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ON SOME METHODS OF FEATURE ENGINEERING USEFUL FOR
CRANIODENTAL MORPHOMETRICS OF RATS, SHREWS AND
KANGAROOS

ABSTRACT

This study examines the craniodental morphology of biological organisms using
functional data analysis (FDA). Traditional morphometrics (TM) often uses large
numbers of morphometric features to study shape variation among biological organisms.
However, this can lead to data redundancy, meaning that the features may contain
overlapping information. This study proposes using recursive feature elimination (RFE)
method to reduce data dimensionality and select the most important attributes based on
predictor importance ranking. RFE was applied to the craniodental measurements of
Rattus rattus (R.rattus) data to select the best feature subset for both male and female rats.
A comparative study based on machine learning algorithms was also conducted by using
all features and the RFE-selected features to classify the R. rattus sample based on the
age groups. The results showed that the RFE-selected features were able to improve the
classification accuracy of the machine learning algorithms. However, the linear
measurements used in TM can only detect changes in size and can be insensitive to
geometrical transformations. Therefore, GM is used in the subsequent work as it is more
sensitive to changes in shapes. Functional data geometric morphometrics (FDGM) for 2D
landmark data is introduced and its performance is compared with the classical GM
method. FDGM was applied to 2D craniodental landmark data obtained from 90 crania
specimens of three shrew species based on three craniodental views (dorsal, jaw, and
lateral). The discrete landmarks were converted into continuous curves and represented
as linear combinations of basis functions. Principal component analysis (PCA) and linear
discriminant analysis (LDA) were then applied to the GM method and FDGM method to

observe the classification of the shrew species. The results showed that the FDGM
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approach produced better results in separating the three clusters of shrew species
compared to the GM method. Machine learning approaches were also performed using
predicted PC scores obtained from both methods (combination of all three craniodental
views and individual views). These analyses favoured FDGM, and the dorsal view of the
shrew skull was revealed to give the best representation for distinguishing between the
three shrew species. This work also introduces FDGM for 3D landmark coordinate data.
FDGM and GM were applied to distinguish dietary categories of kangaroos (fungivores,
mixed feeders, browser, and grazer) using landmarks obtained from crania of 41 kangaroo
extant species. The results showed that FDGM was able to improve the reconstruction
error and distinguish dietary categories of kangaroos better than GM. Simulation studies
were conducted to show the general effectiveness of FDGM compared to GM method for
both 2D and 3D landmark data. The results obtained from the simulation studies and
application to real data showed that FDGM performed better than GM when PCA and
LDA were employed. Thus, FDGM provides a powerful and flexible framework for

analysing shape variation in geometric morphometrics research.

Keywords: recursive feature elimination, traditional morphometrics, functional data

geometric morphometric, principal component analysis, linear discriminant analysis.
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KAEDAH-KAEDAH KEJURUTERAAN CIRI YANG BERGUNA UNTUK
MORFOMETRIK KRANIODENTAL TIKUS, CENCURUT DAN KANGGARU

ABSTRAK

Kajian ini mengkaji morfologi kraniodental organisma biologi menggunakan analisis
data berfungsi (FDA). Morfometrik tradisional (TM) sering menggunakan sejumlah besar
ciri morfometrik untuk mengkaji variasi bentuk di kalangan organisma biologi. Walau
bagaimanapun, ini boleh menyebabkan lebihan data, bermakna ciri mungkin
mengandungi maklumat bertindih. Kajian ini mencadangkan penggunaan kaedah
penghapusan ciri rekursif (RFE) untuk mengurangkan dimensi data dan memilih atribut
yang paling penting berdasarkan kedudukan kepentingan peramal. RFE telah digunakan
pada pengukuran craniodental data Rattus rattus (R. Rattus) untuk memilih subset ciri
terbaik untuk kedua-dua tikus jantan dan betina. Kajian perbandingan berdasarkan
algoritma pembelajaran mesin juga telah dijalankan dengan menggunakan semua ciri dan
ciri yang dipilih RFE untuk mengklasifikasikan sampel R. rattus berdasarkan kumpulan
umur. Keputusan menunjukkan bahawa ciri yang dipilih RFE dapat meningkatkan
ketepatan klasifikasi algoritma pembelajaran mesin. Walau bagaimanapun, ukuran linear
yang digunakan dalam TM hanya dapat mengesan perubahan saiz dan boleh menjadi
tidak sensitif kepada transformasi geometri. Oleh itu, GM digunakan dalam kerja
seterusnya kerana ia lebih sensitif kepada perubahan bentuk. Morfometrik geometri data
fungsional (FDGM) untuk data mercu tanda 2D diperkenalkan dan prestasinya
dibandingkan dengan kaedah GM klasik. FDGM telah digunakan pada data mercu tanda
kraniodental 2D yang diperoleh daripada 90 spesimen krania bagi tiga spesies cencurut
berdasarkan tiga pandangan kraniodental (dorsal, rahang dan sisi). Tanda tempat diskret
telah ditukar kepada lengkung berterusan dan diwakili sebagai gabungan linear fungsi
asas. Analisis komponen utama (PCA) dan analisis diskriminasi linear (LDA)

kemudiannya digunakan pada kaedah GM dan kaedah FDGM untuk memerhati



klasifikasi spesies cencurut. Keputusan menunjukkan bahawa pendekatan FDGM
menghasilkan keputusan yang lebih baik dalam mengasingkan tiga kelompok spesies
cencurut berbanding kaedah GM. Pendekatan pembelajaran mesin juga dilakukan
menggunakan skor PC ramalan yang diperoleh daripada kedua-dua kaedah (gabungan
ketiga-tiga pandangan kraniodental dan pandangan individu). Analisis ini mengutamakan
FDGM, dan pandangan dorsal tengkorak cencurut telah didedahkan untuk memberikan
perwakilan terbaik untuk membezakan antara tiga spesies cencurut. Kerja ini juga
memperkenalkan FDGM untuk data koordinat mercu tanda 3D. FDGM dan GM telah
digunakan untuk membezakan kategori diet kanggaru (fungivor, penyuap campuran,
memakan lebih daun dan batang dikotil, dan hanya memakan lebih rumput) menggunakan
tanda tempat yang diperoleh daripada crania 41 spesies kanggaru yang masih wujud.
Keputusan menunjukkan bahawa FDGM dapat memperbaiki ralat pembinaan semula dan
membezakan kategori pemakanan kanggaru lebih baik daripada GM. Kajian simulasi
telah dijalankan untuk menunjukkan keberkesanan umum FDGM berbanding kaedah GM
untuk kedua-dua data mercu tanda 2D dan 3D. Keputusan yang diperoleh daripada kajian
simulasi dan aplikasi kepada data sebenar menunjukkan bahawa FDGM menunjukkan
prestasi yang lebih baik daripada GM apabila PCA dan LDA digunakan. Oleh itu, FDGM
menyediakan rangka kerja yang berkuasa dan fleksibel untuk menganalisis variasi bentuk

dalam penyelidikan morfometrik geometri.

Kata kunci: penghapusan ciri rekursif, morfometrik tradisional, morfometrik geometrik

data berfungsi, analisis komponen utama, analisis diskriminasi linea
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CHAPTER 1: INTRODUCTION

1.1 Background

Morphometrics is a fundamental discipline in biological research that focuses on
quantitatively describing and analysing shape and its variations across organisms (Rohlf,
1990). Initially centered on basic descriptive measurements, this field has progressed
significantly and is currently employing advanced statistical and computational
techniques to study shape and size variation (Adams et al., 2013). The importance of
morphometrics transcends disciplinary boundaries, finding applications across various
biological domains such as evolutionary biology, ecology, anthropology, biomedical
sciences, and other fields, underscoring their versatility and utility (Slice, 2005). In
ecology and evolutionary biology, morphometric analyses have provided insights into the
processes underlying phenotypic diversification, speciation, and adaptation (Adams &
Otarola-Castillo, 2013). In taxonomy and systematics, morphometric approaches
facilitate species delimitation and phylogenetic reconstructions, enhancing understanding
of the evolutionary relationships among organisms (Swiderski et al., 2004). Moreover, in
biomedical sciences, morphometrics plays a vital role in medical imaging, diagnostics,
and treatment planning, aiding in the understanding and management of various health

conditions (Bookstein, 1996).

Conceptually, morphometrics can be broadly categorised into three approaches:
traditional morphometrics (TM) that relies on linear distance measurements of biological
organisms for statistical analysis, landmark-based morphometrics that requires precise
positioning of anatomical landmarks, and outline-based morphometrics which captures
the contour of forms through a sequence of pseudo-landmarks (Dujardin, 2017; Rohlf &
Marcus, 1993). As morphometric techniques continue to expand, the selection of

appropriate methods becomes crucial for meaningful applications in biological research.



Traditional morphometrics is a foundational method used in the study of biological
shape variation. It involves mathematical concepts and geometric reasoning to explain a
wide range of biological phenomena, providing insights into the processes underlying
morphogenesis and evolution (Thomson, 1917). This approach applies multivariate
statistics to sets of morphological variables such as linear distances between landmarks
and sometimes angles, ratios etc. The TM approach was followed by an era where the
study on coordinates of landmarks and the geometric information about their relative
positions led to the innovation in morphometrics through the introduction of the

geometric morphometrics (GM) method.

Geometric morphometrics, a technique developed by (Bookstein, 1984, 1986, 1987,
1991) is a popular method for studying morphological variation in biological organisms.
Unlike TM, which relies on linear measurements, GM is based on the idea that the shape
of an organism can be described by the coordinates of a set of landmarks on its surface.
Landmarks are points on the image of the organism that are consistently located in the
same place, regardless of the size or orientation of the organism (Slice, 2005). Landmarks
are categorised into three types, defined by biology (Type 1), geometry (Type II), and
relative positions (Type III) (Bookstein, 1991) although Bookstein later redefined Type
IIT landmarks as semi landmarks (Bookstein, 1997). Type I landmarks are points located
at anatomically homologous locations across specimens. These landmarks are easily
identifiable and show little variation in position across individuals within a species. Type
II landmarks are points that may not be homologous across specimens but are meaningful
for describing shape variation. These landmarks are often placed along curves or outlines
of structures. Type III landmarks are semilandmarks placed along curves or outlines
where there are no clear anatomical points. These landmarks are typically evenly spaced

along curves or outlines and are used to capture overall shape variation. Different types



of landmarks are chosen based on the characteristics of the biological structures being

studied, and the level of detail required to capture shape variation effectively.

The concept of Procrustes superimposition as a fundamental technique in GM for
analysing shape variation, involves aligning landmark configurations by removing
differences in translation, rotation, and scaling to enable direct comparison of shape
(Rohlf & Marcus, 1993; Slice, 2005). Generalised Procrustes analysis (GPA) is be applied
on raw landmarks to superimpose the landmark configurations using least-squares
estimates and rotation parameters (Adams et al., 2004). These variables can be used to
compare the shapes of different organisms using graphical visualisation of results to track

changes in shape over time and to identify the underlying causes of shape variation.

The shift from GM to outline morphometrics (OM) represents an evolution in the
methods used to capture and analyse shape variation in biological structures. While both
approaches focus on quantifying shape differences, they differ in the way shapes are
represented and analysed. Geometric morphometrics primarily relies on the identification
and digitisation of anatomical landmarks on biological structures. On the other hand, OM
focuses on capturing the overall shape of an object based on a series of pseudo-landmarks
that describe contours or boundary outlines without depending on the presence of true
anatomical landmarks (Dujardin et al., 2014). Elliptical Fourier analysis (EFA),
developed by (Kuhl & Giardina, 1982) is one of the established methods of OM that is
particularly useful for analysing shapes with smooth, continuous outlines. This
mathematical tool decomposes the outline of a shape into a series of sine and cosine
curves using Fourier transforms (Caple et al., 2017) which capture the variation in shape
along the outline, allowing for the quantification and comparison of shape differences.
Another common approach in OM is the thin-plate splines (TPS) (Bookstein, 1987). This
technique interpolates and warps one shape into another by minimising bending energy,

allowing for the visualisation and quantification of shape changes between outlines.



Despite its broad utility, morphometrics presents several methodological challenges
and considerations. These include issues related to data acquisition, such as ensuring the
accuracy and reproducibility of measurements, as well as statistical analyses, such as
dealing with high-dimensional data and controlling for potential sources of bias and error.
Furthermore, the interpretation of morphometric results can be complex, requiring careful

consideration of biological context and ecological factors.

Feature engineering is essential in morphometrics studies to select informative
variables or features from raw data that capture relevant aspects of shape variation in
biological organisms. Morphometric data often exhibit high dimensionality,
multicollinearity, and noise, which can pose challenges for analysis. Therefore, feature
engineering helps researchers determine interpretable features to understand the
morphological differences between groups, identify key factors influencing shape
variation, and generate hypotheses about evolutionary, developmental, or ecological
processes. Furthermore, feature engineering techniques such as dimensionality reduction,
feature selection, and transformation can help to reduce noise, redundancy, and

overfitting in morphometric models.

In TM, researchers often measure numerous linear distances and angles. Therefore,
feature engineering comes into handy in selecting the most informative variables while
discarding redundant or irrelevant ones, thus effectively reducing the dimensionality of
the data. Recursive feature elimination (RFE) is a feature selection technique that
iteratively removes less important variables from the dataset until the optimal subset of
features is identified. This technique applies a backward selection process that starts with
the full set of features and iteratively removes the least important features in a data set.
RFE trains a model iteratively, ranking the features according to their importance scores
and then removing the lowest ranking predictors (Darst et al., 2018). The application of

RFE is incorporated in my thesis to observe its efficiency to determine the best feature



subset using the craniodental linear measurements in TM.

This thesis underscores the significance of craniodental morphology, which
encompasses the study of the skull (cranium) and teeth (dental) shape and structure in
vertebrates, particularly rats, shrews, and kangaroos. Craniodental morphology is pivotal
for elucidating evolutionary relationships, ecological adaptations, and functional aspects
across species. Additionally, craniodental morphology serves as a framework for
modeling morphological evolution in both modern and fossil lineages within
phylogenetic analyses (Cardini & Elton, 2008). Insights gleaned from the shape and size
of craniodental structures offer valuable information regarding adaptations to specific
ecological niches and specialised feeding behaviors (Tse & Calede, 2021). This thesis
endeavors to apply feature engineering techniques for TM analysis on craniodental linear
measurements of rats, while also proposing an alternate GM approach based on functional

data analysis (FDA) to investigate craniodental structures of shrews and kangaroos.

In my thesis, FDA is incorporated in GM to observe classification accuracy among
biological organisms. FDA is a statistical methodology utilised to analyse data
represented in the form of functions, such as curves or surfaces, rather than discrete
observations. It is particularly advantageous for handling data that exhibit continuous
variation over a domain, such as time, space, or wavelength. In this thesis, FDA is
employed to represent discrete observations, such as landmark coordinates, as functions.
This transformation involves creating functional data that encapsulates all the coordinates
as a single observation, thereby capturing the entire measured function. Subsequently,
models are developed to predict information based on a collection of functional data,

utilising statistical principles from multivariate data analysis (Ullah & Finch, 2013).

Functional data geometric morphometrics (FDGM) is proposed in this thesis, requiring

steps to perform statistical analysis on signals, curves, or even more complex objects



while being invariant to certain shape-preserving transformations (Gu et al., 2022). To
address the need for alignment of functions in geometric features like peaks and valleys,
curve registration (Ramsay & Li, 1998; Srivastava et al., 2011) or functional alignment
(Ramsay, 2006) techniques are applied. These methods warp the temporal domain of
functions to ensure proper alignment, enabling accurate analysis of geometric features
(Guo et al., 2022). The proposed method involves the development, implementation, and
verification of FDGM which includes a set of statistical models’ alternative to
multivariate models by transforming large complex data into functional data such as data
objects, curves, shapes, images, or a more complex mathematical object. The statistical
goals of this study then include comparisons, summarisation, clustering, modeling, and

testing of functional and shape skulls objects.

In addition, this study also incorporates machine learning into morphometric studies
for taxonomic classification. Commonly used classification methods include naive Bayes
(NB), random forest (RF), generalised linear model (GLM), support vector machine

(SVM) and artificial neural network (ANN).

The methods involve collecting data which includes either the linear craniodental
measurements directly obtained from skulls or 2D and 3D landmark data from the skull
images of biological organisms. TM and GM studies will be performed and the FDGM
approach will be implemented and tested. The FDGM approach is developed, and it aims

to bring a real added value to the problem of interest.



1.2 Problem Statements

The study of the shapes of biological organisms is a challenging task, as the shapes
are often complex and difficult to quantify. Quantitative approaches allowed scientists
to study shapes of various organisms better where they no longer rely on word
descriptions which lead to different interpretations. TM method has been widely used in
identification of species, analysis of morphological characters and other parts of
taxonomy. Traditionally, variables used in morphometric analysis are linear distances
between landmarks which are directly measured on the specimens. This method also
used angles, counts, ratios and areas. However, TM can be difficult to capture the full
geometry of an object using linear measurements. For example, the shape of a skull is
determined by the size, shape, and orientation of the bones that make up the skull. The
distances between landmarks on the skull can only capture some of this information. In
addition, the distances between landmarks can be affected by the size of the object. For
example, it is difficult to compare the shapes of two skulls if one skull is twice as large
as the other skull. The data may also contain less information due to directions measured
redundantly and most of these measurements tend to overlap. GM overcomes these
limitations by using coordinate-based data to capture the shape of an object. This allows

for a more comprehensive description of the shape of an object.

The shift from GM to OM reflects a recognition of the limitations of landmark-based
methods in capturing certain types of shape variation, particularly in structures with
complex or continuous outlines. Outline morphometrics offers a more flexible approach
to shape analysis, allowing researchers to quantify shape variation in a wider range of

biological structures.



Additionally, outline morphometrics can complement geometric morphometrics by
providing a more comprehensive analysis of shape variation, especially in cases where
landmark-based methods may not fully capture the nuances of shape differences. By
incorporating both landmark-based and outline-based approaches, researchers can gain
a more complete understanding of shape variation in biological structures and address a

broader range of research questions.

It is of my interest to explore morphometrics of craniodental characters based on the
functional data analysis (FDA) approach. FDA is a branch of statistics that analyses data
that is naturally ordered or structured. This type of data is often encountered in
morphometrics, where the shapes of objects are represented as curves or surfaces. The
main advantage of FDGM over GM is that it can be used to analyse data that varies over
time or space. For example, FDGM can be used to study the changes in the shape of a
skull over time or the differences in the shape of skulls between different populations
also be a more general statistical approach than GM. This implies that it can be used to
analyse a wider variety of data types and to answer a wider variety of research questions
which makes FDA a more powerful and versatile than GM. This study aims to develop
and implement a functional data geometric morphometric (FDGM) approach to study

the skull shapes of biological organisms.

The FDGM approach will be compared to other morphometrics methods. This project
focuses on incorporating FDA in the form of functions for shape analysis based on 2D
and 3D landmark data. Simulation studies for both 2D and 3D landmark data were also

conducted to test the general effectiveness of the FDGM approach compared to GM.



1.3 Significance of Research

Due to the presence of redundant linear measurements in the TM approach, a good
feature selection method should be used in the study to select the best, highly discriminant
features, which can increase the performance of the model and reduces computational
complexity in classification problems. This study revealed that RFE-based feature
selection technique can classify biological organisms better when incorporated in the TM
approach. RFE has proven to be advantageous the most relevant features in predicting the
target variables, thus this study hypothesises that this method would also benefit in TM

studies to classify among groups among biological organisms.

Besides that, this study also proposes a new and more exhaustive way to see,
manipulate and study the skulls of biological organisms where a data (unit) is not a vector
(multivariate), but all available information including its dynamics (shape). There is also
a limited number of FDA models available for the explanation, visualisation,
classification, and modelling of the geometric morphometric dataset of interest. The
major statistical challenge is to pay attention to hot topics such as the management of

missing or low quality of data (e.g., a part of the shape).

In addition, the implementation of an FDA approach requires a correct definition of
the targeted function spaces, appropriate metrics to measure the similarity between
objects, spatial correlation techniques etc. Indeed, one of the main challenges in the
analysis (dimensional reduction, regression models, tests) of large complex data is to use
statistical tools capable of performing calculations in an inexpensive way with

correlations among huge amounts of data (Chen et al., 2011; Zipunnikov et al., 2011).



14 Aims and objectives

The general aim of this study is to introduce an FDA approach in morphometric studies
to analyse craniodental characters.

The objectives of this morphometric study are to:

i.  Incorporate and review random forest recursive feature elimination as a feature
engineering method into traditional morphometrics to overcome data
redundancy.

ii.  propose FDA-based framework as a feature engineering technique to enhance
geometric morphometrics for 2D and 3D skull shape analysis in detecting
variation among biological organisms.

iii.  conduct comparative studies using machine learning on FDA- based 2D and 3D

FDGM to discriminate between groups of biological organisms.
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1.5 Research Outline

This research re-evaluates the TM method by incorporating RFE-based feature
selection technique to observe the classification accuracy of selected linear
measurements. This study also introduces the application of FDA in GM and proposes
FDGM that incorporates this approach into 2D and 3D landmark data in GM. The

research is outlined as follows:

Chapter 2 provides a literature review of the TM, GM and FDA approaches used in

previous studies. Then, the machine learning algorithms were also reviewed.

Chapter 3 addresses the application of the RFE as a feature selection technique in TM.
RFE was applied to observe age classification among male and female R.rattus rats in
Peninsular Malaysia. A comparison study was conducted to examine the effectiveness of
RFE-selected features with all linear measurements obtained using machine learning

algorithms.

Chapter 4 proposes the FDGM method into 2D geometric morphometric. FDA approach
is incorporated into 2D craniodental landmark data of three shrew species (C. malayana,
C. monticola and S. murinus). Machine learning algorithms and simulation studies were

also used to assess the accuracy of the proposed approach.

Chapter 5 describes the extension of the FDGM method into 3D geometric
morphometrics. Using a train-test ratio of 70:30, the effectiveness of the proposed method

is examined using machine learning algorithms and simulation studies.

Chapter 6 provides concluding remarks and some significant contributions from this
research. Suggestions on extending research work related to this research are also

included in this chapter.
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CHAPTER 2: LITERATURE REVIEW

2.1 Morphometrics

The study of form plays a crucial role in biological research. Morphometrics is the
statistical study of shape variation and covariation with other variables (Bookstein, 1996;
Dryden & Mardia, 1998). During the 1960s and 1970s, biometricians employed
multivariate statistical methods to explore the realm of morphometrics (e.g., Giles &
Elliot, 1963; Birkby, 1966; Rohlf, 1972; Van Valen, 1974; Albrecht, 1979). Blackith and
Reyment (1971) were instrumental in delineating a spectrum of multivariate statistical
techniques tailored for the domains of biology and paleontology. Statistical
methodologies such as discriminant functions, canonical variates, principal components
analysis (PCA), factor analysis, cluster analysis, and trend surface analysis were also
discussed in this work, thereby primarily furnishing biologists with a foundational
framework to adopt multivariate methods in their research (Blackith & Reyment, 1971).
Biology underwent a transformation from descriptive to quantitative approaches, and the
field of morphology mirrored this quantification revolution (Bookstein, 1998). In
paleontology, morphological differences and distances serve as the primary criteria for
distinguishing between species and genera (Stafford & Szalay, 2000). Statistical methods
such as the correlation coefficient, analysis of variance and principal component analysis
further advanced quantitative rigour. The sophistication of these analyses evolved in

tandem with the rapid advancements in statistics.

2.2 Traditional Morphometrics
Traditional morphometrics (TM) plays a pivotal role in understanding morphological
variation among biological organisms through the meticulous analysis of linear distances,

angles, ratios, and other morphological variables.

12



These measurements, although often correlated with size, serve as fundamental
descriptors of shape, once size effects are mitigated. Conventional morphometrics using
linear distance measurements of skulls have proven to be powerful for identification,
classification, and analysis of skull variability among biological organisms. Many
researchers conducted TM using linear measurements which are directly obtained from
biological organisms. These measurements are later analysed using multivariate statistical
approaches to identify the morphological variation among groups of individuals
(Chuanromanee et.al, 2019). For instance, Howells (1989) employed PCA to scrutinise
metric dental variation across major human populations, shedding light on population-

level distinctions.

Brace and Hunt (1990) employed C scores, derived from craniofacial measurements
across diverse populations from Asia, the Pacific, the aboriginal western hemisphere, and
Europe. Their work, which culminated in Euclidean distance dendrograms, revealed
distinct regional clusters, offering insights into the degrees of relationship among
populations based on nonadaptive traits (Brace & Hunt, 1990). The methodological
richness of TM is further underscored by Marcus (1990), who provided a comprehensive
overview of analytical techniques ranging from PCA to discriminant analysis. This work
not only elucidated the application of these methods but also addressed crucial aspects
such as resampling techniques for robust estimation of standard errors (Marcus, 1990).
Moreover, TM is not confined to anthropological studies alone; it transcends disciplinary
boundaries. Abdelhady and Elewa (2010), for instance, utilised TM to study the evolution
of Exogyrinae oysters. Through PCA, cluster analysis, and cladistic analysis, they
uncovered morphological dimorphism between species and delineated temporal

boundaries for the examined oyster members (Abdelhady & Elewa, 2010).
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However, some linear measurements used in these studies may contain irrelevant and
redundant features which can affect the efficiency of learning models which may lead to
performance degradation of unseen data (Li et al., 2016). Therefore, applying feature
selection techniques to select a subset of relevant features to be applied into machine
learning would improve the learning performance and construct better generalisation

models (Li et al., 2016).

23 Geometric Morphometrics

Geometric morphometrics has emerged as a powerful tool for analysing and
quantifying biological shapes, gaining widespread popularity for studying morphological
variation in diverse organisms, including fish, birds, mammals, and insects. Its
introduction in the 1980s revolutionised morphometrics, shifting the focus from
traditional measurements to landmark-based geometric information. In GM, landmarks
are pivotal for analysing and quantifying the shapes of biological structures. They serve
as reference points that allow for the comparison of shapes across different specimens.
Researchers identify specific anatomical points on each specimen that correspond to the
defined landmark types (Type I, Type II, and Type III). These landmarks are chosen based
on their biological significance and their ability to be consistently located across all
specimens being studied. Landmarks (Type I) are discrete and anatomically homologous
points that can be precisely located on every specimen. They are defined by clear
anatomical features such as intersections of sutures or the tips of structures. These
landmarks can be consistently identified across different specimens and observers. Type
I landmarks provide the most accurate points for aligning shapes because of their clear
and consistent anatomical basis. Pseudo landmarks (Type II) are points located on
geometric features such as the maxima of curvature or along the boundary of a structure.

They are not as precisely defined anatomically as Type I landmarks but still provide

14



important geometric information. Type II landmarks are useful for describing the general
shape and form of structures. Semilandmarks (Type III) are points that are placed along
curves or surfaces where precise homologous points are difficult to identify. They are
defined relative to other landmarks or along a structure. These points are particularly
useful for capturing the shape of curves and surfaces where precise homologous points
cannot be identified. They allow for more flexible and comprehensive shape analysis,
especially for complex structures. Using specialised software, or imaging techniques, the
coordinates of these landmarks are recorded. This process converts the physical shape of
the specimens into a numerical format that can be analysed mathematically. There are
many open-source and licensed software that are available for GM analysis. Table 2.1

includes commonly used software for landmark digitising and GM.

Table 2.1: Available software for geometric morphometric analysis.

Types Software Sources
Landmark digitising | tpsDig2 Rohlf (2017)
TINA Manual Schunke et al. (2012)
Landmarking Tool 3Skull Ousley (2004)
Geometric MorphoJ Klingenberg (2011)
morphometrics R package, geomorph Adams & Otarola-Castillo,
2013; Adams et al. (2018)

Bookstein (1984) presented a pioneering landmark statistical approach that outlines
the theoretical framework behind tensor method, demonstrating how it can be applied to
analyse shape differences among various biological entities. (Bookstein, 1984). This
approach enables researchers to focus on shape variations independent of size or location,
facilitating meaningful comparisons across samples (Bookstein, 1984). Landmarks are
aligned using techniques such as Procrustes superimposition. This involves translating,

rotating, and scaling the landmark configurations to a common coordinate system.
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The goal is to minimise differences that are not related to shape (e.g., size, orientation)
and to focus solely on shape differences.

Kendall (1984) laid the groundwork by demonstrating that when the vertices of a shape
adhere to independent and identically distributed spherical normal variables, the resulting
distribution of the shape becomes isotropic across Kendall’s shape space. This work
safeguards against the distortion of shape space by isotropic measurement errors, ensuring
the integrity of analyses (Bookstein, 1991; Dryden & Mardia, 1998; Mitteroecker &
Gunz, 2009). Two-point registration, also known as Bookstein’s shape coordinates, is a
straightforward superimposition method that significantly influenced Bookstein’s
development of shape theory in the late 1980s. Generalised Procrustes analysis (GPA)
aligns landmark configurations using least-squares estimates for translation and rotation
parameters. This process begins by translating the centroid of each configuration to the
origin, followed by scaling the configurations to a common unit size by dividing by the
centroid size (Adams et al., 2004; Bookstein, 1986). Finally, the configurations are
optimally rotated to minimise the squared differences between corresponding landmarks
(Adams et al., 2004; Gower, 1975; Rohlf & Slice, 1990). This process is repeated
iteratively to compute the mean shape, which cannot be estimated before superimposition.
After superimposition, shape differences can be described by the differences in the
coordinates of corresponding landmarks between objects. These differences can also be
utilised as data in multivariate comparisons of shape variation.

A significant portion of the foundational work in GM was published between 1981 and
1991 (Macleod, 2017). Bookstein (1991) provides a comprehensive introduction to
geometric morphometrics, covering the mathematical foundations and biological
applications of landmark-based analysis, which serves as a foundational reference for
researchers entering the field. Moreover, this work underscores the importance of linking

geometric patterns to evolutionary processes, ecological interactions, and developmental
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mechanisms, thereby enriching the understanding of shape variation in biological systems

(Bookstein, 1991).

Rohlf and Marcus (1993) highlighted the transformative impact of geometric
morphometrics by elucidating how landmark-based methods, such as superimposition
methods that emphasises applications to exploratory studies in taxonomy and evolution.
Their work encompassed a thorough examination of various procedures utilised in
describing shape in biology and have termed the use of GM as a revolution in describing
the “shape” (Rohlf & Marcus, 1993). Adams et al. (2004) revisited the foundational
principles of GM introduced in the earlier ‘revolutionary’ work and highlighted key
developments in methodology, theory, and applications of the approach. Notably, their
study underscored advancements in landmark selection, superimposition techniques,
shape visualisation, and statistical modeling, illustrating the continuous evolution of GM
techniques. Additionally, Adams et al. (2004) explored the synergistic integration of GM
with other quantitative approaches, such as phylogenetic comparative methods and
quantitative genetics, emphasising the interdisciplinary nature of morphometric research
and its potential for enriching biological inquiries fostering interdisciplinary

collaborations and enriching the scope of morphometric research.

Webster and Sheets (2010) introduced common exploratory and confirmatory
techniques in landmark-based geometric morphometrics. This paper also covers issues
that are frequently faced by biologists in comparative morphology studies and focuses in
2D and 3D landmark data analysis. Besides that, it also covers the topics of acquiring
landmark data, superimposition methods, visualising shape variation, quantifying and
statistically comparing the amount of shape variation, statistical testing of difference in

mean shape, and statistical assignment of specimens to groups.
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Within morphometrics, craniodental morphology holds particular significance,
offering insights into taxonomic discrimination, evolutionary studies, and biomedical
implications. Adams and Rohlf (2000) highlighted the importance of craniodental
morphometrics in elucidating ecological character displacements in Plethodon
salamanders through landmark-based geometric morphometric analysis (GM). Slice
(2005) explored the application of morphometrics in physical anthropology with a
significant focus in craniodental morphonology. The work highlighted the use of
landmark-based morphometrics in studying human evolution and practical application in
anthropology. These studies not only shed light on the functional adaptations of
craniodental structures but also serve as inspiration for further extending the GM

technique for craniodental morphology of this paper.

The efficiency of GM shines through in numerous studies. Maderbacher et al. (2008)
showcased the superior efficiency of geometric morphometrics GM compared to TM in
discriminating between populations of Tropheus moorii. Their research highlighted the
limitations of TM, including its lack of diagnostic power and time-consuming nature,
while emphasising GM's flexibility in terms of data acquisition and robustness as an
alternative approach. Furthermore, Maderbacher et al. (2008) demonstrated that canonical
variate analysis using GM data, particularly incorporating semi-landmarks, offered the
most informative description of morphological differences among populations. Arias-
Martorell, et al. (2015) analysed the shape of the shoulder joint (proximal humerus and
glenoid cavity of the scapula) of three australopith specimen using 3D geometric
morphometrics. Marcy et al. (2015) also captured 19 crania of Australia’s smallest rodent
using 3D scanner and pCT scanner for geometric morphometrics to classify the
specimens based on sexual dimorphism. Dudzik (2019) also used GM to examine the
cranial morphology of Asian and Hispanic populations by performing discriminant and

canonical variate analyses.
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The results of the GM analysis revealed significant differences in cranial shapes
between the two groups, yet both studies concur that GM serves as a valuable tool for
identifying morphological similarities among populations based on cranial morphology

(Dudzik, 2019).

In another review work, Adams & Otarola-Castillo (2013) highlighted the
development of morphometrics related to the Procrustes paradigm and the
methodological toolkit of geometric morphometrics. The use of three-dimensional data
in geometric morphometric gained a lot of popularity where there are no mathematical
limitations for handling data but algorithms for superimposition, projection, and statistical
analysis are all generalised to accommodate data of any dimensionality (Adams &
Otarola-Castillo, 2013). Initially three-dimensional data required the use of expensive
equipment and the use of devices related to it were limited. However, low-cost options
such as surface scanners and other devices have become available (Adams et al., 2013).

Since then geometric morphometrics using three-dimensional data became more popular.

Mitteroecker and Schaefer (2022) reviewed the recent developments and current
methodological challenges of GM for biological meaningfulness. Promising directions
for further research and evaluation of new developments were also outlined and illustrated
on 3D human face shape based on data obtained from Avon Longitudinal Study of Parents
and Children (ALSPCA) (Mitteroecker & Schaefer, 2022). Zhang et al. (2023)
successfully applied GM using 2D landmarks to distinguish two subgenera classification
of Chaetocnema, which should that GM could be used to detect morphological

delimitation of the supraspecies taxa.

While GM offers powerful tools for quantifying shape variation, it is not without
limitations. One critical drawback is its sensitivity to landmark placement and digitisation

errors, which can introduce variability and compromise the accuracy of shape analyses.
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Martensson (1998) addressed the challenges posed by measurement error in GM. This
work also explores the sources of measurement error in GM, particularly focusing on the
issues related to landmark placement and digitisation and offers empirical strategies to
assess and mitigate the impact of these errors on shape analysis. In addition, a study by
Robinson et al. (2002) investigated the impact of landmark placement error on shape
analyses study of tooth shape using GM, by calculating its effect on the recorded variation
in Procrustes fits, obtained for each set of multiple representations. They demonstrated
that discrepancies in landmark positioning can lead to variation in orientation, thus

affecting the outcomes of statistical analyses (Robinson et al., 2002).

Another issue lies in the application of Procrustes superimposition in GM. Sheets and
Webster (2010) highlighted concerns about disregarding the orientation of biologically
relevant axes during rotation in Procrustes superimposition which can lead to variations
in the relative orientation of symmetrical axes within samples, thus complicating the
description of shape differences in relation to the axis of symmetry. Additionally, their
work also pointed out the concern of the “Pinocchio Effect” in this superimposition
method, where large differences at some landmarks are spread out over many landmarks
during the least-squares rotation, assuming equal variance at all landmarks. Despite these
limitations, the study recommended the application of Procrustes methods in GM in

studies for their statistical robustness (Rohlf, 2000; Sheets & Webster, 2010).

Furthermore, factors such as sample size and the selection of views and elements in
two-dimensional geometric morphometric (2DGM) analyses pose additional challenges.
Rummel et al. (2024) explored the influence of sample size on mean shape, shape
variance, and the concordance of multiple skull 2D views in the study of bat species.
Their findings underscored the importance of adequate sample sizes and careful selection

of views and elements for accurate analyses (Rummel et al., 2024).

20



In response to these limitations, researchers have extended their methods to include
outline-based morphometrics, offering alternative approaches to address some of the
challenges associated with traditional GM techniques. These efforts reflect ongoing
endeavors to improve the reliability and robustness of shape analysis methods in

biological research.

2.4  Outline-based Geometric Morphometrics

Outline-based GM focuses on the analysis of shapes based on the outlines of objects
or structures. This approach offers several advantages, including the ability to capture
complex shapes and the potential for automation in data collection and analysis. Kuhl and
Giardina (1982) outlined a direct procedure for obtaining the Fourier coefficients of a
chain-encoded contour, emphasising its advantages that it does not require integration, or
the use of fast Fourier transform techniques, and that bounds on the accuracy of the image
contour reconstruction are easy to specify. The study also discussed the extension of
contour representation to encompass arbitrary objects at diverse aspect angles (Kuhl &
Giardina, 1982). These procedures are positioned as directly applicable to a range of

pattern recognition challenges that entail analysing clearly defined image contours.

One of the pioneering works in outline-based GM is the study by Bookstein (1991),
where key conceptual frameworks relevant to both landmark-based and outline shape
analysis have been highlighted such as the use of shape coordinates and thin plate splines.
Bookstein (1991) is significant for laying the groundwork for outline shape analysis by
addressing the challenges of analysing shapes that are not easily defined by discrete
landmarks. This work also touches on variants of the general procedure encountered in
the outline processing which are taking derivatives of the outline curves and measuring
dissimilarity between forms in terms of squared differences of those derivatives rather
than distances between the original paired point loci. Additionally, Bookstein (1990) also

discusses how information from curving outlines can be analysed effectively once the
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landmarks are dealt with. MacLeod (2007) established a solid theoretical foundation for
understanding the principles behind automated taxon identification. His study described
the statistical and computational underpinnings necessary for developing reliable
identification systems. Besides that, the study also explained the use of image analysis
for species identification, by describing how digital images of specimens can be processed
and analysed to extract distinguishing features that can be used for taxon identification
(MacLeod, 2007). Dujardin et al. (2014) demonstrated the outline method's efficacy in
distinguishing close or cryptic species and characterising conspecific geographic
populations across various vector organisms. Notably, in recognising such forms, the
study observed that the outline approach yields comparable results to the landmark-based

method (Dujardin et al., 2014).

2.5  Functional Data Analysis

This research aims to provide an alternative to the GM multivariate approach, which
is functional data analysis (FDA) that includes a set of statistical techniques considering
the structured data of interest into shape objects, thought of as smooth realisations of a
stochastic process (Hall & Vial, 2006; Srivastava & Klassen, 2016). FDA based on the
landmark method aligns special features in functions or derivatives to their average
location and then smooth to the location of the feature (Kneip & Gasser, 1992; Gasser &
Kneip, 1995). Bookstein (1997) introduced a combination of Procrustes analysis and thin-
plate splines, the two most powerful tools of landmark-based morphometrics, for the
multivariate analysis of curving outlines in MRI images of the human brain. This work
effectively describes group differences in data from curving forms that do not need to
have any reliable point-like landmarks anywhere along the arcs. The method works by
treating the thin-plate splines and Procrustes fitting as a nonlinear filter for regional
differences in outline shape, with their bandpass characteristics complementing each

other directionally. This complementary filtering enhances the effectiveness of Procrustes
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analysis following spline-based preprocessing (Bookstein, 1997). Ramsay and Silverman
(2005) provided a comprehensive introduction to FDA, covering theoretical foundations
and practical applications, including methods for clustering and classification of
functional data, which is particularly relevant for grouping similar shapes or curves in
morphometrics (Ramsay & Silverman, 2005). The FDA framework allows better
accuracy in parameter estimation in the analysis phase, effective data noise reduction
through curve smoothing, and applicability to data with irregular time sampling schedules
(Ullah & Finch, 2013).

Dryden and Mardia (2016) primarily focused on statistical shape analysis that also
discussed the foundations of landmark shape analysis, including geometrical concepts
and statistical techniques that include analysis of curves, surfaces, images, and other types
of object data (Dryden & Mardia, 2016). Functional data analysis considers shapes as
continuous functions or curves, allowing for the analysis of shape changes over a
continuum such as time or developmental stages. These studies have inspired this thesis
is to investigate is the coordinates are represented in a function form via FDA approach.

Unlike traditional approaches that handle data as vectors in Euclidean space R", FDA
focuses on the analysis and theory of data represented as functions. In essence, each
observed variable is characterised by functional values rather than discrete real values. A
functional random variable is characterised by its values existing within an infinite-
dimensional vector space. Functional data, in turn, represents a specific instance or
realisation of such a variable. These data points are viewed as observations derived from

stochastic processes operating in infinite-dimensional spaces.

The initial stage in FDA involves transforming a discrete collection of measurements,
represented by observed data points, into a continuous curve, X;(t), X,(t), ..., X, (%),
which can either exhibit rough or smooth characteristics. Let ® = {¢;(-) : j € N} be

an infinite basis of £2(I) which is the space of square integrable functions on a compact
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interval of R4, I with d € N. The elements of @ are usually orthogonal. Every element
of L2(I) can be written as a linear combination of the elements of ®. A functional random
variable X valued in £2(I) may be decomposed into:

X = g0

j=1

where {Cj}j>1is an infinite set of coefficients (Ramsay & Silverman, 2005) . The basis

expansion is used to approximate the realisation X by its projection on the span of a finite

basis functions @y = {¢;(-) : 1 < j <] }, a finite subset of ® and {Cj a subset of

}1sjs]

v o~ Y/
{g},,: X = Eja1 ;00
X can be summarised by a J-dimensional vector.

Functional principal component analysis (FPCA) extends the traditional multivariate
PCA into the realm of functional data. Just as in the classical case, FPCA aims to achieve
an optimal linear representation of a set of functional data within a finite-dimensional
space. The primary objective is to diminish the dimensionality of the data through FPCA,
thereby discerning the principal sources of variability (Ullah & Finch, 2013). Essentially,
FPCA acts as a dimension reduction technique, reshaping the sampled curves to
encapsulate the variability patterns within a lower-dimensional space. Comprehensive
methodologies for FPCA are expounded upon by (Ramsay & Silverman, 2005) and
(Ferraty & Vieu, 2006). Forn functional observations of X in L2(I), denoted as

XD, .., X®™ | functions of L2(I), ¢1,..., ¢ ; are sought, which are orthogonal and such

that the projection of X(® onto the vector space generated by these functions yield the

minimum loss possible.

Principal components of FPCA that explains the variability of {X;} are obtained by

computing the eigenfunctions corresponding to the ordered eigenvalues (from largest to
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smallest) of an empirical covariance operator. Thus, performing the PCA of the X;
involves looking for the eigenvalues of the operator Tf(t) = L2(I) — L2(I) which is

defined by:

Tf(t) =(C(C,t), f(O)t € ILf € L2(U) and C(s,t) = Cov[X(s),X(1)],
where T is a positive, linear, and self-adjoint operator in £2(I) (Horvath & Kokoszka,
2012). It is a compact operator with a finite trace. There exists a complete orthonormal

basis {¢j}j>1 and a sequence of real numbers A; > 4, >+ > 0 such that:

I'p; = Ai¢pjandAj - 0asj — oo,
where {/1]-}],>1is the set of eigenvalues of the covariance operator I' associated to

{¢) j}j>1 the set of its eigenfunctions. The eigenfunctions corresponding to the eigenvalues

are denoted as {qb j}. It can be shown that the eigenfunction associated with the largest

eigenvalue, ¢4, is a solution of the following constrained optimisation problem:

||g|lﬁ§1<r¢’ o)

where ||¢)||2 = [@?dt is the L?(I) norm of the eigenfunction ¢ on I.

The process X can be represented using the Karhunen-Loéve representation:

X(t) =px(t) + Z ci;(t), t €1,

=1
where¢; = (X —u,¢;),E(¢;) = 0, cov(cj, cl) = Aj1jo;, ux(t) is the mean function,

E(X(t)) and the {qb j}j>1 are the FPCA basis. Hence, X is approximated by truncating the

infinite sum at the first J terms:

XM = py (8) + Z§=1 cip;(t), t € I withc;j = (X — pux(t), P;).
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In practice, since I" is unknown, FPCA entails exploring the spectrum of the empirical

covariance function:

\ 1% _ _
C(st) =5 D (6 = KN (K = X)),

=1

where the empirical estimator of the mean of X is defined on I by:
> 1
Xi(s) = ~Xiz1 Xi(s) .

MFPCA is used as a dimension reduction tool to transform sampled curves to represent
the patterns of the variability of the curves, which is considered as a more natural way to
represent a multivariate functional data as they share the same structure as each
observation (Happ & Greven, 2018). The principal component (PC) scores obtained from
both GM and FDGM are used as input to construct the linear discriminant analysis (LDA)
model as it provides better classification performance (de Almeida et al., 2021). In recent
years, FDA has seen applications in diverse areas such as functional neuroimaging,
econometrics, and environmental science. Researchers continue to develop novel
methodologies and expand the theoretical foundations of FDA to address new challenges

and opportunities in analying complex functional data.

This work introduces the functional data geometric morphometrics (FDGM) approach
to analyse shape variations using the functional form of the 2D and 3D landmark
coordinate data. FDA is employed to analyse the image and shape data in the form of
functions. Functional and shape analysis require tools to perform statistical analysis on
signals, curves, or even more complex objects while being invariant to certain shape-
preserving transformations (Guo et al., 2022). To ensure that the functions are well-

aligned for geometric features such as peaks and valleys, curve registration (Ramsay &
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Li, 1998; Srivastava et.al, 2011) or functional alignment (Ramsay, 2006) are applied to

warp the temporal domain of functions (Guo et al., 2022).

Epifanio and Ventura-Campos (2011) demonstrated that FDA framework surpasses
other approaches such as the landmark-based approach or even the set theory approach
with principal component analysis (PCA), using a well-known database of bone outlines.
FDGM treats cranial shapes of functions and curves as random variables taking values in
well-defined shapes space of functions, which will help derive shape-based inferences in

consideration of the geometric of the cranial shape space (Srivastava & Klassen, 2016).

The FDGM method will give a new way to observe, manipulate and use
morphometrics landmark data where a data is not a value or a vector, but all available
information including its dynamics. Hence, FDA is an appropriate framework to represent
shapes with their intrinsically continuous or structured character whereas in multivariate
GM approaches, the data are only extractions or aggregations (e.g., 3D data in GM).

This study provides a comparison of both the GM and the FDGM approach and
whether the application of FDA matches or surpasses the GM method in detecting
variation among biological organisms with the interest to study coordinates being

represented in a function form.

2.6 Machine Learning

Machine learning (ML) encompasses a diverse array of algorithms designed to make
predictions, often leveraging vast datasets (Nichols et al., 2019). In morphometric studies
aimed at classification and identification tasks, the application of extensive machine
learning techniques has become increasingly prevalent (Tan et al., 2018). Notably,

classifiers such as naive Bayes (NB), support vector machine (SVM), random forest (RF),
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and generalised linear models (GLM) are frequently employed due to their proven

efficacy in numerous previous studies.

The NB classifier is grounded in Bayes' theorem, which originates from the work of
Reverend Thomas Bayes in the 18" century. Bayes explored methods for computing
probability distributions, particularly for binomial parameters. Although Bayesian
methods have been utilised in pattern recognition for decades (Duda & Hart, 1973), they
gained significant traction within the machine learning community in the 1990s.
Kononenko (1990) compared the performance of inductive learning methods, specifically
decision trees and the Naive Bayes (NB) classifier, for developing expert systems in four
medical diagnostic problems. The study found that the NB classifier outperformed
decision trees in classification accuracy, though both methods offered valuable insights
into the knowledge acquired. Langley et al. (1992) conducted an average-case analysis of
Bayesian classifiers, demonstrating that these classifiers perform exceptionally well on
various learning tasks, particularly under the assumptions of a monotone conjunctive

target concept and independent, noise-free Boolean attributes.

The NB classifier is based on Bayes’ theorem and assumes that the attributes in a
dataset are conditionally independent, given its class (Webb, 2011). In Rodrigues et al.,
(2022), NB was the best classifier for detecting landmarks in automatic wing geometric
morphometrics classification of honeybee (Apis mellifera) subspecies. Similarly, Thomas
et al. (2023) utilised NB to automate morphological phenotyping in geometric
morphometrics, reducing observer bias and enhancing the capture of comprehensive

representations of morphological variation.

NB is applied as one of the classifiers in this thesis due to its simplicity and
computational efficiency. FDGM often involves analysing complex shapes and forms,
which can be represented by a large number of features. NB can handle high-dimensional

data efficiently, making it suitable for quick, initial analysis or as a baseline model.
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SVM addresses a multi-class problem as a single “all-together” optimisation. This
classifier can be used to find a hyperplane in a 2-dimensional space that will separate the
scores to their potential species. Bellin et al. (2021a) successfully combined GM with
different machine learning algorithms, including SVM with radial basis function (RBF)
kernel. This study demonstrated the effectiveness of SVM in correctly classifying two
Anopheles sibling species of the Maculipennis complex based on shape data (Bellin et al.,
2021). Motivated by such successes, this study aims to leverage supervised learning,
particularly SVM, for the classification of shrew species and dietary of kangaroos based
on their morphological features. As morphometric data can be complex and prone to
overfitting, SVM’s regularisation techniques can be useful to avoid overfitting especially

when the number of features is large relative to the number of samples.

RF, a classification algorithm developed by Breiman (2001) based on bootstrap
aggregating or bagging that combines the predictions of multiple decision trees to make
a final prediction. Breiman (1996) introduces the concept of bagging (which is a
fundamental idea used in RF. It describes how combining multiple models can enhance
predictive performance. Arai et al. (2021) applied RF in the context of morphological
identification in skulls, specifically between spotted seals and harbor seals, using GM.
The study achieved an identification accuracy rate of 100% using RF by narrowing down
to a subset of eight key landmarks out of a total of 75 landmarks (Arai et al., 2021). The
ensemble nature of RF allows it to capture both linear and non-linear relationships in the

data, making it robust and accurate for shape classification tasks.

The success of RF in morphological identification (Bellin et al., 2021a; Berio et al.,
2022; Khang et al., 2021) has encouraged this study to compare the effectiveness of this
classifier in the classification of the shrew species and dietary of kangaroos based on the
FDGM framework. GLMs, as extensions of linear models, offer flexibility in

accommodating nonlinearity and non-constant variance within data distributions.
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Consequently, GLMs are well-suited for analysing species-habitat relationships, which

often exhibit deviations from normal distributions (Chiaverini et al., 2023).

ANN models use neural networks, which are based on the understanding of the
biological nervous system. These models are built on adaptable processing units to
produce an output signal as functions of the sum of their weighted inputs and a certain
threshold value (Wu, 1992). McCulloch and Pitts (1943) introduced the concept of
artificial neurons and their ability to perform logical operations, laying the groundwork
for later developments in neural networks. Rosenblatt (1958) introduced the Perceptron,
an early type of neural network used for binary classification. This work was crucial in
demonstrating that neural networks could learn and make decisions based on input data.
Rumelhart et al. (1986) presented the backpropagation algorithm for networks of neuron-
like units. The procedure repeatedly adjusts the weights of the connections in the network
so as to minimise a measure of the difference between the actual output vector of the net
and the desired output vector. As a result of the weight adjustments, internal ‘hidden’
units which are not part of the input or output come to represent important features of the
task domain, and the regularities in the task are captured by the interactions of these units,
thus significantly advancing the field of deep learning. Rojas (1996) provides a
comprehensive overview of neural networks, including the development and application
of multi-layer perceptrons. This book is a key reference for understanding the evolution

of neural network models.

ANN are inspired from the human brain that works as a paradigm to perform
computations in an effective and efficient manner (Mas & Flores, 2008). In a study by
Salifu et al. (2022), RF, SVM and ANN were also evaluated for their predictive
performance in discriminating fruit fly species. The study concluded that SVM and ANN
models outperformed RF in accurately classifying fruit fly species. ANN can be useful in

capturing complex and non-linear relationships between morphological features that
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might be missed by simpler linear models through their multi-layer structure and non-
linear activation functions. This makes ANN a powerful tool for analysing high
dimensional morphometric data, making them well-suited for a wide range of applications
in FDGM. Inspired by this study, this research explores the predictive performance of

these models across different biological organisms.
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CHAPTER 3: RFE-BASED FEATURE SELECTION TO IMPROVE
CLASSIFICATION ACCURACY FOR TRADITIONAL
MORPHOMETRIC ANALYSIS

3.1 Introduction

In the field of machine learning, the selection of relevant features is crucial for
enhancing model performance and accuracy. This study incorporates the application of
the recursive feature elimination (RFE) method to select pertinent features from the
craniodental linear measurements of male and female Rattus rattus, a rodent species
native to the Indian Peninsula and a common pest in Malaysia. By refining the feature
set, the study aims to improve the learning performance and classification accuracy of
predictive models, thereby contributing to more effective data-driven solutions in rodent
pest management.

Feature extraction and feature engineering are foundational processes in machine
learning, involving the creation of new features from existing ones based on domain-
specific knowledge. This process increases the number of features available for analysis,
which is essential for capturing more nuanced patterns within the data. However, before
these features can be effectively utilised, a selection process must be undertaken to
identify the most informative subset. Initially, feature extraction generates a broad array
of potentially useful features. Subsequently, feature selection narrows this down to the
most impactful ones, thereby enhancing the model's performance.

Dimensionality reduction is another critical concept in this context. While it shares the
goal of reducing the number of features with feature selection, the methods differ
significantly. Feature selection involves retaining a subset of the original features and
discarding the rest. In contrast, dimensionality reduction projects the original features

onto a lower-dimensional space, creating a new set of features. Practically, either

32



approach can be used, but when both are applied, feature selection should precede
dimensionality reduction to streamline the dataset effectively.

Feature selection is driven by several key considerations that collectively enhance the
efficiency and efficacy of machine learning models. Firstly, features that have no
relationship with the target variable can introduce noise, leading to overfitting. Removing
these irrelevant features helps maintain model robustness. Additionally, redundant
features, even if important, can be discarded if another feature encapsulates their
information. This mitigates issues such as multicollinearity, particularly in linear models.

High-dimensional datasets can suffer from the curse of dimensionality, where each
data point becomes sparse, making it difficult for the model to learn meaningful patterns.
Feature selection reduces dimensionality, thereby enhancing the model's learning
capability. Moreover, models with too many features often lose interpretability.
Simplifying the feature set improves the model's interpretability, which is particularly
important in regulated domains where interpretability may be a legal requirement.

RFE is a powerful technique that aligns closely with backward selection but differs in
its execution. While backward selection relies on a model performance metric from a
hold-out set, RFE eliminates features based on their importance as determined by the
model itself. This importance can be derived from feature weights in linear models,
impurity decrease in tree-based models, or permutation importance applicable across
various model types. By iteratively removing the least important features, RFE refines
the feature set to enhance model performance.

The black rat, Rattus rattus Linaeus, 1958 is a widespread rodent pest with significant
ecological and economic impacts. In Malaysia, research on R. rattus, especially regarding
feature selection techniques for craniodental measurements, remains limited. This study
addresses this gap by employing NB, RF, and ANN as predictive models to classify age

groups of both male and female R. rattus. The performance of these models, utilising
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RFE-selected variables, was compared and analysed.

The application of RFE in this study demonstrates its utility in refining feature sets to
improve model performance. By selecting the most relevant craniodental measurements,
the predictive models achieved higher classification accuracy, underscoring the
importance of feature selection in machine learning. This approach not only enhances the
effectiveness of predictive models but also contributes to better understanding and

management of Rattus rattus populations.

3.2 Methodology

3.2.1 Data Description of the Rattus rattus Data

A total of 130 individuals of R. rattus were caught and examined for skull
morphometrics study. The male and female R. rattus cranial and mandible measurements
(67 males and 63 females) were used in this study i.e., 20 morphometric variables (see
Mohamad Ikbal et al. (2019)). Figure 3.1 and Table 3.1 show the parts of measurements

taken based on Musser & Newcomb (1983) and Musser, et al. (2009).

The linear measurements of the male and female rats were extracted from the original
dataset based on their age classes. The three age classes are based on the molar wear
stages. Stage C2: Cusps are still visible on all molars and the link between the first and
second lobes of the upper M3 is very narrow (15 males and 24 females); C3: The
longitudinal link between the first and second lobes of the upper M3 is larger and
generally wider all the linear measurements in the dataset and the results are tabulated (16
males and 14 females); C4: Upper M3 displays nearly total fusion of the first and second
lobes of the longitudinal link that is wide, but it remains visible on the other molar cusps
(36 males and 25 females).The original dataset of the linear measurements and age classes
were then split for each sex using the 70/30 test/train split (70% of the whole dataset used

for training, and 30% for testing) based on random sampling across combination of age
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for both male and female rats before fitting it to the RFE model to prevent overestimation

of accuracy in the empirical analysis.

(a) (b)

(c)
Figure 3.1: Craniodental measurements of R. rattus based on the (a) dorsal, (b)
ventral, and (c) lateral views (Photo sourced from Muhammad Ikbal et al., 2019)
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Table 3.1: Model performance evaluation based on age groups for male R. rattus

Dorsal Ventral Lateral Mandible
Occipitonasal Length of diastema Breadth of Length of
length (ONL) (LD) zygomatic plate mandible (ML)

(BZP)
Length of Length of incisive Crown length of Length of
rostrum (LR) foramina (LIF) maxillary molar row mandible
(CLM1.3) toothrow
(M1.M3)
Breadth of Breadth of incisive Height of braincase
rostrum (BR) foramina (BIF) (HBC)
Zygomatic Breadth of first upper
breadth (ZB) molar (BM1)
Breadth of Length of bony plate
braincase (BBC) (LBP)
Interorbital Length of auditory
breadth (IB) bulla (LB)
Post palatal length
(PPL)
Breadth of
mesopterygoid fossa
(BMF)
Breadth across palate
at first molar (BBP)

Table 3.2 The localities and samples sizes from which R. rattus populations were
collected in Peninsular Malaysia.

Locality Sample size | Habitat

Kuala Perlis, Perlis 9 Seaside

Kota Bharu, Kelantan 8 Housing area
Alor Setar, Kedah 12 Housing area
Georgetown, Penang Island 6 Seaside

Seberang Jaya, Penang mainland 7 Housing area
Kuala Terengganu, Terengganu 10 Housing area
Ipoh, Perak 8 Fresh market
Kuantan, Pahang 12 Housing area
Chow Kit, Kuala Lumpur 15 Fresh market
Shah Alam, Selangor 9 Housing area
Seremban, Negeri Sembilan 12 Fresh market
Masjid Tanah, Melaka 10 Housing area
Stulang Laut, Johor 12 Seaside
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3.2.2 Recursive Feature Elimination

In the field of machine learning, selecting the right features is crucial for building
efficient and accurate models. While decision trees are popular for feature selection due
to their simplicity and interpretability, the RFE method offers several advantages that
make it a compelling alternative. RFE is an effective feature selection method that
initially uses the entire set of features to build the model. This feature selection technique
can be applied to any model that can rank features by importance, such as support vector
machines (SVMs), linear models, and random forests. This flexibility allows for a broader
application across different types of machine learning algorithms. Decision trees are a
tree-structured model used for both classification and regression tasks. For feature
selection, they rank features based on their ability to split the data into homogeneous
subsets, often using metrics such as Gini impurity or information gain. RFE’s ability to
work with a variety of models (e.g., SVMs, linear models) provides greater flexibility
compared to the decision tree method, which is inherently tied to the tree structure. RFE’s
iterative approach ensures that the feature selection process is thorough and optimised for
the final model’s performance. While decision trees offer simplicity and interpretability
in feature selection, RFE provides a more flexible and robust approach, particularly suited
for improving model performance and generalisation.

Since RF deals well with high dimensional data problems (Darst et al., 2018), this
algorithm was applied on each iteration of the RFE model using the R. rattus training
data. RFE then effectively ranks the attributes according to their importance scores,
eliminating the weak features iteratively until a desired number of top-ranked features are
selected (Misra & Singh, 2020). Based on the accuracy of different attribute subset sizes
obtained, the top performing features from the RFE model were then chosen for each sex

by referring to the RFE performance profile plots.
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These selected linear measurements of the training data and test data are scaled at unit
variance before being fitted into three predictive classification models (Misra & Singh,

2020).

3.2.3 Classification Models

Morphometric studies for classification and identification tasks are enhanced by
extensive machine learning methods. The naive Bayes (NB), random forest (RF), and
artificial neural network (ANN) classification models are frequently applied because they
have been successfully used in many previous studies.

The NB classification model is a classifier which provides a mechanism that utilises
predictors of the training data to estimate the posterior probability, P(y;| Xx) Sammut &
Webb, 2010). NB classifiers were trained using all the scaled features as predictor
variables and the age groups of R. rattus as class labels. This is done for both sexes and
their performance measures are tabulated. The process is repeated for the RFE-selected
features for comparison. Based on the R. rattus dataset, the Bayes theorem can be written

as follows:

P(yr)P (x| yr)
P(x)

P(ye| %) =
where X represents the scaled linear measurements and y,, represents the age classes of
the rats’ training data. P(yy) is the prior probability of class y,. Given the age classes
are C2, C3 and C4 for R. rattus, the classification problem is formulated as a multiclass
classification problem because there are more than two classes. Under the NB
assumption, the features are conditionally independent given the class. Therefore, the

likelihood P(x|yy) can be expressed as the product of the individual conditional

probabilities:

P(x| yi) = [Tie1 (x| yio)-
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The NB classifier assigns the individual to the age class y, with the highest posterior
probability:

y = argmax P(y;) [ 1721 (x| yi)-
Yk

Random Forest (RF) has decision trees that train a dataset using the bootstrapping
method. These decision trees reduce the chance of overfitting on the training data thus
improving the predictive accuracy (Denisko & Hoffman, 2018). The RF model with all
the predictor variables of the training data was fitted using three age classes of rats as the
classification category. The model is then assessed using the test data and the results of
the performance measures are tabulated. The entire process is repeated using the training
data with only the RFE-selected features for both sexes. RF offers a different approach
to machine learning compared to NB and ANN. While NB is a probabilistic classifier
based on Bayes' theorem and ANN is a biologically inspired model that learns from data,
RF is an ensemble learning method based on decision trees. Including RF allows for a

more comprehensive comparison across different machine learning paradigms.

ANN consists of several interconnected layers of information-processing units called
neutrons and an input layer that processes the information of inputs. This information will
be transferred to hidden layers. These layers process the information further before
transferring it to the output layer which has one neuron that gives the function of the linear
combination of the output obtained from the hidden layers (Bermejo et al., 2019). To fit
the ANN model, all features of the training data were applied into the neural networks

and select the age classes of rats as targets. The architecture of the ANN used is as follows:

(a) Input Layer: The input layer receives the initial data that need to be processed which
is represented as neurons. Each neuron corresponds to one feature and this layer
passes the information on to the next layer in the ANN. In this study, the linear

measurements of the male and female rats were used as the input layer.
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(b) Hidden Layers: These layers are intermediate layers between the input and output
layers. Actual computation of input data is performed in each neuron of a hidden layer
based on the input received from the neurons in the previous layer using a weighted
sum followed by an activation function to produce an output. Activation function is a
critical component of a neural network that introduces non-linearity into the model so
that the network is able to learn complex patterns and relationships in the data. In this
study, using method "nnet" for neural networks, the default activation function used

is the logistic sigmoid function.

(c) Output layers: The output layer provides the final results of the neural network
computation. The number of neurons in the output layer depends on the nature of the
task. In this study, the number of neurons in the output layer corresponds to the
number of age classes of the male and female rats (C2, C3 and C4).

This model is evaluated based on the results obtained by the confusion matrix. The
process is repeated, by fitting only the RFE-selected features into the ANN model for

both male and female R. rattus data.

3.2.4 Performance Evaluation Metrics for Classification Models

The multiclass confusion matrices of the classification models were observed and their
performances between the models were compared with all features and models, with the
selected features. The true positive (TP), true negative (TN), false negative (FN), false
positive (FP) and accuracy (Acc) values after obtaining the confusion matrices are
calculated. Since the target variable (age classes of rats) are imbalanced (Misra & Singh,
2020), i.e., 29.23% are C2, 23.08% are C3 and 47.69% are C4, Kappa, precision, recall
and F1 score measures were observed to evaluate the performance of the machine learning

algorithms.
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These measures are calculated for each age class as follows:

.. TP
Precision =
TP+FP
TP
Recall =
TP+FN
observed accuracy — expected accurac
Kappa = YD >

1 — expected accuracy

Precision*Recall
Flscore =2+ ————
Precision+Recall

Receiver operating characteristic (ROC) curves are obtained. For the male and female
rats, the respective Area under the ROC Curve (AUC) is obtained to assess the
performance of the classification models with all features and models with RFE-selected
features. The ROC curve plots the TP and FP, while the AUC calculates the area
underneath the entire ROC curve which provides the overall measure of separability of
age.

All statistical analyses were performed using R. The caret package (Kuhn, 2008) was
used in R version 4.2.1 (R Core Team, 2023) to apply the RFE algorithm and to streamline
the model training process for classification tasks. In addition, the factoextra package
(Kassambara & Mundt, 2020) and ggfortify package (Tang et al., 2016) were also applied
in R to visualise the PCA output. The santaR package (Wolfer et al., 2022) is used to scale
the linear measurements of both male and female rats at unit variance. The MLeval
(Christopher & John, 2022) package is applied to construct the ROC curves for the

classification models with all features and RFE-selected features.
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The default hyperparameters are used for all three machine learning models trained
using the caret package. The ‘trainControl’ function is utilised to define the resampling
method and parameters, which specifies 10-fold cross validation. For the NB model, the
default settings include a kernel density estimate for continuous variables (by default,
kernel density estimation is not used), a smoothing parameter for the conditional
probability tables (by default, no smoothing is applied), an adjustment factor adjust for
bandwidth in kernel density estimation (by default, no adjustment is used) and a cut-off
for classification of 0.5, by default. The hyperparameters for the RF model includes the
number of variables randomly sampled as candidates at each split (by default, it is the
square root of the number of variables), the number of trees is 100, minimum size of
terminal nodes (by default is 1 for classification). For the ANN model, the
hyperparameters are the number of units in the hidden layer(s) (by default, it is 1), a decay
term for weight decay (by default is 0, meaning no decay), maximum number of
iterations, which is 100, the maximum number of weights (default is 0, meaning

unlimited), and no entropy error is used by default.

33 Results and Discussion

After performing the train-test split for the skull measurements data of both male and
female rats, the automatic RFE was applied, by wrapping it around a random forest model
to remove features recursively according to their age groups and the top performing
features were selected. Based on the RFE results shown in Figure 3.2, HBC, IB, LD, BZP,
BR, ZB, and LIF were identified by the RF-RFE as the features that indicate significant
differences among age classes for R. ratfus males. These features may be selected by RFE
as males of the Rattus genus are larger in size than females and can display a larger

variation around the braincase compared to females (Alamoudi et al., 2021).
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Male rats of this genus tend to have longer rostrum with shorter and wider zygomatic
arch (Alamoudi et al., 2021). As for R. rattus females, the top performing features to
distinguish age classes are ZB, LD, BMF, BBC, IB and BR. The top performing features
were obtained using the “rfe” function in the library “caret”. These features are chosen
using RFE as females of the Rattus genus display greater variation around the occipital
bone with narrow zygomatic arch and longer magnum foramen (Alamoudi et al., 2021).
All features selected by RFE for the male and female rats appear to coincide with most of
the craniodental measurements used in Balakirev et al. (2011); Breno et al. (2011);
Esselstyn et al. (2015); Libois et al. (1996); Motokawa et al. (2004); Timm et al. (2016).
Among all features selected by RFE, the zygomatic breadth (ZB), interorbital breadth
(IB), breadth of rostrum (BR) and length of diastema (LD) were observed to be significant
in both male and female rats, which is 44.4% of the “total chosen features” of both male
and female rats. These selected features are later used in PCA, LDA and the predictive
classification models for each sex and their performance measures are evaluated and

tabulated.
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Figure 3.2: Performance profile plots across different subset sizes given by RFE
approach for scaled (a) male and (b) female craniodental measurement dataset
3.3.1 Principal Component Analysis
After considering the top performing features in the dataset, the first two PCs explain
about 94.8% of the total variation. The clusters among age groups of male rats are more
distinct when the RFE-selected features are used (Figure 3.3(b)(i). As for the female R.

rattus, the first two (PCs) explain 85.4% of the total variation in the age groups.
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When only the top performing features were considered, the PC1 and PC2 explain 93.8
% of the variation, which also reveals more distinct clusters among the age groups in
female rats (Figure 3.3(b)(ii)). Based on the improvement shown in the PCA, selecting
RFE-based features may also have more potential in examining the age variation of R.
rattus using canonical variate analysis (CVA) and ‘posteriori’ Scheffe’s test; a study
conducted by Mohamad Ikbal et al. (2019) with 14 of the craniodental measurements for

both sexes.
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Figure 3.3: PCA plots for R. ratfus male craniodental measurement ((i) all features
(ii) significant features. The ellipses help visualise the spread and central tendency
of each group. Each ellipse encompasses 95% of the individuals within that group,
indicating where most of the data points for each group are concentrated
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Figure 3.4: PCA plots for R. rattus female craniodental measurement ((i) all features
(ii) significant features. The ellipses help visualise the spread and central tendency
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3.3.2 Predictive Classification Models Performance
The RFE selected features are used in the predictive classification models for each sex

and their performance measures are evaluated and tabulated (Table 3.2 and Table 3.3).

Based on Table 3.2 and Table 3.3, both training and test sets give excellent results in
terms of accuracy for all three models (evaluated once), with all features included, where

ANN is the best model for both male and female craniodental measurement datasets.

A comparable result is observed in the NB model for R. rattus males after fitting the
top performing features into the model, which indicates that RFE can be considered as an
alternative feature selection method. The lower test data accuracy for the RF model is due
to the classification of the majority of the C4 age class as target variable in the male rats’
test data. Class imbalance can lead to biased models that perform poorly on the minority
class. The overall performance evaluation of models with the top performing features for

the male rats’ data shows that ANN gives 100% test data accuracy and Kappa.

As for the female dataset, all three classification models for the top performing
features show good results. Both training data and test data have accuracy of more than
97% for all models, with ANN being the best model. These results were further
investigated using precision, recall and F1- score measures for the top performing features

among both sexes (Table 3.4).

Based on the age groups of the male R. rattus, it was observed that all the three models
yield high scores for precision (Table 3.3). The recall measure shows good results for the
models except for the C2 age group which for RF which is 0.5. This means that only half
of the age class is correctly predicted. The F1 scores for all three models reveal that the
groups are correctly identified and not disturbed by false results. The F1 score is

considered perfect (1.000) for the ANN model for all male age groups.
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As for the age classes of the R. rattus females, all three models produce high scores
for all the three measures. This indicates that the age classes are correctly classified based

on the three models used.

AIl ROC-AUC curves (Figure 3.4) show promising results for all classification models
with all features and top-selected features. There is an improvement in all the models
when only the RFE-selected features were used. Based on the ROC-AUC curve for the
female rats, all three classification models could clearly distinguish their age classes when

only the top performing features were applied.

ANN was chosen as the best predictive classification model using the top five features
for both the male and female rats based on the scores for all three measures considered
and the ROC-AUC plots.

Table 3.3 ROC-AUC results for R. rattus male and female craniodental
measurement ((i) all features (ii) top performing features)

Classifiers Male rats Female rats

All features | RFE features | All features | RFE features
NB 0.96 1.00 1.00 0.98
RF 0.97 0.98 0.98 1.00
ANN 0.98 1.00 1.00 1.00

Table 3.4: Model performance evaluation based on age groups for male R. rattus

Classifiers Training data Test data accuracy Kappa
accuracy
All RFE All RFE All RFE
features features | features | features features | features
NB 0.927 0.983 0.866 0.867 0.789 0.795
RF 0.943 0.963 0.933 0.800 0.891 0.685
ANN 0.980 0.987 1.000 1.000 1.000 1.000
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Table 3.5: Model performance evaluation based on age groups for female R. rattus

Classifiers Training Data Test Data Accuracy Kappa
Accuracy
All RFE All RFE All RFE
features | features features | features features | features
NB 0.983 1.000 1.000 0.929 0.692 0.891
RF 1.000 0.975 1.000 0.857 0.841 0.781
ANN 1.000 0.994 1.000 1.000 1.000 1.000

Table 3.6: Precision, recall and F1 scores of classification models using RFE-selected
features for male R. rattus based on age groups

Classification Precision Recall F1-score
model

C2 C3 C4 C2 C3 C4 C2 C3 C4
NB 1.000 | 1.000 | 0.750 | 1.000 | 0.600 | 1.000 | 1.000 | 0.750 | 0.857
RF 0.750 | 1.000 | 0.875 | 0.500 | 1.000 | 1.000 | 0.667 | 0.667 | 0.933
ANN 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

Table 3.7: Precision, recall and F1 scores of classification models using RFE-selected
features for female R. rattus based on age groups

Classification Precision Recall F1-score
model

C2 C3 C4 C2 C3 C4 C2 C3 C4
NB 1.000 | 0.750 | 1.000 | 0.833 | 1.000 | 1.000 | 0.909 | 0.857 | 1.000
RF 1.000 | 0.500 | 1.000 | 0.714 | 1.000 | 1.000 | 0.833 | 0.667 | 1.000
ANN 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
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3.4 Conclusion

A good feature selection method that selects the best, highly discriminant features
increase the performance of the model and reduces computational complexity in
classification problems. It is of interest of this thesis to examine how well RFE works
when incorporated with PCA in morphometric studies. Based on the analysis for R. rattus
males and females, a comparable result was noticeable on the performance metrics of the
three predictive classification models and in PCA when the RFE-selected features are
used. ANN outperforms the other models for both sexes. It was also observed that using
RFE as a feature selection method reduces computation complexity in morphometrics
studies. Applying RFE-based features in the work done by Mohamad Ikbal et al. (2019)
may achieve more promising results to observe the significance difference of R. rattus
age groups and these features could also be used in other conventional morphometric
studies of rats to examine their morphological differences. Although RFE is a valuable
technique for identifying relevant features, it may result in the selection of features that
are correlated with each other. In this study, RFE was instrumental in identifying the most
informative features for constructing predictive models, thereby enhancing model

interpretability and potentially mitigating overfitting.
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CHAPTER 4: FDGM IN 2D GEOMETRIC MORPHOMETRICS

4.1 Introduction

The study of craniodental morphology in shrews stands out as an invaluable avenue
for gaining insights into their evolutionary trajectory, taxonomic classification, and
ecological adaptations. Shrews, belonging to the order Eulipotyphla are characterised by
their small size, insectivorous diet, and rapid metabolism. Despite their small stature,
shrews exhibit remarkable diversity in craniodental morphology, reflecting adaptations
to different ecological niches and evolutionary pressures. This is evident in the study
conducted by (Vasil’ev, & Kourova (2015) which revealed geographical variability of the
shape of mandible in three shrew species of genus Sorex using GM. Notably, discriminant
analysis of Procrustes coordinates derived from the GM method enabled high percentage
of correct assignment of individual shrews to distinct local taxocenes, further validating
the efficiency of this methodology in taxonomic studies. Moreover, findings by (Vilchis-
Conde et al. (2023) reinforce the significance of GM in supporting the taxonomic
classification of semifossorial shrews. The research also revealed that the shapes of the
skull, particularly the dentary has associated with the diet specialisation, highlighting the
profound impact of morphological variations on functional aspects such as bite force
among shrews. This thesis focuses on the craniodental variation among three shrew
species: Crocidura malayana Robinson & Kloss, 1911, Crocidura monticola Peters, 1870

and Suncus murinus (Linnaeus, 1766).

Each species occupies distinct ecological niches: C. malayana, a medium-sized shrew,
thrives in Thailand, Malaysia, and several offshore islands (Hutterer, 2005). This
terrestrial species has been documented in both hill and lowland forests (Francis, 2008;

Jamaluddin et al., 2022).
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Meanwhile, C. monticola, the smallest shrew in the genus Crocidura is restricted to
forest areas in Malaysia and Indonesia (Omar et al., 2013). On the other hand, S. murinus,
the largest shrew species, is predominantly found in urban areas and the outskirts of
forests, with a wide distribution spanning human settlements in the Indian subcontinent

and Southeast Asia (Ruedi et al., 1996).

In this thesis, 90 adult shrew specimens were collected, with 30 individuals from each
species. The habitats of C. malayana span diverse locations, including Lata Belatan,
Terengganu; Ulu Gombak; Aur Island, Johor; Pangkor Island, Perak; Bukit Rengit,
Pahang; Cheras Road, Kuala Lumpur; Port Dickson, Negeri Sembilan; and Dusun Tua,
Selangor. Conversely, C. monticola exhibits a broader habitat range, inhabiting
environments such as Ulu Gombak; Wang Kelian, dominated by secondary lowland
forest, and Maxwell Hill, an upper dipterocarp forest, among others. Suncus murinus, on
the other hand, is observed in locations like Wang Kelian, Perlis; Alor Setar, Kedah; Air
Hitam, Pulau Pinang; Lumut, Perak; Ulu Gombak, Selangor; and Bukit Katil, Melaka.
These varied habitats likely contribute to the divergence in craniodental morphology
between species. Notably, C. malayana and C. monticola coexist in sympatry in Ulu
Gombak, sharing the same habitat or niche. This study aims to elucidate the relationships
between these species, offering valuable insights into the evolutionary processes shaping

their craniodental morphology.

FDA is a statistical methodology used to analyse data that are represented in the form
of functions, consisting of entire curves or other continuous functions, rather than discrete
observations. Functional data analysis is particularly useful when dealing with data that

vary continuously over a domain, such as time, space, or wavelength.
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In the context of this study, the basic idea behind FDA is to express discrete
observations, i.c., landmark coordinates, in the form of a function (to create functional
data) that represents the entire measured function as a single observation, and later
generate models to predict information based on a collection of functional data by

applying statistical concepts from multivariate data analysis (Ullah & Finch, 2013).

In this work, the FDGM method is employed to analyse the image and shape data in
the form of functions. The landmarks obtained from the craniodental shapes of three
species of shrews are represented in the form of functional data. This data is used to
perform multivariate functional principal component analysis (MFPCA) to observe
variation among the three shrew species and compared with the classical PCA. The
principal component scores obtained from MFPCA (MFPC scores) captures the major
sources of shape variation among the shrew species. These MFPC scores are then
reconstructed based on a truncated multivariate Karhunen-Loeve representation to
produce predicted functions, thus allowing for a compact representation of the functional
data. The results of this study revealed that FDA can be used to identify subtle differences
in shape, and it can be used to relate these differences to underlying factors, such as

ecology or behavioral factors.

In this study, the landmark coordinates used in the GM method will be represented as
functions. Each sample element is considered as a function under the FDA framework
which often defines time, spatial location, or wavelength as the physical continuum.
Functional data geometric morphometrics (FDGM) is proposed in this study, requiring
steps to perform statistical analysis on signals, curves, or even more complex objects
while being invariant to certain shape-preserving transformations. To ensure that the
functions are well-aligned for geometric features such as peaks and valleys, curve

registration or functional alignment are applied to warp the temporal domain of functions.
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The FDA framework surpasses its counterparts, including both the landmark-based
approach and the set theory approach with principal component analysis (PCA), when
applied to a well-known database of bone outlines. The set theory approach is adopted
from a methodology outlined in Horgan (2000), treating shapes as sets. Each position
within the image corresponds to a binary variable, indicating whether it belongs to the

shape or not. Consequently, the study performed PCA specifically tailored for binary data.

The landmarks obtained from the craniodental shapes of three species of shrews are
represented in the form of functional data. This data is used to perform multivariate
functional principal component analysis (MFPCA) to observe variation among the three
shrew species and compared with the classical PCA. The principal component scores
obtained from MFPCA (MFPC scores), which capture the major sources of shape
variation among the shrew species. The functional data of landmarks sampled from
studied curves were then concisely represented by a continuous curve based on Karhunen-
Loeve theorem. The results of this study revealed that FDGM can be used to identify
differences in shape by classification methods. These differences can be used to relate to

underlying factors such as ecology or behavioral factors.

This work aims to introduce geometric morphometrics in a functional data framework
to reveal the existence of significant differences in craniodental shapes of three species
of shrews. These differences are related to the different ecological niches that these three
species occupy. The results of this study will provide valuable insights into the
morphological variation among shrews. This information could be used to improve our
understanding of the evolution of shrews and to develop new methods for identifying and

classifying shrews.
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4.2 Data Description

4.2.1 Shrew Skull Image Acquisition

The skulls of C. malayana, C. monticola, and S. murinus were examined from various
angles, including dorsal, jaws, ventral, and lateral views (Figure 4.1). However, the
ventral view was excluded from this study because it is identical to the dorsal view (Abu

etal., 2018).

Ninety specimens of the three shrew species (30 for each species) were obtained from
the Museum of Zoology at Universiti Malaya (UM) in Kuala Lumpur, Malaysia. The
skulls from each specimen were individually placed in small bottles for GM analysis.
Digital images of the skulls were captured following the method outlined by Abu et al.
(2016) using a Nikon D90 camera with 15x magnification. The images were saved in
Tagged Image File Format (TIFF) at a resolution of 4288 x 2848 pixels. Adobe Photoshop

CS6 was used to enhance the image quality.

4.2.2 Landmark Data Acquisition

After acquiring the images, TPSUtil32 (Rohlf, 1990) is used to obtain the TPS files
for all three views which will be used in TPSDig2 (Rohlf, 1990) for landmarking. Each
craniodental view has different numbers of landmarks and semi-landmarks, i.e., dorsal
(25 landmarks), jaw (50 landmarks) and lateral (47 landmarks). The statistical analysis of
three views was performed in R version 4.2.1. To use the GM data, the raw coordinates
obtained from the landmarks of all three craniodental views were processed using GPA
for optimal registration using translation, rotation, and scaling using the gpagen function
in the geomorph package (Adams et al., 2013). According to McCane (2013), outline
methods produce useful and valid results when suitably constrained by landmarks. This
leads to the main idea of this work to incorporate FDA approach to observe the separation

among the three shrew species.
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After the images are acquired, TPSUtil32 is used to obtain the TPS files for all three
views. These files will be used in TPSDig2 for landmarking. A repeated measurement
approach was employed. This approach involved having the same observer measure the
outlines three times to assess the consistency and reproducibility of the measurements.
By comparing these repeated measurements, any variation or error introduced by the
observer during the process could be quantified and evaluated. The average of these
repeated measurements was used for further analysis.

For the dorsal view, 25 landmarks were placed including 16 Type I landmarks (LM1,
LM4-LM11, LMI13-LM15, LM22-LM25) and 9 Type Il landmarks (SLM2-SLM4,
SLM12, SLM16-SLM21). Similarly, in the jaw view, 50 landmarks were positioned,
comprising 32 Type I landmarks (LM1, LM3-LM22, LM24-LM26, LM32-LM35, LM41-
LM43, LM48, LM50) and 18 Type III landmarks (SLM2, SLM23, SLM27-SLM31,
SLM36-SLM40, SLM44-SLM47, SLM49).

Lastly, the lateral view consisted of 40 landmarks being Type I (LM1, LM4-LM11,
LM15-LM18, LM20, LM22-LM47) and 7 landmarks being Type III (SLM2, SLM3,
SLM12-SLM14, SLM19, SLM21).

As suggested by MacLeod (2013), the application of any specific treatment to semi
landmarks, such as the sliding landmark analysis for geometric morphometric analysis
has been refrained from this study. This is to prevent any alteration of the original

geometric relationships which would complicate the interpretation of the results.
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Figure 4.1: Digital skull images of dorsal, jaw and ventral views of C. malayana, C.
monticola and S. murinus.

4.3  Functional Data Geometric Morphometrics in 2D Landmark Data

4.3.1 Functional Landmark Data

This thesis introduces functional data framework of geometric morphometrics known
as functional data geometric morphometric (FDGM). In this framework, FDA is
integrated with GM to capture and analyse shape variations across specimens. This
integration allows for a more comprehensive analysis of shape variations by considering
landmark coordinates as functional data. FDA is a method used to analyse raw data that
varies dynamically over time, space, or more complex dimensions. In this study,
standardised coordinates from GPA were employed to evaluate the outlines of the shapes
in three craniodental views. As the methodology is similar to that in Chapter 5, the FDGM
method is shown using 3D landmark representation. Each observation is vector-valued,

as three spatial coordinates which are the x, y and z — coordinates are involved.

Let

{ () v, 2e(8) s o (20t yieE), m(E)) '}
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where k = 1,...,n be the standardised landmark coordinates for n specimens and t =
1,...,p be the number of landmarks on a d — dimensional domain (example of 2D
representation can be referred to Figure 4.2 (a); Figure 4.3(a); Figure 4.4(a)). To
implement functional data in an object-oriented way, the raw data is converted into

functions.

To mitigate non-shape variations such as translation, rotation, and scaling, Procrustes
superimposition is employed on landmark coordinates in each view. This ensures
alignment of landmarks while preserving shape differences across specimens. (Figure 4.2
(b); Figure 4.3(b); Figure 4.4(b)). This work is inspired by the study conducted by Happ-
Kurz (2020) and is based on the crania of the shrews.

Let {x(t1), wr, X (€D}, Yk (1), o, Yic(£)} and {2 (t1), .., 2 (¢;)} where k =
1,..,n be the separated standardised landmarks for n specimens for x,y and z —
coordinates respectively. The data is organised in two fields to facilitate FDA in an object-
oriented manner. For example, the x —coordinates are used as the observation points
(boundaries) {tkl, etk =1, .., n} and the values of landmarks represent the set of
observed values {xkl, o Xgpik =1, ...,n}. This creates a data block of a univariate
functional data object, representing the x —coordinates as a collection of vectors that
define the marginals of the observation grid (Happ-Kurz, 2020). The same process is
applied to the y and z — coordinates.

These discrete curve observations were converted into continuous functions,
Xk @ k=1,.n> Ye @) k=1,.n and Zy(t)=1 . nusing the funData package (Happ & Greven,
2018) in R. This approach represents the landmark points as univariate functional data
with n observations as a list for x and y- coordinates respectively.

The univariate functional data is then represented as multivariate functional data, with

n observations defined on d-dimensional domains using the multiFunData function

(Happ-Kurz, 2020).
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(a)

(b)

Figure 4.2: (a) 25 landmarks included for dorsal view of C. malayana. Landmarks
and semilandmarks are represented by red and light blue dots, respectively. (b) 2D
representation of the x and y-coordinates for the 25 landmarks of crania for the
dorsal view; (c) 2D domains of converted functional data of landmark data for the
dorsal view using FDGM method (specimens are represented by coloured lines) for:
(i) Dimension 1 and (ii) Dimension 2
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Figure 4.2, continued.
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(a)

(b)

Figure 4.3: (a) 50 landmarks included for jaw view of C. malayana. Landmarks and
semilandmarks are represented by red and light blue dots, respectively (b) 2D
representation of the x and y-coordinates for the 50 landmarks of crania for the jaw;
(¢) 2D domains of converted functional data of the landmark data for the jaw view
using the FDGM method (specimens are represented by coloured lines) for: (i)
Dimension 1 and (ii) Dimension 2.
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Figure 4.3, continued.
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(a)

(b)

Figure 4.4: (a) 47 landmarks included for lateral view of C. malayana. Landmarks
and semilandmarks are represented by red and light blue dots, respectively (b) 2D
representation of the x and y- coordinates for the 47 landmarks of crania for the
lateral view; (c) 2D domains of converted functional data of the landmark data for
the lateral view using the FDGM method (specimens are represented by coloured
lines) for: (i) Dimension 1 and (ii) Dimension 2.
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Figure 4.4, continued.

4.3.2 Multivariate Functional Principal Component Analysis for Craniodental
Views of Shrew Specimens

After acquiring the multivariate functional data, the MFPCA package is used to
compute the MFPCA estimates on the multivariate functional data, based on their
univariate counterparts (Happ & Greven, 2018). The MFPCA function calculates MFPCA
based on the observations that are independently and identically distributed (multivariate
functional data obtained from the landmarks). The PCA basis functions are estimated
from the multivariate functional data, X;(t) using univariate functional principal
component analysis (uFPCA), which is the most common basis expansion on a 1 -
dimensional domain (Happ-Kurz, 2020). These basis functions were then applied on n
observations based on the PACE (PCA through conditional expectation) approach (Yao
et al. 2005). uFPCA is calculated by smoothed covariance using the refund package
(Happ-Kurz 2020). In MFPCA, vectors are no longer considered PCs but are replaced by

functions.
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Consider the vector-valued stochastic process X = (X, Y, Z)T , representing functional
random variables associated with standardised landmark coordinates, x,y and z —
coordinates respectively. For 1 < p < P (in our case P = 3), let I, be a compact set in R,
with finite (Lebesgue) measure and such that : X: I, —» R belongs to £L?(I,), the space of
square integrable functions on I, . (Iy, L? (Iy)) and (I, L?(1,)) is similarly defined. The
P —Fold Cartesian product of I, and I,, denoted by I := I, X I,, X I,. So, X is a stochastic
process indexed by t € I and taking values in the P —Fold Cartesian product space H =

L2(1) x L2(1,) x L2(1,).

Let the inner product ((-,;")): H X H - R,

((f:g» = Zpe{x,y,z}(fp'gp> = ZpE{x,y.z} f,p fp(tp)gp(tp)dtp'

f=akf) 9= (900909.) €.

Then, H is a Hilbert space with respect to the scalar product ((-,)) (see (Happ and Greven

2018)). |||+]1] is denoted by the norm induced by {(:,")).

4.3.3  Multivariate Karhunen-Loéve Representation
T T
Assume that E[X(t)] = (E[X(tx)],IE [Y(ty),IE[Y(tz)]D =0,Vt = (ty,t,t,) €L

Let C denote the 3 X 3 matrix-valued covariance function which, for s,t € I, is defined
as
C(s,t) = E[X(s)X(D"]

where the (p, @)th of the matrix C(s,t), for 1 < p,q < P, is the covariance function
between the p —th and the g —th components X:

Cp.a(Sprtq) = E[Xp(sp)Xq(tq)] = Cov (Xp(sp)'xq(tq))’

Sp € Iy, tg € Ig,p, € {x,y}
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In particular, C, 4 () belongs to L2(I,, X I;). LetI': H — H be the covariance operator

of X on the Hilbert space H, where for f € H and t € I, the gth component of ['f (t) is

given by

(rH@ (tg) = <(C.,q(-, tq)f(')>> =Yp=1 f,p Cpq(Sp tg)fo(sp)dsy

sp €Iy, t; €1, f € H.

By the theory of Hilbert-Schmidt operators, there exists a complete orthonormal basis

{¢;,j = 1,2,...} € H and a sequence of real numbers 4; = 4, =...= 0 such that

Tp; = 4;p; and Ai—=0 asj— oo

The A;’s are the eigenvalues of the covariance operator I' and the ¢;’s are the

associated eigenfunctions. The multivariate version of the Karhunen-Loeve’s

representation is:

X(t) = X2 $9(),tel,
with zero mean random variables ¢; = ((X, ¢;)) and Cov(fj,fl) =N 1=y Let J =1
and assume that the first J eigenvalues are nonzero, i.e. ; = A, =...= 4; = Aj41). Up

to a sign, the elements of the MFPCA basis are characterised by:

¢1 = I ((Tp, @) such that [[|p]]] = 1,

¢, =9 (Tp, $)) such that [[|¢]]l = 1, and ((¢, $1)) = 0,

bjr1 =TI ((Tp, @) such that [[|p]]] = 1, and ((p, ¢;)) = 0, VI < J.
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Then, the truncated Karhunen-Loéve expansion of the process X is

Xp® = Z§=1 $ig;®), tel, J=1;
and the truncated Karhunen-Loéve expansion of the components of X is

Xp,[]p](tp) = 2?11 Yp,ibp,i (), tp €Ly, Jp 21, p € {x,¥};
where {¢~)p, j»J =12,...} is the univariate FPCA basis associated to the covariance
operator I, of X}, and the scores are ¥, ; =(X), (ﬁp, ;). Happ and Greven (2018) derived a
direct relationship between the truncated representations (4.9) of the single elements X,

and the truncated representation (4.8) of the multivariate functional data X.

The principal component elements are in general, unknown and have to be estimated
from a sample that are possibly observed on different sparse grid points. These elements
are the eigenvalues {Aj}jzl’ the eigenfunctions {d) j}jzl and the scores {E j}j21. Given a
sample of n i.i.d observations XM XM of X the estimation procedure for MFPCA

consists:

1. For each element X,,, estimate a univariatt FPCA based on the observations
X,S”, i) X;”) by estimating the variance function K, (") of X, as follows:
. 1 . .
Ry(s,t) = =¥, X0 () X5 (0).
This results in the estimated eigenfunctions qu, j» andscores Y, j, i =1,...,n,

j=1,...,J, foragiven truncation integer J,,.

2. Define the matrix Z€R™ with J =Y crvn),, Where each row
peE{x,y,z}Jp

(1/;“) l/)(i) @ l/)(i) ) contains the estimated scores for the 3 com t

11 o W1 o e o s ponents

of the i-th observation. Let’s consider that the matrix Z € R/*/ consisting of blocks

Z®PD e R/r*Ja with entries

Z8V = Cov(y;War)  J =Lty k=1,..Jg p,g=123.
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An estimate Z € R/*/ of the matrix Z is given by

7 =_1 gTg

3. Perform a matrix eigen-analysis for Z resulting in eigenvalues ij and construct the
orthonormal eigenvectors V.

4. Elements of the estimated multivariate eigenfunctions are given by
$p.j(tp) = Z{cp=1[0i]p,k $p.k(tp)' ty€lp, j=1...5,p €{x,y,2z};
And the corresponding multivariate scores are calculated via
§0 = Spa s i =B,
These estimated eigen values and functions are derived under the assumption of a finite

sample size n and a finite Karhunen-Lo¢ve representation for each univariate function

X,

4.3.4  Functional Linear Discriminant Analysis for Craniodental Views of Shrew
Specimens

The MFPC scores from the landmarks were then applied in LDA to distinguish among
the categories studied and the results were compared with the PCA of the GM approach.
In terms of object recognition, it is generally believed that LDA tends to be superior
compared to PCA (Martinez & Kak, 2001). LDA is a dimension reduction technique that
is often used to model differences in groups. Functional linear discriminant analysis
(FLDA) is an extension of linear discriminant analysis (LDA) to the case where the
predictor variables are curves or functions (James & Hastie, 2001) of linear discriminant
analysis (LDA) to the case where the predictor variables are curves or functions (James

& Hastie, 2001).

FLDA enables the generation of classifications for new curves, offers an estimation of
the discriminant function distinguishing between classes, and furnishes a one- or two-

dimensional graphical depiction of a collection of curves (James & Hastie, 2001). The
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number of PC scores used in LDA are obtained based on a threshold of 90% variation
explained to compare rates of classification for both GM and FDGM methods. FLDA
uses a spline curve, which is parameterised using a basis function multiplied by a d-
dimensional coefficient vector to effectively transform the data into a single d-
dimensional space (James & Hastie, 2001). This classifier also includes the random error
to model observations from each individual (James & Hastie, 2001). The coefficient
vector is then modelled using a Gaussian distribution with common covariance matrix for
all classes by analogy with LDA (James & Hastie, 2001). The observed curves can then
be pooled to estimate the covariance and mean for each class, which makes it possible to
form accurate estimates for each individual curve based on only a few observations

(James & Hastie, 2001).

Let M be the set of classes with Q denoted as the covariance matrix of the variables
centered on the class mean, and B be predictions by the class means (Venables & Ripley,
2002). Let H be the M X W matrix of class means, where W > 2 represents the
categorical variables. Denote G to be the n X M matrix of class indicator variables. Thus,
the predictions are GH. p is the mean of the PC scores over the whole sample. The sample

covariance matrices are as follows.

T p— 10T (-7
w = =9 G)'B:(G 1p)°(G-p)
n-m M-1

b

where p are the selected PC scores.

LDA maximises the ratio of the separation of the class means to the within-class variance

T
by maximising the ratio BC; where a is the eigenvector of B corresponding to the largest

a
aTw

eigenvalue (Fisher, 1936).
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4.4. Classification Models

Machine learning has been extensively used in morphometric studies for classification
and identification tasks (Tan et al., 2018). NB, SVM, and RF were chosen as classification
models as these models were commonly used in many classifications related studies. Van
der Plaat et al. (2021) applied NB and RF classifiers for species classification in plant
genetic resources collections. GLM was one of the chosen classifiers to observe species
distribution data at three fine scales: fine (Catalonia), intermediate (Portugal) and coarse
(Europe) (Thuiller et al., 2003). The performances of the NB, SVM, RF and GLM
methods on classification of species among the shrews were assessed using the principal
component scores from functional data (MFPCA) and classical PCA scores. This was
done using the e/071, MASS and caret packages in R. The combined analysis of all three
views and each separate view was performed. Monte Carlo simulation was performed
with 20 iterations to observe the possible output of each model. A brief description of

these classification models is provided as follows:
1) Naive Bayes

The naive Bayes (NB) classification model is a classifier used to estimate the posterior
probability to provide a mechanism that utilises predictors of the training data (Sammut
& Webb, 2010). This approach has been successfully applied to species identification
tasks, particularly when dealing with categorical or discrete features describing species
characteristics. Based on the MFPC scores obtained from this study, the Bayes theorem

can be written as follows:

(l) (l) §§1)|C)
( ® f(l) g(‘)) ’

( |§(1) 30) (1)) Peop($y

where ffi), Aéi), Aéi) represents the selected MFPC scores and ¢; represents the three

shrew species (C. malayana, C. monticola and S. murinus).
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i) Support Vector Machine

Support vector machine (SVM) addresses a multi-class problem as a single “all-
together” optimisation. This classifier can be used to find a hyperplane in a 2-dimensional
space that will separate the scores to their potential species. As this study emphasises on

2D, thus the equation of the hyperplane in the two domains can be given as follows:

y =§°§l)+§°1(l)x1 +§A§l)x2

=wy +wlX
=b+wlX
The three main hyperparameters in SVM are the cost parameter (C), gamma (y) and
kernel. The cost (C) is the penalty parameter of the error term which controls the trade-
off between achieving a low training error and a low testing error. The gamma (y)
hyperparameter defines the influence of individual training samples and the kernel is used
for mapping the input data into a higher-dimensional space. The radial basis function
(RBF) is selected as the kernel function in this study due to its strong classification
approach and its versatility in application without requiring prior knowledge of the dataset

(Mustageem & Saqib, 2021). SVM-RBF can be defined as follows:

2
k(xy,x;) = exp(—y“xl - x2|| ),

1
wherey > 0,y = Py
iil) Random Forest

Random forests (RF) is an algorithm for classification developed by Breiman (2001)
that is based on bootstrap aggregating or bagging that combines the predictions of

multiple decision trees to make a final prediction. This helps to reduce the variance of
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the individual trees, therefore reducing the overall expected prediction error of the

random forest. The working algorithm of the RF classifier is as follows:

Training data
MFPCA score

L&

Decision tree 1

Training data of
MFPC scores

Training data
MFPCA score

2,&

Decision tree 2

N\

Voting

Prediction

Test data of
MFPC scores

Training data
MFPCA score

Decision tree 3

3,64

v) Generalised Linear Model: Elastic Net Regularisation

The GLM classifier here is based on the elastic net penalty, which combines both L1
(LASSO) and L2 (ridge) penalties. In the context of geometric morphometrics, elastic net
regularisation can be applied to GLMs to control the complexity of the model and prevent
overfitting when analysing shape data. The alpha () is the parameter which controls the
balance between L1 and L2 regularisation. Lambda (A4)is the penalty parameter that

controls the strength of regularisation. This classifier based on the MFPC scores can be
represented as 7, = By + ,Blggl(i)+ ot B Aéi) with a link function (softmax function for
multi-class classification) that describes how the mean, E(Y;) = u; depends on the linear
predictor, g(y;) = 7, . The GLM classifier also has a variance function that describes

how the variance, var(Y;) depends on the mean, var(Y;) = ¢var(u;) where the

dispersion parameter, ¢ is a constant.

4.5 Results and Discussion

MFPCA using the functional data of all views combined gave a total of 31 eigenvalues.
The first two MFPCs accounted for 81.56% of the total variation in the species of shrews.
PCA using the GM method yields 89 principal components where the first two PCs
explained 62.94%. The functional principal components show a comparable separation

(Figure 4.5(b)) to the classical GM approach. Suncus murinus is shown to be well
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separated in both methods (Figure 4.5 (a)(b)). Based on the principal component loadings,
LM1 of dorsal view (i.e., the anterior most point of suture) is positively correlated to all
three PCs indicating the strongest association to PC3. Thus, employing the FDGM
approach has potential in examining the species variation of the shrews. When PCA is
separately conducted on each view, the dorsal view gives the best separation for the three
shrew species compared to the other two views for both GM and FDGM methods (Figure
4.6(a) and Figure 4.7(a)).

The dorsal view yielded a total of 10 MFPCs and the first two MFPCs explained 86.4%
of the variation among the species. The GM method yields 46 PCs and the first two
explained 59.24% of variation. The predicted MFPCA results gave a better separation

among the three shrew species compared to the GM method.

There are 11 MFPCs for the jaw view where the first two MFPCs explained 89.31%
of the variation in the species. There is a total of 89 classical PCs for the jaw view where
the first two explained 73.13% of the variation. As for the lateral view, there is a total of
10 MFPCs and the total variation in species explained by the first two MFPCs is 90.90%.
Out of the 89 PCs, the first 2 PCs of the GM approach for the lateral view explained
74.29% of total variation. Although S. murinus is somewhat separated, the jaw view and

lateral view show poor separation for all three species for the GM approach (Figure 4.6(b)

and (c)).

A comparable result for species separation can be observed in the FDGM approach
(Figure 4.7(b) and (c)) for both views. The performance of the classification models based
on individual craniodental views and the combination of all three is evaluated using the
selected PC scores of both the FDGM and GM approaches as the PCs of all the
craniodental views lie within the general rule of thumb threshold of 90% in the FDGM
approach. The overall improvement in results for all the classification models when the

FDGM approach is applied compared to the GM method is shown in Table 4.1.
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The selected PC scores from GM and FDGM were then used in LDA to observe the
percentage of separation among the three shrew species based on the craniodental views.
Based on GM, the percentage of separations achieved by the first discriminant function
1s 92.90%, second is 7.10% when all three craniodental views are combined. It is
noticeable that the groups are quite well separated with FDGM showing better separation
among the three species (Figure 4.8 (b)). The percentage of separations achieved by the

first discriminant function in FDGM is higher compared to GM, which is 99.89 %.

Based on the results obtained in FLDA when the three craniodental views are observed
separately, the dorsal view showed a distinct separation of S. murinus compared to the
other two shrew species, which overlapped (Figure 4.10 (a)). This result is expected
because C. monticola and C. malayana belong to the same genus. Besides that, both
species inhabit similar ecological niches as insectivorous mammals, primarily found in
forested habitats. Thus, the dorsal view of shrews plays an important role in capturing
specific anatomical features of the shrews and providing unique insights into the overall
shape and structure of the skull. This view provides a clear view of cranial sutures and
landmarks, which are important for shrew species identification and comparative
anatomy. Based on GM, the percentage of separations achieved by the first discriminant
function is 92.90%, 98.00%, and 87.50% for dorsal, jaw and lateral respectively. The
percentages of separation by the first discriminant function showed improvement in the
FDGM method, which is 99.91% for the dorsal and jaw view, and 97.20% for the lateral
view. C. monticola seems to be well grouped using the FDGM method for all views
(Figure 4.10) compared to the GM method (Figure 4.9). In this thesis, the principal
components utilised in LDA, FLDA, and other classification methods are derived from
each craniodental views that collectively account for 90% of the explained variance. For
the dorsal view, the first 3 MFPCs and the first 9 PCs are used for the FDGM and GM

methods, respectively. For the jaw view, the first 2 MFPCs and the first 7 PCs are used
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for the FDGM and GM methods, respectively. Similarly, for the lateral view, the first 2
MFPCs and the first 7 PCs are used for the FDGM and GM methods, respectively. When
combining craniodental views, the first 4 MFPCs and the first 15 PCs are used for the
FDGM and GM methods, respectively. FDGM needs fewer components than GM to
account for the 90% explained variance threshold. FLDA leverages the full structure of
functional data by considering the entire curve or shape as a single entity. This allows it
to capture important patterns and relationships that might be missed if the data were
simply reduced to a set of discrete measurements. In contrast, traditional LDA treats each
measurement independently, potentially losing valuable contextual information. By
modeling the data as functions, FLDA can better discriminate between classes based on
the overall shape and structure of the data. This can lead to improved classification
performance, especially in cases where the differences between classes are more subtle
and spread across the entire function rather than concentrated in specific measurements.
This is because FDGM represents shape variation as a continuous function over the entire
curve or surface, whereas traditional GM typically represents shape using discrete
landmark coordinates. This difference allows FDGM to capture more nuanced and
continuous patterns of shape variation, which may be particularly beneficial for capturing
subtle differences in shape between individuals or groups. FDGM also incorporates
smoothing techniques or noise reduction algorithms as part of the functional data analysis
process. This can help mitigate the effects of measurement error or noise in the shape
data, leading to more distinct and well-defined groupings compared to the raw landmark
data used in traditional GM methods. As the shape data represents functional curves or
surfaces, FDGM explicitly models the functional dynamics of shape variation. This
allows FDGM to capture temporal or spatial patterns of shape change, which may be
critical for distinguishing between groups with subtle shape differences, such as those

observed in C. monticola.
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Distinct clusters of the shrew species are more prominent when the standardised
landmarks of the three craniodental views combined are analysed by FDGM and GM
methods. FDGM is a better solution as the outlines of the skulls are treated as continuous

curves rather than discrete points (Ramsay & Silverman, 2005).

As shown in Figure 4.5, PCA based on GM does not give a better separation of the
shrew species compared to MFPCA of the FDGM approach. When the three craniodental
views were individually examined (Figure 4.6 and Figure 4.7), the dorsal view showed
the clearest separation among the three shrew species using both approaches. This is
because the dorsal view gives the most comprehensive view of the skull which includes
landmarks from all the major cranial features. Based on the results obtained, this study
reveals that the dorsal view of the shrew skulls can be the most informative view for

distinguishing between the three shrew species.

The least favourable separations are observed for the jaw view (Figure 4.6 (b)). The
MFPCA of the FDGM approach shows comparable results with that of GM’s. As C.
monticola and C. malayana belong to the same genus, there are similarities in the edges
of the molar region for both species. The horseshoe effect present in the GM approach
(Figure 4.6(b)) may indicate species turnover along environment gradients (Morton et al.,

2017).

This effect has been commonly observed in ecological ordination obtained by PCA
using the GM method (Podani & Miklos, 2002). The plots of the MFPCA scores (Figure
4.7(b)) reveal the presence of functional manifolds where the horseshoe effect is noticed
(Wang et al., 2016). The lateral view also indicates an overlap between the two species.
This is due to the similarity of the back curvature between the two as the region tends to

be flat and a little sharp for S. murinus.

Considering that the FDGM framework relies on functions of craniodental curves
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based on landmarks, the method shows viable results to the GM method in classification
performance for all four models (Table 4.1). This is because MFPCA scores in machine
learning can efficiently handle higher-dimensional data by capturing the functional
nature, thus reducing dimensionality (Happ & Greven, 2018). Although PCs from GM
reduce dimensionality, they might discard subtle but important variations by focusing on
linear combinations of the original variables. Besides that, MFPCA provides scores that
encapsulate smooth variations and inherent patterns in the data, making it easier for
machine learning algorithms to discern meaningful distinctions between classes. The

dorsal view gives the best rate of classification accuracy among the three views.

(a) (b)

Figure 4.5: The PCs of the (a) GM (b) FDGM methods for all three views (dorsal,
jaw and lateral combined)
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(a) (b)

(c)

Figure 4.6: PCA plot using GM method for (a) dorsal view (b) jaw view (c) lateral
view
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(a) (b)

(c)
Figure 4.7: MFPCA plot using FDGM method for (a) dorsal view (b) jaw view (c¢)
lateral view

(a) (b)

Figure 4.8: The LDs of the (a) GM (b) FDGM methods for all three views (dorsal,
jaw and lateral combined)
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(a) (b)

(c)
Figure 4.9: LDA plot using GM method for (a) dorsal view (b) jaw view (c) lateral
view
(a) (b)
(c)

Figure 4.10: FLDA plot using FDGM method for (a) dorsal view (b) jaw view (c¢)
lateral views
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Table 4.1: The mean accuracy and the corresponding standard deviations (in
brackets) on the test sample based on 20 replications using the FDGM and GM
methods for views with dorsal, jaw and lateral combined. (b) individual views.

Classifiers FDGM GM
NB 0.976 0.881
(0.035) (0.074)
SVM 0.962 0.962
(0.034) (0.034)
RF 0.965 0.889
(0.025) (0.084)
GLM 0.809 0.954
(0.057) (0.034)
ANN 0.965 0.911
(0.035) (0.050)

Table 4.2: The mean accuracy and the corresponding standard deviations (in
brackets) on the test sample based on 20 replications using the FDGM and GM
methods for individual craniodental views.

Classifiers FDGM GM
Dorsal | Jaw Lateral | Dorsal | Jaw Lateral
NB 0.969 | 0.565 | 0.820 0.993 0.578 | 0.841
(0.029) | (0.080) | (0.050) | (0.019) | (0.071) | (0.058)
SVM 0.950 | 0.557 | 0.800 0.950 | 0.557 | 0.800
(0.044) | (0.063) | (0.063) | (0.044) | (0.063) | (0.063)
RF 0.948 | 0.553 | 0.774 0.989 0.583 | 0.839
(0.044) | (0.092) | (0.072) | (0.022) | (0.098) | (0.053)
GLM 0.764 | 0.489 | 0.791 1.000 | 0.705 | 0.964
(0.096) | (0.055) | (0.066) | (0.000) | (0.078) | (0.038)
ANN 0.715 | 0.481 | 0.754 0.980 | 0.520 | 0.815
(0.144) | (0.031) | (0.077) | (0.028) | (0.085) | (0.079)
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4.6 Simulation Studies For 2D Landmark Data

A simulation study is conducted to validate the general effectiveness of the
methodology proposed in this work. The simulation was conducted using two approaches
to assess the functional and classical PCAs. Method 1 simulates landmarks using the
sim.coord function (Watanabe, 2018) where the coordinate data is generated with a
specified number of specimens and landmarks from a multivariate normal distribution
with zero mean and a variance-covariance structure using the mvrnorm function in the
MASS R package (Venables & Ripley, 2002). Method 2 involves calculating the
covariance matrix using the squared exponential function (Rasmussen, 2004). This
method assumes that the coordinates are correlated with one another. The chosen PC
scores of GM and FDGM were split into training data (70%) and test data (30%) to be
applied into LDA and FLDA for both methods. The optimal number of iterations for both

models is 100.
Model 1:

The simulation process where the coordinates are sampled from a multivariate normal
distribution under a single variance-covariance scheme (unsmoothed data), which is

based on the study conducted by Watanabe (2018) is as follows:

(1) Generate the 2-D landmark data, {( X1, Vi) s s (Xiry Yiery) '} for M
groups, each with the same sample size with N landmarks per individual using the

sim.coord function (Watanabe, 2018).

(2) Consider the PCA of GM and FPCA of FDGM based on 9. Calculate the
cumulative proportion of variances explained for both methods for each iteration.

Compute the means as well as standard errors for the 100 iterations.
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(3) The approximate data is based on the dot product of the transpose of eigen vectors
with transformed data for the PCA of GM and FPCA of FDGM. Calculate the
reconstruction losses for both approaches. Compare the average and standard

deviations of reconstruction loss for both methods for 100 iterations.
(4) Compare the LDA outputs for GM and FDGM.

Model 2:

The simulation process considering the mean and covariance functions Rasmussen (2004)

implemented for 100 iterations involves the following steps:

(1) Generate sample points,{( X1, V1), -, (Xin, Yin) T}, which are the test inputs
used to define the mean and covariance functions based on N landmarks per

individual and d dimensions.

(2) Generate a data frame which consists of normal random variates with zero mean

and covariance sigma.

(3) Use the sample points obtained in Step 1 to calculate the covariance matrices based

on the calculation done by (Rasmussen, 2004).

(4) Sample the function values, corresponding to the sample points from the joint

posterior distribution by evaluating the mean and covariance matrix.
(5) Compute the covariance of the function values.

(6) Using the function values and covariance function obtained in Step 5, generate the
3-D landmark data for M groups, each with the same sample size with p landmarks

per individual using the sim.coord.p function (Watanabe, 2018).

(7) The subsequent steps are similar to steps (2), (3) and (4) in Method 1.
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An example of the comparison for the unsmoothed simulated landmark data, functional
data, and the reconstructed functional data between the GM method and FDGM method
(Model 1) is shown in Figure 4.11. The simulated data for Model 1 (Figure 4.11) is in an
unsmoothed form and is not based on a functional data framework. Therefore, the results
(Table 4.2) obtained are not favorable to the FDGM approach. For example, if the FDGM
method assumes that the simulated data does not contain irregularities, this can lead to
poor reconstruction. Therefore, this study uses Model 2, based on smoothed functional

data which favours the functional data framework.

4.6.1 Results and Discussion of Simulation Studies

Table 4.2 shows that FDGM has a higher mean of cumulative variance for both
simulation approaches used based on different numbers of groups and landmarks. For a
fair comparison, the number of principal components used is based on a threshold value
of 90% of variation explained. For example, for the first unsmoothed functional data
simulation based on three groups for 20 landmarks, the number of PC for the GM method
used is 27 and 1 MFPC using FDGM. As for the first smoothed functional data simulation
based on three groups for 20 landmarks, the number of PC for the GM method are
comparable with the FDGM method which is using three principal components. In terms
of reconstructed data using for both models, FDGM has a lower error of reconstruction
compared to GM. FDGM seems to obtain comparable classification rate based on the
fLDA prediction results obtained in Table 4.3 using test data for the mean-covariance
smoothed data. Incorporating machine learning algorithms into both models significantly
improves Model 2 when using the FDGM method (Table 4.5). It can be observed that
FDGM performs better in Model 2 because it more thoroughly considers the functional
data framework. In contrast, Model 1 generates landmarks by assuming a multivariate
normal distribution with a specified variance-covariance matrix. Model 2 applied

Gaussian process regression (GPR) to generate the landmark data. The mean and
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covariance are calculated through GPR to capture the smoothness in the data across a
continuous domain. Therefore, while Model 1 is able to model correlated structures via
correlation matrix, the data produced in Model 2 is aligned more closely with the
principles of FDA due to the application of GPR. GM method outperforms FDGM in
Model 1 as it takes more principal components to reach a threshold of 90% variation
explained compared to FDGM. However, when considering both methods, MFPCA
yields better results in the aspect of dimension reduction as it maximises variation
explained with a reduced number of components compared to PCA. Based on the results,
both NB and SVM outperform RF in terms of classification accuracy. This is because one
of the practical implications of the RF model construction is that there is no way to
replicate predictions without an actual forest. Future predictions thus require the original
forest (including the original data) or a new forest that replicates the predictions with
synthetic data (Prajwala, 2015). Model development is also more complex as each data
set would generate a different model and there is no easy way to compare model
parameters. Hence, validation of prediction models in separate population cohorts is
likely to be challenging. NB can handle high-dimensional data well if the features are
independent, leveraging its simplicity and the probabilistic approach whereas SVM can
handle high-dimensional data effectively, especially with appropriate kernel functions
that map data into higher-dimensional spaces. Besides that, for data including categorical
variables with different number of levels, RFs are biased in favor of those attributes with

more levels (Prajwala, 2015).
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Figure 4.11: Comparison between functional data and reconstructed functional data
based on Model 1 on 2D domains using the FDGM method (specimens are
represented by coloured lines): (a) Dimension 1 (b) Dimension 2
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Landmark ID
Landmark ID

@) (b)

Figure 4.12: Comparison between functional data and reconstructed functional data
based on Model 2 on 2D domains using the FDGM method (specimens are
represented by coloured lines): (a) Dimension 1 (b) Dimension 2
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Table 4.3: Mean (standard error values in parenthesis) of cumulative variance and
error of reconstructed data for GM and FDGM methods for (i) Model 1 and (ii)
Model 2 (100 simulations)

Number | Number of Model 1
of groups | landmarks
Cumulative Error of

variance reconstructed data

GM FDGM GM FDGM

3 20 0.946 0.957 1.231 0.756
(0.006) (0.0061) (0.115) (0.056)

50 0.947 0.954 1.229 0.757

(0.006) (0.007) (0.138) (0.056)

100 0.948 0.954 1.238 0.766

(0.007 (0.007) (0.124) (0.056)

4 20 0.946 0.957 1.383 0.761
(0.005) (0.005) (0.123) (0.049)

50 0.948 0.955 1.385 0.765

(0.004) (0.006) (0.114) (0.051)

100 0.948 0.953 1.373 0.767

(0.005) (0.006) (0.120) (0.045)

5 20 0.945 0.956 1.485 0.761
(0.003) (0.004) (0.125) (0.045)

50 0.947 0.954 1.466 0.762

(0.005) (0.006) (0.123) (0.041)

100 0.948 0.953 1.464 0.773

(0.004) (0.005) (0.133) (0.046)

®
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Table 4.3, continued.

Number Number of Model 2
of groups | landmarks
Cumulative Error of

variance reconstructed data

GM FDGM | GM FDGM

3 20 0.945 0.956 1.226 0.115
(0.006) (0.006) (0.115) (0.062)

50 0.948 0.955 1.229 0.764
(0.006) (0.007) (0.122) (0.054)
100 0.948 0.953 1.224 0.761
(0.005) (0.006) (0.119) (0.065)
4 20 0.945 0.955 1.386 0.753
(0.006) (0.006) (0.139) (0.051)
50 0.947 0.954 1.372 0.764
(0.006) (0.006) (0.143) (0.049)
100 0.948 0.954 1.386 0.768
(0.005) (0.006) (0.117) (0.046)
5 20 0.944 0.955 1.475 0.761
(0.005) (0.005) (0.116) (0.043)
50 0.948 0.954 1.460 0.768
(0.004) (0.004) (0.127) (0.043)
100 0.950 0.954 1.497 0.773
(0.121) (0.048) (0.005) (0.005)
(ii)
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Table 4.4: Mean of proportion of trace of LDA and fLDA of test data for GM and
FDGM methods for Model 1 and Model 2 (100 simulations)

Number of | Number of Model 1 Model 2
groups landmarks

GM FDGM GM FDGM

3 20 0.333 0.283 0.220 0.447
(10.047) (0.070) (0.038) (0.077)

50 0.316 0.416 0.206 0.353
(0.117) (0.117) (0.043) (0.122)

100 0.350 0.333 0.260 0.400
(0.023) (0.000) (0.072) (0.047)

4 20 0.325 0.287 0.130 0.220
(10.070) (0.053) (0.040) (0.033)

50 0.375 0.337 0.240 0.300
(10.035) (0.123) (0.074) (0.047)

100 0.225 0.225 0.170 0.215
(10.035) (0.000) (0.041) (0.051)

5 20 0.220 0.210 0.084 0.224
(10.028) (0.070) (0.038) (0.055)

50 0.300 0.240 0.089 0.285
(0.004) (0.059) (0.028) (0.071)

100 0.180 0.160 0.077 0.214
(0.036) (0.052) (0.037) (0.061)
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Table 4.5: Mean of classification accuracy of classifiers for (i) GM and (ii) FDGM
methods for Model 1 (100 simulations)

Number | Number of Model 1
of landmarks
groups M
NB SVM RF GLM ANN
3 20 0411 0.400 0.433 0.222 0.355
(0.015) | (0.125) | (0.047) | (0.031) | (0.031)
50 0.422 0.355 0.355 0.211 0411
(0.000) | (0.031) | (0.000) | (0.109) | (0.078)
100 0.433 0.422 0.477 0.244 0411
(0.204) | (0.062) | (0.109) | (0.031) | (0.078)
4 20 0.308 0.316 0.266 0.175 0.291
(0.035) | (0.000) | (0.070) | (0.011) | (0.058)
50 0.383 0.316 0.325 0.250 |0.325
(0.000) | (0.070) | (0.082) | (0.023) | (0.058)
100 0.408 0.391 0.341 0.141 | 0.333
(0.011) | (0.035) | (0.011) | (0.035) | (0.000)
5 20 0.313 0.246 0.260 0.153 0.246
(0.028) | (0.009) | (0.028) | (0.009) | (0.103)
50 0.280 0.246 0.286 0.193 0.206
(0.018) | (0.028) | (0.028) | (0.009) | (0.084)
100 0.313 0.246 0.260 0.153 0.246
(0.028) | (0.009) | (0.028) | (0.009) | (0.103)

(@
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Table 4.5, continued.

Number | Number of Model 1
of landmarks
groups
FDGM
NB SVM RF GLM ANN
3 20 0.333 0.366 0.322 0.177 0.333
(0.125) | (0.141) | (0.141) | (0.031) | (0.157)
50 0.355 0.333 0.388 0.288 0.233
(0.062) | (0.031) | (0.109) | (0.031) | (0.078)
100 0.322 0.322 0.311 0.244 0.211
(0.141) | (0.047) | (0.031) | (0.031) | (0.015)
4 20 0.266 0.308 0.241 0.225 0.208
(0.023) | (0.011) | (0.035) | (0.058) | (0.011)
50 0.333 0.266 0.300 0.150 0.225
(0.000) | (0.047) | (0.000) | (0.023) | (0.035)
100 0.291 0.308 0.241 0.175 0.191
(0.011) | (0.035) | (0.012) | (0.035) | (0.082)
5 20 0.260 0.220 0.213 0.146 0.160
(0.028) | (0.009) | (0.018) | (0.018) | (0.018)
50 0.253 0.253 0.286 0.166 0.193
(0.000) | (0.056) | (0.028) | ( 0.009) | (0.009)
100 0.260 0.220 0.213 0.146 0.160
(0.028) | (0.009) | (0.018) | (0.018) | (0.018)

(i)
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Table 4.6: Mean of classification accuracy of classifiers for (i) GM and (ii) FDGM
methods for Model 2 (100 simulations)

Number | Number of Model 2
of landmarks
groups
GM
NB SVM RF GLM | ANN
3 20 0.500 0.235 | 0.027 | 0.467 | 0.613
(0.047) | (0.133) | (0.036) | (0.125) | (0.086)
50 0.320 0.160 | 0.004 | 0.246 | 0.413
(0.144) | (0.059) | (0.059) | (0.086) | (0.119)
100 0.387 0.200 | 0.013 | 0.493 | 0.426
(0.136) | (0.047) | (0.030) | (0.089) | (0.036)
4 20 0.360 0.133 | 0.000 | 0.373 | 0.347
(0.153) | (0.053) | (0.000) | (0.121) | (0.145)
50 0.293 0.120 | 0.000 | 0.347 | 0.347
(0.101) | (0.056) | (0.000) | (0.110) | (0.159)
100 0.347 0.147 | 0.000 | 0.467 | 0.280
(0.185) | (0.087) | (0.000) | (0.133) | (0.109)
5 20 0.253 0.067 | 0.000 | 0.307 | 0.360
(0.128) | (0.047) | (0.000) | (0.101) | (0.112)
50 0.304 0.076 | 0.000 | 0.314 | 0.286
(0.127) | (0.090) | (0.000) | (0.074) | (0.050)
100 0.276 0.095 | 0.000 | 0.247 | 0.295
(0.105) | (0.065) | (0.000) | (0.114) | (0.153)

)
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Table 4.6, continued.

Number | Number of Model 2
of landmarks
groups
FDGM
NB SVM RF GLM | ANN
3 20 0.633 0.700 | 0.667 | 0.787 | 0.950
(0.237) (0.047) | (0.149) | (0.247) | (0.960)
50 0.800 0.680 | 0.586 | 0.586 | 0.840
(0.262) (0.268) | (0.246) | (0.165) | (0.160)
100 0.760 0.786 | 0.720 | 0.720 | 0.693
(0.138) (0.314) | (0.272) | (0.207) | (0.252)
4 20 0.600 0.720 | 0.572 | 0.640 | 0.613
(0.287) (0.172) | (0.121) | (0.180) | (0.231)
50 0.546 0.653 | 0.706 | 0.680 | 0.773
(0.087) (0.119) | (0.121) | (0.173) | (0.121)
100 0.627 0.640 | 0453 | 0.626 | 0.667
(0.161) (0.269) | (0.159) | (0.238) | (0.282)
5 20 0.867 0.720 | 0.693 | 0.707 | 0.853
(0.094) (0.166) | (0.293) | (0.101) | (0.172)
50 0.876 0.667 | 0.828 | 0.752 | 0.771
(0.202) (0.128) | (0.153) | (0.179) | (0.128)
100 0.676 0.629 | 0.628 | 0.781 0.610
(0.194) (0.246) | (0.285) | (0.120) | (0.156)
(ii)
4.7 Conclusion

In this chapter, the use of FDGM on landmark data is proposed to study the shapes of
the dorsal, lateral, and jaw of shrew skulls in a functional form. The findings suggest that
FDGM shows comparable results with GM for classification among the three species.
The number of selected components in MFPCA can affect the classification quality.
Therefore, a threshold of 90% explained variance is used to select the principal
components for the GM and FDGM methods for fair comparison. Based on the results
obtained, FDGM requires fewer components than GM to reach the 90% explained
variance threshold. In addition, the results also revealed that the dorsal view emerges as
the best representation for classifying the species in both approaches. The proposed

approach utilises data smoothing to represent landmark coordinates as a function derived
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from raw data, enhancing pattern clarity, and making it a potentially useful tool in
morphometrics research. However, FDGM may encounter challenges in accurately
capturing complex and non-linear shape transformations. This is because biological
structures often exhibit complex shape transformations influenced by a myriad of factors,
such as genetic variation, developmental processes, and environmental influences.
Capturing these complex shape variations accurately with FDGM may require more
sophisticated modeling techniques and larger, more diverse datasets. Additionally,
integrating FDA techniques with GM requires careful data preprocessing and analytical
methods to mitigate biases or errors. Despite these challenges, FDGM has the potential
to analyse shape variation by modeling shape changes as continuous functions. This
departure from traditional discrete landmark-based methods allows for a more
comprehensive representation of shape, capturing subtle variations and non-linear
transformations more effectively. By exploring the theoretical and practical
advancements offered by FDGM, this study aims to contribute to the methodological
toolkit of GM and facilitate more accurate and insightful analyses of biological shape
data. Additionally, FDGM integrates principles from functional data analysis with GM,
providing a more robust framework for analysing shape data. Practically, FDGM
enhances the accuracy and sensitivity of shape analysis by enabling the examination of

shape changes along continuous curves or surfaces.

This can lead to more precise identification of shape differences between groups and
better understanding of shape variation within populations. Future studies can address
these challenges and further explore the potential of FDGM. Additionally, ongoing
research on three-dimensional FDGM extensions holds promise for further enhancing

morphometrics analysis.
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CHAPTER 5: FDGM IN 3D GEOMETRIC MORPHOMETRICS

5.1 Introduction

Craniodental morphology, the study of skull and dental structures, plays a pivotal role
in unraveling the evolutionary biology, taxonomy, and ecological adaptations of
marsupials. Marsupials, a diverse group of mammals primarily inhabiting Australia and
the Americas (Beck et al., 2022), display a wide array of craniodental features reflecting
their diverse diets. By scrutinising these features, researchers can glean insights into the
evolutionary trajectories and adaptive strategies that have enabled marsupials to thrive in
various environments. Morphological analyses often employ GM to discern subtle
differences and similarities among species, shedding light on their evolutionary
relationships and ecological roles.

Astua et al. (2000) conducted a comprehensive analysis of cranial shape variation
among six species representing the six largest living genera of the New World marsupial
family Didelphidae. Utilising 2D landmark data, they captured and digitised video images
of the skull and mandible for each species, providing a detailed exploration of cranial
morphology within this taxonomic group. Their findings underscored the distinctiveness
among species, emphasising the significant role of ecological factors in shaping cranial
morphology (Astua et al., 2000). Viacava et al. (2022) employed 3D GM of the cranium
to enhance taxonomic differentiation and offer ecomorphological insights into a cryptic
divergence within the carnivorous marsupial genus Antechinus. Their study highlighted
the utility of 3D GM in elucidating the adaptive origins and potential threats to
mammalian diversity, offering valuable perspectives for conservation planning in the face

of environmental change (Viacava et al., 2022).
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Butler et al. (2021) investigated the relationship between cranial and mandibular shape
variation of extant and extinct macropodiforms, considering ecological factors such as
diet, locomotion, and body mass. Utilising 3D GM analysis, they examined 42 living
species and eight extinct species from two radiations, including the extinct clade of
Balbaridae and early representatives of the extant Macropodidae. Their study revealed
strong correlations between dietary class (fungivore, browser, grazer, mixed feeder) and
cranial shape variation, along with significant associations between cranial shape and
locomotor mode and body mass. These findings underscored the importance of
integrating morphometric analyses with ecological and phylogenetic considerations to
deepen our understanding of the feeding ecology and evolutionary history of extinct
kangaroos and their adaptation to changing environments (Butler et al., 2021).

This thesis revolves around GM based on 3D landmarks data of kangaroos to
investigate the relationship between variation in cranial and mandibular shape of extant
macropodiformes with their dietary categories.

A multivariate functional principal component analysis (MFPCA) is then performed
to produce interpretable descriptive analysis of the functional data obtained. The principal
component (PC) scores obtained from both GM and FDGM are used to construct the

linear discriminant analysis (LDA) model.

5.2 Functional Data Geometric Morphometrics in 3D Landmark Data
Landmark registration offers a straightforward approach that is used to detect and align
some specific data points for each observation to the corresponding mean value, which
provides a better representation of the mean in terms of amplitude variation. Each
observation is vector-valued, as three spatial coordinates which are the x,y and z —
coordinates are involved. To implement functional data in an object-oriented way, the

raw data is converted into functions.
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These three univariate functional datasets composed a multivariate functional data,
with n outlines, each yielding a vector of n observations defined as a 3 —dimensional
functional domain. The MFPCA (Happ-Kurz, 2020) package is used to perform the
conversion to functional data (Ramsay & Silverman, 2005). Since the three-dimensional
landmark data is an extension of the two-dimensional case, where the individual data
vector has been extended from length two to three, the methodology of analysis remains
the same as in the two-dimensional case. After acquiring the multivariate functional data,
MFPCA is performed using the univariate functional principal components. The PCA

basis functions are estimated from the multivariate functional data.
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(a)
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Figure 5.1: (a) 48 landmarks included for crania: 30 single landmarks and 18
semilandmarks in (i) dorsal view (ii) ventral view (iii) lateral right view (iv) lateral
left view and (v) posterior view and for dentaries in (vi) lateral right view, (vii) lateral
left view and (viii) occlusal view (Photo sourced from Butler et al., 2021). Single
landmarks are represented by black dots while semilandmarks are represented by
red dots with a black outline; (b) 3D representation of the x, y and z — coordinates
for the 48 symmetric shape landmark data of crania; (c) 3D domains of converted
functional data of the symmetric shape landmark data using the FDGM method
(specimens are represented by coloured lines) for: (i) Dimension 1, (ii) Dimension 2,
(iii) Dimension 3
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Figure 5.1, continued.

5.3 Simulation Studies for 3D Landmark Data

A simulation study for 3D landmarks is conducted to validate the general effectiveness
of the methodology proposed in this work. Method 1 simulates landmarks using the
sim.coord function (Watanabe, 2018) where the coordinate data is generated with a
specified number of specimens and landmarks from a multivariate normal distribution
with zero mean and a variance-covariance structure using the mvrnorm function in the
MASS R package (Venables & Ripley, 2002). Method 2 involves calculating the
covariance matrix using the squared exponential function (Rasmussen, 2004). This
method assumes that the coordinates are correlated with one another. The selected PC
scores of GM and FDGM were split into training data (70%) and test data (30%) to be
applied into LDA and FLDA for both methods. The optimal number of iterations for both

models is 100.
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Figure 5.2: Functional data based on Model 1 on three dimensional domains using
the FDGM method (specimens are represented by coloured lines): (a) Dimension 1
(b) Dimension 2 (¢) Dimension 3
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Figure 5.3: Functional data based on Model 2 on 3D domains using the FDGM

method (specimens are represented by coloured lines): (a) Dimension 1 (b)
Dimension 2 (¢) Dimension 3

5.3.1 Results of Simulation Studies

Table 5.1 shows that FDGM has higher mean of cumulative variance for both
simulation approaches used based on different numbers of groups and landmarks. In
terms of reconstructed data using Model 1, GM performs better than FDGM due to the
underlying simulation method which is biased towards multivariate normal coordinates
that can easily be reconstructed to its original form based on the classical PCs. FDGM
can be considered as comparable although some information may be lost when the points

are converted into functions.
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However, Model 2 favours FDGM in terms of the performance of MFPCA as well as
the mean error of the reconstructed data, with the PCA of GM having larger errors. Table
5.2 shows that FDGM has a higher mean of proportion of trace using training data for the
mean-covariance smoothed data based on different number of groups and landmarks. In
terms of unsmoothed data (with weak correlation), GM seems to perform better than
FDGM, similar to the cumulative proportion of variance. This may be due to unsmoothed
landmark data construction in Model 1 without any functional structure, which means
that it does not consider any patterns in the data. Model 2, on the other hand, includes the
functional data structure. This means that it considers the patterns in the data, which
makes it more likely to be accurate than Model 1, as it considers more information about
the data. FDGM seems to significantly improve the classification rate based on the FLDA
prediction results obtained in Table 5.3 using test data for the mean-covariance smoothed
data. The results in Table 5.3 give the correct percentage of classification that is compared

with the training data.
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Table 5.1: Mean (standard error values in parenthesis) of cumulative variance and
error of reconstructed data for GM and FDGM methods for the entire (i) Model 1
and (ii) Model 2 (100 simulations)

Number |Number of Model 1
of groups | landmarks
Cumulative Error of

variance reconstructed data
GM FDGM GM FDGM

3 20 0.379 0.994 1.229 1.423
(0.022) (0.004) (0.012) (0.025)

50 0.350 0.997 1.289 1.411
(0.017) (0.021) | (0.0014) | (0.015)

100 0.337 0.998 1.314 1.408
(0.024) (0.001) | (0.0112) | (0.012)

4 20 0.269 0.997 1.816 1.966
(0.017) (0.002) (0.017) (0.019)

50 0.271 0.996 1.814 1.963
(0.017) (0.002) (0.019) (0.021)

100 0.270 0.996 1.813 1.963
(0.015) (0.002) (0.016) (0.019)

5 20 0.207 0.996 2.362 2.534
(0.013) (0.002) (0.018) (0.021)

50 0.208 0.996 2.364 2.537
(0.012) (0.002) (0.022) (0.025)

100 0.210 0.996 2.367 2.540
(0.012) (0.002) (0.021) (0.023)

)
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Table 5.1, continued.

Number Number of Model 2
of groups |landmarks
Cumulative variance |Error of
reconstructed data

GM FDGM GM FDGM

3 20 0.947 0.958 1.222 0.795
(0.006) (0.0060) (0.1173) (0.056)

50 0.948 0.955 1.240 0.815
(0.006) (0.008) (0.136) (0.058)

100 0.950 0.955 1.238 0.812
(0.006) (0.007) (0.112) (0.060)

4 20 0.947 0.957 1.385 0.810
(0.005) (0.005) (0.130) (0.056)

50 0.984 0.954 1.391 0.813
(0.005) (0.005) (0.137) (0.051)

100 0.949 0.953 1.409 0.830
(0.005) (0.005) (0.127) (0.051)

5 20 0.947 0.958 1.372 0.814
(0.005) (0.006) (0.112) (0.058)

50 0.949 0.955 1.374 7.167
(0.005) (0.005) (24.746) (6.193)

100 0.949 0.954 1.377 0.825
(0.005) (0.006) (0.121) (0.052)

(i)
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Table 5.2: Mean of classification rate of LDA and FLDA for test data of Model 1

and Model 2 (100 simulations)

Number of | Number of Model 1 Model 2
groups landmarks

GM FDGM GM FDGM

3 20 0.376 0.323 0.228 0.333
(0.056) (0.059) (0.073) (0.115)

50 0.376 0.323 0.180 0.357
(0.056) (0.059) (0.037) (0.093)

100 0.390 0.352 0.204 0.371
(0.137) (0.093) (0.059) (0.052)

4 20 0.260 0.246 0.128 0.282
(0.042) (0.061) (0.039) (0.037)

50 0.260 0.278 0.167 0.239
(0.042) (0.074) (0.044) (0.055)

100 0.232 0.278 0.150 0.246
(0.027) (0.110) (0.050) (0.044)

5 20 0.270 0.250 0.131 0.203
(0.070) (0.014) (0.030) (0.039)

50 0.300 0.190 0.114 0.202
(0.028) (0.042) (0.042) (0.054)

100 0.211 0.202 0.105 0.149
(0.034) (0.072) (0.034) (0.034)
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Table 5.3: Mean of classification rate of classifiers for (i) GM and (ii) FDGM
methods for Model 1 (100 simulations)

Number | Number of Model 1
of landmarks
groups M
NB SVM RF GLM ANN
3 20 0.393 0.358 0.396 0.234 0.368
(0.061) | (0.048) | (0.060) | (0.038) | (0.102)
50 0.393 0.358 0.396 0.234 0.368
(0.061) | (0.048) | (0.060) | (0.038) | (0.102)
100 0.463 0.409 0.419 0.244 0.374
(0.053) | (0.068) | (0.039) | (0.058) | (0.086)
4 20 0.328 0.304 0.283 0.173 0.273
(0.023) | (0.051) | (0.050) | (0.031) | (0.052)
50 0.373 0.330 0.335 0.180 |0.242
(0.043) | (0.043) | (0.047) | (0.039) | (0.075)
100 0.371 0.364 0.347 0.145 |0.295
(0.053) | (0.042) | (0.040) | (0.036) | (0.039)
5 20 0.286 0.226 0.220 0.166 0.240
(0.028) | (0.056) | (0.047) | (0.047) | (0.018)
50 0.300 0.253 0.253 0.193 0.246
(0.028) | (0.000) | (0.018) | (0.028) | (0.009)
100 0.304 0.266 0.289 0.144 0.222
(0.058) | (0.052) | (0.055) | (0.017) | (0.053)

(@)
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Table 5.3, continued.

Number | Number of Model 1
of landmarks
groups FDGM
NB SVM RF GLM ANN
3 20 0.374 0.371 0.349 0.250 0.266
(0.084) | (0.080) | (0.073) | (0.073) | (0.044)
50 0.374 0.371 0.349 0.250 0.266
(0.084) | (0.080) | (0.073) | (0.073) | (0.044)
100 0.390 0.368 0.333 0.244 0.298
(0.042) | (0.051) | (0.031) | (0.028) | (0.054)
4 20 0.295 0.304 0.245 0.197 0.247
(0.051) | (0.063) | (0.071) | (0.060) | (0.073)
50 0.269 0.288 0.238 0.161 0.223
(0.057) | (0.052) | (0.079) | (0.035) | (0.046)
100 0.264 0.250 0.230 0.159 0.185
(0.059) | (0.048) | (0.059) | (0.025) | (0.048)
5 20 0.293 0.260 0.246 0.213 0.206
(0.037) | (0.028) | (0.065) | (0.018) | (0.028)
50 0.240 0.253 0.213 0.173 0.266
(0.056) | (0.018) | (0.075) | (0.018) | (0.113)
100 0.264 0.238 0.217 0.150 0.181
(0.058) | (0.026) | (0.038) | (0.018) | (0.035)

(i)
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Table 5.4: Mean of classification rate of classifiers for (i) GM and (ii) FDGM
methods for Model 2 (100 simulations)

Number | Number of Model 2
of landmarks
groups M
NB SVM RF GLM ANN
3 20 0.333 0.161 0.038 0.447 0.361
(0.115) | (0.084) | (0.052) | (0.131) | (0.100)
50 0.285 0.152 0.019 0.371 0.323
(0.137) | (0.092) | (0.032) | (0.085) | (0.071)
100 0.352 0.171 0.009 0.419 0.295
(0.137) | (0.075) | (0.025) | (0.113) | (0.065)
4 20 0.314 0.114 0.000 0.314 0.323
(0.074) | (0.113) | (0.000) | (0.092) | (0.118)
50 0.285 0.104 0.010 0.428 0.352
(0.084) | (0.075) | (0.025) | (0.126) | (0.099)
100 0.323 0.190 0.009 0.428 0.333
(0.080) | (0.080) | (0.025) | (0.126) | (0.121)
5 20 0.266 0.085 0.000 0.419 0.342
(0.121) | (0.074) | (0.000) | (0.125) | (0.151)
50 0.276 0.076 0.000 0.361 0.304
(0.089) | (0.071) | (0.000) | (0.148) | (0.100)
100 0.295 0.085 0.000 0.314 0.342
(0.093) | (0.063) | (0.000) | (0.083) | (0.104)

(@)
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Table 5.4, continued.

Number | Number of Model 2
of landmarks
groups
FDGM
NB SVM RF GLM ANN
3 20 0.742 0.752 0.847 0.780 0.695
(0.286) | (0.226) | (0.161) | (0.191) (0.191)
50 0.752 0.590 0.704 0.657 0.676
(0.125) | (0.124) | (0.143) | (0.146) (0.178)
100 0.666 0.695 0.647 0.600 0.771
(0.419) | (0.297) | (0.125) | (0.282) (0.217)
4 20 0.733 0.714 0.752 0.800 0.542
(0.224) | (0.074) | (0.183) | (0.066) (0.135)
50 0.752 0.714 0.714 0.647 0.647
(0.220) | (0.157) | (0.236) | (0.230) (0.170)
100 0.790 0.723 0.819 0.714 0.695
(0.190) | (0.160) | (0.175) | (0.147) (0.210)
5 20 0.723 0.723 0.828 0.695 0.695
(0.141) | (0.111) | (0.206) | (0.230) (0.148)
50 0.780 0.781 0.723 0.695 0.714
(0.179) | (0.226) | (0.156) | (0.158) (0.183)
100 0.571 0.542 0.667 0.657 0.666
(0.132) | (0.186) | (0.172) | (0.089) (0.158)
(ii)

5.4 Application to Real Data

5.4.1 Data Description

The kangaroo landmark dataset is described in detail in Butler et al. (2021). 48
landmarks on crania of 41 extant were used in this study to observe the credibility of the
FDGM approach. There are 30 fixed landmarks, placed at “homologous” points on the
crania and three sets of semi landmarks, equally spaced along the left molar row (six semi
landmarks), right molar row (six semi landmarks), and sagittal axis of the cranial roof (six
semi landmarks). To avoid human error in landmarking, the process was repeated twice
for each specimen to obtain the mean shape of the two replicates for subsequent analysis

(Butler et al., 2021).
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Statistical analysis to observe four dietary groups (fungivore, browser, grazer, and
mixed feeder) of the extant species was performed in R version 4.2.1. To use the
geometric morphometric data, the raw coordinates obtained from the cranial landmarks
were aligned using generalised Procrustes analysis (GPA) (Rohlf & Slice, 1990) for
optimal registration using translation, rotation, and scaling using the gpagen function in
the geomorph package (Adams & Otarola-Castillo, 2013). Based on Butler et al. (2021),
each semi landmark was allowed to slide along its respective tangent directions according
to the TPS method (Gunz et al., 2005; Kraatz et al., 2015). The resulting symmetric shape
data was used to perform PCA and LDA for both GM and FDGM methods. According to
McCane (2013), outline methods produce useful and valid results when suitably
constrained by landmarks, which leads to the main idea of this work to incorporate FDA
approach (Figure 5.5) to observe the separation among the four dietary groups of the

kangaroo extant species.

A total of 16 MFPCs are obtained from the converted functional data using MFPCA.
The first three MFPCs explained 77.48% of the total variation in the dietary classification
among the marsupials. A distinct cluster among dietary categories when using the MFPC
scores (Figure 5.5(b)) is also observed. The PCA from GM yields 40 PCs, where the first
three PCs explained 63.85% of variation (Figure 5.5(a)). There is also no overlapping

among the groups when the functional approach is applied.

The number of principal components used is based on a threshold value of 90% of
variation explained. 11 PCs were selected based on the GM method and 5 MFPCs using
FDGM were used in LDA. The results for both approaches reveal a good separation
between the four dietary categories, which are class labels. Based on GM, the percentage
of separations achieved by the first discriminant function is 89.0%, second is 8.49 % and

the third is 2.52 %. The first discriminant function is higher using the FDGM method
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compared to GM, which is 97.34%. It is noticeable that the separations between groups

are comparable for the two methods (Figure 5.6)).

(a)

(b)

Figure 5.4: The PCs of the (a) GM and (b) FDGM methods for symmetric shape
data
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(a)

(b)

Figure 5.5: The first two LDs of the (a) GM and (b) FDGM methods for symmetric
shape data
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5.4.2 Results and Discussion

A comparative study of FDGM and GM was done to investigate four dietary categories
based on the crania of 41 extant kangaroo species. The findings of this study revealed the
existence of the four dietary clusters when the standardised 3D landmarks of the views
combined are converted into functional data, rather than being discretised in point sets.
The PC scores improve classification as they are projected onto orthonormal
eigenfunctions to capture prominent directions. The application of MFPCA reduces
dimensionality by projecting the functional landmark data onto the set of orthonormal
basis functions which induces the uniqueness of the MFPCA scores for each observation
to improve classification accuracy. Using classical landmark-based approach can be
difficult to standardise the selections, which can drastically differ results in classification
tasks (Srivastava & Klassen, 2016). Thus, FDGM can be a more natural solution as the
boundaries of the objects are treated as continuous curves, thus better matches the features

across curves (Srivastava & Klassen, 2016).

As shown in Figure 5.5 (a), PCA based on GM gives a comparable presentation to
FDGM (Figure 5.5(b)) in terms of the structure variability. The grazing kangaroos group
overlaps with the mixed feeding kangaroos’ group on all PC axes in both GM and FDGM
methods. Based on Figure 5.6, LDA shows a better separation between both methods
compared to the PCA results. FLDA forms a linear combination based on class labels to
determine the directions of maximum variance, which makes it well-suited for
classification tasks. Similar to LDA using the GM method, the FLDA uses linear
combinations of continuous functions obtained from the functional data of the 3D
landmarks to produce canonical functions to represent the typical LDA setting based on
the dietary categories (Gardner-Lubbe, 2021). The MFPCA scores of the selected

components are used to perform FLDA.
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5.5 Conclusion

This study proposed the FDGM approach on 3D landmark data to represent the shapes
of skulls which is an extension of the 2D FDGM framework. Simulation studies and
application to real data showed that FDGM performed better than GM when PCA and
LDA were employed. FDA methods can be used to analyse shape data as functional
curves, which represent the continuous variation in shape across individuals or samples.
FDA provides a powerful and flexible framework for analysing shape variation in
geometric morphometrics research. This can help researchers to gain new insights into
the underlying biological processes and functional relationships between shape and other
variables. Outline analysis using FDA approach on the images can be considered for
future studies to improve classification accuracy. It is also of interest to overcome the
challenge highlighted by White et al. (2023) relating multivariate data response
specifications for traits to functional data response specifications to allow relational

inference between responses in the search of causal factors in analysing shape.
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CHAPTER 6: CONCLUDING REMARKS

6.1 Summary of Findings

In this thesis, RFE was applied into the study of traditional morphometrics to study
selecting the most discriminant features for both male and female Rattus rattus to reduce
the computational complexity of the models for classification of age groups. ANN was
provided the best accuracy among three predictive classification models using all features
and the RFE-selected features based on the age groups. This study also introduced a novel
FDA approach for morphometrics in 2D and 3D geometric morphometrics. FDGM was
proposed to classify the three shrew species based on the three craniodental views using
2D landmark data by converting the 2D landmark data into continuous curves, which are
then represented as linear combinations of basis functions. Its performance was then
compared with GM and the results revealed that FDGM yields comparable results as GM
in classifying the three shrew species, and the dorsal view was the best craniodental view
for distinguishing the three shrew species. The work also showed that GLM was the most
accurate among the five classification models based on the predicted PC scores obtained
from both methods (combination of all three craniodental views and individual views).
The FDGM method was further extended to the study of 3D landmark data to distinguish
dietary categories of kangaroos. Based on the results obtained from the simulation studies
conducted for 2D and 3D landmark data and application to real data, this study suggests
that FDGM has potential in morphometrics studies to improve the accuracy and resolution
of shape variation. Additionally, the use of machine learning algorithms in conjunction

with FDGM can further enhance the performance of morphometric studies.
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6.2 Contributions

The study has contributed to morphometric studies in the following ways:

1l

iii.

The application of RFE as an alternative method for selecting features, especially
when used alongside PCA, may improve the effectiveness and efficiency of
classification models. This combination can leverage the strengths of both
methods which is PCA's ability to reduce redundancy and RFE's focus on feature
importance, leading to improved model performance in terms of both accuracy

and efficiency.

The development of an FDA approach for morphometrics represents enables a
more exhaustive and informative analysis of shape variation, making the results

of FDGM comparable to those obtained through GM in this study.

FDGM is a new and powerful method for analysing shape variation in 2D and 3D
landmark coordinate data. It has the potential to revolutionise the way that
morphometric studies are conducted. In addition, this study also highlights the
potential of machine learning algorithms for enhancing the performance of

morphometric studies.
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6.3 Further Research

As decision trees inherently perform feature selection, future studies could
benefit from comparing the RFE approach with decision tree methods to evaluate
their effectiveness in morphometric analyses. The FDGM can be further refined by
addressing issues related to landmark coordinate data analysis, specifically by
eliminating nuisance parameters such as translation and rotation (Lele and

McCulloch, 2002).

Conducting intensive simulations on both regular and irregular data, with the
introduction of hyperparameter selection methods and with different datasets
among several populations, species, and individuals, would be an intriguing area of
study. This approach could be extended to image analysis by directly considering
the specimen outlines from images and applied to a broader range of biological
organisms, including plants, animals, and microorganisms. Moreover, the FDGM
method could be integrated with various biological research disciplines, such as
evolutionary biology, developmental biology, and ecology, to gain new insights
into the biological significance of shape variation. It could also be extended to
artificial intelligence (AI) for automatic recognition of organisms, incorporating
categorical functional data. For instance, FDGM could be used to investigate how
shape variation relates to environmental adaptation or is influenced by different
developmental processes. Additionally, future morphometric research could benefit
from developing and applying new machine learning algorithms based on the

FDGM method, potentially leading to significant advancements in the field.
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