chest pain with a non-interpretable resting ECG (such as paced rhythm or 

new bundle branch block) without ST elevation and UA is defined as ACS with myocardial 

ischemia but no observable myocardial necrosis (i.e., cardiac biomarkers of myocardial 

necrosis, such as creatine kinase MB isozyme, troponin, and myoglobin, are not discharged 

into the circulation) (MOH, 2011, 2019). NSTEMI and UA are closely related disorders 
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with comparable pathophysiologic origins and clinical manifestations, which is why 

patients with both conditions are grouped as NSTEMI/UA (Kumar & Cannon, 2009). 

Based on clinical recommendations, 54 variables from a complete set of data for the 

STEMI study and 50 variables for NSTEMI/UA were used in this study. Categories of 

variables used were sociodemographic characteristics, CVD diagnosis and severity, CVD 

risk factors, CVD comorbidities, non-CVD comorbidities, biomarkers, and medication 

used. The mortality time points for in-hospital, 30 days, and 1-year were determined from 

the first hospital admission. Confirmation of deaths was done yearly via record linkages 

with the Malaysian National Registration Department. The follow-up data points are meant 

to collect these variables but unfortunately are excessive in terms of missing values and 

hence were omitted from the study. This study focused on the algorithm to policy changing 

endpoints for example hard endpoints such as death to increase the impact of the study. 

This is similarly done in other publications (Kwon et al., 2019a; Peng et al., 2017; Shouval 

et al., 2017). 

3.3 Data Pre-processing 

Data cleaning was done to remove the patients’ records with missing data. A total of 

33378 cases from the registry were collected and 12368 cases were identified as complete 

cases (without missing values on variables) for the STEMI study. Out of the 12368 cases, 

6299 cases are in-hospital, 3130 cases are for 30 days and 2939 cases are for a 1-year 

mortality prediction study. As for the NSTEMI/UA study, a total of 42683 cases were 

identified and only 9,477 cases are complete cases. From the total number of complete 

cases, the number of cases for in-hospital, 30-days, and 1-year studies are 4771, 2402, and 

2304 respectively. There are no missing values on the output data (alive/dead). Any 
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variables that have more than 50% of missing values were deleted beforehand and not 

considered in the study. The summary of the data components is tabulated in Table 3.1 

below. 

Table 3.1:The number of cases for STEMI and NSTEMI/UA study for each of the 
time points. 

 In-hospital 30-days 1-year 

STEMI 

Raw data 17,296 8,261 7,821 

Records with missing 

outcome 

10,997 5,131 4,882 

Data with complete 

cases  

6,299 3,130 2,939 

NSTEMI/UA 

Raw data 23,809 9,774 9,100 

Records with missing 

outcome 

19,038 7,372 6,796 

Data with complete 

cases  

4,771 2,402 2,304 

 

The initial total of variables selected by the expert clinicians from the registry was 54 

variables for the STEMI dataset and 50 variables for NSTEMI/UA dataset. Each of the 

variables was then tested and ones with near-zero-variance or zero-variance values were 
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excluded from the dataset before being trained. This is to avoid any errors and unexpected 

results when sampling (Brownlee, 2020; Kuhn & Johnson, 2019). The variables that were 

being excluded from the whole STEMI dataset are: 

● Peripheral vascular disease,  

● ECG abnormalities type not-specific,  

● ECG abnormalities type none, 

● ECG abnormalities location none. 

 The variables that were excluded for the NSTEMI/UA dataset due to its near-to-zero or 

zero-variance values are:  

● Peripheral vascular disease, 

● ST-segment elevation≥1 mm (0.1 mV) in ≥2 contagious limb leads, 

● ST-segment elevation≥2 mm (0.2mV) in ≥2 contagious limb leads or chest leads, 

● ECG abnormalities location True posterior: V1, V2, 

● ECG abnormalities location Right ventricle: ST elevation in lead V4R, 

● Coronary artery bypass grafting (CABG) treatment, 

● Aspirin intake, 

● GP receptor inhibitor intake, 

● Heparin intake, 

● Other lipid-lowering agent intake, 

● Anti-arrhythmic agent intake. 

 

This rendered a full variable set of 50 variables for each time frame (9 continuous, 41 

categorical) for the STEMI dataset and 39 variables (8 continuous, 31 categorical) for the 
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NSTEMI/UA dataset. Since a medical dataset was employed in this study, it was necessary 

to use the complete set of data in order to maintain data integrity and trustworthiness. 

However, data imputation was also carried out but further discussed later in this chapter in 

section 3.8. The percentage of the missing values in the remaining variables was tabulated 

in Table 3.2 (for STEMI) and Table 3.3 (for NSTEMI/UA). 
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Table 3.2: The percentage of missing values based on each variable for the STEMI dataset. 

Variables  Attributes In-hospital 30-days 1-year 

Total missing 
value 

Percentage of 
missing value 

(%) 

Total missing 
value 

Percentage of 
missing value 

(%) 

Total missing 
value 

Percentage of 
missing value 

(%) 

Age  0 0.00 0 0.00 0 0.00 

Race  0 0.00 0 0.00 0 0.00 

Gender  0 0.00 0 0.00 0 0.00 

Smoking status   590 3.41 346 4.19 332 4.24 

History of 
hypertension 

 2039 11.79 1176 14.24 1145 14.64 

History of diabetes  2223 12.85 1247 15.10 1214 15.52 

Family history of 
premature 
cardiovascular 
disease 

 3135 18.13 1714 20.75 1641 20.98 

History of 
myocardial 
infarction 

 2095 12.11 1041 12.60 999 12.77 

Documented CAD  2468 14.27 1180 14.28 1131 14.46 

History of heart 
failure 

 1851 10.70 940 11.38 898 11.48 

Chronic lung 
disease 

 1880 10.87 953 11.54 912 11.66 
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Table 3.2, continued. 

Variables  Attributes In-hospital 30-days 1-year 

Total missing 
value 

Percentage of 
missing value 

(%) 

Total missing 
value 

Percentage of 
missing value 

(%) 

Total missing 
value 

Percentage of 
missing value 

(%) 

Chronic renal 
disease 

 1854 10.72 930 11.26 894 11.43 

Cerebrovascular 
disease 

 1825 10.55 926 11.21 882 11.28 

Heart rate  554 3.20 214 2.59 200 2.55 

Systolic blood 
pressure 

 455 2.63 140 1.69 129 1.65 

Diastolic blood 
pressure 

 562 3.25 137 1.66 123 1.57 

Killip class   679 3.93 235 2.84 207 2.65 

Total cholesterol  2667 15.42 1462 17.70 1416 18.11 

HDL  2950 17.06 1559 18.87 1510 19.31 

LDL  2947 17.04 1554 18.81 1471 16.87 

Triglycerides  2710 15.67 1531 18.53 1438 18.39 

Fasting blood 
glucose  

 2890 16.71 1610 19.49 1521 19.45 
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Table 3.2, continued. 

Variables  Attributes In-hospital 30-days 1-year 

Total missing 
value 

Percentage of 
missing value 

(%) 

Total missing 
value 

Percentage of 
missing value 

(%) 

Total missing 
value 

Percentage of 
missing value 

(%) 

ECG abnormalities 
type 

ST segment 
elevation ≥1mm 
in ≥2 contiguous 
limb leads 

0 0.00 0 0 0 0.00 

 ST segment 
elevation ≥2mm 
in ≥2 contiguous 
frontal leads or 
chest leads 

0 0.00 0 0 0 0.00 

 ST segment 
depression 
≥0.5mm in ≥2 
contiguous leads 

0 0.00 0 0 0 0.00 

 T-wave inversion 
≥1mm 

0 0.00 0 0 0 0.00 

 Bundle branch 
block 

0 0.00 0 0 0 0.00 

ECG abnormalities 
location 

Inferior leads: II, 
III, aVF 

 0.00  0 0 0.00 

 Anterior leads: V1 
to V4 

0 0.00 0 0 0 0.00 
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Table 3.2, continued. 

Variables  Attributes In-hospital 30-days 1-year 

Total missing 
value 

Percentage of 
missing value 

(%) 

Total missing 
value 

Percentage of 
missing value 

(%) 

Total missing 
value 

Percentage of 
missing value 

(%) 

 Lateral leads: I, 
aVL, V5 to V6 

0 0.00 0 0 0 0.00 

 True posterior: 
V1, V2 

0 0.00 0 0 0 0.00 

 Right ventricle: 
ST elevation in 
lead V4R 

0 0.00 0 0 0 0.00 

FB status   253 1.46 56 0.68 44 2.57 

Cardiac 
catheterization  

 605 3.50 206 2.49 201 7.25 

PCI  1262 7.30 588 7.12 567 0.56 

CABG  1498 8.66 606 7.34 591 7.56 

ASA  337 1.95 144 1.74 133 1.70 

GP receptor 
inhibitor 

 2321 13.42 1195 14.47 1127 14.41 

Heparin  2189 12.66 1129 13.67 1063 13.59 

LMWH  2066 11.94 1098 13.29 1045 13.36 

Beta blockers  1604 9.27 882 10.68 828 10.59 

1
33
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Table 3.2, continued. 

Variables  Attributes In-hospital 30-days 1-year 

Total missing 
value 

Percentage of 
missing value 

(%) 

Total missing 
value 

Percentage of 
missing value 

(%) 

Total missing 
value 

Percentage of 
missing value 

(%) 

ACE inhibitors  1688 9.76 891 10.79 840 10.74 

Angiotensin II 
receptor blocker 

 2336 13.51 1200 14.53 1128 14.42 

Statin   490 2.83 205 2.48 185 2.37 

Other lipid 
lowering agent 

 2284 13.21 1197 14.49 1125 14.38 

Diuretics  2012 11.63 1043 12.63 988 12.63 

Calcium antagonist  2318 13.40 1200 14.53 1128 14.42 

Oral 
hypoglycaemic 
agent 

 2161 12.49 1145 13.86 1078 13.78 

Insulin   1954 11.30 1016 12.30 968 12.38 

Anti-arrhythmic 
agent  

 2343 13.55 1233 14.93 1172 14.99 
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Table 3.3: The percentage of missing values based on each variable for NSTEMI/UA dataset. 

Variables Attributes In-hospital 30-days 1-year 

Total missing 
value 

Percentage of 
missing value 

(%) 

Total missing 
value 

Percentage of 
missing value 

(%) 

Total missing 
value 

Percentage of 
missing value 

(%) 

Age  0 0.00 0 0.00 0 0.00 

Race  0 0.00 0 0.00 0 0.00 

Gender  0 0.00 0 0.00 0 0.00 

Smoking status  1573 6.61 631 6.46 571 6.27 

History of 
dyslipidaemia 

 3731 15.67 1108 11.34 1021 11.22 

History of 
hypertension 

 2252 9.46 826 8.45 779 8.56 

History of diabetes  1613 6.77 588 6.02 559 6.14 

Family history of 
premature 
cardiovascular 
disease 

 5909 24.82 1911 19.55 1706 18.75 

History of MI/CAD  2078 8.73 692 7.08 637 7.00 

New onset angina 
(<2 weeks) 

 2274 9.55 818 8.37 757 8.32 

History of heart 
failure 

 3021 12.69 1209 12.37 1127 12.38 
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Table 3.3, continued. 

Variables Attributes In-hospital 30-days 1-year 

Total missing 
value 

Percentage of 
missing value 

(%) 

Total missing 
value 

Percentage of 
missing value 

(%) 

Total missing 
value 

Percentage of 
missing value 

(%) 

Chronic lung 
disease 

 3057 12.84 1199 12.27 1115 12.25 

Chronic renal 
disease 

 3176 13.34 1144 11.70 1065 11.70 

Cerebrovascular 
disease 

 3304 13.88 1191 12.19 1110 12.20 

Heart rate  751 3.15 271 2.77 229 2.52 

Systolic blood 
pressure 

 707 2.97 209 2.14 172 1.89 

Diastolic blood 
pressure 

 857 3.60 224 2.29 182 2.00 

Killip class   5474 21.82 3614 36.98 3380 37.14 

Total cholesterol  7456 31.32 2642 27.03 2360 25.93 

HDL  7418 31.16 2714 27.77 2443 26.85 

LDL  7567 31.78 2710 27.73 2431 26.71 

Fasting blood 
glucose  

 7664 32.19 2849 29.15 2577 28.32 
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Table 3.3, continued. 

Variables Attributes In-hospital 30-days 1-year 

Total missing 
value 

Percentage of 
missing value 

(%) 

Total missing 
value 

Percentage of 
missing value 

(%) 

Total missing 
value 

Percentage of 
missing value 

(%) 

ECG abnormalities 
type 

ST-segment 
depression 
≥0.5mm in ≥2 
contiguous 
leads 

0 0.00 0 0.00 0 0.00 

 T-wave 
inversion ≥1mm 

0 0.00 0 0.00 0 0.00 

 Bundle branch 
block 

0 0.00 0 0.00 0 0.00 

ECG abnormalities 
location 

Inferior leads: 
II, III, aVF 

0 0.00 0 0.00 0 0.00 

 Anterior leads: 
V1 to V4 

0 0.00 0 0.00 0 0.00 

 Lateral leads: I, 
aVL, V5 to V6 

0 0.00 0 0.00 0 0.00 

Cardiac 
catheterization  

 1121 4.71 298 3.05 272 2.99 

PCI  1643 6.90 524 5.36 489 5.37 

LMWH  2096 8.80 1097 11.22 1018 11.19 

Beta-blockers  1359 5.71 532 5.44 470 5.16 137 
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Table 3.3, continued. 

Variables Attributes In-hospital 30-days 1-year 

Total missing 
value 

Percentage of 
missing value 

(%) 

Total missing 
value 

Percentage of 
missing value 

(%) 

Total missing 
value 

Percentage of 
missing value 

(%) 

ACE inhibitors  1580 6.64 668 6.83 589 6.47 

Angiotensin II 
receptor blocker 

 2468 10.37 1161 11.88 1061 11.66 

Statin   828 3.48 250 2.56 207 2.27 

Diuretics  2102 8.83 1028 10.52 944 10.37 

Calcium antagonist  2343 9.84 1111 11.37 1006 11.05 

Oral 
hypoglycaemic 
agent 

 2114 8.88 996 10.19 905 9.95 

Insulin   2226 9.35 1074 10.99 988 10.86 

138 

Univ
ers

iti 
Mala

ya



139 
 

 

 

` 

Figure 3.2: The flow chart indicating the numbers of instances before and after data cleaning in STEMI dataset for (a) in-hospital, 
(b) 30-days, and (c) 1-year.  
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Figure 3.3:The flow chart indicating the numbers of instances before and after data cleaning in NSTEMI/UA dataset for (a) in-
hospital, (b) 30-days, and (c) 1-year.  
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From the raw data to the finalised training and testing data used in each of the model 

building, Figure 3.2 and Figure 3.3 summarise the data cleaning process for both STEMI 

and NSTEMI/UA datasets. The information and data types of the variables of ACS data 

acquired from the registry are shown in Table 3.4. 

Table 3.4: The variables used in the study, their data domain, and data types for both 
STEMI and NSTEMI/UA datasets. 

Variables Data domain Data type 

Demographic  

Age  ≥20 Continuous  

Race  1: Malay 

2: Chinese 

3: Indian 

4: Others 

Categorical  

Gender  1: Male 

2: Female 

Categorical 

Status Before Event  

Smoking status   1: Never 

2: Quit (>30 
days) 

3: Current 

Categorical 

History of 
dyslipidaemia 

 1: Yes 

2: No 

Categorical 

History of 
hypertension 

 1: Yes 

2: No 

Categorical 

History of diabetes  1: Yes 

2: No 

Categorical 
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Table 3.4, continued. 

Variables Data domain Data type 

Family history of 
premature 
cardiovascular disease 

 1: Yes 

2: No 

Categorical 

History of myocardial 
infarction 

 1: Yes 

2: No 

Categorical 

Documented CAD  1: Yes 

2: No 

Categorical 

New onset angina (<2 
weeks) 

 1: Yes 

2: No 

Categorical 

History of heart 
failure 

 1: Yes 

2: No 

Categorical 

Chronic lung disease  1: Yes 

2: No 

Categorical 

Chronic renal disease  1: Yes 

2: No 

Categorical 

Cerebrovascular 
disease 

 1: Yes 

2: No 

Categorical 

Clinical Presentation and Examination 

Heart rate  20 - 200 
beats/min 

Continuous 

Systolic blood 
pressure 

 50 - 270 mmHg Continuous 

Diastolic blood 
pressure 

 10 - 170 mmHg Continuous 

Killip class   1: Killip class I 

2: Killip class II 

3: Killip class III 

Categorical 
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Table 3.4, continued. 

Variables Data domain Data type 

  4: Killip class IV  

Baseline investigation 

Total cholesterol  2.0 - 25.0 mmol/L Continuous 

HDL  0.5 – 5.0 mmol/L Continuous 

LDL  0.5 – 20.0 
mmol/L 

Continuous 

Triglycerides  0.5 – 15.0 
mmol/L 

Continuous 

Fasting blood glucose   3.0 -50.0 mmol/L Continuous 

Electrocardiography 

ECG abnormalities 
type 

ST-segment elevation ≥1mm 
in ≥2 contiguous limb leads 

1: Yes 

2: No 

Categorical 

 ST-segment elevation ≥2mm 
in ≥2 contiguous frontal leads 
or chest leads 

1: Yes 

2: No 

Categorical 

 ST-segment depression 
≥0.5mm in ≥2 contiguous 
leads 

1: Yes 

2: No 

Categorical 

 T-wave inversion ≥1mm 1: Yes 

2: No 

Categorical 

 Bundle branch block 1: Yes 

2: No 

Categorical 

ECG abnormalities 
location 

Inferior leads: II, III, aVF 1: Yes 

2: No 

Categorical 

 Anterior leads: V1 to V4 1: Yes 

2: No 

Categorical 

 Lateral leads: I, aVL, V5 to 
V6 

1: Yes 

2: No 

Categorical 
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Table 3.4, continued. 

Variables Data domain Data type 

 True posterior: V1, V2 1: Yes 

2: No 

Categorical 

 Right ventricle: ST elevation 
in lead V4R 

1: Yes 

2: No 

Categorical 

Invasive Therapeutic Procedures 

FB status   1: Yes 

2: No 

Categorical 

Cardiac 
catheterization  

 1: Yes 

2: No 

Categorical 

PCI  1: Yes 

2: No 

Categorical 

CABG  1: Yes 

2: No 

Categorical 

Pharmacological Therapy (Medication) 

ASA  1: Yes 

2: No 

Categorical 

GP receptor inhibitor  1: Yes 

2: No 

Categorical 

Heparin  1: Yes 

2: No 

Categorical 

LMWH  1: Yes 

2: No 

Categorical 

Beta-blockers  1: Yes 

2: No 

Categorical 

ACE inhibitors  1: Yes 

2: No 

Categorical 
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Table 3.4, continued. 

Variables Data domain Data type 

Angiotensin II 
receptor blocker 

 1: Yes 

2: No 

Categorical 

Statin   1: Yes 

2: No 

Categorical 

Other lipid-lowering 
agent 

 1: Yes 

2: No 

Categorical 

Diuretics  1: Yes 

2: No 

Categorical 

Calcium antagonist  1: Yes 

2: No 

Categorical 

Oral hypoglycaemic 
agent 

 1: Yes 

2: No 

Categorical 

Insulin   1: Yes 

2: No 

Categorical 

Anti-arrhythmic agent   1: Yes 

2: No 

Categorical 

 

3.4 R Packages and Library  

R (R Development Core Team, Vienna, Austria) was the main language that was used 

throughout the study which included the process of data pre-processing and the models’ 

development. The STEMI ML models were developed with R package version 3.5.2, while 

the NSTEMI/UA ML models, STEMI DL models, and NSTEMI/UA DL models were 

developed with R package version 4.0.3. Table 3.5 below summarises all the R 

libraries/packages that we used for the study (Bunn & Korpela, 2020). 
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Table 3.5: R library and packages used in this study.  

Libraries/Packages Functions 

readr  Provide a quick and easy way to read various rectangular text data 
types like csv and tsv. 

dplyr  It's a data manipulation grammar for dealing with a data frame-like 
object. 

ROSE  The Random Over-Sampling Examples package contains functions 
for dealing with the occurrence of imbalanced classes in binary 
classification tasks. 

keras  Keras, which represents the high-level neural network API, has an R 
interface. 

Keras provides rapid neural network experimentation. 

Tenserflow It's an R interface to TensorFlow, an open-source software 
framework for numerical computations based on data flow graphs. 

As a backend for the creation of MLP models. 

Caret Classification and Regression Training is what this acronym stands 
for. It is a software program that has many capabilities that will aid 
in the creation of prediction models. 

Data splitting, data pre-processing, feature selection, model tuning, 
and variable importance estimation are some of the tools contained 
in the package. 

ROCR Use to visualise the scoring classifiers' performance. 

Use to generate ROC graphs. 

pROC Use for visualizing, smoothing, and comparing the ROC curves. 

 

3.5 Data Splitting  

For the ML models, data was split into 70% training data and 30% testing data (as can 

be seen in Figures 3.2 and 3.3 above) to precisely determine the performance of prediction 

models. Rather than splitting the data into training, validation, and test subsets and 

performing holdout cross-validation on the validation set, the data was split into training 

and testing sets, and k-fold cross-validation was performed, which is a better method than 
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the traditional train-validation-test split cross-validation (Hsieh et al., 2019). Both groups 

were subjected to 10-fold cross-validation at three different time points during the 

prediction model development process. The data was split into 70:30 parts for several 

reasons: 

a) Proven from the previous study  

Gholamy et al. (2018) found that allocating 70% - 80% of original data for training and 

the remaining 20% - 30% for testing yields the best outcomes for several empirical results. 

b) Size of the dataset 

Since the dataset for both STEMI and NSTEMI/UA dataset for all three time points are 

approximately between ~2000 to ~6000 cases (near to ~10000), splitting the data into 70:30 

is suggested as the optimum division by Gholamy et al. (2018). The suggested splitting 

division is shown in Figure 3.4 below.  

 

Figure 3.4: The suggested optimal ratio of the train-test split according to the size of 
the dataset (Gholamy et al., 2018).  

c) The variance affecting the performance of the model 
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The parameter estimations have a significant variance when there is less training data. 

Less testing data, on the other hand, leads to a lot of variation in performance 

measurements. It may lead to inaccuracy of the result (Mehta et al., 2019).  

3.6 Data Balancing  

One of the requirements of ML is that the data set must be balanced, or at least near to 

being balanced. The fundamental reason for this is to ensure that each class receives equal 

attention (Lunardon et al., 2014). As can be seen in Figures 3.2 and 3.3, the training data 

for each of the datasets for the three time points have an imbalanced collection of samples 

in two classes: dead (0) and alive (1). Unsatisfactory classifications will result from the 

huge data imbalance. Furthermore, data balancing enabled us to give equal weight to both 

the dead and the alive classes. The purpose of data balancing was to eliminate bias in 

favour of the majority class, which would result in poor classification of the minority class. 

The data balancing method was carried out using the ROSE (Random Over Sampling 

Examples) tool in R. ROSE is a binary imbalanced learning software. It aids in the 

generation of synthetic data using sampling methods and a smoothed bootstrap approach. 

This package has well-defined accuracy functions for quickly completing tasks. It can also 

deal with both continuous and categorical data. There are three types of resampling 

techniques that were considered and tested for this study using the ROSE package; the 

"undersampling" method, "oversampling" method, and "both under- and over-sampling 

methods combined". All three techniques were tested on each dataset, with the "both under- 

and over-sampling methods combined" method proving to be the most effective, it was 

applied to all the STEMI and NSTEMI/UA datasets for the data balancing stage in the data 

preparation of this study. 
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3.7 Data normalisation  

The goal of data normalisation is to convert the values of continuous variables in a 

dataset to a common scale while preserving disparities in value ranges. Another scaling 

strategy is standardisation, or z-scores normalisation, in which the values are centred 

around the mean with a unit standard deviation. 

Data normalisation was carried out to normalise the continuous variables (eg. age, heart 

rate, systolic blood pressure, diastolic blood pressure, total cholesterol, high-density 

lipoprotein, low-density lipoprotein, triglyceride, fasting blood glucose) by using z-score 

normalisation. Unscaled input variables may lead to a slow or unstable learning process. 

The purpose of data normalisation is to assure the consistency of continuous data, as well as 

to make database design easier and to ensure database security. 

3.8 Data imputation 

This study’s definition of an incomplete dataset is a set of variables that is missing up to 

50% of the time. The referenced missing dataset is for patient characteristics, not outcome 

data. The level of missingness in values across all variables was fully random and beyond 

control, because the dataset is a prospective dataset with retrospective data management. In 

this dataset, the probability of missingness is independent of neither the observed values in 

any variable nor the unobserved portion of the dataset. 

As a result, the dataset is characterised as missing completely at random (MCAR), the 

maximum level of randomness, implying that the pattern of missing values is random and 

unrelated to any variable that may or may not be included in the analysis. Comprehensive 
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data were available for each of the outcomes. The testing dataset used for testing the model 

of the complete case was also used to test the imputed model. 

Data imputation was carried out only for the best model of the ML and Dl models across 

three different time points. Secondary analyses were carried out after adding imputed 

missing cases. The imputation of the missing values was carried out using multivariate 

imputation by chained equations (MICE) with predictive mean matching (PMM) (Van 

Buuren & Groothuis-Oudshoorn, 2011). PMM is robust to assumptions breaches and backs 

up earlier recommendations for PMM and sample size (Van Buuren & Groothuis-

Oudshoorn, 2011). The method works best with big samples and generates imputations that 

have many of the same properties as the original data. PMM is usually better at buffering 

any biases caused by distributional assumptions that have been violated (Kleinke, 2017). 

PMM can impute practically any type of variable, including continuous, semi-continuous, 

cluster, and panel data (Van Buuren & Groothuis-Oudshoorn, 2011; Vink et al., 2014). This 

method imputes missing values based on real values from other cases where predicted 

values are closest. This approach consists of a single variable, x, which has missing data in 

some circumstances, and a group of variables, z (which do not contain missing data), which 

are used to impute x, and the following steps were followed: 

1) A linear regression of x on z was computed for cases with no missing data, 

yielding a set of coefficients b. 

2) The “posterior predictive distribution” of b was drawn at random, yielding a 

new set of coefficients b*. A random draw from a multivariate normal 

distribution with mean b and the predicted covariance matrix of b (with an 

additional random draw for the residual variance) would be typical. This 
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phase is similar to all "proper" approaches for multiple imputations and was 

required to provide enough variety in the imputed values. 

3) For all instances, both those with data missing on x and those with data 

present, the value of b* was utilised to construct predicted values for x. 

4) A group of cases with observed x that have predicted values that are close to 

the anticipated value for the case with missing data was determined for each 

case with missing x. 

5) One value was chosen at random from among the close cases, and its 

observed value was assigned to replace the missing value. 

6) For each full data set, steps 2 through 5 were repeated. 

 

The objective of linear regression in PMM, unlike many other methods of imputation, is 

not to generate imputed values. Rather, it is used to create a statistic for comparing cases 

with missing data to cases with similar data. For this study, the number of cases was set to 

3, that is, each case on x with missing data was matched to the three examples (with data) 

with the closest anticipated values. The x value of one of the three was assigned to the case 

with missing data at random. This method was carried out by R using the library (mice).  

3.9 Baseline Characteristics  

All analyses of baseline characteristics for STEMI and NSTEMI/UA patients were 

performed using the Statistical Package for Social Sciences (SPSS) version 16.0 

programme. Continuous variables are represented in mean ± standard deviation while 

categorical variables are presented in frequency and percentage. To identify significant 

factors, a Chi-Square test (for categorical variables) and a two-sided independent student t-

test (for continuous variables) were used in univariate analysis (p < 0.001). 
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3.10 Model development and hyperparameter tuning 

In this study, 3 types of ML models were developed to predict the mortality of patients 

with STEMI or NSTEMI/UA which included LR, RF, and SVM algorithms. Each of the 

models was trained with all 50 (for STEMI) and 39 (for NSTEMI/UA) variables together 

with selected variables obtained through different feature selection techniques; SBE and 

RFE. This study applied the classification method which was used to predict the mortality 

of patients with STEMI and NSTEMI/UA accordingly with the output data of alive (1) and 

dead (0). As a result, 9 ML models were created for each STEMI and NSTEMI/UA dataset 

for the three time points (in-hospital, 30-days, and 1-year), as shown below: 

 

Table 3.6: The list of ML models with their abbreviations. 

ML models Abbreviation  

Logistic regression with all variables LR 

Logistic regression with stepwise 

regression analysis selected variables  

LRstepwise-SBE-LR 

Logistic regression with RFE selected 

variables 

RFE-LR 

Random forest with all variables  RF 

Random forest with sequential backward 

elimination selected variables 

RFvarImp-SBE-RF 

Random forest with RFE selected 

variables  

RFE-RF 

Support vector machine with all variables  SVM 
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Table 3.6, continued. 

ML models Abbreviation 

Support vector machine with sequential 

backward elimination selected variables 

SVMvarImp-SBE-SVM 

Support vector machine with RFE selected 

variables  

RFE-SVM 

 

Due to the rapid development in the usage of DL approaches in recent years, this study 

included DL as an addition to the work. It was also used to verify the viability of variables 

selected by the ML since feature learning is employed in DL instead of feature selection. 

Feature learning in DL can only learn all of the qualities that have been provided and 

accomplish the tasks that have been assigned to it, such as classification and detection. DL 

does not carry out the process of selecting only significant variables and reducing the size 

of the overall variables fed into it (Kwon et al., 2019a). For each of the dataset and time 

points, two DL models were built which is one with all the variables and the other one with 

the variables selected by the best ML models. 

In this study, for each of the time points (in-hospital, 30 days, and 1-year), the best ML 

and DL models were compared against the TIMI risk score for the STEMI group and TIMI 

risk score for NSTEMI/UA group. The TIMI risk score for STEMI (Morrow et al., 2000) 

was developed using the Intravenous nPA for Treatment Infarcted Myocardium Early II 

trial to predict STEMI patient mortality at 30 days, while the TIMI risk score for 

NSTEMI/UA (Antman et al., 2000) was developed using the TIMI 11B clinical trial for the 

composite endpoint of mortality at 14 days. The predictive capacity of the TIMI risk score 

for STEMI was consistent throughout time, from 24 hours to one year following hospital 
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admission (Morrow et al., 2000). The TIMI risk scores were chosen for this study because 

of their ability to score ACS subtypes individually, whereas the GRACE score was 

developed to predict ACS mortality in general and was utilised to predict long-term (six 

months) mortality (Lee et al., 2021). Furthermore, the TIMI risk scores are the commonly 

used risk scores for mortality prediction of STEMI and NSTEMI/UA patients in Malaysian 

hospitals (MOH, 2011, 2019). Despite the fact that both TIMI risk scores were created in a 

clinical trial sample that was largely Western, only the TIMI risk score for STEMI has been 

validated against a Malaysian multi-ethnic group in the study by Selvarajah et al. (2012). 

As a result, the purpose of this study was to see how well ML and DL algorithms compare 

to the TIMI risk score in predicting the mortality of STEMI and NSTEMI/UA patients in 

Malaysia, as well as in the era when an early invasive revascularization strategy is 

becoming more popular. 

The flow of developing predictive models utilising various DL and ML algorithms is 

depicted in the Figure 3.5 and Figure 3.4 respectively,  below. It explains how models were 

developed, hyperparameters were modified, variables were selected, and the best model 

was chosen. 
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 Figure 3.5: The flowchart of the ML predictive models’ development. 1
55
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Figure 3.6: The flowchart of the DL predictive models’ development. 
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3.10.1 Machine Learning Model Development 

All of the ML models were constructed in R using the caret package's features. In this 

case, the resampling technique was applied to determine the optimum model by fine-tuning 

the parameter values. We used the following functions: 

 

i) train_control (): To specify the resampling scheme 

ii) train (): Act as the workhorse of caret, which takes several parameters. 

 

(a) Logistic regression (LR) 

In this study, the glm () function was used to fit the logistic regression model, which is 

typically used to fit generalised linear models. However, in this situation, this study utilised 

this method to fit an LR model. Kassambara (2018) claims that glm has no tuning 

parameters. Hence, the default generalised linear model was used to conduct binary 

classifications on all 50 variables for STEMI and 39 variables for the NSTEMI/UA dataset, 

including those with and without features. This study used the family parameter, family = 

"binomial", to indicate that the output is a two-class categorical response. This instructs glm 

() to fit an LR model rather than one of the many other models available to the glm. The 

tunelength function was set to 10 because a longer tune length allows the algorithm to 

examine more potential models and possibly find a better one. 10-fold cross validation was 

also carried out in the model building.  
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(b) Random Forest (RF)  

RF is an ensemble method that uses classification or regression trees to make decisions. 

The function that was used for RF model building was randomForest. According to Kwon 

et al. (2019b), RF entails the creation of many decision trees. Each tree partitions the 

sample data by separating the variable at distinct cutting points. The data for the tree is 

chosen at random from the training dataset. It generates hundreds of different classification 

trees and then utilises them all together as a composite classifier. The majority rule is used 

to the votes of individual classifiers to determine the final classification of a given sample. 

There are only two tuning parameters in RF: ntree and mtry. The number of trees to 

grow is specified by the parameter ntree, which must be large enough to provide OOB error 

stabilisation. The number of variables chosen randomly as candidates at each split is 

specified by the parameter mtry, which can range from 1 to the total number of variables. 

According to Chen et al. (2015), the prediction will not differ statistically if a high number 

of ntree are picked, but the model will take longer to build. In classification issues, the 

default value of mtry is √N, where N is the total number of variables. In general, using the 

default values for ntree and mtry can yield good results (Wang et al., 2021). 

During the model development, the model was trained with a different number of ntree 

which comprises 500, 1000, 1500, and 2000 trees respectively. The optimal numbers of 

mtry, which were randomly picked at each split as the candidates, were determined using 

grid search with tuneLength =10 and 10-fold-cross validation. The model with the highest 

AUC was selected as the best. The algorithm of RF is shown below: 
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1) A bootstrap sample of the training set was used to grow each of the RF tree. 

2) When building a tree, n number of variables were picked at random from N 

variables at each node. 

3) It is proposed that the value of n be set to n=√N and then increased until the OOB 

error is the smallest. For all values of n, one variable with the best split was used at 

each node. 

4) RF method was then applied for testing data for prediction. 

5) Steps 1 to 4 were then repeated using different values of ntree (500,1000,1500 and 

2000) and mtry starting the default value of classification RF, √N which is 7 for 

STEMI dataset and 6 for NSTEMI/UA dataset.  

6) The best model was chosen as the one with the highest AUC. 

 

(c) Support Vector Machine (SVM) 

The SVM models were built using the svmLinear, svmRadial, and svmPoly techniques, 

respectively. Cost, C determines the possibility of misclassifications in the SVM model, 

therefore it is critical to implement a penalty for the model's inaccuracy. When the cost 

value is increased, the SVM model is less likely to misclassify a point. 

The default SVM linear classifier used a cost value of C=1. The C value can be tuned 

accordingly. Optimum C value can be chosen via the highest ROC value. The degree in the 

polynomial kernel acts as the decision boundary of the hyperplane flexibility. Higher 

degree polynomial kernels allow a more flexible decision boundary. Whereas, the 

gamma, 𝛾; value in both polynomial and radial kernel specifies how far a training sample's 

impact spreads. The inverse of the radius of the data impact chosen as support vectors by 
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the model is Gamma. This means that a high Gamma will only consider places close to the 

reasonable hyperplane, but a low Gamma will consider sites farther away. 

The SVM model was built by utilising the default linear kernel function and SVM, as 

well as the radial and polynomial kernel functions. To discover the best parameter in each 

kernel function, grid search was employed with tuneLength =10, and 10-fold-cross 

validation was used. The best parameters were then used to train the whole training set and 

were applied for data testing. However, in this study, the SVM model that applied radial 

kernel functions demonstrated the highest value of AUC as compared to the other two 

kernel functions. Hence, the radial kernel function was adopted as the main kernel in 

building the SVM model for this study. 

The optimised parameters for each of the ML models are shown in Table 3.7 and Table 

3.8 below. 

Table 3.7: The hyper-parameters values for optimum ML model performance for 
STEMI dataset. 

In-hospital 

Machine Learning  Parameters  

Random Forest Seed = 42 

mtry = default ( √N = 7) 

Number of trees = 1000 

Pre-processing = centre and scale 

Cross-validation=10 

Number of iterations = 3 

Support Vector Machine  Kernel = radial  

Seed = 42 

Pre-processing = centre and scale 
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Table 3.7, continued. 

In-hospital 

Machine Learning  Parameters  

 C-value = 0.25 

Gamma value = 0.01 

Cross-validation=10 

Logistic Regression  Seed = 42 

Method= glm 

Cross-validation=10 

Tune length = 10 

Family = binomial 

30-days 

Machine Learning  Parameters  

Random Forest Seed = 42 

mtry = default ( √N = 7) 

Number of trees = 1000 

Pre-processing = centre and scale 

Cross-validation=10 

Number of iterations = 3 

Support Vector Machine  Kernel = radial  

Seed = 42 

Pre-processing = centre and scale 

C-value = 0.25 

Gamma value = 0.01 

Cross-validation=10 

Logistic Regression  Seed = 42 

Method= glm 

Cross-validation=10 
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Table 3.7, continued. 

30 days  

Machine Learning  Parameters 

 Tune length = 10 

Family = binomial 

1-year 

Machine Learning  Parameters  

Random Forest Seed = 42 

mtry = default ( √N = 7) 

Number of trees = 1000 

Pre-processing = centre and scale 

Cross-validation=10 

Number of iterations = 3 

Support Vector Machine  Kernel = radial  

Seed = 42 

Pre-processing = centre and scale 

C-value = 0.25 

Gamma value = 0.01 

Cross-validation=10 

Logistic Regression  Seed = 42 

Method= glm 

Cross-validation=10 

Tune length = 10 

Family = binomial 
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Table 3.8: The hyper-parameters values for optimum ML model performance for 
NSTEMI/UA dataset. 

In-hospital 

Machine Learning  Parameters  

Random Forest Seed = 42 

mtry = default ( √N = 6) 

Number of trees = 500 

Pre-processing = centre and scale 

Cross-validation=10 

Number of iterations = 3 

Support Vector Machine  Kernel = radial  

Seed = 42 

Pre-processing = centre and scale 

C-value = 0.20 

Gamma value = 0.01 

Cross-validation=10 

Logistic Regression  Seed = 42 

Method= glm 

Cross-validation=10 

Tune length = 10 

Family = binomial 

30 days 

Machine Learning  Parameters  

Random Forest Seed = 42 

mtry = default ( √N = 6) 

Number of trees = 500 

Pre-processing = centre and scale 

Cross-validation=10 
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Table 3.8, continued. 

30 days 

Machine Learning  Parameters 

 Number of iterations = 3 

Support Vector Machine  Kernel = radial  

Seed = 42 

Pre-processing = centre and scale 

C-value = 0.10 

Gamma value = 0.02 

Cross-validation=10 

Logistic Regression  Seed = 42 

Method= glm 

Cross-validation=10 

Tune length = 10 

Family = binomial 

1-year 

Machine Learning  Parameters  

Random Forest Seed = 42 

mtry = default ( √N = 6) 

Number of trees = 1000 

Pre-processing = centre and scale 

Cross-validation=10 

Number of iterations = 3 

Support Vector Machine  Kernel = radial  

Seed = 42 

Pre-processing = centre and scale 

C-value = 0.30 

Gamma value = 0.01 

Univ
ers

iti 
Mala

ya



165 
 

Table 3.8, continued. 

1-year 

Machine Learning  Parameters 

 Cross-validation=10 

Logistic Regression  Seed = 42 

Method= glm 

Cross-validation=10 

Tune length = 10 

Family = binomial 

 

3.10.2 Feature Selection Methods 

Maldonado and Weber (2009) claimed that feature selection is significant in 

classification issues since it reduces computing complexity and improves the generalisation 

of classifiers. The wrapper technique with SBE was utilised in their research because it 

adjusts better to a dataset and helps reduce overfitting. Any kernel functions can be utilised 

with sequential backward elimination in SVM. 

Wrapper methods, according to Ang et al. (2015), will take relationships between 

features into account and deliver more accurate results than filter methods. According to 

Kumar and Minz (2014), the wrapper technique will utilise a learning algorithm to evaluate 

a subset. A subset will be chosen that is most suited to the learning algorithm. Balakrishnan 

et al. (2008) employed sequential backward elimination to find important variables for 

classifying diabetes and non-diabetic patients in their study. After the feature selection, the 

classification accuracy was found to be higher. Another commonly used wrapper method is 

the RFE method (Kohavi & John, 1997). According to Aziida et al. (2021), RFE performed 

better when combined with ML methods (such as RF and SVM) which yielded a high value 
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of AUC in predicting 30 days mortality of patients with STEMI. Similar results were 

observed from other studies on factors affecting amlodipine induced pedal edema and its 

classification (Chopra et al., 2017), selecting feature subsets in bioinformatics (Lin et al., 

2018), feature selection workflow for high-dimensional omics data (Perez-Riverol et al., 

2017) and identification of risk genes associated with myocardial infarction (Zhou et al., 

2017). RFE is also computationally less complex than the other feature selection methods. 

The stepwise regression analysis is the common feature selection used for the LR 

algorithm. According to Juhan et al. (2019), stepwise regression analysis yielded a good 

feature selection to be employed in predicting risk factors for patients with STEMI (Juhan 

et al., 2019). This method is proven to be beneficial in selecting features that increase the 

model's performance by combining variables through backward or forward elimination 

from the variable importance ranking (Gibson et al., 2020; Loring et al., 2020; Tsai, 2009). 

In this study, the wrapper method of SBE, RFE, and stepwise regression analysis were 

adopted to eliminate the irrelevant and insignificant features from the 50 variables of the 

STEMI dataset and 39 variables of the NSTEMI/UA dataset.  

(a) Stepwise regression analysis 

Stepwise regression is a methodology for fitting regression models in which the 

selection of predictive variables is automated. In this study, this feature selection method 

was utilised to develop the LR model by removing less important features and reducing the 

overall number of variables. It is an approach that allows changing the course by removing 

or adding variables at each stage.  It has an option called direction, which can have the 

following values: "both", "forward", "backward", but in this study, the "backward" method 

was chosen to carry out the stepwise regression analysis in finding the best variables for LR 

model building.  
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Firstly, univariate LR analysis was performed on all variables in the training dataset 

during the model development phase. Variables were chosen for the backward stepwise 

regression analysis if they were statistically significant (p<0.05). Following that, AIC was 

used to undertake backward step-down selection. 

The stepwise regression analysis was easily calculated using the MASS package's R 

function stepAIC(). This function performed model selection by AIC. AIC was utilised to 

simplify the model without affecting its performance much. stepAIC is a model selection 

tool that favours models with a lower AIC value. 

The absolute value of the AIC has little importance. The AIC is similar to the adjusted 

R-squared in that, it penalises by removing more variables from the model. Hence, the AIC 

value of a subset of variables was examined to see if it was increasing or decreasing when 

more variables were removed. When there are numerous models to choose from, the one 

with the lowest AIC value is preferred. Thus, the StepAIC in the last step generated the best 

set of features with the lowest AIC value. 

Lastly, the performance of the model with full variables and the model with stepwise 

logistic variables were compared. The best model is defined as the model that has the 

lowest classification error rate in predicting the class of new test data. 

(b) Recursive Feature Elimination (RFE) 

A recursive procedure that classifies features according to their relevance is known as 

RFE. RFE follows an automatic feature selection method. RFE is a feature evaluation 

approach that recursively eliminates low-importance features using the feature weights 

from the ML algorithms. In this study, the RF, SVM, and LR models were trained using the 

rfFuncs function in R with 10 folds cross-validation and 3 iterations for the RFE feature 
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selection method. RFE using the rfFuncs function performs based on Gini importance as 

the variable exclusion criterion. By splitting the variable under consideration at a certain 

node, Gini importance determines how well the samples can be assigned to the two output 

classes. The higher the value, the better the separation of instances into the two classes will 

be, and the more important the inspected features will be. The summarised steps for RFE 

method used in this study are as below: 

1) The model was trained using the training data to obtain the feature’s importance. 

2) The model performance was evaluated. 

3) The features were then ranked based on their Gini importance according to their 

classification contribution. This stage resulted in a ranking of variables. 

4)  The algorithm then formed a subset, Si of variables which keeps the most important 

variables. The subset, Si was then trained to obtain the new classification model 

performance. 

5) Step 4 was repeated with a different set of variables by removing different variables 

iteratively until the subset, Si is empty. 

6) The list of performance measurement values corresponding to each subset was 

produced and the subset with the highest accuracy was selected to be the best set of 

features.  

As an explanation to the above steps, accuracy was determined using predictions derived 

using the trained algorithm's 10-fold cross-validation approach. This method gave a list of 

concatenated labels for predictions over 10 folds; for each in-fold instance, the prediction 

was made using the algorithm that was trained on all out-of-fold examples. The algorithm 

was retrained with new, reduced features and new partitioning after the feature with the 

lowest absolute weight was removed from the input dataset. It was then repeated until the 
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input dataset contained only one feature. After all iterations, the accuracy means, and 

standard deviation were computed as mentioned in step 5 above. The set of variables with 

the highest accuracy was then used for the model building of the classifiers RF, SVM, and 

LR. 

(c) Sequential Backward Elimination (SBE) 

The wrapper approach of SBE was used to remove irrelevant and insignificant 

characteristics from the 50 (for STEMI) and 39 (for NSTEMI/UA) variables in this study. 

This method was only carried out for the classifiers RF and SVM because the LR classifier 

backward elimination method was carried out using the stepwise regression analysis as 

discussed above. In order to eliminate the insignificant variables, all the variables were 

ranked according to their variable importance during the first training of the model by using 

the function varImp() from the caret package. The model was trained using 10-fold cross 

validation. Then, the variable importance graphs were plotted for better visualization. The 

backward elimination process was done by the following steps: 

1) The initial model, M1, with all the variables, N in the training dataset was trained 

using the classifier and the performance measure (AUC) was recorded.  

2) A graph of variable importance was then formed where the most important variable 

was ranked at the top and the least important variable at the bottom. 

3) From the variable ranking graph of importance, the least important variable (the one 

at the bottom of the rank) was removed, which produced a new subset of variable, 

N-1.  

4) The model with the remaining variables, N-1 was trained again and the model’s 

performance measure (AUC) was recorded. 
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5)  Steps 3 and 4 were repeated by removing the remaining variables one by one from 

the bottom upwards to form new subsets, N-2, N-3, N-4, … N-x, until the most 

important variable in the dataset was left. The AUC values were recorded and 

compared after the training process of the subsets N-2, N-3, N-4,... N-x. 

6) Significant variables from the backward elimination method were identified by 

plotting a line graph. A significant variable is defined as the variable that causes the 

drop of AUC value upon deletion, indicating that, by removing the variable, it 

decreases the model’s performance, hence it is important for the variable to be in 

the model. 

7)  Next, a new cycle was started where a new model, M2, was formed consisting of 

only the significant variables. 

8) Steps 1 to 6 were repeated for a few cycles to ensure that the new model maintained 

a higher AUC value than the previous model. This cycle ends when the new model's 

overall AUC value cannot be further improved by using the new set of variables. 

9) The remaining variables, N-x in the last model, Mx (the model with the highest 

value of overall AUC) was selected to be incorporated as the variables for the final 

models of the respective models’ development. 

 

The figures below show the drop of AUC values when SBE was implemented to RF 

(Figure 3.7 for STEMI and Figure 3.9 for NSTEMI/UA) and SVM (Figure 3.8 for STEMI 

and Figure 3.10 for NSTEMI/UA) for all variables in this study. The x-axis indicates the 

list of variables ranked from the least important (left) to the most important (right) and the 

y-axis is the AUC value. The reason for this kind of visualisation of importance is to ease 
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the understanding and the detection of any drop of AUC value through graph line. The red 

line indicates the initial AUC value without the SBE being applied yet to the variables. 

 

Figure 3.7: AUC values during the first cycle of feature selection for the RF model for 
STEMI dataset across three data frames (a) in-hospital, (b) 30 days, and (c) 1-year. 
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Figure 3.8: AUC values during the first cycle of feature selection for the SVM model 
for STEMI dataset across three data frames (a) in-hospital, (b) 30 days, and (c) 1-
year. 
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Figure 3.9: AUC values during the first cycle of feature selection for the RF model for 
NSTEMI/UA dataset across three data frames (a) in-hospital, (b) 30 days, and (c) 1-
year. 
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Figure 3.10: AUC values during the first cycle of feature selection for the SVM model 
for the NSTEMI/UA dataset across three data frames (a) in-hospital, (b) 30 days, and 
(c) 1-year. 

 

 As being explained above, this step was repeated until a newly forming group of 

variables' AUC is smaller than the previous forming group of variables. Once the AUC 

value of a newly forming group could not get any higher, the process was stopped and 

declared that the final forming group is the best model of the algorithm with the least 

number of variables. The ranking of the final best model of RF (Figure 3.11 for STEMI and 
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Figure 3.13 for NSTEMI/UA) and SVM (Figure 3.12 for STEMI and Figure 3.14 for 

NSTEMI/UA) are visualised below.  
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Figure 3.11: Ranking of the final models with selected variables for STEMI dataset in 
RF across three mortality prediction time frames (a) in-hospital, (b) 30 days, and (c) 
1-year. 
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Figure 3.12: Ranking of the final models with selected variables for STEMI dataset in 
SVM across three mortality prediction time frames (a) in-hospital, (b) 30 days, and (c) 
1-year. 
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Figure 3.13: Ranking of the final models with selected variables for NSTEMI/UA 
dataset in RF across three mortality prediction time frames (a) in-hospital, (b) 30 
days, and (c) 1-year. 
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Figure 3.14: Ranking of the final models with selected variables for NSTEMI/UA 
dataset in SVM across three mortality prediction time frames (a) in-hospital, (b) 30 
days, and (c) 1-year. 
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3.10.3 Deep Learning Model Development 

3.10.3.1 Deep Learning Multilayer Perceptron Model Hyperparameter Tuning 

As mentioned in the previous chapter, the DL model development of mortality 

prediction in this study is the extension to the future compass of the ML study as a whole. 

In this chapter, the applicability of DL in predicting mortality for patients with ACS will be 

discussed further in terms of algorithms and parameters in detail, as a broadening aspect of 

mortality prediction future enhancement.  

According to Brownlee (2018), training a deep neural network model with 

backpropagation involves hyperparameter tuning. He also indicated that effective training 

of a model involved careful configuration, testing, and tuning the hyperparameters of the 

model and the learning process itself to best address the problem.  

Hence, in the MLP model development, the hyperparameters such as numbers of nodes, 

numbers of hidden layers, dropout rate, learning rate, optimizer, batch size, epoch, and the 

activation function needed to be tuned carefully to maximise the performance of the 

predictive model. The possible tuning values/parameters that this study employed for each 

hyperparameter during the development of the MLP models are listed in Table 3.9 below. 

Table 3.9: The possible values that were considered in the tuning process of the DL 
model development.  

Hyper-Parameters Possible Tuning Values 

Number of nodes (50, 135, 67, 33, 16, 2), (15, 64, 32, 16), (12, 32, 16, 
8, 2) 

Number of hidden layers 2,3,4 

Dropout rate 0.1, 0.2, 0.3 

Learning rate 0.1, 0.001, 0.0001 

Optimizer Adam, Adagrad 

Batch size 8, 16, 32, 64 
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Table 3.9, continued. 

Hyper-Parameters Possible Tuning Values 

Epoch  100,150,200,250,300 

Activation function in hidden layers ReLU, Tanh, linear, leaky ReLU 

Activation function in output layer sigmoid (binary classifications  

 

For the DL models, hyperparameter tuning was done by manual tuning and grid search. 

The final DL model was selected based on several criteria: 

1) The AUC and accuracy of the model 

2) The sensitivity, specificity, and balanced accuracy of the model 

3) The validation loss- training loss graph 

4) The validation accuracy - training accuracy graph 

5) The convergence of the two graphs 

 

3.10.3.2 Deep Learning Model Building 

The development of the DL model was carried out after the development of the ML 

models. ML model with the highest AUC value and the lowest number of selected variables 

was chosen as the best model. The rationale for developing the ML models first is to 

incorporate the best ML model's selected variables into the DL model development, as 

mentioned in the previous chapter by the study of Kwon et al., (2019a).  

The table below summarises the hyperparameters used for the training of the DL 

models. The hyperparameters such as numbers of nodes, numbers of hidden layers, dropout 

rate, learning rate, optimizer, batch size, and epoch of each model were tuned so the graphs 
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of training loss and validation loss and the graph of training and validation accuracy 

converge. 

For model construction, MLP based on DL incorporates four hidden layers, batch 

normalisation, and dropout layers. Three to four hidden layers (depending on the models in 

Table 3.10) were selected because adding more layers did not result in a substantial 

performance improvement. The number of nodes differs in each time point for both STEMI 

and NSTEMI/UA patients. This is because there is no general technique to determine the 

optimal number of neurons in DL. The neuron number was optimised by manual tuning and 

grid search. 

For the DL models, Tensor Flow was utilised and Adam optimizer in R with default 

values and binary-cross entropy as the loss function (Kwon et al., 2019a). Adam optimiser 

was used instead of Adagrad optimiser because when Adagrad optimiser was used, the 

models become under-fitted with low specificity. Adam optimiser was simple to 

implement, and the default configuration parameters work well for the majority of 

problems. It has various features that combine the benefits of both Gradients with 

Momentum and RMSProp, such as low memory needs, suitability for non-stationary 

targets, and optimal performance with huge data and parameters.  

The rectified linear unit (ReLU) as the activation function was used after comparing 

other activation functions, such as softmax, linear, Tanh, leaky ReLU, and exponential 

linear unit. The DL models used ReLU as the activation function on the hidden layers 

because others activation functions showed a decrease in the sensitivity of the model. ReLU 

is a type of activation function that is frequently employed in DL models. In other words, if 

the function receives a negative value, it returns 0; if it receives a positive value, it returns 

the same positive value. It also allows the DL model to account for non-linearities and 
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unique interaction effects. The ReLU function has the advantage of being a reasonably 

cheap function to compute due to its simplicity. The model can be trained and run in a short 

amount of time because there is no complicated arithmetic involved. Similarly, it converges 

faster, implying that the slope does not plateau as the input value increases. 

The sigmoid function was used in the output layer and binary cross-entropy as the loss 

function because this study was performed on the binary classifications. The last layer 

(output) of a DL model can use a sigmoid function to turn the network's output into a 

probability score, which is easier to work with and analyse. Table 3.10 shows the final 

architecture of DL models for STEMI and NSTEMI/UA. 

Table 3.10: The optimized hyper-parameters for DL model development. 

STEMI 

 In-hospital 30-days 1-year 

All Selected All Selected All Selected 

Number of 
hidden layers 

4 3 4 3 4 4 

Number of 
nodes in each 
layer 

(50, 135, 67, 
33, 16, 2) 

(15, 64, 32, 
16) 

(50, 135, 67, 
33, 16, 2) 

(12, 32, 16, 
8, 2) 

(50, 135, 67, 
33, 16, 2) 

(12, 135, 
67, 33, 16, 

2) 

Dropout rate (0.5, 0.4, 
0.3, 0.1 ,0.1) 

(0.3, 0.3, 
0.3, 0.3) 

(0.5, 0.4, 
0.3, 0.1 ,0.1) 

(0.1, 0.4, 
0.2, 0.3) 

(0.5, 0.4, 
0.3, 0.1 ,0.1) 

(0.5, 0.4, 
0.3, 0.1 

,0.1) 

Learning rate 0.001 0.001 0.001 0.001 0.001 0.001 

Optimiser  Adam 

Batch size  64 128 64 64 64 64 

Epoch  100 80 100 80 100 100 

Activation 
function 

• Hidden layer: ReLU 
• Output layer: Sigmoid 

 

NSTEMI/UA 

 In-hospital 30-days 1-year 

All Selected All Selected All Selected 
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Table 3.10, continued. 

NSTEMI/UA 

 In-hospital 30-days 1-year 

All Selected All Selected All Selected 

Number of 
hidden layers 

4 3 4 3 4  

Number of 
nodes in each 
layer 

(39, 135, 67, 
33, 16, 2) 

(13, 64, 32, 
16, 2) 

(39, 135, 67, 
33, 16, 2) 

(11, 64, 32, 
16, 2) 

(39, 135, 67, 
33, 16, 2) 

(13, 64, 32, 
16, 2) 

Dropout rate (0.5, 0.4, 
0.3, 0.1 ,0.1) 

(0.3, 0.4, 
0.3, 0.5) 

(0.2, 0.2, 
0.4, 0.2, 0.4) 

(0.3, 0.1, 
0.3, 0.2) 

(0.5, 0.4, 
0.3, 0.1 ,0.1) 

(0.5, 0.5, 
0.4, 0.1) 

Learning rate 0.001 0.001 0.001 0.001 0.001 0.001 

Optimiser  Adam 

Batch size  64 32 64 64 64 32 

Epoch  100 70 100 70 100 100 

Activation 
function 

• Hidden layer: ReLU 
• Output layer: Sigmoid 

 

 

 

The Figure 3.15 and Figure 3.16 below show the graph of training loss and validation 

loss in each epoch for the STEMI and NSTEMI/UA group respectively. The validation loss 

shows how well the model fits new data, while the training loss shows how well the model 

matches the training data. The total of errors for each sample in the training set is used to 

compute the training loss and the validation loss.
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Figure 3.15: The graph of training loss and validation loss in each epoch for the 
STEMI group. 
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Figure 3.16: The graph of training loss and validation loss in each epoch for the 
NSTEMI/UA group. 
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3.11 Model Evaluation 

3.11.1 Model calibration  

The area under the Receiver Operating Characteristics (ROC) curve, or simply AUC, 

has been utilised in medical diagnosis since the 1970s, according to Huang and Ling (2005) 

and Fawcett (2006). They claimed that instead of accuracy, AUC should be used to 

evaluate and compare classifiers because AUC is a more accurate measure in general, and 

simple classification accuracy is usually a poor statistic for evaluating performance. This is 

because AUC will more directly and correctly reflect the ranking than accuracy. Values 

from both columns of the confusion matrix are used in metrics including accuracy, 

precision, lift, and F score. Even if the core classifier performance does not change, these 

measurements will alter when the class distribution changes. ROC graphs are not dependent 

on class distributions because they are based on TP and FP rates, with each dimension 

being a strict columnar ratio. 

AUC was employed as an indicator in many of the medical diagnoses to assess the 

performance of the model they constructed. This was demonstrated in a study by Kwon et 

al. (2019a) in which AUC was employed as a comparison measure for mortality prediction 

in STEMI and NSTEMI patients. Wallert et al. (2017) employed AUC as a performance 

metric to predict two-year survivability following a first MI. Darabi et al. (2018), on the 

other hand, in their study, instead of using accuracy, employed AUC to anticipate the 

mortality risk of patients admitted to ICU. These studies chose AUC because it is 

unaffected by class imbalances. 

The performance of the model was also determined using the confusion matrix. The list 

below shows the confusion matrix that was used to evaluate the performance of the 
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different classifiers. In this case of study, the positive class of the outcome was set to be 0 

(dead). The confusion matrix gives information as below:  

i)  True Positives (TP): The dead patients predicted to die  

ii) False Positives (FP): The alive patients predicted to die 

iii) True Negatives (TN): The alive patients predicted to be alive 

iv)  False Negatives (FN): The dead patients predicted to be alive 

 

Since AUC was used as the comparative metric in ACS mortality prediction, FNs are 

reasonably considered costlier than FPs. In the medical domain, it is preferable to predict a 

healthy person as sick, rather than a sick person as healthy, which causes the medical 

diagnosis to be failed. Hence, the precision of the positive class (0-died) should be 

emphasized more in the mortality prediction model. It is acceptable to scarify the precision 

of the negative class (1-survive). 

Sensitivity, specificity, positive predictive value (PPV), negative predictive value 

(NPV), accuracy, and McNemar’s test were taken into consideration when evaluating the 

model in this study. Among them, sensitivity and specificity define the true positive rate 

and true negative respectively. High sensitivity and specificity indicate that the correct 

classifications are made to correspond to each class. 

3.11.2 Additional statistics  

The results were expressed as mean and SD for continuous variables and as frequencies 

for categorical variables. Univariate analysis was performed using a Chi-Square test to 

identify significant variables and a two-sided independent student t-test (p < 0.05). The 

comparison between ML performances and with DL was done using a pair-wise corrected 
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resampled t-test (Dietterich, 1998; Raschka, 2018). Statistical significance was considered 

if the p-value was less than 0.05. 

3.11.3 Comparison with TIMI score 

Calculated TIMI scores were used from the NCVD registry for the validation data 

performance. TIMI score performance (in terms of AUC) was compared with the 

developed ML and DL models for all three time points using the 30% untouched testing 

dataset. ROC graphs were derived to compare performance between all ML models against 

TIMI risk score and the best ML model with the best DL model against TIMI risk score. 

Graphs on the rate of death according to the score (TIMI risk score) and percentiles (the 

best ML and DL models) were also derived to differentiate between the high- and low-risk 

patients based on cut-off points applicable in clinical practice and literature (Correia et al., 

2014). A high risk of death was defined as a probability risk of death of more than 8% 

similar to reported by Correia et al. (2014). The rate of death graphs were also then tested 

for the trend in terms of a p-value. 

3.11.4 Net reclassification improvement index (NRI) 

After the cut-off value was found between the low and the high-risk patients on 

mortality for the best ML models and the best DL models using the percentage of death by 

Correia et al. (2014) study, NRI was then used. The cut-off values for the TIMI risk score 

for both STEMI and NSTEMI/UA were determined by the studies from Morrow et al. 

(2000) and Antman et al. (2000) respectively. The degree to which different mortality risk 

assessment approaches drive proper movement between categories was then evaluated by 

computing the NRI. An NRI can be interpreted as the percentage by which the net 

classification has improved by using a new different approach (Pencina et al., 2008). In this 
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study, NRI was used to determine the changes in discrimination between the TIMI risk 

score and ML/DL algorithm.  

The NRI uses reclassification tables to examine whether there is an additive benefit 

gained from reclassifying patients using a different approach in mortality assessment. Since 

this study is looking at a binary target variable, the two-category NRI was utilised to 

evaluate the best models using equation 2.14 where the 'event' indicates when a patient is 

dead after a given time point (either in-hospital, 30 days, or 1-year), 'non-event' means the 

patient is still alive. The symbol 'up' implies that the old model (TIMI risk score for STEMI 

or NSTEMI/UA) classified the patient as low risk, whereas the new model (the best ML 

model or the best DL model) classified the patient as high risk. Whereas 'down' indicates 

the old model classified the patient as high risk while the new model classified as low risk. 

An NRI of zero implies that the new model's discriminatory ability was equal to that of 

the previous model. A negative NRI indicates the new model was not able to discriminate 

between low-risk and high-risk as well as the old model, while a positive NRI suggests that 

the new model discriminated more accurately. The NRI is a number that runs from -2 to 2. 

An NRI of 2 implies that the old model successfully identified no patients, whereas the new 

model accurately differentiated between all high-risk and low-risk patients. An NRI of -2 

shows that the new model correctly categorised none of the patients, while the previous 

model correctly identified all high- and low-risk patients. The p-value was then calculated 

using ANOVA between the probability of the ML and DL models mortality prediction and 

the TIMI risk score.  
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CHAPTER 4: RESULTS 

This chapter presents all the findings and results that were obtained throughout the study 

which included the patients' characteristics for both STEMI and NSTEMI/UA dataset, 

performance results of the ML and DL models training with all and selected variables, 

feature selection of the models, performances of the TIMI risk scores for both STEMI and 

NSTEMI/UA as compared to the trained ML/DL model and application of the algorithms 

in clinical practice. 

4.1 Patient characteristics 

A total of 33,378 STEMI cases were identified, with 12,368 being complete cases (6,299 

cases for in-hospital, 3,130 cases for 30 days, and 2,939 cases for 1 year). Table 4.1 

illustrates the patients' characteristics used in this study on the complete dataset. The mean 

age was 56 years old. The majority of patients (~87%) were males. The overall mortality 

reported for in-hospital, 30 days, and 1-year was 5.4%, 8.1%, and 14.4% respectively. 

There was a high significant difference between survivors to non-survivors for in-hospital, 

30-days and 1-year mortality in terms of gender, smoking status, diabetes, renal disease, 

heart rate, Killip class, fasting blood glucose, ECG abnormalities, beta-blockers, ACE 

inhibitors, statin, diuretics, insulin and anti-arrhythmic agent use (p<0.0001 for all). The 

patients' characteristics for secondary analysis using an imputed dataset for the STEMI 

dataset are shown in Appendix B. Both statistical analyses on the complete and imputed 

dataset were almost similar. 
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Table 4.1: Baseline characteristics for in-hospital, 30-days, and 1-year of the STEMI dataset. 
Variables Description In-hospital 30 days 1-year 

Total Survival 
 

Non-
survival 

p-value 
 

Total 
 

Survival 
 

Non-survival p-value 
 

Total 
 

Survival 
 

Non-survival p-value 
 

N  6299 5961 (94.6) 338 (5.4)  3130 2878 (91.9) 252 (8.1)  2939 2516 (85.6) 423 (14.4)  

Age  55.8 ± 11.5 55.4 ± 11.3 63.8 ± 12.0 0.81 56.6 ± 11.7 56.0 ±11.4 64.2 ±12.5 0.054 56.6 ± 11.6 55.5 ± 11.2 62.8 ± 12.0 0.028 

Race Malay 3574 (56.7) 3365 (56.5) 209 (61.8) 0.050 1763 (56.3) 1608 (55.9) 155 (61.5) 0.003 1625 (55.3) 1370 (54.5) 255 (60.3) 0.004 

 Chinese 1194 (19.0) 1126 (18.9) 68 (20.1)  552 (13.6) 498 (17.3) 54 (21.4)  531 (18.1) 453 (18.0) 78 (18.4)  

 Indian 1217 (19.3) 1170 (19.6) 47 (13.9)  640 (20.5) 602 (20.9) 38 (15.1)  610 (20.8) 530 (21.1) 80 (18.9)  

 Others 314 (5.0) 300 (5.0) 14 (4.1)  175 (5.6) 170 (5.9) 5 (2.0)  173 (5.9) 163 (6.5) 10 (2.4)  

Gender Male  5417 (86.0) 5152 (86.4) 265 (78.4) <0.0001 2681 (85.7) 2486 (86.4) 195 (77.4) <0.0001 2533 (86.2) 2214 (88.0) 319 (75.4) <0.0001 

 Female 882 (14.0) 809 (13.6) 73 (21.6)  448 (14.4) 392 (13.6) 57 (22.6)  406 (13.8) 302 (12.0) 104 (24.6)  

Smoking status  Never 2003 (31.8) 1866 (31.3) 137 (40.5) <0.0001 1053 (33.6) 941 (32.7) 112 (44.4) <0.0001 977 (33.2) 786 (31.2) 191 (45.2) <0.0001 

 Former (quit tobacco > 
30days) 

1019 (16.2) 952 (16.0) 67 (19.8)  472 (15.1) 424 (14.7) 48 (19.0)  440 (15.0) 371 (14.7) 69 (16.3)  

 Current (tobacco < 30 
days) 

3277 (52.0) 3143 (52.7) 134 (39.6)  1605 (51.3) 1513 (52.6) 92 (36.5)  1522 (51.8) 1359 (54.0) 163 (38.5)  

History of hypertension  3344 (53.1) 3112 (52.2) 232 (68.6) <0.0001 1697 (54.2) 1538 (53.4) 159 (63.1) 0.003 1587 (54.0) 1316 (52.3) 271 (64.1) <0.0001 

History of diabetes  2482 (39.4) 2291 (38.4) 191 (56.5) <0.0001 1271 (40.6) 1129 (39.2) 142 (56.3) <0.0001 1187 (40.4) 945 (37.6) 242 (57.2) <0.0001 

Family history of 
premature 
cardiovascular disease 

 892 (14.2) 869 (14.6) 23 (6.8) <0.0001 435 (13.9) 419 (14.6) 16 (6.3) <0.0001 410 (14.0) 372 (14.8) 38 (9.0) 0.0001 

History of myocardial 
infarction 

 625 (9.9) 580 (9.7) 45 (13.3) 0.032 299 (9.6) 271 (9.4) 28 (11.1) 0.380 278 (9.5) 231 (9.2) 47 (11.1) 0.210 

Documented CAD  583 (9.3) 552 (9.3) 31 (9.2) 0.956 358 (11.4) 323 (11.2) 35 (13.9) 0.202 341 (11.6) 273 (10.9) 68 (16.1) 0.002 

History of heart failure  124 (2.0) 109 (1.8) 15 (4.4) 0.001 56 (1.8) 49 (1.7) 7 (2.8) 0.217 49 (1.7) 32 (1.3) 17 (4.0) <0.0001 

Chronic lung disease  114 (1.8) 101 (1.7) 13 (3.8) 0.004 61 (1.9) 54 (1.9) 7 (2.8) 0.321 60 (2.0) 44 (1.7) 16 (3.8) 0.006 

Chronic renal disease  191 (3.0) 158 (2.7) 33 (9.8) <0.0001 104 (3.3) 77 (2.7) 27 (10.7) <0.0001 98 (3.3) 52 (2.1) 46 (10.9) <0.0001 

Cerebrovascular disease  171 (2.7) 156 (2.6) 15 (3.3) 0.045 88 (2.8) 80 (2.8) 8 (3.2) 0.716 84 (2.9) 63 (2.5) 21 (5.0) 0.005 1
92
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Table 4.1, continued. 
Variables Description In-hospital 30 days 1-year 

Total Survival 
 

Non-
survival 

p-value 
 

Total 
 

Survival 
 

Non-survival p-value 
 

Total 
 

Survival 
 

Non-survival p-value 
 

Heart rate  82.4 ± 21.1 81.7 ± 20.6 93.9 ± 26.6 <0.0001 82.9 ± 20.9 81.9 ± 20.0 94.5 ±27.0 <0.0001 82.6 ±20.6 81.1 ± 19.6 91.7 ± 24.2 <0.0001 

Systolic blood pressure  132.8 ± 27.8 135.6 ± 27.4 120.4 ± 30.2 0.011 134.9 ± 28.2 135.6 ±28.0  126.4 ± 29.4 <0.0001 153.1 ± 28.0  135.9 ± 27.3 130.1 ± 3.1 0.010 

Diastolic blood pressure  82.8 ± 94.1 83.4 ± 96.5 73.6 ± 20.2 0.965 81.3 ± 18.5 81.8 ±18.3 76.2 ±19.8 <0.0001 81.5 ± 18.4 82.1 ±18.1 78.4 ±20.0 0.066 

Killip class  I 4300 (68.3) 4210 (70.6) 90 (26.6) <0.0001 2072 (66.2) 1998 (69.4) 74 (29.4) <0.0001 1980 (67.4) 1809 (71.9) 141 (40.4) <0.0001 

 II 1190 (18.9) 1132 (19.0) 58 (17.2)   558 (17.8) 506 (17.6) 52 (20.6)  512 (17.4) 413 (16.4) 99 (23.4)  

 III 237 (3.8) 200 (3.4) 37 (10.9)  128 (4.1) 98 (3.4) 30 (11.9)  110 (3.7) 71 (2.8) 39 (9.2)  

 IV 572 (9.1) 419 (7.0) 153 (45.3)  372 (11.9) 276 (9.6) 96 (38.1)  337 (11.5) 223 (8.9) 114 (27.0)  

Total cholesterol  5.4 ± 1.6 5.4 ± 1.6 4.8 ± 1.7 0.10 5.2 ± 1.4 5.3 ± 1.3 4.9 ± 1.6 <0.0001 5.2 ± 1.4 5.3 ± 1.3 4.9 ± 1.6 0.005 

HDL  1.1±1.2 1.1 ± 1.2 1.0 ±0.3 0.952 1.1±0.4 1.1±0.4 1.1±0.3 0.140 1.1 ± 0.3 1.1 ±0.3 1.1 ±0.4 0.130 

LDL  3.8 ± 10.7 3.8 ± 11.0 3.0 ± 1.4 0.706 3.5 ± 5.4 3.5 ± 5.6  3.1 ±1.4 0.295 3.1 ± 1.2 3.4 ± 1.2 3.1 ±1.4 0.026 

Triglycerides  1.8 ± 1.7 1.8 ± 1.7 1.7 ± 1.0 0.529 1.7 ± 0.9 1.7 ± 0.9 1.7 ±0.9 0.762 1.7 ± 0.9 1.7 ±0.9 1.6 ±0.8 0.206 

Fasting blood glucose   8.7 ± 4.4 8.5 ± 4.1  12.3 ± 6.7 <0.0001 8.8 ± 4.4 8.6 ± 4.1  11.7 ±6.5 <0.0001 8.8 ± 4.2 8.4 ± 3.8  10.8 ±5.8 <0.0001 

ECG abnormalities type ST-segment elevation 
≥1mm in ≥2 contiguous 
limb leads 

2804 (44.5) 2565 (44.6) 148 (43.8) 0.782 1518 (48.5) 1403 (48.7) 115 (45.6) 0.343 1437 (48.9) 1241 (49.3) 196 (46.3) 0.255 

 ST-segment elevation 
≥2mm in ≥2 contiguous 
frontal leads or chest leads 

3373 (59.9) 3563 (59.8) 210 (62.1) 0.389 1828 (58.4) 1664 (57.8) 164 (65.1) 0.025 1710 (58.2) 1447 (57.5) 263 (62.2) 0.072 

 ST-segment depression 
≥0.5mm in ≥2 contiguous 
leads 

627 (10.0) 589 (9.9) 38 (11.2) 0.416 280 (8.9) 254 (8.8) 26 (10.3) 0.426 267 (9.1) 219 (8.7) 48 (11.3) 0.080 

 T-wave inversion ≥1mm 394 (6.3) 378 (6.3) 16 (4.7) 0.235 197 (6.3) 184 (6.4) 13 (5.2) 0.439 189 (6.4) 152 (6.0) 37 (8.7) 0.036 

 Bundle branch block 138 (2.2) 111 (1.9) 27 (8.0) <0.0001 72 (2.4) 56 (1.9) 18 (7.1) <0.0001 59 (2.0) 38 (1.5) 21 (5.0) <0.0001 

ECG abnormalities 
location 

Inferior leads: II, III, aVF 2998 (47.6) 2859 (48.0) 139 (41.1) 0.014 1520 (48.6) 1415 (49.2) 105 (41.7) 0.022 1433 (48.8) 1251 (49.7) 182 (43.0) 0.011 

 Anterior leads: V1 to V4 3435 (54.5) 3233 (54.2) 202 (59.8) 0.047 1655 (52.9) 1498 (52.1) 157 (62.3) 0.022 1545 (52.6) 1287 (51.2) 258 (61.0) <0.0001 
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Table 4.1, continued. 
Variables Description In-hospital 30 days 1-year 

Total Survival 
 

Non-
survival 

p-value 
 

Total 
 

Survival 
 

Non-survival p-value 
 

Total 
 

Survival 
 

Non-survival p-value 
 

 Lateral leads: I, aVL, V5 to 
V6 

1396 (22.2) 1295 (21.7) 101 (29.9) <0.0001 744 (23.8) 659 (22.9) 85 (33.7) <0.0001 705 (24.0) 567 (22.5) 138 (32.6) <0.0001 

 True posterior: V1, V2 515 (8.2) 484 (8.1) 321 (9.2) 0.492 258 (8.2) 235 (8.2) 23 (9.1) 0.595 243 (8.3) 213 (8.5) 30 (7.1) 0.343 

 Right ventricle: ST 
elevation in lead V4R 

524 (8.3) 494 (8.3) 30 (8.9) 0.703 286 (9.1) 262 (9.1) 24 (9.5) 0.824 269 (9.2) 231 (9.2) 38 (9.0) 0.896 

FB status   4530 (71.9) 4288 (71.9) 242 (71.6) 0.893 2144 (68.5) 1973 (68.6) 171 (67.9) 0.819 1989 (67.7) 1717 (68.2) 272 (64.3) 0.109 

Cardiac catheterization   2950 (46.8) 2812 (47.2) 138 (40.8) 0.045 1727 (55.2) 1619 (56.3) 108 (42.9) <0.0001 1629 (55.4) 1455 (57.8) 174 (41.1) <0.0001 

PCI  2414 (38.3) 2298 (38.6) 116 (34.3) 0.120 1396 (44.6) 1304 (45.3) 92 (36.5) 0.007 1323 (45.0) 1188 (47.2) 135 (31.9) <0.0001 

CABG  33 (0.5) 30 (0.5) 3 (0.9) 0.341 33 (1.1) 27 (0.9) 6 (2.4) 0.032 22 (0.7) 18 (0.7) 4 (0.9) 0.611 

ASA  6180 (98.1) 5862 (98.3) 318 (94.1) <0.0001 3070 (98.1) 2829 (98.3) 241 (95.6) 0.003 2883 (98.1) 2473 (98.3) 410 (96.9) 0.058 

GP receptor inhibitor  173 (2.7) 162 (2.7) 11 (3.3) 0.557 62 (2.0) 56 (1.9) 6 (2.4) 0.635 58 (2.0) 51 (2.0) 7 (1.7) 0.611 

Heparin  962 (15.3) 900 (15.1) 62 (18.3) 0.107 549 (17.5) 501 (17.4) 48 (19.0) 0.512 523 (17.9) 459 (18.2) 64 (15.1) 0.121 

LMWH  1546 (24.5) 1450 (24.3) 96 (28.4) 0.09 479 (15.3) 414 (14.4) 65 (25.8) <0.0001 406 (13.8) 313 (12.4) 93 (22.0) <0.0001 

Beta blockers  4066 (64.5) 3978 (66.7) 88 (26.0) <0.0001 1896 (60.6) 1800 (62.5) 96 (38.1) <0.0001 1754 (59.7) 1558 (61.9) 196 (46.3) <0.0001 

ACE inhibitors  3320 (52.7) 3251 (54.5) 69 (20.4) <0.0001 1509 (48.2) 1452 (50.5) 57 (22.6) <0.0001 1388 (47.2) 1268 (50.4) 120 (28.4) <0.0001 

Angiotensin II receptor 
blocker 

 181 (2.9) 176 (3.0) 5 (1.5)  0.115 61 (1.9) 55 (1.9) 6 (2.4) 0.605 52 (1.8) 43 (1.7) 9 (2.1) 0.564 

Statin   6013 (95.5) 5713 (95.8) 300 (88.8) <0.0001 3003 (95.9) 2774 (96.4) 229 (90.9) <0.0001 2820 (96.0) 2433 (96.7) 387 (91.5) <0.0001 

Other lipid lowering 
agent 

 127 (2.0) 124 (2.1) 3 (0.9) 0.129 51 (1.6) 48 (1.7) 3 (1.2) 0.566 47 (1.6) 38 (1.5) 9 (2.1) 0.349 

Diuretics  1349 (21.4) 1201 (20.1) 148 (43.8) <0.0001 720 (23.0) 610 (21.2) 110 (43.7) <0.0001 651 (22.2) 473 (18.8) 178 (42.1) <0.0001 

Calcium antagonist  367 (5.8) 352 (5.9) 15 (4.4) 0.263 183 (5.8) 176 (6.1) 7 (2.8) 0.030 161 (5.5) 139 (5.5) 22 (5.2) 0.787 

Oral hypoglycaemic 
agent 

 1345 (21.4) 1312 (22.0) 33 (9.8) <0.0001 597 (19.1) 567 (19.7) 30 (11.9) 0.003 546 (18.6) 478 (19.0) 68 (16.1) 0.153 
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Table 4.1, continued. 
Variables Description In-hospital 30 days 1-year 

Total Survival 
 

Non-
survival 

p-value 
 

Total 
 

Survival 
 

Non-survival p-value 
 

Total 
 

Survival 
 

Non-survival p-value 
 

Insulin   1658 (26.3) 1516 (25.4) 142 (42.0) <0.0001 869 (27.8) 757 (26.3) 112 (44.4) <0.0001 804 (27.3) 624 (24.8) 180 (42.6) 

 

<0.0001 

Anti-arrhythmic agent   313 (5.0) 276 (4.6) 37 (0.9) <0.0001 178 (5.7) 144 (5.0) 34 (13.5) <0.0001 151 (5.1) 114 (4.5) 37 (8.7) <0.0001 

 

The p-value is statistically highly significant as p < 0.001 
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In other respects, the total number of NSTEMI/UA patients found in this study was 

42,683, with only 9,477 of these being complete cases. From the total amount of complete 

cases, 4,771 cases were in-hospital, 2,402 were 30 days and 2,304 were 1-year. The 

patients' characteristics were tabulated in Table 4.2. From Table 4.2, it was identified that 

the mean age of the NSTEMI/UA patients across the three-time points was 61 years old and 

the majority of them were males (~71%). The overall mortality rate reported for in-hospital 

was 3.65%, 6.83% for 30 days, and 17.23% for the 1-year dataset. Survivors significantly 

differed from non-survivors at all three time points in age, history of chronic renal disease, 

heart rate, Killip class, fasting blood glucose, ECG ST-segment depression, ACE inhibitors 

intake, and diuretics intake (p< 0.0001). The data imputation method was also applied to 

the NSTEMI/UA dataset and the summary characteristics can also be referred to in 

Appendix C. Both the complete dataset and the imputed dataset reported nearly similar 

statistical analyses. Subchapter 4.2 below discusses a further analysis of the imputed data.  
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Table 4.2: Baseline characteristics for in-hospital, 30-days, and 1-year of the NSTEMI/UA dataset. 
Variables Description In-hospital 30 days 1-year 

Total Survival 

 

Non-
survival 

p-value Total 

 

Survival 

 

Non-survival p-value Total 

 

Survival 

 

Non-survival p-value 

N  4771 4597 (96.35) 174 (3.65)  2402 2238 (93.17) 164 (6.83)  2304 1907 (82.77) 397 (17.23)  

Age  61.30±11.84 61.05±11.79 67.80±11.42 <0.0001 61.69±12.05 61.13±11.85 69.35±12.17 <0.0001 61.66±12.08 60.31±11.79 68.15±11.34 <0.0001 

Race Malay 2063 (43.2) 1985 (43.2) 78 (44.8)  1039 (43.3) 962 (43.0) 77 (47.0)  992 (43.1) 808 (42.4) 184 (46.3)  

 Chinese 1356 (28.4) 1290 (28.1) 66 (37.9)  673 (28.0) 618 (27.6) 55 (33.5)  642 (27.9) 530 (27.8) 112 (28.2)  

 Indian 1047 (21.9) 1025 (22.3) 22 (12.6)  494 (20.6) 470 (21.0) 24 (4.9)  483 (21.0) 406 (21.3) 77 (19.4)  

 Others 305 (6.4) 297 (6.5) 8 (4.6) 0.003 196 (8.2) 188 (8.4) 8 (4.9) 0.050 187 (8.1) 163 (8.5) 24 (6.0) 0.228 

Gender Male  3370 (70.6) 3252 (70.7) 118 (67.8)  1728 (71.9) 1617 (72.3) 111 (67.6)  1653 (71.7) 1376 (72.2) 277 (69.8)  

 Female 1401 (29.4) 1345 (29.3) 56 (32.2) 0.406 674 (28.1) 621 (27.7) 53 (32.3) 0.209 651 (28.3) 531 (27.8) 120 (30.2) 0.338 

Smoking status  Never 2447 (51.3) 2348 (51.1) 99 (56.9)  1264 (52.6) 1168 (52.2) 96 (58.5)  1222 (53.0) 993 (52.1) 229 (57.7)  

 Former (quit tobacco > 
30days) 

1190 (24.9) 1138 (24.8) 52 (29.9)  536 (22.3) 497 (22.2) 39 (23.8)  506 (22.0) 410 (21.5) 96 (24.2)  

 Current (tobacco < 30days) 1134 (23.8) 1111 (24.2) 23 (13.2) 0.003 602 (25.1) 573 (25.6) 29 (17.7) 0.076 576 (25.0) 504 (26.4) 72 (18.1) 0.002 

History of dyslipidaemia  2349 (49.2) 2270 (49.4) 79 (45.4) 0.303 1142 (47.5) 1080 (48.3) 62 (37.8) 0.010 1091 (47.4) 919 (48.2) 172 (43.3) 0.077 

History of hypertension  3565 (74.7) 3424 (74.5) 141 (81.0) 0.051 1800 (74.9) 1663 (74.3) 137 (83.5) 0.008 1720 (74.7) 1389 (72.8) 331 (83.4) <0.0001 

History of diabetes  2306 (48.3) 2218 (50.6) 88 (50.6) 0.547 1169 (48.7) 1079 (48.2) 90 (54.9) 0.099 1125 (48.8) 896 (47.0) 229 (57.7) <0.0001 

Family history of 
premature 
cardiovascular disease 

 630 (13.2) 614 (13.4) 16 (9.2) 0.111 280 (11.7) 273 (12.2) 7 (4.3) 0.002 270 (11.7) 247 (13.0) 23 (5.8) <0.0001 

History of MI/CAD  2244 (47.0) 2172 (47.2) 72 (41.4) 0.128 1131 (47.1) 1061 (47.4) 70 (42.7) 0.242 1079 (46.8) 890 (46.7) 189 (47.6) 0.734 
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Table 4.2, continued. 
Variables Description In-hospital 30 days 1-year 

Total Survival 

 

Non-
survival 

p-value Total 

 

Survival 

 

Non-survival p-value Total 

 

Survival 

 

Non-survival p-value 

New onset angina (<2 
weeks) 

 2646 (55.5) 2557 (55.6) 89 (51.1) 0.244 1214 (50.5) 1135 (50.7) 79 (6.5) 0.529 1161 (50.4) 992 (52.0) 169 (42.6) 0.001 

History of heart failure  419 (8.8) 389 (8.5) 30 (17.2) <0.0001 202 (8.4) 181 (8.1) 21 (12.8) 0.036 192 (8.3) 126 (6.6) 66 (16.6) <0.0001 

Chronic lung disease  243 (5.1) 226 (4.9) 17 (9.8) 0.004 140 (5.8) 128 (5.7) 12 (7.3) 0.399 133 (5.8) 101 (5.3) 32 (8.1) 0.032 

Chronic renal disease  538 (11.3) 503 (10.9) 35 (20.1) <0.0001 291 (12.1) 240 (10.7) 51 (31.1) <0.0001 276 (12.0) 166 (8.7) 110 (27.7) <0.0001 

Cerebrovascular disease  227 (4.8) 211 (4.6) 16 (9.2) 0.005 121 (5.0) 107 (4.8) 14 (8.5) 0.034 118 (5.1) 82 (4.3) 36 (9.1) <0.0001 

Heart rate  84.04±20.41 83.54±20.04 97.09±25.28 <0.0001 85.35±20.96 84.61±20.50 95.46±24.36 <0.0001 85.21±20.78 83.85±20.25 91.72±22.06 <0.0001 

Systolic blood pressure  144.05±27.66 144.48±27.7 132.69±34.5
9 

<0.0001 143.44±27.65 144.13±27.16 134.03±32.38 <0.0001 143.87±27.4
3 

144.22±26.5
9 

142. ±31.15 0.175 

Diastolic blood pressure  81.95±16.67 82.15±16.57 76.64±18.52 <0.0001 81.45±17.33 81.75±17.26 77.30±17.81 0.001 81.67±17.30 81.87±16.99 80.70±18.69 0.218 

Killip class  I 3514 (73.7) 3455 (75.2) 59 (33.9)  1776 (73.9) 1710 (76.4) 66 (40.2)  1729 (75.0) 1526 (80.0) 203 (51.1)  

 II 851 (17.8) 808 (17.6) 43 (24.7)  373 (15.5) 328 (14.7) 45 (27.4)  341 (14.8) 235 (12.3) 106 (26.7)  

 III 279 (5.8) 249 (5.4) 30 (17.2)  171 (7.1) 149 (6.7) 22 (13.4)  162 (7.0) 110 (5.8) 52 (13.1)  

 IV 127 (2.7) 85 (1.8) 42 (24.1) <0.0001 82 (3.4) 51 (2.3) 31 (18.9) <0.0001 72 (3.1) 36 (1.9) 36 (9.1) <0.0001 

Total cholesterol  4.88±1.31 4.89±1.31 4.51±1.27 <0.0001 4.73±1.31 4.74±1.31 4.55±1.39 0.073 4.73±1.32 4.76±1.28 4.55±1.44 0.003 

HDL  1.10±0.37 1.10±0.36 1.13±0.50 0.285 1.09±0.36 1.09±0.35 1.10±0.49 0.631 1.09±0.36 1.09±0.35 1.09±0.42 0.936 

LDL  3.04±1.18 3.05±1.18 2.77±1.10 0.002 2.92±1.17 2.92±1.16 2.87±1.30 0.576 2.91±1.16 2.94±1.14 2.80±1.27 0.037 

Fasting blood glucose   7.58±3.44 7.51±3.34 9.43±5.14 <0.0001 7.65±3.43 7.57±3.33 8.80±4.47 <0.0001 7.66±3.40 7.49±3.21 8.43±4.09 <0.0001 

ECG abnormalities type ST segment depression 
≥0.5mm in ≥2 contiguous 
leads 

1803 (37.8) 1692 (36.8) 111 (63.8) <0.0001 908 (37.8) 820 (36.6) 88 (53.7) <0.0001 856 (37.2) 665 (34.9) 191 (48.1) <0.0001 
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Table 4.2, continued. 
Variables Description In-hospital 30 days 1-year 

Total Survival 

 

Non-
survival 

p-value Total 

 

Survival 

 

Non-survival p-value Total 

 

Survival 

 

Non-survival p-value 

 T-wave inversion ≥1mm 2000 (41.9) 1945 (42.3) 55 (31.6) 0.005 1113 (46.3) 1050 (46.9) 63 (38.4) 0.035 1077 (46.7) 914 (47.9) 163 (41.1) 0.013 

 Bundle branch block 295 (6.2) 278 (6.0) 17 (9.8) 0.045 136 (5.7) 117 (5.2) 19 (11.6) 0.001 128 (5.6) 86 (4.5) 42 (10.6) <0.0001 

ECG abnormalities 
location 

Inferior leads: II, III, aVF 1084 (22.7) 1041 (22.6) 43 (24.7) 0.523 552 (23.0) 520 (23.2) 32 (19.5) 0.274 529 (23.0) 454 (23.8) 75 (18.9) 0.034 

 Anterior leads: V1 to V4 1734 (36.3) 1655 (36.0) 79 (45.4) 0.011 872 (36.3) 799 (35.7) 73 (44.5) 0.024 835 (36.2) 666 (34.9) 169 (42.6) 0.004 

 Lateral leads: I, aVL, V5 to 
V6 

1921 (40.3) 1840 (40.0) 81 (46.6) 0.085 1061 (44.2) 975 (43.6) 86 (52.4) 0.027 1019 (44.2) 809 (42.4) 210 (52.9) <0.0001 

Cardiac catheterization   1310 (27.5) 1280 (27.8) 30 (17.2) 0.002 665 (27.7) 630 (28.2) 35 (21.3) 0.060 621 (27.0) 557 (29.2) 64 (16.1) <0.0001 

PCI  719 (15.1) 703 (15.3) 16 (9.2) 0.027 360 (15.0) 341 (15.2) 19 (11.6) 0.206 344 (14.9) 316 (16.6) 28 (7.1) <0.0001 

LMWH  2291 (48.0) 2190 (47.6) 101 (58.0) 0.007 651 (27.1) 563 (25.2) 88 (53.7) <0.0001 596 (25.9) 425 (22.3) 171 (43.1) <0.0001 

Beta blockers  3093 (64.8) 3025 (65.8) 68 (39.1) <0.0001 1398 (58.2) 1321 (59.0) 77 (47.0) 0.002 1321 (57.3) 1090 (57.20 231 (58.2) <0.0001 

ACE inhibitors  2530 (53.0) 2487 (54.1) 43 (24.7) <0.0001 1060 (44.1) 1018 (45.5) 42 (25.6) <0.0001 1008 (43.8) 877 (46.0) 131 (33.0) <0.0001 

Angiotensin II receptor 
blocker 

 436 (9.1) 431 (9.4) 5 (2.9) 0.003 195 (8.1) 188 (8.4) 7 (4.3) 0.061 186 (8.1) 166 (8.7) 20 (5.0) 0.015 

Statin   4464 (93.6) 4316 (93.9) 148 (85.1) <0.0001 2255 (93.9) 2110 (94.3) 145 (88.4) 0.002 2162 (93.8) 1795 (94.1) 367 (92.4) 0.204 

Diuretics  1546 (32.4) 1446 (31.5) 100 (57.5) <0.0001 838 (34.9) 741 (33.1) 97 (59.1) <0.0001 783 (34.0) 564 (29.6) 219 (55.2) <0.0001 

Calcium antagonist  1111 (23.3) 1081 (23.5) 30 (17.2) 0.055 592 (24.6) 557 (24.9) 35 (21.3) 0.309 578 (25.1) 477 (25.0) 101 (25.4) 0.858 

Oral hypoglycaemic 
agent 

 1429 (30.0) 1412 (30.7) 17 (9.8) <0.0001 692 (28.8) 669 (29.9) 23 (14.0) <0.0001 672 (29.2) 577 (30.3) 95 (23.9) 0.012 

Insulin   1081 (22.7) 1029 (22.4) 52 (29.9) 0.020 591 (24.6) 535 (23.9) 56 (34.1) 0.003 566 (24.6) 435 (22.8) 131 (33.0) <0.0001 

199 p-value is statistically highly significant as p<0.001 
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4.2 ML prediction 

Maximal predictive performances on the 30% untouched testing dataset were observed 

for ML models constructed using complete and reduced sets of variables compared to the 

TIMI risk score. The criteria for finding the best model among all the ML algorithms were 

the model with the highest calibration value (AUC) and the least number of variables.  

As for the STEMI dataset, all of the ML models outperformed the TIMI risk score 

across the three time points (Table 4.3). The best-selected ML model (SVMvarImp–SBE–

SVM) also performed better against TIMI based on the AUC value using the untouched 

30% testing dataset (p < 0.0001 for all models). Detailed performance evaluation of the 

best ML model against TIMI risk score is presented in Table 4.4. 

 

Table 4.3: The AUC of TIMI risk score and ML models with and without feature 
selection based on 30% testing STEMI dataset.  

 

Classifiers 

 

The area under the ROC Curve (95% CI) 

 

In-hospital 

 

30 days 

 

1-year 

 
RF 

 
0.86 (0.820-0.88) 

 
0.83 (0.786-0.879) 

 
0.78 (0.741-0.827) 

 
RFvarImp-SBE-RF 

 
0.87 (0.832-0.907) 

 
0.85 (0.10-0.890) 

 
0.80 (0.750-0.834) 

 
RFE-RF 

 
0.86 (0.821-0.893) 

 
0.82 (0.772-0.872) 

 
0.79 (0.748-0.833) 

 
SVM 

 
0.86 (0.824-0.895) 

 
0.87 (0.831-0.912) 

 
0.84 (0.801-0.877) 

 
SVMvarImp-SBE-SVM  

 
0.88 (0.846-0.910) 

 
0.90 (0.870-0.935) 

 
0.84 (0.798-0.872) 
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Table 4.3, continued. 

 

Classifiers 

 

The area under the ROC Curve (95% CI) 

 

In-hospital 

 

30 days 

 

1-year 

 
RFE-SVM 

 
0.85 (0.811-0.887) 

 
0.88 (0.837-0.920) 

 
0.84 (0.806-0.880) 

 

 

 
LR 

 
0.88 (0.846-0.911) 

 
0.85 (0.803-0.897) 

 
0.76 (0.710-0.807) 

 
LRstepwise - SBE-LR 

 
0.89 (0.861-0.920) 

 
0.85 (0.812-0.906) 

 
0.80 (0.767-0.848) 

 
RFE- LR  

 
0.87 (0.842-0.897) 

 
0.83 (0.783-0.882) 

 
0.78 (0.737-0.826) 

 
TIMI 

 
0.81 (0.772-0.802) 

 
0.80 (0.746-0.838) 

 
0.76 (0.715-0.802) 
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Table 4.4: Additional performance metrics based on 30% STEMI testing dataset for TIMI risk score and ML models with and 
without feature selection. 

 PPV NPV Sensitivity Specificity Accuracy (Cl 95%) Mcnemar’s test (p-value) 

In-hospital 

Classifier        

 

RF 

 

0.380 

 

0.963 

 

0.347 

 

0.968 

 

0.935 (0.923,0.946) 

 

<0.0001 

 

RFvarImp-SBE-RF 

 

0.447 

 

0.963 

 

0.337 

 

0.977 

 

0.942 (0.931,0.952) 

 

<0.0001 

 

RFE-RF 

 

0.350 

 

0.963 

 

0.347 

 

0.964 

 

0.931 (0.918,0.942) 

 

<0.0001 

 

SVM 

 

0.242 

 

0.976 

 

0.614 

 

0.892 

 

0.877 (0.861, 0.891) 

 

<0.0001 

 

SVMvarImp-SBE-SVM  

 

0.219 

 

0.980 

 

0.693 

 

0.861 

 

0.852 (0.835,0.868) 

 

<0.0001 

 

RFE-SVM 

 

0.202 

 

0.982 

 

0.723 

 

0.838 

 

0.832 (0.815, 0.849) 

 

<0.0001 

 

LR 

 

0.211 

 

0.981 

 

0.713 

 

0.850 

 

0.842 (0.825,0.858) 

 

<0.0001 

 

LRstepwise - SBE-LR 

 

0.211 

 

0.984 

 

0.752 

 

0.841 

 

0.836 (0.814,0.852) 

 

<0.0001 
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Table 4.4, continued. 

 PPV NPV Sensitivity Specificity Accuracy (Cl 95%) Mcnemar’s test (p-value) 

In-hospital  

Classifier        

 

RFE- LR  

 

0.185 

 

0.978 

 

0.663 

 

0.834 

 

0.825 (0.807,0.842) 

 

<0.0001 

 

TIMI 

 

0.180 

 

0.976 

 

0.644 

 

0.834 

 

0.824 (0.806, 0.841) 

 

<0.0001 

 

30 days 

Classifier        

 

RF 

 

0.389 

 

0.946 

 

0.373 

 

0.949 

 

0.903 (0.882,0.921) 

 

<0.0001 

 

RFvarImp-SBE-RF 

 

0.341 

 

0.948 

 

0.413 

 

0.930 

 

0.889 (0.867,0.909) 

 

<0.0001 

 

RFE-RF 

 

0.414 

 

0.947 

 

0.387 

 

0.952 

 

0.907 (0.887,0.925) 

 

<0.0001 

 

SVM 

 

0.258 

 

0.972 

 

0.733 

 

0.817 

 

0.810 (0.784,0.835) 

 

<0.0001 

 

SVMvarImp-SBE-SVM  

 

0.258 

 

0.983 

 

0.840 

 

0.790 

 

0.794 (0.767,0.820) 

 

<0.0001 
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Table 4.4, continued. 

 PPV NPV Sensitivity Specificity Accuracy (Cl 95%) Mcnemar’s test (p-value) 

30 days  

Classifiers        

 

RFE-SVM 

 

0.261 

 

0.980 

 

0.813 

 

0.800 

 

0.801 (0.774,0.829) 

 

<0.0001 

 

LR 

 

0.248 

 

0.973 

 

0.747 

 

0.803 

 

0.799 (0.771,0.824) 

 

<0.0001 

 

LRstepwise - SBE-LR 

 

0.281 

 

0.974 

 

0.747 

 

0.834 

 

0.827 (0.802,0.851) 

 

<0.0001 

 

RFE- LR  

 

0.248 

 

0.971 

 

0.720 

 

0.810 

 

0.803 (0.776,0.828) 

 

<0.0001 

 

TIMI 

 

0.245 

 

0.962 

 

0.627 

 

0.832 

 

0.816 (0.789, 0.840) 

 

<0.0001 

 

1-year 

Classifier        

 

RF 

 

0.410 

 

0.909 

 

0.373 

 

0.949 

 

0.827 (0.801,0.852) 

 

<0.0001 

 

RFvarImp-SBE-RF 

 

0.436 

 

0.909 

 

0.460 

 

0.901 

 

0.838 (0.811,0.861) 

 

<0.0001 
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Table 4.4, continued. 

 PPV NPV Sensitivity Specificity Accuracy (Cl 95%) Mcnemar’s test (p-value) 

1-year  

Classifier       

 

RFE-RF 

 

0.425 

 

0.913 

 

0.492 

 

0.889 

 

0.8318 (0.805,0.856) 

 

<0.0001 

 

SVM 

 

0.382 

 

0.950 

 

0.746 

 

0.798 

 

0.7909 (0.763,0.817) 

 

<0.0001 

 

SVMvarImp-SBE-SVM  

 

0.357 

 

0.950 

 

0.754 

 

0.773 

 

0.771 (0.741,0.798) 

 

<0.0001 

 

RFE-SVM 

 

0.387 

 

0.953 

 

0.762 

 

0.798 

 

0.793 (0.765,0.820) 

 

<0.0001 

 

LR 

 

0.329 

 

0.924 

 

0.611 

 

0.792 

 

0.766 (0.737,0.794) 

 

<0.0001 

 

LRstepwise - SBE-LR 

 

0.372 

 

0.935 

 

0.659 

 

0.814 

 

0.792 (0.764,0.818) 

 

<0.0001 

 

RFE- LR  

 

0.344 

 

0.926 

 

0.619 

 

0.802 

 

0.776 (0.747,0.803) 

 

<0.0001 
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Table 4.4, continued. 

 PPV NPV Sensitivity Specificity Accuracy (Cl 95%) Mcnemar’s test (p-value) 

1-year 

Classifier        

 

TIMI 

 

0.332 

 

0.907 

 

0.484 

 

0.837 

 

0.786 (0.758, 0.813) 

 

<0.0001 
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Based on the criteria of the best selected model to be employed as mentioned above, the 

combination of SVMvarImp-SBE-SVM algorithm demonstrated the highest predictive 

performance with the least number of predictors for in-hospital, 30 days and 1-year models. 

Figure 4.1(a) illustrates all ML models’ performances and Figure 4.1(b) illustrates the best 

selected ML models against TIMI risk score performances based on the AUC value using 

the untouched 30% validation dataset. There was no significant difference in the in-hospital 

model for LRstepwise-SBE-LR (AUC = 0.89, 95% CI:0.861–0.920) with 24 variables and 

SVMvarImp-SBE-SVM (AUC = 0.88, 95% CI: 0.846–0.910) with 15 variables (p = 0.143; 

95% CI, -0.026 to 0.004). 30-days ML mortality prediction for SVMvarImp–SBE–SVM 

(AUC = 0.90, 95% CI: 0.867–0.935) model also reported no significant difference to RFE-

SVM (AUC = 0.88,95% CI:0.837–0.920) (p = 0.115; 95% CI, -0.013 to 0.001). Model 

performances were observed to be similar (AUC = 0.84) and showed a significant 

difference (p <0.0001) between the following 1-year mortality models (SVMvarImp–SBE–

SVM vs SVM; 95% CI, 0.035 to 0.052, RFE-SVM vs SVM, 95% CI, 0.005 to 0.011, 

SVMvarImp-SBE-SVM vs RFE-SVM; 95% CI, 0.027 to 0.044). However, SVMvarImp-

SBE-SVM model consisted of the least number of variables (12 variables) compared to 

SVM without feature selection (50 variables) and RFE-SVM (44 variables). Similar 

performance was also reported for LR with a reduced set of predictors (AUC = 0.85, 95% 

CI: 0.812–0.907) and a complete set of predictors for 30 days (AUC = 0.85, 95% CI: 

0.803–0.897) but showed no significant difference (p = 0.828; 95% CI, -0.007 to 0.009).  

For the secondary analysis, missing values in each variable were imputed and utilised as 

the training dataset for model development, with 30% untouched testing dataset used for 

model performance evaluation. Secondary analysis on best ML models (SVMvarImp–

SBE–SVM) performance trained with imputed data reported for in-hospital (AUC = 0.87, 
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95% CI: 0.845–0.912), 30 days (AUC = 0.90, 95% CI: 0.857–0.923), and 1-year (AUC = 

0.83, 95% CI: 0.796–0.871). Complete case ML model dataset resulted in an almost similar 

AUC result for in-hospital (AUC = 0.88, 95% CI: 0.846–0.910), 30 days (AUC = 0.90, 

95% CI: 0.870–0.935), and 1-year mortality (AUC = 0.84, 95% CI: 0.798–0.872). For in-

hospital and 30 days, the imputed and the complete case model was significant (p<0.0001; 

95% CI: 0.011 to 0.018, p = 0.001; 95% CI: 0.004 to 0.016 respectively). As for 1-year 

model, it was not statistically significant between imputed and complete case model (p = 

0.931; 95% CI: -0.006 to 0.005). 
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Figure 4.1:The receiver operating characteristics (ROC) curves of ML models and TIMI score are based on a 30% testing STEMI 
dataset. ROC curves show the performance for In-hospital, 30 days and 1-year ML mortality prediction models (a). The ROC values 
for TIMI against the best ML model (SVMvarImp-SBS-SVM).  
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On the other hand, the result for the NSTEMI/UA dataset showed that all ML models 

(reduced and complete dataset) performed better than the TIMI risk score for all three 

different time points of mortality prediction using the 30% of the untouched testing dataset 

(Table 4.5). Based on the AUC value and the number of selected variables, SVMvarImp–

SBE–SVM was selected as the best model for all three time points for the NSTEMI/UA 

dataset and it performed better against the TIMI risk score based on the AUC value 

utilising the untouched 30% testing dataset, similar to the STEMI dataset (p < 0.0001 for 

all models).  Table 4.6 shows the detailed performance evaluation of the best ML models 

against the TIMI risk score. 

 

Table 4.5: The AUC of TIMI risk score and ML models with and without feature 
selection based on 30% testing NSTEMI/UA dataset.  

 

Classifiers 

 

The area under the ROC Curve (95% CI) 

In-hospital 30 days 1-year 

 

RF 

 

0.81 (0.762-0.867) 

 

0.81 (0.757-0.859) 

 

0.80 (0.753-0.838) 

 

RFvarImp-SBE-RF 

 

0.82 (0.764-0.870) 

 

0.85 (0.812-0.890) 

 

0.80 (0.754-0.838) 

 

RFE-RF 

 

0.79 (0.737-0.848) 

 

0.78 (0.728-0.841) 

 

0.79 (0.748-0.835) 

 

SVM 

 

0.80 (0.745-0.860) 

 

0.82 (0.765-0.873) 

 

0.80 (0.756-0.837) 

 

SVMvarImp-SBE-SVM  

 

0.85 (0.81-0.889) 

 

0.87 (0.824-0.907) 

 

0.80 (0.756-0.840) 

 

RFE-SVM 

 

0.76 (0.693-0.827) 

 

0.82 (0.775-0.870) 

 

0.79 (0.749-0.832) 

 

LR 

 

0.81 (0.755-0.869) 

 

0.80 (0.733-0.860) 

 

0.77 (0.724-0.815) 
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Table 4.5, continued. 

 

Classifiers 

 

The area under the ROC Curve (95% CI) 

In-hospital 30 days 1-year 

 

LRstepwise - SBE-LR 

 

0.82 (0.764-0.871) 

 

0.83 (0.783-0.883) 

 

0.78 (0.736-0.824) 

 

RFE- LR  

 

0.76 (0.689-0.827) 

 

0.84 (0.788-0.886) 

 

0.78 (0.733-0.820) 

 

TIMI 

 

0.42 (0.356-0.494) 

 

0.49 (0.410-0.561) 

 

0.42 (0.368-0.477) 
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Table 4.6: Additional performance metrics based on 30% NSTEMI/UA testing dataset for TIMI risk score and ML models with and 
without feature selection. 

 PPV NPV Sensitivity Specificity Accuracy (Cl 95%) Mcnemar’s test (p-value) 

In-hospital 
Classifier        

 

RF 

 

0.455 

 

0.967 

 

0.096 

 

0.996 

 

0.963 (0.9518,0.9721) 

 

<0.0001 

 

RFvarImp-SBE-RF 

 

0.238 

 

0.970 

 

0.192 

 

0.977 

 

0.948 (0.936,0.959) 

 

<0.0001 

 

RFE-RF 

 

0.310 

 

0.969 

 

0.173 

 

0.985 

 

0.956 (0.944,0.966) 

 

<0.0001 

 

SVM 

 

0.120 

 

0.979 

 

0.519 

 

0.856 

 

0.844 (0.824,0.863) 

 

<0.0001 

 

SVMvarImp-SBE-SVM  

 

0.122 

 

0.985 

 

0.673 

 

0.817 

 

0.812 (0.791,0.832) 

 

<0.0001 

 

RFE-SVM 

 

0.094 

 

0.978 

 

0.519 

 

0.811 

 

0.800 (0.779,0.821) 

 

<0.0001 

 

LR 

 

0.117 

 

0.983 

 

0.615 

 

0.825 

 

0.818 (0.797,0.837) 

 

<0.0001 
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Table 4.6, continued. 

 PPV NPV Sensitivity Specificity Accuracy (Cl 95%) Mcnemar’s test (p-value) 

30 days  

Classifier        

 

LRstepwise - SBE-LR 

 

0.108 

 

0.981 

 

0.577 

 

0.819 

 

0.811 (0.789,0.831) 

 

<0.0001 

RFE- LR   

0.107 

 

0.982 

 

0.596 

 

0.812 

 

0.804 (0.783,0.825) 

 

<0.0001 

 

TIMI 

 

0.031 

 

0.963 

 

0.077 

 

0.910 

 

0.879 (0.862,0.896) 

 

<0.0001 

 
30 days 
Classifier        

 

RF 

 

0.278 

 

0.937 

 

0.102 

 

0.981 

 

0.921 (0.899,0.940) 

 

<0.0001 

 

RFvarImp-SBE-RF 

 

0.318 

 

0.940 

 

0.143 

 

0.978 

 

0.921 (0.899,0.940) 

 

<0.0001 

 

RFE-RF 

 

0.217 

 

0.945 

 

0.265 

 

0.930 

 

0.885 (0.859,0.907) 

 

<0.0001 

 

SVM 

 

0.193 

 

0.971 

 

0.673 

 

0.794 

 

0.786 (0.754,0.816) 

 

<0.0001 213 
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Table 4.6, continued. 

 PPV NPV Sensitivity Specificity Accuracy (Cl 95%) Mcnemar’s test (p-value) 

30 days  

Classifier        

 

SVMvarImp-SBE-SVM  

 

0.246 

 

0.974 

 

0.694 

 

0.845 

 

0.835 (0.806,0.861) 

 

<0.0001 

 

RFE-SVM 

 

0.157 

 

0.967 

 

0.653 

 

0.744 

 

0.738 (0.704,0.769) 

 

<0.0001 

 

LR 

 

0.173 

 

0.971 

 

0.694 

 

0.759 

 

0.754 (0.721,0.785) 

 

<0.0001 

 

LRstepwise - SBE-LR 

 

0.200 

 

0.976 

 

0.735 

 

0.785 

 

0.782 (0.750,0.812) 

 

<0.0001 

 

RFE- LR  

 

0.183 

 

0.974 

 

0.714 

 

0.768 

 

0.764 (0.731,0.795) 

 

<0.0001 

 

TIMI 

 

0.058 

 

0.931 

 

0.102 

 

0.879 

 

0.826 (0.797,0.853) 

 

<0.0001 

1-year 

Classifier        
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Table 4.6, continued. 

 PPV NPV Sensitivity Specificity Accuracy (Cl 95%) Mcnemar’s test (p-value) 

1-year  

Classifier        

 

RF 

 

0.500 

 

0.881 

 

0.403 

 

0.916 

 

0.828 (0.798,0.855) 

 

<0.0001 

 

RFvarImp-SBE-RF 

 

0.429 

 

0.893 

 

0.504 

 

0.860 

 

0.799 (0.767,0.828) 

 

<0.0001 

 

RFE-RF 

 

0.491 

 

0.887 

 

0.445 

 

0.904 

 

0.825 (0.795,0.853) 

 

<0.0001 

 

SVM 

 

0.369 

 

0.905 

 

0.605 

 

0.785 

 

0.754 (0.720,0.786) 

 

<0.0001 

SVMvarImp-SBE-SVM   

0.333 

 

0.945 

 

0.815 

 

0.661 

 

0.687 (0.651,0.722) 

 

<0.0001 

 

RFE-SVM 

 

0.372 

 

0.909 

 

0.622 

 

0.782 

 

0.754 (0.720,0.786) 

 

<0.0001 

 

LR 

 

0.354 

 

0.915 

 

0.664 

 

0.748 

 

0.734 (0.699,0.766) 

 

<0.0001 

 

LRstepwise - SBE-LR 

 

0.358 

 

0.913 

 

0.656 

 

0.755 

 

0.738 (0.704,0.771) 

 

<0.0001 215 
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Table 4.6, continued. 

 PPV NPV Sensitivity Specificity Accuracy (Cl 95%) Mcnemar’s test (p-value) 

1-year  

Classifier        

 

RFE- LR  

 

0.346 

 

0.906 

 

0.622 

 

0.755 

 

0.732 (0.698,0.765) 

 

<0.0001 

 

TIMI 

 

0.224 

 

0.834 

 

0.143 

 

0.897 

 

0.767 (0.734,0.798) 

 

<0.0001 
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Figure 4.2(a) shows the performance of all ML models in the NSTEMI/UA dataset, 

whereas Figure 4.2(b) shows the performance of the best-selected ML models against the 

TIMI risk score for all three time points based on their AUC values using the 30% 

untouched testing dataset. As seen from the graphs, the combination of SVMvarImp–SBE–

SVM for in-hospital, 30 days, and 1 year shows the best performance among other ML 

models and TIMI risk score. In the 30 days mortality prediction, SVMvarImp–SBE–SVM 

performed significantly better (p<0.0001, 95% CI: 0.144 to 0.169) than RFvarImp-SBE-RF 

even though there was not much difference in the AUC values (AUC=0.87, 95% CI: 0.824-

0.907 with 11 variables and AUC=0.85, 95% CI: 0.812-0.890 with 16 variables 

respectively).  In the 1-year mortality prediction, the SVMvarImp–SBE–SVM (AUC=0.80, 

95% CI: 0.756-0.840) model reported significantly better performance as compared to the 

RFE-SVM (AUC=0.79, 95% CI:0.749-0.832) and RFE-RF (AUC=0.79, 95% CI: 0.748-

0.835) with a slightly higher value of AUC (p<0.0001, SVMvarImp–SBE–SVM vs RFE-

SVM; 95% CI: 0.014 to 0.031, SVMvarImp–SBE–SVM vs RFE-RF; 95% CI: 0.072 to 

0.0.89). On the other hand, a few models also showed similar performances (AUC=0.80) 

and highly significant (p<0.0001) between the 1-year mortality prediction models between 

SVMvarImp–SBE–SVM vs RF (95% CI,0.069 to 0.086), SVMvarImp–SBE–SVM vs 

RFvarImp–SBE–RF (95% CI: 0.073 to 0.091), SVMvarImp–SBE–SVM vs SVM (95% CI: 

0.023 to 0.041), SVM vs RF (95% CI: 0.035 to 0.055), and SVM vs RFvarImp–SBE–RF 

(95% CI: 0.039 to 0.061). RFvarImp–SBE–RF vs RF were the only models' comparison 

that had the same AUC values but has no significance (p=0.151,95% CI: -0.011 to 0.002). 

However, The SVMvarImp-SBE-SVM model has the smallest number of predictors (13 

variables) as compared to the RF (39 variables), SVM (39 variables), and RFvarImp–SBE–

RF (17 variables). 
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Figure 4.2: The receiver operating characteristics (ROC) curves of ML models and TIMI score are based on a 30% testing 
NSTEMI/UA dataset. (a) ROC curves show the performance for In-hospital, 30 days and 1-year ML mortality prediction models. 
The ROC values for TIMI against the best ML model (SVMvarImp-SBS-SVM).  218 
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For the three time points of mortality prediction, a secondary analysis was conducted on 

the best ML model (SVMvarImp–SBE–SVM) and the imputed data were used as the 

training dataset. The performance of the imputed dataset for the NSTEMI/UA reported with 

an AUC of 0.81 (95% CI: 0.762 to 0.862) for in-hospital, 0.86 (95% CI: 0.817 to 0.907) for 

30 days and 0.80 (95% CI: 0.754 to 0.833) for 1-year mortality prediction. The AUC values 

of the imputed dataset and the complete dataset were almost similar and highly significant 

for in-hospital, 30 days and 1-year (p<0.0001; 95% CI: 0.010 to 0.028, 95% CI: 0.016 to 

0.027, 95% CI: 0.019 to 0.028 respectively).  

4.3 Feature selection 

RFE and SBE feature selection methods were combined with ML algorithms to 

construct predictive models with optimal performance (refer to Methodology). Initial 

ranking using all 50 (for STEMI) and 39 (for NSTEMI/UA) variables for best model 

(SVMvarimp-SBE-SVM) using SVM variable importance was shown in Figures 3.8 and 

3.10 in Chapter 3. SBE was then used to identify features that result in model optimal 

performances.  

For the STEMI dataset, the common predictors observed for in-hospital, 30 days, and 1-

year mortality for all ML models in this study were age, heart rate, Killip class, and fasting 

blood glucose (Table 4.7). Diuretics intake was an additional common predictor for the best 

model (SVMvarImp-SBE-SVM). Age, heart rate, and Killip class were identified as 

common predictors for the best ML model (SVMvarImp- SBE-SVM) for in-hospital, 30 

days, and 1-year against TIMI (Table 4.8). 
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Table 4.7: The selected variables using RFE and SBE for all the ML models in the STEMI dataset for in-hospital, 30 days and 1-year 
mortality prediction. 

Variables In-hospital 30 days 1 year 

RF-
SBE 

SVM-
SBE 

RFE SBE- LR RF-
SBE 

SVM-
SBE 

RFE SBE- 
LR 

RF-
SBE 

SVM-
SBE 

RFE SBE- 
LR 

Age • • • • • • • • • • • • 

Race •   •  •  •   • • 

Sex           • • 

Smoking status •         • •  

Hypertension     • •     • •  

Diabetes           • •  

Family history of 
premature CVD 

 •  •  •     •  

Documented CAD     •       • • 

Heart failure        •   •  

Chronic renal disease  •      • •  • • 

Chronic lung disease            •  

Heart rate  • • • • • • • • • • • • 

Systolic bp • • • •   • • • • • • 

Diastolic bp  • • •  •      •  

Killip class  • • • • • • • • • • • • 

Total cholesterol  •  •  •  • •   •  220 
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Table 4.7, continued. 

Variables In-hospital 30 days 1 year 

RF-
SBE 

SVM-
SBE 

RFE SBE- LR RF-
SBE 

SVM-
SBE 

RFE SBE- 
LR 

RF-
SBE 

SVM-
SBE 

RFE SBE- 
LR 

HDL •   •  •  • •  • • 

LDL •  • •     •  • • 

Triglycerides  •    •      •  

Fasting blood glucose  • • • •  • • • • • • • 

ECG-type elevation ≥ 
1mm 

          •  

ECG-type elevation  ≥ 
2mm 

          •  

ECG-type depression  ≥ 
0.5mm 

          •  

ECG- type T-wave        •     

ECG-type bundle branch 
block 

 •  •    •   • • 

ECG- location inferior 
lead 

   •       •  

ECG- location anterior 
lead 

    •   •   • • 

ECG- location lateral 
lead 

• •  •    • •  • • 

FB status    •       •  221 
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Table 4.7, continued. 

Variables In-hospital 30 days 1 year 

RF-
SBE 

SVM-
SBE 

RFE SBE- LR RF-
SBE 

SVM-
SBE 

RFE SBE- 
LR 

RF-
SBE 

SVM-
SBE 

RFE SBE- 
LR 

Cardiac catheterization  •  • • •  •   • • 

PCI      •    • •  

CABG    •         

ASA    •  •  •   •  

GP receptor inhibitor           •  

Heparin     •       •  

LMWH        •   • • 

Beta-blockers  • •  • • • • • •  • • 

ACE inhibitors •   •      • • • 

Angiotensin II receptor 
blocker 

          •  

Statin   •         • • 

Other lipid-lowering 
agents 

          •  

Diuretics   •  • • •  • • • • • 

Calcium antagonists        •   •  

Oral hypoglycaemic 
agent 

• • • •  • • •   •  
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Table 4.7, continued. 

Variables In-hospital 30 days 1 year 

RF-
SBE 

SVM-
SBE 

RFE SBE- LR RF-
SBE 

SVM-
SBE 

RFE SBE- 
LR 

RF-
SBE 

SVM-
SBE 

RFE SBE- 
LR 

Insulin      •     • •  

Anti-arrhythmic agent  •   •    •   •  

 

Table 4.8: Selected variables that resulted in optimum AUC for the best ML models (SVMvarImp-SBE-SVM) in in-hospital, 30-days, 
and 1-year against TIMI risk score for STEMI variables. 

 
Variables Machine Learning best model TIMI Score 

In-hospital 30 days 1-year 

Age • • • • 

Race  •   

Smoking status   •  

Hypertension    • • 

Diabetes    • • 

Family history of premature CVD • •   

Chronic renal disease •    

Heart rate  • • • • 223 
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Table 4.8, continued. 

Variables  Machine Learning best model TIMI score  

In-hospital 30 days 1-year 

Systolic bp •  • • 

Diastolic bp  •    

Killip class  • • • • 

HDL  •   

Fasting blood glucose • • •  

Weight    • 

ECG-type bundle branch block •   • 

ECG- location lateral lead •    

Time to treatment    • 

Cardiac catheterization • •   

PCI  • •  

ASA  •   

Beta-blockers  • •   

ACE inhibitors   •  

Statin •    

 224 
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Table 4.8, continued. 

Variables  Machine Learning best model TIMI score  

In-hospital 30 days 1-year 

Diuretics • • •  

Oral hypoglycaemic agent • •   

Insulin    •  
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The selected variables for the NSTEMI/UA dataset using RFE and SBE can be referred 

to in Table 4.9 below. The common variables across all ML models were age and Killip 

class for in-hospital, 30 days, and 1-year mortality prediction. Including those two, heart 

rate and Low-Molecular-Weight Heparin (LMWH) intake were the common predictors of 

the best ML models (SVMvarImp-SBE-SVM) for the three-time points. Table 4.10 below 

shows the variables of the best ML models for in-hospital, 30 days and 1 year against TIMI 

score for NSTEMI/UA and age was the only common variable between them.  
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Table 4.9:The selected variables using RFE and SBE for all the ML models in the NSTEMI/UA dataset for in-hospital, 30 days and 
1-year mortality prediction. 

Variables  In-hospital 30 days 1 year 

RF-
SBE 

SVM- 
SBE 

SBE - 
LR 

RFE RF- 
SBE 

SVM- 
SBE 

SBE - 
LR 

RFE RF- 
SBE 

SVM- 
SBE 

SBE - 
LR 

RFE 

Age · · · · · · · · · · · · 
Sex · · ·        · · 
Race             
Smoking status ·  ·      ·   · 
Dyslipidaemia ·      ·    · · 
Diabetes    ·        · 
Hypertension · · ·    ·    ·  
Family history of 
premature CVD ·        ·  ·  
History of MI/CAD · ·   ·       · 
Chronic angina (≥2 
weeks)   ·      · ·   
Heart failure    · ·   · ·  · · 
Chronic lung disease  ·       ·   · 
Chronic renal disease     · · · · · · · · 
Cerebrovascular disease         ·  · · 
Heart rate  · · ·  · · ·   · · · 
Systolic bp · · · · · · · · ·  · · 
Diastolic bp     · ·    ·   · 227 
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Table 4.9, continued. 

Variables  In-hospital 30 days 1 year 
RF-
SBE 

SVM- 
SBE 

SBE - 
LR 

RFE RF- 
SBE 

SVM- 
SBE 

SBE - 
LR 

RFE RF- 
SBE 

SVM- 
SBE 

SBE - 
LR 

RFE 
Killip class  · · · · · · · · · · · · 
Total cholesterol     · ·  · ·    · 
HDL     · ·  · ·   · 
LDL    · ·  · ·  ·  · 
Fasting blood glucose  · · · · ·  ·  ·  · · 
ECG-type depression ≥ 
0.5mm 

 · ·      · ·  · 
ECG- type T-wave       ·    ·  
ECG-type bundle branch 
block      ·  ·  · · · 
ECG- location inferior 
lead      ·      · 
ECG- location anterior 
lead ·          · · 
ECG- location lateral 
lead     ·     · · · 
PCI    ·       · · · 
Cardiac catheterization      ·   · ·  · 
LMWH · · ·  · · ·   · · · 
Beta-blockers  · · · · ·  ·    · · 
ACE inhibitors   ·        · · 
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Table 4.9, continued. 

Variables  In-hospital 30 days 1 year 
RF-
SBE 

SVM- 
SBE 

SBE - 
LR 

RFE RF- 
SBE 

SVM- 
SBE 

SBE - 
LR 

RFE RF- 
SBE 

SVM- 
SBE 

SBE - 
LR 

RFE 
Angiotensin II receptor 
blocker 

 · ·    ·    · · 
Statin    ·    ·      
Diuretics    ·     · · · · · 
Calcium antagonists ·   ·       · · 
Oral hypoglycaemic 
agent 

·  · · · · · · ·  · · 
Insulin    ·         · 
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Table 4.10: Selected variables that resulted in optimum AUC for the best ML models (SVMvarImp-SBE-SVM) in in-hospital, 30 
days and 1-year against TIMI risk score for NSTEMI/UA variables.  

Variables  Machine learning best model TIMI score 

In-hospital 30 days 1-year 

Age • • • • 

Gender •    

Smoking status    • 

Diabetes mellitus     

Hypertension •   

Family history of premature CVD    

History  •    

Known CAD (stenosis ≥50%)    • 

Severe angina (≥2 episodes in 24 hrs)    • 

Chronic angina (≥ 2 weeks)   •  

Chronic lung disease  •    

Chronic renal disease   • •  
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Table 4.10, continued. 

Variables  Machine learning best model TIMI score  

In-hospital 30 days 1-year 

Heart rate  • • •  

Systolic bp  • •   

Killip class • • •  

HDL  •   

LDL   •  

Fasting blood glucose  •    

Positive cardiac marker    • 

ECG-type depression ≥ 0.5 mm •  • • 

ECG-type bundle branch block   • •  

ECG-location inferior lead  •   

ECG-location lateral lead    •  

PCI   •  

Cardiac catheterization  • •  

Aspirin    • 
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Table 4.10, continued. 

Variables  Machine learning best model TIMI score  

In-hospital 30 days 1-year 

LMWH • • •  

Beta-blockers  •    

Angiotensin II receptor blocker •    

Diuretics    •  

Oral hypoglycaemic agent   •   
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4.4 Comparison of ML to TIMI risk score when applied to the validation dataset 

After the best ML models were identified for the three time points, the mortality rate of 

each probability percentile (from 0% to 100%) of the ML models and mortality prediction 

were calculated. Figures 4.3 and 4.4 illustrate the comparison of the best ML model 

mortality rate against the TIMI risk score for the STEMI dataset and Figures 4.5 and 4.6 for 

the NSTEMI/UA dataset. As mentioned in Chapter 2, TIMI score for STEMI categorises 

patients as low risk at the score of ≤5 and a high-risk score of > 5 (Morrow et al., 2000) 

while TIMI risk score for NSTEMI/UA categorises patients to be in low-risk at the score of 

<5 and the score of ≥5 to be in the high-risk category (Antman et al., 2000). As for the ML 

models, in this study, the low- and high-risk patients were categorised based on the study 

by Correia et al. (2014) and personal correspondence through email with the main author, 

Luis Correia from the study “Prognostic value of TIMI score versus GRACE score in ST-

segment elevation myocardial infarction” (Appendix D). Their study stated that the rate of 

death exceeding 8% is considered high risk in patients’ mortality prediction.  

Hence, the cut-off points between the low- and the high-risk patients for all the best ML 

models were determined based on the rate of death graphs in Figures 4.4 and 4.6 below 

where the percentile that exceeded 8% rate of death is considered the cut-off point of the 

model and are shown in Figure 4.7 below, according to each of their time points and data 

population.  
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Figure 4.3: The rate of death across the TIMI risk score in the STEMI dataset. 234 
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Figure 4.4: The rate of death across ML probability of death in STEMI dataset. 
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Figure 4.5: The rate of death across the TIMI risk score in the NSTEMI/UA dataset. 

P trend = 0.418 for in-hospital 

P trend = 0.768 for 30 days 

P trend = 0.022 for 1-year 
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Figure 4.6: The rate of death across ML probability of death in NSTEMI/UA dataset. 237 
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Figure 4.7: The cut-off point between the low and high-risk patients based on the 30% 
testing dataset ML best model performances. 

 

If the model is performing well in predicting the mortality of patients, it will classify 

patients who are high-risk and most likely to die in the high-risk group and patients who are 

low-risk and less likely to die in the low-risk group. This information can be extracted from 

the graphs above to further compare the performance of the best ML models against the 

TIMI risk scores. In the high-risk group of the STEMI dataset, ML was better in predicting 
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mortality in comparison to TIMI risk score for in-hospital death (21.94% vs 16.15%) but 

almost similar for prediction for 30 days and 1-year deaths (25.61% vs 23.15% and 35.71% 

vs 34.48%, respectively). ML models predicted a better mortality rate when compared to 

TIMI risk score in the lower risk group for in-hospital (1.97% vs 2.59%), 30 days (1.73% 

vs 3.46%), and 1-year (5.05% vs 9.35%). This was almost similar to the NSTEMI/UA 

dataset where in the high-risk group, ML models predicted the mortality better as compared 

to the TIMI risk score in terms of percentage difference for in-hospital, 30 days, and 1-year 

(with the value of 12.20% vs 3.13%, 24.64% vs 5.81%, and 33.33% vs 22.37% 

respectively). As for the lower-risk patients, ML was still better as compared to the TIMI 

risk score in predicting the mortality based on the percentage of deaths in in-hospital 

(1.49% vs 3.68%), 30 days (2.58% vs 6.94%), and 1-year (5.50% vs 16.59%).  

On the other hand, classification of patients based on the mortality prediction cut-off 

points above and categorising them between alive (below the cut-off point) and dead 

(above the cut-off point) were further discussed in the implementation of NRI. Through 

NRI, the sum of the net proportion of people with (dead) and without (alive) the event who 

were correctly assigned from the old/conventional prediction model (in this case, the TIMI 

risk score) and a new prediction model (the best ML prediction models) were distinguished.  

In the STEMI dataset, the NRI for the in-hospital mortality prediction, the net 

reclassification of patients improved using the best ML model produced a net 

reclassification improvement of 0.20 with p<0.0001 over the original TIMI risk score, that 

is, a 20% improved classification. NRI for 30 days mortality prediction reported the net 

reclassification of patients improved using the best ML model produced a net 

reclassification improvement of 0.18 with p<0.0001 over the original TIMI risk score, that 

is, a 18% improved classification. In the 1-year mortality prediction, the net reclassification 
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of patients improved using the best ML model produced a net reclassification improvement 

of 0.14 with p<0.0001 over the original TIMI risk score, that is, a 14% improved 

classification (Table 4.11). 

Table 4.11:Predicted risks and reclassification of STEMI patient’s mortality between 
ML best model (SVMvarImp- SBE-SVM) and TIMI risk score for in-hospital, 30-
days, and 1-year on 30% validation dataset. 

In-hospital 

Individuals with events (n=101) 

  Numbers of 
individuals 

Reclassified Net 
correctly 

reclassified 
(%) 

Low risk High risk Increased 
risk 

Decreased 
risk 

 

Machine Learning    

TIMI score     

Low risk 13 23 23 4 18.81 

High risk 4 61    

Individuals without events (n=1788) 

  Machine Learning    

TIMI score     

Low risk 1375 116 116 144 1.57 

High risk 144 153    

Net 
reclassification 
Index (NRI) (%) 

      

20.38 

p-value      <0.0001 

30 days 

Individuals with events (n=75) 

  Number of individuals Reclassified Net 
correctly 

reclassified 
(%) 
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Table 4.11, continued. 

  Low risk High risk Increased 
risk 

Decreased 
risk 

 

  Machine Learning    

 TIMI score     

 Low risk 11 17 17 2 20.00 

 High risk 2 45    

Individuals without events (n=863) 

  Machine Learning    

TIMI score     

Low risk 652 66 66 53 -1.51 

High risk 53 92    

Net 
reclassification 
index (NRI) (%) 

      

18.49 

p-value       <0.0001 

1-year 

Individuals with events (n=126) 

  Number of individuals Reclassified Net 
correctly 

reclassified 
(%) 

Low risk High risk Increased 
risk 

Decreased 
risk 

 

Machine Learning    

TIMI score     

Low risk 21 44 44 14 23.81 

High risk 14 47    

Individuals without events (n=754) 

  Machine Learning    

 TIMI score      

 Low risk 523 108 108 36 -9.55 

 High risk 36 87    
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Table 4.11, continued. 

Net 
reclassification 
index (NRI) (%) 

      

14.26 

p-value      <0.0001 

 

In the NSTEMI/UA dataset, the net reclassification of patients for in-hospital mortality 

prediction improved using the best ML model, yielding a net reclassification improvement 

of 0.56 with p<0.0001 over the original TIMI risk score, or a 56% improved classification. 

The net reclassification of patients increased using the best ML model for 30 days mortality 

prediction, with a net reclassification improvement of 0.56 and p<0.0001 over the initial 

TIMI risk score, indicating a 56% improvement in classification. The net reclassification of 

patients also increased using the ML in the 1-year model, with a net reclassification 

improvement of 0.44 with p<0.0001 over the original TIMI risk score, indicating a 44% 

improvement in classification (Table 4.12). 

Table 4.12: Predicted risks and reclassification of NSTEMI/UA patient’s mortality 
between ML best model (SVMvarImp- SBE-SVM) and TIMI risk score for in-
hospital, 30-days, and 1-year on 30% validation dataset. 

In-hospital 

Individuals with events (n=52) 

  Numbers of individuals Reclassified Net 
correctly 

reclassified 
(%) 

Low risk High risk Increased 
risk 

Decreased 
risk 

 

Machine Learning    

TIMI score     

Low risk 16 35 35 1 65.38 

High risk 1 0    
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Table 4.12, continued. 

Individuals without events (n=1379) 

  Machine Learning    

TIMI score     

Low risk 1038 217 217 89 -9.28 

High risk 89 35    

Net 
reclassification 
Index (NRI) (%) 

      

56.10 

p-value      <0.0001 

30 days 

Individuals with events (n=49) 

  Number of individuals Reclassified Net 
correctly 

reclassified 
(%) 

Low risk High risk Increased 
risk 

Decreased 
risk 

 

Machine Learning    

TIMI score     

Low risk 14 30 30 1 59.18 

High risk 1 4    

Individuals without events (n=671) 

  Machine Learning    

TIMI score      

Low risk 506 84 84 61 -3.43 

High risk 61 20    

Net 
reclassification 
index (NRI) (%) 

      

55.76 

p-value       <0.0001 

 

1-year 

Individuals with events (n=119) 
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Table 4.12, continued. 

  Number of individuals Reclassified Net 
correctly 

reclassified 
(%) 

Low risk High risk Increased 
risk 

Decreased 
risk 

 

Machine Learning    

TIMI score     

Low risk 21 81 81 1 67.23 

High risk 1 16    

Individuals without events (n=572) 

  Machine Learning    

 TIMI score     

 Low risk 351 162 162 27 -23.60 

 High risk 27 32    

Net 
reclassification 
index (NRI) (%) 

      

43.63 

p-value      <0.0001 

 

4.5 DL performance  

As noted in Chapter 3, the development of the DL model for mortality prediction in this 

study is an extension of the ML study's main future compass. In general, the same steps of 

performance evaluation were implemented from ML prediction models to the DL 

prediction models to see how well DL might work with this type of data. The performance 

of the DL algorithms in predicting mortality was tested using all the variables and the 

selected variables from the best ML models for both STEMI and NSTEMI/UA datasets as 

DL cannot perform feature selection. In this case, SVMvarImp-SBE-SVM selected 

variables from the best ML model were implemented into the DL models for in-hospital, 30 
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days and 1-year mortality prediction. The maximal performance of the DL models with all 

and selected variables using the 30% untouched testing data is tabulated in Table 4.13 

below.  Table 4.14 provides a detailed performance evaluation of the best DL model for all 

three time points. 

Table 4.13: The AUC of DL models with all variables and selected variables from the 
best ML model based on a 30% testing dataset. 

 

DL model 

The area under the ROC Curve (95% CI) 

In-hospital 30 days 1-year 

STEMI 

All 0.97 (0.9625-0.9729) 0.96 (0.9500-0.9665) 0.90 (0.8814-0.9114) 

Selected  0.96 (0.9524-0.9632) 0.93 (0.9241-0.9443) 0.90 (0.8814-0.9097) 

NSTEMI/UA 

All 0.98 (0.9718-0.9824) 0.93 (0.9217-0.9461) 0.85 (0.8294-0.8695) 

Selected  0.97 (0.9649-0.9745) 0.91 (0.8916-0.9200) 0.88 (0.8614-0.8963) 

 

Table 4.14: Additional performance metrics based on 30% testing dataset for DL 
models with all variables and selected variables from the best ML model. 

 PPV NPV Sensitivity Specificity Accuracy (Cl 
95%) 

Mcnemar’s test 
(p-value) 

STEMI 

In-hospital 

All  0.276 0.969 0.475 0.930 0.905 
(0.891,0.918) 

7.385e-08 

Selected  0.251 0.981 0.693 0.883 0.873 
(0.857,0.888) 

<2e-16 

30 days 

All  0.368 0.957 0.520 0.922 0.890 
(0.868,0.910) 

0.003117 

Selected  0.301 0.978 0.787 0.841 0.837 
(0.812,0.860) 

<2e-16 
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Table 4.14, continued. 

 PPV NPV Sensitivity Specificity Accuracy (Cl 
95%) 

Mcnemar’s test 
(p-value) 

1 year 

All  0.432 0.919 0.532 0.883 0.833 
(0.807,0.857) 

0.02092 

Selected  0.270 0.968 0.881 0.602 0.642 

(0.609,0.674) 

<2e-16 

 

NSTEMI/UA 

In-hospital 

All  0.224 0.973 0.288 0.962 0.938 
(0.924,0.950) 

0.1378 

Selected  0.173 0.983 0.577 0.896 0.885 
(0.867,0.901) 

<2e-16 

30 days 

All  0.159 0.945 0.286 0.890 0.849 
(0.820,0.874) 

2.73e-04 

Selected  0.195 0.981 0.796 0.760 0.763 
(0.730,0.793) 

<2e-16 

1 year 

All  0.375 0.885 0.479 0.834 0.773 
(0.740,0.804) 

0.01065 

Selected 0.241 0.945 0.882 0.423 0.502 
(0.464,0.540) 

<2e-16 

 

From the Table 4.13 above, the AUC value between the models with all variables and 

selected variables was almost the same. In the STEMI dataset model performance, all the 

models with selected variables have lower AUC values as compared to the models with all 

variables except for the 1-year mortality prediction where the AUC value was similar. DL 

models with all variables performed slightly better than the models with selected variables 

for in-hospital (AUC = 0.97, 95% CI: 0.963 to 0.973, vs AUC = 0.96, 95% CI: 0.953 to 

0.963) and 30 days (AUC = 0.96, 95% CI: 0.950 to 0.967, vs AUC = 0.93, 95% CI: 0.924 
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to 0.944) while the performance of 1-year mortality prediction between the model with all 

and selected variable was similar (AUC = 0.90, 95% CI: 0.811 to 0.91, vs AUC = 0.90, 

95% CI:0.881 to 0.910). The comparison between the models (all and selected variables) 

were also significant (p<0.0001) in the three time points; in-hospital (95% CI: 0.064 to 

0.083), 30 days (95% CI: 0.111 to 0.141) and 1-year (95% CI: 0.105 to 0.137).  

For the NSTEMI/UA dataset, the models with all variables performed significantly 

better (p<0.0001) than the models with the selected variables for in-hospital (95% CI, 0.080 

to 0.103) and 30 days (95% CI, 0.114 to 0.156) with the AUC of 0.98, 95% CI: 0.972 to 

0.982 vs 0.97, 95% CI: 0.965 to 0.975, and AUC of 0.93, 95% CI: 0.922 to 0.946 vs 0.91, 

95% CI: 0.892 to 0.920 respectively. Anyhow, for the 1-year mortality prediction, the 

performance of the model with selected variables was significantly better (p<0.0001; 95% 

CI: 0.054 to 0.089) as compared to the model with all variables (AUC = 0.88, 95% CI: 

0.861 to 0.896 vs AUC = 0.85, 95% CI: 0.829 to 0.870).  

Consequently, based on the result above, for both dataset STEMI and NSTEMI/UA, 

models with the selected variables were considered as the best model due to their lower 

number of variables in the models and the difference in AUC values between the models 

(all vs selected variables) were very small. 

For the secondary analysis, similar to the ML, missing values in each variable were 

imputed and utilised as the training dataset for model development, with the 30% 

untouched testing dataset used for model performance evaluation. Secondary analysis of the 

best DL models (DL models with selected variables) performance trained with imputed 

data for the STEMI dataset reported an AUC of 0.95 (95% CI: 0.942 to 0.955) for in-

hospital, 0.93 (95% CI: 0.918 to 0.940) for 30 days and 0.90 (95% CI: 0.890 to 0.917) for 

1-year mortality predictions. The AUC values of the imputed dataset and the complete 
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dataset were almost similar and highly significant for in-hospital, 30 days and 1-year 

(p<0.0001; 95% CI: 0.028 to 0.040, 95% CI: 0.016 to 0.036, 95% CI: 0.093 to 0.110 

respectively). 

The secondary analysis of the best DL models for the NSTEMI/UA dataset reported an 

AUC of 0.95 (95% CI: 0.945-0.960) for in-hospital mortality prediction, 0.90 (95% CI: 

0.881-0.911) for 30 days, and 0.86 (95% CI: 0.837-0.873) for 1-year mortality prediction. 

DL models with complete cases produced very similar AUC results and were highly 

significant for in-hospital (p<0.0001,95% CI: 0.037 to 0.040), 30 days (p<0.0001,95% CI: 

0.020 to 0.039), and 1-year (p=0.0001, 95% CI:0.007 to 0.028) 

The graphs in Figure 4.8 depict the DL best model performances against TIMI risk score 

and ML best models for both STEMI and NSTEMI/UA datasets. The best-selected models 

for DL performed better against the ML best models (SVMvarImp-SBE-SVM) based on 

the AUC value using the 30% untouched dataset. In the STEMI dataset, there was a 

significant difference (p<0.0001) in comparison between the best models from DL and ML 

for in-hospital (95% CI: 0.073 to 0.083), 30 days (95% CI: 0.096 to 0.114) and 1-year (95% 

CI: 0.071 to 0.085). Comparison between the best DL and ML models for the NSTEMI/UA 

dataset also reported a significant difference (p<0.0001) for all three time points (95% CI: 

0.140 to 0.158 for in-hospital, 95% CI: 0.073 to 0.091 for 30 days and 95% CI: 0.073 to 

0.088 for 1-year mortality prediction).  Univ
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Figure 4.8: The receiver operating characteristic (ROC) curves of DL best model, ML best model, and TIMI score based on a 30% 
testing dataset. (a) ROC curves show the performance of in-hospital, 30 days, and 1-year mortality prediction of the STEMI dataset. 
(b) ROC curves show the performance of in-hospital, 30 days, and 1-year mortality prediction of the NSTEMI/UA dataset. 249 
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As can be seen from the graphs above, the best-selected DL models in both STEMI and 

NSTEMI/UA datasets also performed better against TIMI based on the AUC value using 

the untouched 30% validation dataset (p < 0.0001 for all models). Similar to the ML best 

model’s analysis, the mortality rate of the DL best models was also produced and compared 

in Figure 4.9 (for STEMI) and 4.10 (for NSTEMI/UA) below. Using the same 8% value of 

the rate of death from the Correia et al. (2014) study, the cut-off points between the low- 

and high-risk patients were determined and depicted in Figure 4.11 according to their time 

points and dataset. 
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Figure 4.9: The rate of death across DL probability of death in STEMI dataset. 251 
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Figure 4.10: The rate of death across DL probability of death in NSTEMI/UA dataset. 

252 
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Figure 4.11: The cutoff point between the low and high-risk patients based on the 
30% testing dataset DL best model performances. 

 

In the high-risk group of the STEMI dataset, DL best models predicted better mortality 

in comparison to TIMI for in-hospital (25.19% vs 16.15%), 30 days (30.13% vs 23.15%) 

but similar in 1-year (both with 27%). DL best models predicted a better mortality rate 

when compared to the TIMI risk score in the low-risk group with lower numbers of death 
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for in-hospital (1.92% vs 2.59%), 30 days (2.16% vs 3.46%), and 1 year (3.20% vs 9.34%). 

The same pattern can be seen in the NSTEMI/UA dataset, where the best DL models were 

able to predict better mortality in the high-risk group than the TIMI risk score for all three 

time points (In-hospital, 17.3% vs 3.13%; 30 days, 19.19% vs 5.81%; 1-year, 24.14% vs 

22.36%). As for the low-risk group, DL still predicted an almost better mortality rate than 

the TIMI risk score for in-hospital (1.74% vs 3.68%), but better prediction on 30 days 

(2.11% vs 6.94%) and 1-year (5.47% vs 16.59%) mortality prediction. 

Regarding the NRI of the STEMI dataset for the best in-hospital mortality prediction, 

the net reclassification of patients improved using the DL best model producing a net 

reclassification improvement of 0.14 with p<0.0001 over the TIMI risk score, that is, a 14% 

improved classification. The net reclassification of patients improved using the DL best 

model for 30 days mortality prediction, yielding a net reclassification improvement of 0.15 

with p<0.0001 over the initial TIMI risk score, or a 15% improvement in classification. The 

net reclassification of patients increased by 16% improvement in classification using the 

ML in the 1-year model, with a net reclassification improvement of 0.16 with p<0.0001 

over the original TIMI risk score (Table 4.15). 

 

Table 4.15: Predicted risks and reclassification of STEMI patient’s mortality between 
DL best model (with selected variables) and TIMI risk score for in-hospital, 30-days, 
and 1-year on 30% validation dataset. 

In-hospital 

Individuals with events (n=101) 

  Numbers of individuals Reclassified Net correctly 
reclassified 

(%) 

  Low risk High risk Increased 
risk 

Decreased 
risk 
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Table 4.15, continued. 

  Machine Learning    

 TIMI score     

 Low risk 19 20 20 12 7.92 

 High risk 12 50    

Individuals without events (n=1788) 

  Machine Learning    

TIMI score     

Low risk 1378 88 88 202 6.38 

High risk 202 120    

Net 
reclassification 
Index (NRI) (%) 

      

14.30 

p-value      <0.0001 

30 days 

Individuals with events (n=75) 

  Number of individuals Reclassified Net correctly 
reclassified 

(%) 

Low risk High risk Increased 
risk 

Decreased 
risk 

 

Machine Learning    

TIMI score     

Low risk 10 15 15 6 12.00 

High risk 6 44    

Individuals without events (n=863) 

  Machine Learning    

TIMI score      

Low risk 644 53 53 82 3.36 

High risk 82 84    

Net 
reclassification 
index (NRI) (%) 

      

15.36 
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Table 4.15, continued. 

p-value       <0.0001 

 

1-year 

Individuals with events (n=126) 

  Number of individuals Reclassified Net correctly 
reclassified 

(%) 

Low risk High risk Increased 
risk 

Decreased 
risk 

 

Machine Learning    

TIMI score     

Low risk 12 54 54 3 40.48 

High risk 3 57    

Individuals without events (n=754) 

  Machine Learning    

 TIMI score     

 Low risk 432 208 208 22 -24.76 

 High risk 22 92    

Net 
reclassification 
index (NRI) (%) 

      

15.81 

p-value      <0.0001 

 

In the NSTEMI/UA dataset, the NRI for the in-hospital mortality prediction, the net 

reclassification of patients improved using the DL best model produced a net 

reclassification improvement of 0.49 with p<0.0001 over the original TIMI risk score, that 

is, a 49% improved classification. The DL best model for 30 days mortality prediction 

improved the net reclassification of patients, with a net reclassification improvement of 

0.56 and p<0.0001 compared to the baseline TIMI risk score, suggesting a 56% 

improvement in classification. The net reclassification of patients increased using the DL 
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best model in the 1-year mortality prediction, with a net reclassification improvement of 

0.27 with p<0.0001 over the original TIMI risk score, indicating a 27% improvement in 

classification (Table 4.16). 

Table 4.16: Predicted risks and reclassification of NSTEMI/UA patient’s mortality 
between DL best model (with selected variables) and TIMI risk score for in-hospital, 
30-days, and 1-year on 30% validation dataset. 

In-hospital 

Individuals with events (n=52) 

  Numbers of individuals Reclassified Net correctly 
reclassified 

(%) 

Low risk High risk Increased 
risk 

Decreased 
risk 

 

Machine Learning    

TIMI score     

Low risk 22 26 26 0 50.00 

High risk 0 4    

Individuals without events (n=1379) 

  Machine Learning    

TIMI score     

Low risk 1129 126 126 107 -1.38 

High risk 107 17    

Net 
reclassification 
Index (NRI) (%) 

      

48.62 

p-value      <0.0001 

30 days 

Individuals with events (n=49) 

  Number of individuals Reclassified Net correctly 
reclassified 

(%) 

  Low risk High risk Increased 
risk 

Decreased 
risk 
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Table 4.16, continued. 

  Machine Learning    

 TIMI score     

 Low risk 11 33 33 0 67.35 

 High risk 0 5    

Individuals without events (n=671) 

  Machine Learning    

TIMI score      

Low risk 464 126 126 47 -11.77 

High risk 47 34    

Net 
reclassification 
index (NRI) (%) 

      

55.58 

p-value       <0.0001 

1-year 

Individuals with events (n=119) 

  Number of individuals Reclassified Net correctly 
reclassified 

(%) 

Low risk High risk Increased 
risk 

Decreased 
risk 

 

Machine Learning    

TIMI score     

Low risk 13 89 89 1 73.95 

High risk 1 16    

Individuals without events (n=572) 

  Machine Learning    

 TIMI score     

 Low risk 230 283 283 12 -47.38 

 High risk 12 47    

Net 
reclassification 
index (NRI) (%) 

      

26.57 
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Table 4.16, continued. 

p-value      <0.0001 

 

4.6 Application of the algorithms in clinical practice 

Cardiac catheterization is the most often used early therapy for STEMI and frequently 

NSTEMI patients. It is only available in hospitals with cardiac services on-site. In 

Malaysia, these may be available in private, university, or private hospitals. There are 10 

cardiac catheterization centres under the Ministry of Health across the country and 3 

university hospitals participating in the NCVD Registry. They receive referrals for cardiac 

cases from across the country and prioritising access is of utmost importance. As patients 

with ACS, maybe from within or without these cardiac centres, it is important for patients 

with the best likelihood to improve with cardiac catheterization to be selected and offered 

the intervention.  

Having cardiac catheterization performed on patients means patients will be better risk-

stratified, as their anatomy is delineated, and their ischaemic and non-ischaemic risks are 

addressed. Patients may then be offered ongoing and optimisation of medical therapy or 

revascularisation options, whether with angioplasty or bypass surgery. This could explain 

why early catheterization has been proven to improve mortality in available literature such 

as in the DANAMI-2 trial (Andersen, 2003; Busk, 2008; Thrane, 2020). 

Access to cardiac catheterization in Malaysia is limited due to the volumes of patients 

referred as well as the cost related to performing cardiac catheterization. In most public 

cardiac centres, waiting time for this procedure may take months before it is made 
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available. Identifying patients with ACS who may benefit from a cardiac catheterization 

will help improve access as well as reduce the cost burden to the government and patients.  

The algorithms used in this study will generate new probabilities of death for the patient 

based on whether or not the patient receives cardiac catheterization. Ultimately, the 

(increasing or decreasing) probability of death of the algorithms will assist the medical 

practitioner whether or not the patient should proceed with the therapy, hence referred for 

cardiac catheterization early and subsequently having better outcomes with reduced 

likelihood of death.  

In order to test out the applicability of the algorithms: 

1. The input of those patients who did not have a cardiac catheterization was changed 

to have undergone cardiac catheterization. 

2. The input of those patients who had have a cardiac catheterization was changed to 

not having one. 

In the first situation above, this study wanted to see how many patients were switched 

from high-risk to low-risk once cardiac catheterization input was altered. Additionally, this 

study calculated the change in the percentage of probability of death between before and 

after the input was adjusted by more than 10% (considered excessive). The likelihood of 

the patients dying in this circumstance should, theoretically, be lower than the prior 

prediction. This is because cardiac catheterization should reduce the chance of a patient's 

death following therapy. 

In the second scenario, this study intended to compare the patients' probability of death 

before and after changing the cardiac catheterization input and compute the percentage 

difference of the patients’ mortality more than 10% (considered excessive). This is to 
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ensure that the algorithms did not over-predict the patients' outcomes following the change.  

Since the patient did not undergo cardiac catheterization, which was expected to minimise 

the patients' mortality, the likelihood of death should increase in this case. 

This analysis was conducted using both ML and DL techniques on the STEMI and 

NSTEMI/UA datasets. However, for the STEMI dataset, this analysis was applied to in-

hospital and 30-day mortality prediction, and for the NSTEMI/UA dataset, it was applied to 

30-day and 1-year mortality prediction. This is because the cardiac catheterization variable 

was chosen based on the two independent datasets' predicted time points. Table 4.17 below 

summarises the result of the analysis and Figure 4.12 and Figure 4.13 show the probability 

of death correlation before and after the alteration of the cardiac catheterization input.  

 

Table 4.17: The percentage change in the analysis of ML and DL algorithms used to 
predict the mortality of STEMI and NSTEMI/UA patients in opting for cardiac 
catheterization therapy. 

 

STEMI 

Machine Learning  

 Without cardiac catheterization to with cardiac 
catheterization 

With cardiac 
catheterization to 
without cardiac 
catheterization 

High Risk to Low Risk 
(%) 

Difference more than 
10% (%) 

Difference more than 
10% (%) 

In-hospital 18.97* 26.67* 15.32* 

30 days  17.05* 7.69* 0.41** 

 

Univ
ers

iti 
Mala

ya



262 
 

Table 4.17, continued. 

Deep Learning  

 Without cardiac catheterization to with cardiac 
catheterization 

With cardiac 
catheterization to 
without cardiac 
catheterization 

High Risk to Low Risk 
(%) 

Difference more than 
10% (%) 

Difference more than 
10% (%) 

In-hospital 29.31* 37.36* 10.58* 

30 days  27.00* 32.00* 9.38* 

NSTEMI/UA 

Machine Learning 

 Without cardiac catheterization to with cardiac 
catheterization 

With cardiac 
catheterization to 
without cardiac 
catheterization 

High Risk to Low Risk 
(%) 

Difference more than 
10% (%) 

Difference more than 
10% (%) 

30 days 16.10* 9.32* 5.00* 

1-year 5.15* 0.00* 0.00* 

Deep Learning 

 Without cardiac catheterization to with cardiac 
catheterization 

With cardiac 
catheterization to 
without cardiac 
catheterization 

High Risk to Low Risk 
(%) 

Difference more than 
10% (%) 

Difference more than 
10% (%) 

30 days 24.26* 20.71* 0.00* 
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Table 4.17, continued 

 Without cardiac catheterization to with cardiac 
catheterization 

With cardiac 
catheterization to 
without cardiac 
catheterization 

High Risk to Low Risk 
(%) 

Difference more than 
10% (%) 

Difference more than 
10% (%) 

1-year 10.51* 5.97* 2.41** 

*p-value < 0.0001 

**p-value > 0.05 

Univ
ers

iti 
Mala

ya



264 
 

 

Figure 4.12: Plotting of the probability of death before and after the alteration of the cardiac catheterization input for STEMI 
dataset.  264 
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Figure 4.13: Plotting of the probability of death before and after the alteration of the cardiac catheterization input for NSTEMI/UA 
dataset.  265 
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Both ML and DL algorithms were used to see if cardiac catheterization can reduce risk 

mortality, and according to Table 4.17 above, for the STEMI dataset, 17–29% of high-risk 

patients who would improve their risk of mortality (decrease in likelihood) were identified 

if they had received cardiac catheterization treatment and were re-classified from high risk 

to lower risk. In 7-37% of cases, offering cardiac catheterization to high-risk patients 

reduced mortality by more than 10%. ML and DL algorithms, on the other hand, were able 

to show that patients who were meant to have cardiac catheterization but did not get cardiac 

catheterization had a mortality increase of more than 10% in up to 15% of high-risk 

patients. 

In the NSTEMI/UA dataset, using both ML and DL algorithms, this study found 5–24% 

of high-risk patients who might benefit from reduced risk mortality if they underwent 

cardiac catheterization therapy and were reclassified from high risk to lower risk. Offering 

cardiac catheterization to high-risk patients decreased mortality by more than 10% in up to 

20% of patients. On the other hand, ML and DL algorithms were able to demonstrate that 

patients who were set for cardiac catheterization treatment but did not get it had a mortality 

increase of more than 10% in up to 5% of high-risk patients. This may be explained by the 

risk profile of this group of patients that is they were of high-risk (perhaps cardiogenic 

shock, renal failure, or multiple comorbidities) nature to start and submitting them to 

cardiac catheterization may result in further complications and therefore increased their risk 

of death.  

Both Figures 4.12 and 4.13 show the correlation drawn between the probability of death 

before to and after cardiac catheterization treatment in high-risk patients utilising both ML 

and DL methods. All of the presented graphs show a high positive correlation, r > 0.70 

(p<0.0001). As the graphs demonstrate, the majority of patients benefit from cardiac 
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catheterization and just a few have an increased mortality risk as a result of cardiac 

catheterization. These are rare circumstances in which the patient's health is likely to be 

severe and high risk, and a procedure like cardiac catheterization will only aggravate the 

patient's condition, increasing the chance of death. 

In conclusion, this study has demonstrated that both the ML and DL algorithms were 

useful in identifying patients who would benefit or not benefit from cardiac catheterization 

therapy when they were presented with STEMI and NSTEMI/UA and whose outcome is 

validated at admission and 30 days for STEMI patients and 30 days and 1-year for 

NSTEMI/UA patients.  
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CHAPTER 5: DISCUSSION 

Many risk scores and prediction models have been developed to this end using 

traditional statistical approaches that involve the inclusion of small, single-center cohorts, 

the application of numerous exclusion criteria, the inclusion of predefined variables 

expected to be related to the outcome, and the exclusion of variables that are not expected 

to be related to the outcome. These approaches do not take into consideration the potential 

prognostic value of interactions between several unexpectedly weaker risk factors and the 

primary outcome (Al'Aref et al., 2019). This study intended to leverage the power of big 

data analytics and AI algorithms (DL and ML) in order to construct an AI-based prediction 

model for the occurrence of Asian STEMI and NSTEMI/UA patients for in-hospital, 30-

day, and 1-year mortality prediction. 

In this study, mortality prediction models were developed using several ML algorithms 

(RF, SVM, and LR) in a multi-ethnic Asian patient in Malaysia. Their performances were 

comparable in predicting the short- and long-term mortality of patients with STEMI and 

NSTEMI/UA with those of traditional risk stratification. ML models performed better than 

TIMI for in-hospital, 30 days and 1-year (with AUC of 0.88 vs 0.81, 0.90 vs 0.80, 0.84 vs 

0.76) for STEMI dataset and (AUC of 0.85 vs 0.42, 0.87 vs 0.49, 0.80 vs 0.42) for 

NSTEMI/UA dataset respectively. SVMvarImp-SBE-SVM for in-hospital, 30 days and 1-

year mortality prediction had better performance compared to RF, LR, and TIMI scoring as 

well. Furthermore, adding more clinical variables to the models did enhance the 

performance of the predictive models for mortality in ACS. This is the distinctive feature of 

ML: it incorporates all patients and a considerable portion of variables (after excluding 

irrelevant or redundant variables) without requiring the use of significant exclusion criteria. 

The use of this methodology to clinical research could contribute to the development of 
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generally applicable prediction models and an improvement in the ability to predict future 

events, which is a primary focus in an era of precision medicine. Additionally, the ability to 

incorporate a large number of factors agnostically, without prior assumptions about likely 

significant predictors, eventually aided in the discovery of unique connections between 

specific traits and a particular outcome of interest. 

5.1 ML model performance evaluation 

For both STEMI and NSTEMI/UA datasets, ML algorithms outperformed the TIMI risk 

score with the best models (SVMvarImp-SBE-SVM) incorporating SBE as the feature 

selection methods, resulting in a smaller number of variables. ML algorithms have been 

suggested in some research as a way to improve the performance of the prognostic 

prediction model for patients with ACS both in the short and long term. In a recent study, 

AUC values of 0.84, 0.83, 0.84, and 0.85 were obtained in LR, NB, Cox regression, and 

RF, respectively, using only selected features, which outperformed the TIMI risk score 

(AUC: 0.77) in predicting STEMI in-hospital mortality (Li et al., 2017). Another study 

found that the AUCs in the best ML models were enhanced by 0.02 to 0.09 compared to 

that in the TIMI risk score when predicting patients with STEMI mortality outcomes after a 

30-day follow-up (Shouval et al., 2017). According to Lee et al. (2021), the best selected 

ML models outperformed the traditional TIMI risk factor in predicting death for STEMI 

patients in-hospital (AUC: 0.91 vs 0.86), 3 months (AUC: 0.78 vs 0.74), and 1-year (AUC: 

0.84 vs 0.79). Similarly, according to the same study, the best ML methods surpassed the 

TIMI risk score with greater AUC values in NSTEMI/UA patients (In-hospital: 0.89 vs 

0.67, 3 months: 0.85 vs 0.67, 1-year: 0.86 vs 0.68) (Lee et al., 2021).  
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However, based on the result of this study, the difference in AUC was higher in 

NSTEMI/UA group than STEMI group when both were compared to the traditional TIMI 

risk score. The difference in AUC values of the NSTEMI/UA group ranged from 0.34 to 

0.43 for in-hospital, 0.29 to 0.38 for 30 days and 0.35 to 0.38 for 1-year models. On the 

other hand, the STEMI dataset had only small difference in AUC values when compared to 

TIMI risk score which ranged from 0.04 to 0.08 for in-hospital, 0.02 to 0.10 for 30 days 

and 0.02 to 0.08 for 1-year models. The same pattern can be seen in the study by Lee et al. 

(2021) where the NSTEMI group had higher difference in AUC values when compared to 

the TIMI risk score than the STEMI group. This may be due to the fact that NSTEMI/UA 

has more varied clinical and pathological characteristics than STEMI, the ML models may 

have stronger discrimination in the NSTEMI/UA group than the traditional model (Cohen 

& Visveswaran, 2020; Rott & Leibowitz, 2007). STEMI is caused by a full thrombotic 

blockage of the infarct-related artery, whereas NSTEMI/UA is caused by incomplete 

coronary occlusion, coronary artery spasm, coronary embolism, myocarditis, and other 

conditions (Kingma, 2018). Furthermore, because of the non-parametric assumption, non-

linearity, and higher-order interaction, ML-based models may outperform traditional 

models when evaluating complicated data. Parameter tuning was also done in the ML-

based models and that may also have influenced the model performance, which may fit and 

perform differently in different datasets (Gibson et al., 2020). 

Traditional risk stratification is mostly interested in predicting short-term mortality, with 

only a few suggesting 1-year mortality. Some research suggested that discrimination might 

be improved to predict long-term mortality after the use of ML algorithms. One recent 

study on 1-year mortality found that utilising Logistic Model Trees, the AUC of the 

prediction model could be as high as 0.901 among patients admitted to the ICU with AMI 
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(Barrett et al., 2019). Another study found that utilising Gradient Boosting Machine, it was 

possible to attain good discriminative power for 1-year mortality with an AUC of 0.898 

(Sherazi et al., 2020). The results of this study found that ML models demonstrated good 

discrimination for 1-year mortality prediction, although the AUC value was lower than the 

in-hospital and 30-day mortality prediction. This could be because, unlike in other research, 

the 1-year mortality was defined as the mortality of those who survived at hospital release 

over the one-year follow-up period, rather than the cumulative mortality including in-

hospital death. This is similar to the goal of this study which was to assist cardiologists in 

developing a treatment and management plan that took into account the risk of death after a 

patient was discharged. 

5.2 Advantages of the best ML classifier 

According to this study, SVM classifiers that used SBE technique to select variables 

performed better than other classifiers (RF and LR). In a research by Wallert et al. (2017), 

SVM outperformed RF and LR in predicting mortality after 2 years of MI for both the full 

model and the model with selected variables. Another study predicting in-hospital mortality 

for ACS patients found that SVM performed better than both LR and RF in both STEMI 

and NSTEMI groups at a given clinical set (Vazquez et al., 2021). This might be because 

SVM can handle linear and nonlinear feature space separation using kernels such as the 

radial basis function and avoid overfitting (Mpanya et al., 2021). Even when the training 

sample has some bias, SVMs can be robust, and one of the reasons for this is their capacity 

to offer unique solutions, where they can acquire many solutions matching to each local 

minima for distinct samples (Allyn et al., 2017). 
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 LR has various drawbacks, the most significant of which is that it is based on the 

assumption of linearity (on a log-odds scale). Although regression models offer the benefits 

of being simple to construct and analyse, they are of limited use in model prediction 

(Frizzell et al., 2017). Since LR is a linear classifier, it performs better when dealing with 

linear relationships, as was the case in this study’s sample, and gives probabilities that may 

be used to provide clinical interpretations of the results (Mansoor et al., 2017). It is also 

worth noting that, due to differences in the variable selection procedures, the number of 

variables utilised to predict mortality in LR was larger than in SVM and RF. 

RF also contains a number of drawbacks that could account for this. First, each split only 

considers a random subset of variables (mtry), hence datasets with a high proportion of 

uninformative 'noise' variables may result in informative variables being overlooked by 

chance at several splits. Increasing mtry can help performance, but it usually comes at a 

high cost in terms of computation time. Second, when RFs are used to make predictions, 

the results are a weighted average of a portion of the data that is biassed away from 

extremes. This could account for some of their poor calibration (Zhang & Lu, 2012). 

5.3 DL model performances evaluation 

With the recent advances in DL algorithms, this study applied the DL algorithm using 

variables selected from the best ML algorithm (SVMvarImp-SBE-SVM) for both STEMI 

and NSTEMI/UA groups. On testing datasets, this study demonstrated high performance 

for DL models using a combination of feature selection from ML classifier algorithms. 

Overall, the DL models, both with and without feature selection, outperformed the ML and 

TIMI risk scores for the three time points in STEMI and NSTEMI/UA groups. The best 

models for the STEMI group were the ones with the selected variables from the best ML 

Univ
ers

iti 
Mala

ya



273 
 

model which reported the AUC value of 0.96 (with 15 variables) for in-hospital, 0.93 (with 

13 variables) for 30 days, and 0.90 (with 12 variables) for 1-year mortality prediction. A 

similar result was demonstrated on the NSTEMI/UA group where the best models were the 

models which incorporated the selected variables from the ML best model with the AUC 

value of 0.97 (with 13 variables) for in-hospital, 0.91 (with 11 variables) for 30 days and 

0.88 (with 13 variables) for 1-year mortality prediction. Even though some of the DL 

models’ AUC with the selected variables were comparatively lower (Table 4.13) than the 

DL models with all variables, the models with selected variables were still chosen to be the 

best models because the number of variables was much smaller as compared to all the 

variables in the STEMI group (with 50 variables) and NSTEMI/UA group (with 39 

variables). The performance of DL algorithms, in terms of AUC values, in this study was 

observed to be better than a similar ACS study on the Korean population using DL (STEMI 

= 0.91, NSTEMI = 0.87) (Kwon et al., 2019a). The authors in their study used all variables 

in the registry without identifying significant variables associated with ACS mortality.  

DL algorithms do not require feature selection and have an unlimited number of input 

predictors (Kwon et al., 2019c). DL algorithms employ feature learning where it will learn 

all of the characteristics that have been presented and perform the tasks that have been 

assigned to it, such as classification and detection, in order to gain significant features that 

can be used to predict the outcome without reducing the number of variables. On the other 

hand, to increase the model predictive performance, the ML algorithm requires feature 

selection that reduces the number of variables in the model (Vomlel et al., 2012). The 

feature selection identifies variables associated with the prediction outcome. Although the 

DL method is a “black box”, it automatically learns characteristics and can outperform 

traditional ML algorithms in mortality prediction (Kim et al., 2019; Kwon et al., 2019c, 
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2019c; Sherazi et al., 2020). Unlike ML, DL significant features are unknown, and the 

model is not immediately interpretable, either in terms of variable importance or the 

approach to deciding risk score. 

5.4 TIMI risk score  

The TIMI risk score was originally developed to estimate 30 days’ mortality risk for 

STEMI patients and 14-days mortality risk for NSTEMI/UA patients (Antman et al., 2000; 

Lee et al., 2021; Morrow et al., 2000). In the absence of a more convenient risk score 

system, it has since been exploited to predict in-hospital, 30 days and 1-year mortality 

STEMI and NSTEMI/UA in Western and other Asian countries (Correia et al., 2014). 

Millo et al. (2021) conducted a study to validate the TIMI risk score for STEMI in the 

Caucasian population and reported the AUC value for predicting in-hospital mortality of 

0.88. When the same risk score was evaluated on populations in South-East Asia countries, 

such as Indonesia (Martha et al., 2021) and the Philippines (Timbol et al., 2015), the AUC 

values for both studies reached an acceptable level of discrimination, with AUC values of 

0.84 and 0.81, respectively. Another South-East Asian validation of the TIMI risk score 

was done by Chimparlee et al. (2018) to predict the mortality of STEMI patients for short- 

and long-term mortality in Thailand reported AUC value of 0.75 for in-hospital, 0.75 for 1 

month, 0.77 for 6 months and 0.73 for 1 year. There is only one study that was carried out 

to validate the TIMI risk score for patients with STEMI in a multi-ethnic Asian population 

in Malaysia which reported an AUC value of 0.78 (Selvarajah et al., 2012). In this 

validation study, the Asian cohort was found to be carrying an overall higher disease 

burden and risk compared to the TIMI cohort. The mortality rate, however, was no different 

from this study which suggests an inherent inaccuracy within the algorithm.  
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The TIMI score for NSTEMI/UA has not been validated against the Western population 

in recent years, with the exception of a research by Bradshaw et al. (2007), which reported 

an AUC value of 0.80 in the prediction of 30-day mortality. Kumar et al. (2021) stated that 

the risk score performed well with an AUC of 0.78 when evaluated on NSTEMI patients in 

Pakistan. This risk score was also validated in terms of predicting long-term mortality for 

6-months, 1-year, and 2-year periods, with AUC values of 0.52, 0.50, and 0.52, 

respectively, against Chinese population (C.-W. Chen et al., 2020). When validated against 

South-East Asia countries like Indonesia, a study by Karim et al. (2021) reported the 

performance of the TIMI risk score with an AUC value of 0.61 for NSTEMI patients and 

0.63 for UA patients when predicting 14-day mortality. There is only one study that was 

carried out to validate the TIMI risk score for patients with NSTEMI/UA in a multi-ethnic 

Asian population in Malaysia which predicts 14-day mortality which reported an AUC of 

0.56 (Kasim, et al., 2021a). Based on the previous studies, the performances (in terms of 

AUC values) of the NSTEMI/UA TIMI risk score were lower than the TIMI risk score for 

STEMI and this pattern was demonstrated in this study as well. This might be related to the 

fact that the TIMI risk score for NSTEMI/UA has not been revised since it was first 

introduced more than two decades ago. The performance of this conventional risk score 

also presented highest performance (in terms of AUC) when validated against western 

population. This is due to most conventional risk scores were derived from studies with 

mostly Caucasian patients, with just a small number of Asian patients participating in the 

trials. Asian patients present at a younger age with ACS, a higher prevalence of diabetes 

mellitus, hypertension, and renal failure, as well as a higher rate of delayed presentation for 

medical care are found in Asian countries compared to Western ones. Not only that, TIMI 

is known to underestimate mortality risk in the lower risk group.  
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Correia et al. (2014) reported that the TIMI score was better than the GRACE score 

calibration: TIMI risk score has more variables associated with death, it has a balanced 

distribution of patients with low, intermediate, and high-risk strata that allow specific 

treatment to be done on different groups of patients and the estimation done using TIMI 

risk score is more accurate. 

However, the TIMI score has several notable limitations. First, as mentioned above, 

TIMI was developed using data from Western Caucasian ACS patients. Second, because 

TIMI risk scores only take into account the most important prognostic factors, important 

information may be overlooked (Kwon et al., 2019a). Exclusion of the high-risk patients is 

also another limitation of the risk score (Chen et al., 2018). The TIMI risk score lacks risk 

factors relevant to older adults and fails to account for the overall complexity of the older 

adult with ACS. The Asian cohort was found to be carrying an overall higher disease 

burden and risk compared to the TIMI cohort.   

TIMI risk score for STEMI consists of the following components: age; systolic blood 

pressure; heart rate; Killip classification; infarct location or left bundle branch block; a 

history of diabetes, hypertension, angina pectoris, weight, and time to reperfusion 

(thrombolysis or primary PCI) while the TIMI risk score for NSTEMI/UA consists of age; 

equal or more than three CAD risk factors; known CAD; aspirin use in the past 7 days; 

severe angina; ECG ST changes more than 0.5mm; and positive cardiac marker. Previous 

studies have modified ‘time to reperfusion’ to be ‘door-to-needle’ or ‘door-to-balloon time’ 

instead of ‘symptom onset-to-reperfusion’ time because of inconsistencies in the reporting 

of symptom onset time (Selvarajah et al., 2013). This study excluded some variables such 

as angina pectoris, weight, and time to reperfusion in the model development as over 50% 

of data was missing as imputing a significant number of missing values might raise 
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problems about the outcome's acceptability and accuracy. Additional parameters (Table 1) 

were included including ethnicity, smoking status, invasive and non-invasive treatments, 

lipid profile and features from the complete blood chemistry at admission. During the 

development of the TIMI risk score for STEMI and NSTEMI/UA mortality prediction, 

continuous variables were binned. However, this study maintained the continuous variables 

to avoid losing potentially useful data (Shouval et al., 2017). 

5.5 Selection of features using ML classifier 

Feature selection algorithms are essential in mortality prediction. A combination of 

feature selection methods with classification algorithms resulted in higher performance 

versus using standalone classifiers (Aziida et al., 2021; Jafarian et al., 2011; Wallert et al., 

2017). Applications of feature selection algorithms improves ML model performance using 

a reasonable number of predictors by reducing the predictor’s dimensionality (Vomlel et 

al., 2012). The model performance in this study increased with the reduction in the number 

of predictors. This is because all of the models with selected variables had important 

clinical elements that contribute to predicting mortality, whereas the discarded variables did 

not significantly improve the model's predictive properties (Vazquez et al., 2021). 

According to the findings of this study, the best ML model predictive performance for 

STEMI patients selected 15 variables for in-hospital, 13 variables for 30 days, and 12 

variables for 1-year death prediction. In the NSTEMI/UA group, 13 variables were chosen 

for in-hospital, 11 variables for 30 days, and 13 variables for 1-year for the optimum ML 

model performance. Models developed using ML and DL algorithms with the selected 

variables in both groups perform better than the models built using a traditional statistical 

method.  
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Since a growing number of risk factors must be monitored to estimate the risk, the 

system gets more complex, time-consuming, and costly as more variables are included. 

This increase in complexity may influence how the system is used. This study found that 

using variables from the feature selection method improves the prediction model's 

performance. This might be because all of the models with selected variables had important 

clinical elements that contribute to predicting mortality, whereas the discarded variables did 

not significantly improve the model's predictive properties in predicting the mortality of 

patients with ACS (Wallert et al., 2017). ML and DL models in this study were validated 

with untouched testing data that was not used for model development, to confirm the 

reliability of the current study. This study also demonstrated the ML and DL models using 

complete sets of variables collected, without a variable selection process resulting in an 

almost similar performance to models with feature selection. This shows that feature 

selection does not lead to the loss of important prognostic information. 

Only a few research has demonstrated the impact of features on prediction model 

performance. One study on the 1-year mortality of patients with anterior STEMI showed a 

change in the performance when the top 20 ranked variables were selected instead of all 59 

variables of the prediction model. The AUC for RF slightly changed from 0.932 in the full 

model to 0.944 with the 20 variables. When the top ranked variables were chosen, decision 

tree performance improved from 0.772 to 0.852, but LR performance declined from 0.931 

to 0.864 (Li et al., 2020). Another study by Aziida et al. (2021) reported that their best 

performing models incorporated SBE and RFE as their feature selection methods in 

predicting 30-day mortality of ACS patients for all RF, SVM, EN, and LR algorithms. The 

prediction models developed using the ML algorithm appeared to be less dependent on 

individual predictors, owing to the fact that several clinical indicators interacted and 
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reflected one another. Since ML algorithms allow for non-linearity, higher-order effects, 

and interactions, they may not rely as much on individual predictors as traditional risk 

stratification methods do.  

Both RF and SVM models were used to determine the list of variable importance that is 

an essential part of contributing to good model performance. According to this study, all the 

best models were a combination of SBE as the feature selection approach and SVM as the 

classifier (SVMvarImp-SBE-SVM). The SBE approach is frequently used in conjunction 

with the SVM to minimise the dimensionality of feature space (Mpanya et al., 2021). 

Maulidina et al. (2021) found that using SBE as a feature selection method improved the 

accuracy of SVM in classifying diabetes patients compared to using SVM as a classifier 

alone. Since the process begins with all variables included in the model, SBE provides the 

benefit of assessing the combined predictive capacity of variables. SBE also eliminates the 

least important factors from the model early on, leaving just the most essential variables 

(Chowdhury & Turin, 2020). RF, SVM, and LR with SBE feature reduction algorithm 

reported higher performance compared to RFE. SBE algorithm depends only on importance 

as an adequate term to eliminate unimportant variables one by one from a model. 

Meanwhile, RFE is reported to have poor generalisation ability (Mao, 2004). 

This study also demonstrated that the final selected variables are not the top variables in 

the initial ranking of variable importance, but the combination of the variables throughout 

the ranking. It should be emphasised that the variables in the front row alone do not 

guarantee that the classifier will achieve the best classification results; rather, the 

combination of several features will ensure that the classifier will achieve the best 

classification results (G. Chen et al., 2020).  
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Based on Table 4.8 and 4.10, age, heart rate, Killip class, fasting blood glucose, and 

diuretics intake were ranked and selected by all short- and long-term mortality prediction 

ML models in the STEMI group while the common predictors for the three time points for 

the NSTEMI/UA group in this study were age, heart rate, Killip class and intake of Low-

molecular-weight heparin (LMWH). Age, Killip class, heart rate, fasting blood glucose and 

diuretics intake were also selected as a factor that affects mortality post-STEMI by ML 

models in previous studies (Kasim et al., 2021b; Shouval et al., 2017; Wallert et al., 2017). 

In NSTEMI/UA patients, age, heart rate, Killip class, and LMWH were also revealed to be 

frequent predictors of mortality based on the previous studies (Shouval et al., 2017; 

Szummer et al., 2015; Weichwald et al., 2021). Older age and higher Killip class were also 

significant predictors of mortality (Cheng et al., 2016; Granger et al., 2003). In patients 

with ACS, the Killip class predicts survival, with a higher class indicating a greater risk of 

death (Juhan et al., 2019). Glucose levels were ranked by all selected ML models, 

supporting the relationship between hyperglycemia and increased risk in mortality for 

patients with STEMI in the Asian population (Johansson et al., 2017). STEMI and 

NSTEMI/UA patients with higher heart rates upon presentation are associated with an 

increased risk of mortality, for both short and long term (Hryhoriy, 2016; Kovar et al., 

2004; Zheng et al., 2019). This may be a reflection of worse presentation (higher Killip 

class) or even higher pain intensity from a larger infarct. Diuretic intake is noted as one of 

the predictors of cardiovascular mortality in patients often given to reduce pulmonary 

congestion normally reflect ventricular failure and hence, a sicker group of patients (Okabe 

et al., 2018).  For patients with a major pulmonary embolism and for the first therapy of 

deep vein thrombosis, LMWH is recommended and proven to lower the mortality of 

patients with NSTEMI/UA (He et al., 2018). 
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Patients’ demographics such as gender and race play a big role in classifying patients’ 

mortality for this ACS study. In a study by (Lee et al., 2013), women in Malaysia were 5 

years older at presentation than males and had a higher prevalence of risk factors. Women 

had a greater in-hospital and six-month death rate. This is due to the fact that women are 

more likely to have atypical symptoms and may have waited longer to seek professional 

help, potentially affecting treatment options such as cardiac catheterization and PCI 

(Mansoor et al., 2017). Ethnicity produces a discrepancy in the gene, resulting in a unique 

cardiovascular risk profile marked by a high incidence of insulin resistance, glucose 

intolerance, central obesity, and diabetes, as well as elevated blood levels of other CAD 

risk markers(Chaturvedi, 2003). In Malaysia, the Malays had a higher BMI, the Chinese 

had a greater incidence of hypertension and hyperlipidemia, and the Indians had a higher 

prevalence of diabetes mellitus and a family history of early CAD (Lu & Nordin, 2013). 

The high incidence of CAD risk factors such as hypertension, diabetes, dyslipidemia, 

smoking, and obesity is also regularly documented in the NCVD database registry in 

Malaysia (Ahmad, 2017). On admission for ACS, more than 95% of patients had at least 

one documented cardiovascular risk factor. Whereas, chronic renal disease patients have a 

three-fold increased risk of MI, as well as increased morbidity and death (Saad et al., 2016). 

On the other hand, in addition to common risk factors, chronic lung disease effects such as 

inflammation, endothelial dysfunction, and increased arterial stiffness are all considered to 

contribute to cardiovascular risk mortality (Fabbri et al., 2008; Rothnie et al., 2015). Poorly 

controlled CVD risk leads to an adverse systemic remodeling, leading to a plethora of 

cardiovascular conditions including heart failure, stroke, renal failure, and peripheral 

vascular disease (Rajadurai et al., 2017).  
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Systolic and diastolic blood pressure were ranked as predictors for both STEMI and 

NSTEMI/UA models. Both systolic and diastolic blood pressure help to define cardiogenic 

shock. Cardiogenic shock at presentation increases the risk of death. STEMI patients with 

cardiogenic shock who survived in-hospital death are at an increased risk of long-term 

death, probably as a reflection of the severity of heart attack during initial admission 

(Laufer‐Perl et al., 2015). Cardiogenic shock is also a complication in NSTEMI patients 

and when compared to medical therapy alone, early revascularization is the standard 

treatment and is associated with improved short- and long-term survival (Kolte et al., 

2016). 

As lipid profiles and blood glucose levels are indications of metabolic diseases such as 

diabetes and hypertension, they are also critical for predicting mortality. The observed 

reduction in coronary events after lipid-lowering therapy is linked to changes in both low-

density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) 

levels (Meeusen et al., 2017). LDL-C is an independent CV risk factor, and more Asian 

individuals with a very high risk of recurrent cardiovascular events had LDL-C levels 

above the suggested range (Poh et al., 2018; Wang & Liang, 2020). Thus, intensive lipid-

lowering medication is required in ACS patients, and statins are found to be the foundation 

of lipid-lowering treatment in patients with ACS (Li et al., 2018; Wang & Liang, 2020). 

Despite the fact that lipid-lowering medication was common, it was not widely used 

throughout Asia (Poh et al., 2018). 

Since ECG measures the electrical stability of the heart, it can be used to screen for 

susceptible myocardium that could lead to acute MI. The morphology of ECG complexes 

helps identify patients with high-risk complications after a cardiac event such as persistent 

ST-elevation, poor R-wave progression, and the presence of Q-waves. During the acute 
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event, ECG changes such as ST-elevation, ST-depression, and T-wave inversion identify 

patients at higher risk of death (Myers et al., 2017). 

In this study, incorporating invasive or non-invasive management into the ML and DL 

best models for mortality prediction produced noteworthy findings. Invasive treatment, 

such as cardiac catheterization, is associated with improved outcomes in both STEMI and 

NSTEMI/UA patients (Dworeck et al., 2020; Feldkamp et al., 2018). Depending on the 

clinical presentation, each stage of this illness can be treated differently, however, a 

catheter-based interventional approach is frequently favoured. For years, antiplatelet and 

anticoagulant therapy, anti-anginal medicines, intensive lipid-lowering agents, and risk 

factor reduction are the mainstays of ACS treatment. The introduction of thrombolytics 

changed the way ACS was approached and treated. 

Non-invasive treatment predictors such as pharmacological therapy (medications 

including anti-hypertensive (ACE inhibitors, beta-blockers, diuretics, ARBs), anti-diabetic 

agents (oral hypoglycaemic agents, insulin, and antiplatelet) were selected for in-hospital, 

30 days and 1-year mortality prediction in this study. These drugs are often prescribed in 

the acute setting to augment neurohumoral modulation associated with left ventricular 

negative remodelling. Being on these medications could signal a sicker ventricle hence the 

strong association with death (Seong & John, 2016). 

Existing risk metrics, such as the TIMI and GRACE scores, rely on lab findings that are 

often available within a few hours of the patient presenting with signs and symptoms of an 

ACS. Consequently, in this study, all the data from the best models (SVMvarImp-SBE-

SVM) selected variables can be obtained in a similar time frame as the information needed 

to use traditional risk scores. Risk assessment within the initial few hours of presentation is 
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critical in managing ACS as patients identified as high risk may benefit from invasive 

methods within 24–48 hours after the diagnosis of ACS (Bavry et al., 2006). 

5.6 Data imputation and algorithm optimisation 

In this study, inadequate data led to the exclusion of nearly two-thirds of the cases. The 

diagnosis of ACS can be difficult, and there may be differences in how this clinical 

condition is reported. Some post-discharge data may not be tracked or reported 

directly.  Data imputation was performed to ensure the validity of the findings. When data 

is imputed across the whole dataset, it can cause information ‘leaking’ between the training 

and testing dataset, and this is a form of principle violation (Steele et al., 2018). Hence, in 

this study, only the training dataset was imputed so that the same cases will not be tested 

against itself and cause overfitting. Multivariable imputation was employed using chained 

equations and PMM method for data imputation instead of using ML-based method such as 

missForest in this study. The data imputation method used in this study was selected as 

recommended in a similar study conducted on the Swedish heart registry dataset that 

resulted in high model performance (Wallert et al., 2017). Moreover, Solaro et al. (2018) 

demonstrated that the relative performance of missForest varied with the MCAR data 

patterns and did not show a clear advantage. Overall, the imputation accuracy and 

applicability of missForest are still unclear. This study initially did not include patients with 

more than 50% missing data as it will require data imputation, which may affect the result. 

It is not a limitation for the population as it is still a large dataset. As the dataset had 

completed dataset for all follow-up time points, generation of the risk prediction model was 

possible for both ML and DL. Furthermore, identifying variables associated with short- and 

long-term mortality prediction usage of complete cases would lead to more reliable findings 

as there is the possibility of biassing as a result of the imputation approach (Wallert et al., 
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2017). This study went back to using an incomplete dataset and imputed data and showed 

almost similar results. This may be because many of the variables with low missingness 

were uninformative. 

In terms of the clear performance convergence across models with more samples, it 

should be pointed out that the majority of similar ML research has utilised samples that are 

less than 30% of the testing dataset of those employed here. When developing models with 

fewer samples, they tend to be more volatile and inaccurate. As a result, the current large-

scale study highlighted a potential problem of data scarcity in the creation and performance 

evaluation of various algorithms. This study emphasises the significance of rigorous 

resampling to avoid overfitting, as well as the importance of evaluating predictive models 

on an untouched testing set that is not subjected to model training. This study also believes 

that this emphasises the potential problem of data scarcity, because proper resampling and 

data partitioning techniques are essential for creating reliable models, and data scarcity 

impede both. Having said that, more data is not necessarily better (Wallert et al., 2017). 

The cross-validation approach used in this study increases the efficacy of the models 

during model construction as it reduces the risk of model over-fitting. Also, the 

classification performance is highly influenced by data pre-processing and tuning of 

algorithms (Kesavaraj & Sukumaran, 2013). Although a model's prediction accuracy is a 

crucial factor to evaluate when considering whether or not to use it in a therapeutic context, 

the model's interpretability is also important. Readily interpretable models are more readily 

accepted by the medical community and, more crucially, can lead to novel ideas that can be 

used as the foundation for future clinical investigations (Myers et al., 2017). A pair-wise 

corrected resampled t-test was used to evaluate the differences between ML models' 
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predictive performances. The resampled t-test is a validated tool for the comparison of 

outcomes between two classifiers (Dietterich, 1998; Raschka, 2018).  

Despite a large proportion of missing values in the original dataset, this study was still 

able to apply both DL and ML algorithms against TIMI risk score and compare outcomes. 

This is most likely due to the adoption of a hard endpoint of mortality that was unaffected 

by missing values. Another possibility is that the variables extracted (15 for in-hospital, 13 

for 30 days and 12 for 1-year in STEMI group and 13 for in-hospital, 11 for 30 days, and 

13 for 1-year in NSTEMI/UA group) was sufficient to increase the model’s precision to 

predict death reliably. 

5.7 Benefits of the research 

To begin with, this study is a prospective multicentre study with a population made up 

of ethnic groupings such as Malays, Chinese, Indians, and other races which represent 

ethnicities from across Asia. Second, unlike clinical trials, this study included a diverse 

group of ACS patients. Finally, by establishing links with the National Registration 

Department for deaths, mortality occurrences were confirmed. As a result, information on 

mortality was recorded in the database even for individuals who were lost to follow-up. 

Overall, there are two ways to interpret the significance of the reported findings. From a 

clinical standpoint, variables for STEMI and NSTEMI/UA mortality were assessed and 

ranked. Some factors can be modified and may be used as a therapeutic target. From a 

methodological standpoint, this study demonstrates that doctors, particularly cardiologists, 

can benefit from the application of ML and DL predictive algorithms in a few ways. First, it 

shows that a data mining approach can be used to predict outcomes in STEMI and 

NSTEMI/UA patients for three different time points (in-hospital, 30 days, and 1-year) 
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where TIMI risk score is only focused on 30-day mortality post-STEMI and 14 days 

mortality post-NSTEMI/UA. Second, this study shows that, in contrast to LR-based 

models, non-parametric algorithms may maintain good prediction performance (i.e. 

discrimination) even in multidimensional scenarios with dozens of variables. Third, ML 

methods discussed in this study were used to rank and select significant risk factors 

associated with short- and long-term STEMI and NSTEMI/UA mortality. Feature selection 

allows better interpretation of the models by restricting the scope of variables used, 

selecting only those clinically relevant.  

With the selected variables giving the best performance in predicting mortality, and by 

having data continuously collected through an electronic health records system, this study 

will be able to allow for the adaptation of ML and DL predictive algorithms tailored to 

patient’s risk grouping (which in this case, STEMI and NSTEMI/UA separately) 

eventhough the data used for the development of this algorithm are from the year 2006 to 

2016 and changes in healthcare delivery may change the level of risk and outcome for 

patients. However, the burden of cardiovascular disease in Malaysia has been relatively 

stable for the past 20 years with cardiac death being the number one lead of death (Ahmad, 

2022). It is safe to assume that the population risk, the type of healthcare intervention 

provided as well as follow up intervention remain relatively stable to allow these 

algorithms to be applied. The information can be subsequently integrated into hospital 

computer systems at the bedside for use by physicians. This tool could be implemented 

upon patient presentation and based on the patient’s clinical history. 

Finally, the findings in this study are important for government policymakers and 

fundholders involved in providing care for ACS patients. In comparison to developed 

countries, Malaysia has a dearth of hospitals with cardiac care facilities that are 
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appropriately equipped and resourced for primary PCIs (Ahmad, 2017). Currently, public-

access cardiac care services are mostly found in large cities. The validation of the ML and 

DL prediction models in the Malaysian population can offer information on the distribution 

of high-risk ACS patients to policymakers and fundholders and can appropriately risk-

stratify patients and identify those who will benefit from primary PCI, cardiac 

catheterization, or thrombolytics. The addition of primary PCI resources at existing 

hospitals may assist regions with higher numbers or proportions of high-risk patients. From 

the perspective of ACS management, the risk classification can be used to help the process 

of healthcare planning in Malaysia. As a result, the findings of this study are applicable to 

this country and may be relevant to countries at a comparable revolutionary stage in 

cardiovascular healthcare delivery. 

Future studies will focus on validation of the ML and DL algorithms in real-time 

involving several local hospitals for continuous assessment of its reliability. Also the 

application of ML and DL models that are population-specific together with conventional 

risk scoring method that allows better outcomes in mortality prediction, communication 

and could increases awareness of patients that enables behavioural modifications and better 

management of limited resources by clinicians. The example of the web-based interface of 

the algorithms developed in this study is illustrated in Appendix E. 

5.8 Study limitations 

This study compared the performance of ML and DL best models for in-hospital, 30 

days, and 1-year with a clinical prognostic model (TIMI risk score) that was designed for 

14- and 30-days mortality. This study is also tailored to a multi-ethnic population and is not 

suitable for use in nations with a predominantly Caucasian population. Additionally, due to 
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the huge number of missing values in this study, some of the variables similar to the TIMI 

risk score were not included, and the comparison was not (or might not be) impartial. 

Omitting a variable could lead to a biased finding and this study attempted to reduce this 

effect by applying TIMI score, ML, and DL-based score to the same population. Also, this 

study did not compare to other risk scores such as HEART and GRACE due to the data 

structure and some of the variables have a large number of missing values. Finally, it is 

difficult to maintain control over the selection bias that exists within registries of patients. 

As a result, a future real-world study is required to validate the findings of this study. 
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CHAPTER 6: CONCLUSIONS 

In conclusion, this study demonstrates the capability of ML and DL algorithms for 

feature selection and prediction of in-hospital, 30-day, and 1-year population-specific 

mortality in ACS patients. The ML and DL prediction models are suitable for this country's 

multi-ethnic population, and they performed better than the conventional TIMI risk score in 

terms of accuracy and precision, respectively. A combination of feature selection 

techniques and a classification algorithm allows for the reliable selection of significant 

variables and the improvement in model predictive performance. These algorithms could be 

implemented into an online system accessible for hospital use across the country, which 

subsequently allows for effective resource allocation and the alleviation of decision-making 

in the management of ACS patients. However, this study has yet to be validated against 

world data and should be applied in the near future. 
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