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MARITIME TRANSPORTATION SYSTEM, ECONOMY DISTRIBUTION AND 

SEAPORT NETWORK EFFICIENCY USING FUZZY DATA ENVELOPMENT 

ANALYSIS WITH CLUSTERING APPROACH 

ABSTRACT 

The maritime transportation system is investigated by considering the marine traffic flow 

passing through Westport, Malaysia along the Strait of Malacca as a local case study. 

Firstly the Westport’s operational scheduling at the yard and land sides are explained and 

proposed. Next, dispersing and merging functions based on single junction theory that 

defined the marine traffic flows through the Westport are proposed so that the final 

macroscopic model describing that local maritime transportation system can be developed 

for the first time. This study utilizes multiple methods commonly used in assessing the 

maritime economy distribution where it is found that the import economy has more 

equality as compared to the export economy. Distance to Competitive Balance (DCB) has 

firstly applied in the thesis to determine the market concentration of 15 top leading import 

and export economies of the world. Tobit regression and data envelopment analysis 

(DEA) are conducted in seaport network efficiency measurement of 133 countries using 

LSCI as one of the output variable. In order to overcome the uncertainty in the real data, 

fuzzy DEA (FDEA) is performed by utilizing triangular fuzzy number (TrFN) and 

trapezoidal fuzzy number (TpFn) in the DEA calculation where the result comparisons 

have been done. As part of the present study’s original contribution, fuzzy linear 

regression modelling is also explored to highlight the interval-based regression technique 

using Possibilistic Linear Regression Least Squares (PLRLS) method. PLRLS determines 

the interval of minimum and maximum seaport network efficiency scores which gives 

better estimation overview of the score bounds than the regular regression model. 

Moreover, the unsupervised k-means, hierarchical and hierarchical k-means (hkmeans) 
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strategies are imposed on the DEA and FDEA datasets of the seaport network efficiency 

scores. Clustering results between the three strategies are analysed and compared. Here, 

133 global seaport countries are fitted into four efficiency clusters newly introduced in 

this thesis, namely low connectivity (LC), medium connectivity (MC), high connectivity 

(HC) and very high connectivity (VHC). Finally the hkmeans strategy is proposed as the 

best strategy for the seaport network efficiency clustering due to better countries 

composition in the four clusters and due to hkmeans strategy eliminates the drawback 

issues in the k-means and hierarchical clustering strategies.  

 

Keywords: Maritime transportation system, macroscopic model, maritime economy, 

LSCI, DEA, fuzzy DEA, seaport network efficiency, seaport network efficiency 

clustering, hkmeans  
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SISTEM PENGANGKUTAN MARITIM, TABURAN EKONOMI DAN 

KECEKAPAN RANGKAIAN PELABUHAN MENGGUNAKAN ANALISIS 

PENYELUBUNGAN DATA KABUR DENGAN PENGKLUSTERAN 

 

ABSTRAK 

Sistem pengangkutan maritim dikaji dengan mempertimbangkan aliran trafik marin yang 

melalui Westport, Malaysia di sepanjang Selat Melaka sebagai kajian kes tempatan. 

Pertama sekali, penjadualan operasi Westport di bahagian limbungan dan darat dijelaskan 

dan dicadangkan. Seterusnya, fungsi penyebaran dan penggabungan berdasarkan teori 

persimpangan tunggal yang mentakrifkan aliran trafik marin melalui Westport 

dicadangkan supaya model makroskopik akhir yang menggambarkan sistem 

pengangkutan maritim tempatan boleh dibangunkan buat kali pertama. Kajian ini 

menggunakan pelbagai kaedah yang biasa digunakan dalam menilai taburan ekonomi 

maritim di mana didapati ekonomi import mempunyai lebih kesaksamaan berbanding 

dengan ekonomi eksport. Jarak kepada Imbangan Persaingan (DCB) pertama kali 

digunakan dalam tesis untuk menentukan penumpuan pasaran 15 ekonomi import dan 

eksport terkemuka dunia. Regresi Tobit dan analisis penyelubungan data (DEA) 

dijalankan dalam pengukuran kecekapan rangkaian pelabuhan di 133 negara 

menggunakan LSCI sebagai salah satu pembolehubah keluaran. Bagi mengatasi 

ketidakpastian dalam data sebenar, DEA kabur (FDEA) dilakukan dengan menggunakan 

nombor kabur segitiga (TrFN) dan nombor kabur segiempat (TpFn) dalam pengiraan 

DEA di mana hasil perbandingan telah dilakukan. Sebagai sebahagian daripada 

sumbangan asal kajian ini, pemodelan regresi linear kabur juga diterokai untuk 

menyerlahkan teknik regresi berasaskan selang menggunakan kaedah Possibilistic Linear 

Regression Least Squares (PLRLS). PLRLS menentukan selang skor kecekapan 

rangkaian pelabuhan minimum dan maksimum yang memberikan gambaran keseluruhan 

anggaran yang lebih baik bagi sempadan skor daripada model regresi biasa. Selain itu, 
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strategi k-means, hierarki dan hierarki k-means (hkmeans) yang tidak diselia dikenakan 

ke atas set data DEA dan FDEA bagi skor kecekapan rangkaian pelabuhan. Keputusan 

pengklusteran antara tiga strategi tersebut dianalisa dan dibandingkan. Di sini, 133 negara 

pelabuhan global dipadankan ke dalam empat kelompok kecekapan yang baru 

diperkenalkan dalam tesis ini, iaitu ketersambungan rendah (LC), ketersambungan 

sederhana (MC), ketersambungan tinggi (HC) dan ketersambungan sangat tinggi (VHC). 

Akhirnya strategi hkmeans dicadangkan sebagai strategi terbaik untuk pengklusteran 

kecekapan rangkaian pelabuhan kerana komposisi negara yang lebih baik dalam empat 

kluster dan disebabkan oleh strategi hkmeans menghapuskan isu kelemahan dalam 

strategi pengklusteran k-means dan hierarki. 

 

Kata kunci: Sistem pengangkutan maritim, model makroskopik, ekonomi maritim, 

LSCI, DEA, DEA kabur, kecekapan rangkaian pelabuhan, pengklusteran kecekapan 

rangkaian pelabuhan, hkmeans 
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 CHAPTER 1: INTRODUCTION 

 

1.1 Background Knowledge 

The shipping line is becoming important in Malaysia since a lot of business is being 

carried out via maritime transportation.  Thus to have a smooth business, maritime 

transportation plays an important role in the economy. Products from ships need to be 

placed at the right time to proceed with business without any issues. Therefore, planning 

and scheduling play a huge role to place the transshipment at the right time. Besides that, 

yard truck scheduling and storage allocation problems (YTS-SAP) are two important 

issues that influence the efficiency of a container terminal. Trucks are the most popular 

transport equipment in most mega-terminals, and scheduling them to minimize makespan 

is addressed and attempted by Ng et al. (2007) for resolution. The efforts involved 

determining the routing of trucks and proper storage locations for discharging containers 

from incoming vessels. In particular, the rolling-horizon approach is employed for 

considering immediate scheduling.  

Physical indicators generally refer to time measures and are mainly concerned with the 

ship (ship turnaround time, ship waiting time, berth occupancy rate, working time at 

berth). Sometimes, coordination with land modes of transport is measured by cargo dwell 

time or the time elapsed between cargos being unloaded from a ship until the ship leaves 

the port. Factor productivity indicators also tend to focus on the maritime side of the port, 

for example, to measure both labor and capital required to load or unload goods from a 

ship. It is imperative to develop an efficient yard crane scheduling strategy (Yan et al., 

2011). Moreover, to understand the transportation system, a macroscopic model has 

been explored. Runge-Kutta methods are popular for solving ODEs which are extended 

to solving DDEs with the advantage of ODE background theory and numerical 

solutions (Shampine & Thompson, 2009). Lebacque and Khoshyaran (2018) show that 

ODE system connects vehicles and passengers exchange equation by proposing boundary 
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condition and numerical method to resolve the model.  The ODE has been used many 

times to avoid collision where the generalized Nash equilibrium reaches optimal control 

of the vehicles (Dreves & Gerdts, 2018).  The first-order macroscopic PDE model refers 

to the route of accelerating at a given constant rate to accommodate the boundedness of 

traffic at a macroscopic scale (Laurent-Brouty et al., 2018).  

A macroscopic model developed based on incoming and outgoing marine traffic flows 

influence the present thesis to explore the maritime economy distribution based on the 

maritime global share price. The share price of container port services in Southeast Asia 

is hammering the market and this is associated with the upgraded container operation 

efficiency. China’s Port of Shanghai was ranked at the first place with the highest total 

handling capacity of 42.01 million twenty-foot equivalent unit (TEU) of containers in 

2018. The second place is the Port of Singapore (36.6 million TEU), followed by  Ningbo-

Zhoushan Port (26.35 million TEU), Shenzhen Port (25.74 million TEU), Guangzhou 

(21.92 million TEU), Busan (21.66 million TEU), Hong Kong (19.6 million TEU), 

Qingdao (19.32 million TEU), Tianjin (16.00 million TEU), Dubai (14.95 million TEU), 

Rotterdam (14.51 million TEU), Malaysia’s Port Klang (12.03 million TEU), Antwerp 

(11.10 million TEU), Xiamen (10.7 million TEU), Kaohsiung (10.45 million TEU), 

Dalian (9.77 million TEU), Los Angeles (9.46 million TEU), Malaysia’s Tanjung Pelepas 

(8.79 million TEU), Hamburg (8.78 million TEU) and Long Beach (8.07 million TEU). 

These values are based on the first 20 leading global container ports in 2018 as reported 

by Shanghai International Shipping Institute (Shanghai, 2019). The report shows that 

Asia dominates the global maritime trade where 41% of goods are exported and 62% of 

goods are imported in 2019. According to Dwarakish and Salim (2015), Asia is the most 

important maritime hub that carries more than 50% of the global maritime trade capacities 

every year. This led to research on the maritime share of the top 15 developing import 

and export economies, with an emphasis on market concentration and market inequality. 
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The market concentration of the top 15 marine shares based on locality and efficiency 

of the seaports impacting the maritime economic countries during 2019.  All these local 

economies have built up their shares in the past few years and now there is an ongoing 

economic crisis caused by the Coronavirus disease (COVID-19) pandemic where a drop 

in the global merchandise distribution is estimated. United Nations Conference on Trade 

and Development (UNCTAD) has estimated the global trade in the first quarter of 2020 

to fall by 5% and a deeper fall is expected by 27% in the second quarter, thence an overall 

average drop by 20% for the year of 2020.  The World Bank noticed that  COVID-19 has 

triggered a global health and economic crisis which causes a much deeper fall with wider 

ranges as compared to the financial crisis that happens in 2008-2009 (UNCTAD, 2020).  

A study has shown that port features and variables connecting to outputs demonstrate 

strong positive correlations between port connectivity and port efficiency (Tovar & Wall, 

2022). According to Sleeper (2012), the effectiveness of transportation in ports 

significantly increases the economic growth of the subjected countries. Continuous port 

development for bigger vessels, cargo-carrying capacity (CCC), size of vessels (SV), age 

of vessels (AV) and time in port (TP), improve cost and port efficiencies through 

economies of scale which can enhance the financial status of a country, although their 

viability can still prompt either critical monetary benefits or failures. The maritime 

connectivity structure and its service supply are tracked by different indicators. Large 

numbers of potential determinants in the liner shipping rates resembling availability and 

port framework have been intently corresponded to one another. The pairwise correlation 

coefficients for Liner Shipping Bilateral Connectivity (LSBC) components indicate a 

positive relationship between all components except for the number of transshipments 

and exports (Fugazza & Hoffmann, 2017).  The Liner Shipping Connectivity Index 

(LSCI) targets to catch the degree of integration into the current liner shipping network 

by estimating the liner ship transporting connectivity. It is very well determined at the 
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nation and at the port level in view of five parts; the number of ships, their container-

carrying capacity, maximum vessel size, number of services and the number of companies 

deployed to the country's ports according to United Nations Conference on Trade and 

Development (UNCTAD) (Jouili, 2019).  The distribution of the port’s LSCI uncovers a 

high concentration level among the highly connected ports and it contributes the biggest 

impact towards the global trade. It is well perceived that the countries are effectively 

associated with the worldwide trade when there is a high connectivity with respect to the 

LSCI value. Gross Domestic Product (GDP) is altogether impacted by the capacity of 

organizations to universally trade their labors and products. Hence, by considering related 

factors, port efficiency can be anticipated by measuring how productive are the inputs 

(TP, AV, SV and CCC) to produce the outputs (GDP and LSCI) in this thesis. The 

effectiveness of the seaport network based on inputs and outputs varies. This study 

continues beyond efficiency and embarks on the development of the efficiency 

connectivity grouping for each country. 

Maritime shipping industry is keen with machine learning development as it can help 

the sector with container freight customization as well as to overcome daily problems in 

seaport operations. Tay et al. (2021), claimed that machine learning approach is easily 

favoured to achieve operational efficiency and productivity as it can enhance fuel 

efficiency in harbour vessels. Moreover, machine learning is commonly used to estimate 

the travel time even when there are congestions at the seaport. Clustering is one of the 

machine learning applications that is widely used in many fields such as applied sciences, 

military intelligence, forensic data science, computational biology, bioinformatics, 

business and marketing, computer science and social science. It is a strategy that conveys 

information in significant clusters for the purpose of data grouping. K-means is one of 

the famous clustering algorithms which is broadly used since it minimizes the squared 

distance between two points within the same cluster (Vora & Oza, 2013). K-means 
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algorithm is superiorly applied based on the initial selection of the k-means center for 

more accurate and meticulous clustering. According to Dhamecha (2021), k-means 

clustering algorithm progresses in large dataset applications through minimization of the 

total squared error for accuracy improvement. Just like other typical numerical methods, 

as the number of iteration increases, the computation time will increase as well in the k-

means algorithm (G. Zhang et al., 2021). The present study embarks on k-means, 

hierarchical and hierarchical k-means strategy in order to cluster 133 global countries 

based on their seaport network efficiency. 

 

1.2 Problem Statement  

A macroscopic model that estimates inflow and outflow traffics on the roads for 

vehicles and bicycles is developed based on single junction assumption while a fluid 

dynamic model of heavy traffic is developed by Coclite et al. (2005) based on 

a road network. Next, the research is extended with development of a new traffic flow 

model based on ordinary differential equations (ODEs) by Herty et al. (2007). The hardest 

part of this work is to simulate the land transportation at a macroscopic level. Traffic 

control has been improved for use in contemporary road traffic planning to better 

comprehend the transport systems (Peter & Szabo, 2012). Nonetheless, first-order models 

are not ready to precisely recover obvious traffic flow phenomena without adaption by 

the capacity drop, the bounded acceleration and unpredictable waves (Khelifi et al., 

2018). Another study by Thonhofer et al. (2018) proposed a macroscopic traffic 

simulation approach that highlights traffic density, hence describing the transport 

equation which is a non-linear partial differential equation (PDE) of the traffic problem. A 

new scalar hyperbolic PDE model created for growth of traffic velocity on roads, was 

inspired by the well-known Lighthill-Whitham-Richards (LWR) PDE for density (Work 

et al., 2010).  
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According to a study (M. Zhang et al., 2022) connecting traffic flow complexity to the 

occurrence of maritime accidents, increases in complexity-related traffics may result in 

more unintended harmful consequences. Moreover, predicting the impact of water 

movement on the maritime traffic flow, for instance, is more sophisticated since there are 

no experimental results. To get around with the limitation, a mathematical formulation is 

required. The one-dimensional marine traffic model presented by Payne (1971) is based 

on number of similarities between maritime and land traffics. By considering marine 

traffic as more complex than traditional (land) traffic, a new and deeper knowledge of 

traffic behaviour in general will be possible with the incorporation of the maritime traffic 

model into the land traffic model (Yip, 2013). The current marine transport systems in 

Malaysia need to establish improved models for merging and dispersing paths into and 

out of the Strait of Malacca since the issue of port congestion is increasing day by day. 

Port congestion affects the supply chain and exhausts inventories. Containers must wait 

longer to berth due to port congestion. In this instance, commodities on board might be 

delayed and the vessel must queue to berth, resulting in waste and emission of more 

effluents into the sea. In consequence to this, marine resources can be improved to support 

the economic growths that will sustain the cities and communities as well as to uplift trade 

and financial assistances particularly for the least developed countries. All these 

motivates the present thesis to explore and develop the maritime transportation system 

based on the Westport case study to fill the literature gap in maritime macroscopic models 

for increased seaport efficiency. 

A sustainable maritime transportation system requires coordinated assistance, such as 

port facilities, trade facilitation measures, cargo handling and logistics systems, in order 

for it to perform efficiently. Studies on data envelopment analysis (DEA) for efficiency 

measurement are abundant in many fields but they are still quite limited especially in the 

maritime transportation field. This thesis identifies gaps where the DEA approach was 
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not used for evaluation and analysis in some regions such as in African ports, some Asian 

and European ports, even worse, none was applied to study the seaports in the least 

developed countries (Krmac & Kaleibar, 2022).  In fact, to our best knowledge, none of 

the existing literatures has measured the global seaport network efficiency using the pair 

of Liner Shipping Connectivity Index (LSCI) and Gross Domestic Product (GDP) as the 

output variables for DEA. The previous closest work was done on connection between 

China and countries along the 21st century Maritime Silk Road (Soleimani et al., 2006) 

where LSCI was not employed as an output variable but rather as an input variable.  

The literature reviews on LSCI and GDP show that there are no seaport network 

efficiency studies conducted for LSCI and GDP as the output variables. Another gap that 

can be highlighted here is, there is no efficiency study that caters 133 countries in the 

world. The loop hole permits the DEA approach extension on seaport network efficiency 

measurement by considering other additional aspects. In this thesis, the applications of 

both triangular and trapezoidal fuzzy number theories to construct the fuzzy sets with the 

DEA approach have been conducted. Moreover, despite there are many interests on DEA 

and fuzzy DEA (FDEA), none of the past works have explored Possibilistic Linear 

Regression Least Squares (PLRLS) using fuzzy efficiency values obtained from LSCI 

and GDP that cater the seaport network efficiency boundedness domain. The absence of 

accuracy has further initiated a combination of clustering with fuzzy set theory in DEA 

where it results in FDEA dataset clustering (Ebrahimnejad & Amani, 2021).  

According to Lukauskas and Ruzgas (2022), regardless of the fact that there are 

numerous clustering methods, the subject addressed remains as a complex matter. There 

is a great need for alternate procedures because typical clustering algorithms do not 

commonly work well with all types of datasets. Despite being one of the most common 

algorithms for rapid and successful implementation with certain sorts of data, there are 

still ample rooms for improving the accuracy of hierarchical clustering strategies. In fact, 
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there are numerical values to indicate the level of similarity between two different 

hierarchical clusterings when comparing them. These numerical figures are beneficial for 

evaluating the existing hierarchical clustering strategies (Fowlkes & Mallows, 1983). On 

the other hand, recent developments have made vessel trajectory prediction one of the 

most important areas for ensuring maritime transportation safety, intelligence and 

efficiency. It provides an up-to-date evaluation of available methodologies for vessel 

trajectory prediction which include the state of the art deep learning (X. Zhang et al., 

2022). Hence, further improvement on the k-means, hierarchical and hybrid hierarchical 

k-means (hkmeans) clustering techniques are important to shape this state of the art deep 

learning for future smart prediction. 

The existing literatures revealed that majority of the studies did not address hkmeans 

clustering in grouping seaport network efficiency scores. As a result, the present thesis 

ventures on using the three different machine learning approaches to determine the most 

appropriate method for global seaport network efficiency clustering. It is worth to 

mention that although hkmeans algorithm itself is not new, the application of the hkmeans 

algorithm in the seaport network efficiency assessment based on LSCI output is new, thus 

it fills the study gap in the maritime transportation industry. The results, based on 

Zhanjiang Port (L. Lui et al., 2022), show that the hybrid clustering technique can 

effectively cluster ship trajectories and provides categorization of the ship traffic. 

Moreover, the majority of researches done had focused on traffic, maritime transportation 

management, swarm optimization, vessel trajectory prediction, vessels behaviours, 

vehicular ad hoc network etc., but there has not been a single clustering work on the 

effectiveness of the seaport network by comparing various strategies (k-means, 

hierarchical and hkmeans) using four clusters (low connectivity (LC), medium 

connectivity (MC), high connectivity (HC) and very high connectivity (VHC)) as 

presently defined in this thesis.  
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In order to leverage these efforts, the present thesis proposed hybrid hkmeans strategy 

in clustering the seaport network efficiency of 133 countries along with the applications 

of k-means and hierarchical clustering algorithms imposed on the outcomes of DEA and 

FDEA with comparisons done between these three techniques’ results. Since hkmeans 

clustering on seaport network efficiency based on LSCI output was never done in the 

past, it creates motivation for the present study. Moreover, the introduction of the four 

new level clusters with different specifications through this research is important for the 

global maritime industry as the findings on seaport network efficiency contribute towards 

the country’s efficiency, hence the country’s economic growth. 

All of these issues are interconnected, beginning with the operation, scheduling and 

extending through the maritime transportation system in order to enhance the maritime 

traffic flow. The smooth traffic flow through the Straits of Malacca enables goods to 

arrive at the port on time, which might affect the maritime share price. Investors may 

choose to invest in Malaysia if the marine share is strong and if the country's economy is 

stable. In reality, the same viewpoint is backed by all the global seaport countries which 

leads to port efficiency initiatives for future profitable maritime economy. Clustering 

techniques can be used to determine the countries with high degrees of connectivity, 

which strengthens the valuation portfolios of the seaport countries that fit the interest of 

investors from various countries. These important issues are linked together and 

addressed in a single study of the present thesis. 
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1.3 Research Objectives 

The following research objective are to be studied and explored: 

1. To develop maritime transportation system using Westport, Malaysia as a base 

reference for local case study.  

 To propose operational scheduling for the Westport as a local case study. 

 To develop dispersing, merging and coupling functions for maritime traffic 

flow passing through Westport along the Strait of Malacca.  

2. To measure maritime economy distribution based on global marine shares 

inequality and market concentration. 

 To identify 15 leading import and export maritime economies of the world. 

 To measure market inequality and market concentration based on the shares 

of the top 15 import and export maritime economies. 

3. To determine seaport network efficiency scores using data envelopment analysis 

(DEA). 

 To identify input and output variables for the seaport network efficiency 

measurement based on data availability. 

 To interpret relationship between the input and output variables using Tobit 

regression model.  

 To determine the seaport network efficiency scores for 133 countries based 

on data of the input and output variables. 

4. To apply fuzzy number in seaport network efficiency measurement for fuzzy data 

envelopment analysis (FDEA). 

 To illustrate DEA mathematical models for both deterministic and fuzzy 

cases. 

 To transform observational/experimental data to fuzzy data in DEA 

 To utilize triangular fuzzy number (TrFN) theory in producing TrFDEA. 
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 To utilize trapezoidal fuzzy number (TpFN) theory in producing TpFDEA. 

 To compare the seaport network efficiency scores between TrFDEA and 

TpFDEA. 

 To develop fuzzy linear regression model using Possibilistic Linear 

Regression Least Squares (PLRLS) with bounds of the seaport network 

efficiency scores. 

5. To propose clustering for seaport network efficiency based on DEA and FDEA. 

 To group 133 countries into four newly proposed seaport network efficiency 

clusters of LC, MC, HC and VHC.  

 To cluster 133 countries based on their seaport network efficiency scores 

using k-means, hierarchical and hierarchical k-means (hkmeans) algorithms 

for DEA and FDEA datasets. 

 To compare the seaport network efficiency clusterings between k-means, 

hierarchical and hkmeans strategies. 

 

1.4 Research Scope 

This research highlights maritime transportation system that covers operational 

process and scheduling as well as the traffic flow using a theoretical macroscopic model. 

Here Westport Malaysia is chosen as the initial reference from the local perspective 

before we embark on global maritime economy distribution and seaport network 

efficiency measurement. 

In this study, 15 top countries that globally influenced the maritime economy 

distribution are measured based on market share inequalities and market concentration. 

There are six methods considered; concentration curve, Lorenz curve, Gini coefficient, 

concentration ratio (CR), Herfindahl-Hirschman Index (HHI) and Distance to 
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Competitive Balance (DCB). The analyses for market inequality and market 

concentration are conducted using Microsoft Excel. 

This research collected data from United Nation Conference Trade and Development 

(UNCTAD) published through the platform of UNCTADstats (UNCTADstats, 2022). 

UNCTADstats is a collection of all statistics data that are freely disseminated for usage. 

Data of 133 countries are specifically sought out from the maritime transport database to 

assess Liner Shipping Connectivity Index (LSCI) and four independent input variables 

for seaport network   efficiency measurement. This research focusses on size of vessels 

(SV), time in port (TP), age of vessels (AV) and cargo carrying capacity (CCC) as the 

input variables while the two output variables are LSCI and GDP. The GDP data was 

collected from World Development Indicators (WDI) (WDI, 2022) which is the primary 

World Bank collection of development indicators compiled from officially recognized 

international sources.  

The seaport network efficiency is measured using two approaches; data envelopment 

analysis (DEA) and fuzzy data envelopment analysis (FDEA) utilizing triangular fuzzy 

number (TrFN) and trapezoidal fuzzy number (TpFN) for three consecutive years (2018-

2020) using MaxDEA software. Tobit regression is performed to predict the significant 

input variables for the seaport network efficiency measurement using STATA software 

whereas fuzzy linear regression model via Possibilistic Linear Regression Least Squares 

(PLRLS) with bounds of the seaport network efficiency scores is developed using R-

programming. 

Moreover, the unsupervised clustering strategies applied in this thesis are k-means and 

hierarchical algorithms, while the hkmeans strategy is proposed for the first time in 

seaport network efficiency clustering considering 133 countries with LSCI as an output 

in the DEA and FDEA. In this thesis, all the three clustering strategies are performed 

using R-programming. 
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1.5 Present Contribution 

This thesis aims to guide the port management with their strategic planning and future 

policy making in order to adapt with the outcome of increasing and decreasing traffic 

demands at the Westport as the largest seaport in Malaysia. Located in South East Asia 

region where both low and peak seasons contribute towards profit and loss for the port 

stakeholders, Westport can be used as a local case study for seaport operational 

productivity investigation. If the productivity in Westport can be increased, it will drive 

the economy of Malaysia to the next level and it could hit the port standard worldwide. 

 First of all, the Westport geographic profile is elaborated before the operational 

scheduling process in that seaport is proposed where the background details of all 

involved stages are orderly summarized.  

 Next, this research embarks on proposing a suitable macroscopic model for the 

maritime transportation system that admits incoming and outgoing traffics, to and 

from the Westport via the Strait of Malacca based on the single junction theory of 

common vehicles and bicycle routes.  

 To the best of our knowledge, a similar work on maritime transportation was never 

attempted before, hence it becomes a significant motivation for the present case 

study. 

The thesis embarks into market inequality and market concentration to understand 

how the economy distribution can attract investors to invest in a maritime share that 

contributes towards the greatest economic source and economy growth factor in the 

world. The distribution of the economy will naturally encourage the investors to invest in 

Malaysia, such as through foreign direct investment (FDI). This will also raise demand 

for the ringgit currency in Malaysia. Ports are capital-intensive infrastructures with a wide 

range of economic implications, particularly because port growth and global trade are 
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inexorably connected. Thus, it will comparatively strengthen the local currency against 

the major currencies.  

 The market concentration of the top 15 maritime economic countries is well 

discussed where it is proven that China has the highest concentration among the 

other import origin locations whereas United States of America has the highest 

concentration in export. 

 Identified the market type for maritime shares based on the characteristics that 

make it easier to achieve profit that can go beyond the average. 

 Utilized distance competitive to balance (DCB) analysis, which reveals different 

degrees of market inequality where the export economy has more balance than the 

import economy in the maritime market. 

Moreover, the present contributions on seaport network efficiency measurement using 

DEA that can fill the existing literature gaps are highlighted as follows: 

 Investigation on seaport network efficiency using LSCI as an output variable in 

the DEA and fuzzy DEA (FDEA) which was not attempted by other researchers 

before. 

 DEA and FDEA were performed based on data of 133 global seaport countries, 

the highest number of countries considered in similar research on seaport network 

efficiency. 

 Utilization of triangular and trapezoidal fuzzy number theories to create FDEA 

dataset from DEA. 

 Seaport network efficiency boundedness concept and domain using fuzzy 

numbers through PLRLS were introduced for the first time in the literatures.  

 Significance and how the findings of the present work can be appreciated by the 

maritime stakeholders were also briefed in the conclusion. 
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Furthermore, the thesis finally entrains machine learning strategies to enhance the 

performance of the clustering model based on seaport network efficiency. The present 

research contributions on the clustering algorithm are clarified as follows:   

 This thesis introduces four new level clusters specified as low connectivity (LC), 

medium connectivity (MC), high connectivity (HC) and very high connectivity 

(VHC) in clustering the seaport network efficiency scores. 

 DEA and FDEA data of 133 global seaport countries (the highest number of 

countries considered in similar research area) are used to demonstrate the 

applications of k-means, hierarchical and hkmeans algorithm in clustering the 

countries’ seaport network efficiency.  

 This study proposes and recommends the hkmeans strategy for seaport network 

efficiency clustering since the results are more consistent and well-composed as 

compared to k-means and hierarchical results.   

 The study is motivated by the fact that the hkmeans clustering application on 

seaport network efficiency based on LSCI output has never been carried out 

before.  

 Findings on seaport network efficiency clustering can contribute towards the 

efficiency of the country, which in turn contributes to the country's economic 

growth. 

 

1.6 Research Significance 

This research is conducted with the following research significances in mind: 

1. Maritime transportation is the main mode of transport for imports and exports for 

most countries. This study can help to increase awareness and understanding of 

the maritime transportation system that affects global economy distribution and 
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seaport network efficiency starting from Westport Malaysia as a local reference 

case. 

2. Based on this research’s findings, the leading countries in the maritime economy 

distribution can be further understood and the importance of equal maritime 

export and import economies can be further appreciated. 

3. Through this research, the relative efficiency of a set of Decision Management 

Units (DMUs) can be determined and further extended to fuzzy number theory 

towards optioning better efficiency among countries based on Liner Shipping 

Connectivity Index (LSCI) and Gross Domestic Product (GDP). 

4. The methods proposed in this research can also be applied to other efficiency 

measurement fields. 

5. Better seaport network clustering strategy motivates countries to sustain their 

maritime economy for continuous maritime transportation system development 

and seaport network efficiency.  

 

1.7 Definition of Key Terms 

In this section, some key terms of the thesis will be elaborated starting with maritime 

transportation system, then continuing with maritime economy, macroscopic model, 

Liner Shipping Connectivity Index (LSCI), Data Envelopment Analysis (DEA), Fuzzy 

DEA, seaport network efficiency and clustering. 

 

1.7.1 Maritime transportation system 

The schedules of maritime transportation systems are extremely tight. Liner services 

must therefore maintain a high level of reliability, which has an economic influence on 

the shipping business. Furthermore, as global transportation systems grow in size and 

complexity, designing and operating liners become a significant challenge (Wendler-
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Bosco & Nicholson, 2020). Ports and maritime routes are critical to maritime 

transportation systems for creating and sustaining efficient international commerce 

channels. 

 

1.7.2 Maritime economy 

The "maritime economy" in general refers to all industrial activities related to the 

exploitation, utilization and prevention of the oceans, which enhance the sustainable use 

of marine resources in the maritime sector (Shao, 2020). In this study, the maritime 

economy is focused on the marine import and export shares as well as gross domestic 

product (GDP). 

 

1.7.3 Macroscopic model 

The main assumptions of this study are that maritime traffic is a complex system and 

that the emergence of ship behaviour is a significant cause of traffic complexity from 

three perspectives; ship individual behaviour, ship-ship interaction, and multi-ship 

behaviour using a macroscopic model (Wen et al., 2022). Traffic flow is represented by 

macroscopic models in terms of components such as density or flow (Herty, 2007).  

 

1.7.4 Liner Shipping Connectivity Index (LSCI) 

The Liner Shipping Connectivity Index (LSCI) variable, which is an indication of 

countries' liner shipping connectivity, improves container shipment for both import and 

export activities. The exchange rate, manufacturing policies and transportation 

regulations are all important in boosting the country's trade (Atacan et al., 2022). 
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1.7.5 Data Envelopment Analysis (DEA) 

DEA models are created using a two-stage analysis method to accurately evaluate the 

performance of decision-making units (DMUs). This concept is based on the idea of 

efficiency as a ratio of output to input (Sadri et al., 2022). The mathematical model for 

this work utilized an input-oriented Charnes, Cooper and Rhodes (CCR) model that 

originally evaluated DMUs (Charnes et al., 1978). 

 

1.7.6 Fuzzy DEA 

Fuzzy DEA combines the concept of fuzzy set theory with classic DEA by 

representing imprecise and ambiguous data with fuzzy sets. However, one clear issue 

with using this strategy is obtaining correct input and output data in real-world 

applications that have been effectively utilized in a variety of real-world studies (Zhou & 

Xu, 2020).  

 

1.7.7 Seaport network efficiency 

The efficient container terminal operations play a vital role in increasing container 

flows at the terminal. Improving the intermodal container terminal layout is one technique 

to increase port operations efficiency and smooth cargo movement (Aisha et al., 2022) 

 

1.7.8 Clustering 

Clustering is critical because it determines the intrinsic grouping of the unlabelled data 

at present. There are no requirements for good clustering. It is up to the user to determine 

what criteria will fulfil their needs using similarity and distance between them (Li. X. et 

al., 2020). 
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1.8 Outline of Thesis 

This research embarks on understanding maritime transportation system starting from 

a local case perspective of Westport and it is extended towards examining maritime 

economy distribution at global level. Next, the thesis continues with measuring the 

seaport network efficiency and venturing into multiple clustering strategies to group 133 

countries based on their seaport network efficiency scores of DEA and FDEA datasets. 

The main contents of this thesis are divided into eight parts. 

Chapter 1 elaborates the background of marine transportation's impacts on the marine 

economy. The research objectives and research contributions are also discussed in this 

chapter. The significance of maritime transportation and the scope of the study are 

explained here too. 

Chapter 2 provides literature reviews on maritime transportation system, economy 

distribution and data envelopment analysis (DEA). The clustering algorithm and the 

application of machine learning in maritime transportation system are also briefly 

explained in this chapter. 

Chapter 3 highlights the data source and outlines the methodologies used in this 

research. The methods are shown in the flow chart for clear understanding. The methods 

are applied to define maritime transportation systems, measure economy distribution, 

efficiency and clustering of the seaport network. 

Next, Chapter 4 highlights the first contribution of this thesis which defines the 

maritime transportation system by considering traffic flow, port operation and scheduling 

based on Westport. This chapter utilizes the Lighthill-Whitham model in proposing the 

macroscopic model based on Westport case study. 

Chapter 5 illustrates the maritime economy distribution based on 15 leading countries 

of import and export economies in the world. Market concentration and market inequality 

are used to measure the concentration curve, Lorenz curve, Gini coefficient concentration, 
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concentration ratio (CR), Herfindahl-Hirschman Index (HHI) and Distance to 

Competitive Balance (DCB). 

Chapter 6 starts with Tobit regression to examine and fit the data. It is followed by 

seaport network efficiency measurement based on selected input and output variables as 

disclosed in Chapter 3. DEA and fuzzy DEA (FDEA) involving triangular and trapezoidal 

fuzzy numbers are applied to generate the seaport network efficiency scores.  

In Chapter 7, the DEA and FDEA results in Chapter 6 are exploited to group 133 

countries into four presently defined clusters of LC, MC, VC and VHC based on their 

seaport network efficiency scores. Three clustering methods namely k-means, 

hierarchical and hierarchical k-means (hkmeans) clustering algorithms are employed and 

the results are compared. 

Finally, the overall finding and conclusion of the study is given in Chapter 8. 

Suggestion for future studies are provided while some advantages and limitation of the 

study are also declared. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Introduction 

The first part of this chapter, highlights reviews of past researches on macroscopic 

transportation system based on Lighthill-Whitham model which motivate the present 

study on maritime transportation system to fulfill the thesis Objective 1. Moreover, 

literatures on maritime economy distribution involving market inequality and market 

concentration concepts are revisited to enhance the research knowledge as well as to 

fulfill thesis Objective 2. Previous studies on seaport network efficiency that relate Liner 

Shipping Connectivity Index (LSCI) and Gross Domestic Product (GDP) are also 

discussed. Data Envelopment Analysis (DEA) has been specifically focussed in this 

seaport network efficiency measurement with utilization of triangular fuzzy number 

(TrFN) and trapezoidal fuzzy number (TpFN) theories to fulfill Objective 3 and Objective 

4. Finally, some researches covering k-means, hierarchical and hkmeans algorithms are 

also reviewed in this chapter to fulfill the last objective of this thesis. 

 

2.2 Maritime Transportation System 

Marine traffic flow affects hectic ports daily and globally. Hence, capacity-

assessment tools that model and drive the navigational system, the traffic movement 

and complex navigational practices of vessels are greatly demanded (Huang et al., 

2013). According to Yip (2013), ships are restricted in their navigation following the 

deep-sea challenges throughout the ports. The deep-sea is usually accompanied by the 

primary water flow pathway of the tidal sequence. The location of the primary water 

flow varies by season to season and scatters across the port region. Marine traffic flow 

regularly varies such that the relatively shallow draft vessels; leisure vessels, fishing 

boats and fast launches can have safe navigation around the port. Coastal cargo vessels 
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and carriers which are known as large vessels usually occupy the deeper sea level area. 

Since the shipping line experiences rapid growth in demand as an alternative to the 

airline option, marine traffic congestion keeps happening at the ports and this further 

contributes to other entailing traffic problems at the yard and land sides. 

Being a country that is constituted from two non-contiguous regions of Peninsular 

Malaysia and a partial territory on the island of Borneo, shipping line becomes 

important to Malaysia especially since a lot of businesses adopted shipment through 

seaway. Products from ships need to be placed within a certain time frame without any 

delay to proceed with further profitable business. Therefore, when a business needs to 

ship products, transit time plays a crucial role in the planning because it is typical for 

any business wanting its goods to spend as little time as possible in the transit to 

minimize general associated costs. The President of Malaysian Rubber Glove 

Manufacturers Association (MARGMA), Denis Low said that stock build-ups in 

factories and delays in shipments to their overseas clients happen if the containers 

cannot be loaded on the ships on-time (Ching, 2017). Additionally, it is common to deal 

with late carriers caused by delays at the origin, which in turn caused a delay to the 

transshipment hub, and ultimately resulted in a shipment missing a vessel movement. 

A shipment can be late at the origin for a number of reasons including bad weather, late 

delivery of containers at the port, missing proper documentation, or not meeting certain 

requirements such as the SOLAS container weight verification requirement. Heavy 

traffic flows due to slow container loadings/unloadings and other various factors also 

contribute towards overall interruptions at the alternate ports. The number of ports that 

exists between the origin and the destination port can cause delay as well because the 

higher number of stops a ship made, the higher chance for postponements to occur 

between the ports. 
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Westport is a primary seaport facility in Port Klang, Malaysia that operates as an 

important transshipment hub and container/vessel terminal in South-East Asia. 

Financed with RM 2.5 billion in 2018, it is envisioned with container terminal 

expansion plan along with other ongoing 5-years investment to improve the terminal 

operating structures. Regrettably, repeated congesting marine traffic flows that lead to 

undue financial and time losses for manufacturers and hauliers, prolong unsolved issues 

at the global seaports including at the Westport. The Westport authority faces risks in 

managing the traffic flows because of increased shipping volume that limits sufficient 

control on the vessel movements. This congestion persists since the vessels are not 

arriving on time (delay). According to Dolgansky (2016), it is possible to forecast delays 

at some ports but for other ports, it is helpless. The unavoidable traffic triggers the 

interest in exploring the operational scheduling in Westport. According to Li and Lam 

(2017), eliminating potential conflicts using vessel schedules is within consideration of 

vessel priority to optimize task. Marine accident is also one of the reasons why the 

congestion happens and such marine traffic tragedy can be reduced by improving the 

technical standards (Um et al., 2012).  

Understanding of traffic flow is an important part in maritime transportation which 

helps with managing heavy traffic flow. According to Yip (2013), the existing study 

centered on one or two ships yet does not address the issues in marine traffic flow. Traffic 

flow is an important theory that manages the flow of vehicles and bicycles on the road 

where it connects with other signals present on the road. An ere well-known model called 

Cell Transmission Model (CTM) has been used in highway traffic investigation which 

represents the triangular flux function that insists on the backward and forward traffics 

(speed, critical and maximum traffic density) (Daganzo, 1995). 

The nine challenges in the field of maritime transportation are port infrastructure, 

global trade, production capacity, finances, regulation compliance, safety and security, 
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sustainability, digitalization and community support (Van Dijk et al., 2018). Port 

congestion, which is a result of stagnated port infrastructure and growing global economy, 

is another issue that hinders the effectiveness of the seaport network. Automation allows 

containers to be handled faster, enabling the ports to accommodate a greater number of 

vessels and cargo though with incurred costs. One of the main obstacles that has a 

negative financial impact is the ports’ inability to seize all production and opportunities 

as they simply cannot keep up with the ongoing demands. Another challenge concerning 

the environment and water is in the monitoring of environmental quality indicators to 

ensure regulatory compliance and to avoid fines. The port employees’ duties can be 

hazardous as they need to operate large machineries and work near the place of sulfuric 

plants that may emit harmful fumes, exaggerating security and safety problems.  

 

2.2.1 Lighthill-Whitham-Richards (LWR) model 

Traffic flow is well established by using the Cell Transmission Model (CTM) which 

incorporates the flux function indicating the forward and reverse wave spread speeds that 

represent the basic and the most extreme traffic (Muñoz et al., 2003). According to Burger 

et al. (2018), the delay hyperbolic PDE produces a classical Lighthill-Whitham-Richards 

(LWR) model which actually improve traffic networks. The LWR model is basic but still 

contemplates different components, for example, capacity, storage, fundamental diagram 

and traffic stage. The LWR model is typically chosen for traffic flow modelling due to 

its straightforward method and interpretive capacity to explore the qualitative patterns 

of traffic flow (Ansorge, 1990). According to Umer et al. (2019), the density-related 

behaviour of the LWR model is explored using various equilibrium velocity 

distributions.  

Traffic flow models can be classified as microscopic, mesoscopic or macroscale 

(Dubey et al., 2022). The flux function plays a major role in traffic flow that transforms 
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the microscopic traffic model into a macroscopic traffic model. The microscopic model 

refers to a model that depicts the interactions of individual vehicles, namely driving 

behaviour, vehicle velocity and distance headways. The aggregate behaviour of traffic 

flow is represented by the macroscopic model, whereas the mesoscopic model combines 

both of these characteristics (Shahdani et al., 2022).  A macroscopic traffic flow model 

can be illustrated in the form of a fluid stream followed by a density and the flow 

function established on all sites of a road network (Peeta & Ziliaskopoulos, 2001). A 

more accurate portrayal of traffic flow necessitates associations between the three major 

variables; flow, density and velocity. The traffic flow of LWR can lead to sustainable 

development, may generate economic growth, creativity and innovation, but it may also 

result in socioeconomic inequalities and poor environmental quality. To ensure that 

countries continue to grow and expand, meticulous management and planning are 

required, taking into account factors such as utilization of land, living arrangements, 

transportation, government operations and environmental sustainability. 

Adapting the 2030 Agenda for Sustainable Development, the ports are being 

compelled to minimize carbon consumption for better environment care (Van Dijk et al., 

2018). Environmental, digital system and sustainability are becoming increasingly 

important affairs in maritime transportation since they can improve port productivity, 

autonomy and energy savings. With pollution, environmental disruption, stress on 

hinterlands and coastal land usage, imminent supports from the community especially 

from the government are greatly required. Maritime transportation connectivity is a 

fundamental determinant of bilateral exports that concerned under two maritime 

transportation challenges of port infrastructure and global trades.  
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2.3 Maritime Economy Distribution 

The maritime economy has experienced a significant increase in world trade since the 

1950s and a growing share of global economic output. Global trade strengthens local 

networks and national economic development. The supply chain boosts performance and 

profitability, which attract new technology and innovation (Klar et al., 2023). Ports serve 

as economic catalysts for surrounding communities, allowing market integration and 

service agglomeration that highlight the infrastructure as well as the assets of ports to 

promote smart cities and supply chains (Kong & Liu, 2021). The income growth 

connected with services and goods in the context of global production chains, outsourcing 

and offshoring is highlighted in the maritime economy. It is important to study the imports 

and exports since the inequality in the composition of container imports and exports 

reflects the lopsided trade structure (Notteboom et al., 2022). At the same time, most of 

the costs come from marine-based economic activities, such as the harvesting of living 

resources, the extraction of non-living resources, maritime trade and commerce. 

Particularly in developing countries, people are unaware of maritime finance (Sumaila et 

al., 2020). According to Österblom et al. (2020), maritime resources and sectors are rarely 

equally distributed and many of their benefits are captured by a few subsidies. Subsidies 

to the fossil fuel sector totalling $4.7 trillion globally or 6.3% of global GDP in 2015 

(Coady et al. 2019), only serve to increase inequality, leading to an unfair distribution of 

maritime economic values and benefits (Österblom et al. 2020). 

The world container ports throughput in Asia (526.7 million TEU) are the greatest in 

the region continued by Europe (123.6 million TEU), North (62.5 million TEU), America 

(52.6 million TEU), Latin America (32.5 million TEU), Africa (13.2 million TEU) and 

Oceania (13.2 million TEU). Asia has reported more than half of the container ports 

throughput amounting to 64.74% in the region. According to Rahmatdin et al. (2017), the 

service patterns are classified as triangle service, pendulum, butterfly, conveyor belt and 
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other services. Another study shows that, after the year of 2000, greater numbers of the 

world's freights have been conveyed in mega container ships with container capacity of 

more than 10,000 twenty-foot equivalent units (TEU). In fact, sometimes between 2011 

and 2021, their extent of conveying capacity has risen from just 6% to about 40%. Over 

the same period, there have been 97 new ships within the container capacity range of 

15,000 TEU and 19,990 TEU, and 74 new ships of 20,000 TEU and above starting around 

2018 (UNCTAD, 2018). Cargo carrying capacity is a possible cargo load that can be 

occupied in a ship. This capacity to hold large container influences the ships’ size and 

age. A large container ship separates each container from each other to make things easier 

for loading of the containers. Raji et al. (2021) claimed that the largest container ships 

can load around 15,000 -16,000 TEU at one time.  

Seaport development has changed the market structure from monopoly to strong 

competition. According to Munisamy and Gurcharan (2011), with Northeast Asia 

emerging as an essential centre of the global economy, AFTA (ASEAN Free Trade 

Agreement) is interested in strengthening its competitive edge as a global industrial base. 

Southeast Asia region is showing the fastest development in the world since efficient 

operations are achieved in berths, cranes and storage space (Tongzon & Ganesalingam, 

1994). The growth of Southeast Asia in 2018 shows that Malaysia, Indonesia and 

Philippines received a GDP rate of more than 5.0%. Annual slot capacity finds that Port 

Klang and Tanjung Pelepas in Southeast Asia have a negative impact on Singapore’s 

transhipment performance (Lam & Yap, 2008). The growth of an area is influenced by 

the port development based on the pattern changes in the port. The main impact of the 

rapid growth emanates in urban areas that support activities of the port owing to 

competing demands for scarce land (Abdullah et al., 2012). According to Hyuksoo and 

Sangkyun (2015), the seaports’ performances are mainly impacted by their economic 

locations by considering the container traffic volume.  Kramberger et al. (2018), reported 
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several factors that influence the port choice which are cost, quality, location, reputation, 

infrastructure and facilities that lead to the port’s efficiency. This is where competitive 

balance is introduced to see the strength of equality by measuring the variation of standard 

deviation in order to determine the imbalance or perfect balance economy. Widely used 

as a key variable in sports competition, the competitive balance is also well known as an 

economy analysis. According to Scelles, (2021) the competence can be analyzed by using 

two ideas associated to outcome uncertainty which are competitive balance and 

competitive intensity. The investigation has proven that there are six different types of 

data analysis that can be used, which are concentration curve, Lorenz curve, Gini 

coefficient, concentration ratio (CR), Herfindahl-Hirschman Index (HHI) and Distance to 

Competitive Balance (DCB) that measures the maritime economy distribution.  

 

2.4 Seaport Network Efficiency 

Ports’ structure has a vital association in general exchanging chains and, therefore, 

port efficiency is a significant contributor of a country's worldwide strength (Tongzon, 

1989; Chin and Tongzon 1998). Port efficiency has turned into a fundamental piece of 

microeconomic change in many countries since it is the most significant highlight in the 

transportation expense planning to increase imports and exports of a country (Bray et al., 

2015). The port efficiency input variables have a greater impact on LSCI, which was 

constructed based on the intention to quantify maritime trade facilitation. Although prior 

studies focused on rivalry among hub ports from the same region, competitiveness may 

still be developed as a cross-regional issue, as is the case with Colombo and the Southeast 

Asian hub ports. A study by Kavirathna et al. (2018) on transshipment market shares 

looking at a variety of real-world scenarios, reported that it is possible to determine 

advantages of the port of Colombo would have over Singapore, Klang and Tanjung 

Pelepas as a network relying hub. Additionally, new carriers are needed to increase the 
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network connectivity with numerous foreign ports and their economics scales. Preventing 

too many carriers from shifting operations to other ports is now the Singapore's biggest 

issue (Klevwegt et al., 2002).  

Traditional factors such as GDP, the number of berths and the number of cranes per 

berth have been used to predict cargo throughput. The port container throughput was used 

as a dependent variable (Kang & Woo, 2017). A research conducted in China by Deng et 

al. (2013) revealed a significant connection between economic growth and real-world 

maritime transport. According to a study conducted on 10 West European countries by 

Bottasso et al. (2013), port efficiency as measured by the port throughput, increased job 

opportunities, local and international growths. Another study was done to explore the 

influence of supply chain connectivity between port performance and economic growth 

of the country. Regression analysis and other statistical tests are used to measure the 

economic growth, and it has been demonstrated that GDP and LSCI have significant 

impacts on the development of the supply chains connectivity and logistics. Ayesu et al. 

(2022), examined panel data from 28 African nations with major transportation hubs 

between 2010 and 2018 to analyze the relationship between the seaport efficiency, the 

economic growth and the port throughput. The work reported that the shipping company 

was generally motivated by the economic factors that maximized the overall turnaround 

profit rather than the environmental aspects (Pasha et al., 2016).  

According to Pasha et al. (2021), one of the key determinants in the overall profit that 

a certain shipping line may be able to generate is the average freight rates for different 

liner shipping routes. The average freight rate was shown to often enhance average ship 

sailing speed, average ship carrying capacity and average port handling productivity. Port 

competitiveness in West Africa was measured by Van Dyck and Ismael (2015) who 

explored LSCI with multiple shipping lines that operate in the area (port countries) in an 

effort to take advantage of economies of scale. This work also measures  the LSCI for 
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port efficiency and productivity assessments. The quantity of throughput in twenty-foot-

equivalent units (TEU) as an additional variable in the normalised comparisons was 

considered (Oliveira et al., 2021) since the volume handled by ports might affect LSCI 

and quality of the port infrastructure. This transition has increased freight transportation 

capacity while improving security and efficiency.  

China (127.8), Hong Kong (106.2) and Germany (88.9) have the highest levels of 

connectivity in 2007, according to the statistics by Oliveira and Cariou (2015). With a 

score of 143.6 in 2010, China tops the list, followed by Hong Kong (113.6) and Singapore 

(103.8) (Oliveira & Cariou, 2015). Mohamad et al. (2015) ranked each LSCI input 

component's influence on the shipping connectivity enhancement in the six South-East 

Asian maritime nations of Indonesia, Malaysia, the Philippines, Singapore, Thailand and 

Vietnam from the greatest to the least ranks. The research discovers that the country port's 

capacity to take larger ship sizes has the greatest influence on improving the regional 

seaport network connection.  According to Munisamy and Gurcharan (2011), the study 

focuses on technical efficiency and scale efficiency based on 71 major Asian seaports 

including Malaysia, where it proves that seaport connectivity efficiency was not 

considered. It is further observed that LSCI was never used as an output in efficiency 

prediction of the previous studies. This implies that market access measurements like 

LSCI is to simultaneously processed bias variable, such as trade flow (Rødseth et.al., 

2023). Hence, the present thesis uncovers few gaps that need to be fulfilled by taking 

LSCI as the output variable in measuring the seaport network efficiency. 

Therefore, the variables that will be used in this study are four independent input 

variables: median time in port (TP), average age of vessels (AV), maximum size of 

vessels (SV) based on gross tonnage (GT) and maximum cargo carrying capacity (CCC) 

of vessels based on deadweight tonnage (DWT), which were used in the previous seaport 

efficiency study, whereas the dependent output variables are gross domestic product 
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(GDP) and LSCI to cover the gap. Constructed on the variables, data envelopment 

analysis (DEA) and clustering are then executed to fulfil the thesis objectives 3, 4 and 5. 

 

2.4.1 Data Envelopment Analysis (DEA) 

Maritime transportation industry is enriched with real data that can be exploited for 

continuous monitoring and performance advancement efforts. Unfortunately not all data 

are complete and can be accessed publicly since many of them contains missing, limited, 

private and confidential information with respect to certain seaports. Moreover, since the 

real world data in maritime transportation keeps changing in nature, the outcomes would 

be uncertain. The efficiency measurement can be performed using DEA based on 133 

countries in the world that have all similar inputs and outputs. DEA is an analytic tool 

that has been used since years ago in many different studies to compare the efficiency. 

The specialty of DEA is it can handle many inputs and outputs at the same time which 

can then be used to measure the relative efficiency of DMUs (Decision Making Units). 

DEA is a non-parametric method first proposed and pioneered by Charnes et al. (1978) 

for evaluating DMU performance. DMU’s special characteristic is that it provides a venue 

to solve the association of multiple inputs and outputs evaluated based on the relative 

efficiency (Tsai et al., 2021) 

There are 116 publications released in scholarly journals between 1993 and October 

2021 that have proven DEA as a well-established tool for forecasting future port 

performance (Krmac & Kaleibar, 2022). Among the studies relevant to this subject, few 

researches stand out. Sun et al. (2017), assessed the port performance of 16 Chinese port 

enterprises using three output variables: container throughput, cargo throughput and net 

profit. Wang et al. (2020) emphasized green ports’ efficiency that takes into account both 

competition and collaboration. Oliveira and Cariou (2015) analyzed 200 container ports 

with nearly 30-million annual traffics to estimate the extent of the seaports’ 
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competitiveness at various regional and global levels. Another research has gained 

interest due to its sustainability assessment and created evaluation framework for 9 ports 

in China using GDP as one of the outputs (Kong & Liu, 2021). The feasibility of the 

suggested technique was demonstrated by the case of supplier evaluation of a 

collaborative manufacturing firm with certain sensitivities in an article by Feng et al. 

(2019).  

 

2.4.2 Fuzzy Set Theory 

Fuzzy set theory has been generally used to formalize and address the impreciseness 

of uncertainty in human decision-making. The importance of fuzzy characteristic in DEA 

can permit a flexible and quite accurate result. A general effectiveness examination is 

performed with a relative efficiency analysis of a set of DMUs. A fuzzy number is 

necessary for the study since the efficiency is calculated based on a real set of data and 

that the classical way of measuring efficiency is often inconsistent with the reality. A 

study conducted on port efficiency based on Taiwan’s international ports by Wang et al. 

(2007), utilizing fuzzy DEA to measure DMUs based on fuzzy number features, gives 

more information than the standard DEA with crisp values. Additionally, fuzzy DEA 

calculation can indeed avoid input or output orientation during execution. Another study 

conducted by Wanke et al. (2018) highlighting factors (operator type, cargo type, 

accessibility, berth usage, port service quality etc.) and port efficiency predicted by using 

fuzzy regression, shows the association between them in the case of Nigeria port. 

According to Hatami et al. (2011), there are four different approaches of fuzzy set 

theory that can be applied with DEA; tolerance, α-level based, fuzzy ranking and 

possibility approaches. In the first approach, the tolerance levels are instilled into the DEA 

model to create fuzzy uncertainty with input-output flexibility although the fuzzy 

objective function and fuzzy constraints may not be fully satisfied due to the model’s 
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limited tolerance design (Hatami et al., 2010). The famous α-level based approach 

converts fuzzy DEA model into two parametric mathematics programs to create interval 

fuzziness efficiency that fluctuates between the impossible lower boundary and the risk-

free upper boundary using the α-level membership of the efficiency scores. In the fuzzy 

ranking approach, the interval efficiency is enhanced by imposing the α-level fuzziness 

and ranking onto the constraints. 

The possibility method based on Soleimani-Damaneh et al. (2006), that involves more 

difficult numerical calculations is applied on models that might not be applicable for 

solutions by other DEA methods. In order to evaluate each DMU using this method, one 

must solve the provided model for different possibility levels, which requires solving 

multiple linear programming models. In solving the primal and dual models, the upper 

and lower bounds for each DMU for a specific possibility level are provided by the 

efficiency values which are then changed to fuzzy variables in the credibility method to 

account for the uncertainty in both fuzzy objective and fuzzy constraints (Soleimani-

Damaneh et al., 2006).  

According to Ortega et al. (2020), fuzzy set theory can be better used in different 

transportation problems where the limitation of transportation is considered by increasing 

the sample size. Whenever, employing similar variables, the fuzzy set methods enable the 

processing of a wide range of possible real values. The fuzzy set attempts to answer 

problems with a variety of correct conclusions (Ahmad & Cheng, 2022). The latest study 

by Khan et al. (2023) proved that fuzzy set theory is more flexible, reduces information 

loss and is sensitive to variation with asymmetric tolerance. The study revealed that the 

proposed fuzzy process capability indices (FPCIs) work better in monitoring the process 

using a tolerance approach based on triangular fuzzy numbers (TrFN). It is recommended 

that trapezoidal fuzzy numbers to be used in future studies. Another study on impact and 

effectiveness of Google Classroom in online teaching and learning by Qendraj et. al. 
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(2021) uses TrFN and trapezoidal fuzzy numbers (TpFN) to make better decisions. 

Hurwicz criteria for TrFN and TpFN are used to suggest a new decision-making method 

for measuring risk attitudes. The suggested approach takes into account all sorts of 

decision-makers' viewpoints, including neutral optimism that is essential for resolving 

issues (Sukheja et. al., 2022). In transportation studies, transportation costs have been 

utilized using TrFN and TpFN, which result in accurate fuzzy statistics (Sangeetha et al., 

2023).  

A new strategy of fuzzy data envelopment analysis (FDEA) is needed to handle the 

data scarcity and prospect. Eventually, the most suitable strategy would be the modified 

tolerance approach that complements the model objective and constraints design. By 

considering data of 133 global seaports with 5 years of output variables, the constraint 

violation of the traditional DEA tolerance approach can be overcame. Firstly, 5 years of 

experimental data are collected only for the output variables (GDP and LSCI) to provide 

the minimum (p), mean (𝜇), median (m) and maximum (q) values since the variables are 

continuous data. The next step is to perform the DEA method with the same input variable 

to produce an efficiency score. Finally, defuzzification is performed by extracting one 

number from the output of the combined fuzzy set to obtain crisp output data for TrFDEA 

scores and TpFDEA scores based on the theory and approach of TrFN and TpFN, which 

is known as fuzzy data. Additionally, by exploring two fuzzy sets of triangular fuzzy 

number (TrFN) and trapezoidal fuzzy number (TpFN), the best method to deal with 

uncertainties in the DEA model can be determined. At the same time, this fuzzy DEA 

approach can empower the state of the art in the classical fuzzy DEA model as the 

weakness in the tolerance approach can be improved. Moreover, intuitionistic fuzzy units, 

suitable tolerance graphs and bounded tolerance graphs can be developed to produce a 

variety of fascinating outcomes. All of these have founded the motivation of the present 

thesis. 
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In standard linear regression, the coefficient of determination (𝑅2) indicates the 

variance in the output variable that can be explained by the independent variables 

variation whereas in fuzzy regression, the goodness of fit measure is the mean squared 

distance between fuzzy responses and model predictor (Wang & Han, 2018). Skrabanek 

and Martinkova (2021) reported that the low value of mean square error indicates the 

model is close to observation. To adapt fuzzy linear regression techniques, the 

probabilistic and statistical approaches can be combined with least squares which is 

known as Possibilistic Linear Regression Least Squares (PLRLS) technique. This 

technique, firstly proposed by Lee and Tanaka (1999) to manage fresh data sources and 

fuzzy output, fits the model's central tendency prediction and the spreads (lower and upper 

bounds) via the possibilistic approach. In the present thesis, new insights on boundedness 

of the efficiency scores will be introduced as well as the exploration of PLRLS method 

in fuzzy regression technique to deal with interval regression of random variables which 

are not suitable to be treated with ordinary regression method. 

The thesis’s proposed fuzzy DEA and efficiency boundedness can be excellent 

evaluation tools for assessing future port performance and for making effective decision 

in maritime industry while addressing environmental aspects, sustainable development 

and ecodesign of the seaports and vessels. These measurements with minimum, 

maximum, mean or/and median scores that promote better efficiency prediction, can be 

used to upgrade the state of the art technology and promote smart shipments that benefit 

the maritime sector rules while taking into account the worldwide economic interests. 

Shipping will become safer, more effective, reliable and strongly connected to the global 

supply chains as a consequence of consistent real-time monitoring systems that improve 

the maritime technology while generating higher revenue and return with the advantage 

of cost saving (Van Dijk et al., 2018). The findings of this thesis can be useful to maritime 
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industry authorities, investors and practitioners in their operational decision and policy 

making. 

 

2.5 Clustering  

K-means is a clustering approach that is used when the data is unlabelled and it utilizes 

the unsupervised machine learning method (Dhamecha, 2021). Clustering of fuzzy data 

by virtue of the k-means algorithm can be developed in the first stage to suit a cluster with 

similar characters. On the other hand, the unsupervised hierarchical clustering that 

contains layers of grouping is widely used in marine traffic, pollution level, carbon 

dioxide emission, collision risk, waterway limit and economy competitiveness evaluation. 

This hierarchical clustering strategy can be initiated based on a density function with 

linking algorithms.  

Hybrid hierarchical k-means clustering, also known as hkmeans clustering, is widely 

used in medical industry such as in treating Eisen's yeast microarray data, protein 

sequence in bioinformatics field, gene expression and in many more applications but 

never in maritime transportation industry particularly for seaport network efficiency. 

According to Liu et al. (2021) and Liu et al. (2022), the involvement of hierarchical 

clustering with k-means algorithm in sound speed profile delivers a new method for 

reforming the geometric model of the sea network with different ranges. This hierarchical 

k-means clustering is set up to overcome the innate disadvantages such as the inability of 

the standard hierarchical clustering to distinguish comparable cluster patterns. In 

maritime transportation, the proposed cluster has been utilized to treat high-dimension 

historical data for modelling the vessels' behaviour (Han et al., 2021).  

A study shows that there are few countries influencing the efficiency of another 

country, therefore hierarchical clustering can be smartly performed along with the applied 

k-means algorithm based on the computed distance of each country’s Liner Shipping 
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Connectivity Index (LSCI) (Chang et al., 2020). Initially, a particular group of countries 

representing their liner shipping connectivity tends to stay within their own cluster where 

the distance of the closest factor of interest has been checked and finally, all these 

countries are linked together to decide the existence of possible similar partnerships 

between them. A tree diagram, also known as dendrogram, can be used to represent this 

long chain projection of the countries’ prospective separate clusters (Chang et al., 2020).  

Abdulrazzak et al. (2022) illustrated the feature-reduction capabilities of the k-means 

clustering approach. This algorithm may be started without knowing how many clusters 

there really are. The study contributes parameters to the model, resulting in a more 

successful clustering strategy that can determine the optimal number of clusters and 

perform feature reduction of new hybrid clustering techniques for vehicular ad hoc 

network. The development of globally connected clusters will improve the high-speed 

railway system's transport network efficiency. The performance provided by the high-

speed railway system can reduce travel time and expenses (Liu et al., 2022). Another 

study mainly focused on cluster distribution of nodes in accordance with vectors produced 

after two layers of Graph Convolutional Network (GCN) was initiated (B. Wang et al., 

2022). The researchers decided to utilize the k-means method to conduct this 

investigation. In order to evaluate competitiveness, a number of performance analyses 

were conducted using 18 bulk terminals in Malaysia that were split into two different 

groups with distinction in the hierarchical clustering approaches used (Rozar et al., 2022). 

The top ten container ports in Southeast Asia may be divided into three groups using 

k-means clustering. Nguyen and Woo (2022), found that Singapore is still the region's 

leading port, despite competition from Port Klang, Tanjung Pelepas and Saigon Newport. 

A port must have stronger connections to other container ports and higher container 

throughput in order to be recognized as a hub port (Nam & Song, 2011).  This shows that, 

although k-means clustering has been used in maritime transportation, 10 ports are very 
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less as compared to present thesis’s 133 countries’ ports in global hub port clustering 

study. The hkmeans clustering approach has been used to cluster typical scenarios of the 

island power supply system (Niu et al., 2021). Only a limited number of study has been 

done on hkmeans clustering and that too was very far from the topic concerned presently 

on global seaport network efficiency clustering. Recently, a clustering algorithm with 

features and robust scaling for clustering ship AIS data derived using Hausdorff distance 

and Hierarchical Density-Based Spatial Clustering of Applications with Noise 

(HDBSCAN), was suggested by L.Wang et al. (2021). According to Andrade et al. 

(2019), the top five most efficient ports are those with the highest cargo throughput and 

it shows a significant link between cargo throughput and port efficiency rating among 

Brazilian ports. The clustering algorithm classified the Brazilian ports into three 

categories: efficient, moderately efficient and inefficient. This again shows that the study 

was conducted only for a single country’s ports and the outcome gives three efficiency 

clusters.  

Martinez-Budrai et al. (1999) used DEA scores of 26 Spanish port authorities to divide 

the ports' levels of complexity into three categories. Following this, Quaresma Dias et al. 

(2017) focussed on 10 Iberian Peninsula container terminals while Guironnet et al. (2009) 

examined technical efficiency of 24 Italian and 13 French ports using DEA and clustered 

the ports into geographical grouping. Similarly, Sharma and Yu (2009), Koster et al. 

(2009), Cheon (2009), Cullinane and Wang (2010), Wu and Goh (2010), Cheon et al. 

(2010) and Bichou (2013) used DEA to assess technical efficiency of 70, 38, 110, 25, 21, 

98 and 60 global container terminals, respectively. Afterwards, terminal clusters obtained 

from Serviceable Obtainable Market (SOM) and local competition were grouped based 

on ownership and corporate change by Cheon et al. (2010). Tovar and Rodrguez-Déniz 

(2015) clustered 26 Spanish port authorities using the dendrogram cut-off in hierarchical 

clustering. The present thesis’s literature survey reveals that all the past studies predicted 
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technical efficiency using the DEA model while only two studies utilized hierarchical 

clustering.  

 

2.6 Summary 

This chapter discusses the past researches on maritime transportation systems. The 

maritime economy distribution has also been discussed to find the concentration of import 

and export economies. The present chapter highlights the use of LSCI as one of the 

outputs for seaport network efficiency measurement which was never done in the past by 

other researchers. Triangular fuzzy data envelopment analysis (TrFDEA) and trapezoidal 

fuzzy data envelopment analysis (TpFDEA) have been proposed in this thesis for 

comparison and as extended studies of the classical DEA tolerance approach. Other past 

researches on efficiency measurement using DEA and fuzzy DEA as well as the machine 

learning approaches comprising regression and clustering strategies have also been 

reviewed in this chapter. 
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CHAPTER 3: METHODOLOGY 

 

3.1 Introduction 

The thesis Objective 1 aims to describe maritime transportation system based on 

Lighthill-Whitham macro transportation model. To achieve this, a heuristic approach is 

employed based on the local case of Westport’s incoming, outgoing and coupling 

functions that describe the travelling vessels along the Strait of Malacca. This analytical 

modelling approach will be directly presented in Chapter 4.  

In this chapter, the methodologies used to achieve Objectives 2 until Objective 5 of 

the thesis as mentioned in Chapter 1 will be introduced and discussed. In particular, 

maritime economy distribution is considered in Chapter 5 of this thesis to fulfill Objective 

2 where the analysis is divided into market inequality and market concentration.  First of 

all, data from UNCTAD Review of Maritime Transportation 2020 will be exploited. Next, 

explanations on concentration curve, Lorenz curve, Gini coefficient, concentration ratio 

(CR), Herfindahl-Hirschman Index (HHI) and Distance to Competitive Balance (DCB) 

that measure global marine shares inequality and market concentration will be presented.  

Seaport network efficiency measurement is covered in Chapter 6 to fulfill the thesis 

Objective 3 and Objective 4. First of all, data from UNCTADstat and the World 

Development Indicator (WDI) will be exploited. Next, Tobit regression is conducted to 

determine the significant relationship between the input and output variables as 

highlighted in Chapter 2. The seaport network efficiency is then measured using data 

envelopment analysis (DEA) and fuzzy DEA (FDEA) with involvement of fuzzy 

numbers based on triangular fuzzy number (TrFN) and trapezoidal fuzzy number (TpFN) 

theories.  

Machine learning algorithm can be utilized to cluster the considered 133 global seaport 

countries based on their seaport network efficiency scores calculated using DEA and 

Univ
ers

iti 
Mala

ya



 
 

41 
 

FDEA in Chapter 7. K-means, hierarchical and hybrid hierarchical k-means (hkmeans) 

clustering algorithm will be applied to fulfill Objective 5 of the thesis.  

In general, all the methodologies involved to fulfill the thesis Objective 2 until 

Objective 5 will be described in this chapter. 

 

3.2 Research Framework 

The research framework in Figure 3.1 explains the flow and process of the numerous 

methods used in this thesis. This thesis consists of the following stages: maritime 

transportation (Phase 1), maritime economy distribution (Phase 2), seaport network 

efficiency (Phase 3) and clustering (Phase 4). This framework could assist readers in 

following the flow of the study as various techniques are used to achieve different 

objectives. 

 

3.3 Data Source 

The data are collected from the UNCTAD Review of Maritime Transportation 2020 

(UNCTAD, 2020) in Chapter 5. From the review, data of top destinations of developing 

economies' exports 2019 and top origins of developing economies' imports 2019 are 

gathered in Microsoft Excel to be used in this study. The data is used to analyze the 

concentration curve by using Lorenz curve and Gini coefficient to predict the degree of 

equality. Moreover, concentration ratio (CR), Herfindahl-Hirschman Index (HHI) and 

Distance to Competitive Balance (DCB) are used to measure market concentration. 
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This thesis embarks on three-year data (2018, 2019 and 2020) that belong to 133 coun-

tries or DMUs while the remaining countries with incomplete data had to be removed. 

The analysis was initiated in Chapter 6 using real data of four independent variables 

which are median time in port (TP), average age of vessels (AV), maximum size of 

vessels (SV) based on gross tonnage (GT) and maximum cargo carrying capacity (CCC) 

of vessels based on deadweight tonnage (DWT). Data for these variables are collected 

from the maritime transport report published by UNCTADstat (UNCTADstat, 2020). 

These input variables are crisp data that are pre-fixed or can be controlled by each DMUs. 

The output variables are fuzzy numbers derived from Gross Domestic Product (GDP) and 

Liner Shipping Connectivity Index (LSCI). The GDP at buyer's cost is the amount of 

gross worth added by all citizen producers in the economy in addition to any assessment 

items and less any subsidies excluded from the worth of the items. The data was collected 

from the World Development Indicator (WDI) resource which is known as the World 

Bank national accounts data collection of development indicators, compiled from 

officially recognized international sources (World Development Indicators, 2022). On the 

other hand, the LSCI catches how well countries are associated with global shipping 

networks. It is provided by UNCTADstat based on five parts of the maritime 

transportation components: number of ships, the vessel container-carrying capacity, 

maximum vessel size, number of services and number of companies that deploy container 

ships in a country's ports. Data envelopment analysis (DEA) and fuzzy data envelopment 

analysis (FDEA) based on triangular fuzzy numbers (TrFN) and trapezoidal fuzzy 

number (TpFN) are used to produce the seaport network efficiency scores using MaxDEA 

software based on 3 years data of 2018, 2019 and 2020 respectively. 

In addition, the seaport network efficiency scores obtained from data envelopment 

analysis (DEA) and fuzzy data envelopment analysis (FDEA) in Chapter 6 are clustered 

in Chapter 7. K-means, hierarchical and hierarchical k-means (or hkmeans) clustering 
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strategies are performed using R-programming to construct four new level clusters from 

the two datasets of DEA and FDEA.  

 

3.4 Data Screening 

Data screening is done to fit some statistical assumptions on data normality, outlier 

identification and multicollinearity prior to deep analysis starting from Chapter 5, 6 and 

7 of this thesis. 

 

3.4.1 Reliability Statistics 

Reliability statistics is a test that is used to check data consistency of 15 top export and 

import economies for the year of 2019 examined in Chapter 5. Table 3.1 is the result of 

reliability statistics performed in SPSS.  

Table 3.1 shows that the value of Cronbach’s alpha obtained from SPSS is 0.988 which 

is more than 0.7. This shows that the data of top destinations of developing economies' 

exports 2019 and top origins of developing economies' imports 2019 are reliable. The 

data is reliable with Cronbach alpha more than 0.7 value according to Yuliani et al. 

(2019). 

Table 3.1: Reliability statistics 

Cronbach's alpha N of Items 
.988 2 

 

3.4.2 Normality Test 

Normality test is carried out to examine data of output variables (GDP and LSCI) prior 

to seaport network efficiency measurement in Chapter 6. Moreover, fuzzy regression 

follows basic regression assumptions and the model must be measured with normality 

that shows a bell shape distribution in normal kernel density (Newhart et al., 2019).  
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GDP      LSCI 
         Figure 3.2: Normality chart for the output raw data 

 

The data is normally distributed after two countries are removed from the dataset by 

using STATA software. The output from STATA shows that the data for LSCI and GDP 

are normality distributed. Kernel density estimation shows that the probability density 

function contributes towards improvement of the distribution as compared to the 

traditional histogram. Normal density in the study shows a symmetric, single-peaked bell-

shaped density curve, therefore the dependent variables are normally distributed as shown 

in Figure 3.2.  

 

3.4.3 Outlier Detection 

Outlier identification is conducted to determine which outliers are typical of reliable 

data points (and should be maintained) and which outliers are probably errors and have 

to be eliminated from the data collection (Djenouri et al., 2022). The effect of outliers is 

common and can have a huge impact on data distribution. An outlier test needs to be 

performed for the outlier removal before the clean data can be used. In this thesis, outlier 

detection is performed on the datasets used for seaport network efficiency measurement 

in Chapter 6 and seaport network efficiency clustering in Chapter 7. Box plot is performed 

to check the outlier and it has been identified that three countries (Cabo Verde, Slovenia 
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and Curacao) are having extreme values as compared to other countries as shown in 

Figure 3.3. After removing the three countries the dataset is retested to produce the 

boxplot in Figure 3.4. There are no outliers identified in the results of DEA and FDEA 

from the boxplot, hence it proves the inexistence of any extreme value. 133 seaport 

countries considered in this thesis are the result after removing that three countries 

through this outlier detection process. 

 

 

                      2018                           2019                             2020 
Figure 3.3: Boxplot for outlier detection 

 

 

2018                           2019                             2020 
Figure 3.4: Boxplot after outlier removal 

 

3.4.4 Multicollinearity Test 

In addition to normality and outlier identification, multicollinearity is another basic 

requirement in Chapter 6 that needs to be treated before further analysis. Multicollinearity 

is a term that describes the correlation of numerous independent variables in a model. The 
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analysis should be without multicollinearity to produce accurate models (Wilmsmeier & 

Hoffmann, 2008). Hair et al. (2017), recommended that variance inflation factor (VIF) 

values should not be more than 10 to get rid of the collinearity. They claimed that 

multicollinearity of all variables below 7 of the VIF is not a main problem. Yet, there was 

another study by Garson (2012) who claimed that the VIF value must be less than 4 

according to the rule of thumb to avoid the multicollinearity problem. Although there are 

other studies that claimed VIF less than 5 is acceptable, a threshold value for VIF will be 

taken as 4 in Chapter 6. Based on the Table 3.2, all the VIF values are less than 4 and it 

proves that the level of correlation between the variables is stable and multicollinearity 

does not exist in this study. 

Table 3.2: Multicollinearity 

Variable SV CCC TP AV Mean 
VIF 

VIF 2.81 2.57 1.23 1.03 1.91 

1/VIF 0.3563 0.38859 0.81579 0.96971 
 

 

3.5 Description of Methodology 

This section presents the methodologies employed to achieve the objectives of this 

thesis. The methodology used to measure maritime economy distribution represented by 

marine share inequality and market concentration is elaborated in Figure 3.5. DEA and 

FDEA using TrFn and TpFN are explained in Figure 3.6 while the clustering strategies 

employed are described in Figure 3.7. 

In this thesis, data of 15 top import and export maritime economies will be considered 

for the analyses done in Chapter 5 on market inequality and market concentration. Market 

inequality (concentration curve, Lorenz curve and Gini coefficient) is a measurement of 

unequal maritime share distribution between different seaport countries while market 
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concentration (concentration ratio (CR), Herfindahl-Hirschman Index (HHI) and 

Distance to Competitive Balance (DCB)) refers to distribution of market shares among 

the import and export country economies. These two market components are analyzed 

using Microsoft Excel where the specific methodologies are described by the diagram in 

Figure 3.5.  

DEA is primarily used to calculate seaport network efficiency scores in Chapter 6. 

There are three main outcomes from this research which are divided into DEA, fuzzy 

DEA and fuzzy linear regression. The step-by-step procedures as supported by Figure 3.6 

are listed as follows: 

Step 1:  Data collection of input and output variables is performed. 

Step 2:  Data screenings for normality, multicollinearity and outlier identifications 

are conducted. 

Step 3:  DEA scores are computed. 

Step 4:  The output data are fuzzified. TrFN rule is applied to produce minimum 

(p), mean (𝜇) and maximum (q) values of the output data. TpFN rule is 

applied to produce minimum (p), median (m), mean (𝜇) and maximum (q) 

values of the output data.  

Step 5:  Fuzzy DEA scores are computed using the TrFN and TpFN obtained in 

Step 4. 

Step 6:  Defuzzification is performed to obtain crisp output data for TrFDEA scores 

and TpFDEA scores. 

Step 7:  Using the data in Step 4, fuzzy linear regression is performed. 
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Figure 3.5: Marine share inequality and market concentration 
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Figure 3.6: Triangular and trapezoidal fuzzy data envelopment analyses  
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This study applies triangular and trapezoidal fuzzy numbers to compare the results for 

fluctuation or uncertainty data. According to Qendraj et al. (2021), by using Likert scale 

study, it has been proven that trapezoidal fuzzy number is a better method to make a 

decision as compared to triangular fuzzy number.  The results give similar outcomes, as 

this study can identify the best method for fluctuated data where it will contribute to real-

life and uncertainty studies. The consistency and inconsistency of these two methods are 

the deficiency of the fuzzy approach which can be removed using the triangular and 

trapezoidal fuzzy numbers in order to make the decision. The outputs are proposed to 

convert the crisp DEA model into an FDEA model by employing fuzzy numbers for the 

Liner Shipping Connectivity Index (LSCI) and Gross Domestic Product (GDP) since they 

are continuing data, while the input variables remain as the crisp data. 

Triangular and trapezoidal fuzzy numbers are employed in this study for comparison 

purpose so that fuzzy number theory which produces better FDEA results can be 

identified and enrich the thesis Objective 4. On the other hand, the clustering strategies 

are employed to group 133 countries based on their seaport network efficiency score into 

four cluster levels. The methods are conducted in Chapter 7 based on DEA and FDEA 

datasets using R-programming. The detailed procedure (Figure 3.7) to conduct the three 

clustering strategies are presented in Sections 3.9.1, 3.9.2 and 3.9.3. 
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Figure 3.7: Hybrid k-means clustering strategy for DEA and FDEA datasets 

 

3.6 Market Inequality 

In this thesis, maritime market inequality refers to imbalance in income distributions 

between top developing import and export countries of maritime economy. Market 

inequality measurement is divided into concentration curve, Lorenz curve and Gini 

coefficient in Chapter 5. The formula and concepts of each measurement are explained in 

the following subsections. 

 

3.6.1 Concentration Curve 

The concentration curve is the cumulative percentage of container port share value 

towards the cumulative percentage of the population (Nguyen et al., 2020). The curve 
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will start from the lowest value to the largest value exposing different countries on the 

same graph. The concentration curve is measured using the following formula: 

CC = ∑
𝑆𝑖

∑ 𝑆𝑖
𝑛
𝑖=1

𝑗
𝑖=1 ,                                                                                                (3.1) 

where 𝑗: the number of attribute ports, 𝑛: number of container ports in the system and 

𝑆: share value of the container port (billion USD) 

 

3.6.2 Lorenz Curve and Gini Coefficient  

The Lorenz curve is a tool that is best characterized using a graphical method where 

the proportion of distribution is based on cumulative percentage values for both the X-

axis and Y-axis. Lorenz curve is very unique in the diagram and most importantly, the 

data must be arranged from the highest to the lowest position (Cancelas et al., 2013). The 

area between two lines which is known as perfect equality and perfect inequality refers 

to the Lorenz curve. 

The Gini coefficient is an index that gives the degree of concentration which is the 

inequality of a variable in the distribution of its components. The coefficient is calculated 

based on the ratio of the area between the Lorenz curve and the diagonal line (Pham et 

al., 2016). The ratio of the Gini coefficient is between 0 and 1, where 0 means no 

concentration among them and a coefficient of 1 means there is a concentration (Yitzhaki 

& Schechtman, 2013a). This two measures are well known and commonly used to 

measure the overall distribution of shares since the methods have a tendency to show 

differences at the top, middle and bottom level of a distribution. Section A is the area 

between the Lorenz curve and the line of perfect equality, whereas Section B is the area 

under the Lorenz curve. The mathematical formula that is used to perform the Gini 

coefficient is as follows: 
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Section A = 0.5 − Section B,                                                                            (3.2) 

Section B = ∑ (
(𝑘+𝑙)

2
∗
1

𝑛
)𝑛

𝑖=1 ,                                                                             (3.3) 

Gini coefficient =
Section A

Section A+Section B
 ,                                                                (3.4) 

where 𝑛: number of container ports in the system, 𝑘: ∑ (𝑖 + 1)𝑛
𝑖=1  and 𝑙: ∑ (𝑖)𝑛

𝑖=1 . 

 

3.7 Market Concentration 

Maritime market concentration refers to distribution of market shares among the 

maritime export and import contributors. This section measures concentration ratio (CR), 

Herfindahl-Hirschman Index (HHI) and Distance to Competitive Balance (DCB) as 

discussed Chapter 5.  

 

3.7.1 Concentration Ratio (CR) 

A concentration ratio (CR) measures the combination of market share where it 

determines the structure and competitiveness of a market. The CR is calculated based on 

three or five countries with the greatest market shares but a lot of studies measure CR 

with four leading countries’ procedures that give the relative share of total industry. 

According to Charlampowicz (2018), the prominent way to calculate concentration ratio 

(CR) is by compelling four countries with the largest market shares in the world. The 

details on the concentration ratio (CR) are provided in Table 3.3.  

 
Table 3.3: Concentration ratio (CR) (Pham et al., 2016) 

 

Condition Market type 

CR < 25% Not-oligopoly 

25%<CR <60% and HHI>1800 Tight oligopoly 

CR>80% or CR>90% Super tight oligopoly 

40%<CR Dominant player 
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The general mathematical formula for computing concentration ratio (CR) is   

CR = ∑ 𝑠𝑖
𝑥
𝑖=1 ,                                                                                                      (3.5) 

where 𝑠𝑖: percentage market share of the 𝑖𝑡ℎ location and 𝑥: number of countries. The 

weakness of this method is it does not show the total number of competitors on the market 

because it is focusing on the top industries only. Moreover, CR does not indicate the 

freedom of entry and exit into the market which is known as contestability.  

 

3.7.2 Herfindahl-Hirschman Index (HHI) 

HHI measure is the best measurement on market concentration with fair amount of 

correlation to concentration ratio (CR). It that can be used to determine the market 

competitiveness of past and present concentrations. Initially, this method is well used by 

Notteboom et al., (2009) and later, Nguyen et al., (2020) explained HHI as an index to 

study the level of concentration in the ports. It is done by summing up the squared shares 

of all the ports as in Eq. (3.6). 

HHI = ∑ (
𝑆

∑ 𝑆𝑛
𝑖=1

)
2

,𝑛
𝑖=1       

1

𝑛
≤ HHI ≤ 1,                                                                                 (3.6) 

where 𝑛: number of container ports in the system and 𝑆: share value of the container port 

(billion USD) 

The studies by Nguyen et al. (2020) and Notteboom et al. (2009) claimed that HHI 

shows the degree of concentration with HHI ranges between 1 𝑛⁄  to 0.15 indicates weak 

concentration, 0.15 to 0.25 for moderate concentration and 0.25 to 1 for high 

concentration. According to Saeedi et al. (2021), market concentration with three levels 

of concentration can be obtained by multiplying 10000 to the Eq. (3.6) to form Eq. (3.7).    

HHI = 10000∑ (
𝑆

∑ 𝑆𝑛
𝑖=1

)
2

,𝑛
𝑖=1       

1

𝑛
≤ HHI ≤ 1,                                                     (3.7) 
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Table 3.4: Market type (Saeedi et al., 2021) 

 

The three levels of market concentration are as given in Table 3.4. HHI less than 1500 

means un-concentrated, HHI between 1500 and 2500 is moderately concentrated and HHI 

more than 2500 is known as highly concentrated (Saeedi et al., 2021). 

 

3.7.3 Distance to Competitive Balance (DCB) 

Competitive balance is a relative level of equality that deals with the strength between 

economic countries of export and import in maritime industry. There are two economic 

concepts; competitive balance and competitive intensity. Competitive intensity is the 

more recent analysis covers on the outcome of uncertainty which is not only generated 

by equilibrium between the teams but it also considers demand and revenues (Scelles, 

2021). Competitive balance measures at the end of the year based on coefficient of 

variation (CV) of point ratios, known as standard-deviation–based competitive balance 

measure. Maritime transportation records around 80% of the worldwide trade and its 

related activities have greater impacts on the economy which influence a lot of industries. 

In these recent years, ship sizes have been increasing, leading to the intensification of 

activities in the seaport that need competitive balance analysis with ranges between 0 to1 

in the matric space and known as Distance to Competitive Balance (DCB) (Fratila et al., 

2021). 

 

 

 

Condition Market type 

HHI<1500 Un-concentrated 

1500<HHI<2500 Moderately concentration 

HHI>2500 Highly concentrated 
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3.8 Seaport Network Efficiency 

In this thesis, seaport network efficiency is defined as a degree of how efficient a 

seaport country can be based on its performances in Liner Shipping Connectivity Index 

(LSCI) and Gross Domestics Products (GDP). This indicator is measured from the 

collected data (Section 3.2) using the techniques of Tobit regression, DEA, fuzzy DEA 

based on triangular fuzzy number (TrFN) and trapezoidal fuzzy number (TpFN) theories 

as well as fuzzy linear regression in Chapter 6. 

 

3.8.1 Tobit Regression 

The Tobit regression model is used in this study to calculate the efficiency score of 

international seaports by the influence of input, output and controlled variables. This is 

the second analysis after DEA efficiency. It is also called a censored regression where it 

estimates linear relationship between variables when there is either left or right censoring 

in the dependent variables (Bruno et al., 2020). The Tobit regression model is employed 

to quantify the magnitude and direction of the effects of the factors influencing the 

commercialization of smallholder agriculture (Martey et al., 2012). Tobit regression is 

assumed to have latent relationship between non-negative Y and X with  

𝑌∗ =  𝑎 +  𝐵𝑋 + 𝑢𝑖,                                                                                         (3.8)                                                   

where 𝑢𝑖 is measured as normally distributed. 𝑌∗ is not observable whereas in the 

ordinary regression, Y is observable. A special feature of Tobit regression is in the 

estimation of B, which gives more accurate prediction as compared to the ordinary 

regression that actually predicts the slope of (Tobin, 1958): 

𝑌 =  𝑎 +  𝐵𝑋.                                                                                                   (3.9) 

The slope, 𝐵 would underestimated and the intercept, a would be over-estimated. 

Simple linear regression model will estimate the direct relationship between 𝑋 and 𝑌, 
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whereas Tobit regression model estimates the hidden interaction (knows as unobserved) 

that contributes towards the efficiency. Tobit regression is very suitable for this study 

since it involves secondary data and latent effect between the variables is estimated when 

the efficiency is not readily observed by the independent and dependent variables (X, Y).  

There are some nonlinear features in the dependent and independent variables. 

Therefore the container throughput and GDP (dependent variables) along with the vessel 

size and cargo carrying capacity (independent variables) are converted to logarithm 

expressions before performing the analysis. Hence, Tobit regression is only performed 

after checking on the linearity of the variables. 

  

3.8.2 Data Envelopment Analysis (DEA) Model 

This section elaborates the mathematical modelling for classical DEA as described in 

Eq. (3.10) to Eq. (3.14) (Gholizadeh et al., 2022). The efficiency is calculated with 

multiple input and output as below: 

Efficiency =
weighted sum of outputs

weighted sum of inputs
 ,                                                                 (3.10) 

The efficiency starts from 

𝑀𝑎𝑥 𝐹 =
∑ 𝑢𝑏𝑦𝑏𝑗
𝑐
𝑏=1

∑ 𝑣𝑑𝑥𝑑𝑗
𝑓
𝑑=1

,                                                                                          (3.11) 

subject to: 

∑ 𝑢𝑏𝑦𝑏𝑗
𝑐
𝑏=1

∑ 𝑣𝑑𝑥𝑑𝑗
𝑓
𝑑=1

≤ 1,           j=1,…,z,                                                                          (3.12) 

𝑢𝑏𝑗

∑𝑢𝑏𝑦𝑏𝑗
≥ 𝜀,               b =1,…,c,                                                                        (3.13) 

𝑣𝑑𝑗

∑𝑣𝑑𝑥𝑑𝑗
≥ 𝜀,               𝑑 =1,…, f,                                                                        (3.14) 

where 𝑦𝑏𝑗: the amount of the 𝑗th output produced by the 𝑏th port, 𝑥𝑑𝑗: the amount of the 

𝑗th input used by the 𝑑th port, 𝑢𝑏𝑗: the weight given to the 𝑗th output of the 𝑏th port, 𝑣𝑑𝑗: 
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the weight given to the 𝑗th input of the 𝑑th port, 𝑧: number of ports, 𝑐: number of output 

and 𝑓: number of inputs. 

The objective function is denoted by the formula, which indicates that the objective 

function and the constraints are fuzzy for classical DEA. We assume 𝑣1, 𝑣2, 𝑣3 and 𝑣4 to 

be the input variables while 𝑢1 and 𝑢2 be the output variables of 𝐷𝑀𝑈𝑗 with 𝑗 =

1, … ,133.   

 

3.8.2.1 Mathematical Modelling for DEA 

We can write the objective function of the value (𝐹) in Eq. (3.15) and the constraints 

for the efficiency score from Eq. (3.16) to Eq. (3.18). In classical DEA, the constraint in 

Eq. (3.16) is always equal to unity and Eq. (3.17) represents the summation difference 

between the output and input variables with zero as the upper limit while the values of 

the input and output values must always be positive. This DEA model considered in 

Chapter 6 is reformed based on the following linear programming problem: 

 

Case 1: 

𝑚𝑎𝑥 𝐹 ∑ 𝑢𝑏𝑦𝑏𝑗
2
𝑏=1                                                                                             (3.15) 

subject to: 

∑ 𝑣𝑑
𝐻𝑥𝑑𝑗 = 1,

4
𝑑=1                                                                                               (3.16) 

∑ 𝑢𝑏
𝐻𝑦𝑏𝑗

2
𝑏=1 − ∑ 𝑣𝑑

𝐻𝑥𝑑𝑗
4
𝑑=1 ≤ 0,                                                                      (3.17) 

𝑢𝑏
𝐻 , 𝑣𝑑

𝐻 ≥ 0, 𝑏 = 1,2, 𝑑 = 1,… ,4.                                                                           (3.18) 
 

The mean value objective function can be written as in Eq. (3.19), while the constraints 

for the objective function (𝐹𝑀) can be represented by Eq. (3.20) to Eq. (3.22) as shown 

in Case 2. 
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Case 2:  

𝑚𝑎𝑥 𝐹𝑀 ∑ 𝑢𝑏𝑦𝑏𝑗
2
𝑏=1                                                                                          (3.19) 

subject to 

∑ 𝑣𝑑
𝑀𝑥𝑑𝑗 = 1,4

𝑑=1                                                                                               (3.20) 

∑ 𝑢𝑏
𝑀𝑦𝑏𝑗

2
𝑏=1 − ∑ 𝑣𝑑

𝑀𝑥𝑑𝑗
4
𝑑=1 ≤ 0,                                                                      (3.21) 

 𝑢𝑏𝑀, 𝑣𝑑𝑀 ≥ 0, 𝑏 = 1,2, 𝑑 = 1,… ,4.                                                                   (3.22) 

Eq. (3.24) to Eq. (3.26) indicate the constraints for minimum efficiency score where Eq. 

(3.15) can be written as the objective function of the minimum value of (𝐹𝐿) in Case 3 

as Eq. (3.23) 

 

Case 3:   

𝑚𝑎𝑥 𝐹𝐿 ∑ 𝑢𝑏𝑦𝑏𝑗
2
𝑏=1                                                                                           (3.23) 

subject to 

∑ 𝑣𝑑
𝐿𝑥𝑑𝑗 = 1,

4
𝑑=1                                                                                                (3.24) 

∑ 𝑢𝑏
𝐿𝑦𝑏𝑗

2
𝑏=1 − ∑ 𝑣𝑑

𝐿𝑥𝑑𝑗
4
𝑑=1 ≤ 0,                                                                        (3.25) 

 𝑢𝑏𝐿 , 𝑣𝑑𝐿 ≥ 0, 𝑏 = 1,2, 𝑑 = 1,… ,4.                                                                     (3.26) 

 

In this case, 𝑏 = 1,2 represent the output variables of LSCI and GDP while 𝑑 =

1, … ,4 are based on the input variables of median time in port (TP), average age of vessels 

(AV), maximum size of vessels (SV) based on gross tonnage (GT) and maximum cargo 

carrying capacity (CCC) of vessels based on deadweight tonnage (DWT).                                  
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3.8.3 Fuzzy DEA 

The classical DEA model in Eq. (3.27) to Eq. (3.29) of previous section (used in 

Chapter 6)  can be modified to a fuzzy DEA model using triangular fuzzy numbers (L - 

minimum, M - mean, H - maximum) (Tsai et al., 2021).  

 

3.8.3.1 Mathematical Modelling for Fuzzy DEA 

The objective function for fuzzy DEA is taking by maximizing the division of output 

variable fuzzy number and input variable fuzzy number. The constraints for the maximum 

objective function Eq. (3.26) are given in Eq. (3.27) which show the ratio of fuzzy output 

number summation to the fuzzy input number summation must not exceeds zero. The 

constraints in Eq. (3.28) represent the input lowest value is zero whereas the highest 

values are bigger than the mean values. The fuzzy DEA model that will be discussed in 

Chapter 6 is outlined as follows: 

𝑚𝑎𝑥
∑ (𝑢𝑏

𝐿𝑦𝑏𝑗
𝐿 +𝑢𝑏

𝑀𝑦𝑏𝑗
𝑀+𝑢𝑏

𝐻𝑦𝑏𝑗
𝐻 )  2

𝑏=1

∑ (𝑣𝑑
𝐿𝑥𝑑𝑗

𝐿 +𝑣𝑑
𝑀𝑦𝑑𝑗

𝑀+𝑣𝑑
𝐻𝑦𝑑𝑗

𝐻 )  4
𝑑=1

                                                                          (3.26) 

subject to 

∑ (𝑢𝑏
𝐿𝑦𝑏𝑗

𝐿 +𝑢𝑏
𝑀𝑦𝑏𝑗

𝑀+𝑢𝑏
𝐻𝑦𝑏𝑗

𝐻 )  2
𝑏=1

∑ (𝑣𝑑
𝐿𝑥𝑑𝑗

𝐿 +𝑣𝑑
𝑀𝑦𝑑𝑗

𝑀+𝑣𝑑
𝐻𝑦𝑑𝑗

𝐻 )  4
𝑑=1

≤ 0,                                                                          (3.27) 

𝑣𝑑
𝐿 ≥ 0, 𝑣𝑑

𝑀 ≤ 𝑣𝑑
𝐻 ,     1 ≤ 𝑑 ≤ 4,                                                                      (3.28) 

𝑢𝑏
𝐿 ≥ 0, 𝑢𝑏

𝑀 ≤ 𝑢𝑏
𝐻 ,     1 ≤ 𝑏 ≤ 2.                                                                       (3.29) 

 

The fuzzy DEA model can be reformulated by maximizing the output subject to the 

input is equal to 1, hence the power index can be enhanced by removing some limitations 

in the model as written in Eq. (3.30) as the objective function. We transformed it to a 

linear model as provided in Eq. (3.30) and Eq. (3.29), based on prior research because 

this non-linear model increases complexity and is difficult to be solved on extremely big 
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data (Khalili-Damghani & Tavana, 2013). The constraint Eq. (3.31) has been linearized 

by making the maximization equals to 1. 

𝑚𝑎𝑥 ∑ (𝑢𝑏
𝐿𝑦𝑏𝑗

𝐿 + 𝑢𝑏
𝑀𝑦𝑏𝑗

𝑀 + 𝑢𝑏
𝐻𝑦𝑏𝑗

𝐻 )2
𝑏=1                                                               (3.30) 

subject to 

∑ (𝑣𝑑
𝐿𝑥𝑑𝑗

𝐿 + 𝑣𝑑
𝑀𝑦𝑑𝑗

𝑀 + 𝑣𝑑
𝐻𝑦𝑑𝑗

𝐻 )4
𝑑=1 = 1,                                                             (3.31) 

∑ (𝑢𝑏
𝐿𝑦𝑏𝑗

𝐿 + 𝑢𝑏
𝑀𝑦𝑏𝑗

𝑀 + 𝑢𝑏
𝐻𝑦𝑏𝑗

𝐻 )2
𝑏=1 − ∑ (𝑣𝑑

𝐿𝑥𝑑𝑗
𝐿 + 𝑣𝑑

𝑀𝑦𝑑𝑗
𝑀 + 𝑣𝑑

𝐻𝑦𝑑𝑗
𝐻 )4

𝑑=1 ≤ 0,     (3.32) 

𝑣𝑑
𝐿 − 𝑣𝑑

𝑀 ≤ 0,  𝑣𝑑𝐻 − 𝑣𝑑𝑀 ≤ 0, 𝑣𝑑
𝐿𝑣𝑑

𝑀𝑣𝑑
𝐻 ≥ 0 if 1 ≤ 𝑑 ≤ 4,                              (3.33) 

  𝑢𝑏𝐿 − 𝑢𝑏𝑀 ≤ 0, 𝑢𝑏
𝐻 − 𝑢𝑏

𝑀 ≤ 0, 𝑢𝑏
𝐿𝑢𝑏

𝑀𝑢𝑏
𝐻 ≥ 0 if 1 ≤ 𝑏 ≤ 2                               (3.34) 

The difference between summation of fuzzy output and input is less than zero. Next, 

Eq. (3.33) and Eq. (3.34) are transformed to Eq. (3.35) and Eq. (3.36) by adding ε as 

follows: 

𝑣𝑑
𝐿 − 𝑣𝑑

𝑀 ≤ −𝜀, 𝑣𝑑
𝐻 − 𝑣𝑑

𝑀 ≤ −𝜀, 𝑣𝑑
𝐿𝑣𝑑

𝑀𝑣𝑑
𝐻 ≥ 0 if 1 ≤ 𝑑 ≤ 4,                          (3.35) 

𝑢𝑏
𝐿 − 𝑢𝑏

𝑀 ≤ −𝜀, 𝑢𝑏
𝐻 − 𝑢𝑏

𝑀 ≤ −𝜀, 𝑢𝑏
𝐿𝑢𝑏

𝑀𝑢𝑏
𝐻 ≥ 0 if 1 ≤ 𝑏 ≤ 2.                          (3.36) 

Here 𝜀 > 0 is a small positive number that weights the midpoint to a larger value than the 

end point (Yadava & Bapatb, 2017). 

It is crucial to add data fuzzification to DEA in order to correctly reflect the real-world 

scenario. TrFN is the most frequently used method (Yang et al., 2022) to construct fuzzy 

sets with DEA in various researches. Similar approach can also be built with trapezoidal 

fuzzy number (TpFN) (Ahmad & Cheng, 2022). The trapezoidal fuzzy number is used to 

transmit complex information that is difficult to be explained precisely, thereby 

diminishing the accuracy and objectivity of the decision outcomes. Using TrFN and 

TpFN, the seaport network efficiency scores can further be evaluated and compared in 

this study. 
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3.8.4 Triangular Fuzzy Number (TFN) 

Fuzzy numbers are created based on triangular fuzzy decision-theoretic rough sets to 

satisfy a fuzzy environment. The enrolment capacity of a fuzzy number needs to fulfill 

the states of convexity and normality which adhere to the basic terms of triangular fuzzy 

number and arithmetic operations (Faizi et al., 2020). A triangular fuzzy number sums up 

an idea of a real number hence, it fits the membership function 𝐹𝑁(𝑥) defined in Eq. 

(3.37) based on minimum (𝑝), mean (𝜇) and maximum (𝑞) values e.g. 𝑝 < 𝜇 < 𝑞: 

 

𝐹𝑁(𝑥) = (𝑚𝑖𝑛,𝑚𝑒𝑎𝑛,𝑚𝑎𝑥) = {

𝑥−𝑚𝑖𝑛

𝑚𝑒𝑎𝑛−𝑚𝑖𝑛
,    𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑚𝑒𝑎𝑛;

𝑚𝑎𝑥−𝑥

𝑚𝑎𝑥−𝑚𝑒𝑎𝑛
,    𝑚𝑒𝑎𝑛 ≤ 𝑥 ≤ 𝑚𝑎𝑥;

0           ,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                                 (3.37) 

Consider GDP = (𝑝1, 𝜇1, 𝑞1) and LSCI =(𝑝2, 𝜇2, 𝑞2) as two TrFNs where 𝑝1 is the 

minimum value for GDP, 𝜇1 is the mean value of GDP, 𝑞1 is the maximum value of GDP, 

𝑝2 is the minimum value for LSCI, 𝜇2 is the mean value of LSCI and 𝑞2 is the maximum 

value of LSCI. These triangular fuzzy numbers can operate on four basic arithmetic 

operations as follows (Ghoushchi et al., 2021). 

1) Additive : GDP + LSCI = (𝑝1 + 𝑝2, 𝜇1 + 𝜇2,  𝑞1 + 𝑞2)                                  (3.38)                           

2) Subtraction:GDP − LSCI = (𝑝1 − 𝑝2, 𝜇1 − 𝜇2,  𝑞1 − 𝑞2)                                (3.39)                                       

3) Product:GDP × LSCI = (𝑝1 × 𝑝2, 𝜇1 × 𝜇2,  𝑞1 × 𝑞2)                                       (3.40)                                     

4) Quotient:GDP ÷ LSCI = (𝑝1 ÷ 𝑝2, 𝜇1 ÷ 𝜇2,  𝑞1 ÷ 𝑞2)                                     (3.41)                                        

Eq. (3.38) represents the addition of minimum GDP and LSCI, similarly for mean and 

maximum values. Eq. (3.39) is the subtraction whereas Eq. (3.40) and Eq. (3.41) are the 

product and quotient rules for minimum, mean and maximum values respectively.  

 

 

 

Univ
ers

iti 
Mala

ya



 
 

64 
 

Proposition 1.  

The 𝛼-cut, 𝐹𝛼 of a TrFN, given 𝐹 =  (𝑝, 𝜇, 𝑞) and 𝛼 ∈ [0, 1], is calculated 

(Voskoglou, 2015) by Eq. (3.42): 

𝐹𝛼  =  [ 𝐹𝑝
𝛼, 𝐹𝑞

𝛼]  =  [𝑝 + 𝛼(𝜇 − 𝑝), 𝑞 − 𝛼(𝑞 − 𝜇)].                                       (3.42) 

The 𝛼-cut is used in TrFN to best describe the fuzzy number calculation. The 𝛼-cut point 

for the left and right bounds in Eq. (3.42) are elaborated as 𝛼 = 𝑞−𝑦

𝑞−𝜇
 and 𝛼 = 𝑥−𝑝

𝜇−𝑝
 

respectively. 

 

Proposition 2. 

The coordinates (𝑥, 𝑦) of a triangle (𝑝, 𝜇, 𝑞) forming the graph of the TrFN are 

calculated by using the formula (Voskoglou, 2015) in Eq. (3.43): 

𝑥 =
𝑝+𝜇+ 𝑞

3
, 𝑦 =

1

3
.                                                                                       (3.43) 

The 𝑥-coordinate in Eq. (3.43) takes the average of minimum (𝑝), mean (𝜇) and 

maximum (𝑞) values along the bottom side of the triangle whereas the 𝑦-coordinate is 

taken as the one third of the height of the triangle as depicted in Figure 3.8. The graph of 

the TrFN, (𝑝, 𝜇, 𝑞) is the triangle ABC with 𝐴(𝑝, 0), 𝐵(𝜇, 1) and 𝐶(𝑞, 0) as the edge 

points. The intersection point of ABC is the median (Voskoglou, 2015). Univ
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Figure 3.8: A triangle with a centroid to represent TrFN. 

 

3.8.5 Trapezoidal Fuzzy Number (TpFN) 

A fuzzy set A = (a, b, c, d) is known as a set of trapezoidal fuzzy numbers if its 

membership function, 𝐹𝑁𝑇(𝑥) is defined by the minimum (𝑝), median(𝑚), mean (𝜇) and 

maximum (𝑞) values where 𝑝 ≤ 𝑚 ≤  𝜇 ≤  𝑞 (Pribićević et al., 2020): 

𝐹𝑁𝑇(𝑥) = (𝑚𝑖𝑛,𝑚𝑒𝑑𝑖𝑎𝑛,𝑚𝑒𝑎𝑛,𝑚𝑎𝑥) =

{
 
 

 
 

   0,          𝑥 < 𝑚𝑖𝑛;      
𝑥−𝑚𝑖𝑛

𝑚𝑒𝑑𝑖𝑎𝑛−𝑚𝑖𝑛
,    𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑚𝑒𝑑𝑖𝑎𝑛;

        1,      𝑚𝑒𝑑𝑖𝑎𝑛 ≤ 𝑥 ≤ 𝑚𝑒𝑎𝑛;
𝑚𝑎𝑥−𝑥

𝑚𝑎𝑥−𝑚𝑒𝑎𝑛
,    𝑚𝑒𝑎𝑛 ≤ 𝑥 ≤ 𝑚𝑎𝑥;

0,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.  

    (3.44) 

Eq. (3.44) shows a slight difference at the core which holds the value 1 for the range of 𝑥 

between the median and the mean values as compared to TrFN. In TpFN theory, it 

includes four values to get the accurate result (Pribićević et al., 2020). The four values 

are the edge points of a trapezium as highlighted in Figure 3.9. 
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Figure 3.9: A trapezium to represent TpFN (Pribićević et al., 2020) 

 

In accordance with Khan et. al. (2023) study, trapezoidal fuzzy numbers are proposed 

in this study as an alternative tool to compare the results between triangular fuzzy 

numbers and trapezoidal fuzzy numbers based on the accuracy and sensitivity of the real-

valued data in the seaport network efficiency measurement. This fuzzy approach is 

preferable as compared to other methods because it can deal with biased data in situations 

where the marine transportation systems are unpredictable that can lead to inaccuracy 

prediction. In order to overcome this issue, application of fuzzy numbers is presently 

proposed to improve the seaport network efficiency measurement. 

 

3.8.6 Fuzzy Linear Regression 

The fuzzy seaport network efficiency scores based on TrFN are used to produce a 

fuzzy linear regression model using the Possibilistic Linear Regression with Least 

Squares (PLRLS) method (Lee & Tanaka, 1999). The lower and higher model boundaries 

support the interval and the central tendency of the fuzzy regression model. The bounds 
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of the seaport network efficiency scores are demonstrated in the fuzzy linear regression 

model in Chapter 6 (Section 6.5). The procedures are highlighted as follows: 

Step 1: Fuzzy seaport network efficiency scores from Section 3.7.4 are used in the 

calculation of fuzzy linear regression. 

Step 2: Possibilistic Linear Regression with Least Squares (PLRLS) method is 

performed in R- programming to estimate the model parameters.  

Step 3: Step 2 is repeated to generate the minimum, maximum and central tendency 

bounds of the seaport network efficiency model. 

 

3.9 Clustering Strategies 

Clustering is a process of grouping a number of subjects according to their specific 

intrinsic values measured using a distance metrics. In this thesis, the unsupervised 

machine learning strategies are divided into k-means, hierarchical and hierarchical k-

means (hkmeans) algorithms. There has been no previously released research on 

connection clustering. The fuzzy DEA (FDEA) and clustering techniques are combined 

to explore different levels of clusters based on the LSCI while addressing the gap in the 

existing literatures. This study will guide global countries in measuring their seaport 

network efficiencies among the cluster levels between the countries, hence it will 

motivate them to enhance and to sustain their connectivity levels in order to increase the 

countries’ economic growths. The three methods are operated on three-year DEA and 

FDEA datasets to cluster 133 seaport countries based on their seaport network efficiency 

into low connectivity (LC), medium connectivity (MC), high connectivity (HC) and very 

high connectivity (VHC) clusters in Chapter 7. Details on the clustering strategies are 

provided in the following subsections. 
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3.9.1 K-means Algorithm 

In this subsection, the step-by-step procedures to perform k-means clustering are 

briefed. An essential component of this approach is to determine the appropriate number 

of clusters. Elbow method is a widely used technique for determining the appropriate k 

value (Kassambara, 2017). The elbow approach is a heuristic method commonly used in 

cluster analysis to estimate the number of clusters present in a dataset. Plotting the 

explained variation as a function of the number of clusters, the procedure entails towards 

choosing the elbow of the curve as the appropriate number of clusters. 

 

There are four steps to conduct the k-means algorithm (Kassambara, 2017). 

Step 1: Determination of the k value: A number of clusters to be used in the study 

is selected randomly as the underlying initial cluster communities. 

Step 2: Finding the nearest centroid: The nearest centroid is based on the 

generalized distance between the observation and the centroid. The 

generalized distance between two points 𝑎(𝑥1, 𝑦1) and 𝑏(𝑥2, 𝑦2) is given as 

in Eq. (3.45): 

𝑑(𝑎, 𝑏) = √(𝑥1 − 𝑥2)2 + (𝑦2 − 𝑦2)2                                                              (3.45) 

Step 3: For each k-means cluster, a new mean value of all data considered is 

recalculated using Eq. (3.46) where Pi is the set of all observations allocated 

to the ith cluster: 

𝑐𝑖 =
1

|𝑃𝑖|
∑𝑥𝑖                                                                                                      (3.46) 

Step 4: Steps 2 and 3 are repeated until the total sum of squares is minimized and 

the centroids are no longer changed or the maximum iteration has been 

reached. 
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3.9.2 Hierarchical Algorithm 

The hierarchical algorithm is performed as the second clustering strategy in this thesis. 

This strategy measures the distance to generate new clusters. The procedures are branched 

into 5 steps (Kassambara, 2017). 

Step 1: The distances between each pair of points using a distance metric is 

determined. 

Step 2: Each data point is assigned to a cluster. 

Step 3: The grouping is constructed based on close similarity between one another. 

Step 4: The distance matrix is refreshed. 

Step 5: Step 3 and 4 are repeated until a single cluster is obtained. 

 

3.9.3 Hierarchical K-means Algorithm 

This subsection explains the procedure of hierarchical k-means clustering algorithm 

or hkmeans (Kassambara, 2017). 

Step 1: Hierarchical clustering is performed.  

Step 2: K-clusters are divided by cutting the tree. 

Step 3: The closest centroid is determined by averaging each cluster. 

Step 4: K-means algorithm is performed by using the initial cluster centers from the 

set of centroids calculated in Step 3. 

 

3.10 Summary 

The methods used to measure maritime economy distribution comprising market 

inequality and market concentration (Chapter 5), DEA and FDEA to measure seaport 

network efficiency (Chapter 6) and the strategies used for seaport network efficiency 

clustering in Chapter 7 have been outlined in this chapter. All these methods are useful to 

achieve the Objective 2 until Objective 5 of the thesis. On the other hand, the heuristics 
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approach employed to describe maritime transportation system based on the local case of 

Westport’s incoming, outgoing and coupling functions to achieve Objective 1 will be 

separately presented in Chapter 4.  
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CHAPTER 4: MARITIME TRANSPORTATION SYSTEM: A CASE STUDY OF 
WESTPORT MALAYSIA  

 

4.1 Introduction  

Maritime traffic control is fundamental to ensure safety of vessels and its’ loads as this 

promotes dynamic sea trades that attract seaports’ profitability, efficiency and 

sustainability anywhere around the world. In this study, the marine traffic flow passing 

through the Malaysia’s largest container port along the Strait of Malacca is examined. 

First of all, the sea route areas are profiled graphically while the Westport’s operational 

scheduling process is proposed. Moving ahead, the present study proposes a suitable 

macroscopic model by leveraging the classical Lighthill-Whitham macro transportation 

model initially meant for roads and rivers, to describe the present sea routes along the 

Strait of Malacca.  This mathematical model utilizes the single junction theory that 

emerges from multiple directions and disperses into many different pathways. To the best 

of our knowledge, this study is the first attempt of its kind that utilized such theoretical 

modelling to describe the real marine traffic flow along the Strait of Malacca using a focal 

seaport. The findings of the present study can help to understand and to reduce the traffic 

congestion along the Strait of Malacca. They can also be used in the strategic planning of 

the seaports’ future infrastructure investment and improvement as well as in the marine 

trade policies preparation and review. 

 

4.2 Westport’s Maritime Geographical Profile 

In attempt to understand and to overcome marine traffic congestion in South-East Asia, 

one of the intentions of the current study in Chapter 4 is to propose a marine container 

transshipment scheduling that may improve the traffic flow of the ships leading towards 

better management and control by the Westport. A tracking system used to check the 
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ship's position all over the world is utilized in this study. The marine traffic live maps that 

show traveling ships around the world and near Malaysia coastline are depicted in Figure 

4.1 and Figure 4.2 respectively.  

Figure 4.1 depicted the live maps that capture all ships around the world where these 

ships are traced frequently. Moreover, the map shows that there are eight types of ship on 

the sea denoted with different colors; they are cargo vessel (green), tankers (red), 

passenger vessels (blue), high-speed craft (yellow), tugs and special crafts (cyan), fishing 

ships (orange), pleasure crafts (pink) and unspecified ships (grey). The map shows the 

distribution of congested ships at the main port in each country. Cargo vessels and tankers 

are the most common ships that are spotted around the world. Figure 4.2 shows container 

ships around Malaysia. The figure clearly shows that a lot of ships travel along the Strait 

of Malacca where the Westport is located. This place is a strategic and safe position for 

the ships to berth since North Sumatra Island protects it from sea natural disasters. The 

figure demonstrates the congestion that happens along the Strait of Malacca as the number 

of ships is up and down at that time. 

 

 
 
Figure 4.1: Ships all around the world (Photo source from www.marinetraffic. 
com/en/ais/home/centerx:64.2/centery:-15.6/zoom:2). 
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Figure 4.2: Ships around Malaysia (Photo source from www.marinetraffic.com 
/en /ais/home/centerx:64.2/centery:-15.6/zoom:2). 

 

4.3 Vessel’s Travelling Distance from Westport 

 

Figure 4.3: Vessels from various countries in the surrounding sea area  
(Photo source from www.searoutes.com/routing?speed=13&panama=true&suez= 
true &kiel=true&rivers=block&roads=block). 

Malaysia 

Westport 
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Table 4.1: Vessel distance from the last port departure 

Code Seaports Area 

Distance to 
Port Klang                  
(nautical 
miles) 

Days 

of Sea 
Journey 

SGSIN Singapore 4 230 1 
GBFXT Felixstowe, UK 1 9020 37.6 

MYBTU Bintulu, 
Malaysia 3 882 3.7 

MYPGU Pasir Gudang, 
Malaysia 3 217 0.9 

MMRGN Yangon, 
Myanmar 2 1112 4.6 

INMAA Chennai, India 1 1661 6.9 

MMTLA Thilawa, 
Myanmar 2 1112 4.6 

ZAZBA Ngqura, South 
Africa 4 6180 25.8 

MYPEN Penang, 
Malaysia 1 139 0.6 

IDJKT Jakarta, 
Indonesia 4 755 3.1 

ZADUR Durban, South 
Africa 4 5797 24.2 

CNSHK Shekou, China 3 2042 8.5 
HKHKG Hong Kong 3 2025 8.4 
MYMYY Miri, Malaysia 3 987 4.1 

AUBNE Brisbane, 
Australia 4 4536 18.9 

OMSOH Sohar, Oman 1 3497 14.6 

LKCMB Colombo, Sri 
Lanka 1 1464 6.1 

THBKK Bangkok, 2 1106 4.6 Thailand 
OMSOH Sohar, Oman 1 3497 14.6 

PKKHI Karachi, 
Pakistan 1 2995 12.5 

INKAT Kattupalli, 
India 1 2392 7.7 

AEJEA Jebel Ali, UAE 1 3741 15.6 

VNSGN Ho Chi Minh, 
Vietnam 3 969 4 

MYTPP 
Tanjung 
Pelepas, 
Malaysia 

3 173 0.7 
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There are many seaports around Malaysia. These ports are denoted with red color spots 

on the map in Figure 4.2 where distribution of vessels from various countries that 

travelled in the surrounding sea area of Malaysia Westport was captured on Friday, 12 

April 2019 and the latest one on 20th October 2022. This date is selected as a random day 

to see the normal pattern and route of the ships that come to Port Klang. The map is 

extracted from Sea routes (2019) which calculates the distance from one port to another 

port and the day of arrival. Figure 4.3 and Table 4.1 present information on the distance 

of each port from Port Klang in nautical miles. There are four different sea areas 

influencing the traffic flow. Area 1 is the Africa region which covers the longest traveling 

distance whereas Area 2 is for the Asia region. Area 2 covers the mainland neighbours of 

Malaysia which have the nearest distances where the vessels can approach Malaysia 

Westport easily. Area 3 comprises Indonesia, Sabah and Sarawak which takes 

approximately 4 to 5 days of sea traveling journey. Area 4 is Australia region which has 

few vessels coming from Australia while most of the vessels are coming from Area 1 and 

Area 2. Another issue that has been raised is regarding Area 1 where the water condition 

is unpredicted since the Indian Ocean is unstable as compared to the South China Sea 

(Area 3). 

 

4.4 Westport’s Operational Process and Presently Proposed Scheduling 

Westport is the biggest seaport in Malaysia which involves in import and export of 

goods via cargo vessels. There are 65 quay cranes, 524 terminal tractors, 200 rubber-

tired gantry (RTGs) and 52455 ground slots (Port Klang, 2022). Only selected people 

who are trained to operate the machines are hired in the Westport and so are those by 

other seaports around the globe. The Westport operational process in Port Klang 

involves three sides; the seaside, yard side and land side. Figure 4.4 shows the 

operational process in the Westport for the three sides.  
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Figure 4.4: Operational process in Westport Malaysia 

 

4.4.1 Loading/Unloading of Containers to Ships 

Step 1: Arrival of the vessels at the port, followed by vessel confirmations are done 

at the seaside. Once confirmed, the vessels will berth in the port at a given 

terminal. 

Step 2: Vessels need to wait for quay crane to load/unload the containers from ships.  

Step 3: Quay crane will load/unload containers, one by one to the terminal tractors. 
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4.4.2 Temporary Storage of Containers 

Step 1: Terminal tractor with the uploaded container will proceed to the storage 

yard. 

Step 2: At the storage yard, Rubber-Tired Gantry (RTG) will pick up the container 

from the terminal tractor and store it at the storage yard. 

 

4.4.3 Delivery of Containers 

Step 1: Haulier needs to pick container out where Rubber-Tired Gantry (RTG) will 

pick the selected container and place it on the haulier. 

Step 2: Haulier proceeds to the terminal gate. At the terminal gate, custom 

verification will be done. 

Step 3: Once custom verification was done, the container can move out of the port. 

Then the container arrives at a consignee area. 

Step 4: Haulier will return to the depot after the container is dropped/emptied.  

 

4.5 Background of Each Stage  

Stage 1 (Seaside): Loading and unloading of containers to ships 

1) Water level is one of the main issues since it involves tidal range which will 

make the sea level unstable. Quay crane has to wait until the water level is 

suitable to load and unload the containers to ships. 

2) Raining weather blocks the clear cloud vision of quay crane’s driver to load and 

unload the things that will later delay the process. 

3) Less manpower to drive the quay crane because only a few people have the 

authority to drive and less space for crane operators. 
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Stage 2 (Yard Side): Temporary storage of containers. 

1) RTG can only transfer containers of one vessel at a time from the terminal tractor 

to be placed at the storage yard. 

2) Storage yard has limited space and if there is any delay, the consignee will be 

charged with storage charges after a day in the yard. 

Stage 3 (Land Side): Arrival of haulier at port and delivery of containers at the consignee 

port. Failure of the network at port Klang delays custom verification at the terminal gate. 

 

4.6 Macroscopic Modeling for Traffic Flow  

Westport operates the transshipment business (cargo vessels, passenger vessels, 

tankers, high-speed craft, tugs, special crafts, fishing ships, pleasure crafts, and 

unspecified ships) from countries to other countries which at times leads to traffic 

congestion at the port. Traffic models should be discussed to get a better understanding 

of this traffic problem. Herty et al. (2007), derived a model with a three-point spatial 

discretization and ordinary coupling approach. It leads to an optimal control problem for 

the ordinary differential equation (ODE) model. This study also investigates the 

generalized linear stability for the second-order macroscopic model with delay where it 

is claimed that the speed function in the second-order determines the delay in the traffic.  

A coupled macroscopic model for the traffic flow with bounded acceleration has been 

discussed by Laurent-Brouty et al. (2018). This analysis referred by Delle Monache 

and Goatin (2014), shows that the bottleneck problem exists when the vehicles move 

slower in the traffic. In the present marine traffic flow, we assume the acceleration is 

constant and overtaking is not possible. The coupled PDE-ODE system is used to describe 

the slow and large vehicles in traffic. Slow and large traffics can be studied based on 

Westport marine traffic flow since it is the busiest port dealing with vessels container 

along the Strait of Malacca. 
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4.6.1 PDE Model for Present Marine Traffic Flow 

The present model is proposed to describe the marine traffic flow comprises ships, 

rows, rafts and other marine vessels. Five basic elements of marine traffic flow that should 

be considered are location, direction, width, density and velocity of the vessels. To 

understand the marine traffic better, several terms such as route department, length, time 

and speed of the vessels should also be considered (Liu et al., 2017). Some assumptions 

on the flux function for the present study are 𝜗𝑙 as the average velocity, 𝜌𝑙 as the density 

and the flux-function  

𝑓𝑙 = 𝜌𝑙𝜗𝑙,                                                                                                            (4.1) 

on the route  𝑙 = 1,… , 𝐿. 𝑓𝑙 must be a continuous function on [0, 𝜌𝑚𝑎𝑥,𝑙] such that 

𝑓𝑙(0) = 𝑓𝑙(𝜌𝑚𝑎𝑥,𝑙) = 0,                                                                                      (4.2) 

where  𝜌𝑚𝑎𝑥,𝑙 is the maximum density. Moreover, the flux function 𝑓𝑙 must be strictly 

concave with a unique maximum condition of 𝜎𝑙 ∈ (0, 𝜌𝑚𝑎𝑥,𝑙) such that  

𝑓𝑙
′(𝜎𝑙) = 0.                                                                                                         (4.3) 

The present model on the route ‘l’ is adapted from the macroscopic Lighthill-Whitham 

model for nonlinear traffic flow with the conservation law equation on density. 

Developed to describe “traffic flow over prolonged busy roads” and “flood movements 

in long rivers”, this macroscopic modelling can be written as (Lighthill & Whitham, 

1955): 

𝜕𝜌𝑙(𝑥,𝑡)

𝜕𝑡
+
𝜕𝑓𝑙(𝜌𝑙(𝑥,𝑡))

𝜕𝑥
= 0   where  𝑥 ∈ [𝑤𝑙, 𝑧𝑙], 𝑡 ∈ [0, 𝑇].                                 (4.4) 

Here 𝑥 is the pathway between the point of incoming traffic, 𝑤𝑙 and the point of outgoing 

traffic, 𝑧𝑙 while 𝑇 is the maximum duration of time, 𝑡 taken in the traffic. In solving the 

equation, the initial value of density is assumed as 

  𝜌𝑙(𝑥, 0) = 𝜌𝑙,0(𝑥), ∀ 𝑥 ∈ [𝑤𝑙, 𝑧𝑙].                                                                    (4.5) 
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The condition to assure the conservation law of number of vessels (Herty et al., 2007) is 

given as: 

∑ 𝑓𝑙
𝑟
𝑙=1 (𝜌𝑙(𝑤𝑙, 𝑡)) = ∑ 𝑓𝑙

𝑟+𝑠
𝑙=𝑟+1 (𝜌𝑙(𝑧𝑙, 𝑡)),         ∀𝑡 ≥ 0.                                     (4.6) 

This condition however is not enough to meet the requirement for a unique solution of 

the traffic flow. According to Ge et al. (2015), hyper traffic congestion defines the state 

where speed and flow are in similar direction as density differs. The traffic congestion 

states are classified as: 

𝜕𝜌𝑙

𝜕𝑡
> 0 , uncongested state promulgate downstream,

𝜕𝜌𝑙

𝜕𝑡
< 0, congested state promulgate upstream.

}                             (4.7) 

In the present work, single junction theory with 𝑟 and 𝑠 distances is considered where 

𝑤𝑙 and 𝑧𝑙 are both incoming and outgoing points of the marine traffic respectively.  Figure 

4.5 depicts the start of an inflow marine traffic 𝑤𝑙 until it reaches Westport (𝜆) and ends 

at 𝑧𝑙 along the Strait of Malacca. r denotes the distance between the northwest (NW) point 

of Strait of Malacca and Westport while s is the distance between Westport (denoted by 

𝜆) and the southeast (SE) point of Strait of Malacca with 𝑟 + 𝑠 represents the total 

distance along the Strait of Malacca. 

 

 

Figure 4.5: The incoming and outgoing points of the marine traffic flow. 

 
The solution 𝜌𝑙(𝑥, 𝑡) for Eq. (4.4) and Eq. (4.5) is the solution for a Riemann problem 

on each pathway  𝑙 = 1, … , 𝐿 in the traffic flow. From Figure 4.5, the Riemann problem 

starts with the incoming pathway 𝑤𝑙 and ends with the outgoing pathway 𝑧𝑙. For the 

incoming 𝑤𝑙 the initial conditions are: 
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𝜌𝑙(𝑥, 0) = {
𝜌𝑙,0,          𝑥 ≤ 𝑤𝑙,

𝜌𝑙
−𝑤𝑙 ,        𝑥 > 𝑤𝑙.

                                                                               (4.8)                   

Oppositely, the initial conditions for the outgoing 𝑧𝑙 are: 

𝜌𝑙(𝑥, 0) = {
𝜌𝑙,0,        𝑥 ≥ 𝑧𝑙,

𝜌𝑙
𝑧𝑙 ,         𝑥 < 𝑧𝑙 .

                                                                               (4.9) 

The theorem (Herty et al., 2007) that upholds the emerging junction has certain 

restrictions on the density value, 𝜌𝑙
−𝑤𝑙, 𝑧𝑙 where both 𝜌𝑙

−𝑤𝑙 and 𝜌𝑙
𝑧𝑙 are independent of time. 

Negative sign in the superscript implies the vessels’ declining speed as they approached 

the point with  

𝜌𝑙(𝑥, 0) = 𝜌𝑙
−𝑤𝑙,𝑧𝑙,                                                                                          (4.10) 

where 𝜌𝑙
−𝑤𝑙 is known as the incoming junction from northwest (NW) direction to 

Westport and 𝜌𝑙
𝑧𝑙  is known as the outgoing junction from Westport towards southeast 

(SE) direction. 

The Riemann theorem covers junctions with a total of two connected routes and traffic 

models as a combined system of partial differential equations with explicit margin values 

(Coclite et al., 2005). The theorem further touches on dispersing and merging junctions 

since there are possibilities of having two different concepts; one pathway disperses into 

many pathways or many pathways merge into one pathway. Looking at Westport (𝜆) as 

the focal point, the marine traffic flow through Strait of Malacca is from a lot of places 

but the main incoming routes that the ships usually use are only four routes. The map in 

Figure 4.2, shows the four main routes that the ships use to get into the Strait of Malacca 

from the NW areas where along the way, the ships will reach Westport (Case A) and from 

the Westport the ships will use only one route (single route) until they reach the end of 

Strait of Malacca and disperse to other places in the SE direction (Case B). 
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4.6.2 Understanding Marine Traffic Flow along the Strait of Malacca 

The coupling conditions are explained in this section using two scenarios; incoming 

and outgoing traffic flows with dispersing and merging conditions. The present work 

explains how ships are moving along the Strait of Malacca based on two different cases; 

from NW to SE (Case A) and from SE to NW (Case B) 

 

4.6.2.1 Case A 

The four incoming ways from NW are 𝑤𝑨1, 𝑤𝑨2, 𝑤𝐴3 and 𝑤𝐴4 that merged into λ 

pathway (Westport) where the ships normally stop or pass by, hence builds up the highest 

traffic flow (the slowest vessels’ speed) along the Strait of Malacca. These incoming ships 

are from Africa, Sri Lanka, Bangladesh and Myanmar. This heavy traffic flow from λ 

continues until the ships travel towards the end of the strait and divert into three outgoing 

routes 𝑧𝐴1, 𝑧𝐴2 and  𝑧𝐴3 in the SE direction. The traffic flow for this case in visualized in 

Figure 4.6. 

 

 
Figure 4.6: Marine traffic flow along the Strait of Malacca from NW to SE. 
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4.6.2.2 Case B 

The incoming routes 𝑤𝐵1, 𝑤𝐵2 and 𝑤𝐵3 are referred to the incoming ships from 

Cambodia, Japan/Korea, Sabah/Sarawak and Australia that merge from SE into the single 

junction where the traffic build-up is the highest at  𝜆 along the Strait of Malacca. The 

traffic flow continues until the ships divert into the outgoing ways of 𝑧𝐵1, 𝑧𝐵2, 𝑧𝐵3 and 

𝑧𝐵4  in the NW direction as shown in Figure 4.7. 

 
Figure 4.7: Marine traffic flow along the Strait of Malacca from SE to NW. 

 

4.6.3 Dispersing Functions  

Since the traffic problem is assumed at the Westport with the maximum density, we 

will discuss the traffic flow from Westport to the SE, represented by Case A, and traffic 

flow from Westport to the NW, denoted by Case B by considering the Strait of Malacca 

as a single marine route. 

 

4.6.3.1 From Westport to SE direction (Case A)  

The traffic flow dispersing function starts from 𝜆 (Westport) towards the outgoing 

routes of 𝑧𝐴1, 𝑧𝐴2 and 𝑧𝐴3. The flux function 𝑓𝑙 with a single maximum of total 

variation 𝜎 𝜆 (Coclite et al., 2005) is assumed to represent the dispersion function which 

is strictly concave at 𝜆. Let 𝜌𝑧𝐴𝑙,0 be a constant density of the marine traffic while 𝑐𝜆 and  
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𝑐𝑧𝐴𝑙 be the constants of the incoming and outgoing routes as shown in Eq. (4.11) and Eq. 

(4.12) respectively. 

𝑐𝜆 = {
𝑓𝜆 (𝜌𝜆,0

(𝑧𝐴)),       𝜌𝜆,0
(𝑧𝐴) < 𝜎𝜆,

𝑓𝜆(𝜎𝜆),              𝜌𝜆,0
(𝑧𝐴) = 𝜎𝜆.

                                                                  (4.11)       

𝑐𝑧𝐴𝑙 = {
𝑓𝑧𝐴𝑙  (𝜌𝑧𝐴𝑙,0

(𝜆) ),   𝜌𝑧𝐴𝑙,0
(𝜆) > 𝜎𝑧𝐴𝑙 ,

𝑓𝑧𝐴𝑙(𝜎𝑧𝐴𝑙),     𝜌𝑧𝐴𝑙,0
(𝜆) ≤ 𝜎𝑧𝐴𝑙 .

                   𝑙 = 1, 2, 3.                          (4.12)                                 

Let 𝑓𝜆
−1,+(𝛾) and 𝑓𝜆

−1,−(𝛾) represent the inverse functions of 𝑓𝜆 where 𝛾 represents the 

minimum evolution of the traffic densities at Westport. The 𝛼𝑙 values defined by the range 

0 ≤ 𝛼𝑙 ≤ 1, 𝑙 = 1, 2 are constant coefficients of the outgoing traffic flows in Case A. 

Hence, the single maritime route (Strait of Malacca) that passes through the greatest 

traffic at the Westport towards the SE direction represented in Case A has the close 

solution for 𝜌𝜆,0
(𝑧𝐴) as follows: 

𝜌𝜆
−𝑧𝐴 = {

𝜌𝜆,0
(𝑧𝐴),                                  𝜌𝜆,0

(𝑧𝐴) < 𝜎𝜆, 𝛾 = 𝑐𝜆,

𝑓𝜆
−1,+(𝛾),                           𝑒𝑙𝑠𝑒,                          

                                 (4.13) 

  

𝜌𝑧𝐴1
−𝜆 = {

𝜌𝑧𝐴1,0
(𝜆) ,                              𝜌𝑧𝐴1,0

(𝜆) > 𝜎𝑧𝐴𝑙 , 𝛾 =
𝑐𝑧𝐴1
𝛼1
,

𝑓𝑧𝐴1
−1,−(𝛼1𝛾) ,                      𝑒𝑙𝑠𝑒,                                 

                           (4.14) 

𝜌𝑧𝐴2
−𝜆 = {

𝜌𝑧𝐴2,0
(𝜆) ,                                𝜌𝑧𝐴2,0

(𝜆) > 𝜎𝑧𝐴2 , 𝛾 =
𝑐𝑧𝐴2
𝛼2
,

𝑓𝑧𝐴2
−1,−(𝛼2𝛾),                       𝑒𝑙𝑠𝑒.                                   

                          (4.15) 

𝜌𝑧𝐴3
−𝜆 = {

𝜌𝑧𝐴3,0
(𝜆) ,                                  𝜌𝑧𝐴3,0

(𝜆) > 𝜎𝑧𝐴3 , 𝛾 =
𝑐𝑧𝐴3

(1−𝛼1− 𝛼2)
,

𝑓𝑧𝐴3
−1,−((1 − 𝛼1 − 𝛼2)𝛾),  𝑒𝑙𝑠𝑒.                                             

                (4.16) 

𝛾 = min {𝑐𝜆,
𝑐𝑧𝐴1
𝛼1
,
𝑐𝑧𝐴2
𝛼2
,

𝑐𝑧𝐴3

(1−𝛼1−𝛼2)
}.                                                                   (4.17) 

Eq. (4.15) to Eq. (4.17) are the new contributions of this research. 
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4.6.3.2 From Westport to NW direction (Case B)  

In this case, the traffic flow from 𝜆 disperses to route 𝑧𝐵1, 𝑧𝐵2, 𝑧𝐵3, 𝑧𝐵4. If the 

dispersing function is strictly concave at 𝜆, flux function 𝑓𝑙 is assumed to have a single 

maximum, 𝜎 𝜆. Let 𝜌 𝜆,0 be a constant density and let 𝑐 𝜆 be the incoming constant denoted 

by: 

𝑐 𝜆 = {
𝑓 𝜆 (𝜌 𝜆,0

(𝑧𝐵)),     𝜌 𝜆,0
(𝑧𝐵) < 𝜎 𝜆,

𝑓 𝜆(𝜎 𝜆),           𝜌 𝜆,0
(𝑧𝐵) = 𝜎 𝜆.

                                                                 (4.18) 

The dispersing constant 𝑐𝑧𝐵𝑙 can be denoted by:  

𝑐𝑧𝐵𝑙 = {
𝑓𝑧𝐵𝑙  (𝜌𝑧𝐵𝑙,0

(𝜆) ),      𝜌𝑧𝐵𝑙,0
(𝜆) > 𝜎𝑧𝐵𝑙 ,

𝑓𝑧𝐵𝑙(𝜎𝑧𝐵𝑙),            𝜌𝑧𝐵𝑙,0
(𝜆) ≤ 𝜎𝑧𝐵𝑙 .

              𝑙 = 1,2,3,4.                        (4.19) 

The Strait of Malacca's single marine route, which passes through Westport towards the 

NW direction has the close solution shown as:  

𝜌𝜆
−𝑧𝐵 = {

𝜌𝜆,0
(𝑧𝐵),                    𝜌𝜆,0

(𝑧𝐵) < 𝜎𝜆, 𝛾 = 𝑐𝜆,

𝑓𝜆
−1,+(𝛾),              𝑒𝑙𝑠𝑒,                         

                                              (4.20) 

 

𝜌𝑧𝐵1
−𝜆 = {

𝜌𝑧𝐵1,0
(𝜆) ,                    𝜌𝑧𝐵1,0

(𝜆) > 𝜎𝑧𝐵𝑙 , 𝛾 =
𝑐𝑧𝐵1

𝛽1
,    

𝑓𝑧𝐵1
−1,−(𝛽1𝛾 ),     𝑒𝑙𝑠𝑒,                                 

                                    (4.21) 

𝜌𝑧𝐵2
−𝜆 = {

𝜌𝑧𝐵2,0
(𝜆)

,                    𝜌𝑧𝐵2,0
(𝜆)

> 𝜎𝑧𝐵2 , 𝛾 =
𝑐𝑧𝐵2

𝛽2
,

𝑓𝑧𝐵2
−1,−(𝛽2𝛾),          𝑒𝑙𝑠𝑒.                                  

                                       (4.22) 

𝜌𝑧𝐵3
−𝜆 = {

𝜌𝑧𝐵3,0
(𝜆) ,                  𝜌𝑧𝐵3,0

(𝜆) > 𝜎𝑧𝐵3 , 𝛾 =
𝑐𝑧𝐵3

𝛽3
,

𝑓𝑧𝐵3
−1,−(𝛽3𝛾),          𝑒𝑙𝑠𝑒.                                   

                                     (4.23) 

𝜌𝑧𝐵4
−𝜆 = {

𝜌𝑧𝐵4,0
(𝜆) ,                                       𝜌𝑧𝐵4,0

(𝜆) > 𝜎𝑧𝐵4 , 𝛾 =
𝑐𝑧𝐵4

(1−𝛽1− 𝛽2− 𝛽3)
,

𝑓𝑧𝐵4
−1,−((1 − 𝛽1 − 𝛽2 − 𝛽3)𝛾),  𝑒𝑙𝑠𝑒.                                                 

  (4.24) 

𝛾 = min {𝑐𝜆,
𝑐𝑧𝐵1

𝛽1
,
𝑐𝑧𝐵2

𝛽2
,
𝑐𝑧𝐵3

𝛽3
,

𝑐𝑧𝐵4

1−𝛽1−𝛽2−𝛽3
}.                              (4.25) 

The 𝛽𝑙 values defined by the range 0 ≤ 𝛽𝑙 ≤ 1, 𝑙 = 1, 2, 3  are constant coefficients of 

the outgoing traffic flows in Case B . Eq. (4.22) to Eq. (4.25) are the new contributions 

of this study.  
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4.6.4 Merging Functions 

This study also explores the merging function, which refers to the union of many routes 

into a single one along the Strait of Malacca. For Case A, the merging function occurs at 

the NW direction (incoming route) while for Case B, the merging junction occurs at the 

SE direction (incoming route). 

 

4.6.4.1 From NW direction to Westport (Case A)  

Let the incoming routes denoted by 𝑤𝐴1, 𝑤𝐴2, 𝑤𝐴3 and 𝑤𝐴4 be merged into one way 

along the Strait of Malacca and reached 𝜆 (Westport). This problem is represented by the 

following traffic flow constant functions: 

𝑐𝑤𝐴𝑙 = {
𝑓𝑤𝐴𝑙  (𝜌𝑤𝐴𝑙,0

(𝜆) ),    𝜌𝑤𝐴𝑙,0
(𝜆) > 𝜎𝑤𝐴𝑙 ,

𝑓𝑤𝐴𝑙(𝜎𝐴𝑙),           𝜌𝑤𝐴𝑙,0
(𝜆)

< 𝜎𝑤𝐴𝑙 .
           𝑙 = 1,2,3,4.                         (4.26) 

𝑐𝜆 = {
𝑓𝜆  (𝜌𝜆,0

(𝑤𝐴)),    𝜌𝜆,0
(𝑤𝐴) < 𝜎𝜆,

𝑓𝜆(𝜎𝜆),           𝜌𝜆,0
(𝑤𝐴) > 𝜎𝜆.

                                                                   (4.27)          

These results can be summarized (Herty, 2007) such that, if   

𝑐𝑤𝐴1 + 𝑐𝑤𝐴2 + 𝑐𝑤𝐴3 + 𝑐𝑤𝐴4 ≤ 𝑐𝜆 , then 

𝛾𝑤𝐴1 = 𝑐𝑤𝐴1, 𝛾𝑤𝐴2 = 𝑐𝑤𝐴2,  𝛾𝑤𝐴3 = 𝑐𝑤𝐴3 , 𝛾𝑤𝐴4 = 𝑐𝑤𝐴4 , 

 𝛾𝜆 = 𝛾𝑤𝐴1 + 𝛾𝑤𝐴2 + 𝛾𝑤𝐴3 + 𝛾𝑤𝐴4 ,                                                                    (4.28) 

else if 

𝑐𝑤𝐴1 + 𝑐𝑤𝐴2 + 𝑐𝑤𝐴3 + 𝑐𝑤𝐴4 > 𝑐𝜆, then 

𝛾𝑤𝐴1 = 𝛾𝑤𝐴2 = 𝛾𝑤𝐴3 = 𝛾𝑤𝐴4 = 𝑚𝑖𝑛{𝑐𝑤𝐴1 , 𝑐𝑤𝐴2 , 𝑐𝑤𝐴3 , 𝑐𝑤𝐴4 , 𝑐𝜆/4}, 

𝛾𝜆 = 𝛾𝑤𝐴1 + 𝛾𝑤𝐴2 + 𝛾𝑤𝐴3 + 𝛾𝑤𝐴4.                                                                    (4.29) 
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4.6.4.2 From SE direction to Westport (Case B)  

In this case, the incoming routes are represented by 𝑤𝐵1, 𝑤𝐵2 and 𝑤𝐵3 that joined into 

one way along the Strait of Malacca and passed through Westport at 𝜆. The function is 

given as:  

𝑐𝑤𝐵𝑙 = {
𝑓𝑤𝐵𝑙  (𝜌𝑤𝐵𝑙,0

(𝜆) ),                   𝜌𝑤𝐵𝑙,0
(𝜆) > 𝜎𝑤𝐵𝑙 ,

𝑓𝑤𝐵𝑙(𝜎𝑤𝐵𝑙),                       𝜌𝑤𝐵𝑙,0
(𝜆) ≤ 𝜎𝑤𝐵𝑙 .

           𝑙 = 1,2,3                     (4.30) 

Moreover, the constant traffic function, 𝑐𝜆 is written as:  

𝑐𝜆 = {
𝑓𝜆  (𝜌𝜆,0

(𝑤𝐵)),    𝜌𝜆,0
(𝑤𝐵) < 𝜎𝜆,

𝑓𝜆(𝜎𝜆),           𝜌𝜆,0
(𝑤𝐵) > 𝜎𝜆.

                                                                  (4.31)                  

The results can further be combined and distinguished (Herty, 2007) such that, if  

𝑐𝑤𝐵1 + 𝑐𝑤𝐵2 + 𝑐𝑤𝐵3 ≤ 𝑐𝜆, then 

𝛾𝑤𝐵1 = 𝑐𝑤𝐵1, 𝛾𝑤𝐵2 = 𝑐𝑤𝐵2,  𝛾𝑤𝐵3 = 𝑐𝑤𝐵3 and 𝛾𝜆 = 𝛾𝑤𝐵1 + 𝛾𝑤𝐵2 + 𝛾𝑤𝐵3 ,       (4.32) 

else if 

𝑐𝑤𝐵1 + 𝑐𝑤𝐵2 + 𝑐𝑤𝐵3 > 𝑐𝜆 , then 

𝛾𝑤𝐵1 = 𝛾𝑤𝐵2 = 𝛾𝑤𝐵3 = 𝑚𝑖𝑛 {𝑐𝑤𝐵1 , 𝑐𝑤𝐵2 , 𝑐𝑤𝐵3 ,
𝑐𝜆

3
}, 𝛾𝑤𝜆 = 𝛾𝑤𝐵1 + 𝛾𝑤𝐵2 + 𝛾𝑤𝐵3 . 

   (4.33) 

The first-in-and-the-first-out rule applies to the traffic flow at the Westport. Since 

Westport operates scheduling for cargo loading and unloading between the vessels and 

the Westport, the earlier arriving vessels must depart the seaport first before the next 

vessels can load or unload its’ cargo. If this routine cannot be met or delayed, the 

congestion at the Westport will exaggerate and causes a heavy traffic. 
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4.7 The Final PDE System    

The final partial differential equation (PDE) system can be obtained from the 

combination of the merging and dispersion functions outlined in Section 4.6.3 and Section 

4.6.4. There are some new notations introduced referring to Case A and Case B. To further 

explain the model, let's concentrate on Case A. The junctions of 𝑤𝐴1, 𝑤𝐴2, 𝑤𝐴3 and 

𝑤𝐴4 are merging into the single junction 𝑤𝜆. Later, this junction will disperse to several 

routes of 𝑧𝐴1,  𝑧𝐴2,  𝑧𝐴3. 𝐹𝑤𝜆 and 𝐹𝑧𝜆 are introduced to denote the density functions of 

𝜌𝑤𝐴1 , 𝜌𝑤𝐴2 , 𝜌𝑤𝐴3, 𝜌𝑤𝐴4  and 𝜌𝑧𝐴1 , 𝜌𝑧𝐴2 , 𝜌𝑧𝐴3  respectively, such that, 

Merging:          𝜌𝜆
−𝑤 ≔ 𝐹𝑤

𝜆(𝜌𝑤𝐴1 , 𝜌𝑤𝐴2 , 𝜌𝑤𝐴3 , 𝜌𝑤𝐴4 , 𝜌𝜆),                                 (4.34) 

Dispersing:       𝜌𝜆−𝑧 ≔ 𝐹𝑧
𝜆(𝜌𝑧𝐴1 , 𝜌𝑧𝐴2 , 𝜌𝑧𝐴3 , 𝜌𝜆).                                              (4.35) 

 

This implementation will be carried out in the same manner for Case B. The PDE 

model applied to the present flow of marine traffic is summarized into three concepts: 

constant, merging and dispersing functions that connect both the incoming and outgoing 

junctions (Herty et al., 2007). The final PDE systems subject to the initial and boundary 

conditions for Case A and Case B respectively, are written explicitly as follows: 

 

Case A: 
𝜕𝜌𝑙(𝑥,𝑡)

𝜕𝑡
+
𝜕𝑓𝑙(𝜌𝑙(𝑥,𝑡))

𝜕𝑥
= 0,    𝑥 ∈ [𝑤𝑙, 𝑧𝑙], 𝑡 > 0,

subject to

𝜌𝜆(𝑥, 0) = 𝜌𝜆,0(𝑥),     ∀𝑥 ∈ [𝑤𝑙, 𝑧𝑙],

𝜌𝜆(𝑧, 𝑡) = 𝐹𝑤𝑙
𝜆 (𝜌𝜆(𝑧, 𝑡 −), 𝜌𝑤𝐴1(𝑤, 𝑡 −), 𝜌𝑤𝐴2(𝑤, 𝑡 −), 𝜌𝑤𝐴3(𝑤, 𝑡 −), 𝜌𝑤𝐴4(𝑤, 𝑡 −)) ,

𝜌𝜆(𝑤, 𝑡) = 𝐹𝑧𝑙
𝜆(𝜌𝜆(𝑤, 𝑡 −), 𝜌𝑧𝐴1(𝑧, 𝑡 −), 𝜌𝑧𝐴2(𝑧, 𝑡 −), 𝜌𝑧𝐴3(𝑧, 𝑡 −), 𝛼1, 𝛼2), }

  
 

  
 

                

(4.36) 
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Case B: 
𝜕𝜌𝑙(𝑥,𝑡)

𝜕𝑡
+
𝜕𝑓𝑙(𝜌𝑙(𝑥,𝑡))

𝜕𝑥
= 0    𝑥 ∈ [𝑤𝑙, 𝑧𝑙], 𝑡 ∈ [0, 𝑇],      

subject to

𝜌𝜆(𝑥, 0) = 𝜌𝜆,0(𝑥),         ∀𝑥 ∈ [𝑤𝑙 , 𝑧𝑙],    

𝜌𝜆(𝑧, 𝑡) = 𝐹𝑤𝑙
𝜆 (𝜌𝜆(𝑧, 𝑡 −), 𝜌𝑤𝐵1(𝑤, 𝑡 −), 𝜌𝑤𝐵2(𝑤, 𝑡 −), 𝜌𝑤𝐵3(𝑤, 𝑡 −)) ,

𝜌𝜆(𝑤, 𝑡) = 𝐹𝑧𝑙
𝜆 (
𝜌𝑤𝜆(𝑤, 𝑡 −), 𝜌𝑧𝐵1(𝑧, 𝑡 −), 𝜌𝑧𝐵2(𝑧, 𝑡 −), 𝜌𝑧𝐵3(𝑧, 𝑡 −), 𝜌𝑧𝐵4(𝑧, 𝑡 −),

𝛽1, 𝛽2, 𝛽3
) ,
}
 
 
 

 
 
 

                     

(4.37) 

The traffic bottleneck at the route intersection is demonstrated by the coupling 

conditions. These models fulfill the incoming traffic flows from NW towards SE in Case 

A and the incoming traffic flows from SE towards NW in Case B, with both passing 

through the Westport and caused congestion along the Strait of Malacca. Note that, in Eq. 

(4.36) and (4.37), the second condition (merging) comes from the density function in Eq. 

(4.34) while the third condition (dispersing) comes from the density function in Eq. 

(4.35). 

 

4.8 ODE Model for Present Marine Traffic Flow 

In order to determine the conditions of waves, currents, sediment transports and tides, 

a spatial discretization method based on finite difference equations is used (McLachlan, 

2003). The macroscopic model can be developed based on the simplified PDE system in 

Section 4.7 by using the spatial discretization (Herty, 2007) on Eq. (4.4). The model is 

elaborated based on the average density evolution of the traffic flow with notations of 

𝑤, 𝑧 and 𝜃 = 𝑧 − 𝑤. The integration domain [𝑤, 𝑧] can be separated into [𝑤, 𝜆] and [𝜆, 𝑧] 

where 𝑤 < 𝜆 < 𝑧 and 𝜆 = (𝑤+𝑧)

2
 such that a simple finite spatial discretization can be 

performed to obtain: 
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𝜌𝜆
𝑤(𝑡) =

2

𝜃
∫ 𝜌𝜆(𝑥, 𝑡) 𝑑𝑥
𝜆

𝑤
,

𝜕𝑡𝜌𝜆
𝑤(𝑡) =

2

𝜃
[𝑓[𝜌𝜆(𝜆, 𝑡)] − 𝑓[𝜌𝜆(𝑤, 𝑡)]].

}                                                      (4.38) 

𝜌𝜆
𝑧(𝑡) =

2

𝜃
∫ 𝜌𝜆(𝑥, 𝑡) 𝑑𝑥
𝑧

𝜆
,

𝜕𝑡𝜌𝜆
𝑧(𝑡) =

2

𝜃
[𝑓[𝜌𝜆(𝑧, 𝑡)] − 𝑓[𝜌𝜆(𝜆, 𝑡)]].

}                                                        (4.39) 

Eq. (4.40) can be derived by taking half of sum from Eq. (4.38) and Eq. (4.39): 

𝜌𝜆(𝜆, 𝑡) =
1

2
[𝜌𝜆
𝑤(𝑡) + 𝜌𝜆

𝑧(𝑡)],

𝜌𝜆(𝜆, 𝑡) =
1

𝜃
[𝑓[𝜌𝜆(𝑧, 𝑡)] − 𝑓[𝜌𝜆(𝑤, 𝑡)]],

}                                                       (4.40) 

whereby the summation can be done to find a reasonable approximation subject to initial 

conditions obtained by taking the mean of the following functions: 

 
 𝜌𝜆
𝑤(𝑡) =

2

𝜃
∫ 𝜌𝜆,0(𝑥) 𝑑𝑥,
𝜆

𝑤

𝜌𝜆
𝑧(𝑡) =

2

𝜃
∫ 𝜌𝜆,0(𝑥) 𝑑𝑥
𝑧

𝜆
.
}                                                                                               (4.41) 

The merging and dispersion functions have been combined to form the coupling 

function of 𝜌𝜆
−𝑤(𝑡) and 𝜌𝜆−𝑧(𝑡) as shown in Eq. (4.40) and Eq. (4.41) based on Case A.  

Merging: 𝜌𝜆
−𝑤(𝑡) = 𝐹𝑤

𝜆 (𝜌𝑤𝜆
(𝑤)(𝑡),   𝜌𝑤𝐴1

(
𝑤

𝑧
)
(𝑡), 𝜌𝑤𝐴2

(
𝑤

𝑧
)
(𝑡), 𝜌𝑤𝐴3

(
𝑤

𝑧
)
(𝑡), 𝜌 𝑤𝐴4

(
𝑤

𝑧
)
(𝑡)),     (4.42) 

Dispersing: 𝜌𝜆−𝑧(𝑡) = 𝐹𝑧
𝜆 (𝜌𝜆

(𝑧)(𝑡),  𝜌𝑧𝐴1
(
𝑤

𝑧
)
(𝑡),  𝜌𝑧𝐴2

(
𝑤

𝑧
)
(𝑡), 𝜌𝑧𝐴3

(
𝑤

𝑧
)
(𝑡), 𝛼1, 𝛼2),         (4.43) 

Here, the 𝜆 route joins both incoming junction w and outgoing junction z. In addition, Eq. 

(4.38) to Eq. (4.41) are the coupled ODE system. These equations are discretized with 

fixed step-width, 𝜏 to find the closed solution of the macroscopic model as shown in Eq. 

(4.44) and Eq. (4.47): 

Merging:   𝜌𝜆
𝑤(𝑡 + 𝜏) = 𝜌𝜆

𝑤(𝑡) −
2𝜏

𝜃
(𝑓 (

𝜌𝜆
𝑤(𝑡)+𝜌𝜆

𝑧(𝑡)

2
) − 𝑓(𝜌𝜆

−𝑤(𝑡))),          (4.44) 

Dispersing:   𝜌𝜆𝑧(𝑡 + 𝜏) = 𝜌𝜆𝑧(𝑡) +
2𝜏

𝜃
(𝑓 (

𝜌𝜆
𝑤(𝑡)+𝜌𝜆

𝑧(𝑡)

2
) − 𝑓(𝜌𝜆

−𝑧(𝑡))),         (4.45) 

subject to the coupling conditions: 
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Merging:  𝜌𝜆
−𝑤(𝑡) = 𝐹𝑤

𝜆 (𝜌𝜆
(𝑤)(𝑡),   𝜌𝑤𝐴1

(
𝑤

𝑧
)
(𝑡), 𝜌𝑤𝐴2

(
𝑤

𝑧
)
(𝑡), 𝜌𝑤𝐴3

(
𝑤

𝑧
)
(𝑡), 𝜌𝑤𝐴4

(
𝑤

𝑧
)
(𝑡)),    (4.46) 

Dispersing:    𝜌𝜆−𝑧(𝑡) = 𝐹𝑧
𝜆 (𝜌𝜆

(𝑧)(𝑡),  𝜌𝑧𝐴1
(
𝑤

𝑧
)
(𝑡),  𝜌𝑧𝐴2

(
𝑤

𝑧
)
(𝑡), 𝜌𝑧𝐴3

(
𝑤

𝑧
)
(𝑡), 𝛼1, 𝛼2).      (4.47) 

The explicit Euler scheme of Eq. (4.44) and Eq. (4.45) do not relatively generate similar 

outcomes to a Godunov discretization of Eq. (4.4) since the scheme is oscillating (Herty 

et al., 2007). This proposes Lax-Friedrichs discretization and finalizes the ODE model 

for the route 𝜆 connected to the interchange junctions (Friedrich et al., 2022). Lax-

Friedrichs scheme is another fundamental first-order scheme that comes before all central 

schemes. It is based on approximation of the piecewise constant (Chintaganon & 

Yomsatieankul, 2020). Next, functions from the PDE model's 𝐹𝑤,𝑧𝜆 (. ) in Eq. (4.46) and 

Eq. (4.47) are used in the following ODE model: 

Merging: 𝜌𝜆
𝑤(𝑡 + 𝜏) = (

𝜌𝜆
−𝑤(𝑡)+𝜌𝜆

𝑧(𝑡)

2
) −

2𝜏

𝜃
(𝑓(𝜌𝜆

𝑧(𝑡)) − 𝑓(𝜌𝜆
−𝑤(𝑡))),          (4.48) 

Dispersing: 𝜌𝜆𝑧(𝑡 + 𝜏) = (
𝜌𝜆
𝑤(𝑡)+𝜌𝜆

−𝑧(𝑡)

2
) +

2𝜏

𝜃
(𝑓(𝜌𝜆

𝑤(𝑡)) − 𝑓(𝜌𝜆
−𝑧(𝑡))),       (4.49) 

subject to the conditions in Eq. (4.46) and Eq. (4.47) for Case A where 

𝜏 ≤
𝜃

2 𝑚𝑎𝑥𝜌𝑓′(𝜌)
,                                                                                      (4.50) 

 

4.9 Summary  

This chapter completes the study on marine transportation system using Westport as 

the case study. Vessels traveling distance from Westport are calculated while the 

operational scheduling has been proposed. Moreover, the macroscopic ODE model for 

marine traffic flow has been developed. The outcomes of this chapter fulfil the thesis 

Objective 1. 
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CHAPTER 5: MARITIME ECONOMY DISTRIBUTION 
 

5.1 Introduction 

The purpose of this chapter is to measure maritime economy distribution that is divided 

to market inequality and market concentration. These analyses of market inequality and 

market concentration on market shares of 15 top import economies and 15 top export 

economies around the globe are important to fulfill thesis Objective 2. Coming subsection 

will discuss on the concentration curve, Lorenz curve and Gini coefficient, concentration 

ratio (CR), Herfindahl-Hirschman Index (HHI) and Distance to Competitive Balance 

(DCB).  

 

5.2 Market Inequality 

This section examines maritime market inequality comprises of concentration curve, 

Lorenz curve and Gini coefficient analyses based on 15 top export and import economies 

of the world. 

 

5.2.1 Concentration Curve 

Figure 5.1 and Figure 5.2 describe concentration of the share values on the imports 

and exports of the maritime economy. It clearly shows that the United States of America 

is doing well in export with the highest concentration continued by China in the second 

place. Moreover, concentration for the top origin of developed economies’ imports shows 

China as having the highest concentration among other countries. The second-highest 

concentration is the United States of America. This shows that the world export and 

import are headed by these two countries. Figure 5.1 and Figure 5.2 illustrate the growth 

of smaller share values among the 15 countries of maritime economy while the rest of the 

world tend to lose their domain in that growth.  
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Figure 5.1: Concentration curve for the 2019 top destinations of developing export 

economies 

 

 

Figure 5.2: Concentration curve for the 2019 top origins of developing import 

economies 
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5.2.2 Lorenz Curve 

The Lorenz curves are constructed to understand the pattern of variation of equality 

which is known as a visual indicator of inequality. The closer the curve to the line of 

inequality means there is an equal distribution and vice versa for the curve that is away 

from the line of inequality. Figure 5.3 represents the Lorenz curve that can visualize two 

different domains. The curve clearly shows that the import economy in the world is 

moving towards equality since it is much nearer to the line of equality. Furthermore, 

export Lorenz curve is far away as compared to the import Lorenz curve. This means the 

import market has more equal distributions in the world. Malaysia stands quite 

impressively, in which an import economy Malaysia stands at the 7th place whereas in 

export economy, Malaysia stands at the 11th place. This again shows that Malaysia is 

doing well in imports as compared to exports. 

 

 
Figure 5.3: Lorenz curve comparison between export and import economies in 

2019 
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5.2.3 Gini Coefficient  

Gini coefficient is calculated from the Lorenz curve to measure the distribution of 

income across a population developed by the top export and import economic countries 

mathematically. This mathematical indicator will discuss equality and inequality of the 

distribution.    

 

Table 5.1: Gini coefficient for the 2019 developing export economies 

Economic 
Country Rank Share 

(Billion) % Share Cum % 
Share 

Cum 
Share/100 Area 

United 
Arab 
Emirates 

1 145 2.57366 2.57366 0.02574 0.00086 

Thailand 2 150 2.66241 5.23607 0.05236 0.00260 
United 
Kingdom 3 158 2.80440 8.04047 0.08040 0.00443 

Malaysia 4 164 2.91090 10.95137 0.10951 0.00633 
China, 
Taiwan 
Province 
of China 

5 172 3.05289 14.00426 0.14004 0.00832 

Netherlan
ds 6 198 3.51438 17.51864 0.17519 0.01051 

Germany 7 208 3.69187 21.21051 0.21211 0.01291 
Singapore 8 217 3.85162 25.06212 0.25062 0.01542 
Vietnam 9 224 3.97586 29.03798 0.29038 0.01803 
Korea, 
Republic 
of Korea 

10 290 5.14732 34.18530 0.34185 0.02107 

India 11 329 5.83955 40.02485 0.40025 0.02474 
Japan 12 438 7.77423 47.79908 0.47799 0.02927 
China, 
Hong 
Kong 
SAR 

13 478 8.48420 56.28328 0.56283 0.03469 

China 14 1102 19.55982 75.84310 0.75843 0.04404 
United 
States of 
America 

15 1361 24.15691 100 1 0.05861 

  5634     Area B= 0.29185 
       Area A= 0.20815 

 

     Gini cefficient = 0.20815

0.20815+0.29185
=  0.41631                                   (5.1) 
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Table 5.2: Gini coefficient for the 2019 developing import economies 

Economic 
Location Rank Share 

(Billion) % Share Cum % 
Share 

Cum 
Share/100 Area 

United 
Arab 
Emirates 

1 157 2.90956 2.90956 0.02910 0.00097 

Vietnam 2 165 3.05782 5.96738 0.05967 0.00296 

Thailand 3 170 3.15048 9.11787 0.09118 0.00503 

Brazil 4 178 3.29874 12.41660 0.12417 0.00718 

Saudi 
Arabia 5 189 3.50259 15.91920 0.15919 0.00945 

India 6 190 3.52113 19.44033 0.19440 0.01179 

Singapore 7 196 3.63232 23.07265 0.23073 0.01417 

Australia 8 216 4.00297 27.07561 0.27076 0.01672 

Malaysia 9 230 4.26242 31.33803 0.31338 0.01947 

Germany 10 317 5.87472 37.21275 0.37213 0.02285 
China, 
Taiwan 
Province 
of China 

11 353 6.54188 43.75463 0.43755 0.02699 

Korea, 
Republic 
of Korea  

12 409 7.57969 51.33432 0.51334 0.03170 

Japan 13 516 9.56264 60.89696 0.60897 0.03741 

United 
States of 
America 

14 843 15.62268 76.51964 0.76520 0.04581 

China 15 1267 23.48036 100.00000 1.00000 0.05884 

   5396     Area B= 0.31132 

        Area A= 0.18868 

 

Gini coefficient =
0.31132

0.31132+0.18868
= 0.37737                            (5.2) 
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Microsoft Excel is used in this study to evaluate the areas under the curve as listed in 

Table 5.1 and Table 5.2. The Gini coefficients (Export Gini coefficient = 0.41631, Import 

Gini coefficient =0.37737) proved that the import economy value of 0.37737 is nearer to 

0 as compared to the export Gini coefficient with the value of 0.41631. This again shows 

that the import economy has more equality as compared to the export economy for the 

top 15 countries. Gini coefficient refers more on statistical analysis and it is very 

compatible with economy theory as it holds property of variance for specific distributions 

(Yitzhaki & Schechtman, 2013b). 

 

5.3 Market Concentration 

This section examines maritime market concentration comprises of concentration ratio 

(CR), Herfindahl-Hirschman Index (HHI) and Distance to Competitive Balance (DCB) 

analyses based on 15 top export and import economies of the world. 

 

5.3.1 Concentration Ratio (CR)  

Concentration ratio (CR) is calculated for three, four and five countries which take the 

sum of the largest port market shares in the export and import economies. The range of 

CR is from 0% to 100% which indicates the degree of market competition in the world. 

Table 5.3 and 5.4 show three different calculations to measure the concentration level of 

the maritime industry. Concentration ratios of export and import showed that three 

countries  (CR3) and four countries (CR4) are more than 50%, whereby five countries 

(CR5) is more than 60%. According to Saeedi et al. (2021), this percentage highlights that 

the maritime industry is following tight oligopoly. Tight oligopolies are defined as the 

outcome of collaboration on the market that are suboptimum from a prosperity view. It 

distinguishes several important market personalities with tight oligopolic features that 

have low number of partnerships and high entry of obstacles (Oligopolies, 2003). 
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Table 5.3: CR of the 2019 developing export economies 

 

Table 5.4: CR of the 2019 developing import economies 

 

Economic Location 
Share 
(Billion), S % S  CR 

United States of America 1361 24.15690  
China 1102 19.55982  
China, Hong Kong SAR 478 8.48420 52.20092, 𝐶𝑅3 
Japan 438 7.77423 59.97515, 𝐶𝑅4 
India 329 5.83955 65.81470, 𝐶𝑅5 
Korea, Republic of Korea 290 5.14732  
Vietnam 224 3.97586  
Singapore 217 3.85162  
Germany 208 3.69187  
Netherlands 198 3.51438  
China, Taiwan Province of 
China 172 3.05289  

Malaysia 164 2.91090  
United Kingdom 158 2.80440  
Thailand 150 2.66241  
United Arab Emirates 145 2.57366  
Total 5634 100  

Economic Location Share (Billion), 
S % S  CR 

China 1267 23.48036  
United States of America 843 15.62268  
Japan 516 9.56264 48.66568, 𝐶𝑅3 
Korea, Republic of Korea  409 7.57969 56.24537, 𝐶𝑅4 
China, Taiwan Province of 
China 353 6.54188 62.78725, 𝐶𝑅5 

Germany 317 5.87472  
Malaysia 230 4.26242  
Australia 216 4.00297  
Singapore 196 3.63232  
India 190 3.52113  
Saudi Arabia 189 3.50259  
Brazil 178 3.29874  
Thailand 170 3.15048  
Vietnam 165 3.05782  
United Arab Emirates 157 2.90956  
Total 5396 100  
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5.3.2 Herfindahl-Hirschman Index (HHI) 

The Herfindahl-Hirschman Index (HHI) is the best tool to determine the level of 

concentration. The HHI for the 2019 top developing export and import economies are 

calculated as in Table 5.5 and Table 5.6.  

 

Table 5.5: HHI for the 2019 developing export economies 

Economic 
Country Rank Share (Billion), 

S % Share 

  

United Arab 
Emirates 15 145 2.57366 0.02574 0.00066 

Thailand 14 150 2.66241 0.02662 0.00071 

United Kingdom 13 158 2.80440 0.02804 0.00079 

Malaysia 12 164 2.91090 0.02911 0.00085 

China, Taiwan 
Province of 
China 

11 172 3.05289 0.03053 0.00093 

Netherlands 10 198 3.51438 0.03514 0.00124 

Germany 9 208 3.69187 0.03692 0.00136 

Singapore 8 217 3.85162 0.03852 0.00148 

Vietnam 7 224 3.97586 0.03976 0.00158 

Korea, Republic 
of Korea 6 290 5.14732 0.05147 0.00265 

India 5 329 5.83955 0.05840 0.00341 
Japan 4 438 7.77423 0.07774 0.00604 

China, Hong 
Kong SAR 3 478 8.48420 0.08484 0.00720 

China 2 1102 19.55982 0.19560 0.03826 

United States of 
America 1 1361 24.15690 0.24157 0.05836 

Total   5634 100 HHI= 0.12552 
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Table 5.6: HHI of developing economies' imports 2019 

Economic 
Location Rank Share (Billion), 

S % Share   

United Arab 
Emirates 15 157 2.90956 0.02910 0.00085 

Vietnam 14 165 3.05782 0.03058 0.00094 

Thailand 13 170 3.15048 0.03150 0.00099 

Brazil 12 178 3.29874 0.03299 0.00109 

Saudi Arabia 11 189 3.50259 0.03503 0.00123 

India 10 190 3.52113 0.03521 0.00124 

Singapore 9 196 3.63232 0.03632 0.00132 

Australia 8 216 4.00297 0.04003 0.00160 

Malaysia 7 230 4.26242 0.04262 0.00182 

Germany 6 317 5.87472 0.05875 0.00345 
China, Taiwan 
Province of China 5 353 6.54188 0.06542 0.00428 

Korea, Republic 
of Korea  4 409 7.57969 0.07580 0.00575 

Japan 3 516 9.56264 0.09563 0.00914 
United States of 
America 2 843 15.62268 0.15623 0.02441 

China 1 1267 23.48036 0.23480 0.05513 

Total  5396 100 HHI= 0.11323 
 

The Herfindahl-Hirschman Index (HHI) is the best tool to determine the level of 

concentration. The HHI for the 2019 top developing export and import economies are 

calculated as in Table 5.5 and Table 5.6. The HHI for the top developing economies 

involves 15 countries which start from United States of America, China, Hong Kong, 

Japan, India, Korea, Vietnam, Singapore, Germany, Netherlands, Taiwan, Malaysia, 

United Kingdom, Thailand and the United Arab Emirates. The arrangement given is 

starting from the smallest share value to the largest share value. The data shows that the 
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export industry's highest share value is from the United States of America (1361 billion 

USD), followed by China (1102 billion USD) and Malaysia (164 billion USD) is in the 

12th position. The overall world concentration for export industries is examined in Table 

5.5. The value of HHI for the 2019 top developing export economies is 0.125515 which 

considered as a weak concentration since the value is below 0.15. About 33% remaining 

share value is from the rest of the world amounting to 2776 billion USD in export.  

The value of HHI for 15 origin countries of developing import economies for 2019 is 

0.1132275 (Table 5.6) which is considered as a weak concentration since the value is 

below 0.15. This shows that the world is experiencing a moderate economic concentration 

on imports and exports through the seaports based on the locations. The 15 countries are 

United Arab Emirates, Vietnam, Thailand, Brazil, Saudi Arabia, India, Singapore, 

Australia, Malaysia, Germany, Taiwan, Korea, Japan, United States of America and 

China. Another input for import industry shows that China contributes the largest amount 

of share value (1267 billion USD) continued by the United States of America at the 

second-largest share value (843 billion USD), whereby Malaysia (230 billion USD) is at 

the 7th place of the largest shares in the marine transportation economies. The share that 

the rest of the world contributes is nearly 2596 billion USD which denotes 32.48% of the 

world's import share population. 

 

5.3.3 Distance to Competitive Balance (DCB) 

The shares shown in Table 5.7, ranked from the largest to the smallest, are used to 

calculate the standard deviation and average of the distribution. Competitive balance is 

an interesting analysis that determine the share competitive in maritime industry. The 

competitive balance ratio is performed by using coefficient of variation of the 

distribution; 0.9725 for top destination of developing economies’ export 2019 and 0.8650 

for top origins of developing economies’ imports 2019. 
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Table 5.7: DCB for 2019 export and import economies 

Top destinations of the 2019 developing 
export economies 

Top origins of the 2019 developing 
import economies 

Economic 
Location Rank 

Share 
(Billion) 

Economic 
Location Rank 

Share 
(Billion) 

United States 
of America 1 1361 China 1 1267 

China 2 1102 
United States 
of America 2 843 

China, Hong 
Kong SAR 3 478 Japan 3 516 

Japan 4 438 

Korea, 
Republic of 
Korea  4 409 

India 5 329 

China, 
Taiwan 
Province of 
China 5 353 

Korea, 
Republic of 
Korea  6 290 Germany 6 317 
Vietnam 7 224 Malaysia 7 230 
Singapore 8 217 Australia 8 216 
Germany 9 208 Singapore 9 196 
Netherlands 10 198 India 10 190 
China, Taiwan 
Province of 
China 11 172 Saudi Arabia 11 189 
Malaysia 12 164 Brazil 12 178 
United 
Kingdom 13 158 Thailand 13 170 
Thailand 14 150 Vietnam 14 165 
United Arab 
Emirates 15 145 

United Arab 
Emirates 15 157 

 St Dev 365.27540  St Dev 311.18471 
 Mean 375.6  Mean 359.73333 
 CV 0.97251  CV 0.86504 

 

Based on the concept of distance, the new index is the unit interval between 0 to 1. 

Based on statistics, the range of developing economies’ export destinations is 1216 billion 

USD (between 145 billion USD and 1361 billion USD) while the range for import origins 

is 1110 billion USD (between 157 billion USD and 1267 billion USD). Therefore it shows 

that DCB has more variation in export economy as compared to import economy. The 
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motivation in this study is DCB measure under different degrees of inequality where the 

import economy has more equality than the export economy since the coefficient of 

variations (CV) value is lower and more precise in this study. Therefore, import has 

slightly more balance as compared to the export economy for maritime industry 2019. 

 

5.4 Summary 

In this chapter data of 15 top import and export maritime economies in the world have 

been be exploited in the measurement of maritime economy distribution. Maritime market 

inequality comprises concentration curve, Lorenz curve and Gini coefficient have been 

examined. The maritime market concentration have been measured by using 

concentration ratio (CR), Herfindahl-Hirschman Index (HHI) and Distance to 

Competitive Balance (DCB). These two important indicators of maritime economy 

distribution progressively contribute towards the countries’ GDP, while enhancing the 

global seaport network efficiency. It is worth to mention that DCB is used for the first 

time on the 15 top import and export economies to measure the maritime market 

concentration through this thesis. 
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CHAPTER 6: GLOBAL SEAPORT NETWORK EFFICIENCY EVALUATION 
WITH FUZZY DATA ENVELOPMENT ANALYSIS 

 
 

6.1 Introduction 

Seaport network efficiency is very crucial for global maritime economic trades and 

growth. In this work, data of three years (2018-2020) with input variables (time in port, 

age of vessels, size of vessels, cargo carrying capacity of vessels) and output variables 

(Liner Shipping Connectivity Index (LSCI) and Gross Domestic Product (GDP)) are 

collected. Few screening tests are performed to ensure the data are fit for further analyses. 

Since none of the existing studies has ever considered LSCI as an output variable, the 

main purpose of this study is to measure seaport network efficiency based on LSCI using 

both classical and fuzzy data envelopment analysis (DEA). In fuzzy DEA, triangular 

fuzzy number (TrFN) and trapezoidal fuzzy number (TpFN) are used to construct the 

fuzzy sets of efficiency scores with DEA. The comparison between DEA and triangular 

fuzzy data envelopment analysis  (TrFDEA) shows the range of differences in the results 

is from -0.0274 to 0.0105 while the comparison between DEA and trapezoidal fuzzy data 

envelopment analysis  (TpFDEA) yields the differences within the range of -0.0307 to 

0.0106. Using DEA as the relative reference, it is further revealed that the TpFDEA has 

smaller standard deviations and variances than the TrFDEA in 2018 and 2019, whereas 

the opposites hold true during the pandemic year of 2020. With the use of fuzzy numbers, 

the uncertainty levels in the seaport network efficiency measurement can further be 

investigated as the minimum, mean, median and maximum values are taken into 

consideration. Moreover, the proposed TrFDEA and TpFDEA lead new insights on the 

boundedness concept of the efficiency scores which were never reported before by any 

researcher especially in the maritime industry research. Fuzzy regression modeling based 

on Possibilistic Linear Regression Least Squares (PLRLS) method is also performed to 
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determine the interval of minimum and maximum connectivity efficiencies which give a 

better estimation than the regular regression model. 

 

6.2 Tobit Regression Analysis 

Tobit regression will be used in this thesis to determine the significant relationship 

between the inputs and outputs variables and to construct a suitable regression model. 

Tobit model, is known as a censored regression model where there is either left or right-

censoring in the dependent variable. Tobit regression is conducted by considering Liner 

Shipping Connectivity Index (LSCI) as an output variable with all the impacting input 

variables of time in port (TP), age of vessels (AV), size (GT) of vessels (SV) and cargo 

carrying capacity (CCC) as discussed in Chapter 3. Here Gross Domestic Product (GDP) 

is considered as a controlled variable in the study. The Tobit regression is executed using 

STATA software and the results are shown below: 

 

Table 6.1: Tobit regression coefficient of with and without control variable 

 
Without control variable 

 Prob > chi2     =     0.0000 

LSCI Coef P>|t| [95% Conf . 
Interval] 

TP -9.8203 0.000 -13.165 -6.4758 
AV -0.0492 0.830 -0.5003 0.40195 
SV 10.3574 0.057 -0.2996 21.0143 

CCC 34.9504 0.000 26.3777 43.5231 
GDP     

_cons | -186.67 0.000 -223.86 -149.48 
/sigma 21.7963  20.2964 23.2961 
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Table 6.1, continued 

 
With control variable 

 Prob > chi2     =     0.0000 

LSCI Coef P>|t| [95% Conf . 
Interval] 

TP -9.1582 0.000 -11.865 -6.4511 
AV -0.4041 0.031 -0.7722 -0.0361 
SV 8.98383 0.041 0.36081 17.6069 

CCC 0.56088 0.895 -7.764 8.88579 
GDP 18.9188 0.000 16.3852 21.4524 

_cons | -202.29 0.000 -232.45 -172.13 
/sigma 17.6321  16.4187 18.8454 

The results show that the age of vessels (AV) is not significant in the study and the 

size of vessels (SV) is significant at 10% of the significant level with a coefficient value 

of 10.35735 units. The other variables, time in port (TP) and cargo carrying capacity 

(CCC) have a 5% significant level which influences the LSCI coefficient value of -

9.82032 and 34.9504 respectively. This shows the highest impact on LSCI is influenced 

by CCC. 

 

Without GDP:  

LSCI = −186.67 − 9.8203 TP − 0.0492 AV + 10.3574 SV + 34.9504 CCC     (6.1) 

 

With GDP:  

       LSCI = −202.29 − 9.1582 TP − 0.4041 AV + 8.98383 SV + 0.56088 CCC 

                       +18.9188 GDP                                                                                                               (6.2) 

 

Table 6.1 shows how an uncontrolled variable can influence the Liner Shipping 

Connectivity Index (LSCI) if GDP is included in the study. The findings prove that the 

CCC became insignificant when GDP is included but all the other variables are 

significant. It shows that TP and AV have a negative impact on LSCI while the SV and 

GDP are vice versa. The LSCI will increase if the TP (days) and the AV decrease with 
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the coefficient of 9.158164 and 0.4041319 respectively. SV and GDP give a positive 

impact on the LSCI with 8.983828 and 18.91881 units where GDP impacts the most in 

this study when the GDP control variable is included in the model. This shows that the 

GDP plays a major role in the LSCI. The analysis is continued by removing insignificant 

variables (AV and CCC) from the study. Table 6.2 shows the model after removing the 

insignificant variables. 

 

Table 6.2: Significant Tobit regression model for control and without control 

variable 

 

Without control variable 
   Prob > chi2     =     0.0000 

LSCI Coef P>|t| [95% Conf . Interval] 
  

TP -9.8027 0.000  -13.144 -6.461897 
AV Removed 
SV 10.524 0.051 -0.0232 21.07122 

CCC 34.9033 0.000 26.3411 43.46544 
GDP   

 _cons |  -188.12 0.000 -222.87 -153.3726 
/sigma 21.7975   20.2976 23.29742 

With control variable 
   Prob > chi2     =     0.0000 

LSCI Coef P>|t| [95% Conf . Interval] 
TP -9.1013 0.000 -11.673 -6.52916 
AV -0.4049 0.031 -0.7728 -0.03699 
SV 9.35399 0.006 2.70767 16.00032 

CCC Removed 
GDP 18.9188 0.000 16.9026 21.12393 

 _cons |  -202.38 0.000 -232.51 -172.249 
/sigma 17.6324   16.419 18.84588 

 

Significant equation without GDP:  

LSCI = −188.12 − 9.8027 TP + 10.524 SV + 34.9033 CCC                 (6.3) 

 

Significant equation with GDP:  

       LSCI = −202.38 − 9.10132 TP − 0.4049 AV + 9.3599 SV + 18.9188 GDP    (6.4)                                                                                               
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The analysis continued by running Tobit regression until a significant model achieves 

by removing insignificant from the model for better modelling as Eq.(6.3) and Eq.(6.4). 

When the age of vessels (AV) was removed from the study the model looks much better 

where the size of vessels (SV) is significant with a 10% significant level and the other 

with a 5% significant level. The model demonstrates that vessel’s TP reduces by 9.802688 

units and SV increases about 10.52402 units.  Here again, it shows that cargo carrying 

capacity (CCC) has the highest positive impact on the LSCI with 34.90326 units. 

The Table 6.3 above illustrates the significant model with the controlled variable GDP 

included in the model. GDP and size of vessels have positive effects where GDP has the 

highest impact with 19.01325 units in the model. Other variables (SV and CCC) are 

positively significant while TP and AV should decrease to allow better LSCI values. Tobit 

regression is a model that does not measure variables directly. Tobit regression relatively 

utilizes observed variables and numerically derives the presence and relationship of latent 

variables. This is the central strategy behind numerous strong methods such as factor 

analysis, clustering analysis, latent class analysis and structural equation modeling 

(SEM). The linear effect in Tobit regression is on the uncensored latent variable but not 

the practical outcome. 

Note that both the controlled and uncontrolled variables are included in this study. 

These two featured variables are introduced to overcome the endogeneity problem. It is a 

statistical model that influences the relationship of other variables in the model. To 

overcome the problem of endogeneity, dependent variables are used as controlled 

variables in the model to see the relationship with other factors in the study. Hence, Tobit 

regression is done in two approaches by using only the original input and output variables. 

This method is very essential in economic modeling since it shows whether the variables 

cause the effect on other variables. 
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6.3 Data Envelopment Analysis (DEA) 

Data envelopment analysis using MaxDEA version 8 software is performed with input 

and output variables. Similarly, time in port (TP), age of vessels (AV), size (GT) of 

vessels (SV) and cargo carrying capacity (CCC) are the input variables whereas Gross 

Domestic Product (GDP) and LSCI are the output variables to conduct DEA in this 

study. Data of three years (2018, 2019 and 2020) are used to carry the analysis in seaport 

network efficiency measurement.  

The seaport network efficiency scores in 2018 for 133 countries are listed in Table 

6.3. The results stated that Bahamas, Malta, Montenegro, Cayman Islands, Seychelles, 

Liberia, Djibouti, Gambia, Mozambique, Cyrus and Mauritania have the lowest 

efficiencies particularly less than 80%. 7 countries that give 100% scores are Brazil, 

Chile, China, Estonia, Japan, Paraguay and Singapore in 2018. Moreover, in 2019, 100% 

efficiency has been recorded by Guinea, Chile, China, Japan, Paraguay and Singapore as 

shown in Table 6.4. Brazil and Estonia have dropped from 100% efficiency but Guinea 

joined the 100% efficiency list in 2019.  Another country, Bangladesh attained perfect 

efficiency score in 2020 as shown in Table 6.5. Overall, the DEA analysis shows that 

Chile, China, Japan, Paraguay and Singapore have the best seaport network efficiency in 

the world because these five countries are always in the leading list. 

 

Table 6.3: DEA Scores for 2018 

DMU Seaport 
Country 

DEA 
Score 
2018 

Benchmark (Lambda) 

1 Albania 0.80375 China(0.261106); Paraguay(0.870835) 

2 Algeria 0.85852 China(0.850224); Paraguay(0.181166) 

3 American 
Samoa 0.85648 China(0.651633); Paraguay(0.161888) 

4 Angola 0.89186 China(0.876287); Paraguay(0.077642) 
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Table 6.3, continued 

DMU Seaport 
Country 

DEA 
Score 
2018 

Benchmark (Lambda) 

5 Antigua and 
Barbuda 0.80671 China(0.491859); Japan(0.198537); 

Paraguay(0.228693) 

6 Argentina 0.94394 China(0.848403); Paraguay(0.119349) 

7 Australia 0.91264 China(0.766074); Paraguay(0.306472) 

8 Bahamas 0.74558 China(0.634812); Japan(0.096729); 
Paraguay(0.375877) 

9 Bahrain 0.81474 China(0.910217); Paraguay(0.096169) 

10 Bangladesh 0.93814 China(0.896271); Paraguay(0.038898) 

11 Barbados 0.86923 China(0.320973); Japan(0.362447); 
Paraguay(0.221065) 

12 Belgium 0.93026 China(0.833901); Paraguay(0.156037) 

13 Belize 0.90121 China(0.410298); Japan(0.317797); 
Paraguay(0.082102) 

14 Benin 0.89121 China(0.809180); Paraguay(0.071558) 

15 Brazil 1 Brazil(1.000000) 

16 Brunei 
Darussalam 0.88715 China(0.750472); Japan(0.029072); 

Paraguay(0.112104) 

17 Bulgaria 0.86385 China(0.571340); Paraguay(0.473247) 

18 Cambodia 0.99903 China(0.700826); Paraguay(0.112190) 

19 Cameroon 0.88115 China(0.842631); Paraguay(0.090263) 

20 Canada 0.90947 China(0.330917); Japan(0.306135); 
Paraguay(0.491972) 

21 Cayman Islands 0.77014 China(0.235817); Japan(0.725418); 
Paraguay(0.031698) 

22 Chile 1 Chile(1.000000) 

23 China 1 China(1.000000) 

24 China, Hong 
Kong SAR 0.97702 China(0.208078); Japan(0.543661); 

Singapore(0.189181) 

25 Colombia 0.899 China(0.866420); Japan(0.111656); 
Paraguay(0.001243) 

26 Comoros 0.91211 China(0.615473); Paraguay(0.175448) 

27 Congo 0.90981 Chile(0.116435); China(0.746007) 
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Table 6.3, continued 

DMU Seaport 
Country 

DEA 
Score 
2018 

Benchmark (Lambda) 

28 Congo, Dem. 
Rep. of the 0.939191 China(0.733680); Paraguay(0.162370) 

29 Costa Rica 0.909251 China(0.789130); Paraguay(0.141576) 

30 Côte d'Ivoire 0.889376 China(0.778020); Paraguay(0.176993) 

31 Croatia 0.828968 China(0.878263); Paraguay(0.139401) 

32 Cuba 0.895451 China(0.725594); Paraguay(0.259152) 

33 Cyprus 0.797214 China(0.391788); Japan(0.063921); 
Paraguay(0.668864) 

34 Denmark 0.878857 China(0.514981); Japan(0.305041); 
Paraguay(0.235926) 

35 Djibouti 0.787749 China(0.842763); Paraguay(0.090214) 

36 Dominica 0.803859 China(0.102545); Japan(0.574426); 
Paraguay(0.210234) 

37 Dominican 
Republic 0.921182 China(0.724911); Japan(0.072371); 

Paraguay(0.133996) 

38 Ecuador 0.900163 China(0.722390); Paraguay(0.260354) 

39 Egypt 0.855786 China(0.838351); Paraguay(0.216868) 

40 El Salvador 0.962278 Chile(0.597896); China(0.301578) 

41 Estonia 1 Estonia(1.000000) 

42 Fiji 0.804503 China(0.454046); Paraguay(0.579733) 

43 Finland 0.897495 China(0.703723); Paraguay(0.329854) 

44 Gabon 0.814576 Brazil(0.381472); China(0.598773) 

45 Gambia 0.790075 China(0.586615); Paraguay(0.373769) 

46 Georgia 0.833871 China(0.689672); Paraguay(0.303873) 

47 Germany 0.972923 China(0.227063); Japan(0.635766); 
Paraguay(0.178242) 

48 Greece 0.84841 China(0.448505); Japan(0.323844); 
Paraguay(0.315129) 

49 Grenada 0.885644 China(0.048199); Japan(0.516227); 
Paraguay(0.287326) 

50 Guam 0.815537 China(0.802479); Paraguay(0.136570) 
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Table 6.3, continued 

DMU Seaport 
Country 

DEA 
Score 
2018 

Benchmark (Lambda) 

51 Guatemala 0.946224 China(0.700544); Japan(0.134450); 
Paraguay(0.053474) 

52 Guinea 0.863541 China(0.838868); Paraguay(0.060425) 

53 Guinea-Bissau 0.866971 China(0.504092); Paraguay(0.373466) 

54 Guyana 0.85135 China(0.698161); Paraguay(0.206940) 

55 Haiti 0.867333 China(0.670437); Paraguay(0.279836) 

56 Honduras 0.922557 China(0.329163); Japan(0.527832); 
Paraguay(0.020637) 

57 Iceland 0.836853 China(0.481416); Japan(0.010491); 
Paraguay(0.564879) 

58 India 0.959571 China(0.943386); Paraguay(0.052480) 

59 Indonesia 0.91444 China(0.710726); Paraguay(0.358478) 

60 Iran (Islamic 
Republic of) 

0.862135 China(0.764382); Paraguay(0.307107) 

61 Iraq 0.867481 China(0.885950); Paraguay(0.136519) 

62 Ireland 0.912767 China(0.806253); Paraguay(0.197655) 

63 Israel 0.904463 China(0.781264); Paraguay(0.238276) 

64 Italy 0.874944 China(0.560075); Paraguay(0.633722) 

65 Jamaica 0.858097 China(0.826398); Paraguay(0.096351) 

66 Japan 1 Japan(1.000000) 

67 Jordan 0.846867 China(0.791299); Paraguay(0.203263) 

68 Kenya 0.923025 China(0.898287); Paraguay(0.006892) 

69 Korea, Republic 
of 

0.941343 China(0.614870); Japan(0.296723); 
Paraguay(0.108357) 

70 Kuwait 0.859933 China(0.943354); Paraguay(0.052492) 

71 Latvia 0.825888 China(0.741097); Paraguay(0.284589) 

72 Lebanon 0.866365 China(0.557371); Paraguay(0.478486) 

73 Liberia 0.780916 China(0.753530); Paraguay(0.217426) 

74 Libya 0.845877 China(0.731979); Paraguay(0.288008) 

75 Lithuania 0.84618 China(0.768815); Paraguay(0.242944) 

76 Madagascar 0.878328 China(0.825470); Paraguay(0.065449) 
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Table 6.3, continued 

DMU Seaport 
Country 

DEA 
Score 
2018 

Benchmark (Lambda) 

77 Malaysia 0.874268 China(0.876604); Japan(0.108327); 
Paraguay(0.030130) 

78 Maldives 0.873099 China(0.636635); Paraguay(0.261262) 

79 Malta 0.76629 China(0.724978); Japan(0.082385); 
Paraguay(0.254589) 

80 Mauritania 0.797527 China(0.879687); Paraguay(0.076368) 

81 Mauritius 0.815072 China(0.888805); Paraguay(0.072948) 

82 Mexico 0.919007 China(0.892589); Paraguay(0.134029) 

83 Micronesia 
(Federated 
States of) 

0.820679 China(0.456872); Paraguay(0.422423) 

84 Moldova, 
Republic of 

0.95182 China(0.104505); Paraguay(0.867061) 

85 Montenegro 0.769358 China(0.549719); Paraguay(0.512605) 

86 Morocco 0.859917 China(0.681651); Paraguay(0.369381) 

87 Mozambique 0.792297 China(0.966755); Paraguay(0.012467) 

88 Myanmar 0.826685 China(0.850372); Paraguay(0.181110) 

89 Namibia 0.878015 China(0.753306); Paraguay(0.155010) 

90 Netherlands 0.939508 China(0.263216); Japan(0.679970); 
Paraguay(0.059821) 

91 New Zealand 0.904947 China(0.823210); Paraguay(0.160046) 

92 Nicaragua 0.876467 China(0.825178); Paraguay(0.065558) 

93 Nigeria 0.900519 China(0.935208); Paraguay(0.055547) 

94 Norway 0.914407 China(0.022629); Japan(0.854433); 
Paraguay(0.148950) 

95 Oman 0.863326 Brazil(0.283954); Chile(0.167918); 
China(0.554099) 

96 Pakistan 0.963577 China(0.904089); Paraguay(0.004717) 

97 Panama 0.84576 China(0.306141); Japan(0.579944); 
Paraguay(0.131472) 

98 Papua New 
Guinea 

0.862329 China(0.843496); Paraguay(0.089939) 

99 Paraguay 1 Paraguay(1.000000) 
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Table 6.3, continued 

DMU Seaport 
Country 

DEA 
Score 
2018 

Benchmark (Lambda) 

100 Peru 0.917161 China(0.705679); Japan(0.239045); 
Paraguay(0.005789) 

101 Philippines 0.857133 China(0.781922); Paraguay(0.300529) 

102 Poland 0.904578 China(0.696323); Paraguay(0.363879) 

103 Portugal 0.907394 China(0.862577); Paraguay(0.114034) 

104 Qatar 0.899311 Brazil(0.030479); Chile(0.269816); 
China(0.688906) 

105 Romania 0.875225 China(0.623491); Paraguay(0.453691) 

106 Russian 
Federation 0.91484 China(0.625660); Paraguay(0.484128) 

107 Samoa 0.880598 China(0.399444); Japan(0.267128); 
Paraguay(0.139590) 

108 Saudi Arabia 0.919952 China(0.976865); Paraguay(0.008676) 

109 Senegal 0.837762 China(0.879635); Paraguay(0.076387) 

110 Seychelles 0.779778 China(0.562633); Paraguay(0.414013) 

111 Sierra Leone 0.82677 China(0.725946); Paraguay(0.196520) 

112 Singapore 1 Singapore(1.000000) 

113 Solomon Islands 0.829682 China(0.811667); Paraguay(0.039375) 

114 Somalia 0.81269 China(0.479631); Paraguay(0.538888) 

115 Spain 0.922301 China(0.716370); Japan(0.121070); 
Paraguay(0.209643) 

116 Sri Lanka 0.898783 China(0.786146); Paraguay(0.173945) 

117 Sudan 0.808677 China(0.511458); Paraguay(0.589453) 

118 Suriname 0.860533 China(0.674975); Paraguay(0.215634) 

119 Sweden 0.899841 China(0.607229); Japan(0.024230); 
Paraguay(0.449188) 

120 Tanzania 0.888072 China(0.815178); Paraguay(0.131808) 

121 Thailand 0.901875 China(0.596185); Japan(0.274247); 
Paraguay(0.156447) 

122 Timor-Leste 0.92364 China(0.580485); Paraguay(0.219818) 

123 Togo 0.853146 China(0.753683); Paraguay(0.154869) 
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Table 6.3, continued 

DMU Seaport 
Country 

DEA 
Score 
2018 

Benchmark (Lambda) 

124 Tonga 0.87046 China(0.326335); Japan(0.373913); 
Paraguay(0.089038) 

125 Trinidad and 
Tobago 0.85578 China(0.816400); Paraguay(0.131350) 

126 Tunisia 0.860797 China(0.732514); Paraguay(0.256557) 

127 Turkey 0.878814 China(0.644657); Paraguay(0.477004) 

128 Ukraine 0.859956 China(0.687255); Paraguay(0.367279) 

129 United Arab 
Emirates 0.888822 China(0.920804); Paraguay(0.092199) 

130 United Kingdom 0.935758 China(0.838351); Paraguay(0.216868) 

131 United States of 
America 0.960975 China(0.643828); Paraguay(0.508565) 

132 Uruguay 0.841499 China(0.750662); Paraguay(0.281002) 

133 Viet Nam 0.953247 China(0.833509); Paraguay(0.093684) 
 

Table 6.4: DEA Scores for 2019 

 

DMU Seaport 
Country 

DEA 
Score 
2019 

Benchmark (Lambda) 

1 Albania 0.806142 China(0.255613); Paraguay(0.876747) 

2 Algeria 0.864368 China(0.845387); Paraguay(0.177435) 

3 
American 

Samoa 0.851705 China(0.629343); Paraguay(0.195391) 

4 Angola 0.887401 China(0.878137); Paraguay(0.074617) 

5 
Antigua and 

Barbuda 0.822751 
China(0.237661); Japan(0.468618); 
Paraguay(0.201521) 

6 Argentina 0.929818 China(0.864517); Paraguay(0.109873) 

7 Australia 0.912377 China(0.741146); Paraguay(0.336553) 

8 Bahamas 0.782551 
China(0.639494); Japan(0.032578); 
Paraguay(0.388025) 

9 Bahrain 0.812682 China(0.883006); Paraguay(0.133452) 

10 Bangladesh 0.965605 China(0.829660); Paraguay(0.092245) 
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Table 6.4, continued 

DMU Seaport 
Country 

DEA 
Score 
2019 

Benchmark (Lambda) 

11 Barbados 0.872979 
China(0.341222); Japan(0.288065); 
Paraguay(0.281706) 

12 Belgium 0.924672 China(0.811672); Paraguay(0.189695) 

13 Belize 0.934816 
China(0.321330); Japan(0.367580); 
Paraguay(0.098872) 

14 Benin 0.887977 China(0.815736); Paraguay(0.067005) 

15 Brazil 0.991104 Chile(0.531144); China(0.479237) 

16 
Brunei 

Darussalam 0.890087 
China(0.760783); Japan(0.017343); 
Paraguay(0.108883) 

17 Bulgaria 0.868844 China(0.582507); Paraguay(0.454846) 

18 Cambodia 0.936324 China(0.611593); Paraguay(0.292754) 

19 Cameroon 0.884649 China(0.804958); Paraguay(0.131530) 

20 Canada 0.900609 
China(0.437707); Japan(0.156024); 
Paraguay(0.553064) 

21 Cayman Islands 0.810545 
China(0.063023); Japan(0.794138); 
Paraguay(0.107198) 

22 Chile 1 Chile(1.000000) 

23 China 1 China(1.000000) 

24 
China, Hong 
Kong SAR 0.986309 

China(0.149153); Guinea(0.055856); 
Japan(0.517160); Singapore(0.226251) 

25 Colombia 0.919144 
China(0.695264); Guinea(0.124765); 
Japan(0.166169) 

26 Comoros 0.821633 China(0.670222); Paraguay(0.210828) 

27 Congo 0.892668 China(0.837389); Paraguay(0.028828) 

28 
Congo, Dem. 
Rep. of the 0.938407 China(0.708686); Paraguay(0.196841) 

29 Costa Rica 0.940738 
China(0.544972); Japan(0.254126); 
Paraguay(0.102858) 

30 Côte d'Ivoire 0.890308 China(0.782727); Paraguay(0.169917) 

31 Croatia 0.851418 China(0.811002); Paraguay(0.189939) 

32 Cuba 0.899264 China(0.730439); Paraguay(0.249537) 

33 Cyprus 0.822068 
China(0.246709); Japan(0.183587); 
Paraguay(0.669761) 
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Table 6.4, continued 

DMU Seaport 
Country 

DEA 
Score 
2019 

Benchmark (Lambda) 

34 Denmark 0.912687 
China(0.517944); Japan(0.228595); 
Paraguay(0.276580) 

35 Djibouti 0.781745 China(0.791971); Paraguay(0.166556) 

36 Dominica 0.85032 
China(0.082629); Japan(0.542600); 
Paraguay(0.222026) 

37 
Dominican 
Republic 0.936295 

China(0.522361); Japan(0.309134); 
Paraguay(0.084410) 

38 Ecuador 0.938153 China(0.678091); Paraguay(0.268573) 

39 Egypt 0.858197 China(0.817421); Paraguay(0.248210) 

40 El Salvador 0.922915 Chile(0.126496); China(0.749003) 

41 Estonia 0.90007 
Chile(0.083846); China(0.547114); 
Guinea(0.345483) 

42 Fiji 0.796893 China(0.417687); Paraguay(0.635993) 

43 Finland 0.893834 China(0.684911); Paraguay(0.357002) 

44 Gabon 0.797902 China(0.963786); Paraguay(0.013169) 

45 Gambia 0.788644 China(0.641314); Paraguay(0.312250) 

46 Georgia 0.835011 China(0.663466); Paraguay(0.334497) 

47 Germany 0.996521 
China(0.125219); Japan(0.804108); 
Paraguay(0.072307) 

48 Greece 0.846762 
China(0.458961); Japan(0.310618); 
Paraguay(0.318866) 

49 Grenada 0.878339 
China(0.102989); Japan(0.518779); 
Paraguay(0.226172) 

50 Guam 0.82595 China(0.724175); Paraguay(0.221512) 

51 Guatemala 0.955932 
China(0.626125); Japan(0.226008); 
Paraguay(0.026375) 

52 Guinea 1 Guinea(1.000000) 

53 Guinea-Bissau 0.819312 China(0.512105); Paraguay(0.419840) 

54 Guyana 0.84967 China(0.677206); Paraguay(0.238592) 

55 Haiti 0.864946 China(0.677718); Paraguay(0.268709) 
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Table 6.4, continued 

DMU Seaport 
Country 

DEA 
Score 
2019 

Benchmark (Lambda) 

56 Honduras 0.933398 
China(0.213483); Guinea(0.009810); 
Japan(0.647483) 

57 Iceland 0.859942 
China(0.537096); Japan(0.089410); 
Paraguay(0.367403) 

58 India 0.96581 China(0.938082); Paraguay(0.052819) 

59 Indonesia 0.903862 China(0.743355); Paraguay(0.335750) 

60 
Iran (Islamic 
Republic of) 0.850869 China(0.683259); Paraguay(0.418209) 

61 Iraq 0.869462 China(0.854047); Paraguay(0.174286) 

62 Ireland 0.952087 China(0.792488); Paraguay(0.166368) 

63 Israel 0.902457 China(0.761005); Paraguay(0.268725) 

64 Italy 0.881296 China(0.604372); Paraguay(0.568107) 

65 Jamaica 0.870421 China(0.776754); Paraguay(0.141787) 

66 Japan 1 Japan(1.000000) 

67 Jordan 0.848041 China(0.797963); Paraguay(0.194680) 

68 Kenya 0.917253 China(0.875400); Paraguay(0.045309) 

69 
Korea, Republic 

of 0.932439 
China(0.580633); Japan(0.296598); 
Paraguay(0.160207) 

70 Kuwait 0.863183 China(0.938082); Paraguay(0.052819) 

71 Latvia 0.824317 China(0.718741); Paraguay(0.314397) 

72 Lebanon 0.865749 China(0.537632); Paraguay(0.501467) 

73 Liberia 0.80571 China(0.684082); Paraguay(0.266395) 

74 Libya 0.84989 China(0.734791); Paraguay(0.278258) 

75 Lithuania 0.848374 China(0.774337); Paraguay(0.233575) 

76 Madagascar 0.873043 China(0.801243); Paraguay(0.102578) 

77 Malaysia 0.876455 
China(0.820562); Japan(0.140692); 
Paraguay(0.057642) 

78 Maldives 0.818183 China(0.556866); Paraguay(0.433867) 

79 Malta 0.790615 
China(0.710098); Japan(0.023559); 
Paraguay(0.306117) 

80 Mauritania 0.803924 China(0.874907); Paraguay(0.075792) 

81 Mauritius 0.865986 China(0.811194); Paraguay(0.098960) 
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Table 6.4, continued 

DMU Seaport 
Country 

DEA 
Score 
2019 

Benchmark (Lambda) 

82 Mexico 0.925578 China(0.922749); Paraguay(0.088697) 

83 

Micronesia 
(Federated States 

of) 0.867335 Japan(0.522741); Paraguay(0.310328) 

84 
Moldova, 

Republic of 0.929206 China(0.166469); Paraguay(0.818254) 

85 Montenegro 0.781365 China(0.616487); Paraguay(0.412187) 

86 Morocco 0.87564 China(0.636041); Paraguay(0.405076) 

87 Mozambique 0.827456 China(0.874950); Paraguay(0.075776) 

88 Myanmar 0.839186 China(0.905217); Paraguay(0.095072) 

89 Namibia 0.873488 China(0.759701); Paraguay(0.147988) 

90 Netherlands 0.940098 
China(0.260404); Japan(0.688746); 
Paraguay(0.051091) 

91 New Zealand 0.895843 China(0.807503); Paraguay(0.191211) 

92 Nicaragua 0.874793 China(0.827215); Paraguay(0.062831) 

93 Nigeria 0.925092 China(0.905409); Paraguay(0.064700) 

94 Norway 0.923375 
China(0.012620); Japan(0.923626); 
Paraguay(0.062744) 

95 Oman 0.837262 China(0.991124); Paraguay(0.003228) 

96 Pakistan 0.934433 China(0.902672); Paraguay(0.035392) 

97 Panama 0.853447 
China(0.298778); Japan(0.629719); 
Paraguay(0.070884) 

98 
Papua New 

Guinea 0.863458 China(0.845495); Paraguay(0.086487) 

99 Paraguay 1 Paraguay(1.000000) 

100 Peru 0.906762 China(0.932539); Paraguay(0.024531) 

101 Philippines 0.869463 China(0.741602); Paraguay(0.336387) 

102 Poland 0.902087 China(0.679256); Paraguay(0.389361) 

103 Portugal 0.892601 China(0.853140); Paraguay(0.144313) 

104 Qatar 0.875348 China(0.967041); Paraguay(0.011985) 

105 Romania 0.881324 China(0.631723); Paraguay(0.436949) 
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Table 6.4, continued 

DMU Seaport 
Country 

DEA 
Score 
2019 

Benchmark (Lambda) 

106 
Russian 

Federation 0.907947 China(0.585814); Paraguay(0.544552) 

107 Samoa 0.871309 
China(0.510685); Japan(0.132950); 
Paraguay(0.174078) 

108 Saudi Arabia 0.909203 China(0.923905); Paraguay(0.088277) 

109 Senegal 0.847956 China(0.865828); Paraguay(0.079093) 

110 Seychelles 0.835338 China(0.494363); Paraguay(0.426292) 

111 Sierra Leone 0.826968 China(0.731916); Paraguay(0.188394) 

112 Singapore 1 Singapore(1.000000) 

113 Solomon Islands 0.832857 China(0.807397); Paraguay(0.039734) 

114 Somalia 0.817225 China(0.463271); Paraguay(0.558811) 

115 Spain 0.920861 
China(0.712347); Japan(0.146059); 
Paraguay(0.185300) 

116 Sri Lanka 0.866677 China(0.837590); Paraguay(0.149967) 

117 Sudan 0.795042 China(0.443417); Paraguay(0.687242) 

118 Suriname 0.844537 China(0.704681); Paraguay(0.198298) 

119 Sweden 0.903659 
China(0.560420); Japan(0.093490); 
Paraguay(0.417549) 

120 Tanzania 0.899236 China(0.875400); Paraguay(0.045309) 

121 Thailand 0.909631 
China(0.379689); Japan(0.474427); 
Paraguay(0.177361) 

122 Timor-Leste 0.913024 China(0.544617); Paraguay(0.286806) 

123 Togo 0.817983 China(0.743797); Paraguay(0.214377) 

124 Tonga 0.888724 
China(0.190312); Japan(0.551507); 
Paraguay(0.027035) 

125 
Trinidad and 

Tobago 0.860879 China(0.845881); Paraguay(0.086346) 

126 Tunisia 0.860507 China(0.706149); Paraguay(0.288673) 

127 Turkey 0.873962 China(0.634003); Paraguay(0.496726) 

128 Ukraine 0.846508 China(0.524387); Paraguay(0.597193) 

129 
United Arab 

Emirates 0.887893 China(0.923905); Paraguay(0.088277) 
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Table 6.4, continued 

DMU Seaport Country 
DEA 
Score 
2019 

Benchmark (Lambda) 

130 United Kingdom 0.936784 China(0.843402); Paraguay(0.208460) 

131 
United States of 

America 0.964852 China(0.657838); Paraguay(0.488059) 

132 Uruguay 0.890915 China(0.680876); Paraguay(0.297863) 

133 Viet Nam 0.895517 China(0.853237); Paraguay(0.144277) 
 

Table 6.5: DEA Scores for 2020 

DMU Seaport Country 

DEA 
Score 
2020 Benchmark (Lambda) 

1 Albania 0.804818 
Bangladesh(0.360408); China(0.069543); 
Paraguay(0.717960) 

2 Algeria 0.855281 
Bangladesh(0.545965); China(0.472304); 
Paraguay(0.051838) 

3 American Samoa 0.853441 
Bangladesh(0.095176); China(0.547855); 
Paraguay(0.195312) 

4 Angola 0.868784 
Bangladesh(0.397648); China(0.555658); 
Paraguay(0.047265) 

5 
Antigua and 

Barbuda 0.803511 
China(0.301136); Japan(0.362995); 
Paraguay(0.264803) 

6 Argentina 0.93878 
Bangladesh(0.415665); China(0.569836); 
Paraguay(0.005544) 

7 Australia 0.908051 
Bangladesh(0.245652); China(0.547119); 
Paraguay(0.314529) 

8 Bahamas 0.749697 
China(0.439303); Japan(0.335386); 
Paraguay(0.311578) 

9 Bahrain 0.806608 
Bangladesh(0.420132); China(0.543269); 
Paraguay(0.102229) 

10 Bangladesh 1 Bangladesh(1.000000) 

11 Barbados 0.830963 
China(0.119418); Japan(0.626931); 
Paraguay(0.196192) 

12 Belgium 0.938037 
Bangladesh(0.116523); China(0.728634); 
Paraguay(0.147440) 

13 Belize 0.820126 
China(0.247302); Japan(0.442625); 
Paraguay(0.223186) 

14 Benin 0.897867 
Bangladesh(0.116971); China(0.739662); 
Paraguay(0.025405) 

15 Brazil 0.994101 Chile(0.637257); China(0.377073) 

16 
Brunei 

Darussalam 0.865735 
Bangladesh(0.026888); China(0.776997); 
Paraguay(0.104397) 
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Table 6.5, continued 

DMU Seaport Country 

DEA 
Score 
2020 Benchmark (Lambda) 

17 Bulgaria 0.860566 
Bangladesh(0.389341); China(0.245546); 
Paraguay(0.463132) 

18 Cambodia 0.930318 
Bangladesh(0.004735); China(0.745751); 
Paraguay(0.124814) 

19 Cameroon 0.904272 
Bangladesh(0.770839); China(0.178164); 
Paraguay(0.048911) 

20 Canada 0.899883 
China(0.352611); Japan(0.236291); 
Paraguay(0.561999) 

21 Cayman Islands 0.799489 Japan(0.959718) 
22 Chile 1 Chile(1.000000) 
23 China 1 China(1.000000) 

24 
China, Hong 
Kong SAR 0.95947 

China(0.223989); Japan(0.711436); 
Paraguay(0.003766) 

25 Colombia 0.915024 
China(0.720433); Guinea(0.160882); 
Japan(0.107728) 

26 Comoros 0.829576 
Bangladesh(0.181465); China(0.541731); 
Paraguay(0.164660) 

27 Congo 0.874415 
Bangladesh(0.663994); China(0.267992); 
Paraguay(0.026005) 

28 
Congo, Dem. 
Rep. of the 0.928421 

Bangladesh(0.915071); China(0.001805); 
Paraguay(0.090606) 

29 Costa Rica 0.957154 
China(0.394544); Japan(0.397879); 
Paraguay(0.097077) 

30 Côte d'Ivoire 0.9181 
Bangladesh(0.538023); China(0.336486); 
Paraguay(0.106805) 

31 Croatia 0.853141 
Bangladesh(0.061104); China(0.786867); 
Paraguay(0.146364) 

32 Cuba 0.883825 
Bangladesh(0.687611); China(0.226097); 
Paraguay(0.150641) 

33 Cyprus 0.803628 
China(0.164254); Japan(0.253536); 
Paraguay(0.715153) 

34 Denmark 0.918971 
China(0.490156); Japan(0.262773); 
Paraguay(0.263210) 

35 Djibouti 0.796377 
Bangladesh(0.042042); China(0.800011); 
Paraguay(0.089803) 

36 Dominica 0.926437 Japan(0.739426) 

37 
Dominican 
Republic 0.931036 

China(0.441581); Japan(0.397873); 
Paraguay(0.079095) 

38 Ecuador 0.933897 
Bangladesh(0.140186); China(0.630595); 
Paraguay(0.175878) 

39 Egypt 0.867466 
Bangladesh(0.213278); China(0.673195); 
Paraguay(0.190466) 

40 El Salvador 0.936256 Chile(0.293942); China(0.588343) 

41 Estonia 0.893744 
China(0.731143); Guinea(0.194811); 
Japan(0.009391) 
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Table 6.5, continued 

DMU Seaport Country 

DEA 
Score 
2020 Benchmark (Lambda) 

42 Fiji 0.791021 
Bangladesh(0.137579); China(0.306515); 
Paraguay(0.624317) 

43 Finland 0.891531 
Bangladesh(0.010873); China(0.715288); 
Paraguay(0.310586) 

44 Gabon 0.806904 Chile(0.141673); China(0.835894) 

45 Gambia 0.798277 
Bangladesh(0.931000); 
Paraguay(0.085206) 

46 Georgia 0.831407 
Bangladesh(0.267760); China(0.478471); 
Paraguay(0.273500) 

47 Germany 0.952921 
China(0.521453); Japan(0.304750); 
Paraguay(0.233959) 

48 Greece 0.87818 
China(0.530414); Japan(0.176849); 
Paraguay(0.342022) 

49 Grenada 0.893196 
China(0.211869); Japan(0.382273); 
Paraguay(0.232173) 

50 Guam 0.826384 
Bangladesh(0.125115); China(0.647920); 
Paraguay(0.175016) 

51 Guatemala 0.951384 
China(0.606383); Japan(0.224119); 
Paraguay(0.058216) 

52 Guinea 1 Guinea(1.000000) 

53 Guinea-Bissau 0.844687 
Bangladesh(0.466605); China(0.057342); 
Paraguay(0.446726) 

54 Guyana 0.868191 
Bangladesh(0.078632); China(0.586057); 
Paraguay(0.245854) 

55 Haiti 0.871531 
Bangladesh(0.072677); China(0.605451); 
Paraguay(0.270128) 

56 Honduras 0.917106 
China(0.200034); Japan(0.614878); 
Paraguay(0.082096) 

57 Iceland 0.912684 
China(0.508945); Japan(0.241895); 
Paraguay(0.146976) 

58 India 0.960503 
Bangladesh(0.179969); China(0.793318); 
Paraguay(0.039626) 

59 Indonesia 0.905643 
Bangladesh(0.108971); China(0.684937); 
Paraguay(0.284682) 

60 
Iran (Islamic 
Republic of) 0.866511 

Bangladesh(0.585945); China(0.167804); 
Paraguay(0.388273) 

61 Iraq 0.853244 
Bangladesh(0.628800); China(0.381731); 
Paraguay(0.084209) 

62 Ireland 0.952582 
Bangladesh(0.134405); China(0.682972); 
Paraguay(0.158062) 

63 Israel 0.88068 
Bangladesh(0.231399); China(0.608344); 
Paraguay(0.237746) 

64 Italy 0.884458 
Bangladesh(0.108535); China(0.513381); 
Paraguay(0.556326) 
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Table 6.5, continued 

DMU Seaport Country 

DEA 
Score 
2020 Benchmark (Lambda) 

65 Jamaica 0.871068 
China(0.766861); Japan(0.034952); 
Paraguay(0.104161) 

66 Japan 1 Japan(1.000000) 

67 Jordan 0.854761 
Bangladesh(0.362264); China(0.556783); 
Paraguay(0.089776) 

68 Kenya 0.938186 Chile(0.177982); China(0.736627) 

69 
Korea, Republic 

of 0.942339 
China(0.654854); Japan(0.278180); 
Paraguay(0.076246) 

70 Kuwait 0.847449 
Bangladesh(0.250571); China(0.709652); 
Paraguay(0.074032) 

71 Latvia 0.840913 
Bangladesh(0.148430); China(0.603624); 
Paraguay(0.271273) 

72 Lebanon 0.855385 
China(0.542411); Japan(0.022091); 
Paraguay(0.459982) 

73 Liberia 0.796652 
Bangladesh(0.890408); 
Paraguay(0.159550) 

74 Libya 0.778571 
Bangladesh(0.667904); China(0.203052); 
Paraguay(0.284635) 

75 Lithuania 0.838641 
Bangladesh(0.130392); China(0.685416); 
Paraguay(0.217485) 

76 Madagascar 0.866352 
Bangladesh(0.377601); China(0.493674); 
Paraguay(0.078630) 

77 Malaysia 0.874244 
China(0.872288); Japan(0.104550); 
Paraguay(0.035193) 

78 Maldives 0.780081 
Bangladesh(0.369287); China(0.327832); 
Paraguay(0.351101) 

79 Malta 0.799905 
China(0.536259); Japan(0.191852); 
Paraguay(0.304197) 

80 Mauritania 0.80092 Bangladesh(0.487869); China(0.512131) 

81 Mauritius 0.861092 
Bangladesh(0.180859); China(0.652631); 
Paraguay(0.093077) 

82 Mexico 0.928807 
Bangladesh(0.089019); China(0.903624); 
Paraguay(0.002813) 

83 

Micronesia 
(Federated States 

of) 0.828794 
Bangladesh(0.159638); China(0.327548); 
Paraguay(0.401958) 

84 
Moldova, 

Republic of 0.95996 
Bangladesh(0.283175); 
Paraguay(0.685845) 

85 Montenegro 0.766973 
China(0.425748); Japan(0.264751); 
Paraguay(0.345846) 

86 Morocco 0.887651 
Bangladesh(0.045313); China(0.681451); 
Paraguay(0.280943) 

87 Mozambique 0.83287 Chile(0.008421); China(0.917895) 
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Table 6.5, continued 

DMU Seaport Country 

DEA 
Score 
2020 Benchmark (Lambda) 

88 Myanmar 0.836915 
Bangladesh(0.463331); China(0.537388); 
Paraguay(0.058549) 

89 Namibia 0.865245 
Bangladesh(0.315465); China(0.500826); 
Paraguay(0.129065) 

90 Netherlands 0.932634 
China(0.235087); Japan(0.674237); 
Paraguay(0.110284) 

91 New Zealand 0.904961 
Bangladesh(0.131508); China(0.718704); 
Paraguay(0.145507) 

92 Nicaragua 0.884028 
Bangladesh(0.149842); China(0.720648); 
Paraguay(0.020106) 

93 Nigeria 0.916667 Bangladesh(0.896685); China(0.180239) 

94 Norway 0.923605 
China(0.014140); Japan(0.961949); 
Paraguay(0.010262) 

95 Oman 0.826498 Bangladesh(0.010397); China(0.989603) 

96 Pakistan 0.891988 Bangladesh(0.220592); China(0.779408) 

97 Panama 0.838399 
China(0.331257); Japan(0.575384); 
Paraguay(0.107008) 

98 
Papua New 

Guinea 0.861083 
Bangladesh(0.171561); China(0.705254); 
Paraguay(0.076512) 

99 Paraguay 1 Paraguay(1.000000) 

100 Peru 0.900844 
Bangladesh(0.038580); China(0.900737); 
Paraguay(0.023202) 

101 Philippines 0.862905 
China(0.766156); Japan(0.022688); 
Paraguay(0.285951) 

102 Poland 0.905344 
Bangladesh(0.118159); China(0.613810); 
Paraguay(0.337777) 

103 Portugal 0.867869 
China(0.921180); Japan(0.002335); 
Paraguay(0.087999) 

104 Qatar 0.884142 
Chile(0.092008); China(0.838138); 
Guinea(0.052592) 

105 Romania 0.846069 
Bangladesh(0.571747); China(0.225231); 
Paraguay(0.371744) 

106 
Russian 

Federation 0.890898 
Bangladesh(0.197537); China(0.416668); 
Paraguay(0.559275) 

107 Samoa 0.862043 
China(0.570993); Japan(0.055256); 
Paraguay(0.200103) 

108 Saudi Arabia 0.90839 
Bangladesh(0.143118); China(0.834851); 
Paraguay(0.037836) 

109 Senegal 0.840169 
Bangladesh(0.292230); China(0.571374); 
Paraguay(0.140387) 

110 Seychelles 0.755243 
Bangladesh(0.285567); China(0.463046); 
Paraguay(0.243177) 
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Table 6.5, continued 

DMU Seaport Country 

DEA 
Score 
2020 Benchmark (Lambda) 

111 Sierra Leone 0.836284 
Bangladesh(0.070841); China(0.724317); 
Paraguay(0.107734) 

112 Singapore 1 Singapore(1.000000) 

113 Solomon Islands 0.830048 
Bangladesh(0.114984); China(0.710244); 
Paraguay(0.037413) 

114 Somalia 0.816668 
Bangladesh(0.590481); China(0.020833); 
Paraguay(0.472144) 

115 Spain 0.949412 
China(0.701932); Japan(0.127500); 
Paraguay(0.179114) 

116 Sri Lanka 0.818562 
Bangladesh(0.005347); China(0.910791); 
Paraguay(0.120300) 

117 Sudan 0.802301 
Bangladesh(0.762622); China(0.003896); 
Paraguay(0.383390) 

118 Suriname 0.830802 
Bangladesh(0.092222); China(0.627541); 
Paraguay(0.195385) 

119 Sweden 0.876016 
China(0.458656); Japan(0.284371); 
Paraguay(0.354597) 

120 Tanzania 0.894059 Bangladesh(0.659280); China(0.340720) 

121 Thailand 0.903496 
China(0.348880); Japan(0.536862); 
Paraguay(0.145544) 

122 Timor-Leste 0.923502 
Bangladesh(0.123755); China(0.455157); 
Paraguay(0.249239) 

123 Togo 0.842613 
Bangladesh(0.238713); China(0.510686); 
Paraguay(0.213465) 

124 Tonga 0.853891 
China(0.124353); Japan(0.487435); 
Paraguay(0.222333) 

125 
Trinidad and 

Tobago 0.859248 
China(0.795806); Japan(0.049486); 
Paraguay(0.087109) 

126 Tunisia 0.850777 
Bangladesh(0.663161); China(0.178268); 
Paraguay(0.237101) 

127 Turkey 0.866079 
Bangladesh(0.108701); China(0.560505); 
Paraguay(0.479421) 

128 Ukraine 0.841554 
Bangladesh(0.465171); China(0.157900); 
Paraguay(0.555884) 

129 
United Arab 

Emirates 0.88155 
Bangladesh(0.058838); China(0.877264); 
Paraguay(0.083255) 

130 United Kingdom 0.939929 
Bangladesh(0.036988); China(0.841248); 
Paraguay(0.164204) 

131 
United States of 

America 0.96973 
Bangladesh(0.046279); China(0.650639); 
Paraguay(0.439414) 

132 Uruguay 0.901782 
Bangladesh(0.282886); China(0.595456); 
Paraguay(0.075928) 

133 Viet Nam 0.913353 
Bangladesh(0.067793); China(0.839354); 
Paraguay(0.064914) 
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6.4 Fuzzy Data Envelopment Analysis (FDEA) 

In this section, fuzzy DEA based on triangular fuzzy number (TrFN) and trapezoidal 

fuzzy number (TpFN) will be computed. This process generates two outcomes; triangular 

fuzzy data envelopment analysis (TrFDEA) and trapezoidal fuzzy data envelopment 

analysis (TpFDEA) results. Moreover, comparisons between DEA, TrFDEA and 

TpFDEA will be conducted numerically and graphically. 

 

6.4.1 TrFDEA Results 

 
 

Figure 6.1: Radar chart of efficiency based of Triangular Fuzzy Numbers (TrFNs) 
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Figure 6.1, continued 
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Figure 6.1 shows the minimum, mean and maximum of TrFN for 3 years. The radar 

charts depict that the efficiency scores are moving up and down with involvement of the 

fuzzy numbers in the variables. Some examples (denoted by star and triangle) clearly 

show the differences in the 3-year radar charts observed from the results of DMU 17, 

DMU 40 and DMU 41 where their fuzzy efficiency scores are very high in 2018 as 

compared to 2019 and 2020. 

In addition, the TrFDEA results for seaport network efficiency scores are very low for 

DMU 8 and DMU 21 in 2018 as compared to 2019 and 2020 across the minimum, mean 

and maximum efficiency spread. The TrFDEA results show the average and standard 

deviation values for three years. The mean and the standard deviation for 2018 are 0.8808 

and 0.057504, for 2019 are 0.8825 and 0.05385995 and for 2020 are 0.8823 and 0.05699 

respectively. 

 

6.4.2 Comparison between DEA and TrFDEA Results  

This subsection compares DEA and TrFDEA results. Figure 6.2 shows the difference 

between DEA and TrFDEA approaches in determining the efficiency scores. The 

TrFDEA method gives better prediction for the seaport network efficiency as it introduces 

more measurable and specific terms through the utilization of TrFN. The TrFN theory 

reflects that efficiency scores in 2020 have the highest impact as compared to the scores 

in 2018 and 2019. The TrFDEA and classical DEA give perfect efficiency scores of 

DMUs 22, 23, 66, 99 and 112 for all the 3 years. There are new additions of perfect 

efficiency scores in 2018 (DMU 15 and DMU 41), 2019 (DMU 52) and 2020 (DMU 52 

and DMU 10). The section's major goal is to discuss the utilization of TrFNs as a 

substitute tool to improve the seaport network efficiency measurement between DEA and 

TrFDEA. The procedure used to achieve the aforementioned efficacy is pretty evident. 
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Specifically, the mean value of the seaport network efficiency is equal to 

the average value of each TrFNs. 

Comparison of DEA and triangular fuzzy DEA (TrFDEA) can be done based on the 

perfect (100%) efficiency score. Initially, DEA is performed with the input and output 

variables to measure the seaport network efficiency. Then, the DEA scores are short-listed 

by taking only the perfect efficiency with the value of 1 where it reflects that the inputs 

and outputs contribute to 100% efficiency score. From 133 countries considered, only 

five countries in 2018 and seven countries in 2019 and 2020 respectively, have perfect 

seaport network efficiency scores. The seaport networks in China, Chile, Japan, Paraguay 

and Singapore have perfect efficiency throughout the three observed years by using both 

DEA and TrFDEA approaches. Estonia, Brazil (2018), Guinea (2019) and Guinea, 

Bangaladesh (2020) also showed perfect scores in the individual years by using DEA and 

TrFDEA in their seaport network efficiency.  

The absolute differences in Figure 6.2 show that in the year 2020, there was a huge 

impact on the efficiency where TrFDEA contributes towards higher efficiency score as 

compared to the standard DEA. Based on the results for 2018 and 2019, the changes are 

not much (up to ±1.1%) but in 2020, there are ±3% differences in the efficiency scores. 
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Figure 6.2: The absolute differences between DEA and TrFDEA results  

 

The 3% changes show that TrFDEA has a wider score range (-3% to 3%) than the 

standard DEA where triangular fuzzy numbers were used to determine the efficiency. 

Another factor that affects the results in 2020 might be the influence of COVID-19 

pandemic which makes maximum and minimum scores differ a lot as compared to other 

years. Since TrFDEA is influenced by triangular fuzzy numbers (maximum, mean and 

minimum) in this study, the method is suitable to be employed during the economy crisis 

since it can conduct efficiency estimation based on three different levels with fluctuation 
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characteristics, hence, TrFDEA can give more information on the efficiency results as 

compared to DEA. This unique characteristics of TrFDEA obtained by computing the 

maximum and minimum efficiency values is promising as a credible relative efficiency 

tool for the 𝐷𝑀𝑈𝑗. 

 

6.4.3 Comparison between TrFDEA and TpFDEA Results  

Trapezoidal fuzzy numbers provide a variation of values, which may be utilized in 

seaport network efficiency measurement. The average weight of the stable vector 

acquired from the inference process is used to evaluate and to rank the ideas depending 

on the degree of effect. The TrFN and TpFN are used in this study to investigate the effect 

of seaport network efficiency scores in maritime transportation industry. The DEA results 

have been improved in both efficiency and sensitivity with the introduction of TrFN and 

TpFN to express the uncertainty dataset. Fuzzy numbers have evolved through time to 

support increasingly complicated fuzzy values. The difference between TrFDEA and 

TpFDEA scores in Figure 6.3 shows that there is a small difference among them 

with ±0.0015 units. Only one efficiency score of DMU 24 has the value difference in the 

range of −0.0035 to 0.002. The outcomes from TrFDEA and TpFDEA have shown the 

efficiency estimations in different ways. Despite both TrFDEA and TpFDEA seem to 

produce similar results for the perfect efficiency scores but there is a slight difference 

between the two methods where the outcomes of TrFDEA range between -0.0274 to 

0.0105 while the TpFDEA’s outcomes range between -0.0307 to 0.0106.  
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Figure 6.3: The differences between TrFDEA and TpFDEA results 

 

Figure 6.3 shows as if the efficiency scores are approximately the same and the 

differences between TrFDEA and TpFDEA could not be captured clearly from the graph. 

As the values are quite near, standard deviation and variance are calculated and presented 

in Figure 6.4 to clarify the definite differences between TrFDEA and TpFDEA. These 
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standard deviations and variances serve as statistical validation tools to conclude which 

approach is more superior than the other by using DEA results as the relative reference. 

 

 
Figure 6.4: Comparison of standard deviations between TrFDEA and TpFDEA 

using DEA as the relative reference. 

 

Based on Figure 6.4, standard deviations of differences between DEA and TrFDEA 

are approximately 0.002216 (2018), 0.002195 (2019), 0.004511 (2020) while the 

standard deviations between DEA and TpFDEA are 0.002040 (2018), 0.002111 (2019) 

and 0.004713 (2020) respectively. These findings demonstrate that utilization of 

TpFDEA results in reduced inaccuracy in the data since the standard deviation values for 

TpFDEA are smaller than TrFDEA in 2018 and 2019. However, during the pandemic 

year of 2020, Figure 6.4 shows the highest standard deviation and variance values 

between the differences of DEA-TpFDEA and DEA-TrFDEA. From the smaller standard 

deviation and variance values, it can be concluded that TpFDEA is a better fuzzy 

approach than TrFDEA in the early two years while TrFDEA is a better fuzzy approach 

than the TpFDEA during the COVID-19 pandemic year of 2020. 
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6.4.4 Comparison between DEA, TrFDEA and TpFDEA Results  

 

 

Figure 6.5: Comparison between DEA, TrFDEA and TpFDEA 

 
Figure 6.5 shows the standard deviation comparison between all the three methods 

(triangular DEA, trapezoidal DEA and DEA). The figure shows small changes between 

the methods where the TrDEA and TpDEA give similar standard deviation while the 

standard deviation for DEA has a bigger value in 2020 as compared to 2018 and 2019. It 

is proven that when the data is uncertain and fluctuating, the fuzzy approaches (TrFDEA 

and TpFDEA) give better efficiency prediction.  

 

6.5 Fuzzy Linear Regression and Bounds of Efficiency 

Fuzzy linear models manage dubious and loose peculiarities to address better models 

as compared to linear regression model. These sorts of models are particularly appropriate 

for modeling and measuring the seaport network efficiency. The purpose of this method 

is to explain the dependent variable 𝑢 as an interval output 𝑦 in terms of the variant of 

independent variables. Table 6.6 shows the approximated linear regression equations 

combined with the boundedness property of the PLRLS function with minimal MSE for 
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all the years considered. The boundedness is shown in the fuzzy linear regression model 

since there are lower and upper boundaries of the model that support the interval and the 

central tendency of the fuzzy regression model. Based on the equations, it shows that in 

2018 and 2019, the model upper boundary has an increasing trend but in 2020 the trend 

is decreasing towards the DMUs because of the COVID-19 pandemic.  

 

Table 6.6: Fuzzy linear regression functions with boundedness 

  

Central tendency Lower boundary Upper boundary 

 MSE=0.06 

2018 𝑦 = 0.8956 − 0.0026𝑥 𝑦 =  0.8956 − 0.0304𝑥 𝑦 =  0.8997 + 0.0221𝑥 

 MSE=0.05 

2019 𝑦 =  0.9202 − 0.003𝑥 𝑦 =  0.9192 − 0.0153𝑥 𝑦 =  0.9809 + 0.0046𝑥 

 MSE=0.07 

2020 𝑦 =  1.1968 − 0.0177𝑥 𝑦 =  1.0751 − 0.0191𝑥 𝑦 =  1.38 − 0.0177𝑥 

 MSE=0.07 

Boundedness 𝑦 =  0.6633 +  0.0092𝑥 𝑦 =  0.663 +  0.0015𝑥 𝑦 =  0.6633 + 0.0159𝑥 

 

Based on the function produced in Table 6.6, it shows that the central tendency is 

decreasing by 0.0026 (2018), 0.003 (2019) and 0.0177 (2020) respectively. The lower 

boundary also shows the negative relationship for all the three years as they decrease by 

0.0304 (2018), 0.0153 (2019) and 0.0191 (2020). In addition, the upper boundary is quite 

special since in 2018 and 2019, the function is increasing with 0.00221 and 0.0046 

respectively. Yet in 2020, the function is decreasing by 0.0177 because of the pandemic. 

The mean squared error (MSE) shows that, 2019 efficiency score has the least error of 

0.05 as compared to 2018 (0.06) and 2020 (0.07). This describes that the function is fit to 

be used for further analysis. 
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A combination is made by taking the minimum of the minimum, average of medium 

and maximum of maximum efficiency of all the 3-year fuzzy values to make the perfect 

boundedness model for future prediction. The model shows that the boundaries increase 

by 0.0159 unit (upper boundary) and decrease about 0.0015 unit in the lower boundary 

where the boundaries are in a concave pattern. The equations displayed in Table 6.6 

illustrate that the central tendency and the lower limit have declined since the slope is 

negative for all the three years, while the upper bound increases in 2018 and 2019 but 

drops in 2020. The interval-based Possibilistic Linear Regression with Least Squares 

(PLRLS) method generates efficiency bounds by taking the minimum of the minimum 

values, the maximum of the maximum values, and the average of the mean values from.    

The central tendency increases by 0.0092 unit throughout the analysis with Mean 

Square Error (MSE) of 0.07. The results have proven that the seaport network efficiency 

scores have a wider range where the values are between 0.7435 to 1 and that the 

boundedness modelling seems to have a concave relationship. All the functions including 

the boundedness function are graphed in Figure 6.6. Figure 6.6 shows minimum, mean 

and maximum efficiency score values that are used to form the modelling equations. This 

figure displays the negative prediction when the line is going down whereas the 

boundedness aspect gives the minimum range of the minimum value (lower boundary), 

the average range of the average value (central limit) and the maximum range of the 

maximum value (upper boundary). 
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Figure 6.6: Fuzzy linear regression model 
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6.6 Summary 
 

Tobit regression has been performed in this chapter to generate censored regression on 

the Liner Shipping Connectivity Index (LSCI). Moreover, the measurement of seaport 

network efficiency scores for 133 global seaport countries using DEA and FDEA have 

been discussed in this chapter. In FDEA approach, triangular fuzzy number (TrFN) and 

trapezoidal fuzzy number (TpFN) theories are applied in DEA to generate TrFDEA and 

TpFDEA results. Comparison between all the methods considered are analysed 

graphically. Finally, the fuzzy seaport network efficiency scores based on TrFN are used 

to produce a fuzzy linear regression model using the Possibilistic Linear Regression with 

Least Squares (PLRLS) method. The outcomes of this chapter fulfilled the Objective 3 

and Objective 4 of the thesis. 
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CHAPTER 7: CLUSTERING FOR GLOBAL SEAPORT NETWORK 

EFFICIENCY 

 

7.1 Introduction 

Global seaport network efficiency can be measured using the Liner Shipping 

Connectivity Index (LSCI) with Gross Domestic Product. This chapter utilizes k-means 

and hierarchical clustering strategies by leveraging the results obtained from data 

envelopment analysis (DEA) and fuzzy data envelopment analysis (FDEA) to cluster 133 

countries based on their seaport network efficiency scores. The outcomes of the k-means 

strategy proved that our four newly defined clusters; low connectivity (LC), medium 

connectivity (MC), high connectivity (HC) and very high connectivity (VHC), are 

sufficient for the seaport network efficiency logical classification. Moreover, k-means 

clustering strategy is found to be much more consistent than hierarchical clustering 

strategy since the k-means results for DEA and FDEA are more or less identical to each 

other as compared to the hierarchical clustering strategy. This chapter further proposed 

hybrid hierarchical k-means (hkmeans) algorithm as the best strategy for the seaport 

network efficiency clustering in comparison with k-means and hierarchical techniques. 

Using the hkmeans algorithm, 24 countries have been clustered under LC, 47 countries 

under MC, 40 countries under HC and 22 countries under VHC. With and without a fuzzy 

dataset distribution, this demonstrates that the hkmeans clustering is consistent and 

practical to predict classification of general data types. This research is important as it is 

the first literature that considers more global countries in the clustering of their seaport 

network efficiency. The hkmeans algorithm with four new level clusters proposed in this 

work are also new applications in the field. The findings of this chapter can be useful for 

researchers, authorities, practitioners and investors in guiding their future analysis, 
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decision and policy makings involving data grouping and prediction especially in the 

maritime economy and transportation industry.  

 

7.2 K-Means Clustering Algorithm 

K-means clustering is performed by leveraging the seaport network efficiency scores 

obtained from DEA and FDEA. Further analysis and comparison between the two da-

tasets can be performed after the k-value is determined prior to finding the nearest 

centroid. K-means clustering is developed in this study where it calculates the sum of 

square and the average of distance of points in the seaport network efficiency.  

The present study utilizes the elbow method which can guide the way to find the best 

k-cluster value of the data. A plot is developed with a number of clusters and sum of 

square within the cluster to obtain the k-value. All the three-year clusterings via the elbow 

method have shown that only four clusters are required to classify the seaport network 

efficiency model based on Figure 7.1 to Figure 7.4. The four classes can be determined 

by observing the graph in details and the k-value can be selected at the point where the 

graph decreases sharply which happens at k-value of 4. 

The gap statistics is the best tool to find a suitable k-value in the clustering. Invented 

20 years back by Tibshirani et al. (2001), the graph is interpreted based on the break point 

within the cluster distance to obtain the optimum cluster. Figure 7.1 and Figure 7.2 

visualize the number of clusters and the statistic gaps for DEA and Figure 7.3 and Figure 

7.4 for FDEA for the three years (2018, 2019 and 2020). Based on these figures, it shows 

that the break point happens at the clusters 3 and 4. This decision will be verified by the 

2020 dataset.  
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2018 

 

2019 

 

2020

 

Figure 7.1: Number of cluster for k-means clustering for DEA 
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2018 

 

2019 

 

2020 

 

Figure 7.2: Gap Statistics for k-means clustering for DEA 
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2018 

 

2019 

 

2020 

 

Figure 7.3: Number of cluster for k-means clustering for Fuzzy DEA 
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2018 

 

2019 

 

2020 

 

Figure 7.4: Gap Statistics for k-means clustering for Fuzzy DEA 
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Figure 7.2 and Figure 7.4 depict the gap statistics used to determine the number of 

clusters. Different natures in the 2018 and 2019 datasets are depicted in this figure to find 

the number of clusters. The gap statistics for 2020 reveal that the number of clusters for 

DEA can be 3, 4, 5 or 6 but the gap statistics for FDEA are 3 or 4. Therefore, it is evident 

from here that the k-means strategy is more sensitive for the FDEA dataset than the DEA 

dataset due to the fuzziness contribution. Hence, it can be emphasized that the k-means 

strategy provides better classification for fuzzy data distribution.  

Based on Figure 7.1 and Figure 7.3 by using k-means clustering, the number of cluster 

is similar due to sensitivity of the initial value selection. Therefore, gap statistics as 

presented in Figure 7.2 and Figure 7.4 are employed to find the proper number of clusters. 

Unfortunately for the year 2020, determination of the number of cluster is not 

straightforward as the graph is giving 3, 4 or 5 clusters. In reality, these data from 2020 

are irregular due to COVID-19 outbreak which give impact on the seaport network 

efficiency scores. 

Based on the variations in 2018, 2019 and 2020, all the three-year plots show that the 

number of clusters of 3 and 4 are optimum. Following this result, this research will 

consider 4 clusters in each clustering approach on DEA and FDEA datasets. These 4 new 

level clusters are now specified as low connectivity (LC), medium connectivity (MC), 

high connectivity (HC) and very high connectivity (VHC).  

 

7.3 Hierarchical Clustering Algorithm 

Hierarchical clustering is another method that can cluster a set of data into groups. It is 

repetitively performed using two steps. The first step is to identify the two clusters that 

are closest together and it continues with combining the two most alike clusters. The 

graphs comparing DEA and FDEA for 2018, 2019 and 2020 are shown in Figure 7.5, 

Figure 7.6 and Figure 7.7 respectively.  

Univ
ers

iti 
Mala

ya



 
 

147 
 

2018 

 

DEA 

  

FDEA 

Figure 7.5: Hierarchical dendrogram for DEA and FDEA for 2018 
 

Cluster      VHC           LC                                     MC                                                       HC 

Cluster        VHC   LC                         MC                                                                  HC   
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2019 

 

DEA 

 

FDEA 

Figure 7.6: Hierarchical dendrogram for DEA and FDEA for 2019 

Cluster     VHC                              HC                                                         MC                                    LC 

Cluster      VHC                                HC                                                       MC                                   LC 
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2020 

 

DEA 

 

FDEA 

Figure 7.7: Hierarchical dendrogram for DEA and FDEA for 2020 

Cluster   VHC                            MC                                       HC                                         LC 

Cluster      VHC                       HC                   LC                                                 MC 
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The hierarchical clustering starts with each point assigned to a separate cluster. The 

cluster is performed by combining the nearest clusters into a bigger cluster until it gives 

the four nearest clusters that can be displayed using the dendrogram. The cluster 

dendrogram shows the data points in the x-axis and in the y-axis represent the distance 

between the clusters. The line with green colour represents the domain for each cluster.  

Hierarchical cluster is a decision tree that divides the cluster visually with intention to 

have a minimum distance in the y-axis. Similarly, in every splitting route of the 

dendrogram, the data belong to the clusters with different levels of efficiency among them. 

Figure 7.5, Figure 7.6 and Figure 7.7 show dendrograms for DEA and FDEA datasets 

using the hierarchical algorithm. All the three-year results show that the classifications are 

very narrow in VHC Cluster for both DEA and FDEA. The LC cluster for FDEA dataset 

in 2018 and 2020 are also narrow as shown in Figure 7.5 and Figure 7.7 respectively. 

Based on 2019, the hierarchical clustering results for DEA and FDEA show similar 

outputs as in Figure 7.6. 

 

7.4 Hierarchical K-Means (Hkmeans) Clustering Algorithm 

This study further explores the hkmeans strategy to optimize the clustering outputs for 

unsupervised machine learning data. The novelty of this work is because there is no study 

in maritime industry that uses hkmeans strategy in the clustering of the seaport network 

efficiency of 133 global countries. This hkmeans clustering strategy is pro-posed due to 

the drawbacks in conventional k-means and hierarchical algorithms that produce variation 

of results in the calculation. K-means is very sensitive to initial se-lection of the clusters 

where a random set of countries has been selected as the initial center.  
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DEA 

DEA 

FDEA  

 
 

Figure 7.8: Comparison of hkmeans clustering for DEA and FDEA 

Cluster       VHC                                  LC                                HC                             MC 

Cluster         VHC                                    LC                               HC                               MC 
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On the other hand, the outcomes of the hierarchical clustering strategy might be diverse 

with different type of dataset applied. By combining the elements of hierarchical 

technique with k-means technique in the hierarchical k-means or hkmeans algorithm, the 

advantages of these two techniques can be leveraged while their individual drawbacks 

can be retrenched to be more balanced. This potential motivates exploration and 

application of the hkmeans strategy in the seaport network efficiency clustering which 

can provide better consistency and practicality for general data type.  

The hkmeans clustering for DEA and FDEA are performed in Figure 7.8. Here are 

some specific details from Figure 7.8; Brunei Darussalam is classified under MC cluster 

(DEA) and HC cluster (FDEA), Conga is under VHC cluster (DEA) and MC cluster 

(FDEA), whereas Latvia, Sierra Leone and Solomon Islands are classified from HC 

cluster (DEA) to LC cluster (FDEA), following the hkmeans clustering algorithm. 

Moreover, Turkey is classified under HC and VHC cluster for DEA and FDEA datasets 

respectively. Note that only the clustering results of these 6 countries changed with the 

hkmeans algorithm. The classification results for other countries remain under the same 

clusters with improved accuracy in cluster prediction through the integration of the 

hkmeans clustering technique. With and without a fuzzy dataset distribution, this 

demonstrates that the hkmeans clustering is consistent and practical to predict classifi-

cation of general data types. Hence the hkmeans strategy can be an appropriate tool for 

the seaport network efficiency clustering. 

 

7.5 Comparison between K-Means, Hierarchical and Hkmeans Algorithms 

In this section we will compare the clustering results of hierarchical versus k-means, 

hierarchical versus hkmeans, k-means versus hkmeans for both DEA and FDEA datasets, 

 

 

Univ
ers

iti 
Mala

ya



 
 

153 
 

7.5.1 Hierarchical versus K-means Clustering for 2018, 2019 and 2020 

The comparison between hierarchical and k-means strategies for DEA and FDEA 

results are shown in Figure 7.9.  

 

 

 
Figure 7.9: Comparison between hierarchical and k-means clustering results on 

DEA and FDEA datasets.  
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The graph shows the difference according to the clusters; LC, MC, HC and VHC based 

on the seaport network efficiency obtained in the previous analysis. From the figure, the 

MC has the highest frequency among all the clusters. The y-axis is representing the 

frequency of the countries involved in this study and x-axis represents the cluster 

categories that are used in this study.  

It is observed that the results of k-means for DEA and FDEA data are approximately 

similar as opposite to hierarchical results for the two datasets. Moreover we found that 

the hierarchical clustering results also show a bit of fluctuation in 2018 and 2020 for the 

seaport network efficiency which indicates that the hierarchical clustering strategy is not 

stable as compared to the results of 2019. Therefore, between the hierarchical and k-

means clustering algorithms alone from Figure 7.9 especially for the year of 2020, it is 

concluded that the k-means technique is a better strategy than the hierarchical strategy in 

clustering the seaport network efficiency level since the fluctuation risk between the 

regular and fuzzy data distributions is minimal. 

 

7.5.2 Hierarchical versus Hkmeans for DEA and FDEA. 

Hkmeans method is first conducted by employing the hierarchical method to determine 

the k-value where the tree is cut into clusters. There are four seaport network efficiency 

clusters; LC, MC, HC and VHC represented by four coloured main tree branches as 

depicted in Figure 7.10 and Figure 7.11 respectively. Under these clusters, the numbers 

representing the seaport countries are classified based on their seaport network efficiency 

level. The dendrogram of hierarchical algorithm is marked with purple, blue, green and 

red colours, whereas the hkmeans dendrogram is displayed in black, green, red and blue 

colours to represent MC, LC, HC and VHC clusters respectively in both Figure 7.10 and 

Figure 7.11. 
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Hierarchical clustering 

 

 

Hkmeans clustering 

 

Figure 7.10: Comparison of hierarchical and hkmeans clusterings for DEA  
Cluster   VHC                         LC                         HC                        MC 

Cluster      VHC                        LC                        HC                       MC 
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Hierarchical clustering 

 

Hkmeans clustering 

 

Figure 7.11: Comparison of hierarchical and hkmeans clusterings for FDEA  

Cluster   VHC                        LC                          HC                       MC 

Cluster   VHC                        LC                         HC                       MC 
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Based on Figure 7.10, a few countries under the hierarchical diagram have been moved 

from MC cluster to HC cluster (red) after utilization of the hkmeans method where these 

countries are Belize, Grenada, Cameroon, Philippines, United Arab Emirates, Angola, 

Brunei Darussalam and Saudi Arabia. Cambodia is the only country that has been moved 

from MC cluster of the hierarchical method to VHC cluster (blue) of the hkmeans method.  

From the hierarchical LC cluster (green), the majority of the countries are reassigned 

to hkmeans HC cluster, while the remaining countries that stay under the LC cluster 

through hierarchical and hkmeans clusterings are Myanmar, Georgia, Solomon Islands, 

Guam, Latvia, Sierra Leone, Libya and Maldives. Last but not least, it is noticed that the 

hierarchical HC cluster has an intriguing feature such that all the countries under this 

cluster have been changes to VHC cluster of hkmeans, whereas all other countries from 

VHC cluster of the hierarchical clustering have been shifted to the LC cluster of the 

hkmeans clustering. In general, this figure shows how the hierarchical clustering results 

can be different from the results of hkmeans clustering.  

Figure 7.11 shows the comparison between hierarchical and hkmeans clustering results 

for FDEA dataset, which illustrate that all countries under the hierarchical VHC cluster 

have been changed to the hkmeans MC cluster while all countries under the hierarchical 

HC cluster have been changed to the hkmeans VHC cluster except for Guatemala. Besides 

that, Micronesia, Mozambique, Myanmar, Georgia, Solomon Islands, Guam, Sierra 

Leone, Togo, Libya and Maldives are transferred to the hkmeans MC cluster from the 

hierarchical LC cluster while other countries under the hierarchical LC cluster remain in 

the same cluster even after the utlization of hkmeans strategy. Regarding the countries 

under the hierarchical MC cluster, all of them have changed to either LC and or HC cluster 

under the hkmeans strategy. 
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7.5.3 K-Means versus Hkmeans for DEA and FDEA  

 

Figure 7.12 and Figure 7.13 demonstrate the different clusters with k-means and 

hkmeans clustering strategies for both DEA and FDEA network efficiency datasets.  

K-Means Cluster Plot 

 

Hkmeans Cluster Plot 

  

Figure 7.12: K-means versus hkmeans cluster plots for DEA 

Cluster        LC                 MC                   HC                VHC 

Cluster         LC                 MC                 HC               VHC 
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K-Means Cluster Plot 

 

Hkmeans Cluster Plot 

 

Figure 7.13: K-means versus hkmeans cluster plots for FDEA 

Cluster         LC                       MC                 HC                    VHC 

Cluster       LC                  MC                     HC                  VHC 
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The cluster plots show that a few countries have been moved to other clusters 

following the use of hkmeans clustering with respect to the countries’ particular 

efficiency characteristics. Few values are highlighted as data samples in Figure 7.12 and 

Figure 7.13 to differentiate the cluster plots between the classical k-means and hkmeans 

strategies. Based on selected data samples from Figure 7.13 involving the countries 

numbered with 29 (Costa Rica), 62 (Ireland), 130 (United Kingdom) and 40 (El 

Salvador), it is clearly shown that these countries have been changed and plotted into 

another cluster after the involvement of hkmeans algorithm. It also shows that the 

hkmeans clustering method produces nearly similar outcomes for DEA and FDEA 

datasets. 

The cluster plot, which displays clusters in two-dimensional space, is shown in Figure 

7.12 (Dim1 and Dim2). This measurement is basically equivalent to principal component. 

Principal component is a linear combination of the original variables that are independent 

(orthogonal) to other principle component. The first principal component is a new 

variable that accounts for the majority variation of 92.3% that corresponds to the 

horizontal dimension (Dim1) as shown in Figure 7.12. The second principal component 

(Dim 2) accounts for 5.5% of the total variation and is represented by the vertical axis. 

Together these contribute to 97.8% of the overall variation. 

Figure 7.13 (Dim1 and Dim2) shows the cluster plot for FDEA in which the clusters 

are displayed in two-dimensional space. Dim 1, a new variable that accounts for 92.7% 

of the variation, relates to the horizontal dimension, while Dim2, which accounts for 5.2% 

of the variation, corresponds to the vertical axis. This accounts for 97.9% of the total 

variation. This shows that the total variation in FDEA cluster plot has been increased by 

0.1% as compared to the DEA cluster plot.  

Table 7.1 displays the composition of 133 countries classified under present four 

clusters of seaport network efficiency using k-means, hierarchical and hkmeans strategies 
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imposed on DEA and FDEA datasets. It shows that the results of the k-means strategy are 

exactly similar between the DEA and FDEA datasets with 26 (19.55%) and 41 (30.83%) 

countries are clustered under very high connectivity (VHC) and low connectivity (LC) 

respectively. The results in this table are calculated by combination of the three years of 

2018-2020 at once which is different than the yearly individual analysis done in Figure 

7.14.  

 

Table 7.1: Composition of the countries under four seaport efficiency clusters using 

k-means, hierarchical and hkmeans clustering strategies 

Cluster 
K-Means Hierarchical Hkmeans 

DEA FDEA DEA FDEA DEA FDEA 

LC 
41 41 50 55 21 24 

30.83% 30.83% 37.59% 41.35% 15.79% 18.05% 

MC 
52 14 12 7 49 46 

39.10% 10.53% 9.02% 5.26% 36.84% 34.59% 

HC 
14 52 70 70 40 40 

10.53% 39.10% 52.63% 52.63% 30.08% 30.08% 

VHC 
26 26 1 1 23 23 

19.55% 19.55% 0.75% 0.75% 17.29% 17.29% 
 

 

Figure 7.14: Comparing k-means, hierarchical and hkmeans clustering strategies 
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Through hierarchical clustering, it shows that 50 (37.59%) and 55 (41.35%) countries 

are clustered under LC for DEA and FDEA. There are significant differences in the 

hierarchical clustering where 52.63% and 0.75% of the countries are classified under HC 

and VHC clusters for both DEA and FDEA datasets, respectively. Moreover, in 

comparison with the k-means and hkmeans strategies from Table 7.1, it is evident that the 

hierarchical clustering strategy produces the least composition of countries under the 

VHC cluster with 0.74% for both DEA and FDEA, respectively as shown in Figure 7.14. 

This demonstrates that the hierarchical strategy might not be the best tool to cluster the 

countries associated with the seaport network efficiency due the overall imbalance 

composition of countries under the resulting clusters.  

The percentages in Table 7.1 show the hkmeans clustering results with the country 

composition percentages of 15.79% (LC), 36.84% (MC), 30.08% (HC) and 17.29% 

(VHC) for DEA while 18.05% (LC), 34.59% (MC), 30.08% (HC) and 17.29% (VHC) 

are for FDEA. Comparing with the k-means and hierarchical clustering results, the overall 

country compositions under the four seaport network efficiency clusters through the 

hkmeans strategy are the most balanced with minimal variation between the regular and 

fuzzy data distributions. Since real-world data is usually unstable and fluctuating, the 

hkmeans technique is the most suggested tool for global seaport network efficiency 

clustering.  

Table 7.2 highlights summary of the four levels clustering results using the hkmeans 

strategy for FDEA dataset. Comparing with the hkmeans clustering results for DEA, the 

difference is minimal with only six countries namely Brunei Darussalam, Conga, Latvia, 

Sierra Leone, Solomon Islands and Turkey are classified under different cluster in DEA 

while the remaining 127 countries remain in the same cluster for DEA and FDEA using 

the hkmeans strategy. This table is selectively produced over DEA, as a sample outcome 
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of the hkmeans clustering method when dealing with fuzzy involvement in the dataset 

that may represent the real fluctuated raw data as influenced by the pandemic, economic, 

social, political or environmental factors. 

 

Table 7.2: Four hkmeans clusters of seaport network efficiency using FDEA  

LC MC HC VHC 
Albania Angola Algeria Argentina 

Antigua and 
Barbuda 

Australia American Samoa Bangladesh 

Bahamas Belgium Barbados Brazil 
Bahrain Belize Brunei Darussalam Cambodia 

Cayman Islands Benin Bulgaria Chile 
Cyprus Cameroon Comoros China 

Djibouti Canada Croatia China, Hong Kong 
SAR 

Fiji Colombia Dominica Costa Rica 
Gabon Congo Egypt El Salvador 

Gambia Congo, Dem. Rep. 
of the 

Georgia Germany 

Guam Côte d'Ivoire Greece Guatemala 
Latvia Cuba Guinea-Bissau Guinea 
Liberia Denmark Guyana India 

Libya Dominican 
Republic 

Haiti Ireland 

Maldives Ecuador Iceland Japan 

Malta Estonia Iran (Islamic 
Republic of) 

Korea, Republic 
of 

Mauritania Finland Iraq Moldova, 
Republic of 

Montenegro Grenada Italy Netherlands 
Mozambique Honduras Jamaica Paraguay 
Seychelles Indonesia Jordan Singapore 

Sierra Leone Israel Kuwait Turkey 
Solomon Islands Kenya Lebanon United Kingdom 

Somalia Mexico Lithuania United States of 
America 
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Table 7.2, continued 

LC MC HC VHC 

Sudan New Zealand Madagascar  
 Nigeria Malaysia  
 Norway Mauritius  

 Pakistan 
Micronesia 

(Federated States 
of) 

 

 Peru Morocco  
 Poland Myanmar  
 Portugal Namibia  
 Qatar Nicaragua  
 Russian Federation Oman  
 Saudi Arabia Panama  
 Spain Papua New Guinea  
 Sweden Philippines  
 Tanzania Romania  
 Thailand Samoa  
 Timor-Leste Senegal  

 United Arab 
Emirates 

Sri Lanka  

 Viet Nam Suriname  
  Togo  
  Tonga  

  Trinidad and 
Tobago  

  Tunisia  
  Turkey  
  Ukraine  
  Uruguay  
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7.6 Summary 

Hierarchical and k-means strategies have been used to cluster 133 seaport countries 

based on their seaport network efficiency scores. Four clusters (LC, MC, HC and VHC) 

have been proposed to generate seaport network efficiency clustering. The hybrid 

hierarchical k-means (hkmeans) algorithm has been proposed to overcome the drawbacks 

in k-means and hierarchical method. Comparisons between the methods have been 

performed numerical and graphically. The outcomes of this chapter has sufficiently 

fulfilled the thesis Objective 5. 
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CHAPTER 8: CONCLUSION AND SUGGESTION 

8.1 Conclusion 

This research embarks on five objectives, the first one is focusing on the operational 

scheduling and macroscopic transportation modelling using Westport as the local base 

case. The Westport operational scheduling is separated based on stage of delivery that 

divides into three processes namely loading/unloading, storage and delivery of the ship 

containers. It is important to understand the underlying mechanics of how the maritime 

transportation is operated and appreciated at the national level of a country before the 

maritime economy can further be explored and optimized globally. 

There are four divided areas that highlight Westport as the focal seaport. This made 

Westport one of the busiest shipping ports in Southeast Asia. The distance between 

Westport and other ports have been calculated to show the travelling profiles of the 

incoming and outgoing vessels through the biggest seaport along the Strait of Malacca. 

This thesis also proposed the macroscopic model of the maritime traffic flow along the 

strait by adapting the classical Lighthill-Whitham macro transportation model founded 

by the non-linear traffic flow with the conversation law equation on density that denotes 

the traffic. Meanwhile, several cases on the incoming and outgoing marine traffics from 

northwest (NW) to southeast (SE) and from SE to NW along the Strait of Malacca are 

represented by the respective flux functions. The present research highlights all the 

possible merging and dispersing functions along the single marine route of the Strait of 

Malacca to consolidate the newly proposed maritime macroscopic models that have 

fulfilled the thesis Objective 1.  

Next, the world’s leading import and export economies are examined in order to 

measure how balance and concentrated is the maritime economy distribution. Maritime 

transportation facilitates the world’s largest economic source and growth factor. The 

Univ
ers

iti 
Mala

ya



 
 

167 
 

concentration of the top 15 economic countries is well discussed where it is proven that 

China has the highest concentration among the other import origin locations whereas 

United States of America has the highest concentration in export. The concentration ratio 

(CR) and Herfindahl-Hirschman Index (HHI) in this study proved that there is a weak 

concentration in both import and export industries. The Lorenz curve and Gini coefficient 

show that the top 15 origin countries of developing import economies in the world had 

slightly more equality as compared to the top 15 destinations of developing export 

economies in the world. The CR features that the marine share is following the tight 

oligopoly trend since the CR is between 25% and 60%. Tight oligopolies are oligopolies 

of which the marine shares’ characteristics ease the realisation of transcending the normal 

profits. This study has also presented the Distance to Competitive Balance (DCB) 

analysis which shows different degrees of inequality where the export economy, to some 

extents, has more balance as compared to the import economy in the maritime industry. 

Finding of this research has fulfilled the thesis Objective 2. 

The Liner Shipping Connectivity Index (LSCI) is one of the basic maritime indicators 

that explains how well the seaport network of a country is connected to other seaports on 

the globe. Unfortunately, just like any other research involving real data, the present 

maritime study is limited and dependent on the availability of additional real data 

provided by UNCTADstats and that the majority of countries' LSCI and GDP statistics 

were not given before 2018 and after 2020. Moreover, it is worth to mention that none of 

the existing literatures has ever investigate LSCI as an output variable in the maritime 

transportation research. The present work starts with real public maritime data collection 

and data screening based on the principles of normality, zero multicollinearity and 

unwanted outliers. Initially, data envelopment analysis (DEA) is applied to measure 

seaport network efficiency throughout the three-year considered period (2018-2020). 

Next, the triangular and trapezoidal fuzzy numbers in the DEA approach (TrFDEA and 
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TpFDEA) have been proposed as better alternative tools to improve the perfect effi-

ciency scores and to investigate uncertainty levels in the seaport network efficiency 

measurement as compared to the standard DEA. It is observed that TrFDEA produces 

differences in the range between -0.0274 and 0.0105 whereas TpFDEA yields -0.0307 to 

0.0046 differences in the efficiency scores as compared to DEA. Here, the smaller bounds 

of differences by TrFDEA as compared to TpFDEA suggest that TrFDEA offers the best 

outcome in the seaport network efficiency measurement. Moreover, the two fuzzy 

approaches are discussed and compared using their computed standard deviations and 

variances where the DEA results are fixed as their relative or control reference. It is found 

that TpFDEA produces smaller standard deviations and variances of differences than the 

TrFDEA in the early two years before the COVID-19 pandemic. Despite the standard 

deviations and variances for both methods are the highest during the pandemic year of 

2020, TrFDEA produces smaller standard deviation and variance than the TpFDEA’s in 

that year alone.  

As part of the present work’s other original contribution, Possibilistic Linear Re-

gression Least Squares (PLRLS) has been proposed in the fuzzy regression modelling of 

the seaport network efficiency scores that gives more perspectives regarding the min-

imum and maximum efficiency bounds than the regular linear regression method. With 

new fuzzy numbers utilization of TrFDEA, TpFDEA and fuzzy regression through this 

research, it provides new tools for researchers, practitioners and policy makers in the 

maritime industry to investigate and predict further uncertainties in the seaport network 

efficiency assessment especially with the fuzzy value boundedness concept firstly 

introduced in this work and was never proposed before in this maritime field by other 

researchers worldwide. The findings from this work show that these fuzzy approaches are 

suitable for real life data even for those with fluctuation surprises. This study will 

definitely fill the gaps in the literatures on seaport network efficiency measurements for 
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future researchers as well as it can motivate further efficiency improvement in the port 

administration and handling, warehouse logistics and inventory planning, vessel cargo 

loading/unloading scheduling and better decision/policy making by the maritime 

practitioners, navigators and managers. Through this research, thesis Objective 3 and 4 

have been successfully accomplished.  

K-means, hierarchical and hierarchical k-means (hkmeans) clustering approaches are 

applied in this study to classify 133 countries based on their seaport network efficiency 

scores. These scores are obtained from DEA and FDEA implementations with LSCI and 

GDP as the output variables. Four new level clusters have been introduced and they are 

sufficient to group all the global seaport countries considered. Results of DEA and FDEA 

for the k-means clustering are identical to each other hence they are more consistent than 

the hierarchical clustering technique. The hkmeans clustering method is performed when 

the k-cluster determined from the hierarchical algorithm is further utilized in k-means 

algorithm to cluster the countries’ seaport network efficiency scores.  

Hkmeans eliminates the sensitivity issue in the k-value selection of the kmeans 

strategy while still producing acceptably consistent results between regular and fuzzy data 

distributions than the hierarchical clustering strategy. Based on the results of k-means and 

hkmeans methods, the cluster with the highest country composition is medium 

connectivity (MC) and followed by high connectivity (HC). Comparing with the k-means 

and hierarchical clustering results, the overall country compositions under the four 

seaport network efficiency clusters through the hkmeans strategy are the most balanced 

with minimal variation between the regular and fuzzy data distributions. This suggests 

the hkmeans strategy as the most suitable and recommended method to cluster the global 

countries based on their seaport network efficiency.  The works done on this topics have 

met the final objective of this thesis. 
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8.2 Significance of Findings 

The significance of the thesis research findings are given as follows: 

1. The proposed merging, dispersion and coupling functions help to increase 

understanding of the maritime transportation system.  

2. The proposed scheduling can be used to smoothen the operational process in 

Westport hence promotes the Westport to develop a better efficiency score. 

3. The importance of import and export in the maritime economy distribution can 

further be appreciated especially when equal import and export economies can 

lead countries to sustain themselves in the world. 

4. The findings significantly proven that the triangular fuzzy DEA (TrFDEA) gives 

better efficiency as compared to the triangular fuzzy DEA (TpFDEA) when the 

real-life data are fluctuating and uncertain. This can help researchers to apply 

triangular fuzzy numbers to improve efficiency in various fields. 

5. The four newly proposed clusters in this thesis can be used as reference tools for 

the global seaport countries to pursue towards new industry growth that will 

promote new innovation and entrepreneurship initiatives as well as new and more 

investments in the developing sectors. These progresses can further improve the 

seaport network's connectivity that will encourage a conducive business 

environment, which is crucial for generating source of income to the country. 

6. This research focuses on the maritime transportation sustainability which is 

related to environmental shipping as underlined by Malaysia’s Sustainable 

Development Goals (SDG) particularly on Goal 8 (Decent Work and Economic 

Growth) and Goal 11 (Sustainable Cities and Communities). This will promote 

the country to sustain its economic growth by achieving higher levels of 

connectivity through developmental strategies and technological innovations. 
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8.3 Suggestion for Future Studies 

The study on macroscopic model of maritime transportation system can be advanced 

to the next level by using higher order derivative functions. Moreover, multiple junction 

should be considered in the macroscopic model to better fit the real life transportation 

system.  In this thesis, Westport Malaysia has been selected as a local case to build up the 

maritime macroscopic model. It is envisaged that more variations of the maritime 

macroscopic models can be developed if more countries’ seaports can be considered in 

the study.  

Seaport network efficiency can be improved by taking into account the inefficiency 

scores. Further study should be focused on inefficiency scores by considering various 

inputs and outputs. Different methods can be used such as two-stage DEA using the 

bootstrap tool to analyze the seaport network efficiency. Other parameters, such as 

employability rate, regulatory and maritime policies can also be observed for future 

efficiency studies. The present work on seaport network efficiency clustering can also be 

extended based on the existing data by employing more varieties of machine learning 

methods such as naive Bayes and support vector machine, supervised or unsupervised. 

These algorithms can also be combined with other statistical techniques such as Monte 

Carlo and latin hypercube sampling to treat random data samples while other FDEA 

methods based on α-level, fuzzy ranking and probability approaches can also be explored 

to provide variations in the FDEA results used in the clustering strategies. 

The adaptability of various fuzzy number schemes can also be explored to see how 

this can improve the performance metrics of the seaport network. With collaboration 

between the seaport administrators and the government agencies, private data can also be 

exploited to be analyzed so that more studies on maritime transportation can be extended. 

With respect to the local case of Malaysia, the Ministry of Higher Education, the Ministry 

of Transport and the Ministry of Foreign Affairs can team up for better governance, policy 
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and economics strategies to upgrade the operations, facilities and services of Westport so 

that the biggest seaport in Malaysia can be more efficient and improves the country’s 

maritime economy and technology leading to enhancement of wealth and prosperity for 

the nation. 

 

8.4 Research Advantages and Limitation 

Understanding the local maritime transportation system can be beneficial in reducing 

the traffic congestion along the Strait of Malacca, particularly at the Westport and at the 

neighbouring seaports in the NW and SE directions of the strait. Moreover, the presently 

proposed macroscopic model can be used in the strategic planning of the seaports’ future 

infrastructure investment and improvement as well as in maritime trade policies 

preparation and review. 

Efficiency of seaport network indicates the port’s country strength in the maritime 

economy. This study has certain advantages where the newly clustered countries based 

on the seaport network efficiency scores can attract and guide more investors to invest in 

the countries since their network connectivity efficiencies can be appropriately classified 

using the most reliable clustering tool, hence the seaport investment profiles will be more 

structured and convincing. Moreover, the countries’ maritime economic growth can now 

be better measured and predicted based on the present four defined seaport efficiency 

clusters. Since the findings of this research can give an insight on the country's port 

performance status, maritime industry authorities, practitioners, investors and researchers 

can use these informations to guide their decision and policy making involving grouping 

and prediction of the global maritime transportation economy.  

Some limitations of the study may however be addressed here to include the risk of 

fluctuating maritime data due to global and environmental changes such as the COVID-
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19 pandemic that may affect the newly formed clusters to change again in the future. 

Since a good clustering result originates from a good amount of data, when the existing 

free and publicly accessed maritime data are no longer published or if the variables are 

missing or changed in the coming years, the size of the data had to be reduced hence the 

number of seaports considered in the study will be affected.  
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