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PRICING AND HEDGING EXOTIC OPTIONS IN INSURANCE AND FINANCE

ABSTRACT

This thesis concerns the theoretical pricing and hedging of options, financial instruments

that give a payoff at a set date based on the price of one, or several other financial assets,

known as the underlying assets. The underlying assets are usually taken to be stocks, but

can also be bonds, securities, portfolios, or other financial instruments. In this thesis we

study two types of options - life contingent options and barrier Asian options. Because the

options examined in this thesis are relatively uncommon, with a novel mechanism of action,

they are known as exotic options. The analysis takes place in a stylised mathematical

model of a financial market known as the Black-Scholes model. We show for the life

contingent option that there exists a minimal super-hedging portfolio and determine the

associated initial investment. We also give a characterisation of when replication of the

option is possible. Next, we investigate the pricing problem for barrier Asian options with

short maturity times. Due to the nature of Asian options, closed form formulae for the fair

price of the option are relatively difficult to obtain. Using novel results from the theory

of stochastic calculus, we obtain closed form asymptotic formulae for the price of short

maturity barrier Asian options. Finally, we demonstrate our results with some explicit

examples.

Keywords: Life contingent options, Hedging, Option pricing, Barrier Asian options,

Stochastic calculus
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HARGA DAN PELINDUNGAN NILAI OPSYEN EKSOTIK DALAM INSURANS

DAN KEWANGAN

ABSTRAK

Tesis ini melibatkan teori penentuan harga opsyen dan pelindungan nilai opsyen. Opsyen

adalah instrumen kewangan yang memberi pulangan pada tarikh yang ditetapkan berda-

sarkan harga satu, atau beberapa aset kewangan yang lain, yang dikenali sebagai aset

pendasar. Aset pendasar biasanya terdiri daripada saham, tetapi juga boleh terdiri daripada

bon, sekuriti, portfolio atau instrumen kewangan lain. Dua jenis opsyen akan dikaji dalam

tesis, iaitu opsyen kontingen hayat dan opsyen Asia halangan. Oleh kerana opsyen-opsyen

yang dikaji dalam tesis ini agak jarang, dengan mekanisme tindakan yang terbaru, ia juga

dikenali sebagai opsyen eksotik. Analisis dilakukan dalam model matematik gaya pasaran

kewangan yang dikenali sebagai model Black-Scholes. Kami menunjukkan bahawa untuk

opsyen kontinjen hayat terdapat portfolio super-pelindungan nilai yang minimum dan

menentukan pelaburan permulaannya. Kami juga memberikan pencirian apabila replikasi

opsyen boleh dilakukan. Seterusnya, kami mengaji masalah harga untuk opsyen Asia

halangan dengan masa matang yang singkat. Disebabkan oleh sifat opsyen Asia, formula

bentuk tertutup untuk harga saksama opsyen agak sukar diperolehi. Dengan menggunakan

hasil novel daripada teori kalkulus stokastik, kami memperoleh formula asimptotik bentuk

tertutup untuk harga opsyen Asia halangan dengan kematangan pendek. Akhir sekali, kami

menunjukkan hasil kami dengan beberapa contoh yang terperinci.

Kata kunci: Opsyen kontingen hayat, Pelindungan nilai, Harga opsyen, Opsyen Asia

halangan, Kalkulus stokastik
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CHAPTER 1: INTRODUCTION

1.1 Overview

In the field of finance, an option is a financial instrument that gives the holder a payoff

that is a function of the price of one or several underlying assets, at a certain future time

known as the exercise time. The underlying assets are usually stocks, but can also be taken

to be bonds, securities, or other financial instruments. The most common types of options

are the so called European and American options.

The European call (resp. put) option gives the holder the right, but not the obligation to

buy (resp. sell) a unit of the underlying at a fixed price at the exercise time, where both the

price and the exercise time are fixed in advance.

The American call (resp. put) option on the other hand gives the holder the same right

to buy (resp. sell) at a fixed price, but the exercise time is allowed to be chosen by the

holder. At any time from the purchase date up to a certain fixed expiry date, he may

exercise the option and buy (resp. sell) a unit of the underlying at the fixed price. If the

option is not exercised by the expiry date, the option simply ceases to exist, and can no

longer be exercised.

In financial markets, much like stocks, options can be traded and exchanged for money,

goods and other financial instruments. Thus key aspects of options trading are the pricing

and hedging of options.

The pricing problem is the question of what the current fair trading price of an option

is, given that we know the current and historical prices of the underlying assets, but

not the future prices. Since there is inherent uncertainty involved in the future prices

of the underlying assets, one must take into account this randomness when determining

the theoretical fair price of the option. Thus in the mathematical analysis, the tools of
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probability theory are often used.

On the other hand, the hedging problem is question of how to mitigate the inherent risk

of holding an option via managing a portfolio consisting of other financial instruments

such as stocks and bonds. Most commonly, the hedging portfolio consists of a combination

of the underlying assets and risk-free bonds. The hedging of options and other financial

instruments is of great practical interest to traders. For instance, an employee may be

rewarded a large amount of options contingent on the stock of the company he is working

at; this is a common bonus reward scheme at large companies. However, as the exercise

time is sometime in the future, there is great uncertainty as to what the actual realised gain

will be at the exercise time. The employee, being in a so called long position in the option,

may wish to take a short position in a hedging portfolio - that is, the employee sells the

portfolio in advance at current prices with the promise to buy it back at a later date, at

the future price. The hedging portfolio thus aims to match as well as possible the option

payoff. In the case where the option payoff can be exactly matched by a portfolio, we call

the portfolio a replicating portfolio. On the other hand, the company itself holds a short

position in the option, and thus may themselves wish to hedge their position.

1.2 A Brief History of Options

The theoretical analysis of options dates back to the early 1900s - see, for instance,

Haug (2009). At the time the only prescribed option was the so called London option,

which gave the holder the right, but not the obligation to buy a unit of the stock at a future

date, at its current price. This is, of course, what we now know today as an in the money

European call option. Already at the time, quite a sophisticated understanding had been

achieved of option pricing. In particular the concepts of arbitrage free pricing and put call

parity were already known to practitioners at the time.

It could be said that the pioneering work that started off the modern theory of option
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pricing was the doctoral thesis Bachelier (1900) of Louis Bachelier, entitled The Theory of

Speculation. In the thesis, Bachelier introduced the first mathematical model of Brownian

motion and its use in pricing stock options. It was notable for being the first paper to use

advanced mathematics in the pricing of options. The theory was further developed by the

work of economists such as Paul Samuelson and Robert C. Merton. For a comprehensive

overview of their work, we refer to the survey articles Merton (2010) and Schaefer (1998)

respectively.

In 1961, Sprenkle introduced the Geometric Brownian motion model, in which stock

prices at time 𝑡 ≥ 0 are assumed to be given by the stochastic differential equation (SDE)

𝑑𝑆𝑡 = 𝑆𝑡 (𝜇 𝑑𝑡 + 𝜎 𝑑𝑊𝑡), (1.1)

where𝑊𝑡 is standard Brownian motion, and 𝜇 and 𝜎 are constants known as the drift and

volatility respectively. He also discovered what we now know as the Black-Scholes formula

for the fair price of an European call option, though his methods differed from the methods

used by economists Black and Scholes at a later date.

In 1973, Black and Scholes rediscovered the formula, in what is now perhaps the most

famous work on option pricing, Black and Scholes (1973). Their work was hailed as a

breakthrough in financial mathematics - not because of the formula discovered, which was

already known at the time - but due to the technique known as delta hedging that they

used to derive the result. Roughly, it consisted of making instantaneous adjustments in the

holdings of a portfolio in order to counter balance the stochastic part of the evolution of

the option’s price.

While the technique is considered to be difficult to apply in real life due to the presence

3
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of trading delays, transaction fees, and the impossibility of real time continuous trading,

it remains an key theoretical device for the analysis of option prices, and an important

stepping stone toward more sophisticated models.

Several years later, a Black-Scholes type formula was derived in Jacka (1991) for the

American call/put option, based on optimal stopping theory and the no arbitrage principle.

For further seminal work on American options, we refer to Bensoussan (1984), Karatzas

(1988). More recent work includes Myneni (1992) and Siu and Elliott (2022).

Since then, various different kinds of options such as Asian, Bermudan, and digital

options have emerged in the financial markets, and subsequently have been analysed in

various recent works, see for instance Bayraktar and Xing (2011) and Boyle and Potapchik

(2008) for Asian options and Rogers (2016) for Bermudan options.

1.3 Our Contribution

In this thesis, we will be concerned with the analysis of two types of options - life

contingent options, and barrier Asian options. Since these have a novel mechanism of

action, they are not classified as standard type options. Instead, the name exotic option

is given to them to signify their significant deviation from the contractual structures

of standard options. Despite the naming convention, many kinds of exotic options are

available and regularly used in the marketplace. Though not nearly an exhaustive list, some

examples include ratchet options, rainbow options, basket options and Bermudan options.

As the mechanism of action of exotic options can be rather complex, they are also of

great intrinsic interest mathematically. Indeed, the analysis of ratchet options, for instance,

has stimulated a great deal of development in the theory of martingale optimal transport,

while the analysis of Bermudan options naturally involves the computation of multiple

iterated conditional expectations, and thus has necessitated the development of efficient

numerical algorithms to compute such expressions.
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Now we elaborate more on the options we will be looking at in our thesis. Life contingent

options, like the European option, give a payoff that depends on the current price of one,

or several underlying assets. However, unlike the European and American options, the

exercise time is not fixed nor under the option holder’s control. Instead, it is taken to be

the time of occurrence of an event of interest. This can be a financial event, such as the

bankruptcy time of a company, the time a merger between two companies happens, or a

non financial event such as the death of an individual. In fact, the first situation in which

these options arose was in a insurance context, where the exercise time was taken to be the

death of the holder. Thus it resembles a life insurance contract, except the payoff is in the

form of an option payoff instead of a fixed payoff.

Because of the inherent uncertainty in when the event of interest will occur, this presents

a novel difficulty in the analysis of such options. Indeed, it is not initially clear how to

price such an option, since in the analysis of both the standard cases, the European and

American options, an important role is played by the fact that the exercise time is either

fixed or under the user’s control. In both cases the exercise time is adapted to the natural

filtration of the stock price, and thus is amenable to probabilistic analysis. Further, the

hedging problem presents even more difficulties, since the inherent unpredictability of the

event of interest means that exact replication is, intuitively not possible in general. Indeed,

we shall prove this fact in the course of our work - in fact we give a precise characterisation

of when exact replication is possible. We elaborate on our precise results in more detail

later in this section.

The next type of option we analyze are short maturity barrier Asian options. This is an

exotic option with two significant novelties - the Asian component signifies that the payoff

of the option is not contingent merely on the current price of the underlying assets, but

in general can depend on the entire history of the asset prices from the purchase time of
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the option to the exercise time. On the other hand, the barrier component means that the

option may only be exercised if the prices of the underlying assets reach a certain level

prior to the exercise time. In the most common scenario, the up and in barrier option, the

option may be exercised if the stock price reaches a level that is currently above its current

price. The short maturity aspect is not, properly speaking, part of the definition of the

exotic option. It signifies that we analyse these options with their exercise time taken to be

very close to the current date.

The combination of both the barrier and Asian component significantly complicates

the analysis of these options. Indeed, unlike in the case of European options, where

closed form formulae for prices and hedging portfolios are abundant, even the most basic

Asian type options in the simplest market models admit no closed form solution for their

price. Compounding this difficulty is the presence of the barrier condition, which vaguely

speaking creates a large discontinuity in the payoff, since it defaults to a payoff of zero if

the barrier condition is not met.

Now we elaborate more on our exact contributions. For the life contingent option,

we will be interested in the hedging problem. As mentioned earlier, due to the inherent

uncertainty involved in the exercise time, we discover that exact replication is not possible

in general. We thus turn to the framework of superreplication, or superhedging to answer

the hedging problem. This is the question of how to create a portfolio that almost surely

pays off an amount greater than or equal to the option payoff at the exercise time, whenever

the exercise time may be. Further, we wish to do so with minimal initial investment cost.

We find that although exact replication is in general not possible, there always exists a

minimal superreplicating portfolio, and further this minimal replicating portfolio is unique.

We also give an exact characterization of when replication is possible.

Next, we investigate the pricing problem for the short maturity barrier Asian option.
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We derive exact asymptotic formulae for the price of barrier Asian options in the short

maturity limit - that is, the results become more and more accurate as the maturity time

gets shorter. We provide quantitative rates of convergence for the price of the option to the

limiting expression, in terms of the time to maturity. The analysis relies on asymptotic

results for the geometric Brownian motion, which we term as large noise limits. These

results, to our best knowledge are novel and have not been explored in the current literature.

1.4 Literature Review

Option pricing and hedging is a vast topic in probability and financial mathematics. To

begin the literature review, we give just a few general examples of contemporary work in

the field.

American options are studied in papers such as Gapeev (2012), and Goudenège et

al. (2023). In Gapeev (2012), the pricing problem for the American option in a market

model with partial observation is considered. Investors are able to observe the price of the

underlying asset, but not the dividend policy for the asset, which is only observable by the

issuing firm. The authors characterise the optimal stopping boundary, and further provide

closed form estimates for the rational price of the option and the stopping boundary.

On the other hand, the hedging problem for American options is considered in Goudenège

et al. (2023). Here the main novelty is the presence of transaction costs when purchasing

and selling portfolio assets. Numerical algorithms for approximate optimal hedging of

the option under transaction costs are provided, and compared to existing algorithms.

Concerning exotic options, lookback options are studied in G. Zhang and Li (2023) and

Chan and Zhu (2014) among many others. The paper G. Zhang and Li (2023) considers

the numerical pricing of lookback options in a general Markovian model. The results

obtained apply to a wide variety of market models, and their efficiency in such models

is demonstrated via numerical simulation. Meanwhile, the paper Chan and Zhu (2014)
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takes an analytic approach, obtaining exact and explicit formulae for the rational price of

European style lookback options in a regime switching model, where the market is allowed

to switch randomly between “market states” such as high or low volatility regimes.

General studies on Asian options include works such as Han and Liu (2018) and Pirjol

and Zhu (2023). In Han and Liu (2018), the pricing problem for Asian options in a market

model with uncertain volatility is considered. The worst-case price of the Asian option is

characterised via a solution to a nonlinear PDE, and approximate solutions to the PDE are

given. The paper Pirjol and Zhu (2023) is concerned with the sensitivities of the Asian

option price to changes in the model parameters, a classic topic in option pricing. The

so called “Greeks”, various sensitivities are computed for the Asian option using large

deviation techniques.

Next, we look at work in the field that is more closely related to our thesis topics.

We first discuss relevant work on life contingent options. The authors of Gerber et al.

(2012) determine the expected payoff of life contingent options within the framework of

the geometric Brownian motion model by using discounted density approach. There, the

random exercise time is modelled by a linear combination of exponentially distributed

random variables independent of the underlying price processes. Closed form expressions

of the expected payoff are obtained for various types of payoffs, including European-type

options, which give the holder the right to buy (resp. sell) a unit of underlying at the expiry

date; as well as digital, lookback, and barrier options. The results are extended to a jump

diffusion model of stock prices in Gerber et al. (2013). An underlying asset price model

with jumps is also considered in Z. Zhang et al. (2020). In this paper, valuation formulae

for a class of payoff functions are obtained under the assumption that the risky asset price

to follow a geometric Levy process, and the pricing method is implemented numerically

via spline function methods.
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Meanwhile, the valuation problem for life contingent options in a discrete time model

is considered by Gerber et al. (2015). They use the technique of geometric stopping of

a random walk to derive closed form expressions for the expected payoffs of European,

barrier and lookback life contingent options.

On the other hand, the hedging problem for life contingent options, an equally important

problem in financial literature, has been far less frequently studied compared to the

problem of valuation. Kélani and Quittard-Pinon (2017) considered the hedging problem

in incomplete markets with the independence assumption of the mortality risk and market

risk. They obtained a concise formula for the optimal hedging ratio under the framework

of local risk minimization. In this framework, the portfolio is not required to be self

financing, but its value process is a martingale. The objective is to hedge the option while

minimizing the variance of the cumulative cost process of the portfolio. W. Wang et

al. (2021) considered the hedging problem in a more intricate market model where the

risky asset price follows a Hawkes jump-diffusion process, which is a jump process with

self-exciting jumps. They obtained explicit expressions of the locally risk minimizing

strategies for unit-linked life insurance contracts.

Another hedging framework that is widely used in incomplete markets is that of quantile

hedging. In this framework, one attempts to find a self financing portfolio that successfully

hedges the option with maximal probability, given constraints on the initial value of the

portfolio. This framework is explored in Y. Wang (2009). Under various assumptions,

quantile hedges are derived for life contingent options, referred to in their paper as

guaranteed minimum death benefits. Meanwhile, Eyraud-Loisel and Royer-Carenzi (2010)

considered hedging problems for an insider trader. They studied hedging problem for

American-style option and model it with backward stochastic differential equations with

random terminal time. However, strong additional conditions were included in the set up.

9
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In particular, the portfolio holder is assumed to have access to additional information not

included in the asset filtration, and his portfolio is allowed to consist of an additional asset

other than the two included in the standard market model.

In this thesis, we consider the hedging problem for life contingent options. Since the

exercise time for life contingent options is itself random, this presents a novel difficulty in

constructing a hedge process, or a replicating portfolio. In Gerber et al. (2012), Gerber et

al. (2013), Gerber et al. (2015) and Z. Zhang et al. (2020), the expected payoff of the life

contingent option at the exercise time is derived. However, they do not explore the hedging

problem for this type of option. In Kélani and Quittard-Pinon (2017) and Y. Wang (2009),

the hedging problem is explored. The frameworks explored are, respectively, the local risk

minimization framework, and quantile hedging framework. This leaves the problem of

super-replication unexplored. In Eyraud-Loisel and Royer-Carenzi (2010), the existence

of a super-replication portfolio is obtained, but the authors make crucial additions to the

scenario - in particular the existence of an additional asset, and additional datum in the

filtration, the so called insider information. Thus the question of superhedging for the life

contingent option - in the classical setting of a portfolio consisting only of market assets,

and adapted to the market filtration - remains unanswered.

As such, we will be interested in the case where the additional devices in Eyraud-Loisel

and Royer-Carenzi (2010) are not provided. We explore the super-replication problem for

life contingent options. Given that the market is incomplete, exact replication will rarely

be possible, thus we examine the possibility of super-replication instead, that is, a portfolio

that almost surely pays off more than or equal to the option payoff at the exercise time.

First, we derive the minimal price of a super-replicating portfolio for the life contingent

option. We then show there exists a minimal hedge for the life contingent option, given

only access to the asset price process as information, and consisting of only the two assets

10
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in the market. Next, we give a characterisation of when replication of the life contingent

option is possible, and finally derive an explicit expression for a super-replicating portfolio

in a simple case.

Next, we turn to short maturity Asian options, which have been studied in many papers

such as the recent Pirjol and Zhu (2016), Pirjol and Zhu (2019), Shoshi and SenGupta

(2023) and Chatterjee et al. (2018). The paper Pirjol and Zhu (2016) investigates pricing

of short maturity Asian options in local volatility models, while the paper Pirjol and Zhu

(2019) investigate pricing in the Constant Elasticity of Variance (CEV) model, a well

known stochastic volatility model for stock prices. Meanwhile, Shoshi and SenGupta

(2023) uses large deviations theory to study short maturity Asian options in a jump diffusion

model, while in Pirjol and Zhu (2016) the authors use a Markov chain-based approximation

method to price short maturity Asian options in the geometric Brownian Motion model.

Small noise limits have been investigated by numerous authors. In Trevisan (2013),

the authors determine the small noise limits for a well known family of irregular SDEs

via local time techniques, showing convergence to a unique limiting distribution. The

recent 2022 paper Fjordholm et al. (2022) by Fjordholm, Musch, and Pilipenko investigates

the small noise limit for an SDE with drift coefficient in 𝐿∞. In this case the limiting

solution is unique, and corresponds to the so called Osgood solution of the corresponding

deterministic equation. Some other references include Bakhtin (2010), which investigates

small noise limits from a dynamical systems viewpoint, and Delarue and Maurelli (2019),

where the authors investigate a particular multivariable SDE case.

As will be mentioned in later chapters, the mathematical results used here are strongly

linked to the so called extreme value theory for Levy processes, in which the behaviour of

jump processes conditional on its running maximum taking a large value is considered.

In many cases, it happens that the processes converges to a process with only one large
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random jump, that is otherwise constant. A seminal reference is Hult and Lindskog (2005),

in which the authors prove the single jump limiting behaviour of Levy processes with a

suitable notion of regular variation. The results are extended significantly by the same

authors in Hult and Lindskog (2007). In Bazhba et al. (2017), the authors establish a weak

large deviations principle for this scenario, but conclude that a strong large deviations

principle in the classical sense does not hold.
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CHAPTER 2: LIFE CONTINGENT OPTIONS

2.1 Overview

We now begin our investigation of life contingent options. We work in a modified

Black-Scholes market model. In order to model the random exercise time, we include the

existence of a stopping time independent of the asset filtration. That it is independent of the

asset filtration corresponds to the fact that the option holder cannot predict the occurence of

the event of interest on the basis of the asset price process. In fact, life contingent options

in general may be contingent on an event that is linked to the asset price. However, in this

thesis we restrict ourselves to the independent case, which is itself of considerable interest.

In order to demonstrate existence of a minimal hedge, we will use an approach inspired

by dynamic programming. We induct backward starting from the terminal time, giving

rise to a series of forward-backward stochastic differential equations (FBSDE) that may be

solved sequentially to yield a minimal hedge.

To determine the necessary and sufficient conditions for existence of a replicating

portfolio, we will use martingale theory in order to narrow down the conditions under

which a replicating portfolio may exist. The key tools here shall be the optional stopping

theorem, and martingale inequalities.

2.2 Market Model and Key Definitions

We first introduce the market model for the problem. Let (Ω, F , F, P) be a filtered

probability space satisfying the usual conditions. The probability measure P is referred to

as the physical measure. We consider the following two processes

𝑋0, 𝑋1 : [0, 𝑇] ×Ω → R+, (2.1)
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known as the bond and stock price respectively satisfying the stochastic differential equation

(SDE)

𝑑𝑋0
𝑡 = 𝑟𝑋0

𝑡 𝑑𝑡, (2.2)

𝑑𝑋1
𝑡 = 𝑋1

𝑡 (𝜇 𝑑𝑡 + 𝜎 𝑑𝑊𝑡) , (2.3)

with 𝑋0
0 = 1, 𝑋1

0 = 𝑥0 almost surely for some 𝑥0 ∈ R+, and𝑊 = {𝑊𝑡}𝑡∈[0,𝑇] is a standard

Brownian motion with 𝑇 denoting a fixed and finite time horizon. Here 𝑟, 𝜇, 𝜎 ∈ R are

positive constants, known as the risk free interest rate, drift and volatility of the stock

respectively. The filtration F = {F𝑡}𝑡≥0 is the natural filtration generated by the Brownian

motion𝑊 . We assume F satisfies the usual conditions, that is, it is right continuous and

contains all P-null sets.

To describe the randomness of the exercise time of life contingent options, we let 𝜏

be an almost surely finite random variable independent of F taking finitely many values

0 < 𝑡1 < · · · < 𝑡𝑛 < 𝑡𝑛+1 = 𝑇 , representing the possible exercise and expiry times. We

interpret times 𝑡1 . . . 𝑡𝑛 as being the possible occurrence times of the event of interest

(eg, death of the holder) at which time the option may be exercised. On the other hand,

if 𝜏 = 𝑡𝑛+1 = 𝑇 , we interpret it as the option having expired before the event of interest

occurs. We denote by G the natural filtration of the process 𝐺 : [0, 𝑇] ×Ω → R given by

𝐺 (𝑡, ·) = 1{𝜏≤𝑡}. By construction, 𝜏 is then a stopping time of G.

We now introduce the key definitions to do with the hedging problem for the life contingent

option.

Definition 2.2.1 (𝑇-year life contingent option). Let 𝑇 be the fixed expiration date of the

life contingent option and 0 ≤ 𝜏 ≤ 𝑇 be the stopping time of an event of interest. The
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payoff of a life contingent option is an F𝑇 ∨ G𝜏 measurable random variable where G𝜏

denotes the 𝜎-algebra of the stopping time 𝜏, and F𝑇 ∨G𝜏 denotes the 𝜎-algebra generated

by F𝑇 and G𝜏. The time-𝜏 payoff of the life contingent option is of the form

𝑓𝜏 := 1{𝜏<𝑇}𝑏(𝑋1
𝜏 ) + 1{𝜏=𝑇}𝑐(𝑋1

𝑇 ), (2.4)

where 𝑋1 is the underlying price process satisfying Eq. (2.3) and 𝜏 is the random exercise

time. 𝑏, 𝑐 : R+ → R+ are bounded Borel measurable functions called as death benefit

payoff and compensation payoff, respectively.

Thus the option pays death benefit payoff, 𝑏(𝑋1
𝜏 ) if the holder dies at time 𝜏, but before

time 𝑇 = 𝑡𝑛+1, and otherwise pays the compensation payoff 𝑐(𝑋1
𝑇
) at time 𝑇 .

Next, we introduce the definition of a portfolio.

Definition 2.2.2 (Self financing portfolio). A self financing portfolio is a pair of processes

𝐻 := (𝐻0, 𝐻1) with values in R2 that is adapted to the filtration F, and satisfies the

following two conditions:

(C1) The portfolio must be self financing, that is:

𝑋0
𝑡 𝑑𝐻

0
𝑡 + 𝑋1

𝑡 𝑑𝐻
1
𝑡 = 0 almost surely (2.5)

(C2) The portfolio must have nonnegative value at all times:

𝑋0
𝑡 𝐻

0
𝑡 + 𝑋1

𝑡 𝐻
1
𝑡 ≥ 0 almost surely, (2.6)

for all 𝑡 ∈ [0, 𝑇].

Intuitively, the self financing condition means that no additional money or assets may be
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externally added or taken away from the portfolio, apart from the gains and losses obtained

from holding the assets. Meanwhile, the nonnegativity constraint is a natural one that says

that no borrowing from the bank is allowed, and consequently the simultaneous shorting

of both assets is not permitted.

We denote by 𝑉𝑡 (𝐻) := 𝑋0
𝑡 𝐻

0
𝑡 + 𝑋1

𝑡 𝐻
1
𝑡 the value process of the portfolio 𝐻 at time 𝑡,

and 𝑉0(𝐻) the initial investment of the portfolio. The set of self financing portfolios is

denoted by 𝑆𝐹.

Remark 1. Note that the initial values 𝐻0
0 , 𝐻

1
0 may be freely chosen, so long as the non

negativity condition in Definition 2.2.2 is satisfied.

Definition 2.2.3 (Super-replication portfolio). A super-replication portfolio for the lifetime

contingent option 𝑓 is a self financing portfolio whose associated value process 𝑉 satisfies

𝑉𝜏 ≥ 𝑓𝜏 almost surely. More precisely, a super-replication portfolio is an element of the

set S( 𝑓 , 𝜏) defined by

S( 𝑓,𝜏) := {𝐻 | 𝐻 ∈ 𝑆𝐹; 𝑋0
𝜏𝐻

0
𝜏 + 𝑋1

𝜏𝐻
1
𝜏 ≥ 𝑓𝜏 almost surely}. (2.7)

Definition 2.2.4 (Minimal super-replication price). We define the minimal super-replication

price 𝜋0( 𝑓 ) for the life contingent option 𝑓 to be the infimal value of a super-replication

portfolio for 𝑓 , that is,

𝜋0( 𝑓 ) := inf{𝑉0(𝐻) | 𝐻 = (𝐻0, 𝐻1) ∈ S( 𝑓 , 𝜏)}, (2.8)

where 𝑉0(𝐻) is the initial investment for the portfolio 𝐻.
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Definition 2.2.5 (Minimal super-replication portfolio). A minimal super-replication portfo-

lio for 𝑓 , if it exists, is a super-replication portfolio whose initial value equals the minimal

hedging price 𝜋0( 𝑓 ).

We recall that the market involving the two assets 𝑋0 and 𝑋1 is complete, that is, there

exists a unique equivalent martingale measureQ, which is a probability measure equivalent

to P such that the discounted asset prices are martingales.

2.3 Existence of a minimal super-replication portfolio

We are now ready to state the first main theorem of the chapter.

Theorem 1. Let 𝑏, 𝑐, 𝑓 , 𝜏 be as in the setup in Section 2.2. There exists a minimal hedge

for the life contingent option 𝑓 , whose associated initial investment 𝜋0 is

𝜋0 = 𝐷0 . . . 𝐷𝑛 (𝑈), (2.9)

where the random variable𝑈 is defined by

𝑈 :=


𝑐(𝑋1

𝑇
) if P(𝜏 = 𝑇) ≠ 0,

0 if P(𝜏 = 𝑇) = 0,

(2.10)

and the operators 𝐷𝑘 : 𝐿1(Ω) → R are defined by the following. For any random variable

𝑌 ∈ 𝐿1(Ω),

𝐷0(𝑌 ) := EQ [𝑒−𝑟𝑡1𝑌 ], (2.11)

and for 1 ≤ 𝑘 ≤ 𝑛,

𝐷𝑘 (𝑌 ) := max
(
𝑏(𝑋1

𝑡𝑘
),EQ

[
𝑒−𝑟 (𝑡𝑘+1−𝑡𝑘)𝑌

��F𝑡𝑘 ] ) . (2.12)
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Here EQ denotes the expectation under the probability measure Q, and we recall that

𝑡1, . . . , 𝑡𝑛+1 are the possible exercise or expiry times of the option.

For the proof of Theorem 1, we will need the following lemma on independence of

filtrations, as well as a standard result from the theory of option pricing.

Lemma 1. Let H = {H𝑡} and K = {K𝑡} be two independent filtrations under the

probability measure P. If Q is another probability measure such that 𝑑Q = 𝑍 𝑑P for some

H∞ measurable random variable 𝑍 , then H and K remain independent under Q.

Proof. Let 𝐻 ∈ H𝑡 and 𝐾 ∈ 𝐾𝑟 for some 𝑡, 𝑟 ≥ 0. We compute

Q(𝐻 ∩ 𝐾) = EQ [1𝐻1𝐾] = EP [𝑍1𝐻1𝐾]

= EP [𝑍1𝐻]EP [1𝐾] = EP [𝑍1𝐻]EP [1𝐾]EP [𝑍]

= EP [𝑍1𝐻]EP [𝑍1𝐾] = EQ [1𝐻]EQ [1𝐾]

= Q(𝐻)Q(𝐾),

(2.13)

where the fourth to last equality is valid because 𝐸P [𝑍] =
∫
Ω
𝑍𝑑P =

∫
Ω
𝑑Q = 1.

We now recall a key result in the theory of option pricing, which can be found in

references such as Elliott and Kopp (2013) (Theorem 7.5.10, page 190) - given a geometric

Brownian motion market model with two assets, the minimal initial investment for a

hedge for a European option with payoff ℎ𝑇 is EQ [𝑒−𝑟𝑇ℎ𝑇 ], where Q denotes an equivalent

martingale measure and 𝑇 is the exercise time.

Stated more precisely, the form of this result we will need is:

Proposition 1. Let 𝑊 be a standard Brownian motion on a filtered probability space.
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Suppose 𝑋0 and 𝑋1 are solutions to the SDE

𝑑𝑋0
𝑡 =𝑟𝑋0

𝑡 𝑑𝑡, (2.14)

𝑑𝑋1
𝑡 =𝑋1

𝑡 (𝜇 𝑑𝑡 + 𝜎 𝑑𝑊𝑡) , (2.15)

for 𝑡 ∈ [𝑞, 𝑠] with initial condition 𝑋0
𝑞 = 𝑥0 and 𝑋1

𝑞 = 𝑥1 for some 𝑥0, 𝑥1 ∈ R+. Let 𝑓𝑠

be a F𝑠 measurable random variable. Suppose (𝑍0, 𝑍1) is a super-replication portfolio

consisting of 𝑋0 and 𝑋1 on [𝑞, 𝑠].

Then 𝑍0
𝑞𝑋

0
𝑞 + 𝑍1

𝑞𝑋
1
𝑞 ≥ EQ [𝑒𝑟 (𝑞−𝑠) 𝑓𝑠 |F𝑞] almost surely, where Q is a probability measure

equivalent to P under which the discounted process 𝑒−𝑟 (𝑡−𝑞)𝑋1
𝑡 is a martingale on [𝑞, 𝑠]

with respect to the filtration F. Further, there exists a self financing portfolio 𝐻 = (𝐻0, 𝐻1)

with 𝑋0
𝑠𝐻

0
𝑠 + 𝑋1

𝑠𝐻
1
𝑠 = 𝑓𝑠 almost surely, in which case 𝑋0

𝑞𝐻
0
𝑞 + 𝑋1

𝑞𝐻
1
𝑞 = E

Q [𝑒𝑟 (𝑞−𝑠) 𝑓𝑠 |F𝑞].

As a first step to proving Theorem 1, we obtain a lower bound on the value of any ( 𝑓 , 𝜏)

hedge at the times 𝑡1, . . . , 𝑡𝑛+1. Write for convenience 𝑡0 = 0.

Proposition 2. Let 𝑏, 𝑐, 𝑓 , 𝜏 be as in the setup in Section 2.2, and suppose 𝐻 ∈ 𝑆( 𝑓 , 𝜏).

Then the associated value process 𝑉 must satisfy

𝑉𝑡𝑖 ≥ 𝐷𝑖 . . . 𝐷𝑛 (𝑈), (2.16)

for each 0 ≤ 𝑖 ≤ 𝑛, almost surely, where the random variables𝑈, and the operators 𝐷𝑖 are

as defined in Theorem 1.

If P(𝜏 = 𝑇) ≠ 0, 𝑉 must further satisfy

𝑉𝑇 ≥ 𝑐(𝑋1
𝑇 ) (2.17)
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almost surely.

Proof. Let 𝑉 (𝐻) be the value process of a hedging portfolio 𝐻 = (𝐻0, 𝐻1). Assuming

first that P(𝜏 = 𝑇) ≠ 0, we will show that 𝑉𝑇 (𝐻) ≥ 𝑐(𝑋1
𝑇
) almost surely. Indeed, assume

otherwise - then the event 𝐴 := {𝑉𝑇 (𝐻) < 𝑐(𝑋1
𝑇
)} has nonzero probability. Since the two

variables involved in the defining inequality are F𝑇 measurable, 𝐴 is F𝑇 measurable.

But then since 𝜏 is independent of the filtration generated by the Brownian motion, we

have that 𝐴 ∩ {𝜏 = 𝑇} has nonzero probability as well. Thus 𝑉𝜏 < 𝑐(𝑋𝜏) with nonzero

probability, contradicting the definition of a hedge.

By exactly the same reasoning, we conclude that

𝑉𝑡𝑖 (𝐻) ≥ 𝑏(𝑋1
𝑡𝑖
), almost surely, (2.18)

for each 1 ≤ 𝑖 ≤ 𝑛.

It is left to show the inequalities

𝑉𝑡𝑖 (𝐻) ≥ 𝐷𝑖 . . . 𝐷𝑛 (𝑈) almost surely, (2.19)

for each 0 ≤ 𝑖 ≤ 𝑛.

We treat the case 1 ≤ 𝑖 ≤ 𝑛 and 𝑖 = 0 seperately. For the former, we take a dynamic

programming approach and induct backwards on 𝑖.

For the base case, we must show that

𝑉𝑡𝑛 (𝐻) ≥ 𝐷𝑛 (𝑈), almost surely. (2.20)

We first note that by the Markov property of Ito stochastic differential equations, conditional

on F𝑡𝑛 , we find that 𝑋0, 𝑋1, and the portfolio 𝐻0, 𝐻1 restricted to [𝑡𝑛, 𝑇] satisfy the
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hypotheses of Proposition 1.

Indeed, 𝑋0 and 𝑋1 satisfy the given SDE (2.14), (2.15) on the interval [𝑡𝑛, 𝑇], and by

the second and third paragraph above, 𝑉𝑇 (𝐻) = 𝑋0
𝑇
𝐻0
𝑇
+ 𝑋1

𝑇
𝐻1
𝑇
≥ 𝑐(𝑋1

𝑇
) almost surely.

Thus

𝑉𝑡𝑛 (𝐻) ≥ EQ
[
𝑒𝑟 (𝑡𝑛−𝑇)𝑐(𝑋1

𝑇 )
��F𝑡𝑛 ] . (2.21)

Combining this with the fact that 𝑉𝑡𝑛 (𝐻) ≥ 𝑏(𝑋𝑡𝑛) from (2.18), we conclude the inequality

(2.20) as desired.

For the induction step, let 2 ≤ 𝑘 ≤ 𝑛, and assume

𝑉𝑡𝑘 (𝐻) ≥ 𝐷𝑘 . . . 𝐷𝑛 (𝑈), almost surely. (2.22)

We must show that

𝑉𝑡𝑘−1 (𝐻) ≥ 𝐷𝑘−1 . . . 𝐷𝑛 (𝑈), almost surely. (2.23)

However, conditional on F𝑡𝑘−1 , we again find that 𝑋0, 𝑋1, and the portfolio 𝐻0, 𝐻1 restricted

to [𝑡𝑘−1, 𝑡𝑘 ] satisfy the hypotheses of Proposition 1, Indeed, we again check that 𝑋0 and

𝑋1 satisfy the given SDE (2.14), (2.15) on the interval [𝑡𝑘−1, 𝑡𝑘 ] and by the induction

hypothesis,

𝑉𝑡𝑘 (𝐻) = 𝑋0
𝑡𝑘
𝐻0
𝑡𝑘
+ 𝑋1

𝑡𝑘
𝐻1
𝑡𝑘
≥ 𝐷𝑘 . . . 𝐷𝑛 (𝑈), almost surely. (2.24)

Together with (2.18), we deduce

𝑉𝑡𝑘−1 (𝐻) ≥ max
(
𝑏(𝑋1

𝑡𝑘−1),E
Q

[
𝑒𝑟 (𝑡𝑘−1−𝑡𝑘)𝐷𝑘 . . . 𝐷𝑛 (𝑈) |F𝑡𝑘−1

] )
= 𝐷𝑘−1 . . . 𝐷𝑛 (𝑈), almost surely,

(2.25)
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which proves the case 1 ≤ 𝑖 ≤ 𝑛 in (2.19) as required.

Finally, one more application of Proposition 2 proves the case 𝑖 = 0 in (2.19).

In the case where P(𝜏 = 𝑇) = 0, we note that by similar considerations as earlier, we

still have the inequality

𝑉𝑡𝑛 (𝐻) ≥ 𝑏(𝑋1
𝑡𝑛
), almost surely, (2.26)

whence the rest of the proof proceeds verbatim.

Now we set out to construct a minimal hedge. Before we do so, we will need the

following generalities on regular conditional probabilities. The below is largely based on

Jr et al. (2004).

Definition 2.3.1 (Transition probability). Let (Ω, F , 𝑃) be a probability space and (𝐸, E)

a measurable space. A transition probability from 𝐸 to Ω is a function 𝜈 : 𝐸 × F → [0, 1]

which satisfies the following two conditions:

a) 𝜈(𝑥, ·) is a probability measure on (Ω, F ), for all 𝑥 ∈ 𝐸;

b) 𝜈(·, 𝐴) is a E-measurable function on 𝐸 , for all 𝐴 ∈ F .

Definition 2.3.2 (Regular conditional probability). Let 𝑇 : Ω → 𝐸 be a measurable

function. A regular conditional probability with respect to 𝑇 is a transition probability

𝜈 : 𝐸 × F → [0, 1] from (𝐸, E) to (Ω, F ) such that

P[𝐴 ∩ 𝑇−1(𝐵)] =
∫
𝐵

𝜈(𝑥, 𝐴) 𝑇∗P(𝑑𝑥), (2.27)

for all 𝑥 ∈ 𝐸 , 𝐴 ∈ F and 𝐵 ∈ E, where 𝑇∗P denotes the image measure of P under 𝑇 .
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Definition 2.3.3 (Sub-𝜎-algebra regular conditional probability). Let H be a sub-𝜎-

algebra of F . A sub-𝜎-algebra regular conditional probability (with respect to H ) is a

regular conditional probability with respect to the identity map 𝐼 : (Ω,H) → (Ω, F ).

The following is Proposition 1.9 in Yong and Zhou (1999), and gives sufficient conditions

for regular conditional probabilities to exist. After, we state a proposition which ensures

that regular conditional probabilities exist in our setting.

Proposition 3. Let (Ω, F , P) be a Radon probability space, and H a sub 𝜎-algebra of F .

Then there exists a regular conditional probability with respect to H .

We shall need the following technical lemma, whose proof we relegate to the section on

technical proofs at the end of the chapter.

Proposition 4. The market model (Ω, F , P) in the setup in Section 2 can be taken to be a

Radon probability space.

We are now ready to construct our minimal hedge, and in doing so, prove Theorem 1.

Proof. Denote by 0 < 𝑡1 < · · · < 𝑡𝑛 < 𝑡𝑛+1 = 𝑇 , the values of 𝜏 that occur with nonzero

probability, with the exception of P(𝜏 = 𝑡𝑛+1) which is permitted to possibly be 0.

In the notation introduced in the statement of the theorem, write for convenience

𝐽𝑖 := 𝐷𝑖 . . . 𝐷𝑛 (𝑈), (2.28)

for 1 ≤ 𝑖 ≤ 𝑛.

We define our hedging process 𝐻 on [0, 𝑡1] by 𝐻0 = 𝑌0, 𝐻1 = 𝑌1, where 𝑌0, 𝑌1 are

defined as follows. By Proposition 2, given 𝑋0, 𝑋1 as in the setup, there exists a F-adapted
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solution (𝑌0, 𝑌1, 𝑉) to the following system (FBSDE 1) of forward backward stochastic

differential equations

𝑑𝑋0
𝑡 = 𝑟𝑋0

𝑡 𝑑𝑡, (2.29)

𝑑𝑋1
𝑡 = 𝑋1

𝑡 (𝜇 𝑑𝑡 + 𝜎 𝑑𝑊𝑡) , (2.30)

𝑑𝑉𝑡 = 𝑌
0
𝑡 𝑑𝑋

0
𝑡 + 𝑌1

𝑡 𝑑𝑋
1
𝑡 , (2.31)

𝑋0
𝑡 𝑑𝑌

0
𝑡 + 𝑋1

𝑡 𝑑𝑌
1
𝑡 = 0, (2.32)

for 𝑡 ∈ [0, 𝑡1] under P with initial condition 𝑋0
0 = 1, 𝑋1

0 = 𝑥, and terminal condition

𝑉𝑡1 = 𝐽1 almost surely.

Suppose now inductively our processes (𝐻0, 𝐻1, 𝑉 (𝐻)) have already been defined on

[0, 𝑡𝑖] for some 1 ≤ 𝑖 ≤ 𝑛, satisfies Eqs. (2.29), (2.30), (2.31), (2.32) and further that

𝑉𝑡𝑘 (𝐻) ≥ 𝐽𝑘 for each 1 ≤ 𝑘 ≤ 𝑖.

Consider the regular conditional probability 𝜉 of P given F𝑡𝑖 .

Now fix 𝑥 ∈ R+, and 𝜔 ∈ Ω such that 𝑋1
𝑡𝑖
(𝜔) = 𝑥, and consider the system (FBSDE 2)

𝑑𝑋0
𝑡 = 𝑟𝑋0

𝑡 𝑑𝑡, (2.33)

𝑑𝑋1
𝑡 = 𝑋1

𝑡 (𝜇 𝑑𝑡 + 𝜎 𝑑𝑊𝑡) , (2.34)

𝑑𝑅𝑡 = 𝑍
0
𝑡 𝑑𝑋

0
𝑡 + 𝑍1

𝑡 𝑑𝑋
1
𝑡 , (2.35)

𝑋0
𝑡 𝑑𝑍

0
𝑡 + 𝑋1

𝑡 𝑑𝑍
1
𝑡 = 0, (2.36)

for 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1] under the probability measure 𝜉 (𝜔, ·) with initial condition 𝑋0
𝑡𝑖
= 𝑒𝑟𝑡𝑖 ,

𝑋1
𝑡𝑖
= 𝑥, and terminal condition 𝑅𝑡𝑖+1 = 𝐽𝑖+1, 𝜉 (𝜔, ·)-almost surely. Note that 𝜉 (𝜔, ·) is
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supported on the event {𝑋1
𝑡𝑖
= 𝑥}, since 𝑋1

𝑡𝑖
is F𝑡𝑖 measurable, and 𝑋1

𝑡𝑖
(𝜔) = 𝑥.

By Proposition 1, for each such 𝜔 ∈ Ω, there exists a 𝜉 (𝜔, ·)-almost surely well

defined solution (𝑍0, 𝑍1, 𝑅) =: (𝑍0,𝑥 , 𝑍1,𝑥 , 𝑅𝑥) to (FBSDE 2). We define our process for

𝑡 ∈ (𝑡𝑖, 𝑡𝑖+1] by

𝐻0
𝑡 = 𝑍

0,𝑥
𝑡 + 𝑒−𝑟𝑡𝑖 (𝑉𝑡𝑖 (𝐻) − 𝑍

0,𝑥
𝑡𝑖
𝑋0
𝑡𝑖
− 𝑍1,𝑥

𝑡𝑖
𝑋1
𝑡𝑖
) (2.37)

𝐻1
𝑡 = 𝑍

1,𝑥
𝑡 (2.38)

𝑉𝑡 (𝐻) =𝑒−𝑟𝑡𝑖 (𝑉𝑡𝑖 (𝐻) − 𝑍
0,𝑥
𝑡𝑖
𝑋0
𝑡𝑖
− 𝑍1,𝑥

𝑡𝑖
𝑋1
𝑡𝑖
)𝑋0

𝑡 + 𝑍0,𝑥
𝑡 𝑋0

𝑡 + 𝑍1,𝑥
𝑡 𝑋1

𝑡 (2.39)

=𝐻0
𝑡 𝑋

0
𝑡 + 𝐻1

𝑡 𝑋
1
𝑡 (2.40)

on the event {𝑋1
𝑡𝑖
= 𝑥}. This defines (𝐻0, 𝐻1, 𝑉), P almost surely up to [0, 𝑡𝑖+1].

Indeed, denoting by 𝐸 the set on which (𝐻0, 𝐻1, 𝑉) is well defined up to [0, 𝑡𝑖+1), we

have

P(𝐸) =
∫
Ω

𝜉 (𝜔, 𝐸) P(𝑑𝜔) =
∫
Ω

1P(𝑑𝜔) = 1. (2.41)

We now show that (𝐻0, 𝐻1, 𝑉 (𝐻)) satisfies the system (FBSDE 1) on [0, 𝑡𝑛+1] under

P with initial condition 𝑋0
0 = 1, 𝑋1

0 = 𝑥, and terminal condition 𝑉𝑡𝑖+1 (𝐻) ≥ 𝐽𝑖+1, almost

surely.

That (2.29) and (2.30) are satisfied has already been established a priori in the

construction of the market model.

For 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1], Eq. (2.31) is satisfied. Indeed, denoting 𝐸𝑡𝑖 := 𝑒−𝑟𝑡𝑖 (𝑉𝑡𝑖 (𝐻) −𝑍
0,𝑥
𝑡𝑖
𝑋0
𝑡𝑖
−
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𝑍
1,𝑥
𝑡𝑖
𝑋1
𝑡𝑖
), we compute

𝑑𝑉𝑡 (𝐻) = 𝐸𝑡𝑖𝑑𝑋0
𝑡 + 𝑑𝑍0,𝑥

𝑡 𝑋0
𝑡 + 𝑑𝑍1,𝑥

𝑡 𝑋1
𝑡 + 𝑍0,𝑥

𝑡 𝑑𝑋0
𝑡 + 𝑍1,𝑥

𝑡 𝑑𝑋1
𝑡

= 𝐸𝑡𝑖𝑑𝑋
0
𝑡 + 𝑍0,𝑥

𝑡 𝑑𝑋0
𝑡 + 𝑍1,𝑥

𝑡 𝑑𝑋1
𝑡

= 𝐻0
𝑡 𝑑𝑋

0
𝑡 + 𝐻1

𝑡 𝑑𝑋
1
𝑡 .

(2.42)

But we may also compute, for 𝑠 ∈ [0, 𝑡𝑖] and 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1],

𝑉𝑡 (𝐻) −𝑉𝑠 (𝐻) = (𝑉𝑡 (𝐻) −𝑉𝑡𝑖 (𝐻)) + (𝑉𝑡𝑖 (𝐻) −𝑉𝑠 (𝐻))

=

∫ 𝑡

𝑡𝑖

𝐻0
𝑟 𝑑𝑋

0
𝑟 +

∫ 𝑡

𝑡𝑖

𝐻1
𝑟 𝑑𝑋

1
𝑟 +

∫ 𝑡𝑖

𝑠

𝐻0
𝑟 𝑑𝑋

0
𝑟 +

∫ 𝑡𝑖

𝑠

𝐻1
𝑟 𝑑𝑋

1
𝑟

=

∫ 𝑡

𝑠

𝐻0
𝑟 𝑑𝑋

0
𝑟 +

∫ 𝑡

𝑠

𝐻1
𝑟 𝑑𝑋

1
𝑟 ,

(2.43)

which shows that (2.31) holds on [0, 𝑡𝑖+1]. Finally, we check the self financing condition

(2.32). Recall that we have assumed inductively that (2.32) holds on [0, 𝑡𝑖]. Thus we need

only check that (2.32) is satisfied for times 𝑠, 𝑡 in the interval [0, 𝑡𝑖+1], with 𝑠 < 𝑡, and

𝑡 ∈ (𝑡𝑖, 𝑡𝑖+1].

Assume first 𝑠 ≤ 𝑡𝑖. Then we have

∫ 𝑡

𝑠

𝑋0
𝑟 𝑑𝐻

0
𝑟 +

∫ 𝑡

𝑠

𝑋1
𝑟 𝑑𝐻

1
𝑟 (2.44)

=

∫
[𝑠,𝑡𝑖)

𝑋0
𝑟 𝑑𝐻

0
𝑟 +

∫
[𝑠,𝑡𝑖)

𝑋1
𝑟 𝑑𝐻

1
𝑟 +

∫
(𝑡𝑖 ,𝑡]

𝑋0
𝑟 𝑑𝐻

0
𝑟 +

∫
(𝑡𝑖 ,𝑡]

𝑋1
𝑟 𝑑𝐻

1
𝑟 (2.45)

+ 𝑋0
𝑡𝑖
(𝐻0+

𝑡𝑖
− 𝐻0

𝑡𝑖
) + 𝑋1

𝑡𝑖
(𝐻1+

𝑡𝑖
− 𝐻1

𝑡𝑖
). (2.46)

The first two terms are 0 by the induction hypothesis. We claim that the third and fourth

term are 0 as well. Indeed, on [𝑡𝑖, 𝑡𝑖+1), we have 𝐻0 = 𝑍
0,𝑥
𝑡 + 𝐸𝑡𝑖 , and 𝐻1 = 𝑍

1,𝑥
𝑡 , so that

for 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1),

𝑑𝐻0
𝑡 = 𝑑𝑍

0,𝑥
𝑡 ; 𝑑𝐻1

𝑡 = 𝑑𝑍
1,𝑥
𝑡 ,
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and thus

∫
(𝑡𝑖 ,𝑡]

𝑋0
𝑟 𝑑𝐻

0
𝑟 +

∫
(𝑡𝑖 ,𝑡]

𝑋1
𝑟 𝑑𝐻

1
𝑟 =

∫
(𝑡𝑖 ,𝑡]

𝑋0
𝑟 𝑑𝑍

0
𝑟 +

∫
(𝑡𝑖 ,𝑡]

𝑋1
𝑟 𝑑𝑍

1
𝑟 (2.47)

= 0, (2.48)

by (FBSDE 2).

Now, for the last two terms, we note that 𝑋0
𝑡𝑖
𝐻0
𝑡𝑖
+ 𝑋1

𝑡𝑖
𝐻1
𝑡𝑖
= 𝑉𝑡𝑖 almost surely, so

∫ 𝑡

𝑠

𝑋0
𝑟 𝑑𝐻

0
𝑟 +

∫ 𝑡

𝑠

𝑋1
𝑟 𝑑𝐻

1
𝑟 (2.49)

= 𝑋0
𝑡𝑖
𝐻0+
𝑟 + 𝑋1

𝑡𝑖
𝐻1+
𝑟 −𝑉𝑡𝑖 (𝐻) (2.50)

= 𝑋0
𝑡𝑖

[
𝑍

0,𝑥
𝑡𝑖

+ 1
𝑋0
𝑡𝑖

(𝑉𝑡𝑖 (𝐻) − 𝑍
0,𝑥
𝑡𝑖
𝑋0
𝑡𝑖
− 𝑍1,𝑥

𝑡𝑖
𝑋1
𝑡𝑖
)
]
+ 𝑋1

𝑡𝑖
𝑍

1,𝑥
𝑡𝑖

−𝑉𝑡𝑖 (𝐻) (2.51)

= 𝑋0
𝑡𝑖
𝑍0,𝑥 +𝑉𝑡𝑖 (𝐻) − 𝑋0

𝑡𝑖
𝑍

0,𝑥
𝑡𝑖

− 𝑋1
𝑡𝑖
𝑍

1,𝑥
𝑡𝑖

+ 𝑋1
𝑡𝑖
𝑍

1,𝑥
𝑡𝑖

−𝑉𝑡𝑖 (𝐻) (2.52)

= 0. (2.53)

Next, assume 𝑠 ∈ (𝑡𝑖, 𝑡𝑖+1]. Then we simply have

∫ 𝑡

𝑠

𝑋0
𝑟 𝑑𝐻

0
𝑟 +

∫ 𝑡

𝑠

𝑋1
𝑟 𝑑𝐻

1
𝑟 =

∫ 𝑡

𝑠

𝑋0
𝑟 𝑑𝑍

0
𝑟 +

∫ 𝑡

𝑠

𝑋1
𝑟 𝑑𝑍

1
𝑟 (2.54)

= 0. (2.55)

Thus 𝑋0
𝑡 𝑑𝐻

0
𝑡 + 𝑋1

𝑡 𝑑𝐻
1
𝑡 = 0 for 𝑡 ∈ [0, 𝑡𝑖+1], and so we verify the self financing condition

(2.32).

It remains to check that the terminal condition 𝑉𝑡𝑖+1 ≥ 𝐽𝑖+1 holds almost surely. But by

construction, 𝑉𝑡𝑖+1 ≥ 𝐽𝑖+1, 𝜇(𝜔, ·)-almost surely for each 𝜔, so we have, denoting by 𝐹 the
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event {𝑉𝑡𝑖+1 ≥ 𝐽𝑖+1},

P(𝐹) =
∫
Ω

𝜉 (𝜔, 𝐹) P|F𝑡𝑖 (𝑑𝜔) =
∫
Ω

1P|F𝑡𝑖 (𝑑𝜔) = 1 (2.56)

where P|F𝑡𝑖 denotes the pushforward measure 𝐼∗P of P under the identity map 𝐼 : (Ω, F𝑡𝑖 ) →

(Ω, F ).

Hence we conclude that the FBSDE holds on the interval [0, 𝑡𝑖+1].

Inductively, we obtain a solution (𝑉, 𝐻0, 𝐻1) on the whole interval [0, 𝑇].

To see that this is a minimal hedge, we note that non negativity holds since on each

interval [𝑡𝑖, 𝑡𝑖+1] the value process is the sum of the two non negative portfolios (𝑍0, 𝑍1)

and
(
𝑒−𝑟𝑡𝑖 (𝑉𝑡𝑖 (𝐻) −𝑍0

𝑡𝑖
𝑋0
𝑡𝑖
−𝑍1

𝑡𝑖
𝑋1
𝑡𝑖
), 0

)
, where non negativity of the second portfolio follows

from the fact that 𝑉𝑡𝑖 (𝐻) ≥ 𝐽𝑡𝑖 .

Further, the hedging property holds since𝑉𝑡𝑖 (𝐻) ≥ 𝐽𝑖 ≥ 𝑏(𝑋1
𝑡𝑖
) for all 𝑖, so𝑉𝜏 (𝐻) ≥ 𝑏(𝑋𝜏)

almost surely.

And finally since 𝑉𝑡1 = 𝐽1, we have that the initial investment 𝑉0 is

𝑉0 = 𝐷0(𝐽1) = 𝐷0 . . . 𝐷𝑛 (𝑈). (2.57)

So the hedge achieves the infimal hedging price, and is thus a minimal hedge.

2.4 A simple example

In order to illustrate the results we have just obtained, we derive an explicit expression

for the minimal super-replicating hedge and hedging price associated to a particular life

contingent option. Due to the iterated conditional expectations in Eq. (2.9), it is in general

difficult, or impossible to obtain closed form solutions for the super-replication price, and
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minimal hedge. However, we will be able to do so here for a very simple case.

Consider a life contingent option 𝑓𝜏 = 𝑏(𝑋𝜏)1{𝜏<𝑇}+𝑐(𝑋𝜏)1{𝜏=𝑇} with only two exercise

times 0 < 𝑡1 < 𝑡2 = 𝑇 , where we assume P(𝜏 = 𝑡𝑖) ≠ 0 for each 𝑖 = 1, 2. We suppose that

the payoffs 𝑏, 𝑐 are given by 𝑏(𝑥) = max(𝐾, 𝑥) and 𝑐(𝑥) = 𝑥 respectively, where 𝐾 > 0 is

some strike price. We note that 𝑏(𝑥) = 𝑥 + (𝐾 − 𝑥)+, that is, it is the combination of a long

position in the stock and a put option in the stock.

Thus the life contingent option pays off one unit of the stock plus the payoff of a put

option in the stock if death occurs before expiry, otherwise it just pays off one unit of the

stock.

Due to the iterated conditional expectations in the expression for the super-replication

price in Theorem 1, it is often difficult or impossible to obtain closed form expressions

for the super-replication price and super-replicating portfolio. Below we present a simple

example for which we will be able to give explicit expressions for both.

Proposition 5. Let the market model as in Section 2. Consider a life contingent option

𝑓𝜏 = 𝑏(𝑋𝜏)1{𝜏<𝑇} + 𝑐(𝑋𝜏)1{𝜏=𝑇} with only two exercise times 0 < 𝑡1 < 𝑡2 = 𝑇 , where we

assume P(𝜏 = 𝑡𝑖) ≠ 0 for each 𝑖 = 1, 2. We suppose that the payoffs 𝑏, 𝑐 are given by

𝑏(𝑥) = max(𝐾, 𝑥) and 𝑐(𝑥) = 𝑥 respectively, where 𝐾 > 0 is some strike price. We note

that 𝑏(𝑥) = 𝑥 + (𝐾 − 𝑥)+, that is, it is the combination of a long position in the stock and a

put option in the stock.

Then the minimal initial investment for a super-replicating portfolio, 𝜋0 is given by

𝜋0 = 𝑋1
0 + EQ [𝑒−𝑟𝑡1 (𝐾 − 𝑋1

𝑡1)
+], (2.58)

where we recall that Q is an equivalent probability measure under which the discounted

asset prices are martingales.
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A minimal super-replicating hedge 𝐻 := (𝐻0, 𝐻1) is given by

𝐻0
𝑡 :=


𝐾𝑒−𝑟𝑡1

(
1 −Φ

(
log( 𝑋

1
𝑡
𝐾
)+(𝑡1−𝑡) (𝑟− 𝜎2

2 )
𝜎
√
𝑡1−𝑡

))
for 0 ≤ 𝑡 ≤ 𝑡1,

𝑒−𝑟𝑡1 (𝐾 − 𝑋1
𝑡1
)+ for 𝑡1 < 𝑡 ≤ 𝑇,

(2.59)

𝐻1
𝑡 :=


Φ

(
log( 𝑋

1
𝑡
𝐾
)+(𝑡1−𝑡) (𝑟+ 𝜎

2
2 )

𝜎
√
𝑡1−𝑡

)
for 0 ≤ 𝑡 ≤ 𝑡1,

1 for 𝑡1 < 𝑡 ≤ 𝑇,

(2.60)

where Φ(𝑦) := 1√
2𝜋

∫ 𝑦

−∞ 𝑒
− 1

2 𝑧
2
𝑑𝑧 denotes the cumulative distribution function of the

standard normal.

Proof. We recall the notation

𝐷𝑘 (𝑌 ) := max
(
𝑏(𝑋1

𝑡𝑘
),EQ

[
𝑒−𝑟 (𝑡𝑘+1−𝑡𝑘)𝑌

��F𝑡𝑘 ] ) , (2.61)

𝐷0(𝑌 ) := EQ [𝑒−𝑟𝑡1𝑌 ], (2.62)

for any random variable 𝑌 . By Theorem 1, the minimal super-replication price 𝜋0 is then

given by

𝜋0 = 𝐷0𝐷1 [𝑐(𝑋1
𝑇 )] . (2.63)
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First, note that

𝐷1 [𝑐(𝑋1
𝑇 )] = 𝐷1 [𝑋1

𝑇 ]

= max
(
𝑏(𝑋1

𝑡1),E
Q
[
𝑒−𝑟 (𝑇−𝑡1)𝑋1

𝑇

��F𝑡1 ] )
= max

(
𝑏(𝑋1

𝑡1), 𝑋
1
𝑡1

)
= max

(
max

(
𝐾, 𝑋1

𝑡1

)
, 𝑋1

𝑡1

)
= max(𝐾, 𝑋1

𝑡1),

(2.64)

where in the third equality we have used the martingale property of the discounted stock

price under Q.

To compute 𝜋0, we have

𝜋0 = 𝐷0𝐷1 [𝑐(𝑋1
𝑇 )]

= 𝐷0 [max(𝐾, 𝑋1
𝑡1)]

= 𝐸Q [𝑒−𝑟𝑡1 max(𝐾, 𝑋1
𝑡1)]

= 𝐸Q [𝑒−𝑟𝑡1𝑋1
𝑡1 + 𝑒

−𝑟𝑡1 (𝐾 − 𝑋1
𝑡1)

+]

= 𝑋1
0 + 𝐸Q [𝑒−𝑟𝑡1 (𝐾 − 𝑋1

𝑡1)
+],

(2.65)

where again in the second last equality, we have used the martingale property of the

discounted stock price. Note that the minimal super-replication portfolio can be viewed as

a combination of a long position in the underlying and a long position of an European put

option with exercise time 𝑡1.

Next, we derive the expression for the hedge. First we show that the given portfolio

𝐻 := (𝐻0, 𝐻1) is well defined, that is, it satisfies assumption (C1) and (C2) in Definition

2.2.2. To this end, consider a European put option on the underlying with exercise time 𝑡1,

and strike price 𝐾 , with corresponding payoff 𝑔(𝑋1
𝑡1
) = (𝐾 − 𝑋1

𝑡1
)+ .
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By standard results (see Elliott and Kopp (2013), Theorem 7.6.2), a replicating portfolio

𝑅 := (𝑅0, 𝑅1) of the European put option with exercise time 𝑡1 for 𝑡 ∈ [0, 𝑡1] is given by

𝑅0
𝑡 := 𝐾𝑒−𝑟𝑡1 ©­«1 −Φ

©­«
log( 𝑋

1
𝑡

𝐾
) + (𝑡1 − 𝑡) (𝑟 − 𝜎2

2 )
𝜎
√
𝑡1 − 𝑡

ª®¬ª®¬ , (2.66)

𝑅1
𝑡 := Φ

©­«
log( 𝑋

1
𝑡

𝐾
) + (𝑡1 − 𝑡) (𝑟 + 𝜎2

2 )
𝜎
√
𝑡1 − 𝑡

ª®¬ − 1. (2.67)

Noting this, we may write our portfolio 𝐻 as

𝐻0
𝑡 :=


𝑅0
𝑡 + 𝐽0

𝑡 for 0 ≤ 𝑡 ≤ 𝑡1,

𝑒−𝑟𝑡1 (𝐾 − 𝑋1
𝑡1
)+ for 𝑡1 < 𝑡 ≤ 𝑇,

(2.68)

𝐻1
𝑡 :=


𝑅1
𝑡 + 𝐽1

𝑡 for 0 ≤ 𝑡 ≤ 𝑡1,

1 for 𝑡1 < 𝑡 ≤ 𝑇,
(2.69)

where 𝐽0
𝑡 = 0, 𝐽1

𝑡 = 1. Now we check that assumption (C2) holds. Indeed, 𝐻 is clearly

nonnegative on (𝑡1, 𝑇], since the holdings in both the riskless and underlying asset are

nonnegative, while on (0, 𝑡1) it is the sum of the two nonnegative portfolios 𝑅 and

𝐽 = (𝐽0, 𝐽1) := (0, 1).

Next, we check the self financing condition (C1). On (0, 𝑡1], it is the sum of the two self

financing portfolios 𝑅 and 𝐽, and thus is self financing on this interval. On the other hand,

on the interval (𝑡1, 𝑇], 𝑑𝐻0 = 𝑑𝐻1 = 0, and thus we need only check the self financing
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condition for times 𝑠, 𝑡 with 𝑠 < 𝑡1 < 𝑡. To this end, we compute

∫ 𝑡

𝑠

𝑋0
𝑡 𝑑𝐻

0
𝑡 +

∫ 𝑡

𝑠

𝑋1
𝑡 𝑑𝐻

1
𝑡

=

∫ 𝑡1

𝑠

𝑋0
𝑡 𝑑𝐻

0
𝑡 +

∫ 𝑡1

𝑠

𝑋1
𝑡 𝑑𝐻

1
𝑡 + 𝑋0

𝑡1 (𝐻
0+
𝑡1 − 𝐻0

𝑡1) + 𝑋
1
𝑡1 (𝐻

1+
𝑡1 − 𝐻1

𝑡1)

= 𝑋0
𝑡1 (𝐻

0+
𝑡1 − 𝐻0

𝑡1) + 𝑋
1
𝑡1 (𝐻

1+
𝑡1 − 𝐻1

𝑡1)

= 𝑋0
𝑡1𝐻

0+
𝑡1 + 𝑋1

𝑡1𝐻
1+
𝑡1 −𝑉𝑡1 (𝐻)

= 𝑒𝑟𝑡1 (𝑒−𝑟𝑡1 (𝐾 − 𝑋1
𝑡1)

+) + 𝑋1
𝑡1 − [(𝐾 − 𝑋1

𝑡1)
+ + 𝑋1

𝑡1]

= 0,

(2.70)

where we have written 𝐻0+
𝑡1

to denote lim𝑡→𝑡+1
𝐻0
𝑡 and likewise for 𝐻1+

𝑡1
.

Thus the portfolio 𝐻 is a self financing portfolio. Now we check that it is indeed a

super-replicating portfolio for the lifetime contingent option. It will suffice to check that

𝑉𝑡𝑖 (𝐻) ≥ 𝑓𝑡𝑖 a.s. for 𝑖 = 1, 2. But for 𝑖 = 1, we see that

𝑉𝑡1 (𝐻) = 𝑉𝑡1 (𝑅) +𝑉𝑡𝑖 (𝐽)

= (𝐾 − 𝑋1
𝑡1)

+ + 𝑋1
𝑡1

= max(𝐾, 𝑋1
𝑡1)

= 𝑓𝑡1 ,

(2.71)

while for 𝑖 = 2, i.e. at time 𝑡2 = 𝑇 , we have

𝑉𝑇 (𝐻) = 𝑋1
𝑇 + 𝑋0

𝑇𝑒
−𝑟𝑡1 (𝐾 − 𝑋1

𝑇 )+

≥ 𝑋1
𝑇

= 𝑓𝑇 .

(2.72)

This shows that the portfolio is super-replicating, as desired. Finally, we check that 𝐻 is a
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minimal super replicating portfolio. It will suffice to check that 𝐻 achieves the minimal

super-replication price, which by Thoerem 1 we know to be

𝜋0 := 𝑋1
0 + EQ [𝑒−𝑟𝑡1 (𝐾 − 𝑋1

𝑡1)
+] . (2.73)

But by writing

𝑉0(𝐻) = 𝑉0(𝐽) +𝑉0(𝑅)

= 𝑋1
0 + EQ [𝑒−𝑟𝑡1 (𝐾 − 𝑋1

𝑡1)
+]

= 𝜋0.

(2.74)

we verify this immediately. This concludes the proof.

2.5 Existence of a replicating portfolio

Given that a super-replication trading strategy exists, a natural question to ask is - when

is this super-replication portfolio a replication portfolio? That is, the payoff of the portfolio

is exactly the same as the option payoff at the exercise time. To make the above precise, we

record here a few initial definitions.

Definition 2.5.1 (Replication portfolio). A replication portfolio for the life contingent

option 𝑓 is a self financing portfolio (𝐻0, 𝐻1) with associated value process 𝑉 such that

𝑉𝜏 (𝐻) = 𝑓𝜏 almost surely.

Definition 2.5.2 (Attainable). We say that replication of the life contingent option 𝑓𝜏 is

attainable if for all stopping times 𝜏 independent of the process taking finitely many values,

there exists a replication portfolio (𝐻0, 𝐻1) for 𝑓 .
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We first state a lemma that says that martingales remain martingales under enlargement

of the underlying filtration by an independent 𝜎-algebra. Since the proof is technical but

straightforward, we relegate it to the end of the chapter so as to not interrupt the flow of

discussion.

Lemma 2. Let 𝑀 be a martingale under Q with respect to some filtration {F𝑡}, and

suppose H is a 𝜎-algebra independent of {F𝑡}. Then 𝑀 is a martingale under Q with

respect to F𝑡 ∨H .

Now we state the main theorem of this section.

Theorem 2. Replication is attainable if and only if the discounted option price process

𝑓𝑡 := 1{𝑡<𝑇}𝑒−𝑟𝑡𝑏(𝑋1
𝑡 ) + 1{𝑡=𝑇}𝑒−𝑟𝑇𝑐(𝑋1

𝑇
) is a F𝑡 martingale on (0, 𝑇] under the equivalent

martingale measure Q.

Proof. Let 𝜏 be an arbitrary stopping time taking finitely many values 0 < 𝑡1 < · · · <

𝑡𝑛 < 𝑡𝑛+1 = 𝑇 ; independently of the asset prices, and suppose the discounted option price

process 𝑓𝑡 were a martingale under Q. As usual, we set 𝑡0 = 0. We choose 𝜏 such that

P(𝜏 = 𝑇) ≠ 0.

We recall the notation

𝐷𝑘 (𝑌 ) := max
(
𝑏(𝑋1

𝑡𝑘
),EQ

[
𝑒−𝑟 (𝑡𝑘+1−𝑡𝑘)𝑌

��F𝑡𝑘 ] ) (2.75)

for an 𝐿1 random variable 𝑌 .

We claim that

𝐷𝑘 . . . 𝐷𝑛 (𝑈) = 𝑏(𝑋1
𝑡𝑘
) (2.76)
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for all 1 ≤ 𝑘 ≤ 𝑛, where𝑈 is as defined in Theorem 1.

We prove by backward induction on 𝑘 . For the base case 𝑘 = 𝑛, since 𝑓𝑡 is a martingale

under Q, we have

EQ [ 𝑓𝑇 |F𝑡𝑛] = 𝑓𝑡𝑛 (2.77)

=⇒ EQ [𝑒−𝑟𝑇𝑐(𝑋1
𝑇 ) |F𝑡𝑛] = 𝑒−𝑟𝑡𝑛𝑏(𝑋1

𝑡𝑛
)

=⇒ EQ [𝑒𝑟 (𝑡𝑛−𝑇)𝑐(𝑋1
𝑇 ) |F𝑡𝑛] = 𝑏(𝑋1

𝑡𝑛
),

so that

𝐷𝑛 (𝑈) = max
(
𝑏(𝑋1

𝑡𝑛
),EQ

[
𝑒𝑟 (𝑡𝑛−𝑇)𝑐(𝑋1

𝑇 )
��F𝑡𝑛 ] )

= 𝑏(𝑋1
𝑡𝑛
),

(2.78)

which proves the base case.

Now assume inductively

𝐷𝑘 . . . 𝐷𝑛 (𝑈) = 𝑏(𝑋1
𝑡𝑘
),

for some 1 ≤ 𝑘 ≤ 𝑛.

Then we compute

𝐷𝑘−1 . . . 𝐷𝑛 (𝑈) = 𝐷𝑘−1
(
𝑏(𝑋1

𝑡𝑘
)
)

= max
(
𝑏(𝑋1

𝑡𝑘−1),E
Q
[
𝑒𝑟 (𝑡𝑘−1−𝑡𝑘)𝑏(𝑋1

𝑡𝑘
) |F𝑡𝑘−1

] )
= 𝑏(𝑋1

𝑡𝑘−1),

(2.79)
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where in the last step we have used the martingale property of 𝑓𝑡 , i.e

EQ
[
𝑒𝑟 (𝑡𝑘−1−𝑡𝑘)𝑏(𝑋1

𝑡𝑘
) |F𝑡𝑘−1

]
= 𝑏(𝑋1

𝑡𝑘−1). (2.80)

This proves the induction step.

Now let 𝐻 = (𝐻0, 𝐻1) be the super-replication trading strategy constructed in the proof

of Theorem 1. Then by construction, the value process 𝑉 (𝐻) satisfies

𝑉𝑡1 (𝐻) = 𝐷1 . . . 𝐷𝑛 (𝑈) = 𝑏(𝑋1
𝑡1), (2.81)

almost surely.

We claim this means that 𝐻0 = 𝑍
0,𝑋1

𝑡1 , 𝐻1 = 𝑍
1,𝑋1

𝑡1 , P-almost surely on [𝑡1, 𝑡2], where 𝑍 is

as defined in the proof of Theorem 1.

Indeed, by similar reasoning to the beginning of the proof of Proposition 2, 𝑉𝑡1 (𝐻) =

𝑏(𝑋1
𝑡1
) almost surely. Thus the second term in the definition of 𝐻0 in the proof of Theorem

1 vanishes almost surely, which proves that 𝐻0 = 𝑍
0,𝑋1

𝑡1 , 𝐻1 = 𝑍
1,𝑋1

𝑡1 , P-almost surely on

[𝑡1, 𝑡2], as claimed.

We conclude

𝑉𝑡2 = 𝑍
0,𝑋1

𝑡1
𝑡2

𝑋0
𝑡2 + 𝑍

1,𝑋1
𝑡1

𝑡2
𝑋1
𝑡2 = 𝑏(𝑋

1
𝑡2), (2.82)

Q (and hence P)-almost surely.

That the above holds P almost surely as well is due to the fact that P and Q are equivalent

probability measures.

Similarly, we can prove inductively that 𝑉𝑡𝑘 (𝐻) = 𝑏(𝑋1
𝑡𝑘
) for all 3 ≤ 𝑘 ≤ 𝑛, and

𝑉𝑇 = 𝑐(𝑋1
𝑇
). Thus 𝑉𝜏 (𝐻) = 𝑓𝜏 almost surely, and so the minimal hedge is a replicating

portfolio.
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This concludes the "if" direction.

We prove the “only if" direction by contradiction. Let 𝑓𝑡 denote the option payoff at

time 𝑡. Then any replication portfolio for 𝑓𝜏 must have initial investment EQ(𝑒−𝑟𝜏𝑉𝜏).

Indeed, since Q is an equivalent martingale measure, the discounted value process

𝑉̃𝑡 (𝐻) := 𝑒−𝑟𝑡𝑉𝑡 (𝐻) of the replicating portfolio 𝐻 is a F𝑡 martingale underQ. By Lemma 1,

it is also a F𝑡 ∨ G𝜏 martingale under Q, where we recall that G𝜏 is the 𝜎-algebra generated

by the stopping time 𝜏.

By the optional stopping theorem, we then have

𝑉̂0(𝐻) = EQ [𝑉̂0] = EQ [𝑉̂𝜏 (𝐻)] = EQ [𝑒−𝑟𝜏𝑉𝜏 (𝐻)], (2.83)

as claimed.

We note that, denoting by 𝑓𝑡 := 1{𝑡<𝑇}𝑏(𝑋1𝑡) + 1{𝑡=𝑇}𝑐(𝑋1
𝑇
) the undiscounted option

payoff process, any replicating portfolio must thus have initial investment EQ(𝑒−𝑟𝜏 𝑓𝜏).

Now assume that 𝑓𝑡 is not a martingale on (0, 𝑇]. Then there exist times 𝑠, 𝑡 ∈ (0, 𝑇]

with 𝑠 < 𝑡 such that EQ [ 𝑓𝑡 |F𝑠] ≠ 𝑓𝑠 . Thus either EQ [ 𝑓𝑡 |F𝑠] > 𝑓𝑠 with positive probability,

or 𝑓𝑠 > EQ [ 𝑓𝑡 |F𝑠] with positive probability.

Take 𝜏 to be a stopping time equal to 𝑠 or 𝑡 with probability 1
2 each, independently

of the asset filtration. Suppose for contradiction that there existed a replication portfolio

𝐻 = (𝐻0, 𝐻1) for the tuple (𝑏, 𝑐, 𝜏) with associated value process 𝑉 .

In the case where

EQ [ 𝑓𝑡 |F𝑠] > 𝑓𝑠, (2.84)

with positive probability, we have that

EQ [𝑒−𝑟𝑡 𝑓𝑡 |F𝑠] > 𝑒−𝑟𝑠 𝑓𝑠, (2.85)
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with positive probability, which implies that

max( 𝑓𝑠,EQ [𝑒𝑟 (𝑠−𝑡) 𝑓𝑡 |F𝑠]) > 𝑓𝑠, (2.86)

with positive probability.

Writing for convenience 𝐷1, 𝐷2 as 𝐷𝑠, 𝐷𝑡 respectively, by Proposition 1 we have that

𝑉𝑠 ≥ 𝐷𝑠𝐷𝑡 ( 𝑓𝑇 ) = 𝐷𝑠

(
max

(
𝑓𝑡 ,E

Q
[
𝑒𝑟 (𝑡−𝑇) 𝑓𝑇 |F𝑡

] )
≥ 𝐷𝑠 ( 𝑓𝑡) (2.87)

= max
(
𝑓𝑠,E

Q [𝑒𝑟 (𝑠−𝑡) 𝑓𝑡 |F𝑠]
)
> 𝑓𝑠, (2.88)

with positive probability, contradicting the fact that (𝐻0, 𝐻1) is a replicating portfolio.

On the other hand, if 𝑓𝑠 > E[ 𝑓𝑡 |F𝑠] with positive probability, we have

max( 𝑓𝑠,EQ [𝑒𝑟 (𝑠−𝑡) 𝑓𝑡 |F𝑠]) > EQ [𝑒𝑟 (𝑠−𝑡) 𝑓𝑡 |F𝑠]), (2.89)

with positive probability.

Since the portfolio is assumed to be a replication portfolio, the associated value process

satisfies 𝑉𝑠 = 𝑓𝑠, so by the assumption that 𝑓𝑠 > E[ 𝑓𝑡 |F𝑠], we have 𝑉𝑠 > EQ [𝑒𝑟 (𝑠−𝑡) 𝑓𝑡 |F𝑠]

with positive probability.

Further, we note that by similar arguments to the beginning of the proof of Proposition

1, we must have that 𝑉𝑡 = 𝑓𝑡 almost surely - that is, the portfolio (𝐻0, 𝐻1) is a replicating

portfolio for the simple European type claim 𝑓𝑡 . By Theorem 7.13 in Elliott and Kopp

(2013), the replicating portfolio is unique, and further by Lemma 7.5.9 in Pascucci and

Agliardi (2011), we have that the discounted value process 𝑉̃ satisfies 𝑉̃𝑟 = EQ [ 𝑓𝑡 |F𝑟] for

𝑟 ∈ [0, 𝑡].

In particular, the discounted value process is a martingale on [0, 𝑡]. Thus we have that
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EQ [𝑉̃𝑡 |F𝑠] = 𝑉̃𝑠, that is, EQ [𝑒𝑟 (𝑠−𝑡)𝑉𝑡 |F𝑠] = 𝑉𝑠, almost surely.

Since the portfolio is replicating, 𝑉𝑡 = 𝑓𝑡 , so we have simultaneously

EQ [𝑒𝑟 (𝑠−𝑡) 𝑓𝑡 |F𝑠] = 𝑉𝑠, (2.90)

almost surely, and

EQ [𝑒𝑟 (𝑠−𝑡) 𝑓𝑡 |F𝑠] < 𝑉𝑠, (2.91)

with positive probability, contradiction.

This concludes the "only if" direction.

2.6 Technical Proofs

Proof. Let (𝐶,B(𝐶)) denote the Wiener space of continuous functions 𝑓 : [0,∞) → R

with 𝑓 (0) = 0. Consider also (R,B(R)), the space of real numbers with its usual Borel

sigma algebra.

Further, let P0 denote the Wiener measure on 𝐶; that is, the law of a standard Brownian

motion. Let P1 an arbitrary probability measure on R supported on finitely many values in

(0, 𝑇], to be interpreted as the law of the stopping time 𝜏.

Now let

(Ω, F , P) := (𝐶 × R,B(𝐶) ⊗ B(R), P), (2.92)

where P := P0 × P1,. Then the probability space supports a Brownian motion 𝑊 and

a stopping time 𝜏 independent of each other. Indeed, we may set 𝑊 (𝜔, 𝑟) = 𝜔, and

𝜏(𝜔, 𝑟) = 𝑟 . By construction,𝑊 is a Brownian motion, 𝜏 is a stopping time with prescribed

law P1, and since P is a product measure,𝑊 and 𝜏 are independent of each other.

Finally, we note that Ω, being the product of Radon probability spaces is itself a Radon

probability space. This concludes the proof.
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Proof. [Proof of Lemma 2:]

The main technical tool here will be the monotone class lemma.

We need to show that for all 𝑠, 𝑡 ≥ 0 with 𝑠 < 𝑡, E[𝑀𝑡 |F𝑠 ∨H] = 𝑀𝑠 almost surely. This

means that for all events 𝐸 ∈ F𝑡 ∨H ,

∫
𝐸

𝑀𝑠 𝑑P =

∫
𝐸

𝑀𝑡 𝑑P. (2.93)

rewla

First, assume 𝐸 ∈ F𝑠. Then Eq. (2.93) follows from the fact that 𝑀 is an F𝑡-martingale.

Next, for events 𝐸 ∈ H , we compute

∫
𝐸

𝑀𝑠 𝑑P =

∫
Ω

1𝐸𝑀𝑠 𝑑P =

∫
Ω

1𝐸 𝑑P
∫
Ω

𝑀𝑠 𝑑P

=

∫
Ω

1𝐸 𝑑P
∫
Ω

𝑀𝑡 𝑑P =

∫
Ω

1𝐸𝑀𝑡 𝑑P

=

∫
𝐸

𝑀𝑡 𝑑P.

(2.94)

So Eq. (2.93) holds for events 𝐸 ∈ H . Next, assume 𝐸 is of the form 𝐹 ∩ 𝐻 for events

𝐹 ∈ F𝑡 and 𝐻 ∈ H . Then we compute

∫
𝐸

𝑀𝑠 𝑑P =

∫
𝐹∩𝐻

𝑀𝑠 𝑑P =

∫
Ω

1𝐹1𝐻𝑀𝑠 𝑑P =

∫
Ω

1𝐻 𝑑P
∫
Ω

1𝐹𝑀𝑠𝑑P

=

∫
Ω

1𝐻𝑑P
∫
𝐹

𝑀𝑠 𝑑P =

∫
Ω

1𝐻 𝑑P
∫
𝐹

𝑀𝑡 𝑑P

=

∫
Ω

1𝐹1𝐻𝑀𝑡 𝑑P =

∫
𝐹∩𝐻

𝑀𝑡 𝑑P

=

∫
𝐸

𝑀𝑡 𝑑P.

(2.95)

Now assume 𝐸 is of the form 𝐹 ∪ 𝐻 for events 𝐹 ∈ F𝑡 and 𝐻 ∈ H . We note we can write
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𝐸 as (𝐹𝑐 ∩ 𝐻𝑐)𝑐, thus we have

∫
𝐸

𝑀𝑠 𝑑P =

∫
(𝐹𝑐∩𝐻𝑐)𝑐

𝑀𝑠 𝑑P =

∫
Ω

𝑀𝑠 𝑑P −
∫
(𝐹𝑐∩𝐻𝑐)

𝑀𝑠 𝑑P

=

∫
Ω

𝑀𝑡 𝑑P −
∫
(𝐹𝑐∩𝐻𝑐)

𝑀𝑡 𝑑P =

∫
(𝐹𝑐∩𝐻𝑐)𝑐

𝑀𝑠 𝑑P

=

∫
𝐸

𝑀𝑡 𝑑P.

(2.96)

So Eq. (2.93) holds for all events 𝐸 of the above four types.

We then note that the set 𝑆 of events of the above four types forms a algebra of sets

containing both F𝑠 and H . Thus by the monotone class lemma, we will have Eq. (2.93) for

all events in F𝑠 ∨𝐻 once we prove that Eq. (2.93) is preserved under increasing unions and

decreasing intersections. But this follows immediately from the monotone convergence

theorem - indeed, if 𝐴𝑛 ∈ 𝑆 are such that 𝐴𝑛 ↑ 𝐴 we have

∫
𝐴

𝑀𝑠 𝑑P =

∫
Ω

1𝐴𝑀𝑠 𝑑P =

∫
Ω

lim
𝑛→∞

1𝐴𝑛𝑀𝑠 𝑑P

= lim
𝑛→∞

∫
Ω

1𝐴𝑛𝑀𝑠 𝑑P = lim
𝑛→∞

∫
𝐴𝑛

𝑀𝑠𝑑P

= lim
𝑛→∞

∫
𝐴𝑛

𝑀𝑡𝑑P = lim
𝑛→∞

∫
Ω

1𝐴𝑛𝑀𝑡𝑑P

=

∫
Ω

lim
𝑛→∞

1𝐴𝑛𝑀𝑡 𝑑P =

∫
Ω

1𝐴𝑀𝑡 𝑑P

=

∫
𝐴

𝑀𝑡 𝑑P,

(2.97)

where the third, and third to last equalities follow from the monotone convergence theorem.

The proof when 𝐴𝑛 decrease to 𝐴 follows from the above by taking complements, and

using the identity
∫
𝐴
𝑋 𝑑P =

∫
Ω
𝑋 𝑑P −

∫
𝐴𝑐
𝑋 𝑑P.

So the set of events for which Eq. (2.93) holds is a monotone class containing F𝑠 and H ,

and thus it contains F𝑠 ∨H .

Thus
∫
𝐸
𝑀𝑠 𝑑P =

∫
𝐸
𝑀𝑡 𝑑P for all 𝐸 ∈ F𝑡 ∨ H , so that 𝑀 is a F𝑠 ∨ H martingale as
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claimed.
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CHAPTER 3: SHORT MATURITY BARRIER ASIAN OPTIONS

3.1 Overview

In this chapter, we investigate barrier Asian options close to maturity. Asian options are

unique in the sense that their payoff depends on the entire history of the process before the

exercise time. As such, it is often difficult to obtain closed form expressions for the fair

price of Asian options. However, with our limiting result, we will be able to obtain closed

form asymptotic expressions for the price of short maturity Asian options with barrier.

The barrier component means that the option may only be exercised upon the price hitting

a certain agreed upon price level, while short maturity implies that the option is priced at a

time close to the exercise time.

We work again in a Black-Scholes framework. In order to fix notation and for reading

convenience, we recall the market model here. Let (Ω, F , F, P) be a filtered probability

space satisfying the usual conditions. The probability measure P is referred to as the

physical measure. We consider the following two processes

𝑋0, 𝑋1 : [0, 𝑇] ×Ω → R+, (3.1)

known as the bond and stock price respectively satisfying the stochastic differential equation

(SDE)

𝑑𝑋0
𝑡 = 𝑟𝑋0

𝑡 𝑑𝑡, (3.2)

𝑑𝑋1
𝑡 = 𝑋1

𝑡 (𝜇 𝑑𝑡 + 𝜎 𝑑𝑊𝑡) , (3.3)

with 𝑋0
0 = 1, 𝑋1

0 = 𝑥0 a.s. for some 𝑥0 ∈ R+, and𝑊 = {𝑊𝑡}𝑡∈[0,𝑇] is a standard Brownian

motion with 𝑇 denoting a fixed and finite time horizon. Here 𝑟, 𝜇, 𝜎 ∈ R are positive

44

Univ
ers

iti 
Mala

ya



constants, known as the risk free interest rate, drift and volatility of the stock respectively.

The filtration F = {F𝑡}𝑡≥0 is the natural filtration generated by the Brownian motion 𝑊 .

We assume F satisfies the usual conditions, that is, it is right continuous and contains all

P-null sets.

Now we define the primary object of our investigation, the barrier Asian option. By

definition, the payoff of an Asian call option without barrier, with strike price 𝐾 > 0 and

maturity time 𝑇 is given by

(
1
𝑇

∫ 𝑇

0
𝑋𝑡 𝑑𝑡 − 𝐾

)
+
. (3.4)

Thus the option payoff is the positive difference between the average price of the asset over

the maturity period and the strike price, agreed upon in advance.

Now we introduce the barrier component. This means that the option can only be

exercised if the asset price hits a certain threshold before maturity, agreed upon in advance.

In our case, we will take the barrier to be above the current price of the asset, thus our

option is a so called up and in option. The payoff of a barrier Asian call option with barrier

𝐵 > 0, strike price 𝐾 > 0 and maturity time 𝑇 > 0 is thus given by

(
1
𝑇

∫ 𝑇

0
𝑋𝑡 𝑑𝑡 − 𝐾

)
.

1{max0≤𝑡≤𝑇 𝑋𝑡≥𝐵} . (3.5)

The main problem we will try to answer in this chapter is that of the fair price of the

above option in the limit as 𝑇 → 0. First, we take a short digression into the aspects of

stochastic analysis which will be relevant for our work.

3.2 Large Noise Limits

As mentioned in the Introduction chapter, our analysis in this chapter rely crucially on

results from stochastic analysis which we term large noise limits. In this section we offer
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an intuitive introduction to this line of study, as well as some motivation and heuristics.

A well studied phenomena in stochastic analysis is the behaviour of the solutions to

stochastic differential equations as the noise intensity tends to zero. Typically, as the

noise intensity tends to zero, the solution converges, in the sense of uniform convergence

in probability on compacts, to the solution of a deterministic ODE driven by the drift

coefficient of the SDE. Further, the distribution of the solution satisfies a large deviation

principle as the noise tends to zero.

A prototypical example of such a scenario is as follows - consider, for each 𝜀 > 0 the

solution to the SDE

𝑑𝑋𝑡 = 𝜇(𝑋𝑡) 𝑑𝑡 + 𝜀 𝑑𝑊𝑡 , (3.6)

with𝑊 a standard 𝑑-dimensional Brownian motion, 𝜇 : R𝑑 → R𝑑 a sufficiently regular

function, say Lipschitz, and 𝑋0 = 𝑥0 for 𝑥0 ∈ R𝑑 an arbitrary initial condition.

Then as 𝜀 → 0, the solutions converge, in the sense of uniform convergence in probability

on compacts to the solution of the deterministic unperturbed equation

𝑑𝑋𝑡 = 𝜇(𝑋𝑡) 𝑑𝑡, (3.7)

with the same initial condition 𝑋0 = 𝑥0.

We refer to Freidlin et al. (2012) for a proof, as well as the statement of the associated

large deviations principle.

A natural counterpart to this line of study is the question of the behaviour of the solutions

as the noise intensity grows large, in a suitable sense. One option would be to investigate

the scenario in which 𝜀 → ∞ in Eq (3.6).

Motivated by the application to pricing of Asian options, we opt however, to investigate a

rather different scenario, namely, the behaviour of solutions conditional on the solution to
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the SDE itself taking a large value. This question is of interest even for the trajectories of

the Brownian motion itself. A simple preliminary result in this direction is the following:

Let𝑊 be a standard one dimensional Brownian motion.

For every 𝜀 > 0, let 𝐴𝜀 denote the event

{𝑊𝑇 ≥ 1
𝜀
} , (3.8)

and let P𝜀 be the probability measure given by

P𝜀 (𝐸) =
P(𝐸 ∩ 𝐴𝜀)
P(𝐴𝜀)

, (3.9)

for all events 𝐸 .

We denote by EP𝜀 the expectation under P𝜀.

Then we have

lim
𝜀→0
EP𝜀

[
sup

0≤𝑡≤1
|𝜀𝑊𝑡 − 𝑡 |

]
= 0. (3.10)

We provide a proof of the above in the Additional Proofs section at the end of this chapter.

Thus already on the level of trajectories of the Brownian motion we observe some

nontrivial limiting behaviour - the trajectories of the Brownian motion converge simply to

a deterministic straight line path, after a suitable regularisation.

Of even greater interest are the implications of this phenomenon on solutions to SDE

driven by the Brownian motion. We show in this chapter that for the geometric Brownian

motion, an analogue of the above result holds, with the limiting path being the solution to

a deterministic exponential ODE. This result for the geometric Brownian motion will be

the first main result of our chapter - we do not state it rigorously here but instead refer the

reader to Theorem 4 for a full statement.
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There is a small difference in the way we choose to perform the regularisation. We instead

condition on the sample paths exceeding a fixed large value, and send the timeframe over

which the process is defined to zero. By Brownian scaling this is essentially equivalent the

earlier spatial rescaling procedure, however it will prove useful to have in this form for the

purposes of our applications to Asian options. Further, the result in this form seems to be

more fitting for generalisations to more general SDE.

A more significant difference is that we condition instead on the running maximum of

the process, rather than the endpoint, taking a large value. This seems to us to be a stronger

result than conditioning on the endpoint value alone, and will indeed be more suited for

applications and extensions than the latter. This also places the current work more in line

with the existing work on extreme value theory for Levy processes, which we elaborate

more about shortly.

We briefly offer some heuristics as to why such a result might be expected. Conditioning

on the geometric Brownian motion being large implies that the driving Brownian motion

itself will be large - indeed, in the notation of the theorem, it can be seen that the maximum

of the Brownian motion will be close to log 𝐵
𝜎

, where 𝐵 is the barrier level. By the above

reasoning, we have that𝑊𝑡 ∼ (𝑡/𝑇) log 𝐵
𝜎

.

More boldly, we may write heuristically

𝑑𝑊𝑡 ∼
1
𝑇

(
log 𝐵
𝜎

)
𝑑𝑡. (3.11)

Thus the defining SDE will be close to the deterministic ODE

𝑑𝑋𝑡 =

(
𝜇 + log 𝐵

𝑇

)
𝑋𝑡 𝑑𝑡. (3.12)

In the limit as the timeframe 𝑇 tends to 0, the contribution from the 𝜇𝑋𝑡 term becomes
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negligible, and we are left with

𝑑𝑋𝑡 =
log 𝐵
𝑇

𝑋𝑡 𝑑𝑡. (3.13)

This is a standard exponential ODE, which is easily seen to solve to

𝑋𝑡 = 𝐵
𝑡
𝑇 , (3.14)

which is our limiting result.

As mentioned earlier, related work has been done on specific classes of Levy processes,

under the name of extreme value theory. Namely for the classes of regularly varying, and

heavy tailed jump Levy processes, conditional again on the maximum being large at some

point, the limiting process obeys the so called “law of one jump” - the limiting process

is piecewise constant with only one jump from the initial value to the conditional value.

This is another manifestation of the large deviation principle, which says that extremely

rare events are dominated by a single, “most likely” outcome. A seminal reference for this

theory is Hult and Lindskog (2005).

3.3 Pricing of Short Maturity Barrier Asian Options

Here is the main theorem of this chapter. Suppose 𝑋 is the risky asset price process in

the Black-Scholes framework. For convenience, we restate the defining SDE for 𝑋:

𝑑𝑋𝑡 = 𝜇𝑋𝑡 𝑑𝑡 + 𝜎𝑋𝑡 𝑑𝑊𝑡 , 𝑋0 = 1 almost surely. (3.15)

Consider an out of the money up-and-in Asian option written on the stock price 𝑋 with

barrier 𝐵 > 1, strike price 𝐾 > 0 and maturity time 𝑇 > 0.
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Then as is well known, its fair price 𝐶 (𝐵, 𝐾,𝑇) is given by

𝐶 (𝐵, 𝐾,𝑇) = E
[ ( 1
𝑇

∫ 𝑇

0
𝑋𝑡𝑑𝑡 − 𝐾

)
+1{ max

0≤𝑡≤𝑇
𝑋𝑡≥𝐵}

]
. (3.16)

Theorem 3 (Asymptotics for short maturity Asian options). The fair price 𝐶 (𝐵, 𝐾,𝑇) of

the Asian option satisfies the following short time asymptotics as 𝑇 → 0+:

𝐶 (𝐵, 𝐾,𝑇) = 𝑃(𝐵,𝑇)
[ (𝐵 − 1

ln 𝐵
− 𝐾

)
+ +𝑂 (

√
𝑇)

]
(3.17)

where 𝑃(𝐵,𝑇) := P( max
0≤𝑡≤𝑇

𝑋𝑡 ≥ 𝐵). The implied constant in the 𝑂 notation depends only

on 𝜎, 𝜇, and 𝐵.

Remark 2. We remark that 𝑃(𝐵,𝑇) may be explicitly computed as

𝑃(𝐵,𝑇) = 1 + 𝐵−1Φ

(
𝜎2𝑇

2 − ln 𝐵

𝜎
√
𝑇

)
−Φ

(
ln 𝐵 − 𝜎2𝑇

2

𝜎
√
𝑇

)
, (3.18)

using the probability density function of the running maximum of a geometric Brownian

motion. Here Φ denotes the CDF of the standard normal distribution.

The above result relies crucially on the following large noise limit result, which we will

in fact spend most of this chapter proving.

Theorem 4 (Large noise limit for geometric Brownian motion). Let 𝑋 be the solution to

the SDE

𝑑𝑋𝑡 = 𝜇𝑋𝑡 𝑑𝑡 + 𝜎𝑋𝑡 𝑑𝑊𝑡 , 𝑋0 = 1, (3.19)

with𝑊 a standard one dimensional Brownian motion, and 𝜇, 𝜎 > 0 constants.

50

Univ
ers

iti 
Mala

ya



Let 𝐵 > 1 be arbitrary. For every 𝑇 > 0, let 𝐴𝑇 denote the event

{ max
0≤𝑡≤𝑇

𝑋𝑡 ≥ 𝐵}, (3.20)

and let P𝑇 be the probability measure given by

P𝑇 (𝐸) =
P(𝐸 ∩ 𝐴𝑇 )
P(𝐴𝑇 )

, (3.21)

for all events 𝐸 .

Denote by EP𝑇 the expectation under P𝑇 . Then we have

EP𝑇
[

sup
0<𝑡<𝑇

|𝑋𝑡 − 𝐵
𝑡
𝑇 |

]
= 𝑂 (

√
𝑇), (3.22)

as 𝑇 → 0+, where the implied constants in the 𝑂 notation depend only on 𝜇, 𝜎, 𝐵.

Intuitively, the above theorem says that in the limit as 𝑇 → 0, conditional on hitting the

barrier, the risky asset price process behaves almost deterministically - indeed, its price

will be very close to the deterministic exponential function. The majority of the remainder

of this section will be dedicated to the proof of Theorem 4.

We break the proof of Theorem 4 into a series of four lemmas, followed by the main

proof. First we make some preliminary definitions.

For each 𝑀 ≥ 0 and 𝑇 > 0, denote by 𝐻𝑀,𝑇 the event {𝑊𝑇 ≥ 𝑀}, and let Q𝑀,𝑇 be the

probability measure given by

Q𝑀,𝑇 (𝐸) =
P(𝐸 ∩ 𝐻𝑀,𝑇 )
P(𝐻𝑀,𝑇 )

, (3.23)

for all events 𝐸 .

51

Univ
ers

iti 
Mala

ya



Throughout the first three lemmas, we assume that 𝑓 : (0,∞) → R is a function such that

𝑓 (𝑥) = 𝑂 (𝑥) as 𝑥 → 0+.

Lemma 3. We have

EQ𝑀− 𝑓 (𝑇) ,𝑇

[
|𝑊𝑇 − 𝑀 |

]
= 𝑂 (𝑇), (3.24)

as 𝑇 → 0+, where the implied constant in the 𝑂 notation depends only on 𝑓 , 𝑀 .

Proof. Since𝑊𝑇 is a normal random variable with mean 0 and variance 𝑇 , for any bounded

nonnegative function 𝑟 : [0,∞) → R we have

E[|𝑊𝑇 − 𝑟 (𝑇) |
��𝑊𝑇 ≥ 𝑟 (𝑇)] =

(2𝜋𝑇)−1/2
∫ ∞
𝑟 (𝑇) 𝑥𝑒

− 𝑥2
2𝑇 𝑑𝑥

P(𝑊𝑇 ≥ 𝑟 (𝑇)) − 𝑟 (𝑇)

=
(2𝜋𝑇)−1/2

∫ ∞
𝑟 (𝑇) 𝑥𝑒

− 𝑥2
2𝑇 𝑑𝑥

P(𝑍 ≥ 𝑟 (𝑇)√
𝑇
)

− 𝑟 (𝑇)

(3.25)

where in the second line 𝑍 is a standard normal random variable. Writing 𝜙 for the density

of the standard normal, noting that P(𝑍 ≥ 𝑥) = (1 +𝑂 ( 1
𝑥2 )) 𝜙(𝑥)𝑥 (see for example, (Patel &

Read, 1996), Chapter 3), we have

E[|𝑊𝑇 − 𝑟 (𝑇) |
��𝑊𝑇 ≥ 𝑟 (𝑇)] =

(2𝜋𝑇)−1/2
∫ ∞
𝑟 (𝑇) 𝑥𝑒

− 𝑥2
2𝑇 𝑑𝑥(

1 +𝑂
(

𝑇

𝑟 (𝑇)2

))
𝜙( 𝑟 (𝑇)√

𝑇
)/ 𝑟 (𝑇)√

𝑇

− 𝑟 (𝑇) (3.26)

We find by elementary calculus,

∫ ∞

𝑟 (𝑇)
𝑥𝑒−

𝑥2
2𝑇 𝑑𝑥 = 𝑇𝑒−

𝑟 (𝑇)2
2𝑇 .
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Substituting this into the above, we find

E[|𝑊𝑇 − 𝑟 (𝑇) |
��𝑊𝑇 ≥ 𝑟 (𝑇)] =

©­­«
1

1 +𝑂
(

𝑇

𝑟 (𝑇)2

) ª®®¬ 𝑟 (𝑇) − 𝑟 (𝑇)
=

(
1 +𝑂

(
𝑇

𝑟 (𝑇)2

))
𝑟 (𝑇) − 𝑟 (𝑇)

= 𝑂

(
𝑇

𝑟 (𝑇)

)
(3.27)

as 𝑇 → 0+. Setting 𝑟 (𝑇) = 𝑀 − 𝑓 (𝑇), we find that

E[|𝑊𝑇 − (𝑀 − 𝑓 (𝑇)) |
��𝑊𝑇 ≥ 𝑀 − 𝑓 (𝑇)] = 𝑂 (𝑇), (3.28)

with the implied constant depending only on 𝑀. Applying the triangle inequality, and

recalling that 𝑓 (𝑇) is of order 𝑂 (𝑇) then concludes the proof. □

Lemma 4. For any constant 𝑐 > 0, we have

EQ𝑀− 𝑓 (𝑇) ,𝑇

[
|𝑒𝑐𝑊𝑇 − 𝑒𝑐𝑀 |

]
= 𝑂 (

√
𝑇), (3.29)

as 𝑇 → 0+, with the implied constant depending only on 𝑓 , 𝑐, 𝑀 .

Proof. Set 𝜏𝑇 := inf{𝑡 > 0 |𝑊𝑡 ≥ 𝑀 − 𝑓 (𝑇)}. Then we have

EQ𝑀− 𝑓 (𝑇) ,𝑇

[
𝑒𝑐𝑊𝑇

]
= EQ𝑀− 𝑓 (𝑇) ,𝑇

[
𝑒𝑐(𝑀− 𝑓 (𝑇))𝑒𝑐(𝑊𝑇−𝑊𝜏𝑇

)]
= 𝑒𝑐(𝑀− 𝑓 (𝑇))E

[
𝑒𝑐(𝑊𝑇−𝑊𝜏𝑇

)]
= 𝑒𝑐(𝑀− 𝑓 (𝑇))exp

(
𝑐2(𝑇 − 𝜏𝑇 )

2

)
,

(3.30)

which tends to 𝑒𝑐𝑀 as 𝑇 → 0+. In fact, Taylor expanding the exponentials to first order

shows that EQ𝑀− 𝑓 (𝑇) ,𝑇

[
𝑒𝑐𝑊𝑇

]
− 𝑒𝑐𝑀 is of order 𝑂 (𝑇) +𝑂 ( 𝑓 (𝑇)) = 𝑂 (𝑇).
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Next, by the Markov inequality we have, for every 𝛿 > 0,

Q𝑀− 𝑓 (𝑇),𝑇
[
|𝑊𝑇 − 𝑀 | ≥ 𝛿

]
≤
EQ𝑀− 𝑓 (𝑇) ,𝑇

[
|𝑊𝑇 − 𝑀 |

]
𝛿

. (3.31)

Setting 𝛿 =
√
𝑇 , and recalling Lemma 3, we thus obtain that

Q𝑀− 𝑓 (𝑇),𝑇
[
|𝑊𝑇 − 𝑀 | ≥

√
𝑇
]
= 𝑂 (

√
𝑇). (3.32)

Now we compute

EQ𝑀− 𝑓 (𝑇) ,𝑇 [|𝑒𝑐𝑊𝑇 − 𝑒𝑐𝑀 |]

= EQ𝑀− 𝑓 (𝑇) ,𝑇

[
1{|𝑊𝑇−𝑀 |<

√
𝑇} |𝑒

𝑐𝑊𝑇 − 𝑒𝑐𝑀 |
]
+ EQ𝑀− 𝑓 (𝑇) ,𝑇

[
1{|𝑊𝑇−𝑀 |≥

√
𝑇} |𝑒

𝑐𝑊𝑇 − 𝑒𝑐𝑀 |
]

≤ 𝑂 (
√
𝑇) + 𝐸Q𝑀− 𝑓 (𝑇) ,𝑇

[
1{|𝑊𝑇−𝑀 |≥

√
𝑇} |𝑒

𝑐𝑊𝑇 − 𝑒𝑐𝑀 |
]
.

(3.33)

Hence it will suffice to show that the second term above is of order 𝑂 (
√
𝑇). We write said

term as 𝐴𝑇 + 𝐵𝑇 , where

𝐴𝑇 := EQ𝑀− 𝑓 (𝑇) ,𝑇

[
1{𝑊𝑇−𝑀≥

√
𝑇} |𝑒

𝑐𝑊𝑇 − 𝑒𝑐𝑀 |
]
, (3.34)

𝐵𝑇 := EQ𝑀− 𝑓 (𝑇) ,𝑇

[
1{𝑊𝑇−𝑀≤−

√
𝑇} |𝑒

𝑐𝑊𝑇 − 𝑒𝑐𝑀 |
]
. (3.35)
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Observe that 𝐵𝑇 = 𝑂 (
√
𝑇). Indeed,

𝐵𝑇 = 𝑒𝑐𝑀EQ𝑀− 𝑓 (𝑇) ,𝑇

[
1{𝑊𝑇−𝑀≤−

√
𝑇} |𝑒

𝑐(𝑊𝑇−𝑀) − 1|
]
.

≤ 𝑒𝑐𝑀EQ𝑀− 𝑓 (𝑇) ,𝑇

[
1{𝑊𝑇−𝑀≤−

√
𝑇} |𝑒 + 1|

]
.

≤ (𝑒 + 1)𝑒𝑐𝑀EQ𝑀− 𝑓 (𝑇) ,𝑇 [1{|𝑊𝑇−𝑀 |≥
√
𝑇}]

= (𝑒 + 1)𝑒𝑐𝑀𝑂 (
√
𝑇)

= 𝑂 (
√
𝑇).

(3.36)

where in the second to last line, we have applied Equation (3.32).

Now we rewrite 𝐴𝑇 + 𝐵𝑇 as 𝐴𝑇 − 𝐵𝑇 + 2𝐵𝑇 , and note that

𝐴𝑇 − 𝐵𝑇 = EQ𝑀− 𝑓 (𝑇) ,𝑇 [1{|𝑊𝑇−𝑀 |≥
√
𝑇} (𝑒

𝑐(𝑊𝑇−𝑀) − 1)]

= (EQ𝑀− 𝑓 (𝑇) ,𝑇

[
𝑒𝑐𝑊𝑇

]
− 𝑒𝑐𝑀) − EQ𝑀− 𝑓 (𝑇) ,𝑇

[
1{|𝑊𝑇−𝑀 |<

√
𝑇} (𝑒

𝑐𝑊𝑇 − 𝑒𝑐𝑀)
]
.

(3.37)

Since the term in brackets is of order 𝑂 (𝑇) by the earlier discussion, and the latter term is

of order 𝑂 (
√
𝑇), as can be seen by say, Taylor expansion, we obtain that

𝐴𝑇 + 𝐵𝑇 = 𝑂 (𝑇) +𝑂 (
√
𝑇) = 𝑂 (

√
𝑇). (3.38)

as desired.

Lemma 5. We have

EQ𝑀− 𝑓 (𝑇) ,𝑇

[
sup

0≤𝑡≤𝑇
|𝑋𝑡 − 𝑒

𝑡
𝑇
𝜎𝑀 |] = 𝑂 (

√
𝑇), (3.39)

as 𝑇 → 0+, with the implied constant depending only on 𝑓 , 𝑀 .

55

Univ
ers

iti 
Mala

ya



Proof. Since 𝑋 is a geometric Brownian motion, it admits the explicit solution

𝑋𝑡 = exp (𝐶𝑡 + 𝜎𝑊𝑡), (3.40)

where for convenience we have written 𝐶 := 𝜇 − 𝜎2

2 .

Write𝑊𝑡 =
𝑡
𝑇
𝑊𝑇 − 𝐵𝑡 , where

𝐵𝑡 := 𝑊𝑡 −
𝑡

𝑇
𝑊𝑇 , (3.41)

is a standard Brownian bridge, independent of𝑊𝑇 .

We then have

𝑋𝑡 = exp (𝐶𝑡 − 𝜎𝐵𝑡 +
𝜎𝑡

𝑇
𝑊𝑇 ). (3.42)

Let 𝐷 be the event {𝑊𝑇 ≥ 𝑀 − 𝑓 (𝑇)}. We compute

EQ𝑀− 𝑓 (𝑇) ,𝑇

[
sup

0≤𝑡≤𝑇
|𝑋𝑡 − 𝑒

𝑡
𝑇
𝜎𝑀 |

]
≤ EQ𝑀− 𝑓 (𝑇) ,𝑇

[
sup

0≤𝑡≤𝑇
|exp (𝐶𝑡 − 𝜎𝐵𝑡 +

𝜎𝑡

𝑇
𝑊𝑇 ) − 𝑒(𝜎𝑡/𝑇)𝑊𝑇 |

]
+ EQ𝑀− 𝑓 (𝑇) ,𝑇

[
sup

0≤𝑡≤𝑇
|𝑒(𝜎𝑡/𝑇)𝑊𝑇 − 𝑒 𝑡𝑇 𝜎𝑀 |

]
.

(3.43)

Clearly, the supremum in the last term occurs at 𝑡 = 𝑇 , and hence the last term is of order

𝑂 (
√
𝑇) by Lemma 4.

For the first term, we claim that

EQ𝑀− 𝑓 (𝑇) ,𝑇

[
sup

0≤𝑡≤𝑇
|exp (𝐶𝑡 − 𝜎𝐵𝑡 +

𝜎𝑡

𝑇
𝑊𝑇 ) − 𝑒(𝜎𝑡/𝑇)𝑊𝑇 |

]
(3.44)

≤ EQ𝑀− 𝑓 (𝑇) ,𝑇

[
sup

0≤𝑡≤𝑇
|exp (𝐶𝑡 − 𝜎𝐵𝑡) − 1|𝑒(𝜎𝑡/𝑇)𝑊𝑇

]
(3.45)
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Indeed, we have trivially

sup
0≤𝑡≤𝑇

|exp (𝐶𝑡 − 𝜎𝐵𝑡 +
𝜎𝑡

𝑇
𝑊𝑇 ) − 𝑒(𝜎𝑡/𝑇)𝑊𝑇 |

]
≤ sup

0≤𝑡≤𝑇
sup

0≤𝑟≤𝑇
|exp (𝐶𝑡 − 𝜎𝐵𝑡 +

𝜎𝑡

𝑇
𝑊𝑇 ) − 𝑒(𝜎𝑟/𝑇)𝑊𝑇 |

]
(3.46)

Since 𝜎 > 0, and 𝑊𝑇 > 0 on the event 𝐷, we have that for all 𝑡, the inner supremum is

attained at 𝑟 = 𝑇 , whence Equation 3.45 follows.

Next, using the independence of 𝐵𝑡 from𝑊𝑇 (for all 𝑡 ∈ 0 ≤ 𝑡 ≤ 𝑇), denoting by W the

𝜎-algebra generated by𝑊𝑇 , we have

EQ𝑀− 𝑓 (𝑇) ,𝑇

[
sup

0≤𝑡≤𝑇
|exp (𝐶𝑡 − 𝜎𝐵𝑡 +

𝜎𝑡

𝑇
𝑊𝑇 ) − 𝑒(𝜎𝑡/𝑇)𝑊𝑇 |

]
≤ EQ𝑀− 𝑓 (𝑇) ,𝑇

[
sup

0≤𝑡≤𝑇
𝑒(𝜎𝑡/𝑇)𝑊𝑇 |exp (𝐶𝑡 − 𝜎𝐵𝑡) − 1|

]
≤
E[1𝐷𝑒𝜎𝑊𝑇 sup0≤𝑡≤𝑇 |exp (𝐶𝑡 − 𝜎𝐵𝑡) − 1|]

P(𝐷)

=
E[E[1𝐷𝑒𝜎𝑊𝑇 sup0≤𝑡≤𝑇 |exp (𝐶𝑡 − 𝜎𝐵𝑡) − 1| |W]]

P(𝐷)

=
E[1𝐷𝑒𝜎𝑊𝑇E[sup0≤𝑡≤𝑇 |exp (𝐶𝑡 − 𝜎𝐵𝑡) − 1| |W]]

P(𝐷)

=
E[sup0≤𝑡≤𝑇 |exp (𝐶𝑡 − 𝜎𝐵𝑡) − 1|] E[1𝐷𝑒𝜎𝑊𝑇 ]

P(𝐷)

= E[ sup
0≤𝑡≤𝑇

|exp (𝐶𝑡 − 𝜎𝐵𝑡) − 1|] EQ𝑀− 𝑓 (𝑇) ,𝑇

[
𝑒𝜎𝑊𝑇

]
.

(3.47)

We now claim thatE[| sup0≤𝑡≤𝑇 exp (𝐶𝑡−𝜎𝐵𝑡)−1|] is of order𝑂 (
√
𝑇), whileEQ𝑀− 𝑓 (𝑇) ,𝑇

[
𝑒𝜎𝑊𝑇

]
is of order 𝑂 (1), whence the result would follow.
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To see the first claim, note that we have

E[| sup
0≤𝑡≤𝑇

exp (𝐶𝑡 − 𝜎𝐵𝑡) − 1|]

≤ E[| sup
0≤𝑡≤𝑇

exp (𝐶𝑡 − 𝜎𝐵𝑡) − exp (−𝜎𝐵𝑡 |)] + E[| sup
0≤𝑡≤𝑇

exp (−𝜎𝐵𝑡) − 1|]

≤ (𝑒𝐶𝑇 − 1)E[| sup
0≤𝑡≤𝑇

exp (−𝜎𝐵𝑡)] + E[| sup
0≤𝑡≤𝑇

exp (−𝜎𝐵𝑡) − 1|] .

(3.48)

Since the former term tends to 0 as 𝑇 → 0+, it will thus suffice to show that

E[| sup
0≤𝑡≤𝑇

exp (−𝜎𝐵𝑡) − 1], (3.49)

tends to 0.

We estimate

E[ sup
0≤𝑡≤𝑇

|exp(−𝜎𝐵𝑡)−1|] ≤ E[|exp( sup
0≤𝑡≤𝑇

−𝜎𝐵𝑡)−1|]+E[|exp( inf
0≤𝑡≤𝑇

−𝜎𝐵𝑡)−1|] . (3.50)

We show in turn that both terms in Equation (3.50) are of order 𝑂 (
√
𝑇). For the first term,

we note that since

𝐵𝑡 = 𝑊𝑡 −
𝑡

𝑇
𝑊𝑇 , (3.51)

we have

0 ≤ sup
𝑡∈[0,𝑇]

−𝐵𝑡 ≤ 𝑀𝑇 + |𝑊𝑇 |, (3.52)

where

𝑀𝑡 := sup
𝑡∈[0,𝑇]

−𝑊𝑡 . (3.53)
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So by the Cauchy-Schwartz inequality,

E[| sup
0≤𝑡≤𝑇

exp (−𝜎𝐵𝑡) − 1] = E[ sup
0≤𝑡≤𝑇

exp (−𝜎𝐵𝑡) − 1]

≤
√︁
E[exp (2𝜎𝑀𝑇 )]

√︁
E[exp (2𝜎 |𝑊𝑇 |)] − 1.

(3.54)

By the reflection principle, 𝑀𝑇 = |𝑊𝑇 | in law, so

E[ sup
0≤𝑡≤𝑇

exp (−𝜎𝐵𝑡) − 1] ≤ E[exp (2𝜎 |𝑊𝑇 |)] − 1. (3.55)

Letting Φ denote the CDF of a standard normal random variable, by standard formulae,

we have

E[exp (2𝜎 |𝑊𝑇 |)] = 2𝑒2𝑇𝜎2
Φ(2𝜎

√
𝑇)

= (1 +𝑂 (
√
𝑇))𝑒2𝑇𝜎2

= (1 +𝑂 (
√
𝑇)) (1 +𝑂 (𝑇))

= 1 +𝑂 (
√
𝑇),

(3.56)

whence

E[|exp( sup
0≤𝑡≤𝑇

−𝜎𝐵𝑡) − 1|] = 𝑂 (
√
𝑇), (3.57)

as claimed.

Now we deal with the second term in Equation 3.50.

Since inf0≤𝑡≤𝑇 −𝐵𝑡 ≤ 0 almost surely, we have exp (𝜎 inf0≤𝑡≤𝑇 −𝑊𝑡) ≤ 1, so the second

term is

E[1 − exp (𝜎 inf
0≤𝑡≤𝑇

−𝐵𝑡)] . (3.58)
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Hence, it will suffice to show that

E[exp (𝜎 inf
0≤𝑡≤𝑇

−𝐵𝑡)] → 1. (3.59)

Again, since 𝐵𝑡 = 𝑊𝑡 − 𝑡
𝑇
𝑊𝑇 , we have

𝑚𝑇 − |𝑊𝑇 | ≤ inf
0≤𝑡≤𝑇

−𝐵𝑡 ≤ 0, (3.60)

where 𝑚𝑇 := inf0≤𝑡≤𝑇 −𝑊𝑡 . So

𝐸 [exp (𝜎 inf
0≤𝑡≤𝑇

−𝐵𝑡)] ≥ 𝐸 [exp (𝜎(𝑚𝑇 − |𝑊𝑇 |))]

= E

[
1

exp (𝜎(−𝑚𝑇 + |𝑊𝑇 |))

]
≥ 1
E[exp (𝜎(−𝑚𝑇 + |𝑊𝑇 |))]

,

(3.61)

where in the last line we have applied Jensen’s inequality. Applying the Cauchy Schwartz

inequality, we have

1
E[exp (𝜎(−𝑚𝑇 + |𝑊𝑇 |))]

≥ 1√︁
E[exp (−2𝜎𝑚𝑇 )]

√︁
E[exp (2𝜎 |𝑊𝑇 |)]

. (3.62)

By the reflection principle, −𝑚𝑇 = |𝑊𝑇 | in distribution, so

1√︁
E[exp (−2𝜎𝑚𝑇 )]

√︁
E[exp (2𝜎 |𝑊𝑇 |)]

≥ 1
E[exp (2𝜎 |𝑊𝑇 |)]

. (3.63)

Consequently, we have

E[1 − exp (𝜎 inf
0≤𝑡≤𝑇

−𝐵𝑡)] ≤ 1 − 1
E[exp (2𝜎 |𝑊𝑇 |)]

. (3.64)
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Since

E[exp (2𝜎 |𝑊𝑇 |)] = 1 +𝑂 (
√
𝑇), (3.65)

as proven earlier, we deduce

E[1 − exp (𝜎 inf
0≤𝑡≤𝑇

−𝐵𝑡)] ≤ 1 − 1
1 +𝑂 (

√
𝑇)

= 𝑂 (
√
𝑇), (3.66)

as claimed.

On the other hand, the second claim follows from a stopping time argument and standard

estimates. Indeed, write

𝜏𝑇 := inf{𝑡 > 0 |𝑊𝑇 ≥ 𝑀 − 𝑓 (𝑇)}. (3.67)

We have

EQ𝑀− 𝑓 (𝑇) ,𝑇

[
𝑒𝜎𝑊𝑇

]
=
E
[
1𝐷𝑒𝜎𝑊𝑇

]
P(𝐷)

=
E
[
E[

[
1𝐷𝑒𝜎𝑊𝑇

��F𝜏]]
P(𝐷)

=
E
[
1𝐷E[

[
𝑒𝜎𝑊𝑇

��F𝜏]]
P(𝐷) .

(3.68)

On 𝐷, we have 𝜏𝑇 ≤ 𝑇 almost surely. Thus by the strong Markov property, conditional on

F𝜏, 𝑅𝑡 := 𝑊𝑡+𝜏 is a Brownian motion with initial value 𝑅0 = 𝑊𝜏 = 𝑀 − 𝑓 (𝑇). Thus

E
[
𝑒𝜎𝑊𝑇

��F𝜏] = E[𝑒𝜎𝑅𝑡−𝜏 ��F𝜏]
= E

[
𝑒𝜎𝑅𝑡−𝑟

] ��
𝑟=𝜏
,

(3.69)

where in the last equality we have applied the freezing lemma.

We recognise 𝑒𝜎𝑅𝑡−𝑟 as a log normal random variable with mean exp(𝑀 − 𝑓 (𝑇) + 𝑡−𝑟
2 ) ≤

exp(𝑀 + | 𝑓 (𝑇) | + 𝑇
2 ) < exp(𝑀 + 1) := 𝐶 for all small enough 𝑇 , uniformly over all
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0 ≤ 𝑟 ≤ 𝑡. Thus

EQ𝑀− 𝑓 (𝑇) ,𝑇

[
𝑒𝜎𝑊𝑇

]
=
E[1𝐷E

[
𝑒𝜎𝑅𝑡−𝑟

] ��
𝑟=𝜏

]
P(𝐷)

≤ 𝐶E[1𝐷]
P(𝐷)

= 𝐶.

(3.70)

Thus EQ𝑀− 𝑓 (𝑇) ,𝑇

[
𝑒𝜎𝑊𝑇

]
is of order 𝑂 (1) as claimed, and this concludes the proof. □

Lemma 6. Let 𝜏 = inf{𝑡 > 0 |𝑋𝑡 = 𝐵}. Then we have

P(𝜏 ≥ (1 − 𝑇1/2)𝑇
��𝜏 ≤ 𝑇) → 1, (3.71)

as 𝑇 → 0+.

Proof. Using that the density 𝑓𝜏 of 𝜏 is given by

𝑓𝜏 (𝑡) =
𝑅 exp

(
−(𝑅+( 𝜎2

2 − 𝜇)𝑡)2
2𝑡

)
√

2𝜋𝑡3
, (3.72)

we may write

P(𝜏 ≥ (1 − 𝑇1/2)𝑇
��𝜏 ≤ 𝑇) =

∫ 𝑇
(1−𝑇1/2)𝑇 𝑓𝜏 𝑑𝑡∫ 𝑇

0 𝑓𝜏 𝑑𝑡

=

∫ 𝑇
(1−𝑇1/2)𝑇 𝑓𝜏 𝑑𝑡∫ 𝑇

(1−𝑇1/2)𝑇 𝑓𝜏 +
∫ (1−𝑇1/2)𝑇
0 𝑓𝜏 𝑑𝑡

=:
𝐴1

𝐴1 + 𝐴2

=
1

1 + 𝐴2/𝐴1
,

(3.73)
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with 𝐴1 :=
∫ 𝑇
(1−𝑇1/2)𝑇 𝑓𝜏 𝑑𝑡 and 𝐴2 :=

∫ (1−𝑇1/2)𝑇
0 𝑓𝜏 𝑑𝑡. Hence we may conclude that

P(𝜏 ≥ (1 − 𝑇1/2)𝑇
��𝜏 ≤ 𝑇) → 1 if we can show that lim𝑇→0+

𝐴2
𝐴1

= 0.

Now we have

𝑑𝑓𝜏

𝑑𝑡
=
𝑅𝑒−(2𝑅+𝑡 (𝜎

2−2𝜇))2/8𝑡) (4𝑅2 − 𝑡 (𝑡 (2𝜇 − 𝜎2)2) + 12)
8
√

2𝜋𝑡7/2
, (3.74)

which is positive on [0, 𝑇] for all small enough 𝑇 > 0, so 𝑓𝜏 is increasing on this interval.

Thus we may estimate

𝐴2 ≤
∫ (1−𝑇1/2)𝑇

0

𝑅 exp
(
−(𝑅+( 𝜎2

2 − 𝜇) ((1−𝑇1/2)𝑇)2)
2(1−𝑇1/2)𝑇

)
√︁

2𝜋((1 − 𝑇1/2)𝑇)3
𝑑𝑡

≤
𝑇𝑅 exp

(
−(𝑅+( 𝜎2

2 − 𝜇) ((1−𝑇1/2)𝑇)2)
2(1−𝑇1/2)𝑇

)
√︁

2𝜋((1 − 𝑇1/2)𝑇)3
,

(3.75)

where we have used the fact that 𝑓𝜏 is increasing on [0, 𝑇] for small enough 𝑇 . Similarly,

𝐴1 ≥
∫ 𝑇

(1−𝑇1/2
2 )𝑇

𝑓𝜏 𝑑𝑡

≥
∫ 𝑇

(1−𝑇1/2
2 )𝑇

𝑅 exp
(
−(𝑅+( 𝜎2

2 − 𝜇) (1−𝑇1/2
2 )𝑇)2

(2(1−𝑇1/2
2 )𝑇))

)
√︃

2𝜋(2(1 − 𝑇1/2
2 )𝑇)/3)3

𝑑𝑡

=

(
𝑇3/2

2

) ©­­­­«
𝑅 exp

(
−(𝑅+( 𝜎2

2 − 𝜇) (1−𝑇1/2
2 )𝑇)2

(2(1−𝑇1/2
2 )𝑇))

)
√︃

2𝜋(2(1 − 𝑇1/2
2 )𝑇)/3)3

ª®®®®¬
,

(3.76)

so that, after dividing the above two equations we obtain

𝐴2
𝐴1

≤ 𝑇−1/2𝐶0 exp
(
− 𝐶1

𝑇1/2 + 𝐶2 + 𝐶3𝑇

)
, (3.77)

where 𝐶0, . . . , 𝐶3 are constants with 𝐶0, 𝐶1 > 0 that do not depend on 𝑇 . We use the
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simple estimate

𝐴2
𝐴1

≤ 𝑇−1/2𝐶0 exp
(
− 𝐶1

𝑇1/2 + 𝐶2 + 𝐶3

)
= 𝐶4𝑇

−1/2exp
(
− 𝐶1

𝑇1/2

)
,

(3.78)

for all 𝑇 < 1, say, which tends to 0 as 𝑇 → 0+, as desired. □

We are now ready to give the proof of Theorem 4.

Proof. [Proof of Theorem 4]

First we show that

EP𝑇
[

sup
0<𝑡<𝑇

|𝑋𝑡 − 𝐵
𝑡
𝑇 |

]
,→ 0 (3.79)

and later refine our analysis to achieve the 𝑂 (
√
𝑇) convergence rate.

To this end, let 𝑌𝑇 be the event {𝑊𝑇 ≥ 𝐺 −
( 𝜇
𝜎
− 𝜎

2
)
𝑇}. We recall that 𝐺 := log 𝐵

𝜎
and 𝐴𝑇

is the event {max0≤𝑡≤𝑇 𝑋𝑡 ≥ 𝐵}.

Note that if𝑊𝑇 ≥ 𝐺 − ( 𝜇
𝜎
𝑇), then 𝑋𝑇 = exp( 𝜇

𝜎
− 𝜎

2 )𝑇 + 𝜎𝑊𝑇 ≥ 𝐵, and thus 𝑌𝑇 is a subset

of 𝐴𝑇 .
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We then have

EP𝑇
[

sup
0<𝑡<𝑇

|𝑋𝑡 − 𝐵
𝑡
𝑇 |

]
= E

[
sup

0<𝑡<𝑇
|𝑋𝑡 − 𝐵

𝑡
𝑇 |

�� 𝐴𝑇 ]
= E

[
1𝑌𝑇 sup

0<𝑡<𝑇
|𝑋𝑡 − 𝐵

𝑡
𝑇 |

�� 𝐴𝑇 ] + E[1𝑌 𝑐
𝑇

sup
0<𝑡<𝑇

|𝑋𝑡 − 𝐵
𝑡
𝑇 |

�� 𝐴𝑇 ]
=
E
[
1𝑌𝑇1𝐴𝑇 sup0<𝑡<𝑇 |𝑋𝑡 − 𝐵

𝑡
𝑇 |]

P(𝐴𝑇 )
+
E
[
1𝑌 𝑐

𝑇
1𝐴𝑇 sup0<𝑡<𝑇 |𝑋𝑡 − 𝐵

𝑡
𝑇 |]

P(𝐴𝑇 )

=

(
E
[
1𝑌𝑇1𝐴𝑇 sup0<𝑡<𝑇 |𝑋𝑡 − 𝐵

𝑡
𝑇 |]

P(𝑌𝑇 )

) (
P(𝑌𝑇 )
P(𝐴𝑇 )

)
+
E
[
1𝑌 𝑐

𝑇
1𝐴𝑇 sup0<𝑡<𝑇 |𝑋𝑡 − 𝐵

𝑡
𝑇 |]

P(𝐴𝑇 )

≤ E[ sup
0<𝑡<𝑇

|𝑋𝑡 − 𝐵
𝑡
𝑇 | |𝑌𝑇 ] +

E
[
1𝑌 𝑐

𝑇
1𝐴𝑇 sup0<𝑡<𝑇 |𝑋𝑡 − 𝐵

𝑡
𝑇 |]

P(𝐴𝑇 )

= EQ
𝐺−( 𝜇𝜎 − 𝜎2 )𝑇 , 𝑇

[
sup

0<𝑡<𝑇
|𝑋𝑡 − 𝐵

𝑡
𝑇 |

]
+
E
[
1𝑌 𝑐

𝑇
1𝐴𝑇 sup0<𝑡<𝑇 |𝑋𝑡 − 𝐵

𝑡
𝑇 |]

P(𝐴𝑇 )
,

(3.80)

where in the last two lines we have applied the fact that 𝑌𝑇 is a subset of 𝐴𝑇 , hence

1𝑌𝑇1𝐴𝑇 = 1𝑌𝑇 and P(𝑌𝑇 )P(𝐴𝑇 ) ≤ 1.

We now examine the second term. Writing 𝜏 := inf{𝑡 > 0 | 𝑋𝜏 = 𝐵}, we have

E
[
1𝑌 𝑐

𝑇
1𝐴𝑇 sup0<𝑡<𝑇 |𝑋𝑡 − 𝐵

𝑡
𝑇 |]

P(𝐴𝑇 )

≤
E
[
1𝑌 𝑐

𝑇
1𝐴𝑇 sup0<𝑡<𝜏 |𝑋𝑡 − 𝐵

𝑡
𝑇 |]

P(𝐴𝑇 )
+
E
[
1𝑌 𝑐

𝑇
1𝐴𝑇 sup𝜏≤𝑡<𝑇 |𝑋𝑡 − 𝐵

𝑡
𝑇 |]

P(𝐴𝑇 )

=
E
[
E
[
1𝑌 𝑐

𝑇
1𝐴𝑇 sup0<𝑡<𝜏 |𝑋𝑡 − 𝐵

𝑡
𝑇 |

��F𝜏] ]
P(𝐴𝑇 )

+
E
[
E
[
1𝑌 𝑐

𝑇
1𝐴𝑇 sup𝜏≤𝑡<𝑇 |𝑋𝑡 − 𝐵

𝑡
𝑇 |

��F𝜏] ]
P(𝐴𝑇 )

=
E
[
E
[
1𝑌 𝑐

𝑇

��F𝜏]1𝐴𝑇 sup0<𝑡<𝜏 |𝑋𝑡 − 𝐵
𝑡
𝑇 |

]
P(𝐴𝑇 )

+
E
[
E
[
1𝑌 𝑐

𝑇
sup𝜏≤𝑡<𝑇 |𝑋𝑡 − 𝐵

𝑡
𝑇 |

��F𝜏]1𝐴𝑇 ]
P(𝐴𝑇 )

≤
E
[
E
[
1𝑌 𝑐

𝑇

��F𝜏]1𝐴𝑇 sup0<𝑡<𝜏 |𝑋𝑡 − 𝐵
𝑡
𝑇 |

]
P(𝐴𝑇 )

+
E
[
E
[
sup𝜏≤𝑡<𝑇 |𝑋𝑡 − 𝐵

𝑡
𝑇 |

��F𝜏]1𝐴𝑇 ]
P(𝐴𝑇 )

=
E
[
E
[
1𝑌 𝑐

𝑇

��F𝜏]1𝐴𝑇 sup0<𝑡<𝜏 |𝑋𝑡 − 𝐵
𝑡
𝑇 |

]
P(𝐴𝑇 )

+ E
[

sup
𝜏≤𝑡<𝑇

|𝑋𝑡 − 𝐵
𝑡
𝑇 |

��A𝑇

]
,

(3.81)

where we have performed an intermediate conditioning on F𝜏, and made use of the
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{F𝑡}-adaptedness of 𝑋 to bring terms outside the conditional expectation.

We now make two claims - the first is that

E
[
1𝑌 𝑐

𝑇

��F𝜏]
is almost surely bounded away from 1 as 𝑇 → 0 - that is, there exists some 0 < 𝐶 < 1 and

𝑇0 > 0 such that

E
[
1𝑌 𝑐

𝑇

��F𝜏] ≤ 𝐶, (3.82)

almost surely whenever 𝑇 < 𝑇0.

The second is that

E
[

sup
𝜏<𝑡<𝑇

|𝑋𝑡 − 𝐵
𝑡
𝑇 |

��A𝑇

]
→ 0, (3.83)

as 𝑇 → 0+.

Admitting for now these two claims, letting 𝜀 > 0 be arbitrary, we have

EP𝑇
[

sup
0<𝑡<𝑇

|𝑋𝑡 − 𝐵
𝑡
𝑇 |

]
≤ EQ

𝐺−( 𝜇𝜎 − 𝜎2 )𝑇 , 𝑇
[

sup
0<𝑡<𝑇

|𝑋𝑡 − 𝐵
𝑡
𝑇 |

]
+
E
[
E
[
1𝑌 𝑐

𝑇

��F𝜏]1𝐴𝑇 sup0<𝑡<𝜏 |𝑋𝑡 − 𝐵
𝑡
𝑇 |

]
P(𝐴𝑇 )

(3.84)

+ E
[

sup
𝜏<𝑡<𝑇

|𝑋𝑡 − 𝐵
𝑡
𝑇 |

��A𝑇

]
≤ EQ

𝐺−( 𝜇𝜎 − 𝜎2 )𝑇 , 𝑇
[

sup
0<𝑡<𝑇

|𝑋𝑡 − 𝐵
𝑡
𝑇 |

]
+
E
[
𝐶1𝐴𝑇 sup0<𝑡<𝑇 |𝑋𝑡 − 𝐵

𝑡
𝑇 |

]
P(𝐴𝑇 )

(3.85)

+ E
[

sup
𝜏<𝑡<𝑇

|𝑋𝑡 − 𝐵
𝑡
𝑇 |

��A𝑇

]
= EQ

𝐺−( 𝜇𝜎 − 𝜎2 )𝑇 , 𝑇
[

sup
0<𝑡<𝑇

|𝑋𝑡 − 𝐵
𝑡
𝑇 |

]
+ 𝐶 EP𝑇

[
sup

0<𝑡<𝑇
|𝑋𝑡 − 𝐵

𝑡
𝑇 |

]
+ 𝜀 (3.86)

= 𝐶 EP𝑇
[

sup
0<𝑡<𝑇

|𝑋𝑡 − 𝐵
𝑡
𝑇 |

]
+ 2𝜀,

for all small enough 𝑇 , where in the third to last line we have applied claim 3.82, in the
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second to last line we have applied claim 3.83, and in the last line we have applied Lemma

5. Thus

(1 − 𝐶)EP𝑇
[

sup
0<𝑡<𝑇

|𝑋𝑡 − 𝐵
𝑡
𝑇 |

]
≤ 2𝜀, (3.87)

which implies

EP𝑇
[

sup
0<𝑡<𝑇

|𝑋𝑡 − 𝐵
𝑡
𝑇 |

]
≤ 2𝜀

1 − 𝐶 . (3.88)

Since 𝜀 was arbitrary, we conclude

EP𝑇
[

sup
0<𝑡<𝑇

|𝑋𝑡 − 𝐵
𝑡
𝑇 |

]
(3.89)

tends to 0 as 𝑇 → 0+ as required.

It remains only to prove the earlier two claims in Eqs (3.82) and (3.83).

For the first claim, we note that

E[1𝑌 𝑐
𝑇
| 𝐹𝜏] = 1 − E[1𝑌𝑇 | 𝐹𝜏] . (3.90)

Hence it will suffice to show that there is some 𝐶 > 0 such that E[1𝑌𝑇 | 𝐹𝜏] > 𝐶 almost

surely for all small enough 𝑇 . To this end, we estimate

E[1𝑌𝑇 | 𝐹𝜏] = P
(
𝑊𝑇 ≥ 𝐺 −

( 𝜇
𝜎

− 𝜎

2
𝑇

) ��F𝜏)
= P

(
𝑊𝜏 +𝑊𝑇 −𝑊𝜏 ≥ 𝐺 −

( 𝜇
𝜎

− 𝜎

2

)
𝑇

��F𝜏)
= P

(
𝑊𝑇 −𝑊𝜏 ≥

(𝜎
2
− 𝜇

𝜎

)
(𝑇 − 𝜏)

��F𝜏) .
(3.91)

Recalling that𝑊𝑇 −𝑊𝜏 is a normal random variable with variance 𝑇 − 𝜏, we have

P
(
𝑊𝑇 −𝑊𝜏 ≥

(𝜎
2
− 𝜇

𝜎

)
(𝑇 − 𝜏)

��F𝜏) = P (
𝑍 ≥

(𝜎
2
− 𝜇

𝜎

) √
𝑇 − 𝜏

)
, (3.92)
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where 𝑍 is a standard normal random variable. The above tends to P(𝑍 ≥ 0) as 𝑇 → 0,

uniformly in 𝜔, and so any 0 < 𝐶 < 1
2 will satisfy the required inequality, say 𝐶 = 1

3 . This

proves claim (3.82).

For the second claim (3.83), we estimate, for any 𝛿 > 0,

E
[

sup
𝜏<𝑡<𝑇

|𝑋𝑡 − 𝐵
𝑡
𝑇 |

��A𝑇

]
= E

[
1𝜏<(1−𝛿)𝑇 sup

𝜏<𝑡<𝑇

|𝑋𝑡 − 𝐵
𝑡
𝑇 |

��A𝑇

]
(3.93)

+ E
[
1𝜏≥(1−𝛿)𝑇 sup

𝜏≤𝑡<𝑇
|𝑋𝑡 − 𝐵

𝑡
𝑇 |

��A𝑇

]
. (3.94)

The first term above is equal to

E
[
1𝐴𝑇1{𝜏<(1−𝛿)𝑇} sup𝜏≤𝑡<𝑇 |𝑋𝑡 − 𝐵

𝑡
𝑇 |

]
P(𝐴𝑇 )

=
E
[
E[1𝐴𝑇1{𝜏<(1−𝛿)𝑇} sup𝜏≤𝑡<𝑇 |𝑋𝑡 − 𝐵

𝑡
𝑇 | |F𝜏]

]
P(𝐴𝑇 )

=
E
[
1𝐴𝑇1{𝜏<(1−𝛿)𝑇}E[sup𝜏≤𝑡<𝑇 |𝑋𝑡 − 𝐵

𝑡
𝑇 | |F𝜏]

]
P(𝐴𝑇 )

(3.95)

Applying the strong Markov property and the freezing lemma, we have

E[ sup
𝜏<𝑡<𝑇

|𝑋𝑡 − 𝐵
𝑡
𝑇 | |F𝜏] = E[ sup

0≤𝑠<𝑇−𝑟
|𝑅𝑠 − 𝐵

𝑟+𝑠
𝑇 |] |𝑟=𝜏, (3.96)

where 𝑅𝑠 := 𝑋𝜏+𝑠 is a geometric Brownian motion independent of F𝜏. Hence

E
[
1𝐴𝑇1{𝜏<(1−𝛿)𝑇} sup𝜏≤𝑡<𝑇 |𝑋𝑡 − 𝐵

𝑡
𝑇 |

]
P(𝐴𝑇 )

=
E
[
1𝐴𝑇1{𝜏<(1−𝛿)𝑇}E[sup0≤𝑠<𝑇−𝑟 |𝑅𝑠 − 𝐵

𝑟+𝑠
𝑇 |] |𝑟=𝜏

]
P(𝐴𝑇 )

≤
E
[
1𝐴𝑇1{𝜏<(1−𝛿)𝑇}E[sup0≤𝑠<𝑇−𝑟 |𝑅𝑠 + 𝐵

𝑟+𝑠
𝑇 |] |𝑟=𝜏

]
P(𝐴𝑇 )

.

(3.97)
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We note that

E[ sup
0≤𝑠<𝑇−𝑟

|𝑅𝑠 + 𝐵
𝑟+𝑠
𝑇 |] |𝑟=𝜏 ≤ E[ sup

0≤𝑠≤𝑇
|𝑅𝑠 + 𝐵|]

≤ E[ sup
0≤𝑠≤1

|𝑅𝑠 + 𝐵|],
(3.98)

for all small enough 𝑇 . Since sup0≤𝑠≤1 𝑅𝑠 is an 𝐿1 random variable, we deduce that for all

small enough 𝑇 , E[sup0≤𝑠<𝑇−𝑟 |𝑅𝑠 + 𝐵
𝑟+𝑠
𝑇 |] |𝑟=𝜏 is almost surely bounded above by some 𝐶

depending not on 𝑇 or 𝜏. Thus,

E
[
1𝐴𝑇1{𝜏<(1−𝛿)𝑇} sup𝜏≤𝑡<𝑇 |𝑋𝑡 − 𝐵

𝑡
𝑇 |

]
P(𝐴𝑇 )

= 𝑂 (1)E[1{𝜏<(1−𝛿)𝑇} |𝐴𝑇 ]

= 𝑂 (1)P[𝜏 < (1 − 𝛿)𝑇 |𝜏 ≤ 𝑇]

→ 0.

(3.99)

as 𝑇 → 0 by Lemma 4.
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On the other hand, we estimate

E
[
1{𝜏≥(1−𝛿)} sup

𝜏<𝑡<𝑇

|𝑋𝑡 − 𝐵
𝑡
𝑇 |

�� 𝐴𝑇 ]
= E

[
1{𝜏≥(1−𝛿)𝑇} sup

𝜏<𝑡<𝑇

|𝑋𝑡 − 𝐵
𝑡
𝑇 |

�� 𝐴𝑇 ]
= E

[
1{𝜏≥(1−𝛿)𝑇} sup

𝜏<𝑡<𝑇

|𝑋𝜏 + 𝑋𝑇 − 𝑋𝜏 − 𝐵
𝑡
𝑇 |

�� 𝐴𝑇 ]
= E

[
1{𝜏≥(1−𝛿)𝑇} sup

𝜏<𝑡<𝑇

|𝑋𝑇 − 𝑋𝜏 + 𝐵 − 𝐵 𝑡
𝑇 |

�� 𝐴𝑇 ]
≤ E

[
1{𝜏≥(1−𝛿)𝑇} sup

𝜏<𝑡<𝑇

|𝑋𝑇 − 𝑋𝜏 |
�� 𝐴𝑇 ] + E[1{𝜏≥(1−𝛿)𝑇} sup

𝜏<𝑡<𝑇

|𝐵 − 𝐵 𝑡
𝑇 |

��A𝑇

]
.

= E
[
1{𝜏≥(1−𝛿)𝑇} sup

𝜏<𝑡<𝑇

|𝑋𝑇 − 𝑋𝜏 |
�� 𝐴𝑇 ] + E[1{𝜏≥(1−𝛿)𝑇} |𝐵 − 𝐵 𝜏

𝑇 |
�� 𝐴𝑇 ] .

≤
E
[
1{(1−𝛿)𝑇≤𝜏≤𝑇} sup𝜏<𝑡<𝑇 |𝑋𝑇 − 𝑋𝜏 |

]
P(𝐴𝑇 )

+
E
[
1{(1−𝛿)𝑇≤𝜏≤𝑇} |𝐵 − 𝐵1−𝛿 |

]
P(𝐴𝑇 )

.

=
E
[
1{(1−𝛿)𝑇≤𝜏≤𝑇} sup𝜏<𝑡<𝑇 |𝑋𝑇 − 𝑋𝜏 |

]
P(𝐴𝑇 )

+ |𝐵 − 𝐵1−𝛿 |
E
[
1{(1−𝛿)𝑇≤𝜏≤𝑇}]
P(𝐴𝑇 )

.

≤
E
[
1{(1−𝛿)𝑇≤𝜏≤𝑇} sup𝜏<𝑡<𝑇 |𝑋𝑇 − 𝑋𝜏 |

]
P(𝐴𝑇 )

+ |𝐵 − 𝐵1−𝛿 |.

(3.100)

To estimate the first term above, we write 𝑅𝑡 := 𝑋𝜏+𝑡 and note that by the strong Markov

property of SDEs, 𝑅𝑡 is a geometric Brownian motion independent of F𝜏 with the same

parameters 𝜇, 𝜎 as 𝑋 and initial condition 𝑅0 = 𝐵. Noting also that 𝑋𝜏 = 𝐵, the first term

reads

E
[
1{(1−𝛿)𝑇≤𝜏≤𝑇}E[sup0≤𝑡≤𝑇−𝜏 |𝑅𝑡 − 𝐵| ]

]
P(𝐴𝑇 )

≤
E
[
1{(1−𝛿)𝑇≤𝜏≤𝑇}E[sup0≤𝑡≤𝛿𝑇 |𝑅𝑡 − 𝐵|

]
P(𝐴𝑇 )

≤ E
[

sup
0≤𝑡≤𝛿𝑇

|𝑅𝑡 − 𝐵|
]
,

(3.101)

which tends to 0 as 𝑇 → 0 by standard estimates on SDE (see, for example Baldi (2017),

Theorem 9.1).
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Thus we have, for any 𝛿 > 0,

lim
𝑇→0+

E
[

sup
𝜏<𝑡<𝑇

|𝑋𝑡 − 𝐵
𝑡
𝑇 |

��A𝑇

]
≤ |𝐵 − 𝐵1−𝛿 |. (3.102)

which tends to 0 as 𝛿 → 0. Thus sending 𝛿 to 0, we obtain the desired claim (3.83).

This completes the proof of Eq (3.79).

Now we prove the 𝑂 (
√
𝑇) convergence rate.

From Eq (3.86), we have

(1 − 𝐾)EP𝑇
[

sup
0<𝑡<𝑇

|𝑋𝑡 − 𝐵
𝑡
𝑇 |

]
≤ EQ

𝐺−( 𝜇𝜎 − 𝜎2 )𝑇 , 𝑇
[

sup
0<𝑡<𝑇

|𝑋𝑡 − 𝐵
𝑡
𝑇 |

]
+ E

[
sup
𝜏<𝑡<𝑇

|𝑋𝑡 − 𝐵
𝑡
𝑇 |

��A𝑇

]
. (3.103)

for some fixed 0 < 𝐾 < 1
2 . By Lemma 5, the first term on the right hand side above is of

order 𝑂 (
√
𝑇) + |

( 𝜇
𝜎
− 𝜎

2
)
𝑇 | = 𝑂 (

√
𝑇). Hence to prove the proposition, it will suffice to

show that

E
[

sup
𝜏<𝑡<𝑇

|𝑋𝑡 − 𝐵
𝑡
𝑇 |

��A𝑇

]
= 𝑂 (

√
𝑇). (3.104)

To this end, we write

E
[

sup
𝜏<𝑡<𝑇

|𝑋𝑡 − 𝐵
𝑡
𝑇 |

��A𝑇

]
= E

[
1{𝜏<(1−𝑇1/2)𝑇} sup

𝜏<𝑡<𝑇

|𝑋𝑡 − 𝐵
𝑡
𝑇 |

��A𝑇

]
+ E

[
1𝜏≥(1−𝑇1/2)𝑇 sup

𝜏≤𝑡<𝑇
|𝑋𝑡 − 𝐵

𝑡
𝑇 |

��A𝑇

]
. (3.105)

Similarly as to the estimate of the first term in (3.94), we deduce that

E
[
1{𝜏<(1−𝑇1/2)𝑇} sup

𝜏<𝑡<𝑇

|𝑋𝑡 − 𝐵
𝑡
𝑇 |

��A𝑇

]
= 𝑂 (1)P[𝜏 < (1 − 𝑇1/2)𝑇 | 𝜏 ≤ 𝑇] . (3.106)
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The proof of Lemma 6 shows that

P[𝜏 < (1 − 𝑇1/2)𝑇 |𝜏 ≤ 𝑇] = 𝑂
(
𝑇−1/2exp

(
− 𝐶1

𝑇1/2

))
, (3.107)

which is certainly of order 𝑂 (
√
𝑇). Hence it is left to show that

E
[
1𝜏≥(1−𝑇1/2)𝑇 sup

𝜏≤𝑡<𝑇
|𝑋𝑡 − 𝐵

𝑡
𝑇 |

��A𝑇

]
= 𝑂 (

√
𝑇). (3.108)

But similar to the handling of the second term in (3.94), we may estimate

E
[
1𝜏≥(1−𝑇1/2)𝑇 sup

𝜏≤𝑡<𝑇
|𝑋𝑡 − 𝐵

𝑡
𝑇 |

��A𝑇

]
≤ E

[
sup

0≤𝑡≤𝑇3/2
|𝑅𝑡 − 𝐵|

]
+ |𝐵 − 𝐵1−𝑇1/2 |, (3.109)

where again 𝑅𝑡 := 𝑋𝑡+𝜏. The first term above is of order 𝑂 (𝑇3/4) by standard estimates on

solutions to SDE (see reference, Baldi, Theorem 9.1), and hence a fortiori of order 𝑂 (
√
𝑇).

On the other hand, we have

|𝐵 − 𝐵1−𝑇1/2 | = 𝐵1−𝑇1/2 (𝐵𝑇1/2 − 1)

≤ 𝐵(𝑒𝑇1/2 ln 𝐵 − 1)

= 𝐵(1 + (ln 𝐵)𝑇1/2 + 𝑜((ln 𝐵)𝑇1/2) − 1)

= 𝑂 (
√
𝑇),

(3.110)

where we have applied a Taylor expansion in the second to last equality. Combining the

two estimates above gives

E
[
1𝜏≥(1−𝑇1/2)𝑇 sup

𝜏≤𝑡<𝑇
|𝑋𝑡 − 𝐵

𝑡
𝑇 |

��A𝑇

]
= 𝑂 (

√
𝑇), (3.111)

which concludes the proof.
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With Theorem 4 in hand, we can now prove the main result of the chapter, Theorem 3.

Proof of Theorem 3. We first note that by elementary calculus, we have

1
𝑇

∫ 𝑇

0
𝐵𝑡/𝑇 𝑑𝑡 =

𝐵 − 1
ln 𝐵

. (3.112)

Next, we estimate

𝐶 (𝐵, 𝐾,𝑇) = E
[ ( 1
𝑇

∫ 𝑇

0
𝑋𝑡𝑑𝑡 − 𝐾

)
+1{ max

0≤𝑡≤𝑇
𝑋𝑡≥𝐵}

]
.

= P

(
max
0≤𝑡≤𝑇

𝑋𝑡 ≥ 𝐵

)
EP𝑇

[ ( 1
𝑇

∫ 𝑇

0
𝑋𝑡𝑑𝑡 − 𝐾

)
+

]
.

(3.113)

To estimate the last term above, we note that

EP𝑇

[ ( 1
𝑇

∫ 𝑇

0
𝑋𝑡𝑑𝑡 − 𝐾

)
+

]
−

(𝐵 − 1
ln 𝐵

− 𝐾
)
+

≤ EP𝑇
[��( 1
𝑇

∫ 𝑇

0
𝑋𝑡 𝑑𝑡 − 𝐾

)
+ −

(𝐵 − 1
ln 𝐵

− 𝐾
)
+
��]

= EP𝑇

[��( 1
𝑇

∫ 𝑇

0
𝑋𝑡 𝑑𝑡 −

1
𝑇

∫ 𝑇

0
𝐵𝑡/𝑇 𝑑𝑡 + 𝐵 − 1

ln 𝐵
− 𝐾

)
+ −

(𝐵 − 1
ln 𝐵

− 𝐾
)
+
��]

= EP𝑇
[
| (𝑌𝑇 + 𝐺)+ − 𝐺+ |

]
,

(3.114)

where we have written

𝑌𝑇 :=
( 1
𝑇

∫ 𝑇

0
𝑋𝑡 𝑑𝑡 −

1
𝑇

∫ 𝑇

0
𝐵𝑡/𝑇 𝑑𝑡

)
, (3.115)

𝐺 :=
𝐵 − 1
ln 𝐵

− 𝐾 (3.116)
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Direct computation gives that for 𝐺 ≤ 0,

| (𝑌𝑇 + 𝐺)+ − 𝐺+ | = (𝑌𝑇 − |𝐺 |)+

=


|𝑌𝑇 − |𝐺 | | if 𝑌𝑇 ≥ |𝐺 |.

0 if 𝑌𝑇 < |𝐺 |.

(3.117)

On the other hand, for 𝐺 > 0, we have

| (𝑌𝑇 + 𝐺)+ − 𝐺+ | = | (𝑌𝑇 + 𝐺)+ − 𝐺 |

= |𝑌𝑇 |.
(3.118)

In either case, we have that

| (𝑌𝑇 + 𝐺)+ − 𝐺+ | ≤ |𝑌𝑇 |, (3.119)

hence

EP𝑇
[
| (𝑌𝑇 + 𝐺)+ − 𝐺 |

]
≤ EP𝑇

[
|𝑌𝑇 |

]
= EP𝑇

[�� 1
𝑇

∫ 𝑇

0
𝑋𝑡 𝑑𝑡 −

1
𝑇

∫ 𝑇

0
𝐵𝑡/𝑇 𝑑𝑡

��]
=

1
𝑇

�� ∫ 𝑇

0
EP𝑇 [𝑋𝑡 − 𝐵𝑡/𝑇 ] 𝑑𝑡

��
≤ 1
𝑇

∫ 𝑇

0
EP𝑇

∫ 𝑇

0
sup

0≤𝑠≤𝑇
|𝑋𝑠 − 𝐵𝑠/𝑇 | 𝑑𝑡

= EP𝑇

∫ 𝑇

0
sup

0≤𝑠≤𝑇
|𝑋𝑠 − 𝐵𝑠/𝑇 |

= 𝑂 (
√
𝑇),

(3.120)

by Proposition 4.
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We conclude that

𝐸P𝑇

[ ( 1
𝑇

∫ 𝑇

0
𝑋𝑡𝑑𝑡 − 𝐾

)
+

]
=

(𝐵 − 1
ln 𝐵

− 𝐾
)
+ +𝑂 (

√
𝑇), (3.121)

and hence

𝐶 (𝐵, 𝐾,𝑇) = 𝑃(𝐵,𝑇)
[ (𝐵 − 1

ln 𝐵
− 𝐾

)
+ +𝑂 (

√
𝑇)

]
, (3.122)

as claimed.

3.4 Additional Proofs

In this section, we prove the result stated in the introduction concerning the limiting

behaviour of the Brownian motion conditional on the sample path achieving a high running

maximum. We repeat the theorem statement here for convenience.

Proposition 6 (Large noise limit for Brownian motion). Let 𝑊 be a standard one

dimensional Brownian motion. For every 𝜀 > 0, let 𝐴𝜀 denote the event

{max
0≤𝑡≤1

𝑊𝑡 ≥
1
𝜀
} , (3.123)

and let P𝜀 be the probability measure given by

P𝜀 (𝐸) = P(𝐸 ∩ 𝐴𝜀)
P(𝐴𝜀)

, (3.124)

for all measurable events 𝐸 . Denote by EP𝜀 the expectation under P𝜀. Then

lim
𝜀→0
EP𝜀

[
|𝜀𝑊1 − 1|

]
= 0. (3.125)

Proof. Write
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𝜏 = min{𝑡 > 0 : 𝑊𝑡 ≥
1
𝜀
}. (3.126)

By the reflection principle, we have

P(𝜏 ≤ 1) = P(𝐴𝜀) = 2Φ(−1
𝜀
), (3.127)

where Φ(𝑥) :=
∫ 𝑥

−∞(2𝜋)− 1
2 𝑒−

𝑡2
2 𝑑𝑡 denotes the CDF of the standard normal distribution.

Using the strong Markov property at time 𝜏, we have that |𝑊1 −𝑊𝜏 | is a half normal

random variable with parameter 𝜎 = 1 − 𝜏, independent of F𝜏. Thus we compute

E
[
|𝑊1 −

1
𝜀
|
�� 𝜏 ≤ 1

]
= E

[
|𝑊1 −𝑊𝜏 |

�� 𝜏 ≤ 1
]

=
E[1{𝜏≤1} |𝑊1 −𝑊𝜏 |]

P(𝜏 ≤ 1)

=
E[1{𝜏≤1}E[|𝑊1 −𝑊𝜏 |

��A(𝜏)]]
P(𝜏 ≤ 1)

=
E
[
1{𝜏≤1}

√︃
2
𝜋
(1 − 𝜏)

]
P(𝜏 ≤ 1)

≤
√︂

2
𝜋
.

(3.128)

where A(𝜏) denotes the sigma algebra generated by 𝜏. Thus

EP𝜀 [|𝜀𝑊1 − 1|] = E[|𝜀𝑊1 − 1|
��𝐴𝜀] ≤ 𝜀√︂2

𝜋
, (3.129)

which tends to 0, as desired.

□
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CHAPTER 4: CONCLUSION

We have investigated the pricing and hedging problem for various types of exotic options.

The life contingent option is a key product in insurance and finance, providing a sort of

insurance scheme whose payoff is in the form of an option instead of a fixed payoff. From

a mathematical perspective, these are interesting as they involve a random terminal time

that is not under the user’s control, giving rise to a novel stochastic control problem. On

the other hand, barrier Asian options are a commonly traded exotic option, thus the fair

pricing problem for these is of great interest.

For the life contingent option, we have proven the existence of a minimal super-

replicating portfolio, and characterised when replication is possible for all random exercise

times. For the barrier Asian option, we have obtained explicit asymptotic expressions for

the price of the option in the short maturity regime, along with the asymptotic convergence

rate.

We briefly outline some directions for further research. Concerning the life contingent

option, it would be of interest to investigate the case in which the stopping time is neither

fully dependent nor independent of the asset prices. Further, an extension to more complex

market models such as a jump diffusion model or a stochastic volatility model might be a

worthwhile extension. Finally, one could generalise the payoff to Asian style payoffs that

depend on the entire history of the asset prices.

For the barrier Asian option, an extension to local or stochastic volatility models seems

to be a natural step. Further, we note that the main convergence theorem for the geometric

Brownian motion may be relevant to other Asian style option prices depending on the

history of the process. In this case we considered the arithmetic average payoff, but the

theorem applies equally well to any continuous functional of the asset prices.
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