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COMPARATIVE GENOMICS OF PATHOGENIC FUNGI THROUGH 
SEQUENCE HOMOLOGY AND PHYLOGENETIC SIMILARITIES 

ABSTRAK 
 

 Patogenesis kulat adalah salah satu isu ekologi dan perubatan yang paling kuat yang 

dihadapi oleh banyak saintis. Kemunculan penjujukan DNA telah membolehkan projek-

projek penjujukan genom secara besar-besaran dari banyak kulat patogenik yang penting 

dan paling maut di dunia, gandingan dengan analisis bioinformatik hulu yang merangkumi 

pemasangan genom dan anotasi genom yang menghasilkan data tersedia secara terbuka 

untuk penyelidikan bioinformatik gunaan. Kajian ini melibatkan pembinaan pangkalan data 

gen yang berkaitan dengan Fungal Pathogenicity dengan 5,183 urutan protein dari 

pangkalan PHI, 921,174 urutan protein dari Database EnzYme Carbohydrate-Active, dan 

2,058 urutan protein dari Database Factors Virulence di Fungal Pathogens. Pangkalan data 

tempatan dicipta menggunakan makeblastdb dalam aplikasi NCBI-BLAST + dan pencarian 

homologi urutan protein 86 spesies jamur telah dijalankan dengan BLASTP mengakibatkan 

pengenalpastian potensi gen patogenik yang sama antara kulat dalam kajian, ianya juga 

untuk yang berpotensi dan memahami hubungan filogenetik. Pangkalan data boleh 

digunakan sebagai aplikasi agregat untuk anotasi gen patogen kulat yang menyumbang 

kepada komuniti penyelidikan yang lebih luas. 

Kata kunci: Bioinformatik, Perbandingan Genomik, Patogenik, Kulat, Kesamaan 
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COMPARATIVE GENOMICS OF PATHOGENIC FUNGI THROUGH 
SEQUENCE HOMOLOGY AND PHYLOGENETIC SIMILARITIES 

ABSTRACT 
 

Fungal pathogenicity is one of the most vigorously tackled ecological and medicinal 

issues facing many scientists. The emergence of DNA sequencing had allowed massive 

genome sequencing projects of many important and most fatal pathogenic fungi in the 

world, coupling with upstream bioinformatics analysis which includes genome assembly 

and genome annotation had resulted in publicly available datasets that can be utilized for 

applied bioinformatics research. This study involves building of an aggregate Fungal 

Pathogenicity-related gene database with 5,183 protein sequences from PHI-base, 921,174 

protein sequences from Carbohydrate-Active enZYme Database, and 2,058 protein 

sequences from Database of Virulence Factors in Fungal Pathogens. Local database was 

created using makeblastdb within NCBI-BLAST+ application and homology search of 

protein sequences of 86 fungal species was carried out with BLASTP resulting in 

identification of potential common pathogenic genes between fungus in study, also to 

identify potential biomarkers and understanding phylogenetic relationships of pathogenic 

fungi. The database can be utilized as an aggregated application for fungal pathogenic 

genes annotation that contributes to a wider research community.  

Keywords: Bioinformatics, Comparative Genomics, Pathogenic, Fungus, Homology 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

 Fungal pathogenicity remains as one of the main challenges in modern science, with 

more than 300 species of 1.5 million fungal species causing disease across the animal and 

plant kingdom hence there are still a lot of work to be done to tackle the issue. The two 

main aims in studying fungal pathogenicity are to tackle two key issues with diseases: 

diagnosis and treatment. As with any other form of disease early diagnosis will ensure 

higher success rate of recovery for both animal host or plant host, or in the cases of fungus 

inflicted plant diseases which are difficult to diagnosed due to the lack of visible symptoms 

hence early diagnosis will allow development of counter-acting strategy. Once diseases are 

identified, treatments can then be formulated and applied to animals or plants. Developing 

fungicides is challenging and needs to hit the right marks with broad-spectrum 

effectiveness, enhanced bioavailability, and minimal toxicity and side effects (Brauer, et al. 

2019). With the genome plasticity that fungus has (Fisher, et al. 2018) it becomes 

challenging as fungus quickly reproduce and can rapidly develop resistance to antifungal 

drugs and render the antifungal agents useless. 

 Recent advancement in genome sequencing technologies, bioinformatics tools and 

applications, comparative genomics platforms had proven to be a gateway to new research 

initiatives to blossom. Research initiatives such as the Genome 10K Project (Koepfli, et al. 

2015), aimed at sequencing genome of at least one individual from every vertebrate genus 

which accounts to approximately 10,000 genomes. Rapid development of sequencing 

technologies that produce more genome sequences at much lower cost more high-
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throughput sequencing projects targeted at comparative genomics study, examples of such 

study approach is the fishes of Genome 10K (Bernardi, 2012) and Fungal Genome 

Initiative (Broad Institute, 2014), each targeting of accelerating research on microbial 

metabolism, physiology, and functional genomics and studying human/plant pathogens as 

basis for molecular and cellular biology. Research projects as such targeting to understand 

how fungus genomic makeup affects its life cycle and in turn plays vital role in the study of 

fungal pathogenicity which can prove vital in tackling issues around fungal pathogenicity to 

allow developing effective diagnostic methods and uncovering effective antifungal agents 

that can be used to treat fungal diseases across human, animal, and plant.  

 The gold standard of identification for fungal diagnosis is through culture and 

microscopy observation (Kidd, et al. 2020)  but not without its limitations from slow 

culture growth and highly dependent on the specimen containing viable fungal elements. 

This will continue to be a challenge to an organism with plastic genome and has rapid 

evolution life cycle where new disease resistance could arise. Polymerase Chain Reactions 

(PCR) assays proves to be a great alternative as diagnosis can be made from specimen 

samples including blood. PCR assays leverages on the specificity of fungal DNA primers 

that would amplify the target regions and base on that identifying the causative fungus. 

This is extremely important for early diagnosis of soil fungus that causes diseases to 

specific host plants as a large number of microbes lives in soil. The identify of fungal 

species that constitute the soil samples can then be uncovered through designing specific 

DNA primers and sequencing or through metagenomics sequencing (Donovan, et al. 2018) 

using shotgun metagenomes. 
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 High throughput sequencers generate massive amount of sequence data, be it nucleotide 

sequences or protein sequences hence with these data available it now allows researchers to 

leverage on datasets for applied studies and creating secondary databases that can continue 

to push the front of developing novel diagnostic and treatment methodology. Given how 

rapid the fungal species evolved continuous genomics analysis and comparative genomics 

effort is required to keep up with the pace of fungal genome evolution. 

 This study aimed to understand underlining genomics commonality between pathogenic 

fungi through various comparative genomics techniques and applications, generating in 

silico results and datasets that allow identification of candidate common pathogenic genes 

among pathogenic fungi to propose new candidate regions for pathogenic fungi 

identification and in turn as a foundation for antifungal agent development.  

 Comparative genomics is a common and known technique in studying diversity and 

phylogenetic relationships in the study of fungus diversity. There are a plethora of 

comparative fungus genomics research study and resources available such as FungiDB 

(Basenko, et al. 2018) that provides a platform to further annotation of fungus genomics 

sequences. Usual studies compare different isolates of fungus within a species of fungi and 

rarely studies fungus across phylum. There is value in understanding inter-phyla 

relationship to aids understanding of conservation and diversity in the kingdom of fungus in 

particularly when looking at the topic of fungal pathogenicity. 
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Availability of genomics sequences in the public domain provides an opportunity to 

perform applied bioinformatics research to unveil useful insights on the available databases 

and datasets. According to statistics by GenBank published sequences have now exceeded 

billions in whole genome sequence data (National Center for Biotechnology Information, 

2021), providing an enormous amount of publicly available sequence to be studied. 

Existing fungal pathogenicity-related databases also allows for applied study leveraging on 

known experiment results to further dive into the details and understanding of fungal 

pathogenicity.   
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1.2 Study Design 

1.2.1 Developing a Fungus Comparative Genomics Pipeline specifically for Inter-

Phyla Pathogenicity study 

 Fungus comparative genomics is a commonly known technique to understand fungus 

diversity and the intricate relationship between fungus diversity and pathogenicity. 

Throughout the internet there are many resources and web applications that provides user 

interface for sequence comparison and annotation such as FungiDB (Basenko, et al. 2018) 

and Carbohydrate-Active enZYme (CAZy) (Lombard, et al. 2014). These platforms are 

extremely useful for comparative studies of small number of fungal sequences and has 

limitation is handling specific queries to the database to fulfil a specific study objective. 

Existing fungal pathogenicity-related database presents repository of fungal pathogenicity-

related genes from experimental data like the Pathogen-Host Interaction Database (PHI-

base) (Winnenburg, et al. 2006) while others like Database of Fungal Virulence Factor 

(DFVF) (Lu, et al. 2012) was built using de novo text mining methods.  

 These databases provide avenue for further study to be done based on the data that are 

available. Due to the characteristic of the fungal genome, pipeline specifically for study of 

fungal pathogenicity is highly desirable. Existing databases and tools provide tools that are 

catering for broader comparative genomics effort, example like FungiDB hence there is a 

knowledge gap to utilize and leverage on existing databases, enabling new findings 

especially in understanding if diversity plays an important role in fungal pathogenicity. 
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1.2.2 Discovery of Common Fungal Pathogenicity-related Genes across Fungus 

Phylum and Species 

 Through comparative fungus genomics analysis using the established pipeline the study 

aims to discovery high confidence Common Fungal Pathogenicity-related Genes across 

fungal species that constitute different phyla within the kingdom of fungus. This will 

contribute to the continuous understanding of fungus diversity and infer relationships 

between species, and with the identification of common pathogenicity-genes it would allow 

the scientific community to infer relationships between fungal species in the context of 

pathogenicity which could determine a pattern of conserved pathogenicity. Fungus 

comparative genomics are usually performed between different isolates of the same species 

or different species in the same genus or phylum as such done on Beetle-Vectored Fungi 

(Schuelke, et al. 2017) but few had taken a broader view of the subject. 

 Conservation of pathogenicity across the kingdom of fungus will shed more lights into 

the conserved mechanisms that lies within the fungus lifecycle and provides a platform for 

further development of fungal pathogenicity diagnostic methodology that target conserved 

region within fungal genome and design broad-spectrum antifungal agent that would serve 

as a treatment for infected hosts. 
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1.2.3 Creating a Common Fungal Pathogenicity-related Gene Database Portal 

 This study aims to leverage on available public resources and through comparative 

genomics analytical methodology to create a Common Fungal Pathogenicity-related Gene 

Database. The identification of the common pathogenicity-related across multiple fungal 

phyla and species will be rendered meaningless without providing a public portal to allow 

access to the data which can enable the scientific community to continue building on the 

discovery. Data from this study will be made available and accessible to the community 

through a web portal that allows downloading of the discovered candidate common 

pathogenicity genes. 

 A publicly available database portal will also enable further study on the subject by the 

broader scientific community which allows collaborative effort in understanding and 

tackling the global issues with fungal pathogenicity be it in human and animal diseases or 

plant diseases that affects plant of great agricultural importance. 
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1.3 Objectives 

The main aim of this study was to investigate genomic diversity and relationship between 

pathogenic fungi across the kingdom. 

In order to achieve the aim of the study, a number of specific objectives were defined: 

1. To evaluate diversity and relationship of pathogenic fungi through comparative 

genomics. 

2. To identify Common Fungal Pathogenicity-related Genes across the Kingdom of 

Fungi. 

3. To develop a comparative genomics pipeline specifically for fungal pathogenicity. 

4. To create a portal for public access of data. 

1.4 Thesis Organization 

 This thesis contains six chapters which includes introduction, literature review, 

methodology, results, discussion, and conclusion. The first chapter introduction described 

the overview, study design and the objectives of the study and is followed by chapter two 

that consists of literature review of topics related to the study includes fungal pathogenicity, 

study of diversity using next generation sequencing and techniques, and various challenges 

in diagnostic and treatment of fungal pathogenicity. Chapter three describes and explains 

methodology used in this study, and chapter four presents results from the study and are 

structured in three parts where the first part contains results from homology searches from 

protein sequences, part two presents the downstream analysis of the results and finally part 

three presents the database portal. Chapter five discussed all the findings, and the last 

chapter summarizes and provide a conclusion for the study. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 History and Background of Fungal Pathogenicity 

 Fungi are a group of organisms that had appeared in this world from an ancient history 

and fossil evidence had showed that fungi may had been around the world since 460 to 455 

million years ago (Carris, et al. 2012). Further evidence had also proposed important role 

that fungi played in colonization of the land by earlier plants (Carris, et al. 2012). Fungi 

play an extremely important role in maintaining ecological balance exhibiting its 

saprophytic nature allowing it to decompose organic materials – a crucial step in the utmost 

important carbon cycle.  

 Fungi had presented itself to be one of the most diverse and largest kingdoms with 

approximately 1.5-5 million species of fungal species identified to date (Blackwell, 2011). 

Fungi had showed capability to survive and thrive in the most adverse condition in the 

world having been found in all temperature zone (Jaejin & Sung-Hou, 2017) making it an 

extremely robust organism that can colonize any location with very limited resources. 

Other than being found on hard surfaces fungi can also be found growing on other living 

organisms and this includes both animals and plants. The ability of a fungus to grow on 

animals’ posts benefits to the ecosystem but bares extreme devastation for the host. One 

classic example of that is the entomopathogens, which belongs in the Ascomycota genus 

Ophiocordyceps in which these fungi had demonstrated that it can infect and consume 

insects like caterpillars and ants (Carris, et al. 2012). The extend of infection can causes a 

change of insect’s behaviour, such with the case of the “Zombie-ant” fungi found in Brazil. 

These fungi can infect the brain of the insects causing drastic change of behaviour directing 
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the victim of infection to climb up to plants and bite into the plant tissue in a manner 

known as “death grip” (Sanusi, et al. 2016). 

 About 300 of 1.5 million different species (Hawksworth, 2001) of fungi on earth are 

known to cause diseases in human (Garcia-Solache & Casadevall, 2010) and in plants 

agricultural important crops, the effects of fungi inflicted plant diseases cause massive 

destruction of important crops. Each year fungal infection destroys approximately 125 

million tons of world top five food crops: rice, wheat, maize, potatoes, and soybean (Fisher,  

et al. 2012) and causes loss of billions of dollars in agriculture industry. One example of 

such devastating impact caused by fungus is the Rice Blast, which is caused by an 

ascomycete fungus Magnaporthe oryzae (Dean, et al. 2005). Study of fungal pathogenicity 

in plants is vital for eradication of plant fungal infections with then could prevent massive 

destruction of crops, which is key for the survival of human race.  

 These pathogenic fungi have been widely studied for their role in diseases and are 

known to originate from two major phyla in the kingdom of fungi, namely Basidiomycota 

and Ascomycota. Members of these two major phyla had collectively contributed to 

numerous plant diseases, infecting wide range of plants including several important staple 

food stocks for human population such as maize, wheat, rice, potatoes etc. Many causative 

factors could contribute to pathogenicity in fungi thus discovery and identification of 

causative factors among different pathogenic fungal species is important. 
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2.1.1 Fungal Pathogenicity in Plant 

 Plant pathogenic fungi relies on its life cycle for effective colonization of the host plant 

(Rodriguez-Moreno, et al. 2018). Fungus pathogens encompasses all types, depending on 

the different nature of fungus that can include necrotrophic fungus, hemi biotrophic, 

biotrophic or obligately biotrophic fungus. The differences in life cycle between these fungi, 

however, are surprisingly negligible when it comes to pathogenicity as pathogenic fungi are 

known to use well-conserved mechanism in the process of infecting and colonizing the host. 

This was described in a study to establish a standardized Gene Ontology terms among plant 

pathogenic fungi (Meng, et al. 2009). One of the most well studied molecular pathway in 

pathogenic fungi is the cAMP/PKA and MAPK pathways in different fungi. This group of 

proteins that are related to these pathways is known as the signalling proteins are found to 

be highly conserved in the fungal pathogenicity evolution and plays an important role the 

onset of pathogenicity in hosts (Turrà, et al. 2014). 

2.1.2 Notable Plant Pathogenic Fungi 

 Certain pathogenic fungi is known to be extremely damaging to the host plants, which 

often than not coincides with being important food crops. Diseases caused by such fungus 

damages not only the environment but also livelihood of people that relies on these food 

crops either on sales or by the consumption of it. Dean et al. (2005) described a survey that 

involved fungal pathologist to determine a list of top ten fungal plant pathogens. The Top 

10 list of fungal pathogens is listed in Table 2.1. 
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Table 2.1: Top 10 Plant Fungal Pathogen 

Rank Fungal 
pathogen 

Phylum Rank Fungal 
pathogen 

Phylum 

1 Magnaporthe 

oryzae 

Ascomycota 6 Blumeria 

graminis 

Ascomycota 

2 Botrytis cinerea Ascomycota 7 Mycoshaerella 

graminicola 

Ascomycota 

3 Puccinia spp. Basidiomycota 8 Colletotrichum 

spp. 

Ascomycota 

4 Fusarium 

graminearum 

Ascomycota 9 Usitlago 

maydis 

Basidiomycota 

5 Fusarium 

oxysporum 

Ascomycota 10 Melampsora 

lini 

Basidiomycota 

 

 Plant pathogenic fungi are mostly constituted of members from the phylum Ascomycota 

and Basidiomycota. From Table 2.1 it showed that of the Top 10 listed plant pathogenic 

fungi 3 of the fungus in the list is from the Basidiomycota phylum and the rest from the 

Ascomycota phylum. Most of these fungi causes devastating impact in different plants 

which causes ripple effects to the economy. Magnaporthe oryzae causes rice blast disease 

which causes damage and losses in rice production around the world (Ou, 1980). Fungus 

infestation in host plant can be difficult to detect in early stages as certain fungus can 

remain dormant until triggered by specific environmental cues. Botrytis cinerea is known 

as one of the most destructive fungus due to its broad host ranges, infecting plant species 

ranging from fruits, vegetables to ornamental flowers (Plesken, et al. 2015). The fungus 

causes grey mold rot to its host plants at any timepoint of growth of the host plant, from 

seedling stage to product ripening and will continue to be a threat during transportation. 
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Figure 2.1: Diseases caused by plant pathogenic fungi 

 Ability to remain dormant often make early detection of fungal diseases in plants 

extremely difficult, increasing the risk of host plant destruction as often when symptoms for 

fungal diseases are visible it is usually too late to reverse the impact of the diseases. Classic 

example is the Basal Stem Rot disease in oil palm (Elaeis guineensis) by Ganoderma 

boninense, which causes loss in oil palm production, impacting produces roughly US$500 

million every year (Ahmadi, et al. 2017) and widely known as the most destructive disease 

affecting plantations in Southeast Asia – a region that produces majority of the world palm 

oil production.  Detection of the Basal Stem Rot disease in oil palm is extremely difficult 

due to the absence of disease symptoms in early stage of infestation, and only showed 

symptoms of infection at the critical stage of plant growth thus making disease 

management in oil palm extremely challenging and difficult thus the key in disease control 

is early detection of the diseases before it is too late.  
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 Animal pathogenic fungi including members from the genus of Aspergillus, Rhizopus, 

Mucor, Candida, Cryptococcus and more causes the onset of diseases in human and 

animals. These fungi causes allergic reactions (Seyedmousavi, et al. 2015) that causes 

respiratory infection while other member of the genus Aspergillus that has the ability to 

produce mycotoxins has found to cause stonebrood disease in honeybee (Bailey, L. 1963). 

Pathogenic fungus that attacks animal hosts including human causes serious illnesses and 

estimated to kill approximately 1.5 million per year (Brown, et al. 2012). This is an 

alarming figure that often goes under the radar compared to other pathogens such as viruses 

and bacteria, which gives rise to the questions if there are more knowledge to be uncovered 

by the scientific community through comparative studies of fungus from a wider spectrum 

of characteristics, in other words looking at fungal pathogenicity as a whole rather than at a 

specific fungal species, or phyla. Similar to plant pathogenic fungi, fungus that infects 

animals and human hosts relies on the life cycle for colonization of the host. In Candida 

albicans for instance Ras/cAMP/PKA (Hogan & Sundstrom, 2009) plays a very important 

role in its pathogenicity for the involvement in morphogenesis, virulence, and opaque 

switching (Lin & Chen, 2018). This is a great example of the conservation of pathogenicity 

mechanism in the kingdom of fungus where similar molecular mechanisms are identified 

between fungal pathogens that infects different ranges of host. 
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Figure 2.2: Stonebrood disease in honeybee (Scientific Beekeping, 2023) 

 Advancement in DNA sequencing technology had allowed researchers to develop 

molecular diagnostic tools that provides more accurate results than conventional diagnostic 

method. Various methods of detection for Ganoderma boninense for instance provides 

different level of detection of the fungus in oil palm. The earliest molecular detection 

method was an immunoassay test by using the binding of antibodies to the fungus (Reddy 

& Ananthanarayanan, 1984) but it was not the most effective method of detection due to 

the lack of information of taxonomy and inaccurate identification of different species of the 

genus. In the early 2000s ELISA (Enzyme-Linked Immunosorbent Assay) showed good 

detection results but has its own flaws as binding of the antibodies was not species specific 

(Utomo & Niepold, 2001). PCR or known as the Polymerase Chain Reaction is a great tool 

for amplification of specific regions of a DNA sequence and the development of PCR 

Primers that will only bind and amplify certain region of genomic sequence becomes a very 

useful way to identify organisms. Because of the ability to amplify a specific genomic 
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region and leveraging of the general conservation of sequences among species in the family 

of Ganoderma the technique was also utilized to study differences in sequences between 

pathogenic and non-pathogenic Ganoderma spp and had been proven to be more accurate 

and less prone to contamination (Utomo, et al. 2005). This capability allows development 

of species-specific Primer sequences which will assist in detection of specific fungal 

species thus helping early detection and allows disease control to take place much early in 

the disease timeline.  

 The key ingredients for PCR experiments are DNA Primer and the DNA template where 

the primer would bind to and where amplification of DNA sequences take place. 

Depending on the objective of the PCR experiment different PCR primers that are 

developed to amplify specific regions, from identifying species of organisms in a sample 

that contains cocktails of organisms as well as discovering presence absence of protein-

coding genes in knockout gene studies. In fungus studies the Internal Transcribed Spacer 

(ITS) regions of fungal ribosomal DNA is an important region of fungal genomic sequence 

that are highly conserved yet contains genetic variations that made identification and 

differentiation of fungal species via PCR experiments (Martin & Rygiewiez, 2005). 

 PCR analysis has been proven effective in detecting fungal pathogens in human. Study 

by Ferrer et al. (2001) showed successful application of the technique where the study 

showed positive identification in all patient cases and control samples as expected were 

PCR negative. Difference between detection of human fungal pathogens and plant fungal 

pathogens is the challenges that comes with DNA extraction for fungal plant pathogen 

studies which more than often has to deal with environmental samples that consists of 

multitude of organisms, posing challenges for a clean amplification and identification of 

fungus DNA from those samples. Despite the challenges faced, researchers have been using 
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the technique to detect presence of fungus in environmental samples such as seed. Because 

of the specificity to the host and the sensitivity to be able to amplify the lowest available 

amount of DNA it is extremely useful for detection or identification of the organisms in 

samples (Walcott, 2003). 

2.2 Mechanism of Plant Fungus Pathogenesis 

 Plant pathogenic fungi relies on different mechanisms to assist them in the process of 

pathogenesis, the initiation of pathogenicity in host plants. Signalling proteins are known as 

one of the group of proteins that help in this process and one such example are the MAP 

kinases. MAP kinases had been discovered in several fungal pathogens and play an 

important role for appressorium formation, invasive hyphal growth, and fungal 

pathogenesis (Xu, 2002). Study had also confirmed its role in pathogenesis when mutants 

disrupted of the Slt2 homologues demonstrated and possess weaker cell walls. 

2.2.1 Signalling Proteins 

 Signalling proteins is vital in host-pathogen interaction in the early stages of infection 

(Tudzynski, et al. 2003) in reception of extracellular signals from the host to pathogens to 

activate effector proteins for initiation of infection into the host. Example of such gene is 

the heterotrimeric G proteins where the G proteins activate other effector proteins such as 

kinases, adenylate cyclases, phospholipases and ion channels (Kronstadt, 1997) and this 

includes the MAPK gene. Receptor proteins recognize surface protein of the host and 

initiates infection mechanisms towards the host. GTP-biding proteins is another candidate 

gene responsible for fungal pathogens’ pathogenicity where research had shown that 

absence of these proteins results in reduced growth rate and morphological changes. 

Furthermore GTP-binding protein is connected to MAP kinases cascades for cAMP 

pathway that triggers the development of appressorium formation (Tudzynski, et al. 2001). 
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 Pathogenic fungi develop different infection mechanism depending on the type of host 

that they are infecting or colonizing, some develop specialized infection structures in order 

to penetrate the tough protective mechanism of the host organism and in most plants that 

would be the plant cell well which is made up of large biopolymers cellulose, hemicellulose, 

lignin and pectin. One example of such specialized structure is the appressoria, which is 

formed by many pathogenic fungi during pathogenesis to penetrate plant primary defence 

mechanism to allow infection of the host plant. Peroxisomes are secreted to facilitate 

virulence proteins, in Magnaporthe oryzae (Chen, et al. 2016) peroxisomes proliferate that 

facilitates β-oxidation which is known to be an important step in pathogenesis. 

2.2.2 Carbohydrate-active Enzymes 

 Carbohydrate-active enzymes, or more famously known as CAZymes are a group of 

enzymes that are involved in the metabolism of glycoconjugate, oligosaccharides, and 

polysaccharides (Zerillo, et al. 2013). The presence of this group of enzymes in pathogenic 

fungi ensure successful penetration through the host plant cell wall as it serves as a catalyst 

in the process of the degradation of the plant cell wall.  

 Smut Fungus, or scientifically known as Ustilago maydis secretes a set of lignocellulose-

degrading enzymes that are capable to breakdown plant cell walls, compromising the plant 

primary defence before colonizing the host plant.  
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2.3 Genomics Study of Pathogenic Fungus 

 Sequencing technologies serves as an enabling platform for various downstream 

research and development, particularly setting the foundation for bioinformatics research 

and development. Discovery of different polymorphic markers such as Single Nucleotide 

Polymorphism, Insertions and Deletions, Copy Number Variations as well as presence of 

genes is important as each of these polymorphisms plays important roles in causing 

pathogenicity in fungus which could confers pathogenicity to pathogenic isolates as it is 

shown in human research. 

 Various massive sequencing projects around the world provided enormous genomic 

resources for the study of fungal pathogenicity. From generic resources such as GenBank 

(Benson, et al. 2018), DDBJ (Fukuda, et al. 2021), and EMBL (Hingamp, et al. 1999) to 

databases with a focus on such as the Fungal Genome Initiatives by Broad Institute (Broad 

Institute, 2014), FungiDB (Basenko, et al. 2018), EnsemblFungi (Howe, et al. 2021), to 

name a few. Most of these fungal genome databases serves as a huge repository for fungal 

genome databases. GenBank, DDBJ, and EMBL are all universal repository for all types of 

sequence data including raw sequencing data, whole genome assemblies, gene annotations, 

protein sequences, variant calls and etc. These data cover all organisms, including various 

species of fungi across the Kingdom of Fungi. While undertaking bioinformatics analysis 

of pathogenic fungi this becomes extremely challenging as it requires enormous effort in 

data clean-up to obtain the datasets of interest for study, which creates a gap to be filled by 

specialized databases or repository. 

 FungiDB contains 220 fungal genome sequences for species of fungi that are associated 

with infectious diseases with mammalian hosts and invertebrate vector of disease (Basenko, 

Univ
ers

iti 
Mala

ya



 

20 
 

et al. 2018). Other than containing fungus sequence data, FungiDB is also an integrated 

platform for data mining and functional genomics analysis. FungiDB provides online 

bioinformatics tools to allow homology study using BLAST tools (Camacho, et al. 2009), 

allowing downstream analysis in comparative genomics effort in various studies such as 

those performed on Aspergillus fumigatus (Guirao-Abad, et al. 2021) and Cryptococcus 

isolates (Yu, et al. 2021). FungiDB Enrichment Analysis in FungiDB allows GO 

annotations of the studies and contains many other tools that provide convenience for 

downstream analysis of fungus genomics study. Publicly available fungus genomics data 

can help accelerate in silico research for bioinformatics community to uncover various 

insights without needing to perform genome or DNA sequencing projects hence reducing 

the time to discovery. Fungal Genome Initiative by Broad Institute was launched in 

November 2000 anchored by a group of fungal geneticists and biologists with the belief 

that the limitation to speed of discovery in biomedical research was caused by minimal 

publicly available fungal genome data (Broad Institute, 2014). Since then, the initiatives 

focused its effort in species of fungi that are important in human health and commercial 

activities (i.e. agriculture) and its value for fungal diversity and comparative genomics.  

 Publicly available fungal genomics data is a valuable starting point for downstream 

analysis, in particular for comparative genomics studies. With available annotation data 

including genes, proteins, exons, transcripts sequences it allows for secondary databases to 

be created based on data in primary databases. The Pathogenic Host Interaction Database, 

PHI-base is a specialized database focuses on catalogues experimentally verified 

pathogenicity, virulence and effector genes from fungal, oomycete and bacterial pathogens 

(Urban, et al. 2017). The database is extremely powerful as it provides validated 

experimental data on genes that participate directly and influence pathogenicity of fungus 
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within a host-pathogen interactions. The database is used extensively in various genomics 

studies of pathogenic fungi in comparative genomics studies and pathogenic genes 

annotation and searches through BLAST. The database has been used to annotate 

pathogenic genes in Ganoderma boninense (Ramzi, et al. 2019), allowing identification of 

genes that participate in virulence of Ganoderma boninense in oil palm. It has also been 

used to predict virulence determinants in draft genomes of Apophysomyces variabilis where 

the species are prevalent causative agents of mucormycosis in India (Prakash, et al. 2021). 

The most recent PHI-base release 4.11 contains 8,411 genes sequences which are found in 

18,190 interactions. These entries are available for public download for local usage of the 

data which provide opportunity to build fungal pathogenic genes annotation pipeline that 

can quickly predict presence of candidate pathogenic genes in new genome sequence 

projects. 

 Fungal pathogenicity in plants has specific mechanisms to challenge the rigid plant cell 

wall while undergoing proliferations. Fungus generates enzymes that can penetrate the rigid 

plant cell wall and this group of enzymes are known as the Carbohydrate-Active Enzymes. 

CAZy, or known as Carbohydrate-Active enZYmes Database (Lombard, et al. 2014) or 

known more popularly in its acronym CAZY is a database that contains protein sequences 

of structurally-related catalytic and carbohydrate-binding modules that are known to have 

different modes of interactions with glycosidic bonds, a very important linkage and type of 

covalent bond that joins carbohydrate molecule to another group. Glycosidic bonds are 

fundamental linkages found in cellular walls (Joseleau & Perez, 2016) thus are prime target 

of Carbohydrate-Active enzymes and thus Carbohydrate-Active enzymes are considered as 

candidate fungal pathogenic genes because of the capability to degrades the plant cell wall 
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and these enzymes classes and associated modules are involved in various biological 

pathway of the host organism. 

 Massive sequence data and literature published on fungal pathogenicity also allow 

opportunity to create a database based on these published experimental data. The Database 

of Virulence Factors in Fungal Pathogens (DFVF) (Lu, et al. 2012) was a project aimed at 

filling the missing gaps in understanding of fungal pathogenicity by aggregating all known 

virulence factors also developing an algorithm that allows prediction of potential candidate 

genes that will be contributing to development of fungal pathogenicity. The database was 

built by leveraging of text-mining technique pursued by PubMed database and the Internet 

by looking for fungal disease virulence keywords and in-house tools were developed to 

allow searching of relevant supporting literatures. With this methodology the database 

currently contains 2058 protein sequences. 

2.3.1 Inter-Phyla Comparison and Host-Independent Comparison 

 The similarities between pathogenic fungi that attacks plant and animal hosts are 

unsurprisingly high. Both groups of fungus are similar in the mechanisms of pathogenicity 

which are all as part of the fungus life cycle from spore germination, invasion via physical 

openings, colonization and alteration of host, reproduction, and transmission. These 

similarities in the pathogenicity mechanism prompted the interest in studying these fungi 

not as a separate group but as a same study group which allow further understanding in 

pathogenic mechanism in the Kingdom of Fungi. 

 From a different perspective at looking to compare between pathogenic fungi that infects 

plant host and animal host genomic identification provides a mean of understanding 

adaptation of these species of fungi based on host-specificity. Fungal species that infects 
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plant hosts can have broad or narrow host of ranges (Sexton & Howlett, 2006) and 

specificity is defined by R genes, or known as resistance genes in the host and the virulence 

factors found in the pathogenic fungi (van der Does & Rep, 2007). The range of host that a 

fungus can infect does not limit to just plant or animals, some extreme examples like within 

the genus Fusarium causes disease across plant species and animals including human 

(Sharon & Shlezinger, 2013), which makes understanding the mechanism behind 

pathogenicity even more peculiar. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Comparison of infection mechanisms by ascomycete pathogens of plants and 

animals host (Sexton & Howlett, 2006) 
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 Drawing parallels with bacterial pathogens, study has found that Pseudomonas 

aeruginosa which causes pneumonia, infections in blood (CDC, 2021) in human shows 

high degree of conservation in the virulence mechanism used to infect both human and 

plants. The pathogen also causes infection on the roots of Arabidopsis and sweet basil as its 

form a layer of biofilm under specific physiological conditions (Walker, et al. 2004). 

Evidence also showed that the bacterial pathogen used a common subset of virulence 

factors for pathogenesis in both plants and animals (Walker, et al. 2004) which further 

demonstrated that pathogens that infects range of host uses a common pathogenesis 

mechanism. Understanding the common mechanism behind the range of potential hosts for 

infection can shed lights and gives rise to better understanding of host specificity and 

mechanism of pathogenicity in the kingdom of fungus. 

2.3.2 Development of Genomics Markers through Comparative Genomics 

 The emergence of sequencing technologies had increased the resolution of research into 

molecular causative factors in molecular plant pathology. Through genome sequencing of 

plant pathogens like Magnaporthe oryzae (Dean et al. 2005), Botrytis cinerea (Amselem et 

al. 2011), Ustilago maydis (Kamper et al. 2006), and Puccinia graminis (Duplessis et al. 

2011) coupling with improving bioinformatics methodology genome assembly, genome 

annotation, comparative genomics enabling pathologist to identify genomics features in 

fungal pathogens that plays important role in fungal pathogenicity, on top of that allowing 

further understanding of those genomic features will allow scientists to pursue and develop 

faster and more accurate diagnostic tool for fungus-related diseases. 

 Whole genome sequencing of plant fungal pathogens allows high quality genome 

assembly to identify reveal-underlying sequences of the fungus. Genome annotation of the 
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assembled genome then predicts gene models based on ab initio prediction as well as 

homology searches (Yandell & Ence, 2012) to known nucleotide or protein sequences.  

Availability of an annotated genome allows downstream bioinformatics analysis such as 

polymorphic markers identification through genome mapping (Davey, et al. 2011) and 

comparative genomics (Wei, et al. 2002). Recent genomic studies, coupling with the 

advance application of bioinformatics tools had shed lights on fungal pathogenicity. A 

study on Verticillium dahliae proposed the possibility of horizontal gene transfer (HGT) 

from bacteria origins in which directly contributed to the pathogenicity of the fungus – 

known to be a plan pathogen that inflicts hundreds of plant species and causing huge 

economic losses annually (Shi-Kunne, et al. 2019). 

 Same effort was applied to the comparative genomics of human pathogenic fungi as well. 

Most prevalent fungal species that causes significant health implications in human are the 

Candida and Aspergillus (Moran, et al. 2011) hence understanding the sequences in the 

genomic level is extremely important to allow development of effective antifungal therapy 

and understanding emergence of drug resistance. A study was done to understanding drug 

resistance of Candida auris where genomic data such as epidemiology and evolutionary 

information were used for the study (Chybowska, et al. 2020). Comparative genomics study 

had also been done on Aspergillus to improve understanding of genome heterogeneity 

between Aspergillus fumigatus, Aspergillus lentulus, and Aspergillus fumigatiaffinis (Dos 

Santos, et al. 2020). These three species are extremely similar morphologically to one 

another hence making it challenging to distinguish one species from another by phenotypic 

observation (Alastruey-Izquierdo, et al. 2014). This make genomic study extremely 

important as sequencing and downstream bioinformatics analysis can uncover genomic 

features that are unique to each species such as Single Nucleotide Polymorphism. 
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 Comparative genomics techniques were applied in studying not only genetic diversity, 

but also in discovery of important genomic markers such as Short Sequence Repeats (SSR), 

Short Tandem Repeats (STR), Long Tandem Repeats (LTR), Single Nucleotide 

Polymorphisms (SNP) etc. Recent study on Fusarium oxysporum is an example of such 

application of comparative genomics in uncovering genomics markers for quicker detection 

of pathogenic isolates of the species (van Dam, et al. 2017). The study includes candidate 

effector genes from 88 Fusarium oxysporum genomic assemblies for comparative genomics 

to distinguish the isolates based on the traits where it could differentiate between cucurbit-

affecting formae speciales from each other and differentiating the pathogenic and non-

pathogenic isolates.  

 General identification of pathogenic and non-pathogenic fungi often investigates genetic 

features such as the presence of what was considered as pathogenicity related genes and 

proteins. Presence or absence of pathogenicity-related genes is important in understanding 

fungal pathogenicity and its viability was demonstrated in a study comparing Fusarium 

graminearum and Fusarium venenatum where each is known as a non-pathogenic and a 

pathogenic species of fungi respectively (King, et al. 2018). The study presented a useful 

insight to support such a hypothesis as the group of scientists discovered, through 

comparative genomics that through a comparison of the proteomes of each species there 

were 15 putative secondary metabolite gene clusters, 109 secreted proteins, and 38 

candidate effectors that are not identified in the non-pathogenic subject. 

 Comparative genomics effort will create a good foundation on using identified 

pathogenicity-related genes and the molecular markers identified for molecular diagnostic. 

Fungal infections on human or animal hosts are easier to detect and identified compared to 

plant disease caused by pathogenic fungi. Fungal nail infections or known technically as 
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“onychomycosis” can be diagnosed easily as the disease symptoms can be observed 

visually through rotting of nails (Gupta, et al. 2000). The same can be said for many fungi 

disease caused by different genus of fungi such as Aspergillosis, Candidiasis, 

Mucormycosis, Pneumocystis pneumonia and many more (CDC, 2021). Fungal infection in 

human and animal jeopardize health and livelihood of the subject hence early diagnosis is 

crucial. With visible symptoms such as skin rashes or coughing, it is easier for early 

detection and diagnosis was done through direct microscopic examination of clinical 

samples, histopathology, culture, and serology of patient clinical samples (Kozel & Wickes, 

2014). Fungus diseases in plants however in some cases is hard to detect and symptoms are 

not visible and could be too late when it is observed. Classic example of that is the basal 

stem rot (BSR) and upper stem rot (USR) by Ganoderma boninense (Hushiarian, R. et al. 

2013). As the infection is not visually observable, it will be too late when its symptom is 

observable as palm trees dies from within 1 or 2 years, to 3 to more years depending on the 

age of the palm once symptoms is observable (Corley & Thiker, 2003). 

 In the case of BSR or USR caused by Ganoderma boninense traditional diagnostic 

methods will not be practical as it will be too late. Molecular diagnostic methods using 

PCR amplifications provides the way forward for early detection of fungal diseases that are 

not observable. This method requires the presence of unique genome sequence of the target 

organism, and this is usually a well-conserved region with polymorphic markers identifying 

different species. A specific primer (Hariharan & Prasannath, 2021) will be designed to 

amplify the target region of interest. Example target region of the fungal genomes that had 

been identified for molecular diagnostic includes the highly conserved internal transcribed 

spacer ITS-region in fungus – known for fungal diversity analysis and important marker for 

fungal DNA barcoding (Bellemain, et al. 2010), and alternative sequences such as 
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cytochrome b gene which was used as a target region for Loop-Mediated Isothermal 

Amplification (LAMP) Assay for detection of airborne Uromyces betae (Kaczmarek, et al. 

2019). Molecular diagnostic provides the possibility of early detection, and application of 

the methodology is applicable to both fungal diseases in plants or in animal and human. 

2.3.3 Bioinformatics Tools and Platforms – Availability 

 Explosion of biological data produced by different research institutions around the world 

creates an entirely new challenges to uncover meaningful insights of these generated data 

and information. Data ranging from genomics, transcriptomics, and proteomics data 

requires further curation, annotations, and interpretation to facilitate useful and beneficial 

discovery. Throughout the years since the reduction of sequencing cost had led to 

development of various bioinformatics tools that enabled scientists to uncover mystery 

behind large pool of generated data. Fungus specific databases like FungiDB, CAZy, PHI-

base, and DFVF are some examples were information and data related to fungal 

pathogenicity were made available. This provided opportunities for the research community 

to leverage on these data and using the right tools to uncover more insights into fungal 

pathogenicity. 

 Development of bioinformatics tools and software specializing and focusing on different 

paradigm of study is key to increase spectrum of understanding, enlarging perspective of 

biological research. These bioinformatics tools are developed to deal with data in various 

stages of readiness, ranging from tools like FastQC (Andrew, 2010) that enable quality 

control of DNA/RNA sequences generated by sequencing machine to downstream through 

that deal with more complex interpretation of data such as Cytoscape (Shannon, et al. 2003), 

VisANT (Hu, 2014), Pathway Studio (Nikitin, et al. 2003) and Patika (Demir, et al. 2002), 
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which allow scientists to explore biological networks, as a mean to better understand 

integrative biology, system biology, and integrative bioinformatics.  

 Standalone tools such as BLAST, a universally common tool utilize for comparison of 

two or more DNA/RNA/Protein sequences understanding the degree of similarity and 

identity between sequences which implies degree of conservation of sequences among 

subject of studies, often utilize to understand relationship between species of organism. 

ClustalW is another example of such standalone tool that incorporates statistical analyses of 

subject sequences, building relationship trees of input sequences that allow not only 

understanding but also visualization of relative relationships between multiple sequences in 

study. Recent trends in bioinformatics tools development indicate that there are more 

requirement and necessities within the scientific community to have integrated tools that 

behave like an “One-Stop Centre” for biological data analysis as it can become 

cumbersome for scientists that does not have the required skillsets to execute sequence 

analysis via multiple bioinformatics tools as it requires time invested in understanding the 

selected bioinformatics tools and as such are a higher barrier to entry for most scientists. In 

view of such demanding unique scenario increasingly integrated bioinformatics analysis 

platform are developed for scientists for integrated sequence data analysis.  

 UGENE (Okonechnikov, et al. 2012) is an example of a bioinformatics tools and 

provide a platform for development of an integrated pipeline. UGENE provides a friendly 

user-interface for scientists to develop desired bioinformatics pipeline and workflows for 

sequence data analyst. With many popular standalone bioinformatics tools within UGENE, 

it also provides a user-friendly interface for scientists to easily build desired workflow with 

a drag-and-drop feature that requires minimum computer programming knowledge.  
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 The continuous innovation of Next Generation Sequencing technology sees cost of raw 

Megabase of DNA sequence steadily dropping from when it was US$10K to less than 

US$100 in 2019, whereas cost per genome has seen identical trend in reducing from 

US$100M in 2001 to US$1K aligning with Moore’s Law – a theory that states the doubling 

of compute power every two years and its known that technology improvements that are in 

trend with Moore’s Law is seen as performing well (Wetterstrand, 2020). With the reducing 

cost in sequencing effort and increase availability of the technology across many areas of 

research, more sequencing data are generated – with some sequencing platforms like the 

Illumina NovaSeq generates 2TB-6TB of raw sequencing data for each sequencing runs 

that are performed (Besser, J. et al. 2018). With so much data generated it requires 

bioinformatics tools and software to process the datasets to generate useful insights into the 

massive pool of data.  

2.3.4 Trends of Integrated Comparative Genomics Platform Development 

 Comparative genomic analysis usually involves the comparative analysis of sequence 

data from multiple sources, some within species and some across multiple species. These 

analyses usually involve multi-stage data analysis and therefore requires combination of 

bioinformatics tools and applications to draw meaningful discussions and deduction in 

quest of answering experimental hypothesis. Most comparative genomics platforms allow 

comparative analysis of DNA sequences and streamlining the process from data analysis to 

visualization of results. EDGAR (Dieckmann, et al. 2021) is such example of integrated 

comparative genomics platform and is one of the most popular platforms for gene based 

comparative genomics and differential gene content analysis. Venn diagrams or synteny 

plots can be generated to provide a user-friendly and visually appealing results 

interpretation.   
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CHAPTER 3 

METHODOLOGY 

3.1 Compute Resource and Environment 

 Google Cloud Compute was utilized to host a virtual machine running Ubuntu 18.10 

with 10GB of RAM and 6 cores to run initial database creation and homology searches and 

a local Hyper-V virtual machine running Ubuntu 18.10 with 16GB of RAM was used to 

run downstream interpretive analysis. 

3.2 Data Source 

3.2.1 Fungal Genome Initiative  

 Genome sequences of 86 fungal species in this study was downloaded from the 

repository of Fungal Genome Initiative, a collective effort between Broad Institute Harvard 

and Massachusetts Institute of Technology and a wider fungal community (Broad Institute, 

2014). The Fungal Genome Initiative has collected and sequenced fungal species that had 

portrayed importance of its existence and applications development in medicine, agriculture, 

and industry (Broad Institute, 2014). The initiative had sequenced more than 100 fungal 

species, of which includes well known human and plant pathogens like Magnaporthe 

oryzae, Botrytis cinerea and many more. These studies and sequencing projects are 

immensely important to explore and increase the understanding of fungal pathogenicity, as 

the sequencing of a fungal species lays important foundation for applied studies in the quest 

of answering question of fungal pathogenicity on its host, be it human or plant and 

discovering the answers to diagnose genomic pathological patterns or discovering and 

enhancing treatments for diseases caused by fungal pathogens. 
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 All 86 fungi sequences as listed in  Table 3.1 were downloaded from Fungal Genome 

Initiative FTP site and these sequences includes assembled supercontigs and contigs 

sequences, annotated genes and protein sequences, as well as sequences upstream and 

downstream gene coding regions. Genome annotations were done using pipeline and 

methodology established by Broad Institute Gene finding Method (Broad Institute, 2014) 

and it is a multistage genome annotation process the annotation process is described in 

detailed. 

 The Fungal Genome Initiative in total consists of both nucleotide and protein sequence 

data for 247 fungal species and isolates. With the duplication and existence of multiple 

isolates for some species a representative strain was select randomly for the search of 

homologous pathogenicity-related sequences and this resulted in the final 86 fungal species 

and sequences as listed in Table 3.1 for this study.  

                                 Table 3.1: List of 86 Fungal species 

Table 3.1, continued. 
# Fungal Species Phylum Human/Plant 
1 Arthroderma benhamiae Ascomycota Human 
2 Aspergillus clavatus Ascomycota Animal/Human 
3 Aspergillus flavus Ascomycota Plant 
4 Aspergillus fumigatus Ascomycota Human 
5 Aspergillus nidulans Ascomycota Human 
6 Aspergillus niger Ascomycota Plant 
7 Aspergillus oryzae Ascomycota Human 
8 Aspergillus terreus Ascomycota Human 
9 Blastomyces dermatitidis Ascomycota Human/Animal 
10 Botrytis cinerea Ascomycota Plant 
11 Candida albicans Ascomycota Human 
12 Capronia coronata Ascomycota Human 
13 Capronia epimyces Ascomycota Human 
14 Capronia semiimmersa Ascomycota Human 
15 Cladophialophora bantiana Ascomycota Human 
16 Cladophialophora carrionii Ascomycota Plant 
17 Cladophialophora immunda Ascomycota Human 
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Table 3.1, continued. 
# Fungal Species Phylum Human/Plant 
18 Cladophialophora psammophila Ascomycota Animal/Human 
19 Cladophialophora yegresii Ascomycota Plant 
20 Coccidioides immitis Ascomycota Human 
21 Colletotrichum graminicola Ascomycota Plant 
22 Colletotrichum higginsianum Ascomycota Plant 
23 Coniosporium apollinis Ascomycota Plant 
24 Exophiala aquamarina Ascomycota Animal/Human 
25 Exophiala mesophila Ascomycota Animal/Human 
26 Exophiala oligosperma Ascomycota Animal/Human 
27 Exophiala sideris Ascomycota Animal/Human 
28 Exophiala spinifera Ascomycota Animal/Human 
29 Exophiala xenobiotica Ascomycota Animal/Human 
30 Fonsecaea multimorphosa Ascomycota Animal/Human 
31 Fonsecaea pedrosoi Ascomycota Animal/Human 
32 Fusarium graminearum Ascomycota Plant 
33 Fusarium oxysporum Ascomycota Plant 
34 Fusarium verticillioides Ascomycota Plant 
35 Gaeumannomyces graminis Ascomycota Plant 
36 Geomyces destructans Ascomycota Animal 
37 Histoplasma capsulatum Ascomycota Animal 
38 Magnaporthe oryzae Ascomycota Plant 
39 Magnaporthe poae Ascomycota Plant 
40 Microsporum canis Ascomycota Plant 
41 Microsporum gypseum Ascomycota Human 
42 Neosartorya fischeri Ascomycota Human 
43 Neurospora crassa Ascomycota Human 
44 Ochroconis gallopava Ascomycota Human 
45 Paracoccidioides brasiliensis Ascomycota Human 
46 Paracoccidioides sp Ascomycota Human 
47 Phaeosphaeria nodorum Ascomycota Human 
48 Phialophora europaea Ascomycota Plant 
49 Pneumocystis carinii Ascomycota Human 
50 Pneumocystis jirovecii Ascomycota Human 
51 Pneumocystis murina Ascomycota Human 
52 Pyrenophora tritici-repentis Ascomycota Human 
53 Rhinocladiella mackenziei Ascomycota Plant 
54 Schizosaccharomyces cryophilus Ascomycota Human 
55 Schizosaccharomyces japonicus Ascomycota Plant 
56 Schizosaccharomyces octosporus Ascomycota Human 
57 Schizosaccharomyces pombe Ascomycota Human 
58 Sclerotinia sclerotiorum Ascomycota Human 
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Table 3.1, continued. 
# Fungal Species Phylum Human/Plant 
59 Sporothrix schenckii Ascomycota Human 
60 Trichophyton equinum Ascomycota Human 
61 Trichophyton interdigitale Ascomycota Human 
62 Trichophyton rubrum Ascomycota Animal 
63 Trichophyton tonsurans Ascomycota Human 
64 Trichophyton verrucosum Ascomycota Human 
65 Verticillium alfalfae Ascomycota Human 
66 Verticillium dahliae Ascomycota Plant 
67 Cryptococcus gattii Basidiomycota Plant 
68 Cryptococcus neoformans Basidiomycota Human 
69 Microbotryum violaceum Basidiomycota Human 
70 Puccinia graminis Basidiomycota Plant 
71 Puccinia striiformis Basidiomycota Plant 
72 Puccinia triticina Basidiomycota Plant 
73 Ustilago maydis Basidiomycota Plant 
74 Batrachochytrium dendrobatidis Chytridiomycota Human/Animal 
75 Spizellomyces punctatus Chytridiomycota Unknown 
76 Anncaliia algerae Microsporidia Human 
77 Edhazardia aedis Microsporidia Human 
78 Encephalitozoon cuniculi Microsporidia Animal 
79 Encephalitozoon intestinalis Microsporidia Human 
80 Nematocida parisii Microsporidia Human 
81 Nematocida sp1 Microsporidia Human 
82 Nosema ceranae Microsporidia Insect 
83 Vavraia culicis Microsporidia Insect 
84 Vittaforma corneae Microsporidia Human 
85 Mucor circinelloides Mucoromycota Human 
86 Rhizopus delemar Mucoromycota Plant 

  

 Of the 86 species of fungi downloaded most of the fungal species resides in the phylum 

of Ascomycota – comprises of nearly 80% of the datasets. The remaining entries comprises 

member of fungi from Basidiomycota, Chytridiomycota, Mucormycotina, and 

Microsporida. All species in this study are pathogenic fungi but infects different hosts 

ranging from animal, human, and plant.  
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3.2.2 Data Clean Up 

 Although all variations of sequences were available for each fungal species downloaded, 

the study focuses on utilizing protein sequences for comparative analysis between different 

species as it provides lower level of resolution – less variations than using nucleotide 

sequences however it has a higher level of sensitivity as it would easily pick up variations 

in sequences between sequences of organisms from different analysis. This is applicable for 

all sequence analyses other than the extraction of Single Nucleotide Polymorphism. 

3.3 Fungus Pathogenic-related Databases 

3.3.1 Pathogen Host Interaction - PHI-base  

 Pathogen Host Interaction Database (Winnenburg, et al. 2006) or better known as PHI-

base is a database that contains collection of experimentally verified fungal, oomycetes and 

bacterial pathogens that are causative agents for inflicting various diseases in its inhabited 

host that ranges from animals, plants, other fungal species as well as insects. The database 

was curated by domain experts coupling with experimental results and through gene 

disruption and complementation methodology.  

 Protein sequences were downloaded from the website of PHI-base Release 4.5 which 

consists of 5,183 genes that displayed either increase / decrease in disease virulence. These 

PHI-base genes were identified from 264 pathogens, all of which are known to cause over 

465 types of diseases. PHI-base Release 4.5 was downloaded and created a local PHI-base 

by using makeblastdb (version 2.6.0) with the following command: 

 makeblastdb -dbtype prot -in <PHI-base Release 4.5 FASTA> -out <Output DB name> 
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3.3.2 Carbohydrate-Active enZYmes Database – CAZY 

 Carbohydrate-Active enZYmes Database (Lombard, et al. 2014) or known more 

popularly in its acronym CAZY is a database that contains protein sequences of 

structurally-related catalytic and carbohydrate-binding modules that are known to have 

different modes of interactions with glycosidic bonds – important linkage and type of 

covalent bond that joins carbohydrate molecule to another group. Glycosidic bonds are 

fundamental linkages found in cellular walls (Joseleau & Perez, 2016) thus are prime 

targets of carbohydrate-active enzymes and thus carbohydrate-active enzymes are 

considered as candidate fungal pathogenic gene products because of the capability to 

degrade the plant cell wall. These enzymes classes and associated modules are involved in 

various biological pathway of the host organism as described in Table 3.2. 

Table 3.2: Enzyme Classes and Associated Modules 

Family Description 

Glyicoside Hydrolases (GHs) Involves in hydrolysis and/or rearrangement of 
glycosidic bonds 

GlycosylTransferases (GTs) Involves in formation of glycosidic bonds 

Polysaccharide Lyases (PLs) Involves in non-hydrolytic cleavage of glycosidic bonds 

Carbohydrate Esterases (CEs) Involves in hydrolysis of carbohydrate esters 

Auxiliary Activities (AAs) Involves in redox enzymes that act in conjunction with 
CAZymes 

Carbohydrate-Binding Modules 
(CBM 

Involves in adhesion to carbohydrates 
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 Protein sequences from the Carbohydrate-Active enZYme Database were downloaded 

from dbCAN2 meta server. dbCAN2 meta server is an automated Carbohydrate-active 

enzyme ANnotation web server supported by the National Science Foundation of the 

United States of America (Yin, et al. 2012). A total of 921,174 protein sequences in 

FASTA format were downloaded from CAZY Database dated 20th July 2017 and a local 

CAZY database was created using makeblastdb (version 2.6.0) with the following 

command: 

 makeblastdb – dbtype prot -in <CAZY Database 07202017> -out <Output DB name> 

3.3.3 Database of Virulence Factors in Fungal Pathogens - DFVF 

 The Database of Virulence Factors in Fungal Pathogens (DFVF) (Lu, et al. 2012) was a 

project aimed at filling the missing gaps in understanding of fungal pathogenicity by 

aggregating all known virulence factors also developing an algorithm that allows prediction 

of potential candidate genes that will be contributing to development of fungal 

pathogenicity. The database was built by leveraging of text-mining technique sued by 

PubMed database and the Internet by looking for fungal disease virulence keywords and in-

house tools were developed to allow searching of relevant supporting literatures. 

 In total there were 2058 protein sequences within the database that were downloaded 

from the database and a local copy of the database were created by using makeblastdb 

(version 2.6.0) with the following command: 

 makeblastdb – dbtype prot -in <DVFV Database> -out <Output DB name> 
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3.4 Fungal Pathogenic Gene Comparative Pipeline 

 Development of the Fungal Pathogenic Gene Comparative Pipeline includes multiple 

steps to provide annotation and comparison of input protein sequences against aggregated 

known pathogenic Gene Database which includes the sequences from the PHI-base, the 

Carbohydrate-Active enZYme Database, as well as the Database of Fungal Virulence 

Factors. The 86 fungal genome sequences, including nucleotide and protein sequences were 

downloaded.  

 The pipeline as visualized in Figure 3.1 incorporates homology searches, multiple 

sequence alignments, phylogenetic analysis to provide interpretation of relationship 

between in-query protein sequence. Corresponding gene sequences were identified by 

aligning nucleotide gene sequences with BLASTX to the identified candidate common 

protein. Visualization of the data including Multiple Sequence Alignments and 

Phylogenetic Tree can be done through bioinformatics visualization tools like Unipro 

UGENE (Okonechnikov, et al. 2012) and Artemis (Carver, 2012) can be used to visualize 

SNP data that were mined using SNP-Sites (Page, et al. 2016). 
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 The Fungal Pathogenic-Related Gene Comparative Pipeline as visualized in Figure 3.1 

was then constructed using multiple bioinformatics tools with substantial shell scripting to 

allow post-processing of results files from various tools. Source code of all shell scripts are 

attached in Appendix A. 

Fungal Genome Initiative 
(Broad Institute)

86 fungus species

BLASTP BLASTP BLASTP

CAZy PHI-base DFVF

%Identify: 80
E-value: 1e-5

Filtered tabulated results

Bash Shell Scripting:
Mining of Common Pathogenic Genes

Common Fungus 
Pathogenic Genes

Phylogenetics Tree 
Building (PHYLIP)

SNP Mining

Common Fungus 
Pathogenic 

Genes Database

Multiple Sequence 
Alignment (MAFFT)

Visualization (UGENE)

 

Figure 3.1 Fungal Pathogenic-Related Gene Comparative Pipeline 

  

  

Common Fungal 
Pathogenic Gene 
Database 
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3.4.1 Identification of Common Pathogenicity-Related Genes 

 Homology searches using each of the 86 fungal proteome against the three databases 

namely CAZy, PHI-base, and DFVF (Lu, et al. 2012) yielded results in BLAST tabular 

format for each of the fungal species. Basic Local Alignment Search Tool, or best known as 

BLAST (Ye, et al. 2006) is the most widely used bioinformatics sequence alignment tool 

utilized to search for homology between two given sequences calculating an alignment 

score based on sequence similarities scores that includes scoring based on mismatches, gap 

opening and etc. Local NCBI-BLAST+ was utilized for homology searches of annotated 

translated gene sequences of 86 fungal species in study against local copies of PHI-base, 

CAZy, and DFVF in Fungal Pathogens. In an effort to improve efficiency in sequence 

homology search a massive parallel approach was developed using Shell Scripting 

Language. The protein sequences of the 86 fungi in study is first separated to different 

portion, each portion is then submitted to run BLASTP analysis on the compute. BLASTP 

parameters curated includes using an e-value cut-off of 10-5 and the results are produced in 

tabular format.  

 Although there are no hard rules around cut-off parameters for E-value and %Identity, 

the values chosen for this study largely based on the understanding of good ranges based on 

study by Pearson, 2013. E-value < 0.001 is reliable for inferring homology between 

protein:protein alignments whereas %Identity between 70-80 is useful to infer evolutionary 

distances. Stringent combination of both parameters will enable identification of high 

confidence homologs, and that was the approach taken for this study. 
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The following BLASTP command were utilized to execute homology searches of fungus 

protein sequences against the three stated pathogenic Gene Database: 

 blastp -query <input sequence FASTA> -db <Database file> -evalue 1e-5 -outfmt 6 -

num_threads 2 -out <output file name> 

 Upon completion of homology searches of the 86 fungal protein sequences in tabular 

output format the results are then processed and filtered based on different percent identity 

scores starting from 50 with an increment of 10 to percent identity score of 90 and ending 

with a final cut-off of 95 maximum identity score. Common candidate pathogenic protein is 

then shortlisted via text mining sorting and filtering the protein sequence identifier. 

 Genes sequences of the common pathogenic genes are then extracted by aligning genes 

sequences from the 86 fungi with BLASTX to the protein sequences of the common 

pathogenic protein sequences. With that the top hit of each fungal sequences with a percent 

identity score of 80 against the common pathogenic protein sequence: 

 blastx -query <input sequence FASTA> -db <Database file> -evalue 1e-5 -outfmt 6 -
num_threads 2 -out <output file name> 

 These common candidate pathogenic genes will then be identified for further analysis 

with Multiple Sequence Alignment and Phylogenetic Analysis. 

3.4.2 Multiple Sequence Alignment of Homologous Pathogenic Genes 

 Common pathogenic genes across all 86 fungal species that are identified from 

homology searches are then subject to multiple sequence alignment to produce both 

sequence alignment files and phylogenetic trees. MAFFT (Katoh, et al. 2002) was utilized 

to perform Multiple Sequence Alignments of the candidate common genes across most 

species of fungi and multi-FASTA alignments. Default gap opening penalty of 1.53 was 
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utilized to generate multiple sequence alignments and a phylogenetics tree is then generated 

by using PHYLIP (Felsenstein, 1989) using F84 Data Matrix neighbour joining method. 

3.4.3 Single Nucleotide Polymorphisms (SNP) Mining 

 Single Nucleotide Polymorphisms mining from multi-FASTA sequence alignment is 

carried out using SNP-sites (Page, et al. 2016). This is a different approach comparing to 

conventional SNP mining tool leveraging on deep sequencing data like SAMtools (Li, et al. 

2009) as this tool was developed to cater for extracting SNPs from multiple sequence 

alignment files output from various MSA tools such as MUSCLE (Edgar, 2004), PRANK 

(Löytynoja, 2014), MAFFT (Katoh & Standley, 2013), or ClustalW (Thompson, et al. 

1994). According to Page et al. (2016) SNP-Sites takes only 267 seconds using 59 MB of 

RAM and 1 CPU core to process multiple sequence alignment files of 8.3 GB file size 

which approximate to datasets of 1842 taxa with 22618 SNP sites, making it possible and 

feasible to process large multiple sequence alignment files in a conventional computer. 

 The output file from MAFFT was fed to SNP-Sites with default settings and three output 

file types were obtained and there are VCF (Variant Calling Format), aln (Multiple 

Sequence Alignment file), and a phylogenetic tree file. All phylogenetic tree files were then 

visualized using Unipro UGENE (Okonechnikov, et al. 2012), a cross-platform 

bioinformatics software, and VCF files were visualized with Artemis (Carver, 2012), an 

integrated platform that allows visualization of sequence and its feature data. 
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3.4.4 Phylogenetics Tree Building 

 Phylogenetics trees were built using multiple sequence alignment files from MAFFT 

using PHYLIP Neighbour Joining Algorithm, and Jones-Taylor-Thornton distance matrix 

model with a Coefficient of variation of substitution rate among sites of 0.50 and 

Transition/transversion ratio of 2.00. These phylogenetic trees were then visualized using 

Unipro UGENE. 

3.4.5 Common Fungal Pathogenic Gene Database (CFPG) 

 The building of a web application for the Common Fungal Pathogenic Gene Database to 

serve as a portal to access data and information found in the study is essential. For the 

platform of choice, the XAMPP (Apache Friends, 2023) release 7.2.34 Web Server solution 

was installed to host the database and the web page allowing access to the CFPG Database. 

The following services are utilised in XAMPP: 

- Apache (Web Page) 

- Tomcat (Web Server) 

- MySQL (Database) 

- PHP (Application) 

 Joomla!, (Rochen, 2017) a Content Management System was used to develop the Front 

End of the Common Fungal Pathogenic Gene Database along with the Art Table Joomla! 

extension which enable display of data and allowing user input to search and export data 

for further study and utilization. The Common Fungal Pathogenic Gene Database is built 

on the Web Server solution, with standard tables provided by Joomla! CMS template and 

three custom tables created to store data.  
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 The first table that was created for the CFPG Database was MASTER_FUNGUS. This 

table contains list of all fungal species that was used for Common Fungal Pathogenicity-

related Genes mapping and extraction. The second table that was created for the CFPG 

Database was MASTER_COMMON_GENE as listed in Table 3.4. This table stores all 

proteins identified from homology searches against all fungal species listed in Table 3.3 

and passed through filtering criteria. 

Table 3.3: Master list of All Fungal Species Utilized. 

Name Type Null Description 

SEQ_NUM int(11) No Auto-incremental unique sequence number. 

SPECIES varchar(254) No Full fungal species name. 

TAX_ID int(11) Yes NCBI Taxonomy ID related to the species. 

PHYLUM varchar(50) Yes Phylum of the species. 

CHANGED_ON datetime No Datetime stamp automatically updated 
when a record is updated. 

 

Table 3.4: Master list of all Common Fungal Pathogenicity-Related Genes 

Table 3.4, conti 

Name Type Null Description 

ENTRY_NUM int(11) No Auto-incremental unique 
sequence number. 

NAME varchar(9) Yes CFPG ID, primary key of the 
table. 

UNIPROT_ENTRY_NAME varchar(50) Yes UniProt Entry Name associated to 
the CFPG entry. 

UNIPROT_ENTRY varchar(50) Yes UniProt Entry associated to the 
CFPG entry. 

DB_ENTRY_NAME varchar(50) Yes Source Database Entry Name 
associated with the CFPG ID. 

DB_ENTRY_TYPE varchar(50) Yes Source Database Entry Type 
associated with the CFPG ID. 
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Table 3.4: Master list of all Common Fungal Pathogenicity-Related Genes 

Table 3.4, conti 

Name Type Null Description 

SOURCE_DB varchar(50) Yes Source Database of associated 
with the CFPG ID. 

FAMILY varchar(50) Yes CAZy Family. Only populated for 
CFPG ID where Source Database 

is CAZy. 

FAMILY_DESC varchar(50) Yes CAZy Family Description. Only 
populated for CFPG ID where 

Source Database is CAZy. 

ORGANISM varchar(254) Yes Host organism of the gene based 
on UniProt. 

INTERPRO_ID varchar(254) Yes InterPro ID associated with the 
CFPG ID. 

PROTEIN_NAME varchar(254) Yes Protein Name of the associated 
CFPG ID based on UniProt. 

GENE varchar(50) Yes Gene Name of the associated 
CFPG ID based on UniProt. 

LENGTH int(11) Yes Protein sequence length of the 
associated CFPG ID based on 

UniProt. 

HOST varchar(254) Yes Known host that are affected by 
the CFPG ID entry. 

RELATED_DISEASE varchar(254) Yes Known diseases that caused by 
the CFPG ID entry. 

CHANGED_ON datetime No Datetime stamp automatically 
updated when a record is updated. 

UNIPROT_LINK varchar(254) Yes Link to UniProt for the CFPG ID. 
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 Third and the last table as listed in Table 3.5 that was created for the CFPG Database 

was the GENE_SPECIES_MAPPING where this table contains a mapping list between 

each CFPG Genes and all fungal species where its homologs are found. 

Table 3.5: Mapping of CFPG ID to fungal species 

Name Type Null Description 

SEQ_NUM int(11) No Auto-incremental unique sequence 
number. 

NAME varchar(9) No CFPG ID, primary key of the table. 

FUNGUS_SPECIES int(11) No Fungal species associated with the 
CFPG ID. 

 

 Data for each table includes links to primary databases such as UniProt (UniProt 

Consortium, 2021) and NCBI Taxonomy (Schoch, et al. 2020). Once results are obtained 

data are compiled and collected in Excel spreadsheets and exported to csv format before 

uploading to the MySQL. The front-end of the web application was developed using 

Joomla! CMS, using the default Beez3 template. The relationship between the tables are 

visualized in Figure 3.2. 

 

 

 

 

 

 

Figure 3.2: Entity-Relationship Diagram of 3 Main tables for CFPG. 
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CHAPTER 4 

RESULTS 

4.1 Results from Identification of Common Pathogenic Genes 

 Homology searches of 86 fungal species against PHI-base, CAZy, and DFVF yielded 

homologous hits based on different Maximum %Identity cut-off values of 50, 60, 70, 80, 

90, and 95 can be seen in Tables 4.1, 4.2, and 4.3 below: 

Table 4.1: Homologous Hits of 86 fungal species against PHI-base 

Table 4.1, continued. 
Species All 50 60 70 80 90 95 

Anncaliia algerae 8431 5393 3964 2614 1493 690 335 
Arthroderma benhamiae 42858 2671

2 
1848

0 
1227

9 
7007 2999 1351 

Aspergillus clavatus 54826 3361
3 

2242
4 

1454
5 

8379 3538 1615 

Aspergillus flavus 66840 4040
2 

2647
8 

1686
1 

9284 3825 1790 

Aspergillus fumigatus 35 24 12 9 4 1 0 
Aspergillus nidulans 60701 3719

5 
2436

4 
1569

0 
8785 3691 1674 

Aspergillus niger 50284 2987
1 

1896
6 

1197
5 

6612 2812 1266 

Aspergillus oryzae 63477 3796
6 

2550
4 

1620
4 

9080 3849 1749 

Aspergillus terreus 61026 3695
2 

2432
7 

1543
0 

8596 3572 1599 

Batrachochytrium 

dendrobatidis 

45677 3003
4 

2176
5 

1422
0 

7796 3223 1508 

Blastomyces dermatitidis 50764 3179
9 

2226
6 

1470
4 

8573 3442 1606 

Botrytis cinerea 47457 2948
9 

2005
7 

1289
8 

7263 2954 1356 

Candida albicans 33873 2169
3 

1515
9 

1010
7 

6140 2580 1194 

Capronia coronata 48730 3117
3 

2054
8 

1351
7 

7810 3302 1522 

Capronia epimyces 53912 3433
9 

2217
7 

1452
2 

8468 3584 1668 

Capronia semiimmersa 65449 4182 2693 1749 1019 4385 2023 
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Table 4.1, continued. 
Species All 50 60 70 80 90 95 

8 9 5 1 
Cladophialophora bantiana 61415 3949

1 
2536

7 
1613

3 
9168 3816 1716 

Cladophialophora carrionii 49753 3171
1 

2102
6 

1369
4 

7919 3348 1514 

Cladophialophora immunda 82518 5355
7 

3353
3 

2103
8 

1184
4 

5016 2349 

Cladophialophora 

psammophila 

65952 4278
8 

2728
4 

1715
5 

9677 4073 1837 

Cladophialophora yegresii 47761 3070
9 

2096
9 

1368
8 

7837 3327 1555 

Coccidioides immitis 38927 2411
0 

1652
2 

1099
3 

6364 2749 1285 

Colletotrichum graminicola 57633 3493
2 

2318
0 

1494
2 

8471 3550 1752 

Colletotrichum higginsianum 67762 3984
0 

2605
1 

1673
1 

9469 3931 1874 

Coniosporium apollinis 45931 3012
5 

2036
0 

1335
1 

7795 3231 1425 

Cryptococcus gattii 30757 1992
2 

1421
7 

9318 5259 2208 1034 

Cryptococcus neoformans 40700 2641
1 

1865
5 

1213
0 

6887 2908 1353 

Edhazardia aedis 8771 5846 4262 2876 1554 707 328 
Encephalitozoon cuniculi 8870 5795 4244 2882 1659 756 385 

Encephalitozoon intestinalis 7585 4899 3515 2397 1350 557 256 
Exophiala aquamarina 65459 4164

3 
2657

1 
1679

0 
9489 3939 1793 

Exophiala mesophila 65490 4244
1 

2750
2 

1759
8 

9916 4086 1793 

Exophiala oligosperma 79958 5165
8 

3280
3 

2109
2 

1174
6 

4853 2244 

Exophiala sideris 64877 4159
9 

2636
7 

1685
4 

9714 4221 1970 

Exophiala spinifera 62017 3979
3 

2505
9 

1602
2 

9096 3803 1704 

Exophiala xenobiotica 73620 4712
9 

2963
0 

1890
5 

1083
4 

4603 2137 

Fonsecaea multimorphosa 65044 4230
8 

2677
6 

1676
1 

9457 3980 1835 

Fonsecaea pedrosoi 66519 4304
9 

2748
5 

1725
8 

9711 4089 1909 

Fusarium graminearum 61421 3727
2 

2461
3 

1564
8 

8954 3619 1634 

Fusarium oxysporum 155229 9744 6246 3987 2268 9442 4609 
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Table 4.1, continued. 
Species All 50 60 70 80 90 95 

4 0 0 1 
Fusarium verticillioides 126510 7842

7 
5043

8 
3254

8 
1866

2 
7604 3717 

Gaeumannomyces graminis 54406 3467
0 

2354
9 

1552
4 

8922 3708 1709 

Geomyces destructans 41268 2622
0 

1833
7 

1209
1 

7041 2884 1314 

Histoplasma capsulatum 42226 2725
9 

1896
2 

1227
1 

6819 2789 1287 

Magnaporthe oryzae 55316 3386
1 

2261
3 

1467
3 

8440 3602 1711 

Magnaporthe poae 47171 2957
4 

1975
5 

1292
9 

7362 3068 1408 

Microbotryum violaceum 39696 2598
1 

1886
8 

1263
2 

7265 3188 1414 

Microsporum canis 50122 3097
2 

2075
7 

1358
8 

7827 3292 1473 

Microsporum gypseum 46633 2872
8 

1959
2 

1297
9 

7615 3280 1482 

Mucor circinelloides 88266 5720
8 

4244
7 

2966
6 

1761
6 

7354 3359 

Nematocida parisii 7353 4887 3339 2031 1105 400 194 
Nematocida sp1 7767 5132 3478 2058 1071 415 185 

Neosartorya fischeri 60456 3659
8 

2462
2 

1608
9 

9186 3893 1710 

Neurospora crassa 41052 2632
0 

1792
0 

1183
4 

6709 2889 1313 

Nosema ceranae 7942 5342 3964 2694 1480 649 328 
Ochroconis gallopava 63980 4125

8 
2752

6 
1787

6 
1022

0 
4421 1906 

Paracoccidioides brasiliensis 38046 2423
5 

1714
0 

1159
4 

6726 2924 1367 

Paracoccidioides sp. 38242 2432
4 

1725
1 

1153
5 

6689 2877 1329 

Phaeosphaeria nodorum 49330 3051
4 

2071
9 

1346
7 

7776 3345 1596 

Phialophora europaea 55320 3493
0 

2262
5 

1436
2 

8335 3528 1653 

Pneumocystis carinii 25051 1608
3 

1222
6 

8588 5241 2290 1056 

Pneumocystis jirovecii 22669 1494
8 

1127
4 

7819 4730 2080 924 

Pneumocystis murina 22683 1468
9 

1104
1 

7864 4704 2044 958 

Puccinia graminis 38733 2505 1753 1183 6896 3055 1357 
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Table 4.1, continued. 
Species All 50 60 70 80 90 95 

0 2 8 
Puccinia striiformis 44368 2874

0 
2054

7 
1371

6 
7931 3474 1570 

Puccinia triticina 43139 2766
9 

1974
1 

1335
5 

7851 3375 1530 

Pyrenophora tritici-repentis 50866 3115
3 

2104
1 

1361
5 

7721 3350 1558 

Rhinocladiella mackenzie 59945 3842
2 

2517
9 

1602
2 

9012 3800 1756 

Rhizopus delemar 95150 6276
4 

4597
2 

3102
0 

1747
2 

7191 3408 

Schizosaccharomyces 

cryophilus 

33997 2205
2 

1681
9 

1175
3 

7311 3215 1447 

Schizosaccharomyces 

japonicus 

34509 2213
4 

1672
8 

1180
6 

7149 3086 1438 

Schizosaccharomyces 

octosporus 

33558 2175
2 

1643
1 

1153
3 

7025 3097 1424 

Schizosaccharomyces pombe 34864 2253
7 

1692
0 

1188
7 

7187 3121 1404 

Sclerotinia sclerotiorum 46605 2908
2 

2009
3 

1302
1 

7440 3148 1383 

Spizellomyces punctatus 62654 3969
2 

2911
4 

2020
3 

1212
3 

4980 2262 

Sporothrix schenckii 47307 3042
7 

2033
5 

1311
7 

7508 3098 1404 

Trichophyton equinum 44152 2700
8 

1834
2 

1225
3 

7091 3000 1433 

Trichophyton interdigitale 48329 2981
5 

2015
6 

1313
8 

7451 3130 1440 

Trichophyton rubrum 59575 3733
5 

2572
6 

1715
0 

9328 3936 1832 

Trichophyton tonsurans 44113 2736
9 

1846
7 

1227
3 

7077 3091 1491 

Trichophyton verrucosum 845 584 471 359 244 92 32 
Ustilago maydis 34765 2244

8 
1558

4 
1030

7 
5829 2439 1068 

Vavraia culicis 8317 5489 4062 2649 1487 597 291 
Verticillium alfalfae 44783 2795

7 
1869

2 
1193

4 
6429 2616 1224 

Verticillium dahliae 48935 3121
7 

2094
6 

1373
6 

7620 3130 1396 

Vittaforma corneae 10227 6899 4680 3021 1539 584 255 
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Table 4.2 Homologous Hits of 86 fungal species against CAZy 

Table 4.2, continued. 
Species All 50 60 70 80 90 95 

Anncaliia algerae 11204 4951 3724 2621 1982 1406 516 
Arthroderma 

benhamiae 

99214 45017 34948 23981 13385 5123 2285 

Aspergillus clavatus 184120 76138 55037 35474 21021 8981 4347 
Aspergillus flavus 276908 114914 84414 54237 32042 14592 6721 

Aspergillus fumigatus 512 367 361 360 356 301 48 
Aspergillus nidulans 241859 99186 72758 47656 27679 12403 5851 

Aspergillus niger 177327 74642 55229 35729 20245 8467 4391 
Aspergillus oryzae 263005 109191 80191 52631 31905 14321 6543 
Aspergillus terreus 246665 102044 76915 49699 28872 12895 6067 
Batrachochytrium 

dendrobatidis 

98202 59403 45646 31767 20178 8782 4304 

Blastomyces 

dermatitidis 

123653 54854 40483 25185 13961 5344 2159 

Botrytis cinerea 227150 97611 73967 48389 28442 12383 5620 
Candida albicans 81699 33643 24847 15774 8122 3325 1161 

Capronia coronata 125941 52647 38497 24940 14117 6192 2869 
Capronia epimyces 122526 54279 40312 25413 14360 5982 2779 

Capronia semiimmersa 151183 63342 46434 28696 15366 6241 2802 
Cladophialophora 

bantiana 

159733 67374 46529 30709 16744 6744 2641 

Cladophialophora 

carrionii 

143187 57474 43035 27671 15102 6417 2688 

Cladophialophora 

immunda 

168489 70908 51639 33085 17956 7475 3364 

Cladophialophora 

psammophila 

162236 68229 49272 31959 17386 7714 3486 

Cladophialophora 

yegresii 

134906 54097 40424 25173 13846 6023 2549 

Coccidioides immitis 90222 42998 33198 21998 12404 5158 2313 
Colletotrichum 

graminicola 

277256 110666 82593 54295 33175 15478 7820 

Colletotrichum 

higginsianum 

0 0 0 0 0 0 0 

Coniosporium apollinis 137142 63962 48007 31232 17152 7630 3682 
Cryptococcus gattii 82635 36762 26054 15361 8775 4469 2518 

Cryptococcus 

neoformans 

100877 46684 34053 21433 12072 5202 2632 

Edhazardia aedis 11011 6434 4906 2782 1607 479 124 
Encephalitozoon 

cuniculi 

9124 5507 3711 2289 1380 653 274 

Encephalitozoon 8485 4949 3313 2131 1325 609 212 
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Table 4.2, continued. 
Species All 50 60 70 80 90 95 

intestinalis 

Exophiala aquamarina 173179 72434 52493 34158 18802 7995 3680 
Exophiala mesophila 151959 61434 45527 28550 16961 6607 3165 

Exophiala oligosperma 179800 69066 50813 31610 17919 7772 3384 
Exophiala sideris 147650 60685 46199 30859 16559 6796 2978 

Exophiala spinifera 153570 63640 45990 29369 16214 7045 3546 
Exophiala xenobiotica 192088 77590 57353 36411 19765 8857 4209 

Fonsecaea 

multimorphosa 

157301 63095 46126 31029 16313 6711 2865 

Fonsecaea pedrosoi 148538 63518 46837 31184 17531 7384 3048 
Fusarium graminearum 249893 105491 76423 49823 28112 11800 5461 

Fusarium oxysporum 426394 186618 135404 84020 50053 21137 9882 
Fusarium verticillioides 359496 156996 115279 74420 45129 19729 8657 

Gaeumannomyces 

graminis 

249380 105521 78281 52708 31707 14583 6894 

Geomyces destructans 131057 63245 47029 31090 17469 7356 3576 
Histoplasma 

capsulatum 

95414 40197 30112 19590 12014 4622 2095 

Magnaporthe oryzae 254330 106645 78444 50776 30502 14296 6644 
Magnaporthe poae 224614 92896 68030 44821 27166 12527 6173 

Microbotryum 

violaceum 

108248 57639 45233 31440 18045 7839 3857 

Microsporum canis 112850 52847 39529 26064 14430 6399 3186 
Microsporum gypseum 104891 47123 36353 24638 13874 5983 2687 
Mucor circinelloides 185977 91770 67176 41803 24240 10554 4977 
Nematocida parisii 10790 5770 3879 2207 1378 665 275 

Nematocida sp1 11541 7796 6151 3770 2206 1226 627 
Neosartorya fischeri 103578 74284 46994 26782 11652 5537 

 

Neurospora crassa 166370 68097 50476 32563 19692 8185 3613 
Nosema ceranae 8397 4939 3544 2054 767 254 105 

Ochroconis gallopava 153838 62812 46341 28900 16063 7072 3574 
Paracoccidioides 

brasiliensis 

86598 39527 29858 18648 10991 4141 1714 

Paracoccidioides sp. 89109 40964 30292 18312 10221 4255 1752 
Phaeosphaeria 

nodorum 

248720 100718 74753 49644 28024 11821 5517 

Phialophora europaea 176451 66132 50499 33097 18464 7578 3666 
Pneumocystis carinii 33673 18882 14515 9525 5715 1883 703 

Pneumocystis jirovecii 31664 16977 13016 8061 4432 1690 729 
Pneumocystis murina 32099 17653 13464 8720 5207 1858 733 

Puccinia graminis 159381 73806 56878 39490 25268 11431 5289 
Puccinia striiformis 179904 83680 62521 43220 28815 14239 6986 
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Table 4.2, continued. 
Species All 50 60 70 80 90 95 

Puccinia triticina 168368 77761 58944 40566 25131 10465 4994 
Pyrenophora tritici-

repentis 

230016 95158 71236 48037 29143 13050 5952 

Rhinocladiella 

mackenzie 

139441 61826 45896 30387 17080 7317 3526 

Rhizopus delemar 203171 95598 70379 44975 26986 12068 6328 
Schizosaccharomyces 

cryophilus 

65666 25462 18957 12294 7696 3279 1313 

Schizosaccharomyces 

japonicus 

65962 27411 20679 13689 8288 3588 1527 

Schizosaccharomyces 

octosporus 

64526 25423 19043 12320 7856 3022 1235 

Schizosaccharomyces 

pombe 

68726 27991 21043 13868 9007 3783 1931 

Sclerotinia 

sclerotiorum 

200652 83233 61660 40234 21791 9294 4384 

Spizellomyces 

punctatus 

115870 68652 50308 31568 19378 8479 4299 

Sporothrix schenckii 178490 73774 52723 34730 20086 9134 4387 
Trichophyton equinum 97460 44261 33895 24191 13903 6077 2720 

Trichophyton 

interdigitale 

104025 47214 36221 24794 13883 5889 2809 

Trichophyton rubrum 129213 57752 42870 27476 15059 6572 3319 
Trichophyton tonsurans 99283 45144 34381 23497 13025 5740 2573 

Trichophyton 

verrucosum 

489 435 367 213 79 9 2 

Ustilago maydis 105675 42719 31440 21105 12528 5081 2191 
Vavraia culicis 9336 4135 3077 1789 1044 473 269 

Verticillium alfalfae 256661 104978 77134 52448 30955 13642 6520 
Verticillium dahliae 259763 107499 81420 54403 33405 16328 8298 
Vittaforma corneae 11048 6869 4579 2535 1575 886 448 
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Table 4.3 Homologous Hits of 86 fungal species against DFVF 

Table 4.3, continued. 
Species All 50 60 70 80 90 95 

Anncaliia algerae 3725 2056 1497 1033 620 303 147 
Arthroderma benhamiae 16895 9162 6590 4482 2600 1058 491 

Aspergillus clavatus 18185 10213 7256 4906 2855 1211 577 
Aspergillus flavus 21519 11909 8290 5478 3052 1235 583 

Aspergillus fumigatus 4 2 1 1 1 0 0 
Aspergillus nidulans 19022 10534 7552 5102 2921 1232 575 

Aspergillus niger 14089 7759 5365 3653 2048 891 416 
Aspergillus oryzae 20739 11274 8045 5374 3079 1307 582 
Aspergillus terreus 19136 10526 7473 5060 2852 1219 568 
Batrachochytrium 

dendrobatidis 

20139 10821 7749 5173 2887 1247 564 

Blastomyces dermatitidis 19073 10342 7663 5139 2962 1238 559 
Botrytis cinerea 17052 9471 6847 4578 2640 1150 569 

Candida albicans 14435 7806 5755 3939 2443 1069 465 
Capronia coronata 15890 9066 6530 4454 2688 1189 510 
Capronia epimyces 16973 9577 6831 4721 2855 1237 566 

Capronia semiimmersa 19962 11350 8042 5446 3310 1473 708 
Cladophialophora bantiana 18554 10352 7356 4925 2935 1294 577 
Cladophialophora carrionii 16518 9279 6638 4554 2710 1178 584 
Cladophialophora immunda 23311 13510 9523 6304 3734 1654 764 

Cladophialophora 

psammophila 

19623 11077 7771 5221 3113 1373 599 

Cladophialophora yegresii 16053 9115 6676 4619 2721 1190 605 
Coccidioides immitis 15995 8132 5808 4006 2333 1035 465 

Colletotrichum graminicola 20570 11248 7931 5182 2979 1286 669 
Colletotrichum higginsianum 24376 12996 9025 5943 3397 1470 727 

Coniosporium apollinis 16742 9598 6744 4558 2699 1198 541 
Cryptococcus gattii 12663 7179 5388 3603 2064 846 396 

Cryptococcus neoformans 15798 8995 6700 4501 2650 1085 473 
Edhazardia aedis 3992 2356 1826 1299 724 354 154 

Encephalitozoon cuniculi 4028 2258 1695 1173 718 317 158 
Encephalitozoon intestinalis 3494 1938 1398 1002 605 276 129 

Exophiala aquamarina 19565 11201 7850 5247 3160 1378 640 
Exophiala mesophila 20112 11581 8378 5594 3303 1420 603 

Exophiala oligosperma 23044 13594 9710 6700 3895 1702 770 
Exophiala sideris 19690 11477 8108 5475 3283 1526 709 

Exophiala spinifera 18624 10588 7361 4971 2930 1315 569 
Exophiala xenobiotica 22202 12624 8842 5916 3556 1587 733 

Fonsecaea multimorphosa 19242 10903 7638 5098 3017 1364 633 
Fonsecaea pedrosoi 19423 10910 7684 5149 3029 1372 666 
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Table 4.3, continued. 
Species All 50 60 70 80 90 95 

Fusarium graminearum 21126 11309 7881 5241 3067 1276 597 
Fusarium oxysporum 47730 26857 18893 12589 7308 3202 1665 

Fusarium verticillioides 40544 22388 15807 10656 6185 2694 1378 
Gaeumannomyces graminis 20420 11412 7989 5359 3062 1284 619 

Geomyces destructans 16133 8866 6489 4378 2562 1111 496 
Histoplasma capsulatum 15693 9031 6588 4344 2434 985 452 

Magnaporthe oryzae 21009 11351 7790 5150 2875 1279 596 
Magnaporthe poae 18021 9991 6981 4634 2595 1136 522 

Microbotryum violaceum 16715 9598 6972 4705 2791 1215 502 
Microsporum canis 19136 10381 7334 4907 2826 1186 526 

Microsporum gypseum 17969 9761 6994 4772 2767 1149 513 
Mucor circinelloides 35097 19944 15093 10853 6616 2748 1294 
Nematocida parisii 3390 1949 1388 871 507 194 78 

Nematocida sp1 3612 2009 1382 866 488 175 76 
Neosartorya fischeri 19647 10881 7856 5400 3146 1331 585 
Neurospora crassa 15830 8889 6338 4266 2442 1109 549 
Nosema ceranae 3516 2024 1547 1065 633 289 149 

Ochroconis gallopava 21308 12252 8869 5993 3496 1618 664 
Paracoccidioides brasiliensis 14159 8021 5947 4125 2415 1085 484 

Paracoccidioides sp. 14480 8161 6048 4149 2441 1093 502 
Phaeosphaeria nodorum 18002 9908 7080 4749 2740 1231 585 
Phialophora europaea 17614 9924 7094 4675 2785 1203 545 
Pneumocystis carinii 10333 5853 4407 3088 1894 864 379 

Pneumocystis jirovecii 9473 5538 4147 2885 1788 840 379 
Pneumocystis murina 9542 5442 4055 2874 1749 788 369 

Puccinia graminis 17331 9588 6670 4618 2767 1200 526 
Puccinia striiformis 19052 10664 7658 5135 3053 1320 574 
Puccinia triticina 18987 10429 7501 5193 3136 1290 580 

Pyrenophora tritici-repentis 18343 9684 6790 4558 2622 1181 540 
Rhinocladiella mackenzie 18234 10428 7503 4978 2920 1317 610 

Rhizopus delemar 40475 23477 17336 11871 6951 2934 1410 
Schizosaccharomyces 

cryophilus 

13416 7596 5897 4235 2754 1242 546 

Schizosaccharomyces 

japonicus 

13779 7714 5899 4237 2618 1138 494 

Schizosaccharomyces 

octosporus 

13222 7505 5743 4165 2646 1193 547 

Schizosaccharomyces pombe 13686 7679 5878 4285 2652 1144 505 
Sclerotinia sclerotiorum 16972 9423 6874 4553 2652 1227 552 
Spizellomyces punctatus 24966 13796 10108 7135 4330 1852 789 

Sporothrix schenckii 16407 9227 6747 4503 2600 1114 522 
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Table 4.3, continued. 
Species All 50 60 70 80 90 95 

Trichophyton equinum 17279 9165 6569 4461 2541 1087 541 
Trichophyton interdigitale 19086 10159 7251 4803 2738 1164 527 

Trichophyton rubrum 25423 13778 9983 6856 3716 1562 739 
Trichophyton tonsurans 17353 9280 6594 4522 2587 1137 553 

Trichophyton verrucosum 405 212 179 156 96 31 13 
Ustilago maydis 14166 8101 5756 3930 2266 946 438 
Vavraia culicis 3650 2123 1641 1172 696 291 153 

Verticillium alfalfae 16629 9082 6383 4220 2249 956 459 
Verticillium dahliae 17948 9928 7030 4752 2606 1112 521 
Vittaforma corneae 5068 3037 2136 1429 761 304 108 

 

 Homology searches against pathogenicity-related databases, using protein sequences 

from 86 species of fungi is the very first step of the identification of candidate common 

pathogenic genes. This identifies homologous sequences between each species of fungi 

against the three databases used in this study, establishing datasets of homologous 

pathogenic protein sequences for each species. These sequences will be pooled and by 

using the unique identifier for each of the database entries common pathogenic protein 

sequences can then be identified, across multiple species. The results from BLAST 

alignments are consistent when performed against all three fungal pathogenicity-related 

databases as visualized in Figure 4.1, 4.2, and 4.3 where species of fungi from either the 

phylum of Basidiomycota or Ascomycota show high numbers of BLAST hits against all 

three different databases. The number of BLAST hits reduces steadily as the percent 

identity criterion was increased to create a stringent, high confidence dataset to work with 

for the downstream data.  
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4.2 Homology Search against Carbohydrate-active Enzymes Database (CAZy) 

 BLASTP searches against CAZy yielded results as stated in Table 4.1, listing 

BLASTP hits to CAZy with a filtering criterion of 80% maximum identity. This was 

visualized in Figure 4.1. By clustering the different fungal species into phyla 

Ascomycota and Basidiomycota have higher number of homologs compared to fungal 

species. On average each fungal species has approximately 1196 hits against CAZy at 

80% Identity, with the highest count belongs to the species Fusarium oxyporum a 

member of phylum Ascomycota, with a total of 5,292 hits. Species from the phylum of 

Microsporidia all display low homologous count against the CAZy.  

 Homologous sequences with 80% Identity from each species against CAZy is then 

extracted and compared between all 86 species and homologous sequences that are 

found among 80% of 86 fungal species were identified as a Common Fungal 

Pathogenicitiy-related Genes. 

 

 

 

 

 

 

 

Figure 4.1: Homologous Gene Count against CAZy across Species 
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4.3 Homology Search against Pathogen-Host Interaction Database (PHI-base) 

 BLASTP searches against Pathogen-Host Interaction Database yielded results as 

stated in Table 4.2, listing BLASTP hits to PHI-base with a filtering criterion of 80% 

max identity. This was visualized in Figure 4.2. By clustering the different fungal 

species into phyla, Ascomycota and Basidiomycota has higher number of homologs 

compared to fungal species from other phyla. On average each fungal species has 

approximately 397 hits against PHI-base at 80% Identity, with the highest count belongs 

to the species Fusarium oxyporum a member of phylum Ascomycota with a total hits of 

1,927. Species from the phylum of Microsporidia all display low homologous count 

against the PHI-base.  

 Homologous sequences with 80% Identity from each species against PHI-base then 

extracted and compared between all 86 species and homologous sequences that are 

found among 80% of 86 fungal species identified as a Common Fungal Pathogenicitiy-

related Genes. 

 

 

 

 

 

 

Figure 4.2: Homologous Gene Count against PHI-base across Species 
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4.4 Homology Search against Database of Fungal Virulence Factor (DFVF) 

 BLASTP searches against DFVF yielded results as stated in Table 4.3, listing 

BLASTP hits to DFVF with a filtering criterion of 80% max identity. This was 

visualized in Figure 4.3. By clustering the different fungal species into phyla, 

Ascomycota and Basidiomycota has higher number of homologs compared to fungal 

species from other phyla. On average each fungal species has approximately 329 hits 

against DFVF at 80% Identity, with the highest count belongs to the species 

Trichophyton rubrum a member of phylum Ascomycota with a total hits of 1,087. 

Species from the phylum of Microsporidia all display low homologous count against the 

DFVF.  

 Homologous sequences with 80% Identity from each species against DFVF is then 

extracted and compared between all 86 species and homologous sequences that are 

found among 80% of 86 fungal species identified as a Common Fungal Pathogenicitiy-

related Genes. 

 

 

 

 

 

 

Figure 4.3: Homologous Gene Count against DFVF across Species 

 

 

 

Univ
ers

iti 
Mala

ya



 

60 
 

4.5 Common pathogenicity-related genes across different species 

 Sets of homologous protein sequences derived from initial homology searches to 

CAZy, PHI-base, and DFVF yielded sets of protein sequences that were found in 

different fungi from various phylum and species. Tabular BLASTP results for each of 

the protein sequences from the three databases are then processed with developed shell 

scripts to identify the presence of these protein sequences across the different species 

via a unique sequence identifier. Firstly, the genes were pooled into genes identified 

with different % identity, and each set of results was then classified to number of 

species (n) each protein sequence was found. Six different % identity profiles were 

classified, starting from 50% identity with an interval of 10% up to 90% and the most 

stringent criterion of % identity at 95% and these are represented by Figure 4.4. 
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 Figure 4.4: Homologous Pathogenicity-related Protein Sequences with 50%, 60%, 

70%, 80%, 90%, 95% Identity across 86 Fungal species 
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 In summary, the 80 % identify criterion (80% sequence identity and 80% coverage 

across species) was classified and identified as high confidence conserved pathogenic 

genes in Table 4.6. the number of candidate conserved pathogenic genes cross species 

mapping to CAZy, PHI-base, DFVF were 8, 20, and 31 respectively and is listed in 

Table 4.4. These Common Fungal Pathogenicity-related Genes were then further 

studied by extracting the corresponding sequences from each species of fungi and 

subjecting the sequences to multiple sequence alignment, phylogenetics analysis and 

identification of Single Nucleotide Polymorphisms. Identified genes will also be 

uploaded to the Common Fungal Pathogenicity-related Gene Database Portal for public 

access to the data. 

Table 4.4: Number of High Confidence Conserved Pathogenic Genes across 80% 
coverage. 

Database CAZy PHI-base DFVF 
Number of Conserved Pathogenic Genes (based 

on 80% identity and e-value of 1e-5 
8 20 31 

These are extremely positive results, confirming the conservation of pathogenicity-

related genes across different phyla and multiple species and providing a foundation for 

further study and understanding of pathogenicity genes conservation in fungus and how 

this understanding can be utilized to expand methodology in diagnostic and therapy. 

4.6 Common Fungal Pathogenicity-related Gene Database Application 

 All Homologous Gene extracted from homology searches were assigned with a 

unique CFPG Identifier and supplemented with additional information before they were 

uploaded into the MySQL database. Table 4.5 shows the number of records uploaded 

for each of the tables created. All entries for each table are listed in Appendix C, D, and 

E. 

 

 

Univ
ers

iti 
Mala

ya



 

63 
 

Table 4.5: Number of Rows Uploaded to CFPG. 

Table # Of Records 
MASTER_FUNGUS 86 

MASTER_COMMON_GENE 59 
GENE_SPECIES_MAPPING 4135 

 

 The Home tab in Figure 4.5 display general introduction about the Common Fungal 

Pathogenicity-related Gene Database with an RSS Feed displayed from GenomeWeb 

(GenomeWeb, 2021), a reputable genomics news site. The database portal is accessible 

via https://cfpg.leapomics.com. 

 

Figure 4.5: Home tab of the Common Fungal Pathogenicity-related Gene Database 

 Clicking the Search Database tab will display Common Fungal Pathogenicity-related 

Genes entries in multiple pages. This can be modified by selecting different paging 

options by selecting Show. To search for specific entries user can enter any search 

string (i.e. Protein Name/UniProt Entry/InterPro ID and etc) and the datatable will be 

filtered to display only records that fit entered string-pattern. 
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 The number of species is an indication of how many species of fungi this entry was 

found in and clicking the hyperlink will lead to the detailed list of fungus for the entry. 

The hyperlink CFGPDB V1.0.xls allows download of all entries within the database. 

The different user interface of the CFPGDB can be seen in Figures 4.6, 4.7, 4.8, 4.9, 

and 4.10. 

 

Figure 4.6: Search Database tab of the Common Fungal Pathogenicity-related Gene 

Database 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Hyperlink to List of Fungus for a specific entry 
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Figure 4.8: Hyperlink to UniProt 

 

 

Figure 4.9: Hyperlink to download all entries. 
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Figure 4.10: CFPG Fungal species tab. 

 

4.7 SNP Mining through SNP-Sites 

 Homologs from 86 fungal species that passes the alignment criteria (i.e. 80% Identity 

and E-value of 10-5) are extracted and aligned with MAFFT, and the subsequent output 

sequence alignment files are the used as input files for SNP-Sites. SNP-Sites generates a 

consensus reference sequence and extract variants from each sequence in the alignment 

file against the consensus reference sequence. The SNP mining identified large number 

of SNPs and are listed in Table 4.6 below. 

Table 4.6: All 59 Common Fungal Pathogenic-Related Genes, Corresponding UniProt 

ID and Number of SNP Sites 

Table 4.6, continued. 

CFPG ID UniProt ID Number of SNP Sites 

CFPG00001 Q02014 8678 

CFPG00002 Q00837 8534 

CFPG00003 Q9Y789 8701 

CFPG00004 Q91BI7 3451 

CFPG00005 C6ZJB5 3017 

CFPG00006 I7D8S2 8671 

CFPG00007 I7E6P2 9125 

CFPG00008 M1JNQ9 4374 

CFPG00009 A6R9F0 6700 
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Table 4.6, continued. 

CFPG ID UniProt ID Number of SNP Sites 

CFPG00010 A7A1H6 3192 

CFPG00011 C0SA80 3113 

CFPG00012 C1GCT8 3113 

CFPG00013 C4YIU6 3147 

CFPG00014 C5GQ05 3194 

CFPG00015 C5GS26 6700 

CFPG00016 D2JLR3 2882 

CFPG00017 D2JLR4 2882 

CFPG00018 D2JLR5 2882 

CFPG00019 D2JLR6 2882 

CFPG00020 D2JLR7 2882 

CFPG00021 D2JLR8 2882 

CFPG00022 D2JLR9 2882 

CFPG00023 D2JLS0 2882 

CFPG00024 D2JLS1 2882 

CFPG00025 D2JLS2 2882 

CFPG00026 D2JLS3 2882 

CFPG00027 D2JLS4 2882 

CFPG00028 D2JLS5 2882 

CFPG00029 D2JLS6 2882 

CFPG00030 D2JLS7 2882 

CFPG00031 D2JLS8 2882 

CFPG00032 D2JLS9 2882 

CFPG00033 F2QT01 3074 

CFPG00034 HOG1 6827 

CFPG00035 Q2PBY8 6317 

CFPG00036 Q59P43 3147 

CFPG00037 Q5ADS0 8399 

CFPG00038 Q7Z7T9 6612 

CFPG00039 Q96UM1 6776 

CFPG00040 A0A0D2Y8P9 3120 

CFPG00041 A1IVT7 6827 
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Table 4.6, continued. 

CFPG ID UniProt ID Number of SNP Sites 

CFPG00042 G4NC11 6684 

CFPG00043 H9B3V9 3363 

CFPG00044 I1RN81 6168 

CFPG00045 I1S1V9 3612 

CFPG00046 P41388 6405 

CFPG00047 P53376 6153 

CFPG00048 Q0U4L8 6647 

CFPG00049 Q1KTF2 6423 

CFPG00050 Q2PBY8 6317 

CFPG00051 Q4HTT1 2501 

CFPG00052 Q4WJS6 5808 

CFPG00053 Q4WSF6 7081 

CFPG00054 Q51MW4 3197 

CFPG00055 Q5AND9 4020 

CFPG00056 Q6QIY0 6010 

CFPG00057 Q7Z7T9 6612 

CFPG00058 Q8NJX2 6662 

CFPG00059 T0LLS6 5726 

 

 SNPs that were discovered can serve as important biomarkers for diagnosis. By using 

these biomarkers it will enable identification of pathogenicity before or during the early 

stages of fuungal disease before it becomes too late for remediation. One observation 

from the results for CFPG entries from CFPG00016 to CFPG00032 is that they 

represent consistent number of SNPs discovered and this is due to the reason that the 

entries from the three different pathogenicity-related database maps to different UniProt 

entries. By looking at UniProt it was later confirmed that those entries are homologs 

found in different species of fungi within the genus of Fusarium but at the same time is 

found across different species of fungi when aligned through multiple sequence 

alignments.  
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4.8 Phylogenetic Analysis 

 Homologous nucleotide sequence of 59 Common Fungal Pathogenicity-related 

Genes were extracted from corresponding fungal species where homologous sequence is 

found and is further subjected to multiple sequence alignment using MAFFT. Multiple 

Sequence Alignment output was visualized using Unipro UGENE. 

 The phylogenetic tree building of the each of the 59 Common Fungal Pathogenicity-

related Genes reflected a similar trend. The phylogenetic tree constructed resulted in 

unsurprising results, where members of the same species and phyla falling in the same 

clade. This same pattern is observed across all 59 entries in the Common Fungal 

Pathogenic-Related Gene Database which further confirming the hypothesis that 

pathogenicity-related genes are well conserved across different species of genus. Top 

four entries of the findings are further discussed in detailed while all multiple sequence 

alignments and phylogenetic tree diagram can be viewed in Appendix B.  
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 Figure 4.11 shows the multiple sequence alignment result for CFPG00037 with the 

gene name UBI4 which codes for the protein Ubiquitin, which is involved in 

modification of proteins for proteasomal degradation and non-proteolytic functions 

(Finley, et al. 2012). The multiple sequence alignment of the homologs from across 82 

of the 86 species where the high confidence homologs were identified (with 80% 

Identity) showed that the sequences are highly similar across the species with aligned 

perfectly. In Figure 4.12 the phylogenetics tree show clustering of the sequences from 

the parent node and with negligible distance < 1 due to high level for conservation. 

 

Figure 4.11: Multiple Sequence Alignment for CFPG00037 

 

Figure 4.12: Phylogenetic Tree for CFPG00037 
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 Figure 4.13 shows the multiple sequence alignment result for CFPG00008 with the 

gene name SlsnVgp028 which codes for the protein Ubiquitin GP37 fusion protein, 

which is also involved in modification of proteins for proteasomal degradation and non-

proteolytic functions (Finley, et al. 2012). The multiple sequence alignment of the 

homologs from across 76 of the 86 species where the high confidence homologs were 

identified (with 80% Identity) showed that the sequences are also highly conserved only 

with varying length of protein sequences across different species of fungi. In Figure 

4.14 the phylogenetics tree is displaying similar clustering with three different parent 

nodes branching out to three clades. However, distinctions were not obvious as 

distances between the parent nodes are also relatively low. 

 

Figure 4.13: Multiple Sequence Alignment for CFPG00008 

 

Figure 4.14: Phylogenetic Tree for CFPG00008 
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 Similarly, Figure 4.15 display the multiple sequence alignment for CFPG00004. The 

gene is a homolog for a yet to determined gene name with Q91BI7 UniProt ID which 

codes for the protein Ubiquitin GP37 fusion protein. This is like CFPG00008 as the 

gene product is also involved in modification of proteins for proteasomal degradation 

and non-proteolytic functions (Finley, et al. 2012). Multiple sequence alignment result 

and the phylogenetics tree construct were similar to CFPG00008 showing similarities 

and close relationships among the species of fungi found. See Appendix E for full list of 

mapping. 

 

Figure 4.15: Multiple Sequence Alignment for CFPG00004 

 

Figure 4.16: Phylogenetic Tree for CFPG00004 
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 Figure 4.17 shows the multiple sequence alignment result for CFPG00052 with the 

gene name AFUA_1G04950 which codes for the protein Serine/threonine-protein 

phosphatase. The protein has been found to play an important part in fungal 

pathogenicity in a study on pathogenicity of Magnaporthe oryzae (Du, et al. 2013) 

where it showed the deletion mutants of the gene failed to penetrate into host plant cells 

implying the pathogenicity impact of the protein in fungal pathogenicity. The multiple 

sequence alignment of the homologs from across 73 of the 86 species where the high 

confidence homologs were identified (with 80% Identity) showed that the sequences are 

highly conserved across majority of the species especially in the mid-region of the 

genes though variations are observed as well. In Figure 4.18 the phylogenetics tree 

show clustering of the sequences across species from different phyla in studies 

including the top two phylum where most members come from (i.e. 

Ascomycota/Basidiomycota). 

 

Figure 4.17: Multiple Sequence Alignment for CFPG00052 
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Figure 4.18: Phylogenetic Tree for CFPG00052 

 

4.9 Summary of Results 

The Fungal Pathogenic-Related Genes Comparative Pipeline had successfully 

identified candidate common fungal pathogenicity genes across fungal species from 

different genus and phylum, supporting the hypothesis of the research that pathogenicity 

genes are highly conserved across fungal species across multiple genus and phylum. 

Through multiple sequence alignment, SNP mining and phylogenetics analysis of the 

common pathogenicity related genes further supports the observation that these 

pathogenicity-related genes are well-conserved through different fungal species. 

Although there were outliers in the result, these outliers do not impact the overall 

observation and results of the conservation of pathogenicity genes.  
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CHAPTER 5 

DISCUSSION 

5.1 Genomics Diversity and Relationship of Pathogenic Fungus through 

Comparative Genomics. 

 This study aimed to study fungal pathogenicity from a broader perspective, to expand 

and continue to fill the gap of knowledge in understanding fungal pathogenicity through 

comparative genomics, by leveraging on both raw and curated sequence data to build a 

comparative genomics pipeline specifically for fungal pathogenicity and creating a 

database portal that allow access to the identified candidate pathogenicity-related genes. 

Throughout the study and analysis there were many findings that worth discussing and 

henceforth as detailed in the following subsections. 

5.1.1 Pathogenic Fungus Genomics Diversity through Homology Searches using 

Protein Sequences. 

 Homology searches compares either nucleotide sequences or protein sequences. 

Comparing protein sequences provides higher level of resolution for homology search. 

Nucleotide searches can produce different combination of triplet codons, which could 

potentially be translated to the same amino acid. Hence by using protein sequences, this 

can avoid any translational and or transcriptional impact for the eventual protein 

structure (Nature Education, 2014)). As mutation occurs naturally throughout the 

lifetime and through generations of a particular organism, the underlying changes in 

nucleotides does not contribute to vast phenotypic changes. 

 Using nucleotide sequences for homology searches could contribute to higher 

percentage of false negative results and therefore homologs could be missed (Pearson, 

2013). Using protein sequences for homology searches yield higher sensitivity than 
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nucleotide sequence comparison, thus picking up more homologs that would otherwise 

be missed by nucleotide sequence similarity search. Homology searches using protein 

sequences is more useful when searching for conserved protein-coding genes across 

organisms that has higher variability in genomic sequences as it is more targeted 

focusing only on protein coding regions and the variability in the coded proteins.  

 E-value and Percent Identity were the parameters used to determine the best 

candidate homologs from the BLAST sequence alignment results of protein sequences 

of the 86 fungal species against all three fungal pathogenicity-related database. These 

were common parameters to determine if two sequences have high degree of similarities 

in which inferring homology and suggests evolutionary relationship between the 

organisms in study (Pearson, 2013). The study utilizes both Percent Identity and E-

value for a better inference of homologous relationships between sequences as usage of 

Precent Identity alone would produce false negatives, and the stringent criteria used in 

the study (i.e., Percent Identity of 80%, E-value of 10-5), along with an additional 

criteria where the candidate Pathogenicity-Related Genes are found in at least 80% (68 

of 86) of all fungal species studied here results in high confidence candidate Common 

Fungal Pathogenicity-related Genes.  

 The homology searches allow identification of common fungal pathogenicity-related 

genes by aligning them against various verified databases. This study shows that fungal 

pathogenicity genes are generally well conserved across the kingdom of fungus, 

regardless of which member of phylum or species the fungus belongs to. The 

conservation is apparent looking at the multiple sequence alignment results of the 

identified common fungal pathogenicity-related genes and based on the results, SNPs 

were identified and expected species that belongs to the same phylum are situated closer 

than the rest.  
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5.1.2 Inter-Phylum Fungus Comparative Genomics Pipeline 

 Most fungus genomics study focus on comparing genomics sequences from different 

isolates from a certain species of fungi or among closely related fungal species trying to 

understand various essential features such as insights into fungus lifestyle (Knapp, et al. 

2018) and understanding of genomics properties of a certain fungal species. The 

datasets chosen for the study was 86 species of fungi that the Fungal Genome Initiative 

had collected and sequenced that portrayed the importance of their existence for 

applications development in medicine, agriculture, and industry (Broad Institute, 2014). 

There are other databases that contains more fungal genome sequences such as 

FungiDB (Basenko, et al. 2018) which contains sequence information for 186 fungal 

species across different phyla, regardless of the pathogenic significance of the each of 

the species hence instead of using all sequences in FungiDB, this study focused on 

studying fungal species that have pathogenicity significance to a range of hosts thus the 

selection was made to utilize data from the Fungal Genome Initiative. 

 The 86 fungal species in this study comprise of fungi from different phyla ranging 

from Ascomycota, Basidiomycota, Chytridiomycota, Microsporidia, and 

Mucormycotina. These different species of fungi all share a common trait where all 86 

of the compared fungi have various level of pathogenicity properties by living on other 

organisms. These host organisms range from plants, humans, and animals (Refer to 

Table 3.1). From the entire list of fungi, it was identified that while comparing to 

available databases namely PHI-base (Urban, 2017), CAZy (Lombard, 2014) and DFVF 

(Lu, et al. 2012) species of fungi belonging to the phylum of Ascomycota and 

Basidiomycota have more homologous hits to the databases than the rest of the phyla, 

and among the 86 species of fungi, 61 are known to live on and or infect animal or 

human hosts, with the remaining 25 fungal species are known to live on and or infect 

plants. The advantage of identifying conserved pathogenic genes across different phyla 
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of fungal species is that it allows for discovery of broad-spectrum antifungal agents or 

broad-spectrum diagnostic tools as effective PCR primers can be designed for detection 

and identification of pathogenic fungi or other specific isolates of fungus as done by 

other studies (Lee, et al. 2008). 

 Across the different species of fungi although the fungus host ranges from animal, 

human and plant, unsurprisingly there is a large amount of overlapping pathogenicity-

related genes among the phylum of Ascomycota and Basidiomycota, both Dikarya. This 

also aligns with the general observation reported by Dean et al. (2012) that had 

summarized the top 10 fungal pathogens in molecular plant pathology whereby all 10 of 

the shortlisted fungal species came from either the phylum of Ascomycota or 

Basidiomycota, as listed in Table 2.1. Ascomycetes are also most represented in this 

study, which does not come as a surprise as the phylum is the largest in the Kingdom of 

Fungi (Watkinson, et al. 2015) and the study also includes members of other phyla in 

the Kingdom of Fungi such as Chytridiomycetes, Microsporidia, and Mucoromycotina, 

showed low homologous count to all three fungal pathogenicity-related gene databases. 

This may be due to the databases that were utilized contains little to no pathogenicity 

data from species of these three phyla as they are generally less represented in the 

databases. 

 This observation seems to be consistent with the continuous effort to understand the 

diversity of the Kingdom of Fungi. A study by Choi & Kim (2017) attempted to 

construct phylogenetics relationship by comparing whole-genome data. The results 

from the study showed that there are only three major groups namely Monokarya, 

Basidiomycota, and Ascomycota (Petersen, 2013). Monokaryotic fungus which includes 

Chytridiomycetes does not produce dikayons during the life cycles thus has high level 

of variability in the mechanisms of infections. Microsporidia on the other hand are a 

group of spore-forming unicellular organisms and infect range of hosts including human 
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and is identified as a basal branch of the fungi or as a sister group (Han, et al. 2020) 

hence it is also not a surprise that the member of the species from Microsporidia showed 

very low level of homology to the pathogenicity-related databases. As fungal 

pathogenicity is highly associated with the life cycle of the species of fungi it is vital to 

understand pathogenicity from the angle of the life cycle.  

5.1.3 Comparison between Animal Fungal Pathogenicity and Plant Fungal 

Pathogenicity 

 The results from the comparative genomics study showed that although fungal 

pathogen generally shares high similarities in genes composition across different fungi, 

it was observed that the type of fungal pathogen hosts has different mechanism of 

pathogenicity, thus the presence of pathogenic genes alone does not mean that these 

genes are the causative could cause disease onset in its host. 

 A pathogenic fungi that infects animal hosts, including human has higher degree of 

variability in its method of infection when compared to plant pathogenic fungi. This is 

an observation that supports the understanding that hosts determine the mode of 

infections, rather than the nature of the fungus itself. This may be attributed by millions 

of years of adaptation and evolution that had led to specialized pathogenicity among 

fungi and make eradicating fungal diseases extremely difficult. Many species of fungi 

that display pathogenicity towards plant hosts requires development of specific structure 

to invade the plant host. In Ustilago maydis for instance requires the development of 

dikaryotic filament to penetrate the plant cell wall and this process is often controlled by 

the regulation of transcription factors (Pérez-Martín & de Sena-Tomás, 2011). Similarly 

for fungal species that affect animal or human hosts infection it is related to the fungal 

life cycle through either one of the three ways: Replication of Fungus, Immune 
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Response caused by Fungus Infection, and Competition for Resources (FutureLearn, 

2021).  

 The number of Common Fungal Pathogenicity-related Gene identified in this study 

are genes that are crucial to the life cycle of pathogenic fungi such as Ubiquitin which is 

a general protein that is required for breaking down of proteins to amino acids and 

Histones, which as described by Gargolionis et al. (2012) where the modification by 

either acetylation or methylation would cause the onset of pathogenicity. This again is 

an example where pathogenicity is related to proteins that are crucial for the 

maintenance of life among both plant and animal fungal pathogen. This study has found 

the similarities in the genes or proteins that are participating in fungal pathogenicity, 

despite the differences in the range of host organisms. 

5.2 Common Fungal Pathogenicity-related Genes across Kingdom of Fungus. 

 One of the main objectives of the study is to identify Common Fungal Pathogenicity-

related Genes across the kingdom of fungus and build resources that can be leveraged 

on in the future post-study to continue uncovering and refining the pool of common 

pathogenic genes which can be utilized by the research community to create molecular 

diagnostic method that are targeted for broad spectrum usage. This study has identified 

59 high confidence common fungal pathogenicity-related genes that can serve as a 

foundation for further research. 
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5.2.1 Comparative genomics pipeline for Fungal pathogenicity study and publicly 

available data 

 In the Chapter 2 of this thesis, we discussed various comparative genomics tools and 

pipeline that are available currently and a knowledge gap was identified for a tool 

dedicated for the comparative genomics effort of fungal pathogenicity-related genes. 

Leveraging on publicly available data for fungal pathogenicity a Fungal Pathogenic 

Gene Comparative Pipeline was created using a combination of commonly used 

bioinformatics tools and shell scripting where all scripts developed are attached in 

Appendix A. Once the pipeline is established the next step for the pipeline was to be 

automated to build a model of fungal pathogenicity genes that can be used to identify 

candidate genes with higher efficiency. 

 Development of a Database portal for all data generated was pivotal and is one of the 

objectives for the study. To create a database portal that is efficient and user friendly a 

XAMPP architecture was deployed and using Content Management Software tool with 

Joomla! a database portal was created and configured. The database portal is hosted on 

cfgp.leapomics.com at the moment and will be able to serve as a platform for public 

access and collaboration for the scientific community.  

5.2.2 Challenges of Identification and Development of Universal Genomic Markers 

for Pathogenic Fungi 

 Discovery of genomics markers for Pathogenic Fungi has always been the goal of 

many comparative genomics researchers, as the saying “Prevention is better than cure” 

if scientists can detect pathogenic markers in the early stage of development, then 

recovery plans can be put in place to prevent disease infestations across a wide area of 

plantations and farmlands. As an example, the Internal Transcribed Spacer (ITS) region, 

namely ITS1 and ITS2 of the rRNA gene are both target region for species 
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identification of Candida albicans, Candida glabrata, Candida parapsilosis, Candida 

tropicalis, and Aspergillus fumigatus. This region is important to identify the 

differences in genome sequence and is often used as the universal DNA barcode marker 

for difference species of fungi (Schoch, et al. 2012) and it is what this study is trying to 

achieve and further differentiate between pathogenic and non-pathogenic species of 

fungi. 

 This study had identified homologous pathogenicity genes that display high degree 

of homology across multiple fungal species and phyla. However this is not done, as 

more genome sequences for other species of fungi is published it can be included to 

develop the model. Thi can increase the confidence to use common fungal 

pathogenicity-related genes as tool to develop methodology for fungal pathogenicity 

diagnosis where primers can be designed to target conserved pathogenicity genes, and 

using the methodology to fill the gap in pathogenicity identification in hard-to-detect 

diseases. 

 The challenge with developing a universal marker to detect pathogenicity lies with 

the identification of a unique genomic attribute among pathogenic fungi. From the 

polymorphic markers identified from this study we discovered multiple conserved SNPs 

across all the sequences of the 59 CFPG entries. Given the highly conserved nature of 

the genomic marker further validation work can be made against non-pathogenic 

isolates to check if these SNPs can indeed be used as a polymorphic marker to 

differentiate between pathogenic and the non-pathogenic fungi. 

 Additionally, although pathogenicity genes are well-conserved, but the onset of 

disease are triggered by highly complex biological pathways and triggers. The presence 

of the pathogenicity-related genes is only a single dimensional observation on 

pathogenicity conservation in terms of the presence and absence of genes and to add 

Univ
ers

iti 
Mala

ya



 

83 
 

into that observation it requires genes expression profiling of the pathogenicity-related 

genes. Transcriptome analysis will provide more insights into the onset of pathogenicity 

of these genes such as those done with Magnaporthe oryzae (Jeon, et al. 2020) and 

Sclerotinia sclerotiorum (Chittem, et al. 2020) allowing further understanding of 

disease onset and by developing intervention during these pathways will create an 

avenue for disease prevention and treatment. 

5.3 Cloud-based and Public Domain Data-Driven Research 

 For years genomics studies have been dominated by on-premise computing resources, 

which are extremely expensive and hence massive DNA sequencing studies high barrier 

to entry for researchers with modest resources to procure and maintain super computing 

resources. The landscape of genomics studies, however, has transformed and evolved 

with maturing cloud computing technologies offered by companies such as Amazon 

(Amazon Web Services), Google (Google Cloud), Alibaba (Ali Cloud) which is 

available as long as there is an internet connection. This has allowed lower barrier to 

entry for bioinformatics research and analysis and hence further pushing innovation in 

the space of study. This study utilizes a combination of Cloud-based and local 

computing resources where the initial processes that requires uninterrupted running uses 

the Cloud compute resource and the downstream analysis utilizing local computing 

resources. This strategy allows efficient usage of resources both financially and time as 

Cloud-based systems are not the most cost-effective to maintain. 

 The availability of public genomics data allows the scientific community afforded 

the opportunity and resources to accelerate scientific research. This study utilizes all 

publicly available data from various sources to perform secondary analysis of fungal 

pathogenicity data to advance the understanding of fungal pathogenicity, and the 
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conservation of fungal pathogenicity and infer new methodology for identification of 

pathogenic fungi across different phyla. 

The key in using publicly available genomic data requires data collection and proper 

data clean up. For sequences that were utilized in this study all fungal sequences that 

were downloaded were not utilized for analysis and the main reason for that was due to 

the varied level of completeness in data and duplication. This requires extensive data 

clean-up process to identify the final dataset for the study, which reduced the number of 

fungal sequences from 247 to 86. This is the challenges with dealing with huge dataset 

and it is a process that must be adopted in any data analysis. 

 The study had highlighted the importance of understanding the differences between 

nucleotide and protein sequences, and what would be the best approach to use each data 

types as well as discussed various challenges faced by the scientific community in the 

understanding of fungal pathogenicity. By leveraging on publicly available data this 

study adds to the understanding of fungal pathogenicity at the genomic level and 

contributes to the betterment in advancing knowledge of the subject. However, as 

fungus generally have plastic genomes and fast evolution time the understanding and 

knowledge will need to be developed continuously, and hence more work and effort is 

still required to study the subject of fungal pathogenicity. 
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CHAPTER 6 

CONCLUSION 

 This study has revealed conservation of fungal pathogenicity across species of fungi 

from different phyla, regardless of the host is plant or human. The study also identified 

that most publicly available fungal pathogenicity-related databases lack representation 

across different phyla of fungus. The initial objective of understanding the genomics 

diversity and relationship among pathogenic fungi was achieved as this study unveiled 

clear pattern of genomics conservation with the identification of 59 Common Fungal 

Pathogenicity-related Genes, which was studied in detailed using phylogenetics trees 

that showed the relation distances between each member of study. 

 The Fungal Pathogenic Gene Comparative Pipeline was constructed and can be used 

for re-processing additional species of fungi or with newly identified pathogenic genes 

in public domain. Based on the identification of the Common Fungal Pathogenicity-

related Genes, a Web Database Application has been developed and can be accessed 

here at cfpg.leapomics.com and these data are available for download. This database 

can serve as a foundation for further research and development to increase the level of 

confidence of the identified CFPG entries and validation through transcriptomics 

studies to confirm at the phenotypic level will further enhances our understanding of 

conservation of fungal pathogenicity. Hence all objectives of the study have been 

achieved. 

 Recent development in the realm of information technology towards the direction of 

artificial intelligence provide an avenue for automation of data discovery hence allow 

continuous development of tools and datasets that can benefit the community in shorter 

timeframe than executing end-to-end workflow manually. This study aims to develop a 

fungal pathogenicity comparative genomics pipeline that can be utilized as a platform 
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for automation of discovery of pathogenicity-related genes across a diverse group of 

fungus phylum and species. 

 The automated tool has the potential to be developed further to continuous identify 

different signals within the datasets of genomics data, with the possibility of uncovering 

more pathogenicity-related information through AI. This is well demonstrated in the 

recent development of AlphaFold (Jumper, et al. 2021) which uses deep learning 

algorithm in predicting protein structures. 

 This study is not a conclusion of the effort in understanding fungal pathogenicity, 

due to the plastic nature of fungal genome. Hence the pipeline and database portal need 

continuous improvement to cater for needs in the future.   
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