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ON SOME METHODS OF FEATURE ENGINEERING USEFUL FOR 
CRANIODENTAL MORPHOMETRICS OF RATS, SHREWS AND 

KANGAROOS 

ABSTRACT 

 This study examines the craniodental morphology of biological organisms using 

functional data analysis (FDA). Traditional morphometrics (TM) often uses large 

numbers of morphometric features to study shape variation among biological organisms. 

However, this can lead to data redundancy, meaning that the features may contain 

overlapping information. This study proposes using recursive feature elimination (RFE) 

method to reduce data dimensionality and select the most important attributes based on 

predictor importance ranking. RFE was applied to the craniodental measurements of 

Rattus rattus (R.rattus) data to select the best feature subset for both male and female rats.  

A comparative study based on machine learning algorithms was also conducted by using 

all features and the RFE-selected features to classify the R. rattus sample based on the 

age groups. The results showed that the RFE-selected features were able to improve the 

classification accuracy of the machine learning algorithms. However, the linear 

measurements used in TM can only detect changes in size and can be insensitive to 

geometrical transformations. Therefore, GM is used in the subsequent work as it is more 

sensitive to changes in shapes. Functional data geometric morphometrics (FDGM) for 2D 

landmark data is introduced and its performance is compared with the classical GM 

method. FDGM was applied to 2D craniodental landmark data obtained from 90 crania 

specimens of three shrew species based on three craniodental views (dorsal, jaw, and 

lateral). The discrete landmarks were converted into continuous curves and represented 

as linear combinations of basis functions. Principal component analysis (PCA) and linear 

discriminant analysis (LDA) were then applied to the GM method and FDGM method to 

observe the classification of the shrew species. The results showed that the FDGM 
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approach produced better results in separating the three clusters of shrew species 

compared to the GM method. Machine learning approaches were also performed using 

predicted PC scores obtained from both methods (combination of all three craniodental 

views and individual views). These analyses favoured FDGM, and the dorsal view of the 

shrew skull was revealed to give the best representation for distinguishing between the 

three shrew species. This work also introduces FDGM for 3D landmark coordinate data. 

FDGM and GM were applied to distinguish dietary categories of kangaroos (fungivores, 

mixed feeders, browser, and grazer) using landmarks obtained from crania of 41 kangaroo 

extant species.  The results showed that FDGM was able to improve the reconstruction 

error and distinguish dietary categories of kangaroos better than GM. Simulation studies 

were conducted to show the general effectiveness of FDGM compared to GM method for 

both 2D and 3D landmark data. The results obtained from the simulation studies and 

application to real data showed that FDGM performed better than GM when PCA and 

LDA were employed. Thus, FDGM provides a powerful and flexible framework for 

analysing shape variation in geometric morphometrics research. 

 
Keywords:  recursive feature elimination, traditional morphometrics, functional data 

geometric morphometric, principal component analysis, linear discriminant analysis. 
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KAEDAH-KAEDAH KEJURUTERAAN CIRI YANG BERGUNA UNTUK 
MORFOMETRIK KRANIODENTAL TIKUS, CENCURUT DAN KANGGARU  

 
 

ABSTRAK 
 

 
 Kajian ini mengkaji morfologi kraniodental organisma biologi menggunakan analisis 

data berfungsi (FDA). Morfometrik tradisional (TM) sering menggunakan sejumlah besar 

ciri morfometrik untuk mengkaji variasi bentuk di kalangan organisma biologi. Walau 

bagaimanapun, ini boleh menyebabkan lebihan data, bermakna ciri mungkin 

mengandungi maklumat bertindih. Kajian ini mencadangkan penggunaan kaedah 

penghapusan ciri rekursif (RFE) untuk mengurangkan dimensi data dan memilih atribut 

yang paling penting berdasarkan kedudukan kepentingan peramal. RFE telah digunakan 

pada pengukuran craniodental data Rattus rattus (R. Rattus) untuk memilih subset ciri 

terbaik untuk kedua-dua tikus jantan dan betina. Kajian perbandingan berdasarkan 

algoritma pembelajaran mesin juga telah dijalankan dengan menggunakan semua ciri dan 

ciri yang dipilih RFE untuk mengklasifikasikan sampel R. rattus berdasarkan kumpulan 

umur. Keputusan menunjukkan bahawa ciri yang dipilih RFE dapat meningkatkan 

ketepatan klasifikasi algoritma pembelajaran mesin. Walau bagaimanapun, ukuran linear 

yang digunakan dalam TM hanya dapat mengesan perubahan saiz dan boleh menjadi 

tidak sensitif kepada transformasi geometri. Oleh itu, GM digunakan dalam kerja 

seterusnya kerana ia lebih sensitif kepada perubahan bentuk. Morfometrik geometri data 

fungsional (FDGM) untuk data mercu tanda 2D diperkenalkan dan prestasinya 

dibandingkan dengan kaedah GM klasik. FDGM telah digunakan pada data mercu tanda 

kraniodental 2D yang diperoleh daripada 90 spesimen krania bagi tiga spesies cencurut 

berdasarkan tiga pandangan kraniodental (dorsal, rahang dan sisi). Tanda tempat diskret 

telah ditukar kepada lengkung berterusan dan diwakili sebagai gabungan linear fungsi 

asas. Analisis komponen utama (PCA) dan analisis diskriminasi linear (LDA) 

kemudiannya digunakan pada kaedah GM dan kaedah FDGM untuk memerhati 
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klasifikasi spesies cencurut. Keputusan menunjukkan bahawa pendekatan FDGM 

menghasilkan keputusan yang lebih baik dalam mengasingkan tiga kelompok spesies 

cencurut berbanding kaedah GM. Pendekatan pembelajaran mesin juga dilakukan 

menggunakan skor PC ramalan yang diperoleh daripada kedua-dua kaedah (gabungan 

ketiga-tiga pandangan kraniodental dan pandangan individu). Analisis ini mengutamakan 

FDGM, dan pandangan dorsal tengkorak cencurut telah didedahkan untuk memberikan 

perwakilan terbaik untuk membezakan antara tiga spesies cencurut. Kerja ini juga 

memperkenalkan FDGM untuk data koordinat mercu tanda 3D. FDGM dan GM telah 

digunakan untuk membezakan kategori diet kanggaru (fungivor, penyuap campuran, 

memakan lebih daun dan batang dikotil, dan hanya memakan lebih rumput) menggunakan 

tanda tempat yang diperoleh daripada crania 41 spesies kanggaru yang masih wujud. 

Keputusan menunjukkan bahawa FDGM dapat memperbaiki ralat pembinaan semula dan 

membezakan kategori pemakanan kanggaru lebih baik daripada GM. Kajian simulasi 

telah dijalankan untuk menunjukkan keberkesanan umum FDGM berbanding kaedah GM 

untuk kedua-dua data mercu tanda 2D dan 3D. Keputusan yang diperoleh daripada kajian 

simulasi dan aplikasi kepada data sebenar menunjukkan bahawa FDGM menunjukkan 

prestasi yang lebih baik daripada GM apabila PCA dan LDA digunakan. Oleh itu, FDGM 

menyediakan rangka kerja yang berkuasa dan fleksibel untuk menganalisis variasi bentuk 

dalam penyelidikan morfometrik geometri.  

 

Kata kunci: penghapusan ciri rekursif, morfometrik tradisional, morfometrik geometrik 

data berfungsi, analisis komponen utama, analisis diskriminasi linea
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CHAPTER 1:  INTRODUCTION 
 

 

1.1 Background 
 
 Morphometrics is a fundamental discipline in biological research that focuses on 

quantitatively describing and analysing shape and its variations across organisms (Rohlf, 

1990). Initially centered on basic descriptive measurements, this field has progressed 

significantly and is currently employing advanced statistical and computational 

techniques to study shape and size variation (Adams et al., 2013). The importance of 

morphometrics transcends disciplinary boundaries, finding applications across various 

biological domains such as evolutionary biology, ecology, anthropology, biomedical 

sciences, and other fields, underscoring their versatility and utility (Slice, 2005).  In 

ecology and evolutionary biology, morphometric analyses have provided insights into the 

processes underlying phenotypic diversification, speciation, and adaptation (Adams & 

Otárola-Castillo, 2013). In taxonomy and systematics, morphometric approaches 

facilitate species delimitation and phylogenetic reconstructions, enhancing understanding 

of the evolutionary relationships among organisms (Swiderski et al., 2004). Moreover, in 

biomedical sciences, morphometrics plays a vital role in medical imaging, diagnostics, 

and treatment planning, aiding in the understanding and management of various health 

conditions (Bookstein, 1996). 

  Conceptually, morphometrics can be broadly categorised into three approaches: 

traditional morphometrics (TM) that relies on linear distance measurements of biological 

organisms for statistical analysis, landmark-based morphometrics that requires precise 

positioning of anatomical landmarks, and outline-based morphometrics which captures 

the contour of forms through a sequence of pseudo-landmarks (Dujardin, 2017; Rohlf & 

Marcus, 1993). As morphometric techniques continue to expand, the selection of 

appropriate methods becomes crucial for meaningful applications in biological research.  
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  Traditional morphometrics is a foundational method used in the study of biological 

shape variation. It involves mathematical concepts and geometric reasoning to explain a 

wide range of biological phenomena, providing insights into the processes underlying 

morphogenesis and evolution (Thomson, 1917). This approach applies multivariate 

statistics to sets of morphological variables such as linear distances between landmarks 

and sometimes angles, ratios etc. The TM approach was followed by an era where the 

study on coordinates of landmarks and the geometric information about their relative 

positions led to the innovation in morphometrics through the introduction of the 

geometric morphometrics (GM) method.  

Geometric morphometrics, a technique developed by (Bookstein, 1984, 1986, 1987, 

1991) is a popular method for studying morphological variation in biological organisms. 

Unlike TM, which relies on linear measurements, GM is based on the idea that the shape 

of an organism can be described by the coordinates of a set of landmarks on its surface. 

Landmarks are points on the image of the organism that are consistently located in the 

same place, regardless of the size or orientation of the organism (Slice, 2005). Landmarks 

are categorised into three types, defined by biology (Type I), geometry (Type II), and 

relative positions (Type III) (Bookstein, 1991) although Bookstein later redefined Type 

III landmarks as semi landmarks (Bookstein, 1997). Type I landmarks are points located 

at anatomically homologous locations across specimens. These landmarks are easily 

identifiable and show little variation in position across individuals within a species. Type 

II landmarks are points that may not be homologous across specimens but are meaningful 

for describing shape variation. These landmarks are often placed along curves or outlines 

of structures.  Type III landmarks are semilandmarks placed along curves or outlines 

where there are no clear anatomical points. These landmarks are typically evenly spaced 

along curves or outlines and are used to capture overall shape variation.  Different types 
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of landmarks are chosen based on the characteristics of the biological structures being 

studied, and the level of detail required to capture shape variation effectively.  

The concept of Procrustes superimposition as a fundamental technique in GM for 

analysing shape variation, involves aligning landmark configurations by removing 

differences in translation, rotation, and scaling to enable direct comparison of shape 

(Rohlf & Marcus, 1993; Slice, 2005). Generalised Procrustes analysis (GPA) is be applied 

on raw landmarks to superimpose the landmark configurations using least-squares 

estimates and rotation parameters (Adams et al., 2004). These variables can be used to 

compare the shapes of different organisms using graphical visualisation of results to track 

changes in shape over time and to identify the underlying causes of shape variation. 

  The shift from GM to outline morphometrics (OM) represents an evolution in the 

methods used to capture and analyse shape variation in biological structures. While both 

approaches focus on quantifying shape differences, they differ in the way shapes are 

represented and analysed. Geometric morphometrics primarily relies on the identification 

and digitisation of anatomical landmarks on biological structures. On the other hand, OM 

focuses on capturing the overall shape of an object based on a series of pseudo-landmarks 

that describe contours or boundary outlines without depending on the presence of true 

anatomical landmarks (Dujardin et al., 2014).  Elliptical Fourier analysis (EFA), 

developed by (Kuhl & Giardina, 1982) is one of the established methods of OM that is 

particularly useful for analysing shapes with smooth, continuous outlines. This 

mathematical tool decomposes the outline of a shape into a series of sine and cosine 

curves using Fourier transforms (Caple et al., 2017) which capture the variation in shape 

along the outline, allowing for the quantification and comparison of shape differences. 

Another common approach in OM is the thin-plate splines (TPS) (Bookstein, 1987).  This 

technique interpolates and warps one shape into another by minimising bending energy, 

allowing for the visualisation and quantification of shape changes between outlines.  
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Despite its broad utility, morphometrics presents several methodological challenges 

and considerations. These include issues related to data acquisition, such as ensuring the 

accuracy and reproducibility of measurements, as well as statistical analyses, such as 

dealing with high-dimensional data and controlling for potential sources of bias and error. 

Furthermore, the interpretation of morphometric results can be complex, requiring careful 

consideration of biological context and ecological factors. 

Feature engineering is essential in morphometrics studies to select informative 

variables or features from raw data that capture relevant aspects of shape variation in 

biological organisms. Morphometric data often exhibit high dimensionality, 

multicollinearity, and noise, which can pose challenges for analysis.  Therefore, feature 

engineering helps researchers determine interpretable features to understand the 

morphological differences between groups, identify key factors influencing shape 

variation, and generate hypotheses about evolutionary, developmental, or ecological 

processes. Furthermore, feature engineering techniques such as dimensionality reduction, 

feature selection, and transformation can help to reduce noise, redundancy, and 

overfitting in morphometric models.  

   In TM, researchers often measure numerous linear distances and angles. Therefore, 

feature engineering comes into handy in selecting the most informative variables while 

discarding redundant or irrelevant ones, thus effectively reducing the dimensionality of 

the data. Recursive feature elimination (RFE) is a feature selection technique that 

iteratively removes less important variables from the dataset until the optimal subset of 

features is identified. This technique applies a backward selection process that starts with 

the full set of features and iteratively removes the least important features in a data set. 

RFE trains a model iteratively, ranking the features according to their importance scores 

and then removing the lowest ranking predictors (Darst et al., 2018). The application of 

RFE is incorporated in my thesis to observe its efficiency to determine the best feature 
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subset using the craniodental linear measurements in TM.  

  This thesis underscores the significance of craniodental morphology, which 

encompasses the study of the skull (cranium) and teeth (dental) shape and structure in 

vertebrates, particularly rats, shrews, and kangaroos. Craniodental morphology is pivotal 

for elucidating evolutionary relationships, ecological adaptations, and functional aspects 

across species. Additionally, craniodental morphology serves as a framework for 

modeling morphological evolution in both modern and fossil lineages within 

phylogenetic analyses (Cardini & Elton, 2008). Insights gleaned from the shape and size 

of craniodental structures offer valuable information regarding adaptations to specific 

ecological niches and specialised feeding behaviors (Tse & Calede, 2021). This thesis 

endeavors to apply feature engineering techniques for TM analysis on craniodental linear 

measurements of rats, while also proposing an alternate GM approach based on functional 

data analysis (FDA) to investigate craniodental structures of shrews and kangaroos.    

In my thesis, FDA is incorporated in GM to observe classification accuracy among 

biological organisms.  FDA is a statistical methodology utilised to analyse data 

represented in the form of functions, such as curves or surfaces, rather than discrete 

observations. It is particularly advantageous for handling data that exhibit continuous 

variation over a domain, such as time, space, or wavelength.  In this thesis, FDA is 

employed to represent discrete observations, such as landmark coordinates, as functions. 

This transformation involves creating functional data that encapsulates all the coordinates 

as a single observation, thereby capturing the entire measured function. Subsequently, 

models are developed to predict information based on a collection of functional data, 

utilising statistical principles from multivariate data analysis (Ullah & Finch, 2013).  

Functional data geometric morphometrics (FDGM) is proposed in this thesis, requiring 

steps to perform statistical analysis on signals, curves, or even more complex objects 
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while being invariant to certain shape-preserving transformations (Gu et al., 2022). To 

address the need for alignment of functions in geometric features like peaks and valleys, 

curve registration  (Ramsay & Li, 1998; Srivastava et al., 2011) or functional alignment 

(Ramsay, 2006) techniques are applied. These methods warp the temporal domain of 

functions to ensure proper alignment, enabling accurate analysis of geometric features 

(Guo et al., 2022). The proposed method involves the development, implementation, and 

verification of FDGM which includes a set of statistical models’ alternative to 

multivariate models by transforming large complex data into functional data such as data 

objects, curves, shapes, images, or a more complex mathematical object. The statistical 

goals of this study then include comparisons, summarisation, clustering, modeling, and 

testing of functional and shape skulls objects.  

  In addition, this study also incorporates machine learning into morphometric studies 

for taxonomic classification. Commonly used classification methods include naïve Bayes 

(NB), random forest (RF), generalised linear model (GLM), support vector machine 

(SVM) and artificial neural network (ANN).  

 The methods involve collecting data which includes either the linear craniodental 

measurements directly obtained from skulls or 2D and 3D landmark data from the skull 

images of biological organisms. TM and GM studies will be performed and the FDGM 

approach will be implemented and tested. The FDGM approach is developed, and it aims 

to bring a real added value to the problem of interest. 
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1.2 Problem Statements 
 

The study of the shapes of biological organisms is a challenging task, as the shapes 

are often complex and difficult to quantify. Quantitative approaches allowed scientists 

to study shapes of various organisms better where they no longer rely on word 

descriptions which lead to different interpretations. TM method has been widely used in 

identification of species, analysis of morphological characters and other parts of 

taxonomy. Traditionally, variables used in morphometric analysis are linear distances 

between landmarks which are directly measured on the specimens. This method also 

used angles, counts, ratios and areas. However, TM can be difficult to capture the full 

geometry of an object using linear measurements. For example, the shape of a skull is 

determined by the size, shape, and orientation of the bones that make up the skull. The 

distances between landmarks on the skull can only capture some of this information. In 

addition, the distances between landmarks can be affected by the size of the object. For 

example, it is difficult to compare the shapes of two skulls if one skull is twice as large 

as the other skull. The data may also contain less information due to directions measured 

redundantly and most of these measurements tend to overlap. GM overcomes these 

limitations by using coordinate-based data to capture the shape of an object.  This allows 

for a more comprehensive description of the shape of an object.  

The shift from GM to OM reflects a recognition of the limitations of landmark-based 

methods in capturing certain types of shape variation, particularly in structures with 

complex or continuous outlines. Outline morphometrics offers a more flexible approach 

to shape analysis, allowing researchers to quantify shape variation in a wider range of 

biological structures. 
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Additionally, outline morphometrics can complement geometric morphometrics by 

providing a more comprehensive analysis of shape variation, especially in cases where 

landmark-based methods may not fully capture the nuances of shape differences. By 

incorporating both landmark-based and outline-based approaches, researchers can gain 

a more complete understanding of shape variation in biological structures and address a 

broader range of research questions.  

  It is of my interest to explore morphometrics of craniodental characters based on the 

functional data analysis (FDA) approach. FDA is a branch of statistics that analyses data 

that is naturally ordered or structured. This type of data is often encountered in 

morphometrics, where the shapes of objects are represented as curves or surfaces. The 

main advantage of FDGM over GM is that it can be used to analyse data that varies over 

time or space. For example, FDGM can be used to study the changes in the shape of a 

skull over time or the differences in the shape of skulls between different populations 

also be a more general statistical approach than GM. This implies that it can be used to 

analyse a wider variety of data types and to answer a wider variety of research questions 

which makes FDA a more powerful and versatile than GM. This study aims to develop 

and implement a functional data geometric morphometric (FDGM) approach to study 

the skull shapes of biological organisms.  

The FDGM approach will be compared to other morphometrics methods. This project 

focuses on incorporating FDA in the form of functions for shape analysis based on 2D 

and 3D landmark data. Simulation studies for both 2D and 3D landmark data were also 

conducted to test the general effectiveness of the FDGM approach compared to GM.   
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1.3 Significance of Research 
 

 
Due to the presence of redundant linear measurements in the TM approach, a good 

feature selection method should be used in the study to select the best, highly discriminant 

features, which can increase the performance of the model and reduces computational 

complexity in classification problems. This study revealed that RFE-based feature 

selection technique can classify biological organisms better when incorporated in the TM 

approach. RFE has proven to be advantageous the most relevant features in predicting the 

target variables, thus this study hypothesises that this method would also benefit in TM 

studies to classify among groups among biological organisms.  

 Besides that, this study also proposes a new and more exhaustive way to see, 

manipulate and study the skulls of biological organisms where a data (unit) is not a vector 

(multivariate), but all available information including its dynamics (shape). There is also 

a limited number of FDA models available for the explanation, visualisation, 

classification, and modelling of the geometric morphometric dataset of interest. The 

major statistical challenge is to pay attention to hot topics such as the management of 

missing or low quality of data (e.g., a part of the shape). 

       In addition, the implementation of an FDA approach requires a correct definition of 

the targeted function spaces, appropriate metrics to measure the similarity between 

objects, spatial correlation techniques etc. Indeed, one of the main challenges in the 

analysis (dimensional reduction, regression models, tests) of large complex data is to use 

statistical tools capable of performing calculations in an inexpensive way with 

correlations among huge amounts of data (Chen et al., 2011; Zipunnikov et al., 2011).  
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1.4 Aims and objectives 
 
 The general aim of this study is to introduce an FDA approach in morphometric studies 

to analyse craniodental characters.  

The objectives of this morphometric study are to: 

i. Incorporate and review random forest recursive feature elimination as a feature 

engineering method into traditional morphometrics to overcome data 

redundancy. 

ii. propose FDA-based framework as a feature engineering technique to enhance 

geometric morphometrics for 2D and 3D skull shape analysis in detecting 

variation among biological organisms. 

iii. conduct comparative studies using machine learning on FDA- based 2D and 3D 

FDGM to discriminate between groups of biological organisms.    
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1.5 Research Outline 
 

This research re-evaluates the TM method by incorporating RFE-based feature 

selection technique to observe the classification accuracy of selected linear 

measurements. This study also introduces the application of FDA in GM and proposes 

FDGM that incorporates this approach into 2D and 3D landmark data in GM. The 

research is outlined as follows: 

Chapter 2 provides a literature review of the TM, GM and FDA approaches used in 

previous studies. Then, the machine learning algorithms were also reviewed. 

Chapter 3 addresses the application of the RFE as a feature selection technique in TM. 

RFE was applied to observe age classification among male and female R.rattus rats in 

Peninsular Malaysia. A comparison study was conducted to examine the effectiveness of 

RFE-selected features with all linear measurements obtained using machine learning 

algorithms. 

Chapter 4 proposes the FDGM method into 2D geometric morphometric. FDA approach 

is incorporated into 2D craniodental landmark data of three shrew species (C. malayana, 

C. monticola and S. murinus). Machine learning algorithms and simulation studies were 

also used to assess the accuracy of the proposed approach.  

Chapter 5 describes the extension of the FDGM method into 3D geometric 

morphometrics. Using a train-test ratio of 70:30, the effectiveness of the proposed method 

is examined using machine learning algorithms and simulation studies.  

Chapter 6 provides concluding remarks and some significant contributions from this 

research. Suggestions on extending research work related to this research are also 

included in this chapter.
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CHAPTER 2:  LITERATURE REVIEW 
 
 

 

2.1 Morphometrics 
 

 The study of form plays a crucial role in biological research. Morphometrics is the 

statistical study of shape variation and covariation with other variables (Bookstein, 1996; 

Dryden & Mardia, 1998). During the 1960s and 1970s, biometricians employed 

multivariate statistical methods to explore the realm of morphometrics (e.g., Giles & 

Elliot, 1963; Birkby, 1966; Rohlf, 1972; Van Valen, 1974; Albrecht, 1979). Blackith and 

Reyment (1971) were instrumental in delineating a spectrum of multivariate statistical 

techniques tailored for the domains of biology and paleontology. Statistical 

methodologies such as discriminant functions, canonical variates, principal components 

analysis (PCA), factor analysis, cluster analysis, and trend surface analysis were also 

discussed in this work, thereby primarily furnishing biologists with a foundational 

framework to adopt multivariate methods in their research (Blackith & Reyment, 1971).  

Biology underwent a transformation from descriptive to quantitative approaches, and the 

field of morphology mirrored this quantification revolution (Bookstein, 1998). In 

paleontology, morphological differences and distances serve as the primary criteria for 

distinguishing between species and genera (Stafford & Szalay, 2000). Statistical methods 

such as the correlation coefficient, analysis of variance and principal component analysis 

further advanced quantitative rigour. The sophistication of these analyses evolved in 

tandem with the rapid advancements in statistics.  

2.2 Traditional Morphometrics  
 
 Traditional morphometrics (TM) plays a pivotal role in understanding morphological 

variation among biological organisms through the meticulous analysis of linear distances, 

angles, ratios, and other morphological variables.  
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 These measurements, although often correlated with size, serve as fundamental 

descriptors of shape, once size effects are mitigated.  Conventional morphometrics using 

linear distance measurements of skulls have proven to be powerful for identification, 

classification, and analysis of skull variability among biological organisms. Many 

researchers conducted TM using linear measurements which are directly obtained from 

biological organisms. These measurements are later analysed using multivariate statistical 

approaches to identify the morphological variation among groups of individuals 

(Chuanromanee et.al, 2019). For instance, Howells (1989) employed PCA to scrutinise 

metric dental variation across major human populations, shedding light on population-

level distinctions.  

 Brace and Hunt (1990) employed C scores, derived from craniofacial measurements 

across diverse populations from Asia, the Pacific, the aboriginal western hemisphere, and 

Europe. Their work, which culminated in Euclidean distance dendrograms, revealed 

distinct regional clusters, offering insights into the degrees of relationship among 

populations based on nonadaptive traits (Brace & Hunt, 1990). The methodological 

richness of TM is further underscored by Marcus (1990), who provided a comprehensive 

overview of analytical techniques ranging from PCA to discriminant analysis. This work 

not only elucidated the application of these methods but also addressed crucial aspects 

such as resampling techniques for robust estimation of standard errors (Marcus, 1990). 

Moreover, TM is not confined to anthropological studies alone; it transcends disciplinary 

boundaries. Abdelhady and Elewa (2010), for instance, utilised TM to study the evolution 

of Exogyrinae oysters. Through PCA, cluster analysis, and cladistic analysis, they 

uncovered morphological dimorphism between species and delineated temporal 

boundaries for the examined oyster members (Abdelhady & Elewa, 2010). 
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 However, some linear measurements used in these studies may contain irrelevant and 

redundant features which can affect the efficiency of learning models which may lead to 

performance degradation of unseen data (Li et al., 2016). Therefore, applying feature 

selection techniques to select a subset of relevant features to be applied into machine 

learning would improve the learning performance and construct better generalisation 

models (Li et al., 2016). 

 
2.3 Geometric Morphometrics  
 

  Geometric morphometrics has emerged as a powerful tool for analysing and 

quantifying biological shapes, gaining widespread popularity for studying morphological 

variation in diverse organisms, including fish, birds, mammals, and insects. Its 

introduction in the 1980s revolutionised morphometrics, shifting the focus from 

traditional measurements to landmark-based geometric information. In GM, landmarks 

are pivotal for analysing and quantifying the shapes of biological structures. They serve 

as reference points that allow for the comparison of shapes across different specimens. 

Researchers identify specific anatomical points on each specimen that correspond to the 

defined landmark types (Type I, Type II, and Type III). These landmarks are chosen based 

on their biological significance and their ability to be consistently located across all 

specimens being studied. Landmarks (Type I) are discrete and anatomically homologous 

points that can be precisely located on every specimen. They are defined by clear 

anatomical features such as intersections of sutures or the tips of structures. These 

landmarks can be consistently identified across different specimens and observers. Type 

I landmarks provide the most accurate points for aligning shapes because of their clear 

and consistent anatomical basis. Pseudo landmarks (Type II) are points located on 

geometric features such as the maxima of curvature or along the boundary of a structure. 

They are not as precisely defined anatomically as Type I landmarks but still provide 

Univ
ers

iti 
Mala

ya



15 

 

important geometric information. Type II landmarks are useful for describing the general 

shape and form of structures. Semilandmarks (Type III) are points that are placed along 

curves or surfaces where precise homologous points are difficult to identify. They are 

defined relative to other landmarks or along a structure. These points are particularly 

useful for capturing the shape of curves and surfaces where precise homologous points 

cannot be identified. They allow for more flexible and comprehensive shape analysis, 

especially for complex structures. Using specialised software, or imaging techniques, the 

coordinates of these landmarks are recorded. This process converts the physical shape of 

the specimens into a numerical format that can be analysed mathematically. There are 

many open-source and licensed software that are available for GM analysis. Table 2.1 

includes commonly used software for landmark digitising and GM. 

Table 2.1: Available software for geometric morphometric analysis. 

Types  
 

Software  Sources  
 

Landmark digitising tpsDig2  
TINA Manual  
Landmarking Tool 3Skull 

Rohlf (2017) 
Schunke et al. (2012)  
Ousley (2004) 

Geometric 
morphometrics 

MorphoJ  
R package, geomorph  
 

Klingenberg (2011) 
Adams & Otarola-Castillo, 
2013; Adams et al. (2018) 

 

  Bookstein (1984) presented a pioneering landmark statistical approach that outlines 

the theoretical framework behind tensor method, demonstrating how it can be applied to 

analyse shape differences among various biological entities. (Bookstein, 1984). This 

approach enables researchers to focus on shape variations independent of size or location, 

facilitating meaningful comparisons across samples (Bookstein, 1984).  Landmarks are 

aligned using techniques such as Procrustes superimposition. This involves translating, 

rotating, and scaling the landmark configurations to a common coordinate system.  
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The goal is to minimise differences that are not related to shape (e.g., size, orientation) 

and to focus solely on shape differences.  

 Kendall (1984) laid the groundwork by demonstrating that when the vertices of a shape 

adhere to independent and identically distributed spherical normal variables, the resulting 

distribution of the shape becomes isotropic across Kendall’s shape space. This work 

safeguards against the distortion of shape space by isotropic measurement errors, ensuring 

the integrity of analyses (Bookstein, 1991; Dryden & Mardia, 1998; Mitteroecker & 

Gunz, 2009). Two-point registration, also known as Bookstein’s shape coordinates, is a 

straightforward superimposition method that significantly influenced Bookstein’s 

development of shape theory in the late 1980s. Generalised Procrustes analysis (GPA) 

aligns landmark configurations using least-squares estimates for translation and rotation 

parameters. This process begins by translating the centroid of each configuration to the 

origin, followed by scaling the configurations to a common unit size by dividing by the 

centroid size (Adams et al., 2004; Bookstein, 1986). Finally, the configurations are 

optimally rotated to minimise the squared differences between corresponding landmarks 

(Adams et al., 2004; Gower, 1975; Rohlf & Slice, 1990). This process is repeated 

iteratively to compute the mean shape, which cannot be estimated before superimposition. 

After superimposition, shape differences can be described by the differences in the 

coordinates of corresponding landmarks between objects. These differences can also be 

utilised as data in multivariate comparisons of shape variation. 

 A significant portion of the foundational work in GM was published between 1981 and 

1991 (Macleod, 2017).  Bookstein (1991) provides a comprehensive introduction to 

geometric morphometrics, covering the mathematical foundations and biological 

applications of landmark-based analysis, which serves as a foundational reference for 

researchers entering the field. Moreover, this work underscores the importance of linking 

geometric patterns to evolutionary processes, ecological interactions, and developmental 
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mechanisms, thereby enriching the understanding of shape variation in biological systems 

(Bookstein, 1991).  

 Rohlf and Marcus (1993) highlighted the transformative impact of geometric 

morphometrics by elucidating how landmark-based methods, such as superimposition 

methods that emphasises applications to exploratory studies in taxonomy and evolution. 

Their work encompassed a thorough examination of various procedures utilised in 

describing shape in biology and have termed the use of GM as a revolution in describing 

the “shape” (Rohlf & Marcus, 1993). Adams et al. (2004) revisited the foundational 

principles of GM introduced in the earlier ‘revolutionary’ work and highlighted key 

developments in methodology, theory, and applications of the approach. Notably, their 

study underscored advancements in landmark selection, superimposition techniques, 

shape visualisation, and statistical modeling, illustrating the continuous evolution of GM 

techniques. Additionally, Adams et al. (2004) explored the synergistic integration of GM 

with other quantitative approaches, such as phylogenetic comparative methods and 

quantitative genetics, emphasising the interdisciplinary nature of morphometric research 

and its potential for enriching biological inquiries fostering interdisciplinary 

collaborations and enriching the scope of morphometric research.        

   Webster and Sheets (2010) introduced common exploratory and confirmatory 

techniques in landmark-based geometric morphometrics. This paper also covers issues 

that are frequently faced by biologists in comparative morphology studies and focuses in 

2D and 3D landmark data analysis. Besides that, it also covers the topics of acquiring 

landmark data, superimposition methods, visualising shape variation, quantifying and 

statistically comparing the amount of shape variation, statistical testing of difference in 

mean shape, and statistical assignment of specimens to groups. 
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 Within morphometrics, craniodental morphology holds particular significance, 

offering insights into taxonomic discrimination, evolutionary studies, and biomedical 

implications. Adams and Rohlf (2000) highlighted the importance of craniodental 

morphometrics in elucidating ecological character displacements in Plethodon 

salamanders through landmark-based geometric morphometric analysis (GM). Slice 

(2005) explored the application of morphometrics in physical anthropology with a 

significant focus in craniodental morphonology. The work highlighted the use of 

landmark-based morphometrics in studying human evolution and practical application in 

anthropology. These studies not only shed light on the functional adaptations of 

craniodental structures but also serve as inspiration for further extending the GM 

technique for craniodental morphology of this paper.  

The efficiency of GM shines through in numerous studies. Maderbacher et al. (2008) 

showcased the superior efficiency of geometric morphometrics GM compared to TM in 

discriminating between populations of Tropheus moorii.  Their research highlighted the 

limitations of TM, including its lack of diagnostic power and time-consuming nature, 

while emphasising GM's flexibility in terms of data acquisition and robustness as an 

alternative approach. Furthermore, Maderbacher et al. (2008) demonstrated that canonical 

variate analysis using GM data, particularly incorporating semi-landmarks, offered the 

most informative description of morphological differences among populations.  Arias-

Martorell, et al. (2015) analysed the shape of the shoulder joint (proximal humerus and 

glenoid cavity of the scapula) of three australopith specimen using 3D geometric 

morphometrics. Marcy et al. (2015) also captured 19 crania of Australia’s smallest rodent 

using 3D scanner and µCT scanner for geometric morphometrics to classify the 

specimens based on sexual dimorphism. Dudzik (2019) also used GM to examine the 

cranial morphology of Asian and Hispanic populations by performing discriminant and 

canonical variate analyses.  
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The results of the GM analysis revealed significant differences in cranial shapes 

between the two groups, yet both studies concur that GM serves as a valuable tool for 

identifying morphological similarities among populations based on cranial morphology 

(Dudzik, 2019).  

 In another review work, Adams & Otárola-Castillo (2013) highlighted the 

development of morphometrics related to the Procrustes paradigm and the 

methodological toolkit of geometric morphometrics. The use of three-dimensional data 

in geometric morphometric gained a lot of popularity where there are no mathematical 

limitations for handling data but algorithms for superimposition, projection, and statistical 

analysis are all generalised to accommodate data of any dimensionality (Adams & 

Otárola-Castillo, 2013). Initially three-dimensional data required the use of expensive 

equipment and the use of devices related to it were limited. However, low-cost options 

such as surface scanners and other devices have become available (Adams et al., 2013). 

Since then geometric morphometrics using three-dimensional data became more popular.  

Mitteroecker and Schaefer (2022) reviewed the recent developments and current 

methodological challenges of GM for biological meaningfulness. Promising directions 

for further research and evaluation of new developments were also outlined and illustrated 

on 3D human face shape based on data obtained from Avon Longitudinal Study of Parents 

and Children (ALSPCA) (Mitteroecker & Schaefer, 2022).  Zhang et al. (2023) 

successfully applied GM using 2D landmarks to distinguish two subgenera classification 

of Chaetocnema, which should that GM could be used to detect morphological 

delimitation of the supraspecies taxa.  

While GM offers powerful tools for quantifying shape variation, it is not without 

limitations. One critical drawback is its sensitivity to landmark placement and digitisation 

errors, which can introduce variability and compromise the accuracy of shape analyses. 
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Martensson (1998) addressed the challenges posed by measurement error in GM. This 

work also explores the sources of measurement error in GM, particularly focusing on the 

issues related to landmark placement and digitisation and offers empirical strategies to 

assess and mitigate the impact of these errors on shape analysis. In addition, a study by 

Robinson et al. (2002) investigated the impact of landmark placement error on shape 

analyses study of tooth shape using GM, by calculating its effect on the recorded variation 

in Procrustes fits, obtained for each set of multiple representations. They demonstrated 

that discrepancies in landmark positioning can lead to variation in orientation, thus 

affecting the outcomes of statistical analyses (Robinson et al., 2002).  

Another issue lies in the application of Procrustes superimposition in GM.  Sheets and 

Webster (2010) highlighted concerns about disregarding the orientation of biologically 

relevant axes during rotation in Procrustes superimposition which can lead to variations 

in the relative orientation of symmetrical axes within samples, thus complicating the 

description of shape differences in relation to the axis of symmetry. Additionally, their 

work also pointed out the concern of the “Pinocchio Effect” in this superimposition 

method, where large differences at some landmarks are spread out over many landmarks 

during the least-squares rotation, assuming equal variance at all landmarks. Despite these 

limitations, the study recommended the application of Procrustes methods in GM in 

studies for their statistical robustness (Rohlf, 2000; Sheets & Webster, 2010).  

Furthermore, factors such as sample size and the selection of views and elements in 

two-dimensional geometric morphometric (2DGM) analyses pose additional challenges. 

Rummel et al. (2024) explored the influence of sample size on mean shape, shape 

variance, and the concordance of multiple skull 2D views in the study of bat species. 

Their findings underscored the importance of adequate sample sizes and careful selection 

of views and elements for accurate analyses (Rummel et al., 2024).  
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In response to these limitations, researchers have extended their methods to include 

outline-based morphometrics, offering alternative approaches to address some of the 

challenges associated with traditional GM techniques. These efforts reflect ongoing 

endeavors to improve the reliability and robustness of shape analysis methods in 

biological research. 

2.4 Outline-based Geometric Morphometrics 

     Outline-based GM focuses on the analysis of shapes based on the outlines of objects 

or structures. This approach offers several advantages, including the ability to capture 

complex shapes and the potential for automation in data collection and analysis. Kuhl and 

Giardina (1982) outlined a direct procedure for obtaining the Fourier coefficients of a 

chain-encoded contour, emphasising its advantages that it does not require integration, or 

the use of fast Fourier transform techniques, and that bounds on the accuracy of the image 

contour reconstruction are easy to specify. The study also discussed the extension of 

contour representation to encompass arbitrary objects at diverse aspect angles (Kuhl & 

Giardina, 1982). These procedures are positioned as directly applicable to a range of 

pattern recognition challenges that entail analysing clearly defined image contours.   

      One of the pioneering works in outline-based GM is the study by Bookstein (1991), 

where key conceptual frameworks relevant to both landmark-based and outline shape 

analysis have been highlighted such as the use of shape coordinates and thin plate splines. 

Bookstein (1991) is significant for laying the groundwork for outline shape analysis by 

addressing the challenges of analysing shapes that are not easily defined by discrete 

landmarks. This work also touches on variants of the general procedure encountered in 

the outline processing which are taking derivatives of the outline curves and measuring 

dissimilarity between forms in terms of squared differences of those derivatives rather 

than distances between the original paired point loci. Additionally, Bookstein (1990) also 

discusses how information from curving outlines can be analysed effectively once the 

Univ
ers

iti 
Mala

ya



22 

 

landmarks are dealt with.  MacLeod (2007) established a solid theoretical foundation for 

understanding the principles behind automated taxon identification. His study described 

the statistical and computational underpinnings necessary for developing reliable 

identification systems. Besides that, the study also explained the use of image analysis 

for species identification, by describing how digital images of specimens can be processed 

and analysed to extract distinguishing features that can be used for taxon identification 

(MacLeod, 2007).  Dujardin et al. (2014) demonstrated the outline method's efficacy in 

distinguishing close or cryptic species and characterising conspecific geographic 

populations across various vector organisms. Notably, in recognising such forms, the 

study observed that the outline approach yields comparable results to the landmark-based 

method (Dujardin et al., 2014).  

2.5 Functional Data Analysis 

This research aims to provide an alternative to the GM multivariate approach, which 

is functional data analysis (FDA) that includes a set of statistical techniques considering 

the structured data of interest into shape objects, thought of as smooth realisations of a 

stochastic process (Hall & Vial, 2006; Srivastava & Klassen, 2016). FDA based on the 

landmark method aligns special features in functions or derivatives to their average 

location and then smooth to the location of the feature (Kneip & Gasser, 1992; Gasser & 

Kneip, 1995). Bookstein (1997) introduced a combination of Procrustes analysis and thin-

plate splines, the two most powerful tools of landmark-based morphometrics, for the 

multivariate analysis of curving outlines in MRI images of the human brain. This work 

effectively describes group differences in data from curving forms that do not need to 

have any reliable point-like landmarks anywhere along the arcs. The method works by 

treating the thin-plate splines and Procrustes fitting as a nonlinear filter for regional 

differences in outline shape, with their bandpass characteristics complementing each 

other directionally. This complementary filtering enhances the effectiveness of Procrustes 
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analysis following spline-based preprocessing (Bookstein, 1997). Ramsay and Silverman 

(2005) provided a comprehensive introduction to FDA, covering theoretical foundations 

and practical applications, including methods for clustering and classification of 

functional data, which is particularly relevant for grouping similar shapes or curves in 

morphometrics (Ramsay & Silverman, 2005). The FDA framework allows better 

accuracy in parameter estimation in the analysis phase, effective data noise reduction 

through curve smoothing, and applicability to data with irregular time sampling schedules 

(Ullah & Finch, 2013).  

Dryden and Mardia (2016) primarily focused on statistical shape analysis that also 

discussed the foundations of landmark shape analysis, including geometrical concepts 

and statistical techniques that include analysis of curves, surfaces, images, and other types 

of object data (Dryden & Mardia, 2016). Functional data analysis considers shapes as 

continuous functions or curves, allowing for the analysis of shape changes over a 

continuum such as time or developmental stages. These studies have inspired this thesis 

is to investigate is the coordinates are represented in a function form via FDA approach. 

      Unlike traditional approaches that handle data as vectors in Euclidean space ℝ&, FDA 

focuses on the analysis and theory of data represented as functions. In essence, each 

observed variable is characterised by functional values rather than discrete real values.  A 

functional random variable is characterised by its values existing within an infinite-

dimensional vector space. Functional data, in turn, represents a specific instance or 

realisation of such a variable. These data points are viewed as observations derived from 

stochastic processes operating in infinite-dimensional spaces. 

 The initial stage in FDA involves transforming a discrete collection of measurements, 

represented by observed data points, into a continuous curve, 𝑋'(𝑡), 𝑋#(𝑡), … , 𝑋&(𝑡), 

which can either exhibit rough or smooth characteristics. Let Φ	 = 	 {𝜙((·) ∶ 	𝑗	 ∈ 	𝑁} be 

an infinite basis of ℒ#(𝐼) which is the space of square integrable functions on a compact 
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interval of ℝ) , 𝐼  with 𝑑	 ∈ 	ℕ. The elements of Φ are usually orthogonal. Every element 

of ℒ#(𝐼) can be written as a linear combination of the elements of Φ. A functional random 

variable 𝑋 valued in ℒ#(𝐼) may be decomposed into: 

𝑋 =N𝑐(𝜙((·),
(*'

 

where P𝑐(Q(*'is an infinite set of coefficients (Ramsay & Silverman, 2005) . The basis 

expansion is used to approximate the realisation 𝑋 by its projection on the span of a finite 

basis functions Φ+ = {𝜙((·) ∶ 1 ≤ 𝑗 ≤ 𝐽 }, a finite subset of Φ and P𝑐(Q',(,- a subset of 

P𝑐(Q(*': 𝑋 ≈ ∑ 𝑐(𝜙((·)
-
(.' , 

𝑋 can be summarised by a 𝐽-dimensional vector. 

 Functional principal component analysis (FPCA) extends the traditional multivariate 

PCA into the realm of functional data. Just as in the classical case, FPCA aims to achieve 

an optimal linear representation of a set of functional data within a finite-dimensional 

space. The primary objective is to diminish the dimensionality of the data through FPCA, 

thereby discerning the principal sources of variability (Ullah & Finch, 2013). Essentially, 

FPCA acts as a dimension reduction technique, reshaping the sampled curves to 

encapsulate the variability patterns within a lower-dimensional space. Comprehensive 

methodologies for FPCA are expounded upon by (Ramsay & Silverman, 2005) and 

(Ferraty & Vieu, 2006). For	𝑛 functional observations of 𝑋 in ℒ#(𝐼), denoted as 

𝑋('), . . . , 𝑋(&), 𝐽 functions of ℒ#(𝐼), 𝜙', . . . , 𝜙- are sought, which are orthogonal and such 

that the projection of 𝑋(1) onto the vector space generated by these functions yield the 

minimum loss possible.  

 Principal components of FPCA that explains the variability of {𝑋1}	are obtained by 

computing the eigenfunctions corresponding to the ordered eigenvalues (from largest to 
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smallest) of an empirical covariance operator. Thus, performing the PCA of the 𝑋1 

involves looking for the eigenvalues of the operator Γ𝑓(𝑡) 	= 	ℒ#(𝐼) ⟼ ℒ#(𝐼)	which is 

defined by: 

Γ𝑓(𝑡) = ⟨𝐶(·, 𝑡), 𝑓(·)⟩, 𝑡	 ∈ 	𝐼, 𝑓	 ∈ 	ℒ#(𝐼)	 and 𝐶(𝑠, 𝑡) 	= 	𝐶𝑜𝑣[𝑋(𝑠), 𝑋(𝑡)], 
 
where Γ is a positive, linear, and self-adjoint operator in ℒ#(𝐼)	(Horváth & Kokoszka, 

2012). It is a compact operator with a finite trace. There exists a complete orthonormal 

basis P𝜙(Q(*'	 and a sequence of real numbers 𝜆' 	≥ 	 𝜆# 	≥	···	≥ 	0 such that: 

Γ𝜙( 	= 𝜆(𝜙( , and	𝜆𝑗	 → 0	𝑎𝑠	𝑗 → ∞,	 

where P𝜆(Q(*'is the set of eigenvalues of the covariance operator Γ associated to 

P𝜙(Q(*'	the set of its eigenfunctions. The eigenfunctions corresponding to the eigenvalues 

are denoted as  P𝜙(Q. It can be shown that the eigenfunction associated with the largest 

eigenvalue, 𝜙', is a solution of the following constrained optimisation problem: 

max
2|4|2!.'

⟨Γ𝜙, 𝜙⟩ 

where h|𝜙|h
#
= ∫𝜙# 𝑑𝑡  is the ℒ#(𝐼)	norm of the eigenfunction 𝜙 on 𝐼.  

The process 𝑋 can be represented using the Karhunen-Loève representation: 

𝑋(𝑡) = 𝜇5(𝑡) +N𝑐(𝜙((𝑡),
(*'

	𝑡 ∈ 𝐼,	 

where 𝑐( 	= 	 ⟨𝑋	 − 𝜇	, 𝜙(⟩, 𝐸(𝑐() 	= 	0, 𝑐𝑜𝑣n𝑐( , 𝑐6o = 	 𝜆(1(.6 	, 𝜇5(𝑡)	is the mean function,	

𝐸(𝑋(𝑡)) and the P𝜙(Q(*'		are the FPCA basis. Hence, 𝑋 is approximated by truncating the 

infinite sum at the first	𝐽 terms: 

𝑋(&) ≈ 𝜇5(𝑡) + ∑ 𝑐(𝜙((𝑡)
-
(.' , 𝑡 ∈ 𝐼 with 𝑐1,( = ⟨𝑋 −	𝜇5(𝑡), 𝜙(⟩. 
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In practice, since Γ is unknown, FPCA entails exploring the spectrum of the empirical 

covariance function: 

𝐶p(𝑠, 𝑡) 	=
1
𝑛N(𝑋1(𝑠) − 𝑋q1(𝑠))(𝑋1(𝑡) − 𝑋q1(𝑡))

&

1.'

, 

where the empirical estimator of the mean of 𝑋 is defined on 𝐼 by: 

𝑋q1(𝑠) =
'
&
∑ 𝑋1(𝑠)&
1.'  . 

 MFPCA is used as a dimension reduction tool to transform sampled curves to represent 

the patterns of the variability of the curves, which is considered as a more natural way to 

represent a multivariate functional data as they share the same structure as each 

observation (Happ & Greven, 2018).  The principal component (PC) scores obtained from 

both GM and FDGM are used as input to construct the linear discriminant analysis (LDA) 

model as it provides better classification performance (de Almeida et al., 2021). In recent 

years, FDA has seen applications in diverse areas such as functional neuroimaging, 

econometrics, and environmental science. Researchers continue to develop novel 

methodologies and expand the theoretical foundations of FDA to address new challenges 

and opportunities in analying complex functional data. 

 This work introduces the functional data geometric morphometrics (FDGM) approach 

to analyse shape variations using the functional form of the 2D and 3D landmark 

coordinate data.  FDA is employed to analyse the image and shape data in the form of 

functions. Functional and shape analysis require tools to perform statistical analysis on 

signals, curves, or even more complex objects while being invariant to certain shape-

preserving transformations (Guo et al., 2022). To ensure that the functions are well-

aligned for geometric features such as peaks and valleys, curve registration (Ramsay & 
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Li, 1998; Srivastava et.al, 2011) or functional alignment (Ramsay, 2006) are applied to 

warp the temporal domain of functions (Guo et al., 2022). 

   Epifanio and Ventura-Campos (2011) demonstrated that FDA framework surpasses 

other approaches such as the landmark-based approach or even the set theory approach 

with principal component analysis (PCA), using a well-known database of bone outlines. 

FDGM treats cranial shapes of functions and curves as random variables taking values in 

well-defined shapes space of functions, which will help derive shape-based inferences in 

consideration of the geometric of the cranial shape space (Srivastava & Klassen, 2016). 

The FDGM method will give a new way to observe, manipulate and use 

morphometrics landmark data where a data is not a value or a vector, but all available 

information including its dynamics. Hence, FDA is an appropriate framework to represent 

shapes with their intrinsically continuous or structured character whereas in multivariate 

GM approaches, the data are only extractions or aggregations (e.g., 3D data in GM). 

 This study provides a comparison of both the GM and the FDGM approach and 

whether the application of FDA matches or surpasses the GM method in detecting 

variation among biological organisms with the interest to study coordinates being 

represented in a function form. 

 

2.6  Machine Learning 

 
Machine learning (ML) encompasses a diverse array of algorithms designed to make 

predictions, often leveraging vast datasets (Nichols et al., 2019).  In morphometric studies 

aimed at classification and identification tasks, the application of extensive machine 

learning techniques has become increasingly prevalent (Tan et al., 2018). Notably, 

classifiers such as naive Bayes (NB), support vector machine (SVM), random forest (RF), 
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and generalised linear models (GLM) are frequently employed due to their proven 

efficacy in numerous previous studies.  

The NB classifier is grounded in Bayes' theorem, which originates from the work of 

Reverend Thomas Bayes in the 18th century. Bayes explored methods for computing 

probability distributions, particularly for binomial parameters. Although Bayesian 

methods have been utilised in pattern recognition for decades (Duda & Hart, 1973), they 

gained significant traction within the machine learning community in the 1990s. 

Kononenko (1990) compared the performance of inductive learning methods, specifically 

decision trees and the Naive Bayes (NB) classifier, for developing expert systems in four 

medical diagnostic problems. The study found that the NB classifier outperformed 

decision trees in classification accuracy, though both methods offered valuable insights 

into the knowledge acquired. Langley et al. (1992) conducted an average-case analysis of 

Bayesian classifiers, demonstrating that these classifiers perform exceptionally well on 

various learning tasks, particularly under the assumptions of a monotone conjunctive 

target concept and independent, noise-free Boolean attributes. 

The NB classifier is based on Bayes’ theorem and assumes that the attributes in a 

dataset are conditionally independent, given its class (Webb, 2011). In Rodrigues et al., 

(2022), NB was the best classifier for detecting landmarks in automatic wing geometric 

morphometrics classification of honeybee (Apis mellifera) subspecies. Similarly, Thomas 

et al. (2023) utilised NB to automate morphological phenotyping in geometric 

morphometrics, reducing observer bias and enhancing the capture of comprehensive 

representations of morphological variation.  

 NB is applied as one of the classifiers in this thesis due to its simplicity and 

computational efficiency. FDGM often involves analysing complex shapes and forms, 

which can be represented by a large number of features. NB can handle high-dimensional 

data efficiently, making it suitable for quick, initial analysis or as a baseline model. 
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SVM addresses a multi-class problem as a single “all-together” optimisation. This 

classifier can be used to find a hyperplane in a 2-dimensional space that will separate the 

scores to their potential species.   Bellin et al. (2021a) successfully combined GM with 

different machine learning algorithms, including SVM with radial basis function (RBF) 

kernel. This study demonstrated the effectiveness of SVM in correctly classifying two 

Anopheles sibling species of the Maculipennis complex based on shape data (Bellin et al., 

2021). Motivated by such successes, this study aims to leverage supervised learning, 

particularly SVM, for the classification of shrew species and dietary of kangaroos based 

on their morphological features. As morphometric data can be complex and prone to 

overfitting, SVM’s regularisation techniques can be useful to avoid overfitting especially 

when the number of features is large relative to the number of samples. 

RF, a classification algorithm developed by Breiman (2001) based on bootstrap 

aggregating or bagging that combines the predictions of multiple decision trees to make 

a final prediction.  Breiman (1996) introduces the concept of bagging (which is a 

fundamental idea used in RF. It describes how combining multiple models can enhance 

predictive performance. Arai et al. (2021) applied RF in the context of morphological 

identification in skulls, specifically between spotted seals and harbor seals, using GM. 

The study achieved an identification accuracy rate of 100% using RF by narrowing down 

to a subset of eight key landmarks out of a total of 75 landmarks (Arai et al., 2021). The 

ensemble nature of RF allows it to capture both linear and non-linear relationships in the 

data, making it robust and accurate for shape classification tasks.  

The success of RF in morphological identification (Bellin et al., 2021a; Berio et al., 

2022; Khang et al., 2021) has encouraged this study to compare the effectiveness of this 

classifier in the classification of the shrew species and dietary of kangaroos based on the 

FDGM framework. GLMs, as extensions of linear models, offer flexibility in 

accommodating nonlinearity and non-constant variance within data distributions. 
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Consequently, GLMs are well-suited for analysing species-habitat relationships, which 

often exhibit deviations from normal distributions (Chiaverini et al., 2023).  

 ANN models use neural networks, which are based on the understanding of the 

biological nervous system. These models are built on adaptable processing units to 

produce an output signal as functions of the sum of their weighted inputs and a certain 

threshold value (Wu, 1992). McCulloch and Pitts (1943) introduced the concept of 

artificial neurons and their ability to perform logical operations, laying the groundwork 

for later developments in neural networks.  Rosenblatt (1958) introduced the Perceptron, 

an early type of neural network used for binary classification. This work was crucial in 

demonstrating that neural networks could learn and make decisions based on input data. 

Rumelhart et al. (1986) presented the backpropagation algorithm for networks of neuron-

like units. The procedure repeatedly adjusts the weights of the connections in the network 

so as to minimise a measure of the difference between the actual output vector of the net 

and the desired output vector. As a result of the weight adjustments, internal ‘hidden’ 

units which are not part of the input or output come to represent important features of the 

task domain, and the regularities in the task are captured by the interactions of these units, 

thus significantly advancing the field of deep learning. Rojas (1996) provides a 

comprehensive overview of neural networks, including the development and application 

of multi-layer perceptrons. This book is a key reference for understanding the evolution 

of neural network models.  

ANN are inspired from the human brain that works as a paradigm to perform 

computations in an effective and efficient manner (Mas & Flores, 2008). In a study by 

Salifu et al. (2022), RF, SVM and ANN were also evaluated for their predictive 

performance in discriminating fruit fly species. The study concluded that SVM and ANN 

models outperformed RF in accurately classifying fruit fly species. ANN can be useful in 

capturing complex and non-linear relationships between morphological features that 
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might be missed by simpler linear models through their multi-layer structure and non-

linear activation functions.  This makes ANN a powerful tool for analysing high 

dimensional morphometric data, making them well-suited for a wide range of applications 

in FDGM. Inspired by this study, this research explores the predictive performance of 

these models across different biological organisms.  
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CHAPTER 3:  RFE-BASED FEATURE SELECTION TO IMPROVE 
CLASSIFICATION ACCURACY FOR TRADITIONAL 

MORPHOMETRIC ANALYSIS 
 
 
 
 

3.1 Introduction 

 
 In the field of machine learning, the selection of relevant features is crucial for 

enhancing model performance and accuracy. This study incorporates the application of 

the recursive feature elimination (RFE) method to select pertinent features from the 

craniodental linear measurements of male and female Rattus rattus, a rodent species 

native to the Indian Peninsula and a common pest in Malaysia. By refining the feature 

set, the study aims to improve the learning performance and classification accuracy of 

predictive models, thereby contributing to more effective data-driven solutions in rodent 

pest management. 

Feature extraction and feature engineering are foundational processes in machine 

learning, involving the creation of new features from existing ones based on domain-

specific knowledge. This process increases the number of features available for analysis, 

which is essential for capturing more nuanced patterns within the data. However, before 

these features can be effectively utilised, a selection process must be undertaken to 

identify the most informative subset. Initially, feature extraction generates a broad array 

of potentially useful features. Subsequently, feature selection narrows this down to the 

most impactful ones, thereby enhancing the model's performance. 

Dimensionality reduction is another critical concept in this context. While it shares the 

goal of reducing the number of features with feature selection, the methods differ 

significantly. Feature selection involves retaining a subset of the original features and 

discarding the rest. In contrast, dimensionality reduction projects the original features 

onto a lower-dimensional space, creating a new set of features. Practically, either 
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approach can be used, but when both are applied, feature selection should precede 

dimensionality reduction to streamline the dataset effectively. 

Feature selection is driven by several key considerations that collectively enhance the 

efficiency and efficacy of machine learning models. Firstly, features that have no 

relationship with the target variable can introduce noise, leading to overfitting. Removing 

these irrelevant features helps maintain model robustness. Additionally, redundant 

features, even if important, can be discarded if another feature encapsulates their 

information. This mitigates issues such as multicollinearity, particularly in linear models. 

High-dimensional datasets can suffer from the curse of dimensionality, where each 

data point becomes sparse, making it difficult for the model to learn meaningful patterns. 

Feature selection reduces dimensionality, thereby enhancing the model's learning 

capability. Moreover, models with too many features often lose interpretability. 

Simplifying the feature set improves the model's interpretability, which is particularly 

important in regulated domains where interpretability may be a legal requirement. 

RFE is a powerful technique that aligns closely with backward selection but differs in 

its execution. While backward selection relies on a model performance metric from a 

hold-out set, RFE eliminates features based on their importance as determined by the 

model itself. This importance can be derived from feature weights in linear models, 

impurity decrease in tree-based models, or permutation importance applicable across 

various model types. By iteratively removing the least important features, RFE refines 

the feature set to enhance model performance. 

 The black rat, Rattus rattus Linaeus, 1958 is a widespread rodent pest with significant 

ecological and economic impacts. In Malaysia, research on R. rattus, especially regarding 

feature selection techniques for craniodental measurements, remains limited. This study 

addresses this gap by employing NB, RF, and ANN as predictive models to classify age 

groups of both male and female R. rattus. The performance of these models, utilising 
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RFE-selected variables, was compared and analysed. 

 The application of RFE in this study demonstrates its utility in refining feature sets to 

improve model performance. By selecting the most relevant craniodental measurements, 

the predictive models achieved higher classification accuracy, underscoring the 

importance of feature selection in machine learning. This approach not only enhances the 

effectiveness of predictive models but also contributes to better understanding and 

management of Rattus rattus populations. 

 

3.2 Methodology 
 
3.2.1 Data Description of the Rattus rattus Data 

 
 A total of 130 individuals of R. rattus were caught and examined for skull 

morphometrics study. The male and female R. rattus cranial and mandible measurements 

(67 males and 63 females) were used in this study i.e., 20 morphometric variables (see 

Mohamad Ikbal et al. (2019)). Figure 3.1 and Table 3.1 show the parts of measurements 

taken based on Musser & Newcomb (1983) and Musser, et al. (2009). 

   The linear measurements of the male and female rats were extracted from the original 

dataset based on their age classes. The three age classes are based on the molar wear 

stages. Stage C2: Cusps are still visible on all molars and the link between the first and 

second lobes of the upper M3 is very narrow (15 males and 24 females); C3: The 

longitudinal link between the first and second lobes of the upper M3 is larger and 

generally wider all the linear measurements in the dataset and the results are tabulated (16 

males and 14 females); C4: Upper M3 displays nearly total fusion of the first and second 

lobes of the longitudinal link that is wide, but it remains visible on the other molar cusps  

(36 males and 25 females).The original dataset of the linear measurements and age classes 

were then split for each sex using the 70/30 test/train split (70% of the whole dataset used 

for training, and 30% for testing) based on random sampling across combination of age 
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for both male and female rats before fitting it to the RFE model to prevent overestimation 

of accuracy in the empirical analysis. 

 
 

Figure 3.1: Craniodental measurements of R. rattus based on the (a) dorsal, (b) 
ventral, and (c) lateral views (Photo sourced from Muhammad Ikbal et al., 2019) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 

(c) 

Univ
ers

iti 
Mala

ya



36 

 

Table 3.1: Model performance evaluation based on age groups for male R. rattus 
 

Dorsal Ventral Lateral Mandible 
Occipitonasal 
length (ONL) 

Length of diastema 
(LD) 

Breadth of 
zygomatic plate 

(BZP) 
 

Length of 
mandible (ML) 

Length of 
rostrum (LR) 

Length of incisive 
foramina (LIF) 

Crown length of 
maxillary molar row 

(CLM1.3) 

Length of 
mandible 
toothrow 
(M1.M3) 

Breadth of 
rostrum (BR) 

 

Breadth of incisive 
foramina (BIF) 

Height of braincase 
(HBC) 

 

Zygomatic 
breadth (ZB) 

 

Breadth of first upper 
molar (BM1) 

  

Breadth of 
braincase (BBC) 

 

Length of bony plate 
(LBP) 

  

Interorbital 
breadth (IB) 

Length of auditory 
bulla (LB) 

 

  

 Post palatal length 
(PPL) 

 

  

 Breadth of 
mesopterygoid fossa 

(BMF) 
 

  

 Breadth across palate 
at first molar (BBP) 

  

 
 
Table 3.2 The localities and samples sizes from which R. rattus populations were 
collected in Peninsular Malaysia. 
 

Locality Sample size Habitat 
Kuala Perlis, Perlis 9 Seaside 
Kota Bharu, Kelantan 8 Housing area 
Alor Setar, Kedah 12 Housing area 
Georgetown, Penang Island 6 Seaside 
Seberang Jaya, Penang mainland 7 Housing area 
Kuala Terengganu, Terengganu 10 Housing area 
Ipoh, Perak 8 Fresh market 
Kuantan, Pahang 12 Housing area 
Chow Kit, Kuala Lumpur 15 Fresh market 
Shah Alam, Selangor 9 Housing area 
Seremban, Negeri Sembilan 12 Fresh market 
Masjid Tanah, Melaka 10 Housing area 
Stulang Laut, Johor 12 Seaside 
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3.2.2 Recursive Feature Elimination 

 

In the field of machine learning, selecting the right features is crucial for building 

efficient and accurate models. While decision trees are popular for feature selection due 

to their simplicity and interpretability, the RFE method offers several advantages that 

make it a compelling alternative. RFE is an effective feature selection method that 

initially uses the entire set of features to build the model. This feature selection technique 

can be applied to any model that can rank features by importance, such as support vector 

machines (SVMs), linear models, and random forests. This flexibility allows for a broader 

application across different types of machine learning algorithms.  Decision trees are a 

tree-structured model used for both classification and regression tasks. For feature 

selection, they rank features based on their ability to split the data into homogeneous 

subsets, often using metrics such as Gini impurity or information gain. RFE’s ability to 

work with a variety of models (e.g., SVMs, linear models) provides greater flexibility 

compared to the decision tree method, which is inherently tied to the tree structure. RFE’s 

iterative approach ensures that the feature selection process is thorough and optimised for 

the final model’s performance. While decision trees offer simplicity and interpretability 

in feature selection, RFE provides a more flexible and robust approach, particularly suited 

for improving model performance and generalisation. 

 Since RF deals well with high dimensional data problems (Darst et al., 2018), this 

algorithm was applied on each iteration of the RFE model using the R. rattus training 

data. RFE then effectively ranks the attributes according to their importance scores, 

eliminating the weak features iteratively until a desired number of top-ranked features are 

selected (Misra & Singh, 2020).  Based on the accuracy of different attribute subset sizes 

obtained, the top performing features from the RFE model were then chosen for each sex 

by referring to the RFE performance profile plots.  
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These selected linear measurements of the training data and test data are scaled at unit 

variance before being fitted into three predictive classification models (Misra & Singh, 

2020). 

 

3.2.3 Classification Models 

 Morphometric studies for classification and identification tasks are enhanced by 

extensive machine learning methods. The naive Bayes (NB), random forest (RF), and 

artificial neural network (ANN) classification models are frequently applied because they 

have been successfully used in many previous studies.  

  The NB classification model is a classifier which provides a mechanism that utilises 

predictors of the training data to estimate the posterior probability, 𝑃(𝑦8|	𝐱)	Sammut & 

Webb, 2010). NB classifiers were trained using all the scaled features as predictor 

variables and the age groups of R. rattus as class labels. This is done for both sexes and 

their performance measures are tabulated. The process is repeated for the RFE-selected 

features for comparison. Based on the R. rattus dataset, the Bayes theorem can be written 

as follows: 

					𝑃(𝑦8|	𝐱) =
9(:")9(𝐱|	:")

9(𝐱)
                                                                     

where 𝐱 represents the scaled linear measurements and 𝑦8 represents the age classes of 

the rats’ training data. 𝑃(𝑦8) is the prior probability of class  𝑦8. Given the age classes 

are C2, C3 and C4 for R. rattus, the classification problem is formulated as a multiclass 

classification problem because there are more than two classes. Under the NB 

assumption, the features are conditionally independent given the class. Therefore, the 

likelihood 𝑃(𝐱	|	𝑦8) can be expressed as the product of the individual conditional 

probabilities: 

    𝑃(𝐱|	𝑦8) = ∏ (𝑥1|	𝑦8)&
1.' . 

 

Univ
ers

iti 
Mala

ya



39 

 

The NB classifier assigns the individual to the age class 𝑦8 with the highest posterior 

probability: 

			𝑦 = argmax
:"

𝑃(𝑦8)∏ (𝑥1|	𝑦8)&
1.' . 

Random Forest (RF) has decision trees that train a dataset using the bootstrapping 

method. These decision trees reduce the chance of overfitting on the training data thus 

improving the predictive accuracy (Denisko & Hoffman, 2018). The RF model with all 

the predictor variables of the training data was fitted using three age classes of rats as the 

classification category. The model is then assessed using the test data and the results of 

the performance measures are tabulated. The entire process is repeated using the training 

data with only the RFE-selected features for both sexes.  RF offers a different approach 

to machine learning compared to NB and ANN. While NB is a probabilistic classifier 

based on Bayes' theorem and ANN is a biologically inspired model that learns from data, 

RF is an ensemble learning method based on decision trees. Including RF allows for a 

more comprehensive comparison across different machine learning paradigms. 

 
  ANN consists of several interconnected layers of information-processing units called 

neutrons and an input layer that processes the information of inputs. This information will 

be transferred to hidden layers. These layers process the information further before 

transferring it to the output layer which has one neuron that gives the function of the linear 

combination of the output obtained from the hidden layers (Bermejo et al., 2019). To fit 

the ANN model, all features of the training data were applied into the neural networks 

and select the age classes of rats as targets. The architecture of the ANN used is as follows: 

(a) Input Layer: The input layer receives the initial data that need to be processed which 

is represented as neurons. Each neuron corresponds to one feature and this layer 

passes the information on to the next layer in the ANN. In this study, the linear 

measurements of the male and female rats were used as the input layer.  
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(b) Hidden Layers: These layers are intermediate layers between the input and output 

layers. Actual computation of input data is performed in each neuron of a hidden layer 

based on the input received from the neurons in the previous layer using a weighted 

sum followed by an activation function to produce an output. Activation function is a 

critical component of a neural network that introduces non-linearity into the model so 

that the network is able to learn complex patterns and relationships in the data. In this 

study, using method "nnet" for neural networks, the default activation function used 

is the logistic sigmoid function.  

(c)  Output layers: The output layer provides the final results of the neural network 

computation. The number of neurons in the output layer depends on the nature of the 

task. In this study, the number of neurons in the output layer corresponds to the 

number of age classes of the male and female rats (C2, C3 and C4).  

This model is evaluated based on the results obtained by the confusion matrix. The 

process is repeated, by fitting only the RFE-selected features into the ANN model for 

both male and female R. rattus data.  

3.2.4 Performance Evaluation Metrics for Classification Models 

  The multiclass confusion matrices of the classification models were observed and their 

performances between the models were compared with all features and models, with the 

selected features. The true positive (TP), true negative (TN), false negative (FN), false 

positive (FP) and accuracy (Acc) values after obtaining the confusion matrices are 

calculated. Since the target variable (age classes of rats) are imbalanced (Misra & Singh, 

2020), i.e., 29.23% are C2, 23.08% are C3 and 47.69% are C4, Kappa, precision, recall 

and F1 score measures were observed to evaluate the performance of the machine learning  

algorithms.  
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These measures are calculated for each age class as follows:    

  Precision = =9
=9>?9

                                                                                                              

  Recall 						= =9
=9>?@

                                                                                                           

  Kappa 					= ABCDEFDG	HIIJEHIK	L	DMNDIODG	HIIJEHIK
'	L	DMNDIODG	HIIJEHIK

                                                                

  F1 score 			= 2 ∗ 9EDIPCPAQ∗SDIHTT
UEDIPCPAQ>SDIHTT

     

                

 Receiver operating characteristic (ROC) curves are obtained. For the male and female 

rats, the respective Area under the ROC Curve (AUC) is obtained to assess the 

performance of the classification models with all features and models with RFE-selected 

features.  The ROC curve plots the TP and FP, while the AUC calculates the area 

underneath the entire ROC curve which provides the overall measure of separability of 

age.  

    All statistical analyses were performed using R. The caret package (Kuhn, 2008) was 

used in R version 4.2.1 (R Core Team, 2023) to apply the RFE algorithm and to streamline 

the model training process for classification tasks. In addition, the factoextra package 

(Kassambara & Mundt, 2020) and ggfortify package (Tang et al., 2016) were also applied 

in R to visualise the PCA output. The santaR package (Wolfer et al., 2022) is used to scale 

the linear measurements of both male and female rats at unit variance. The MLeval 

(Christopher & John, 2022) package is applied to construct the ROC curves for the 

classification models with all features and RFE-selected features.                                                            Univ
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The default hyperparameters are used for all three machine learning models trained 

using the caret package. The ‘trainControl’ function is utilised to define the resampling 

method and parameters, which specifies 10-fold cross validation. For the NB model, the 

default settings include a kernel density estimate for continuous variables (by default, 

kernel density estimation is not used), a smoothing parameter for the conditional 

probability tables (by default, no smoothing is applied), an adjustment factor adjust for 

bandwidth in kernel density estimation (by default, no adjustment is used) and a cut-off 

for classification of 0.5, by default. The hyperparameters for the RF model includes the 

number of variables randomly sampled as candidates at each split (by default, it is the 

square root of the number of variables), the number of trees is 100, minimum size of 

terminal nodes (by default is 1 for classification). For the ANN model, the 

hyperparameters are the number of units in the hidden layer(s) (by default, it is 1), a decay 

term for weight decay (by default is 0, meaning no decay), maximum number of 

iterations, which is 100, the maximum number of weights (default is 0, meaning 

unlimited), and no entropy error is used by default. 

 

3.3 Results and Discussion 
 

  After performing the train-test split for the skull measurements data of both male and 

female rats, the automatic RFE was applied, by wrapping it around a random forest model 

to remove features recursively according to their age groups and the top performing 

features were selected. Based on the RFE results shown in Figure 3.2, HBC, IB, LD, BZP, 

BR, ZB, and LIF were identified by the RF-RFE as the features that indicate significant 

differences among age classes for R. rattus males. These features may be selected by RFE 

as males of the Rattus genus are larger in size than females and can display a larger 

variation around the braincase compared to females (Alamoudi et al., 2021).  
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 Male rats of this genus tend to have longer rostrum with shorter and wider zygomatic 

arch (Alamoudi et al., 2021). As for R. rattus females, the top performing features to 

distinguish age classes are ZB, LD, BMF, BBC, IB and BR. The top performing features 

were obtained using the “rfe” function in the library “caret”. These features are chosen 

using RFE as females of the Rattus genus display greater variation around the occipital 

bone with narrow zygomatic arch and longer magnum foramen (Alamoudi et al., 2021).  

All features selected by RFE for the male and female rats appear to coincide with most of 

the craniodental measurements used in Balakirev et al. (2011); Breno et al. (2011); 

Esselstyn et al. (2015); Libois et al. (1996); Motokawa et al. (2004); Timm et al. (2016). 

Among all features selected by RFE, the zygomatic breadth (ZB), interorbital breadth 

(IB), breadth of rostrum (BR) and length of diastema (LD) were observed to be significant 

in both male and female rats, which is 44.4% of the “total chosen features” of both male 

and female rats. These selected features are later used in PCA, LDA and the predictive 

classification models for each sex and their performance measures are evaluated and 

tabulated.  
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(a) 

 
                                                                   (b)      
   
Figure 3.2: Performance profile plots across different subset sizes given by RFE 
approach for scaled (a) male and (b) female craniodental measurement dataset 
 
 
3.3.1 Principal Component Analysis  
 
  After considering the top performing features in the dataset, the first two PCs explain 

about 94.8% of the total variation. The clusters among age groups of male rats are more 

distinct when the RFE-selected features are used (Figure 3.3(b)(i). As for the female R. 

rattus, the first two (PCs) explain 85.4% of the total variation in the age groups.  
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 When only the top performing features were considered, the PC1 and PC2 explain 93.8 

% of the variation, which also reveals more distinct clusters among the age groups in 

female rats (Figure 3.3(b)(ii)). Based on the improvement shown in the PCA, selecting 

RFE-based features may also have more potential in examining the age variation of R. 

rattus using canonical variate analysis (CVA) and ‘posteriori’ Scheffe’s test; a study 

conducted by Mohamad Ikbal et al. (2019) with 14 of the craniodental measurements for 

both sexes. 
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Figure 3.3: PCA plots for R. rattus male craniodental measurement ((i) all features 
(ii) significant features. The ellipses help visualise the spread and central tendency 
of each group. Each ellipse encompasses 95% of the individuals within that group, 
indicating where most of the data points for each group are concentrated

(i) 

(ii) 
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Figure 3.4: PCA plots for R. rattus female craniodental measurement ((i) all features 
(ii) significant features. The ellipses help visualise the spread and central tendency 
of each group. Each ellipse encompasses a 95% of the individuals within that group, 
indicating where most of the data points for each group are concentrated.

(i) 

(ii) 
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3.3.2 Predictive Classification Models Performance 
 
  The RFE selected features are used in the predictive classification models for each sex 

and their performance measures are evaluated and tabulated (Table 3.2 and Table 3.3).     

 Based on Table 3.2 and Table 3.3, both training and test sets give excellent results in 

terms of accuracy for all three models (evaluated once), with all features included, where 

ANN is the best model for both male and female craniodental measurement datasets.  

  A comparable result is observed in the NB model for R. rattus males after fitting the 

top performing features into the model, which indicates that RFE can be considered as an 

alternative feature selection method. The lower test data accuracy for the RF model is due 

to the classification of the majority of the C4 age class as target variable in the male rats’ 

test data. Class imbalance can lead to biased models that perform poorly on the minority 

class.  The overall performance evaluation of models with the top performing features for 

the male rats’ data shows that ANN gives 100% test data accuracy and Kappa. 

   As for the female dataset, all three classification models for the top performing 

features show good results. Both training data and test data have accuracy of more than 

97% for all models, with ANN being the best model. These results were further 

investigated using precision, recall and F1- score measures for the top performing features 

among both sexes (Table 3.4).  

 Based on the age groups of the male R. rattus, it was observed that all the three models 

yield high scores for precision (Table 3.3). The recall measure shows good results for the 

models except for the C2 age group which for RF which is 0.5. This means that only half 

of the age class is correctly predicted. The F1 scores for all three models reveal that the 

groups are correctly identified and not disturbed by false results. The F1 score is 

considered perfect (1.000) for the ANN model for all male age groups.  

Univ
ers

iti 
Mala

ya



49 

 

 As for the age classes of the R. rattus females, all three models produce high scores 

for all the three measures. This indicates that the age classes are correctly classified based 

on the three models used. 

 All ROC-AUC curves (Figure 3.4) show promising results for all classification models 

with all features and top-selected features. There is an improvement in all the models 

when only the RFE-selected features were used. Based on the ROC-AUC curve for the 

female rats, all three classification models could clearly distinguish their age classes when 

only the top performing features were applied.    

ANN was chosen as the best predictive classification model using the top five features 

for both the male and female rats based on the scores for all three measures considered 

and the ROC-AUC plots. 

Table 3.3 ROC-AUC results for R. rattus male and female craniodental 
measurement ((i) all features (ii) top performing features) 
 
 

Classifiers Male rats Female rats 
 All features RFE features All features RFE features 
NB 0.96 1.00 1.00 0.98 
RF 0.97 0.98 0.98 1.00 
ANN 0.98 1.00 1.00 1.00 

 
 
 

Table 3.4: Model performance evaluation based on age groups for male R. rattus 
 
Classifiers Training data 

accuracy 
Test data accuracy Kappa 

 All 
features 

RFE 
features 

All 
features 

RFE 
features 

All 
features 

RFE 
features 

NB 0.927 0.983 0.866 0.867 0.789 0.795 
RF 0.943 0.963 0.933 0.800 0.891 0.685 
ANN 0.980 0.987 1.000 1.000 1.000 1.000 
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Table 3.5: Model performance evaluation based on age groups for female R. rattus 
 
Classifiers Training Data 

Accuracy 
Test Data Accuracy Kappa 

 All 
features 

RFE 
features 

All 
features 

RFE 
features 

All 
features 

RFE 
features 

NB 0.983 1.000 1.000 0.929 0.692 0.891 
RF 1.000 0.975 1.000 0.857 0.841 0.781 
ANN 1.000 0.994 1.000 1.000 1.000 1.000 

 
 

Table 3.6: Precision, recall and F1 scores of classification models using RFE-selected 
features for male R. rattus based on age groups 

 
 

Classification 
model 

Precision Recall F1-score 

 C2 C3 C4 C2 C3 C4 C2 C3 C4 
NB 1.000 1.000 0.750 1.000 0.600 1.000 1.000 0.750 0.857 
RF 0.750 1.000 0.875 0.500 1.000 1.000 0.667 0.667 0.933 
ANN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 
 
Table 3.7: Precision, recall and F1 scores of classification models using RFE-selected 
features for female R. rattus based on age groups 
 

 
Classification 
model 

Precision Recall F1-score 

 C2 C3 C4 C2 C3 C4 C2 C3 C4 
NB 1.000 0.750 1.000 0.833 1.000 1.000 0.909 0.857 1.000 
RF 1.000 0.500 1.000 0.714 1.000 1.000 0.833 0.667 1.000 
ANN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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3.4 Conclusion 
 
 A good feature selection method that selects the best, highly discriminant features 

increase the performance of the model and reduces computational complexity in 

classification problems. It is of interest of this thesis to examine how well RFE works 

when incorporated with PCA in morphometric studies.  Based on the analysis for R. rattus 

males and females, a comparable result was noticeable on the performance metrics of the 

three predictive classification models and in PCA when the RFE-selected features are 

used. ANN outperforms the other models for both sexes. It was also observed that using 

RFE as a feature selection method reduces computation complexity in morphometrics 

studies.  Applying RFE-based features in the work done by Mohamad Ikbal et al. (2019) 

may achieve more promising results to observe the significance difference of R. rattus 

age groups and these features could also be used in other conventional morphometric 

studies of rats to examine their morphological differences. Although RFE is a valuable 

technique for identifying relevant features, it may result in the selection of features that 

are correlated with each other. In this study, RFE was instrumental in identifying the most 

informative features for constructing predictive models, thereby enhancing model 

interpretability and potentially mitigating overfitting.  
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CHAPTER 4: FDGM IN 2D GEOMETRIC MORPHOMETRICS  
 
 
 
 
4.1       Introduction 

 
     The study of craniodental morphology in shrews stands out as an invaluable avenue 

for gaining insights into their evolutionary trajectory, taxonomic classification, and 

ecological adaptations. Shrews, belonging to the order Eulipotyphla are characterised by 

their small size, insectivorous diet, and rapid metabolism. Despite their small stature, 

shrews exhibit remarkable diversity in craniodental morphology, reflecting adaptations 

to different ecological niches and evolutionary pressures. This is evident in the study 

conducted by (Vasil’ev, & Kourova (2015) which revealed geographical variability of the 

shape of mandible in three shrew species of genus Sorex using GM. Notably, discriminant 

analysis of Procrustes coordinates derived from the GM method enabled high percentage 

of correct assignment of individual shrews to distinct local taxocenes, further validating 

the efficiency of this methodology in taxonomic studies. Moreover, findings by (Vilchis-

Conde et al. (2023) reinforce the significance of GM in supporting the taxonomic 

classification of semifossorial shrews. The research also revealed that the shapes of the 

skull, particularly the dentary has associated with the diet specialisation, highlighting the 

profound impact of morphological variations on functional aspects such as bite force 

among shrews. This thesis focuses on the craniodental variation among three shrew 

species: Crocidura malayana Robinson & Kloss, 1911, Crocidura monticola Peters, 1870 

and Suncus murinus (Linnaeus, 1766).  

 Each species occupies distinct ecological niches: C. malayana, a medium-sized shrew, 

thrives in Thailand, Malaysia, and several offshore islands (Hutterer, 2005). This 

terrestrial species has been documented in both hill and lowland forests (Francis, 2008; 

Jamaluddin et al., 2022).  
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 Meanwhile, C. monticola, the smallest shrew in the genus Crocidura is restricted to 

forest areas in Malaysia and Indonesia (Omar et al., 2013). On the other hand, S. murinus, 

the largest shrew species, is predominantly found in urban areas and the outskirts of 

forests, with a wide distribution spanning human settlements in the Indian subcontinent 

and Southeast Asia (Ruedi et al., 1996). 

 
 In this thesis, 90 adult shrew specimens were collected, with 30 individuals from each 

species.  The habitats of C. malayana span diverse locations, including Lata Belatan, 

Terengganu; Ulu Gombak; Aur Island, Johor; Pangkor Island, Perak; Bukit Rengit, 

Pahang; Cheras Road, Kuala Lumpur; Port Dickson, Negeri Sembilan; and Dusun Tua, 

Selangor. Conversely, C. monticola exhibits a broader habitat range, inhabiting 

environments such as Ulu Gombak; Wang Kelian, dominated by secondary lowland 

forest, and Maxwell Hill, an upper dipterocarp forest, among others. Suncus murinus, on 

the other hand, is observed in locations like Wang Kelian, Perlis; Alor Setar, Kedah; Air 

Hitam, Pulau Pinang; Lumut, Perak; Ulu Gombak, Selangor; and Bukit Katil, Melaka. 

These varied habitats likely contribute to the divergence in craniodental morphology 

between species. Notably, C. malayana and C. monticola coexist in sympatry in Ulu 

Gombak, sharing the same habitat or niche. This study aims to elucidate the relationships 

between these species, offering valuable insights into the evolutionary processes shaping 

their craniodental morphology. 

 FDA is a statistical methodology used to analyse data that are represented in the form 

of functions, consisting of entire curves or other continuous functions, rather than discrete 

observations. Functional data analysis is particularly useful when dealing with data that 

vary continuously over a domain, such as time, space, or wavelength.  
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 In the context of this study, the basic idea behind FDA is to express discrete 

observations, i.e., landmark coordinates, in the form of a function (to create functional 

data) that represents the entire measured function as a single observation, and later 

generate models to predict information based on a collection of functional data by 

applying statistical concepts from multivariate data analysis (Ullah & Finch, 2013). 

  In this work, the FDGM method is employed to analyse the image and shape data in 

the form of functions.  The landmarks obtained from the craniodental shapes of three 

species of shrews are represented in the form of functional data. This data is used to 

perform multivariate functional principal component analysis (MFPCA) to observe 

variation among the three shrew species and compared with the classical PCA. The 

principal component scores obtained from MFPCA (MFPC scores) captures the major 

sources of shape variation among the shrew species. These MFPC scores are then 

reconstructed based on a truncated multivariate Karhunen-Loeve representation to 

produce predicted functions, thus allowing for a compact representation of the functional 

data. The results of this study revealed that FDA can be used to identify subtle differences 

in shape, and it can be used to relate these differences to underlying factors, such as 

ecology or behavioral factors. 

 In this study, the landmark coordinates used in the GM method will be represented as 

functions. Each sample element is considered as a function under the FDA framework 

which often defines time, spatial location, or wavelength as the physical continuum. 

Functional data geometric morphometrics (FDGM) is proposed in this study, requiring 

steps to perform statistical analysis on signals, curves, or even more complex objects 

while being invariant to certain shape-preserving transformations. To ensure that the 

functions are well-aligned for geometric features such as peaks and valleys, curve 

registration or functional alignment are applied to warp the temporal domain of functions.  
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 The FDA framework surpasses its counterparts, including both the landmark-based 

approach and the set theory approach with principal component analysis (PCA), when 

applied to a well-known database of bone outlines. The set theory approach is adopted 

from a methodology outlined in Horgan (2000), treating shapes as sets. Each position 

within the image corresponds to a binary variable, indicating whether it belongs to the 

shape or not. Consequently, the study performed PCA specifically tailored for binary data. 

 The landmarks obtained from the craniodental shapes of three species of shrews are 

represented in the form of functional data. This data is used to perform multivariate 

functional principal component analysis (MFPCA) to observe variation among the three 

shrew species and compared with the classical PCA. The principal component scores 

obtained from MFPCA (MFPC scores), which capture the major sources of shape 

variation among the shrew species. The functional data of landmarks sampled from 

studied curves were then concisely represented by a continuous curve based on Karhunen-

Loeve theorem. The results of this study revealed that FDGM can be used to identify 

differences in shape by classification methods. These differences can be used to relate to 

underlying factors such as ecology or behavioral factors. 

 This work aims to introduce geometric morphometrics in a functional data framework 

to reveal the existence of significant differences in craniodental shapes of three species 

of shrews. These differences are related to the different ecological niches that these three 

species occupy. The results of this study will provide valuable insights into the 

morphological variation among shrews. This information could be used to improve our 

understanding of the evolution of shrews and to develop new methods for identifying and 

classifying shrews. 
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4.2       Data Description 

4.2.1   Shrew Skull Image Acquisition  

 
 The skulls of C. malayana, C. monticola, and S. murinus were examined from various 

angles, including dorsal, jaws, ventral, and lateral views (Figure 4.1). However, the 

ventral view was excluded from this study because it is identical to the dorsal view (Abu 

et al., 2018).   

Ninety specimens of the three shrew species (30 for each species) were obtained from 

the Museum of Zoology at Universiti Malaya (UM) in Kuala Lumpur, Malaysia. The 

skulls from each specimen were individually placed in small bottles for GM analysis. 

Digital images of the skulls were captured following the method outlined by Abu et al. 

(2016) using a Nikon D90 camera with 15x magnification. The images were saved in 

Tagged Image File Format (TIFF) at a resolution of 4288 × 2848 pixels. Adobe Photoshop 

CS6 was used to enhance the image quality. 

4.2.2    Landmark Data Acquisition 

 
 After acquiring the images, TPSUtil32 (Rohlf, 1990) is used to obtain the TPS files 

for all three views which will be used in TPSDig2 (Rohlf, 1990) for landmarking. Each 

craniodental view has different numbers of landmarks and semi-landmarks, i.e., dorsal 

(25 landmarks), jaw (50 landmarks) and lateral (47 landmarks). The statistical analysis of 

three views was performed in R version 4.2.1. To use the GM data, the raw coordinates 

obtained from the landmarks of all three craniodental views were processed using GPA 

for optimal registration using translation, rotation, and scaling using the gpagen function 

in the geomorph package (Adams et al., 2013). According to McCane (2013), outline 

methods produce useful and valid results when suitably constrained by landmarks. This 

leads to the main idea of this work to incorporate FDA approach to observe the separation 

among the three shrew species. 
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    After the images are acquired, TPSUtil32 is used to obtain the TPS files for all three 

views. These files will be used in TPSDig2 for landmarking. A repeated measurement 

approach was employed. This approach involved having the same observer measure the 

outlines three times to assess the consistency and reproducibility of the measurements. 

By comparing these repeated measurements, any variation or error introduced by the 

observer during the process could be quantified and evaluated. The average of these 

repeated measurements was used for further analysis. 

For the dorsal view, 25 landmarks were placed including 16 Type I landmarks (LM1, 

LM4-LM11, LM13-LM15, LM22-LM25) and 9 Type III landmarks (SLM2-SLM4, 

SLM12, SLM16-SLM21). Similarly, in the jaw view, 50 landmarks were positioned, 

comprising 32 Type I landmarks (LM1, LM3-LM22, LM24-LM26, LM32-LM35, LM41-

LM43, LM48, LM50) and 18 Type III landmarks (SLM2, SLM23, SLM27-SLM31, 

SLM36-SLM40, SLM44-SLM47, SLM49). 

Lastly, the lateral view consisted of 40 landmarks being Type I (LM1, LM4-LM11, 

LM15-LM18, LM20, LM22-LM47) and 7 landmarks being Type III (SLM2, SLM3, 

SLM12-SLM14, SLM19, SLM21). 

As suggested by MacLeod (2013), the application of any specific treatment to semi 

landmarks, such as the sliding landmark analysis for geometric morphometric analysis 

has been refrained from this study. This is to prevent any alteration of the original 

geometric relationships which would complicate the interpretation of the results. 
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Figure 4.1: Digital skull images of dorsal, jaw and ventral views of C. malayana, C. 
monticola and S. murinus. 
 
 
4.3      Functional Data Geometric Morphometrics in 2D Landmark Data 
 

4.3.1     Functional Landmark Data 
 
  
 This thesis introduces functional data framework of geometric morphometrics known 

as functional data geometric morphometric (FDGM). In this framework, FDA is 

integrated with GM to capture and analyse shape variations across specimens. This 

integration allows for a more comprehensive analysis of shape variations by considering 

landmark coordinates as functional data. FDA is a method used to analyse raw data that 

varies dynamically over time, space, or more complex dimensions. In this study, 

standardised coordinates from GPA were employed to evaluate the outlines of the shapes 

in three craniodental views. As the methodology is similar to that in Chapter 5, the FDGM 

method is shown using 3D landmark representation. Each observation is vector-valued, 

as three spatial coordinates which are the 𝑥, 𝑦 and 𝑧 − coordinates are involved. 

 Let  

v	n	𝑥8(𝑡'), yV(𝑡'), zV(𝑡')o
W, … , n		𝑥8(𝑡X), yV(𝑡X), zV(𝑡X)o

Wy ; 
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where 𝑘 = 1,… , 𝑛  be the standardised landmark coordinates for 𝑛 specimens and 𝜏 =

1,… , 𝑝 be the number of landmarks on a 𝑑 − dimensional domain (example of 2D 

representation can be referred to Figure 4.2 (a); Figure 4.3(a); Figure 4.4(a)). To 

implement functional data in an object-oriented way, the raw data is converted into 

functions.  

 To mitigate non-shape variations such as translation, rotation, and scaling, Procrustes 

superimposition is employed on landmark coordinates in each view. This ensures 

alignment of landmarks while preserving shape differences across specimens. (Figure 4.2 

(b); Figure 4.3(b); Figure 4.4(b)). This work is inspired by the study conducted by  Happ-

Kurz (2020) and is based on the crania of the shrews. 

  Let {𝑥8(𝑡'), … , , 𝑥8(𝑡X)}, {𝑦8(𝑡'), … , , 𝑦8(𝑡X)} and {𝑧8(𝑡'), … , , 𝑧8(𝑡X)} where 𝑘 =

1,… , 𝑛  be the separated standardised landmarks for 𝑛 specimens for 𝑥, 𝑦 and 𝑧 − 

coordinates respectively. The data is organised in two fields to facilitate FDA in an object-

oriented manner.  For example, the 𝑥 −coordinates are used as the observation points 

(boundaries) P𝑡8', … , 𝑡8%: 𝑘 = 1,… , 𝑛Q and the values of landmarks represent the set of 

observed values P𝑥8', … , 𝑥8%: 𝑘 = 1,… , 𝑛Q.  This creates a data block of a univariate 

functional data object, representing the 𝑥 −coordinates as a collection of vectors that 

define the marginals of the observation grid (Happ-Kurz, 2020).  The same process is 

applied to the 𝑦 and 𝑧 − coordinates.  

 These discrete curve observations were converted into continuous functions, 

𝑋8(𝑡)8.',…&, 𝑌8(𝑡)8.',…&	 and 𝑍8(𝑡)8.',…&using the funData package (Happ & Greven, 

2018) in R. This approach represents the landmark points as univariate functional data 

with 𝑛 observations as a list for 𝑥 and 𝑦- coordinates respectively.  

 The univariate functional data is then represented as multivariate functional data, with 

𝑛 observations defined on 𝑑-dimensional domains using the multiFunData function 

(Happ-Kurz, 2020).  
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   (a) 

 
         (b) 

 
 

Figure 4.2: (a) 25 landmarks included for dorsal view of C. malayana. Landmarks 
and semilandmarks are represented by red and light blue dots, respectively. (b) 2D 
representation of the x and y-coordinates for the 25 landmarks of crania for the 
dorsal view; (c) 2D domains of converted functional data of landmark data for the 
dorsal view using FDGM method (specimens are represented by coloured lines) for: 
(i) Dimension 1 and (ii) Dimension 2 
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       (c) 
Figure 4.2, continued. 
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(a) 

 

 
        (b) 

 
Figure 4.3: (a) 50 landmarks included for jaw view of C. malayana. Landmarks and 
semilandmarks are represented by red and light blue dots, respectively (b) 2D 
representation of the x and y-coordinates for the 50 landmarks of crania for the jaw; 
(c) 2D domains of converted functional data of the landmark data for the jaw view 
using the FDGM method (specimens are represented by coloured lines) for: (i) 
Dimension 1 and (ii) Dimension 2. 
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(c) 
 

Figure 4.3, continued. 
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(a) 

 

 
     (b) 

 
Figure 4.4: (a) 47 landmarks included for lateral view of C. malayana. Landmarks 
and semilandmarks are represented by red and light blue dots, respectively (b) 2D 
representation of the x and y- coordinates for the 47 landmarks of crania for the 
lateral view; (c) 2D domains of converted functional data of the landmark data for 
the lateral view using the FDGM method (specimens are represented by coloured 
lines) for: (i) Dimension 1 and (ii) Dimension 2. 
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(c) 
Figure 4.4, continued. 

 

4.3.2     Multivariate Functional Principal Component Analysis for Craniodental 
  Views of Shrew Specimens     

  

 After acquiring the multivariate functional data, the MFPCA package is used to 

compute the MFPCA estimates on the multivariate functional data, based on their 

univariate counterparts (Happ & Greven, 2018). The MFPCA function calculates MFPCA 

based on the observations that are independently and identically distributed (multivariate 

functional data obtained from the landmarks). The PCA basis functions are estimated 

from the multivariate functional data, 𝐗8(𝑡) using univariate functional principal 

component analysis (uFPCA), which is the most common basis expansion on a 1 -

dimensional domain (Happ-Kurz, 2020). These basis functions were then applied on 𝑛 

observations based on the PACE (PCA through conditional expectation) approach (Yao 

et al. 2005). uFPCA is calculated by smoothed covariance using the refund package 

(Happ-Kurz 2020).  In MFPCA, vectors are no longer considered PCs but are replaced by 

functions.  
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 Consider the vector-valued stochastic process 𝐗 = (X, 𝑌, 𝑍)W , representing functional 

random variables associated with standardised landmark coordinates, 𝑥, 𝑦 and 𝑧 − 

coordinates respectively. For 1 ≤ 𝑝 ≤ 𝑃	(in our case 𝑃 = 3), let 𝐼! be a compact set in ℝ, 

with finite (Lebesgue) measure and such that : 𝑋: 𝐼! → ℝ belongs to ℒ#(𝐼!), the space of 

square integrable functions on  𝐼! . n𝐼: , ℒ#(𝐼:)o	and (𝐼Z , ℒ#(𝐼Z))  is similarly defined. The 

𝑃 −Fold Cartesian product of 𝐼!	and 𝐼: denoted by 𝐈 ≔ 𝐼! × 𝐼: × 𝐼Z. So, 𝐗 is a stochastic 

process indexed by 𝐭 ∈ 𝐈 and taking values in the 𝑃 −Fold Cartesian product space ℋ ≔

ℒ#(𝐼!) 	× ℒ#n𝐼:o × ℒ#(𝐼Z).  

Let the inner product ⟨⟨∙,∙⟩⟩:ℋ ×ℋ → ℝ, 
 
						�⟨𝑓, 𝑔⟩� ≔ ∑ 〈𝑓%, 𝑔%〉%∈{!,:,Z} = ∑ ∫ 𝑓%n𝑡%o𝑔%n𝑡%o𝑑𝑡%,^#

	%∈{!,:,Z}                                         

							𝑓 = n𝑓! , 𝑓: , 𝑓Zo
= , 𝑔 = n𝑔! , 𝑔: , 𝑔Zo

= ∈ ℋ. 

 
Then, ℋ is a Hilbert space with respect to the scalar product ⟨⟨∙,∙⟩⟩	 (see (Happ and Greven 

2018)). ‖|∙|‖ is denoted by the norm induced by ⟨⟨∙,∙⟩⟩. 

 

4.3.3       Multivariate Karhunen-Loève Representation 
 

Assume that 𝔼[𝐗(𝐭)] ≔ �𝔼[X(𝑡!)], 𝔼 �Yn𝑡:o, 𝔼[Y(𝑡Z)]��
𝐓
= 𝟎, ∀𝐭 = n𝑡! , 𝑡: , 𝑡Zo

= ∈ 𝐈. 

Let C denote the 3 × 3 matrix-valued covariance function which, for 𝐬, 𝐭 ∈ 𝐈, is defined 

as  

					𝐶(𝐬, 𝐭) = 𝔼[𝑋(𝐬)𝑋(𝐭)W]                              
 
where the (𝑝, 𝑞)th of the matrix 𝐶(𝐬, 𝐭),  for 1 ≤ 𝑝, 𝑞 ≤ 𝑃, is the covariance function 
between the 𝑝 −th and the 𝑞 −th components 𝐗: 
 
					𝐶%,`n𝑠%, 𝑡`o = 𝔼�𝑋%n𝑠%o𝑋`n𝑡`o� = Cov �𝑋%n𝑠%o, 𝑋`n𝑡`o�, 
 
					𝑠% ∈ 𝐼%, 𝑡` ∈ 𝐼 , 𝑝, ∈ {𝑥, 𝑦}               
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In particular, 𝐶%,`(∙,∙) belongs to	ℒ#(𝐼% × 𝐼 ).  Let Γ: ℋ → ℋ be the covariance operator 

of X on the Hilbert space ℋ, where for 𝑓 ∈ ℋ and 𝐭 ∈ 𝐈, the 𝑞th component of Γ𝑓(𝐭) is 

given by 

 

		(Γ𝑓)(`)n𝑡`o ≔ ��𝐶∙,`n∙, 𝑡`o𝑓(∙)�� = ∑ ∫ 𝐶%,`n𝑠%, 𝑡`o𝑓%n𝑠%o𝑑𝑠%	,^#
9
%.'                   

								𝑠% ∈ 𝐼%, 𝑡` ∈ 𝐼 , 𝑓 ∈ ℋ.                                                                                                

 
By the theory of Hilbert-Schmidt operators, there exists a complete orthonormal basis  

{𝜙( , 𝑗 = 1,2, . . . } ⊂ ℋ and a sequence of real numbers 𝜆' ≥ 𝜆# ≥. . . ≥ 0 such that  

					Γ𝜙( = 𝜆(𝜙( 								and  							𝜆6 → 0      as 𝑗 → ∞.     
                                                       
 
 The 𝜆(’s are the eigenvalues of the covariance operator Γ and the 𝜙(’s are the 

associated eigenfunctions. The multivariate version of the Karhunen-Loève’s 

representation is: 

									𝐗(𝐭) = ∑ 𝜉(𝜙((𝐭),b
(.' 𝐭 ∈ 𝐈,                                                                                    

 
with zero mean random variables 𝜉( = ⟨⟨𝐗, 𝜙(⟩⟩ and Covn𝜉( , 𝜉6o = 𝜆61{(.6}. Let  𝐽 ≥ 1 

and assume that the first 𝐽 eigenvalues are nonzero, i.e. 𝜆' ≥ 𝜆# ≥. . . ≥ 𝜆- ≥ 𝜆(->'). Up 

to a sign, the elements of the MFPCA basis are characterised by: 

 

						𝜙' = cdefc!
4 ⟨⟨Γ𝜙, 𝜙⟩⟩ such that ‖|𝜙|‖ = 1, 

						𝜙# = cdefc!
4 ⟨⟨Γ𝜙, 𝜙⟩⟩  such that ‖|𝜙|‖ = 1, and ⟨⟨𝜙, 𝜙'⟩⟩ = 0, 

				⋮ 

				𝜙->' = cdefc!
4 ⟨⟨Γ𝜙, 𝜙⟩⟩ such that ‖|𝜙|‖ = 1, and ⟨⟨𝜙, 𝜙6⟩⟩ = 0, ∀𝑙 ≤ 𝐽.                         
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Then, the truncated Karhunen-Loève expansion of the process X is 

				𝐗[-](𝐭) = ∑ 𝜉(𝜙((𝐭), 𝐭 ∈ 𝐈, 𝐽 ≥ 1	;					-
(.' 																																																		                          

and the truncated Karhunen-Loève expansion of the components of X is 

				𝑋%,[-#]n𝑡%o = ∑ 𝜓%,(𝜙 %,(n𝑡%o,
-#
(.' 										𝑡% ∈ 𝐼%, 𝐽% ≥ 1, 𝑝 ∈ {𝑥, 𝑦};									                     

where {𝜙 %,( , 𝑗 = 1,2, . . . } is the univariate FPCA basis associated to the covariance 

operator Γ% of 𝑋% and the scores are 𝜓%,( =⟨𝑋%, 𝜙 %,(⟩. Happ and Greven (2018) derived a 

direct relationship between the truncated representations (4.9) of the single elements 𝑋% 

and the truncated representation (4.8) of the multivariate functional data X. 

The principal component elements are in general, unknown and have to be estimated 

from a sample that are possibly observed on different sparse grid points. These elements 

are the eigenvalues	P𝜆(Q(*', the eigenfunctions P𝜙(Q(*' and the scores P𝜉(Q(*'.  Given a 

sample of 𝑛 i.i.d observations 𝐗('), . . . , 𝐗(&) of X, the estimation procedure for MFPCA 

consists: 

 
1. For each element	𝑋%, estimate a univariate FPCA based on the observations 

𝑋%
('), . . . , 𝑋%

(&) by estimating the variance function 𝐾%(∙,∙)  of 𝑋% as follows: 

	𝐾¡%(𝑠, 𝑡) =
'

&L'
∑ 𝑋%

(1)(𝑠)&
1.' 𝑋%

(1)(𝑡).           
                                                                     
This results in the estimated eigenfunctions  𝜙 ¢%,( ,  and scores 𝜓%,( , 𝑖 = 1,… , 𝑛,				 

𝑗 = 1, . . . , 𝐽%   for a given truncation integer 𝐽%. 

 
2. Define the matrix Ξ	∈ ℝ&×- with 𝐽 = ∑ 𝐽%%∈{!,:,Z} , where each row  

 (𝜓','
(1), … , 𝜓',-$

(1) , … , 𝜓j,'
(1) , … , 𝜓j,-%

(1) ) contains the estimated scores for the 3     components 

of the 𝑖-th observation. Let’s consider that the matrix	𝐙 ∈ ℝ-×	- consisting of blocks 

		𝐙(%`) ∈ ℝ-#×-& with entries  

						𝑍(8
(%`) = Covn𝜓%,( , 𝜓`,8o,										𝑗 = 1,… , 𝐽%,			𝑘 = 1,… , 𝐽 ,			𝑝, 𝑞 = 1,2,3.                        
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An estimate 𝐙¢ ∈ ℝ-×- of the matrix Z is given by 

      𝐙¢ = '
&L'

𝚵=𝚵.                                                                                                          
 
 3. Perform a matrix eigen-analysis for 𝐙¢ resulting in eigenvalues 𝜆p( and construct the 

  orthonormal eigenvectors 𝐯§𝐣. 

4.  Elements of the estimated multivariate eigenfunctions are given by 
 
       𝜙¢%,(n𝑡%o = ∑ �𝛎§ 𝐣�%,8

-#
8.' 𝜙 ¢%,8n𝑡%o,				𝑡% ∈ 𝐼%	,			𝑗 = 1,… , 𝐽, 𝑝 ∈ {𝑥, 𝑦, 𝑧};                   

 
 And the corresponding multivariate scores are calculated via 
 
      𝜉pl

(1) = ∑ ∑ �𝛎§ 𝐣�%,8𝜓%,8
(1)-#

8.'
9
%.' = 𝚵1	∙𝛎§𝐣.                                                                          

 
These estimated eigen values and functions are derived under the assumption of a finite 

sample size 𝑛 and a finite Karhunen-Loève representation for each univariate function 

𝑋%.  

4.3.4      Functional Linear Discriminant Analysis for Craniodental Views of Shrew 
Specimens 

 

     The MFPC scores from the landmarks were then applied in LDA to distinguish among 

the categories studied and the results were compared with the PCA of the GM approach.  

In terms of object recognition, it is generally believed that LDA tends to be superior 

compared to PCA (Martinez & Kak, 2001). LDA is a dimension reduction technique that 

is often used to model differences in groups. Functional linear discriminant analysis 

(FLDA) is an extension of linear discriminant analysis (LDA) to the case where the 

predictor variables are curves or functions (James & Hastie, 2001) of linear discriminant 

analysis (LDA) to the case where the predictor variables are curves or functions (James 

& Hastie, 2001).  

 FLDA enables the generation of classifications for new curves, offers an estimation of 

the discriminant function distinguishing between classes, and furnishes a one- or two-

dimensional graphical depiction of a collection of curves (James & Hastie, 2001). The 
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number of PC scores used in LDA are obtained based on a threshold of 90% variation 

explained to compare rates of classification for both GM and FDGM methods. FLDA 

uses a spline curve, which is parameterised using a basis function multiplied by a 𝑑- 

dimensional coefficient vector to effectively transform the data into a single 𝑑- 

dimensional space (James & Hastie, 2001). This classifier also includes the random error 

to model observations from each individual (James & Hastie, 2001). The coefficient 

vector is then modelled using a Gaussian distribution with common covariance matrix for 

all classes by analogy with LDA (James & Hastie, 2001). The observed curves can then 

be pooled to estimate the covariance and mean for each class, which makes it possible to 

form accurate estimates for each individual curve based on only a few observations 

(James & Hastie, 2001). 

     Let 𝑀 be the set of classes with 𝑄 denoted as the covariance matrix of the variables 

centered on the class mean, and 𝐵 be predictions by the class means (Venables & Ripley, 

2002). Let 𝐻 be the 𝑀 ×𝑊 matrix of class means, where 𝑊 ≥ 2 represents the 

categorical variables. Denote 𝐺 to be the 𝑛 ×𝑀 matrix of class indicator variables. Thus, 

the predictions are 𝐺𝐻. 𝜌̅ is the mean of the PC scores over the whole sample.  The sample 

covariance matrices are as follows. 

								𝑊 = (mLn)'(mLn)
&Lo

, 𝐵 = (nL'mp)'(nLmp)
oL'

 ,                                                              

 where 𝜌 are the selected PC scores. 

LDA maximises the ratio of the separation of the class means to the within-class variance 

by maximising the ratio c
'qc

c'rc
 where 𝑎 is the eigenvector of 𝐵 corresponding to the largest 

eigenvalue (Fisher, 1936). 
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4.4. Classification Models 

 

    Machine learning has been extensively used in morphometric studies for classification 

and identification tasks (Tan et al., 2018). NB, SVM, and RF were chosen as classification 

models as these models were commonly used in many classifications related studies. Van 

der Plaat et al. (2021) applied NB and RF classifiers for species classification in plant 

genetic resources collections.  GLM was one of the chosen classifiers to observe species 

distribution data at three fine scales: fine (Catalonia), intermediate (Portugal) and coarse 

(Europe) (Thuiller et al., 2003). The performances of the NB, SVM, RF and GLM 

methods on classification of species among the shrews were assessed using the principal 

component scores from functional data (MFPCA) and classical PCA scores. This was 

done using the e1071, MASS and caret packages in R. The combined analysis of all three 

views and each separate view was performed. Monte Carlo simulation was performed 

with 20 iterations to observe the possible output of each model. A brief description of 

these classification models is provided as follows: 

i) Naïve Bayes   

    The naïve Bayes (NB) classification model is a classifier used to estimate the posterior 

probability to provide a mechanism that utilises predictors of the training data (Sammut 

& Webb, 2010). This approach has been successfully applied to species identification 

tasks, particularly when dealing with categorical or discrete features describing species 

characteristics. Based on the MFPC scores obtained from this study, the Bayes theorem 

can be written as follows: 

							𝑃�𝑐1¯𝜉p'
(1), 𝜉p#

(1), 𝜉pj
(1 �) =

9(s()9t𝜉p'
(1), 𝜉p#

(1), 𝜉pj
(1)
u𝑐1v

9wxy)
((),xy!

((),xy,
(()z

		, 

 where 𝜉p'
(1), 𝜉p#

(1), 𝜉pj
(1) represents the selected MFPC scores and 𝑐1 represents the three 

shrew species (C. malayana, C. monticola and S. murinus). 
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ii)  Support Vector Machine  

    Support vector machine (SVM) addresses a multi-class problem as a single “all-

together” optimisation. This classifier can be used to find a hyperplane in a 2-dimensional 

space that will separate the scores to their potential species.  As this study emphasises on 

2D, thus the equation of the hyperplane in the two domains can be given as follows: 

					𝑦 =𝜉p{
(1)+𝜉p'

(1)𝑥' +𝜉p#
(1)𝑥# 

									= 𝑤{ +N𝑤1𝑥1

#

1.'

 

								= 𝑤{ +𝑤=𝑋 

								= 𝑏 + 𝑤=𝑋 

 The three main hyperparameters in SVM are the cost parameter (C), gamma (𝛾) and 

kernel. The cost (C) is the penalty parameter of the error term which controls the trade-

off between achieving a low training error and a low testing error. The gamma (𝛾) 

hyperparameter defines the influence of individual training samples and the kernel is used 

for mapping the input data into a higher-dimensional space. The radial basis function 

(RBF) is selected as the kernel function in this study due to its strong classification 

approach and its versatility in application without requiring prior knowledge of the dataset 

(Mustaqeem & Saqib, 2021). SVM-RBF can be defined as follows: 

				𝑘(𝑥', 𝑥#) = exp(−𝛾h|𝑥' − 𝑥#|h
#), 

where 𝛾 > 0, 𝛾 = '
#|!
. 

 

iii)  Random Forest  

   Random forests (RF) is an algorithm for classification developed by Breiman (2001) 

that is based on bootstrap aggregating or bagging that combines the predictions of 

multiple decision trees to make a final prediction. This helps to reduce the variance of 
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the individual trees, therefore reducing the overall expected prediction error of the 

random forest. The working algorithm of the RF classifier is as follows: 

 

iv) Generalised Linear Model: Elastic Net Regularisation 

    The GLM classifier here is based on the elastic net penalty, which combines both L1 

(LASSO) and L2 (ridge) penalties. In the context of geometric morphometrics, elastic net 

regularisation can be applied to GLMs to control the complexity of the model and prevent 

overfitting when analysing shape data. The alpha (∝) is the parameter which controls the 

balance between L1 and L2 regularisation. Lambda (𝜆)is the penalty parameter that 

controls the strength of regularisation. This classifier based on the MFPC scores can be 

represented as h1 = 𝛽{ + 𝛽'𝜉p'
(1)+…+ 𝛽1𝜉pj

(1) with a link function (softmax function for 

multi-class classification) that describes how the mean, E(𝑌1) = 𝜇1  depends on the linear 

predictor, 𝑔(𝜇1) = h1 . The GLM classifier also has a variance function that describes 

how the variance, 𝑣𝑎𝑟(𝑌1) depends on the mean, 𝑣𝑎𝑟(𝑌1) = 𝜙𝑣𝑎𝑟(𝜇1) where the 

dispersion parameter, 𝜙 is a constant. 

 
4.5     Results and Discussion 

 MFPCA using the functional data of all views combined gave a total of 31 eigenvalues. 

The first two MFPCs accounted for 81.56% of the total variation in the species of shrews. 

PCA using the GM method yields 89 principal components where the first two PCs 

explained 62.94%. The functional principal components show a comparable separation 

(Figure 4.5(b)) to the classical GM approach. Suncus murinus is shown to be well 
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separated in both methods (Figure 4.5 (a)(b)). Based on the principal component loadings, 

LM1 of dorsal view (i.e., the anterior most point of suture) is positively correlated to all 

three PCs indicating the strongest association to PC3. Thus, employing the FDGM 

approach has potential in examining the species variation of the shrews.  When PCA is 

separately conducted on each view, the dorsal view gives the best separation for the three 

shrew species compared to the other two views for both GM and FDGM methods (Figure 

4.6(a) and Figure 4.7(a)). 

 The dorsal view yielded a total of 10 MFPCs and the first two MFPCs explained 86.4% 

of the variation among the species. The GM method yields 46 PCs and the first two 

explained 59.24% of variation. The predicted MFPCA results gave a better separation 

among the three shrew species compared to the GM method.    

 There are 11 MFPCs for the jaw view where the first two MFPCs explained 89.31% 

of the variation in the species. There is a total of 89 classical PCs for the jaw view where 

the first two explained 73.13% of the variation.  As for the lateral view, there is a total of 

10 MFPCs and the total variation in species explained by the first two MFPCs is 90.90%. 

Out of the 89 PCs, the first 2 PCs of the GM approach for the lateral view explained 

74.29% of total variation. Although S. murinus is somewhat separated, the jaw view and 

lateral view show poor separation for all three species for the GM approach (Figure 4.6(b) 

and (c)). 

  A comparable result for species separation can be observed in the FDGM approach 

(Figure 4.7(b) and (c)) for both views. The performance of the classification models based 

on individual craniodental views and the combination of all three is evaluated using the 

selected PC scores of both the FDGM and GM approaches as the PCs of all the 

craniodental views lie within the general rule of thumb threshold of 90% in the FDGM 

approach. The overall improvement in results for all the classification models when the 

FDGM approach is applied compared to the GM method is shown in Table 4.1. 
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 The selected PC scores from GM and FDGM were then used in LDA to observe the 

percentage of separation among the three shrew species based on the craniodental views. 

 Based on GM, the percentage of separations achieved by the first discriminant function 

is 92.90%, second is 7.10% when all three craniodental views are combined. It is 

noticeable that the groups are quite well separated with FDGM showing better separation 

among the three species (Figure 4.8 (b)).  The percentage of separations achieved by the 

first discriminant function in FDGM is higher compared to GM, which is 99.89 %.  

 Based on the results obtained in FLDA when the three craniodental views are observed 

separately, the dorsal view showed a distinct separation of S. murinus compared to the 

other two shrew species, which overlapped (Figure 4.10 (a)). This result is expected 

because C. monticola and C. malayana belong to the same genus. Besides that, both 

species inhabit similar ecological niches as insectivorous mammals, primarily found in 

forested habitats.  Thus, the dorsal view of shrews plays an important role in capturing 

specific anatomical features of the shrews and providing unique insights into the overall 

shape and structure of the skull. This view provides a clear view of cranial sutures and 

landmarks, which are important for shrew species identification and comparative 

anatomy. Based on GM, the percentage of separations achieved by the first discriminant 

function is 92.90%, 98.00%, and 87.50% for dorsal, jaw and lateral respectively. The 

percentages of separation by the first discriminant function showed improvement in the 

FDGM method, which is 99.91% for the dorsal and jaw view, and 97.20% for the lateral 

view. C. monticola seems to be well grouped using the FDGM method for all views 

(Figure 4.10) compared to the GM method (Figure 4.9). In this thesis, the principal 

components utilised in LDA, FLDA, and other classification methods are derived from 

each craniodental views that collectively account for 90% of the explained variance. For 

the dorsal view, the first 3 MFPCs and the first 9 PCs are used for the FDGM and GM 

methods, respectively. For the jaw view, the first 2 MFPCs and the first 7 PCs are used 
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for the FDGM and GM methods, respectively. Similarly, for the lateral view, the first 2 

MFPCs and the first 7 PCs are used for the FDGM and GM methods, respectively. When 

combining craniodental views, the first 4 MFPCs and the first 15 PCs are used for the 

FDGM and GM methods, respectively.  FDGM needs fewer components than GM to 

account for the 90% explained variance threshold. FLDA leverages the full structure of 

functional data by considering the entire curve or shape as a single entity. This allows it 

to capture important patterns and relationships that might be missed if the data were 

simply reduced to a set of discrete measurements. In contrast, traditional LDA treats each 

measurement independently, potentially losing valuable contextual information. By 

modeling the data as functions, FLDA can better discriminate between classes based on 

the overall shape and structure of the data. This can lead to improved classification 

performance, especially in cases where the differences between classes are more subtle 

and spread across the entire function rather than concentrated in specific measurements.  

This is because FDGM represents shape variation as a continuous function over the entire 

curve or surface, whereas traditional GM typically represents shape using discrete 

landmark coordinates. This difference allows FDGM to capture more nuanced and 

continuous patterns of shape variation, which may be particularly beneficial for capturing 

subtle differences in shape between individuals or groups. FDGM also incorporates 

smoothing techniques or noise reduction algorithms as part of the functional data analysis 

process. This can help mitigate the effects of measurement error or noise in the shape 

data, leading to more distinct and well-defined groupings compared to the raw landmark 

data used in traditional GM methods. As the shape data represents functional curves or 

surfaces, FDGM explicitly models the functional dynamics of shape variation. This 

allows FDGM to capture temporal or spatial patterns of shape change, which may be 

critical for distinguishing between groups with subtle shape differences, such as those 

observed in C. monticola. 
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 Distinct clusters of the shrew species are more prominent when the standardised 

landmarks of the three craniodental views combined are analysed by FDGM and GM 

methods. FDGM is a better solution as the outlines of the skulls are treated as continuous 

curves rather than discrete points (Ramsay & Silverman, 2005).  

  As shown in Figure 4.5, PCA based on GM does not give a better separation of the 

shrew species compared to MFPCA of the FDGM approach. When the three craniodental 

views were individually examined (Figure 4.6 and Figure 4.7), the dorsal view showed 

the clearest separation among the three shrew species using both approaches. This is 

because the dorsal view gives the most comprehensive view of the skull which includes 

landmarks from all the major cranial features. Based on the results obtained, this study 

reveals that the dorsal view of the shrew skulls can be the most informative view for 

distinguishing between the three shrew species. 

 The least favourable separations are observed for the jaw view (Figure 4.6 (b)). The 

MFPCA of the FDGM approach shows comparable results with that of GM’s. As C. 

monticola and C. malayana belong to the same genus, there are similarities in the edges 

of the molar region for both species. The horseshoe effect present in the GM approach 

(Figure 4.6(b)) may indicate species turnover along environment gradients (Morton et al., 

2017).  

 This effect has been commonly observed in ecological ordination obtained by PCA 

using the GM method (Podani & Miklos, 2002). The plots of the MFPCA scores (Figure 

4.7(b)) reveal the presence of functional manifolds where the horseshoe effect is noticed 

(Wang et al., 2016). The lateral view also indicates an overlap between the two species. 

This is due to the similarity of the back curvature between the two as the region tends to 

be flat and a little sharp for S. murinus. 

 Considering that the FDGM framework relies on functions of craniodental curves 
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based on landmarks, the method shows viable results to the GM method in classification 

performance for all four models (Table 4.1). This is because MFPCA scores in machine 

learning can efficiently handle higher-dimensional data by capturing the functional 

nature, thus reducing dimensionality (Happ & Greven, 2018). Although PCs from GM 

reduce dimensionality, they might discard subtle but important variations by focusing on 

linear combinations of the original variables. Besides that, MFPCA provides scores that 

encapsulate smooth variations and inherent patterns in the data, making it easier for 

machine learning algorithms to discern meaningful distinctions between classes. The 

dorsal view gives the best rate of classification accuracy among the three views.  

  
                                     (a)                                                                 (b) 

 
 
 
 
 
Figure 4.5:  The PCs of the  (a) GM (b) FDGM methods for all three views (dorsal, 
jaw and lateral combined) 
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(a) (b) 

 

                                           
 
                                          (c) 
 
Figure 4.6: PCA plot using GM method for (a) dorsal view (b) jaw view (c) lateral 
view 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Univ
ers

iti 
Mala

ya



80 

 

  

(a) (b) 

 

 
   
                                          (c) 
Figure 4.7: MFPCA plot using FDGM method for (a) dorsal view (b) jaw view (c) 
lateral view 

 
 

  
                                      (a)                                                             (b) 

 
 
 
 
 
Figure 4.8: The LDs of the  (a) GM (b) FDGM methods for all three views (dorsal, 
jaw and lateral combined) 
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                                     (a)                                                          (b) 

   
                                     (c) 
Figure 4.9: LDA plot using GM method for (a) dorsal view (b) jaw view (c) lateral 
view 

  
                                      (a)                                                             (b) 
 

 
                                   (c) 
Figure 4.10: FLDA plot using FDGM method for (a) dorsal view (b) jaw view (c) 
lateral views 
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Table 4.1: The mean accuracy and the corresponding standard deviations (in 
brackets) on the test sample based on 20 replications using the FDGM and GM 
methods for views with dorsal, jaw and lateral combined. (b) individual views. 
 
 

Classifiers FDGM GM 

NB 0.976 
(0.035) 

0.881 
(0.074) 

SVM 0.962 
(0.034) 

0.962 
(0.034) 

RF 0.965 
(0.025) 

0.889 
(0.084) 

GLM 0.809 
(0.057) 

0.954 
(0.034) 

ANN 
 

0.965 
(0.035) 

0.911 
(0.050) 

 
Table 4.2: The mean accuracy and the corresponding standard deviations (in 
brackets) on the test sample based on 20 replications using the FDGM and GM 
methods for individual craniodental views. 

 
 

Classifiers FDGM GM 

 Dorsal Jaw Lateral Dorsal Jaw Lateral 

NB 0.969 
(0.029) 

0.565  
(0.080) 

0.820 
(0.050) 

0.993  
(0.019) 

0.578  
(0.071) 

0.841 
(0.058) 

SVM 0.950  
(0.044) 

0.557  
(0.063) 

0.800 
(0.063) 

0.950  
(0.044) 

0.557  
(0.063) 

0.800 
(0.063) 

RF 0.948  
(0.044) 

0.553  
(0.092) 

0.774 
(0.072) 

0.989 
(0.022) 

0.583  
(0.098) 

0.839 
(0.053) 

GLM 0.764  
(0.096) 

0.489  
(0.055) 

0.791 
(0.066) 

1.000 
(0.000) 

0.705 
(0.078) 

0.964 
(0.038) 

ANN 0.715  
(0.144) 

0.481  
(0.031) 

0.754 
(0.077) 

0.980 
 (0.028) 

0.520  
(0.085) 

0.815 
(0.079) 
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4.6     Simulation Studies For 2D Landmark Data 

  A simulation study is conducted to validate the general effectiveness of the 

methodology proposed in this work. The simulation was conducted using two approaches 

to assess the functional and classical PCAs. Method 1 simulates landmarks using the 

sim.coord function (Watanabe, 2018) where the coordinate data is generated with a 

specified number of specimens and landmarks from a multivariate normal distribution 

with zero mean and a variance-covariance structure using the mvrnorm function in the 

MASS R package (Venables & Ripley, 2002). Method 2 involves calculating the 

covariance matrix using the squared exponential function (Rasmussen, 2004). This 

method assumes that the coordinates are correlated with one another. The chosen PC 

scores of GM and FDGM were split into training data (70%) and test data (30%) to be 

applied into LDA and FLDA for both methods. The optimal number of iterations for both 

models is 100. 

Model 1: 

The simulation process where the coordinates are sampled from a multivariate normal 

distribution under a single variance-covariance scheme (unsmoothed data), which is 

based on the study conducted by Watanabe (2018) is as follows: 

(1) Generate the 2-D landmark data, {(	𝑥8,X) , 𝑦8,X))
W, … , (	𝑥8,X- , 𝑦8,X-)

W} for M 

groups, each with the same sample size with 𝑁 landmarks per individual using the 

sim.coord function (Watanabe, 2018). 

(2) Consider the PCA of GM and FPCA of FDGM based on 9. Calculate the 

cumulative proportion of variances explained for both methods for each iteration. 

Compute the means as well as standard errors for the 100 iterations. 
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(3) The approximate data is based on the dot product of the transpose of eigen vectors 

with transformed data for the PCA of GM and FPCA of FDGM. Calculate the 

reconstruction losses for both approaches. Compare the average and standard 

deviations of reconstruction loss for both methods for 100 iterations. 

(4) Compare the LDA outputs for GM and FDGM. 

Model 2: 

The simulation process considering the mean and covariance functions Rasmussen (2004) 

implemented for 100 iterations involves the following steps: 

(1) Generate sample points,{(	𝑥8,', 𝑦8,')W, … , (	𝑥8,@ , 𝑦8,@)W} , which are the test inputs 

used to define the mean and covariance functions based on 𝑁 landmarks per 

individual and 𝑑 dimensions. 

(2) Generate a data frame which consists of normal random variates with zero mean 

and covariance sigma.  

(3) Use the sample points obtained in Step 1 to calculate the covariance matrices based 

on the calculation done by (Rasmussen, 2004). 

(4) Sample the function values, corresponding to the sample points from the joint 

posterior distribution by evaluating the mean and covariance matrix. 

(5) Compute the covariance of the function values.  

(6) Using the function values and covariance function obtained in Step 5, generate the 

3-D landmark data for M groups, each with the same sample size with 𝑝 landmarks 

per individual using the sim.coord.p function (Watanabe, 2018). 

(7) The subsequent steps are similar to steps (2), (3) and (4) in Method 1. 

  

Univ
ers

iti 
Mala

ya



85 

 

An example of the comparison for the unsmoothed simulated landmark data, functional 

data, and the reconstructed functional data between the GM method and FDGM method 

(Model 1) is shown in Figure 4.11. The simulated data for Model 1 (Figure 4.11) is in an 

unsmoothed form and is not based on a functional data framework. Therefore, the results 

(Table 4.2) obtained are not favorable to the FDGM approach. For example, if the FDGM 

method assumes that the simulated data does not contain irregularities, this can lead to 

poor reconstruction. Therefore, this study uses Model 2, based on smoothed functional 

data which favours the functional data framework. 

4.6.1      Results and Discussion of Simulation Studies 

Table 4.2 shows that FDGM has a higher mean of cumulative variance for both 

simulation approaches used based on different numbers of groups and landmarks. For a 

fair comparison, the number of principal components used is based on a threshold value 

of 90% of variation explained. For example, for the first unsmoothed functional data 

simulation based on three groups for 20 landmarks, the number of PC for the GM method 

used is 27 and 1 MFPC using FDGM. As for the first smoothed functional data simulation 

based on three groups for 20 landmarks, the number of PC for the GM method are 

comparable with the FDGM method which is using three principal components.    In terms 

of reconstructed data using for both models, FDGM has a lower error of reconstruction 

compared to GM. FDGM seems to obtain comparable classification rate based on the 

fLDA prediction results obtained in Table 4.3 using test data for the mean-covariance 

smoothed data. Incorporating machine learning algorithms into both models significantly 

improves Model 2 when using the FDGM method (Table 4.5). It can be observed that 

FDGM performs better in Model 2 because it more thoroughly considers the functional 

data framework. In contrast, Model 1 generates landmarks by assuming a multivariate 

normal distribution with a specified variance-covariance matrix. Model 2 applied 

Gaussian process regression (GPR) to generate the landmark data.  The mean and 
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covariance are calculated through GPR to capture the smoothness in the data across a 

continuous domain. Therefore, while Model 1 is able to model correlated structures via 

correlation matrix, the data produced in Model 2 is aligned more closely with the 

principles of FDA due to the application of GPR. GM method outperforms FDGM in 

Model 1 as it takes more principal components to reach a threshold of 90% variation 

explained compared to FDGM.  However, when considering both methods, MFPCA 

yields better results in the aspect of dimension reduction as it maximises variation 

explained with a reduced number of components compared to PCA. Based on the results, 

both NB and SVM outperform RF in terms of classification accuracy. This is because one 

of the practical implications of the RF model construction is that there is no way to 

replicate predictions without an actual forest. Future predictions thus require the original 

forest (including the original data) or a new forest that replicates the predictions with 

synthetic data (Prajwala, 2015). Model development is also more complex as each data 

set would generate a different model and there is no easy way to compare model 

parameters. Hence, validation of prediction models in separate population cohorts is 

likely to be challenging. NB can handle high-dimensional data well if the features are 

independent, leveraging its simplicity and the probabilistic approach whereas SVM can 

handle high-dimensional data effectively, especially with appropriate kernel functions 

that map data into higher-dimensional spaces. Besides that, for data including categorical 

variables with different number of levels, RFs are biased in favor of those attributes with 

more levels (Prajwala, 2015).  Univ
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Figure 4.11: Comparison between functional data and reconstructed functional data 
based on Model 1 on 2D domains using the FDGM method (specimens are 
represented by coloured lines): (a) Dimension 1 (b) Dimension 2   

 

 

(a) 

(b) 

Landmark ID 

Landmark ID 
 

Univ
ers

iti 
Mala

ya



88 

 

 

 

Figure 4.12: Comparison between functional data and reconstructed functional data 
based on Model 2 on 2D domains using the FDGM method (specimens are 
represented by coloured lines): (a) Dimension 1 (b) Dimension 2  
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Table 4.3: Mean (standard error values in parenthesis) of cumulative variance and 
error of reconstructed data for GM and FDGM methods for (i) Model 1 and (ii) 
Model 2 (100 simulations) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

(i) 
 

Number 
of groups 

Number of 
landmarks 

Model 1 

Cumulative 
variance 

Error  of 
reconstructed data 

GM FDGM GM FDGM 
3 20 0.946 

(0.006) 
0.957 

(0.0061) 
1.231 

(0.115) 
0.756 

  (0.056) 

50 0.947 
(0.006) 

0.954 
(0.007) 

1.229 
(0.138) 

0.757 
(0.056) 

100 0.948 
(0.007 

0.954 
(0.007) 

1.238 
(0.124) 

0.766 
(0.056) 

4 20 0.946 
(0.005) 

0.957 
(0.005) 

1.383 
(0.123) 

0.761 
(0.049) 

50 0.948 
(0.004) 

0.955 
(0.006) 

1.385 
(0.114) 

0.765 
(0.051) 

100 
 

0.948 
(0.005) 

0.953 
(0.006) 

1.373 
(0.120) 

0.767 
(0.045) 

5 20 0.945 
(0.003) 

0.956 
(0.004) 

1.485 
(0.125) 

0.761 
(0.045) 

50 0.947 
(0.005) 

0.954 
(0.006) 

1.466 
(0.123) 

0.762 
(0.041) 

100 0.948 
(0.004) 

0.953 
(0.005) 

1.464 
(0.133) 

0.773 
(0.046) 
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Table 4.3, continued. 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

(ii) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number 
of groups 

Number of 
landmarks 

Model 2 

Cumulative 
variance 

Error of 
reconstructed data 

GM FDGM GM FDGM 
3 20 0.945 

(0.006) 
0.956 

(0.006) 
1.226 

(0.115) 
0.115 

(0.062) 

50 0.948 
(0.006) 

0.955 
(0.007) 

1.229 
(0.122) 

0.764 
(0.054) 

100 0.948 
(0.005) 

0.953 
(0.006) 

1.224 
(0.119) 

0.761 
(0.065) 

4 20 0.945 
(0.006) 

0.955 
(0.006) 

1.386 
(0.139) 

0.753 
(0.051) 

50 0.947 
(0.006) 

0.954 
(0.006) 

1.372 
(0.143) 

0.764 
(0.049) 

100 
 

0.948 
(0.005) 

0.954 
(0.006) 

1.386 
(0.117) 

0.768 
(0.046) 

5 20 0.944 
(0.005) 

0.955 
(0.005) 

1.475 
(0.116) 

0.761 
(0.043) 

50 0.948 
(0.004) 

0.954 
(0.004) 

1.460 
(0.127) 

0.768 
(0.043) 

100 0.950 
(0.121) 

0.954 
(0.048) 

1.497 
(0.005) 

0.773 
(0.005) 
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Table 4.4: Mean of proportion of trace of LDA and fLDA of test data for GM and 
FDGM methods for Model 1 and Model 2 (100 simulations) 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Number of 
groups 

Number of 
landmarks 

Model 1 Model 2 

GM FDGM GM FDGM 

3 20 0.333 
( 0.047) 

0.283 
( 0.070) 

0.220 
(0.038) 

0.447 
(0.077) 

50 0.316 
( 0.117) 

0.416 
( 0.117) 

0.206 
(0.043) 

0.353 
(0.122) 

100 0.350 
( 0.023) 

0.333 
(0.000) 

0.260 
(0.072) 

0.400 
(0.047) 

4 20 0.325 
( 0.070) 

0.287 
( 0.053) 

0.130 
(0.040) 

0.220 
(0.033) 

50 0.375 
( 0.035) 

0.337 
( 0.123) 

0.240 
(0.074) 

0.300 
(0.047) 

100 0.225 
( 0.035) 

0.225 
(0.000) 

0.170 
(0.041) 

0.215 
(0.051) 

5 20 0.220 
( 0.028) 

0.210 
( 0.070) 

0.084 
(0.038) 

0.224 
(0.055) 

50 0.300 
(0.004) 

0.240 
(0.059) 

0.089 
(0.028) 

0.285 
(0.071) 

100 0.180 
(0.036) 

0.160 
(0.052) 

0.077 
(0.037) 

0.214 
(0.061) 
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Table 4.5: Mean of classification accuracy of classifiers for (i) GM and (ii) FDGM 
methods for Model 1 (100 simulations) 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

       (i) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number 
of 
groups 

Number of 
landmarks 

Model 1 

GM 

  NB SVM RF GLM ANN 
3 20 0.411 

( 0.015) 
0.400 

(0.125) 
0.433 

(0.047) 
0.222 

(0.031) 
0.355 

(0.031) 
50 0.422 

(0.000) 
0.355 

( 0.031) 
0.355 

(0.000) 
0.211 

( 0.109) 
0.411 

( 0.078) 
100 0.433 

( 0.204) 
0.422 

( 0.062) 
0.477 

( 0.109) 
0.244 

( 0.031) 
0.411 

( 0.078) 
4 20 0.308 

( 0.035) 
0.316 

(0.000) 
0.266 

( 0.070) 
0.175 

( 0.011) 
0.291 

( 0.058) 
50 0.383 

(0.000) 
0.316 

( 0.070) 
0.325 

( 0.082) 
0.250 

( 0.023) 
0.325 
( 0.058) 

100 0.408 
( 0.011) 

0.391 
( 0.035) 

0.341 
( 0.011) 

0.141 
( 0.035) 

0.333 
(0.000) 

5 20 0.313 
( 0.028) 

0.246 
( 0.009) 

0.260 
( 0.028) 

0.153 
( 0.009) 

0.246 
( 0.103) 

50 0.280 
( 0.018) 

0.246 
(0.028) 

0.286 
( 0.028) 

0.193 
( 0.009) 

0.206 
( 0.084) 

100 0.313 
( 0.028) 

0.246 
( 0.009) 

0.260 
(0.028) 

0.153 
( 0.009) 

0.246 
( 0.103) 
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Table 4.5, continued. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

(ii) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Number 
of 
groups 

Number of 
landmarks 

Model 1 

 
FDGM 

  NB SVM RF GLM ANN 
3 20 0.333 

(0.125) 
0.366 

(0.141) 
0.322 

(0.141) 
0.177 

(0.031) 
0.333 

(0.157) 
50 0.355 

( 0.062) 
0.333 

( 0.031) 
0.388 

( 0.109) 
0.288 

( 0.031) 
0.233 

( 0.078) 
100 0.322 

( 0.141) 
0.322 

( 0.047) 
0.311 

( 0.031) 
0.244 

( 0.031) 
0.211 

( 0.015) 
4 20 0.266 

( 0.023) 
0.308 

( 0.011) 
0.241 

( 0.035) 
0.225 

( 0.058) 
0.208 

( 0.011) 
50 0.333 

(0.000) 
0.266 

( 0.047) 
0.300 

(0.000) 
0.150 

( 0.023) 
0.225 
( 0.035) 

100 0.291 
( 0.011) 

0.308 
( 0.035) 

0.241 
( 0.012) 

0.175 
( 0.035) 

0.191 
( 0.082) 

5 20 0.260 
( 0.028) 

0.220 
( 0.009) 

0.213 
( 0.018) 

0.146 
( 0.018) 

0.160 
( 0.018) 

50 0.253 
(0.000) 

0.253 
( 0.056) 

0.286 
( 0.028) 

0.166 
(  0.009) 

0.193 
( 0.009) 

100 0.260 
( 0.028) 

0.220 
( 0.009) 

0.213 
( 0.018) 

0.146 
( 0.018) 

0.160 
( 0.018) 
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Table 4.6: Mean of classification accuracy of classifiers for (i) GM and (ii) FDGM 
methods for Model 2 (100 simulations) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

(i) 

 

 

 

 

 

 

 

 

 

 

 

 

Number 
of 
groups 

Number of 
landmarks 

Model 2 

 
GM 

  NB SVM RF GLM ANN 
3 20 0.500 

(0.047) 
0.235 

(0.133) 
0.027 

(0.036) 
0.467 

(0.125) 
0.613 

(0.086) 
50 0.320 

(0.144) 
0.160 

(0.059) 
0.004 

(0.059) 
0.246 

(0.086) 
0.413 

(0.119) 
100 0.387 

(0.136) 
0.200 

(0.047) 
0.013 

(0.030) 
0.493 

(0.089) 
0.426 

(0.036) 
4 20 0.360 

(0.153) 
0.133 

(0.053) 
0.000 

(0.000) 
0.373 

(0.121) 
0.347 

(0.145) 
50 0.293 

(0.101) 
0.120 

(0.056) 
0.000 

(0.000) 
0.347 

(0.110) 
0.347 
(0.159) 

100 0.347 
(0.185) 

0.147 
(0.087) 

0.000 
(0.000) 

0.467 
(0.133) 

0.280 
(0.109) 

5 20 0.253 
(0.128) 

0.067 
(0.047) 

0.000 
(0.000) 

0.307 
(0.101) 

0.360 
(0.112) 

50 0.304 
(0.127) 

0.076 
(0.090) 

0.000 
(0.000) 

0.314 
(0.074) 

0.286 
(0.050) 

100 0.276 
(0.105) 

0.095 
(0.065) 

0.000 
(0.000) 

0.247 
(0.114) 

0.295 
(0.153) 
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Table 4.6, continued. 

                 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

(ii) 

 

4.7             Conclusion 

 In this chapter, the use of FDGM on landmark data is proposed to study the shapes of 

the dorsal, lateral, and jaw of shrew skulls in a functional form. The findings suggest that 

FDGM shows comparable results with GM for classification among the three species. 

The number of selected components in MFPCA can affect the classification quality. 

Therefore, a threshold of 90% explained variance is used to select the principal 

components for the GM and FDGM methods for fair comparison. Based on the results 

obtained, FDGM requires fewer components than GM to reach the 90% explained 

variance threshold. In addition, the results also revealed that the dorsal view emerges as 

the best representation for classifying the species in both approaches. The proposed 

approach utilises data smoothing to represent landmark coordinates as a function derived 

Number 
of 
groups 

Number of 
landmarks 

Model 2 

 
FDGM 

  NB SVM RF GLM ANN 
3 20 0.633 

(0.237) 
0.700 

(0.047) 
0.667 

(0.149) 
0.787 

(0.247) 
0.950 

(0.960) 
50 0.800 

(0.262) 
0.680 

(0.268) 
0.586 

(0.246) 
0.586 

(0.165) 
0.840 

(0.160) 
100 0.760 

(0.138) 
0.786 

(0.314) 
0.720 

(0.272) 
0.720 

(0.207) 
0.693 

(0.252) 
4 20 0.600 

(0.287) 
0.720 

(0.172) 
0.572 

(0.121) 
0.640 

(0.180) 
0.613 

(0.231) 
50 0.546 

(0.087) 
0.653 

(0.119) 
0.706 

(0.121) 
0.680 

(0.173) 
0.773 
(0.121) 

100 0.627 
(0.161) 

0.640 
(0.269) 

0.453 
(0.159) 

0.626 
(0.238) 

0.667 
(0.282) 

5 20 0.867 
(0.094) 

0.720 
(0.166) 

0.693 
(0.293) 

0.707 
(0.101) 

0.853 
(0.172) 

50 0.876 
(0.202) 

0.667 
(0.128) 

0.828 
(0.153) 

0.752 
(0.179) 

0.771 
(0.128) 

100 0.676 
(0.194) 

0.629 
(0.246) 

0.628 
(0.285) 

0.781 
(0.120) 

0.610 
(0.156) 
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from raw data, enhancing pattern clarity, and making it a potentially useful tool in 

morphometrics research. However, FDGM may encounter challenges in accurately 

capturing complex and non-linear shape transformations. This is because biological 

structures often exhibit complex shape transformations influenced by a myriad of factors, 

such as genetic variation, developmental processes, and environmental influences. 

Capturing these complex shape variations accurately with FDGM may require more 

sophisticated modeling techniques and larger, more diverse datasets. Additionally, 

integrating FDA techniques with GM requires careful data preprocessing and analytical 

methods to mitigate biases or errors. Despite these challenges, FDGM has the potential 

to analyse shape variation by modeling shape changes as continuous functions. This 

departure from traditional discrete landmark-based methods allows for a more 

comprehensive representation of shape, capturing subtle variations and non-linear 

transformations more effectively. By exploring the theoretical and practical 

advancements offered by FDGM, this study aims to contribute to the methodological 

toolkit of GM and facilitate more accurate and insightful analyses of biological shape 

data. Additionally, FDGM integrates principles from functional data analysis with GM, 

providing a more robust framework for analysing shape data. Practically, FDGM 

enhances the accuracy and sensitivity of shape analysis by enabling the examination of 

shape changes along continuous curves or surfaces.  

This can lead to more precise identification of shape differences between groups and 

better understanding of shape variation within populations. Future studies can address 

these challenges and further explore the potential of FDGM. Additionally, ongoing 

research on three-dimensional FDGM extensions holds promise for further enhancing 

morphometrics analysis.     

Univ
ers

iti 
Mala

ya



97 

 

 
CHAPTER 5: FDGM IN 3D GEOMETRIC MORPHOMETRICS  

 
 
 
 
5.1 Introduction 

  Craniodental morphology, the study of skull and dental structures, plays a pivotal role 

in unraveling the evolutionary biology, taxonomy, and ecological adaptations of 

marsupials. Marsupials, a diverse group of mammals primarily inhabiting Australia and 

the Americas (Beck et al., 2022), display a wide array of craniodental features reflecting 

their diverse diets. By scrutinising these features, researchers can glean insights into the 

evolutionary trajectories and adaptive strategies that have enabled marsupials to thrive in 

various environments. Morphological analyses often employ GM to discern subtle 

differences and similarities among species, shedding light on their evolutionary 

relationships and ecological roles.  

Astúa et al. (2000) conducted a comprehensive analysis of cranial shape variation 

among six species representing the six largest living genera of the New World marsupial 

family Didelphidae. Utilising 2D landmark data, they captured and digitised video images 

of the skull and mandible for each species, providing a detailed exploration of cranial 

morphology within this taxonomic group. Their findings underscored the distinctiveness 

among species, emphasising the significant role of ecological factors in shaping cranial 

morphology (Astúa et al., 2000).  Viacava et al. (2022) employed 3D GM of the cranium 

to enhance taxonomic differentiation and offer ecomorphological insights into a cryptic 

divergence within the carnivorous marsupial genus Antechinus. Their study highlighted 

the utility of 3D GM in elucidating the adaptive origins and potential threats to 

mammalian diversity, offering valuable perspectives for conservation planning in the face 

of environmental change (Viacava et al., 2022). 
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Butler et al. (2021) investigated the relationship between cranial and mandibular shape 

variation of extant and extinct macropodiforms, considering ecological factors such as 

diet, locomotion, and body mass. Utilising 3D GM analysis, they examined 42 living 

species and eight extinct species from two radiations, including the extinct clade of 

Balbaridae and early representatives of the extant Macropodidae. Their study revealed 

strong correlations between dietary class (fungivore, browser, grazer, mixed feeder) and 

cranial shape variation, along with significant associations between cranial shape and 

locomotor mode and body mass. These findings underscored the importance of 

integrating morphometric analyses with ecological and phylogenetic considerations to 

deepen our understanding of the feeding ecology and evolutionary history of extinct 

kangaroos and their adaptation to changing environments (Butler et al., 2021).  

 This thesis revolves around GM based on 3D landmarks data of kangaroos to 

investigate the relationship between variation in cranial and mandibular shape of extant 

macropodiformes with their dietary categories.  

 A multivariate functional principal component analysis (MFPCA) is then performed 

to produce interpretable descriptive analysis of the functional data obtained. The principal 

component (PC) scores obtained from both GM and FDGM are used to construct the 

linear discriminant analysis (LDA) model. 

 

  5.2   Functional Data Geometric Morphometrics in 3D Landmark Data  

  Landmark registration offers a straightforward approach that is used to detect and align 

some specific data points for each observation to the corresponding mean value, which 

provides a better representation of the mean in terms of amplitude variation. Each 

observation is vector-valued, as three spatial coordinates which are the 𝑥, 𝑦 and 𝑧 − 

coordinates are involved. To implement functional data in an object-oriented way, the 

raw data is converted into functions.  
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These three univariate functional datasets composed a multivariate functional data, 

with 𝑛 outlines, each yielding a vector of 𝑛 observations defined as a 3 −dimensional 

functional domain. The MFPCA (Happ-Kurz, 2020) package is used to perform the 

conversion to functional data (Ramsay & Silverman, 2005). Since the three-dimensional 

landmark data is an extension of the two-dimensional case, where the individual data 

vector has been extended from length two to three, the methodology of analysis remains 

the same as in the two-dimensional case. After acquiring the multivariate functional data, 

MFPCA is performed using the univariate functional principal components. The PCA 

basis functions are estimated from the multivariate functional data.  
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Figure 5.1: (a) 48 landmarks included for crania: 30 single landmarks and 18 
semilandmarks in (i) dorsal view (ii) ventral view (iii) lateral right view (iv) lateral 
left view and (v) posterior view and for dentaries in (vi) lateral right view, (vii) lateral 
left view and (viii) occlusal view (Photo sourced from Butler et al., 2021). Single 
landmarks are represented by black dots while semilandmarks are represented by 
red dots with a black outline; (b) 3D representation of the 𝒙, 𝒚 and	𝒛 − coordinates 
for the 48 symmetric shape landmark data of crania; (c) 3D domains of converted 
functional data of the symmetric shape landmark data using the FDGM method 
(specimens are represented by coloured lines) for: (i) Dimension 1, (ii) Dimension 2, 
(iii) Dimension 3 

 

(b) 

(a) 

(i) (ii) (iii) 

(v) 

(iv) 

(vi) 

(vii) (viii) 
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(c) 

                     Figure 5.1, continued.  

5.3 Simulation Studies for 3D Landmark Data 

 A simulation study for 3D landmarks is conducted to validate the general effectiveness 

of the methodology proposed in this work. Method 1 simulates landmarks using the 

sim.coord function (Watanabe, 2018) where the coordinate data is generated with a 

specified number of specimens and landmarks from a multivariate normal distribution 

with zero mean and a variance-covariance structure using the mvrnorm function in the 

MASS R package (Venables & Ripley, 2002). Method 2 involves calculating the 

covariance matrix using the squared exponential function (Rasmussen, 2004). This 

method assumes that the coordinates are correlated with one another. The selected PC 

scores of GM and FDGM were split into training data (70%) and test data (30%) to be 

applied into LDA and FLDA for both methods. The optimal number of iterations for both 

models is 100. 

(i) (ii) (iii) 

Number of landmarks Number of landmarks Number of landmarks 

Univ
ers

iti 
Mala

ya



102 

 

                    

 

	

Figure 5.2: Functional data based on Model 1 on three dimensional domains using 
the FDGM method (specimens are represented by coloured lines): (a) Dimension 1 
(b) Dimension 2 (c) Dimension 3 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

 (c) 

Number of landmarks Number of landmarks 

Number of landmarks 
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Figure 5.3: Functional data based on Model 2 on 3D domains using the FDGM 
method (specimens are represented by coloured lines): (a) Dimension 1 (b) 
Dimension 2 (c) Dimension 3 

 

5.3.1 Results of Simulation Studies 

 Table 5.1 shows that FDGM has higher mean of cumulative variance for both 

simulation approaches used based on different numbers of groups and landmarks.  In 

terms of reconstructed data using Model 1, GM performs better than FDGM due to the 

underlying simulation method which is biased towards multivariate normal coordinates 

that can easily be reconstructed to its original form based on the classical PCs. FDGM 

can be considered as comparable although some information may be lost when the points 

are converted into functions.  

(a) (b) 

(c) 

Number of landmarks Number of landmarks 

Number of landmarks 
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 However, Model 2 favours FDGM in terms of the performance of MFPCA as well as 

the mean error of the reconstructed data, with the PCA of GM having larger errors. Table 

5.2 shows that FDGM has a higher mean of proportion of trace using training data for the 

mean-covariance smoothed data based on different number of groups and landmarks.  In 

terms of unsmoothed data (with weak correlation), GM seems to perform better than 

FDGM, similar to the cumulative proportion of variance. This may be due to unsmoothed 

landmark data construction in Model 1 without any functional structure, which means 

that it does not consider any patterns in the data. Model 2, on the other hand, includes the 

functional data structure. This means that it considers the patterns in the data, which 

makes it more likely to be accurate than Model 1, as it considers more information about 

the data. FDGM seems to significantly improve the classification rate based on the FLDA 

prediction results obtained in Table 5.3 using test data for the mean-covariance smoothed 

data. The results in Table 5.3 give the correct percentage of classification that is compared 

with the training data.  
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Table 5.1: Mean (standard error values in parenthesis) of cumulative variance and 
error of reconstructed data for GM and FDGM methods for the entire (i) Model 1 
and (ii) Model 2 (100 simulations) 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

(i) 

 

 

 

 

 

 

 

 

 

 

Number 
of groups 

Number of 
landmarks 

Model 1 

Cumulative 
variance 

Error of 
reconstructed data 

GM FDGM GM FDGM 

3 20 0.379 
(0.022) 

0.994 
(0.004) 

1.229 
(0.012) 

1.423 
(0.025) 

50 0.350 
(0.017) 

0.997 
(0.021) 

1.289 
(0.0014) 

1.411 
(0.015) 

100 0.337 
(0.024) 

0.998 
(0.001) 

1.314 
(0.0112) 

1.408 
(0.012) 

4 20 0.269 
(0.017) 

0.997 
(0.002) 

1.816 
(0.017) 

1.966 
(0.019) 

50 0.271 
(0.017) 

0.996 
(0.002) 

1.814 
(0.019) 

1.963 
(0.021) 

100 0.270 
(0.015) 

0.996 
(0.002) 

1.813 
(0.016) 

1.963 
(0.019) 

5 20 0.207 
(0.013) 

0.996 
(0.002) 

2.362 
(0.018) 

2.534 
(0.021) 

50 0.208 
(0.012) 

0.996 
(0.002) 

2.364 
(0.022) 

2.537 
(0.025) 

100 0.210 
(0.012) 

0.996 
(0.002) 

2.367 
(0.021) 

2.540 
(0.023) 
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Table 5.1, continued. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(ii) 
 

 

 

 

 

 

 

 

 

 

 

 

Number 
of groups 

Number of 
landmarks 

Model 2 

Cumulative variance Error of 
reconstructed data 

GM FDGM GM FDGM 

3 20 0.947 
(0.006) 

0.958 
(0.0060) 

1.222 
(0.1173) 

0.795 
(0.056) 

50 0.948 
(0.006) 

0.955 
(0.008) 

1.240 
(0.136) 

0.815 
(0.058) 

100 0.950 
(0.006) 

0.955 
(0.007) 

1.238 
(0.112) 

0.812 
(0.060) 

4 20 0.947 
(0.005) 

0.957 
(0.005) 

1.385 
(0.130) 

0.810 
(0.056) 

50 0.984 
(0.005) 

0.954 
(0.005) 

1.391 
(0.137) 

0.813 
(0.051) 

100 0.949 
(0.005) 

0.953 
(0.005) 

1.409 
(0.127) 

0.830 
(0.051) 

5 20 0.947 
(0.005) 

0.958 
(0.006) 

1.372 
(0.112) 

0.814 
(0.058) 

50 0.949 
(0.005) 

0.955 
(0.005) 

1.374 
(24.746) 

7.167 
(6.193) 

100 0.949 
(0.005) 

0.954 
(0.006) 

1.377 
(0.121) 

0.825 
(0.052) 
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Table 5.2: Mean of classification rate of LDA and FLDA for test data of Model 1 
and Model 2 (100 simulations) 

 

 

 

 

 

 

 

 

 

 

 

Number of 
groups 

Number of 
landmarks 

Model 1 Model 2 

GM FDGM GM FDGM 

3 20 0.376 
(0.056) 

0.323 
(0.059) 

0.228 
(0.073) 

0.333 
(0.115) 

50 0.376 
(0.056) 

0.323 
(0.059) 

0.180 
(0.037) 

0.357 
(0.093) 

100 0.390 
(0.137) 

0.352 
(0.093) 

0.204 
(0.059) 

0.371 
(0.052) 

4 20 0.260 
(0.042) 

0.246 
(0.061) 

0.128 
(0.039) 

0.282 
(0.037) 

50 0.260 
(0.042) 

0.278 
(0.074) 

0.167 
(0.044) 

0.239 
(0.055) 

100 0.232 
(0.027) 

0.278 
(0.110) 

0.150 
(0.050) 

0.246 
(0.044) 

5 20 0.270 
(0.070) 

0.250 
(0.014) 

0.131 
(0.030) 

0.203 
(0.039) 

50 0.300 
(0.028) 

0.190 
(0.042) 

0.114 
(0.042) 

0.202 
(0.054) 

100 0.211 
(0.034) 

0.202 
(0.072) 

0.105 
(0.034) 

0.149 
(0.034) 
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 Table 5.3: Mean of classification rate of classifiers for (i) GM and (ii) FDGM 
methods for Model 1 (100 simulations) 

 

  

 

 

 

 

 

 

 

 

    

 

 

 

 

 

         (i) 

Number 
of 
groups 

Number of 
landmarks 

Model 1 

GM 

  NB SVM RF GLM ANN 
3 20 0.393 

(0.061) 
0.358 

(0.048) 
0.396 

(0.060) 
0.234 

(0.038) 
0.368 

(0.102) 
50 0.393 

(0.061) 
0.358 

(0.048) 
0.396 

(0.060) 
0.234 

(0.038) 
0.368 

(0.102) 
100 0.463 

(0.053) 
0.409 

(0.068) 
0.419 

(0.039) 
0.244 

(0.058) 
0.374 

(0.086) 
4 20 0.328 

(0.023) 
0.304 

(0.051) 
0.283 

(0.050) 
0.173 

(0.031) 
0.273 

(0.052) 
50 0.373 

(0.043) 
0.330 

(0.043) 
0.335 

(0.047) 
0.180 

(0.039) 
0.242 
(0.075) 

100 0.371 
(0.053) 

0.364 
(0.042) 

0.347 
(0.040) 

0.145 
(0.036) 

0.295 
(0.039) 

5 20 0.286 
(0.028) 

0.226 
(0.056) 

0.220 
(0.047) 

0.166 
(0.047) 

0.240 
(0.018) 

50 0.300 
(0.028) 

0.253 
(0.000) 

0.253 
(0.018) 

0.193 
(0.028) 

0.246 
(0.009) 

100 0.304 
(0.058) 

0.266 
(0.052) 

0.289 
(0.055) 

0.144 
(0.017) 

0.222 
(0.053) 
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Table 5.3, continued.                        

 
       (ii) 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Number 
of 
groups 

Number of 
landmarks 

Model 1 

FDGM 

  NB SVM RF GLM ANN 
3 20 0.374 

(0.084) 
0.371 

(0.080) 
0.349 

(0.073) 
0.250 

(0.073) 
0.266 

(0.044) 
50 0.374 

(0.084) 
0.371 

(0.080) 
0.349 

(0.073) 
0.250 

(0.073) 
0.266 

(0.044) 
100 0.390 

(0.042) 
0.368 

(0.051) 
0.333 

(0.031) 
0.244 

(0.028) 
0.298 

(0.054) 
4 20 0.295 

(0.051) 
0.304 

(0.063) 
0.245 

(0.071) 
0.197 

(0.060) 
0.247 

(0.073) 
50 0.269 

(0.057) 
0.288 

(0.052) 
0.238 

(0.079) 
0.161 

(0.035) 
0.223 

(0.046) 
100 0.264 

(0.059) 
0.250 

(0.048) 
0.230 

(0.059) 
0.159 

(0.025) 
0.185 

(0.048) 
5 20 0.293 

(0.037) 
0.260 

(0.028) 
0.246 

(0.065) 
0.213 

(0.018) 
0.206 

(0.028) 
50 0.240 

(0.056) 
0.253 

(0.018) 
0.213 

(0.075) 
0.173 

(0.018) 
0.266 

(0.113) 
100 0.264 

(0.058) 
0.238 

(0.026) 
0.217 

(0.038) 
0.150 

(0.018) 
0.181 

(0.035) 
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Table 5.4: Mean of classification rate of classifiers for (i) GM and (ii) FDGM 
methods for Model 2 (100 simulations) 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 (i) 

 

 

 

 

 

 

 

Number 
of 
groups 

Number of 
landmarks 

Model 2 

GM 

  NB SVM RF GLM ANN 
3 20 0.333 

(0.115) 
0.161 

(0.084) 
0.038 

(0.052) 
0.447 

(0.131) 
0.361 

(0.100) 
50 0.285 

(0.137) 
0.152 

(0.092) 
0.019 

(0.032) 
0.371 

(0.085) 
0.323 

(0.071) 
100 0.352 

(0.137) 
0.171 

(0.075) 
0.009 

(0.025) 
0.419 

(0.113) 
0.295 

(0.065) 
4 20 0.314 

(0.074) 
0.114 

(0.113) 
0.000 

(0.000) 
0.314 

(0.092) 
0.323 

(0.118) 
50 0.285 

(0.084) 
0.104 

(0.075) 
0.010 

(0.025) 
0.428 

(0.126) 
0.352 

(0.099) 
100 0.323 

(0.080) 
0.190 

(0.080) 
0.009 

(0.025) 
0.428 

(0.126) 
0.333 

(0.121) 
5 20 0.266 

(0.121) 
0.085 

(0.074) 
0.000 

(0.000) 
0.419 

(0.125) 
0.342 

(0.151) 
50 0.276 

(0.089) 
0.076 

(0.071) 
0.000 

(0.000) 
0.361 

(0.148) 
0.304 

(0.100) 
100 0.295 

(0.093) 
0.085 

(0.063) 
0.000 

(0.000) 
0.314 

(0.083) 
0.342 

(0.104) 
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Table 5.4, continued. 
 

 

 

 

 

 

 

 

 

 

 

 

 

                        
(ii) 

 

5.4 Application to Real Data 

5.4.1 Data Description 

  The kangaroo landmark dataset is described in detail in Butler et al. (2021). 48 

landmarks on crania of 41 extant were used in this study to observe the credibility of the 

FDGM approach. There are 30 fixed landmarks, placed at “homologous” points on the 

crania and three sets of semi landmarks, equally spaced along the left molar row (six semi 

landmarks), right molar row (six semi landmarks), and sagittal axis of the cranial roof (six 

semi landmarks). To avoid human error in landmarking, the process was repeated twice 

for each specimen to obtain the mean shape of the two replicates for subsequent analysis 

(Butler et al., 2021).  

Number 
of 
groups 

Number of 
landmarks 

Model 2 

 
FDGM 

  NB SVM RF GLM ANN 
3 20 0.742 

(0.286) 
0.752 

(0.226) 
0.847 

(0.161) 
0.780 

(0.191) 
0.695 

(0.191) 
50 0.752 

(0.125) 
0.590 

(0.124) 
0.704 

(0.143) 
0.657 

(0.146) 
0.676 

(0.178) 
100 0.666 

(0.419) 
0.695 

(0.297) 
0.647 

(0.125) 
0.600 

(0.282) 
0.771 

(0.217) 
4 20 0.733 

(0.224) 
0.714 

(0.074) 
0.752 

(0.183) 
0.800 

(0.066) 
0.542 

(0.135) 
50 0.752 

(0.220) 
0.714 

(0.157) 
0.714 

(0.236) 
0.647 

(0.230) 
0.647 

(0.170) 
100 0.790 

(0.190) 
0.723 

(0.160) 
0.819 

(0.175) 
0.714 

(0.147) 
0.695 

(0.210) 
5 20 0.723 

(0.141) 
0.723 

(0.111) 
0.828 

(0.206) 
0.695 

(0.230) 
0.695 

(0.148) 
50 0.780 

(0.179) 
0.781 

(0.226) 
0.723 

(0.156) 
0.695 

(0.158) 
0.714 

(0.183) 
100 0.571 

(0.132) 
0.542 

(0.186) 
0.667 

(0.172) 
0.657 

(0.089) 
0.666 

(0.158) 
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  Statistical analysis to observe four dietary groups (fungivore, browser, grazer, and 

mixed feeder) of the extant species was performed in R version 4.2.1. To use the 

geometric morphometric data, the raw coordinates obtained from the cranial landmarks 

were aligned using generalised Procrustes analysis (GPA) (Rohlf & Slice, 1990) for 

optimal registration using translation, rotation, and scaling using the gpagen function in 

the geomorph package (Adams & Otárola-Castillo, 2013). Based on Butler et al. (2021), 

each semi landmark was allowed to slide along its respective tangent directions according 

to the TPS method (Gunz et al., 2005; Kraatz et al., 2015). The resulting symmetric shape 

data was used to perform PCA and LDA for both GM and FDGM methods. According to 

McCane (2013), outline methods produce useful and valid results when suitably 

constrained by landmarks, which leads to the main idea of this work to incorporate FDA 

approach (Figure 5.5) to observe the separation among the four dietary groups of the 

kangaroo extant species.  

    A total of 16 MFPCs are obtained from the converted functional data using MFPCA.  

The first three MFPCs explained 77.48% of the total variation in the dietary classification 

among the marsupials. A distinct cluster among dietary categories when using the MFPC 

scores (Figure 5.5(b)) is also observed. The PCA from GM yields 40 PCs, where the first 

three PCs explained 63.85% of variation (Figure 5.5(a)). There is also no overlapping 

among the groups when the functional approach is applied.  

    The number of principal components used is based on a threshold value of 90% of 

variation explained.  11 PCs were selected based on the GM method and 5 MFPCs using 

FDGM were used in LDA. The results for both approaches reveal a good separation 

between the four dietary categories, which are class labels. Based on GM, the percentage 

of separations achieved by the first discriminant function is 89.0%, second is 8.49 % and 

the third is 2.52 %. The first discriminant function is higher using the FDGM method 
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compared to GM, which is 97.34%. It is noticeable that the separations between groups 

are comparable for the two methods (Figure 5.6)).   

 

 

  

  (b) 

 

 

 

	

Figure 5.4: The PCs of the (a) GM and (b) FDGM methods for symmetric shape 
data 

(a) 
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      (a) 

  
(b) 

 
 

 

 

Figure 5.5: The first two LDs of the (a) GM and (b) FDGM methods for symmetric 
shape data 
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5.4.2 Results and Discussion 

  A comparative study of FDGM and GM was done to investigate four dietary categories 

based on the crania of 41 extant kangaroo species.  The findings of this study revealed the 

existence of the four dietary clusters when the standardised 3D landmarks of the views 

combined are converted into functional data, rather than being discretised in point sets. 

The PC scores improve classification as they are projected onto orthonormal 

eigenfunctions to capture prominent directions. The application of MFPCA reduces 

dimensionality by projecting the functional landmark data onto the set of orthonormal 

basis functions which induces the uniqueness of the MFPCA scores for each observation 

to improve classification accuracy. Using classical landmark-based approach can be 

difficult to standardise the selections, which can drastically differ results in classification 

tasks (Srivastava & Klassen, 2016). Thus, FDGM can be a more natural solution as the 

boundaries of the objects are treated as continuous curves, thus better matches the features 

across curves (Srivastava & Klassen, 2016).  

     As shown in Figure 5.5 (a), PCA based on GM gives a comparable presentation to 

FDGM (Figure 5.5(b)) in terms of the structure variability.  The grazing kangaroos group 

overlaps with the mixed feeding kangaroos’ group on all PC axes in both GM and FDGM 

methods. Based on Figure 5.6, LDA shows a better separation between both methods 

compared to the PCA results. FLDA forms a linear combination based on class labels to 

determine the directions of maximum variance, which makes it well-suited for 

classification tasks. Similar to LDA using the GM method, the FLDA uses linear 

combinations of continuous functions obtained from the functional data of the 3D 

landmarks to produce canonical functions to represent the typical LDA setting based on 

the dietary categories (Gardner-Lubbe, 2021). The MFPCA scores of the selected 

components are used to perform FLDA. 
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5.5         Conclusion 

 This study proposed the FDGM approach on 3D landmark data to represent the shapes 

of skulls which is an extension of the 2D FDGM framework. Simulation studies and 

application to real data showed that FDGM performed better than GM when PCA and 

LDA were employed. FDA methods can be used to analyse shape data as functional 

curves, which represent the continuous variation in shape across individuals or samples. 

FDA provides a powerful and flexible framework for analysing shape variation in 

geometric morphometrics research. This can help researchers to gain new insights into 

the underlying biological processes and functional relationships between shape and other 

variables. Outline analysis using FDA approach on the images can be considered for 

future studies to improve classification accuracy.  It is also of interest to overcome the 

challenge highlighted by White et al. (2023) relating multivariate data response 

specifications for traits to functional data response specifications to allow relational 

inference between responses in the search of causal factors in analysing shape.
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CHAPTER 6: CONCLUDING REMARKS 
 

6.1     Summary of Findings 

 In this thesis, RFE was applied into the study of traditional morphometrics to study 

selecting the most discriminant features for both male and female Rattus rattus to reduce 

the computational complexity of the models for classification of age groups. ANN was 

provided the best accuracy among three predictive classification models using all features 

and the RFE-selected features based on the age groups. This study also introduced a novel 

FDA approach for morphometrics in 2D and 3D geometric morphometrics. FDGM was 

proposed to classify the three shrew species based on the three craniodental views using 

2D landmark data by converting the 2D landmark data into continuous curves, which are 

then represented as linear combinations of basis functions. Its performance was then 

compared with GM and the results revealed that FDGM yields comparable results as GM 

in classifying the three shrew species, and the dorsal view was the best craniodental view 

for distinguishing the three shrew species. The work also showed that GLM was the most 

accurate among the five classification models based on the predicted PC scores obtained 

from both methods (combination of all three craniodental views and individual views). 

The FDGM method was further extended to the study of 3D landmark data to distinguish 

dietary categories of kangaroos. Based on the results obtained from the simulation studies 

conducted for 2D and 3D landmark data and application to real data, this study suggests 

that FDGM has potential in morphometrics studies to improve the accuracy and resolution 

of shape variation. Additionally, the use of machine learning algorithms in conjunction 

with FDGM can further enhance the performance of morphometric studies. 
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6.2     Contributions 

The study has contributed to morphometric studies in the following ways: 
 

i. The application of RFE as an alternative method for selecting features, especially 

when used alongside PCA, may improve the effectiveness and efficiency of 

classification models. This combination can leverage the strengths of both 

methods which is PCA's ability to reduce redundancy and RFE's focus on feature 

importance, leading to improved model performance in terms of both accuracy 

and efficiency. 

ii. The development of an FDA approach for morphometrics represents enables a 

more exhaustive and informative analysis of shape variation, making the results 

of FDGM comparable to those obtained through GM in this study.  

iii. FDGM is a new and powerful method for analysing shape variation in 2D and 3D 

landmark coordinate data. It has the potential to revolutionise the way that 

morphometric studies are conducted. In addition, this study also highlights the 

potential of machine learning algorithms for enhancing the performance of 

morphometric studies. 
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6.3     Further Research 

 As decision trees inherently perform feature selection, future studies could 

benefit from comparing the RFE approach with decision tree methods to evaluate 

their effectiveness in morphometric analyses. The FDGM can be further refined by 

addressing issues related to landmark coordinate data analysis, specifically by 

eliminating nuisance parameters such as translation and rotation (Lele and 

McCulloch, 2002). 

Conducting intensive simulations on both regular and irregular data, with the 

introduction of hyperparameter selection methods and with different datasets 

among several populations, species, and individuals, would be an intriguing area of 

study. This approach could be extended to image analysis by directly considering 

the specimen outlines from images and applied to a broader range of biological 

organisms, including plants, animals, and microorganisms. Moreover, the FDGM 

method could be integrated with various biological research disciplines, such as 

evolutionary biology, developmental biology, and ecology, to gain new insights 

into the biological significance of shape variation. It could also be extended to 

artificial intelligence (AI) for automatic recognition of organisms, incorporating 

categorical functional data. For instance, FDGM could be used to investigate how 

shape variation relates to environmental adaptation or is influenced by different 

developmental processes. Additionally, future morphometric research could benefit 

from developing and applying new machine learning algorithms based on the 

FDGM method, potentially leading to significant advancements in the field. 
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