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Real Time Long Range (LoRa) Based Indoor Positioning System Using Deep 

Gaussian Process (DGP) Algorithm 

ABSTRACT 

This thesis explores the development of a real-time LoRa-based indoor positioning 

system in industrial production lines. Recognizing the limitations of traditional GPS and 

other indoor positioning technologies, this research investigates the feasibility of LoRa 

and proposes a hybrid machine learning approach for accurate and reliable positioning. 

The study addresses challenges posed by signal fluctuations, non-line-of-sight 

propagation, and the need for continuous positioning estimation in dynamic environments. 

Through experimental evaluation and comparison of various machine learning algorithms, 

including Deep Gaussian Process (DGP) regression, the research demonstrates the 

effectiveness of DGPs in achieving precise single-point estimation, by keeping the mean 

absolute error to below 5 meters. Furthermore, the thesis introduces enhancement 

techniques such as Temporal-Weighted RSSI averaging, Kalman filtering, and lane 

constraints to improve the system's performance further. The experimental results, 

conducted in a real industrial environment, demonstrate that the proposed system 

achieves a mean absolute error of 1.58 meters and a root mean square error of 1.90 meters. 

These findings highlight the potential of combining LoRa technology with advanced 

machine learning algorithms and filtering techniques to achieve precise and reliable 

indoor tracking. 

Keywords: Indoor Positioning System, LoRa, Machine Learning, Deep Gaussian 

Process, Continuous Positioning  
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SISTEM PENENTUDUDUKAN DALAMAN MASA NYATA BERASASKAN 

LORA MENGGUNAKAN ALGORIMA PROSES GAUSSIAN MENDALAM 

ABSTRAK 

Tesis ini meneroka pembangunan sistem penentuan kedudukan dalaman bangunan 

berasaskan LoRa masa nyata dalam kawasan industri. Batasan daripada teknologi 

tradisional untuk penentuan kedudukan seperti GPS telah memberi ruang untuk 

penyelidikan kemungkinan penggunaan teknologi LoRa dalam sistem penentuan 

kedudukan dalaman bangunan dan mencadangkan pembelajaran mesin hibrid untuk 

penentuan kedudukan yang tepat. Kajian ini menangani cabaran yang ditimbulkan oleh 

turun naik isyarat, penyebaran bukan garis penglihatan, dan keperluan untuk anggaran 

kedudukan berterusan dalam persekitaran dinamik. Melalui penilaian eksperimen dan 

perbandingan pelbagai algoritma pembelajaran mesin, termasuk regresi Proses Gaussian 

Mendalam (DGP), penyelidikan ini menunjukkan keberkesanan DGP dalam mencapai 

anggaran titik tunggal yang tepat, dengan mengekalkan ralat mutlak purata di bawah 5 

meter. Selain itu, tesis ini memperkenalkan teknik penambahbaikan bagi keputusan 

peruntukan kedudukan seperti purata RSSI berwajaran masa, penapisan Kalman, dan 

kekangan lorong untuk meningkatkan lagi prestasi sistem. Keputusan eksperimen, yang 

dijalankan dalam persekitaran industri sebenar, menunjukkan bahawa sistem yang 

dicadangkan mencapai ralat mutlak purata 1.58 meter dan ralat kuasa dua purata 1.90 

meter. Penemuan ini menyerlahkan potensi penggabungan teknologi LoRa dengan 

algoritma pembelajaran mesin canggih dan teknik penapisan untuk mencapai penentuan 

kedudukan dalaman bangunan yang tepat.  

Keywords: Sistem Penentuan Kedudukan Dalaman Bangunan, LoRa, Pembelajaran 

Mesin, Proses Gaussian Mendalam, Penentuan Kedudukan Berterusan 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

In recent years, the concept of smart factory and digital manufacturing has emerged as 

a transformative paradigm in the industrial landscape. Digital manufacturing includes 

aspects such as smart networking, flexibility, mobility and interoperability of industry 

(Barreto et al., 2017). Handling and logistics controls of products are designed as a part 

of digital manufacturing (Holmström et al., 2017). In the age of Industrial 4.0, traceability, 

transparency (supply chain visibility), integrity control (incurring the right cost by 

considering appropriate time, place. quantity, and condition), robustness, agility, 

resilience and flexibility are the important aspects that needed attention when designing 

a logistic system (Kirch et al., 2017). The integration of digital technologies in 

manufacturing is revolutionizing traditional production methods, leading to improved 

productivity, streamlined workflows, and data-driven decision-making. 

Despite the remarkable benefits of smart factories and digital manufacturing, 

companies still rely on Enterprise Resource Planning (ERP) systems and manual 

processes to manage their resource flow. ERP systems have long served as the backbone 

of operational management, facilitating data integration, resource planning, and process 

coordination. Despite their ability to standardize operations, ERP systems frequently 

struggle with agility and adaptability in manufacturing due to customization challenges, 

slow real-time data processing, and reliance on workarounds when responding to dynamic 

production demands (Yılmaz Börekçi et al., 2020). Moreover, reliance on manual 

processes can introduce inefficiencies and increase the likelihood of errors. Human 

intervention in data entry, process monitoring, and quality control can be time-consuming 

and prone to inaccuracies, leading to delays, disruptions, and quality issues in the 

production line. An accurate indoor positioning system provides both management and 

operators with clear visibility of ongoing operations and assets’ positions. 
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Indoor positioning plays a pivotal role in meeting this demand by providing real-time 

and precise location information within the spaces of the manufactory. The importance 

of indoor positioning in manufacturing floors rests in its capacity to support an extensive 

variety of crucial applications. Asset monitoring makes it possible to quickly locate 

finished goods, work-in-progress items, and raw materials, reducing manufacturing 

delays and improving supply chain management. Personnel tracking maximizes 

personnel deployment to increase productivity while also enhancing safety by keeping 

track of workers' presence in forbidden or dangerous areas. The use of equipment tracking 

guarantees effective maintenance programs, which save downtime and increase the life 

of important machinery. 

The reliance on indoor positioning system (IPS) solutions has grown due to the 

limitations of traditional outdoor-based positioning technologies, the Global Navigation 

Satellite System (GNSS) (Manzoni et al., 2019) such as GPS (https://www.gps.gov/), 

GLONASS (https://www.glonass-iac.ru/en/), Galileo (https://www.usegalileo.eu/) or 

BeiDou (http://en.beidou.gov.cn/) system. GNSS is well-established for outdoor 

positioning and can be used in most outdoor environments. GNSS systems give sub-meter 

accuracy but they cannot well work indoors as GNSS systems require a distinctive line 

of sight (LOS) between satellites and device (Henriksson, 2016). Moreover, GNSS 

devices used are more complex, costly and power inefficient (Manzoni et al., 2019). 

Therefore, various technologies are being researched and implemented for indoor 

localization. Primarily some widely used technologies are WiFi, Bluetooth, ZigBee, 

RFID, UWB, Visible Light, Acoustic Signals and ultrasound (Zafari et al., 2019). In order 

to determine the target positions, several parameters are utilized (Kim Geok et al., 2020). 

The fundamental parameters used in indoor positioning systems are Received Signal 

Strength Indicator (RSSI), Time of Arrival (ToA) and Angle of Arrival (AoA). 
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Furthermore, Time Difference of Arrival (TDOA), Round Trip Time (RTT), Angle 

Difference of Arrival (ADOA), Phase of Arrival (POA), Phase Difference of Arrival 

(PDOA) and Channel State Information (CSI) are used to overcome improve accuracy 

and reduce complexity.  These signal characteristics alone do not define the position 

estimates. Hence, the parameters have to be fitted into positioning algorithms to define 

the location coordinates (Kim Geok et al., 2020). Positioning algorithms can be classified 

by four basic aspects distance-based, direction-based, connectivity-based and signal-

based. 

The rise of the Internet of Things (IoT) (Zafari et al., 2019) has brought much attention 

to researching indoor localization using low power IoT devices. Low-power wide-area 

networks (LPWANs) are an emerging technology due to their characteristics of low 

power consumption and low bandwidth (Islam et al., 2017). These characteristics are a 

perfect fit for IoT data traffic which requires a high number of devices with low data rates 

and deep penetration of signals in noisy urban environments (Gu et al., 2018). The low 

power and long range characteristics of LPWANs have attracted much attention in the 

field of indoor positioning systems such that mobile tags can operate using batteries 

without a static power supply and reduce infrastructure costs by decreasing the number 

of access points. 

LoRa was chosen as the positioning technology in this research due to its relatively 

open ecosystem among other LPWANs such as Sigfox and NB-IoT. LoRa defines the 

physical layer technology functioning in the sub-GHz band, operating in a frequency band 

less than 1 GHz (923 MHz, 915 MHz, 433 MHz),  which is widely used in numerous IoT 

applications including smart metering, smart parking, road traffic monitoring, 

environment monitoring, street lighting, facility management, waste management, and 

precision agriculture (Islam et al., 2019). LoRa’s long-range communication capability 
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minimizes the need for dense deployment of access points or beacon nodes. Just a small 

amount of LoRa gateways is needed to cover a large area (Gu et al., 2018). LoRa is robust 

against multipath, Doppler effect and interference on account of its unique Chirp Spread 

Spectrum (CSS) Modulation scheme (Islam et al., 2017) which makes it a strong 

competitor for being an indoor positioning technology. 

Due to the robust conditions in indoor environments, fingerprinting technique has 

gained much attention in the field of indoor positioning systems. The fingerprinting 

technique collects radio characteristics and produce radio maps. In the online phase, radio 

signals are matched to the radio map to predict the locations of the object. To further 

improve the accuracy of conventional fingerprinting method, deep learning methods such 

as Artificial Neural Network (ANN) (Belmonte-Hernández et al., 2019), Recurrent 

Neural Network (RNN) (Pichaimani & Manjula, 2022) and Deep Gaussian Processes 

(DGP) (Wang et al., 2020) are used. They can learn the underlying patterns and 

relationships within these fingerprints, enabling them to predict the location of the object 

even in areas with slightly different signal characteristics. 

This thesis delves into the implementation of indoor positioning system with LoRa 

technology, employing RSSI-based fingerprinting method with a hybrid machine learning 

approach. DGP, a machine learning technique that learns complex relationships between 

the signal fingerprints and actual locations was leveraged for static point estimation. This 

allows more precise positioning in challenging locations such as non-line-of-sight (NLOS) 

and non-linear positions. Furthermore, we incorporate a maximum distance filter in 

correlation to time to eliminate outliers and enhance the reliability of position estimates. 

Additionally, a lane correction method is implemented to correct the position of the 

trolleys and ensure accurate positioning within production lines.  
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1.2 Problem Statement 

The problems to be addressed by this study are as followed: 

1. Traditional methods like GPS are ineffective indoors due to signal attenuation and 

multipath interference, while existing technologies like WiFi, BLE, and UWB 

have drawbacks related to accuracy, scalability, and cost-effectiveness. This 

necessitates the investigation of alternative technologies, such as LoRa, for its long 

range and robustness against multipath, to address these limitations and enable 

efficient and reliable indoor positioning in industrial settings. 

2. The dynamic and complex nature of industrial production lines presents significant 

challenges for achieving accurate and reliable indoor positioning using LoRa 

technology. Signal fluctuations, often caused by moving machinery and equipment, 

can lead to inconsistent and unreliable RSSI measurements. NLOS propagation, 

due to obstacles and the layout of production lines, can further degrade the 

accuracy of position estimates. These challenges collectively impact the 

performance and effectiveness of LoRa-based positioning systems, hindering their 

widespread adoption in industrial applications. 

3. While existing research on LoRa-based indoor positioning has demonstrated its 

feasibility, there remains a gap in addressing the challenges of continuous 

positioning estimation for objects in movement within complex industrial 

environments. The focus has primarily been on single-point estimation, which does 

not fully capture the dynamic nature of objects within production lines.  
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1.3 Research Objectives 

The research aims to explore the potential of an accurate LoRa-based indoor 

positioning system in industrial production line. This research will focus on the following 

objectives. 

1. To investigate the feasibility of implementing a LoRa-based indoor positioning 

system as an alternative to conventional methods in the industrial production line. 

2. To evaluate and compare the effectiveness of different machine learning 

algorithms, particularly focusing on the potential superiority of Deep Gaussian 

Process (DGP), for accurate and reliable single-point estimation using LoRa 

technology by assessing positioning mean absolute error of below 5 meters. 

3. To develop and implement a novel hybrid approach for LoRa-based indoor 

positioning that combines single-point estimation with enhancement techniques, 

addressing the gap in existing research and enabling accurate tracking of objects 

in movement within complex industrial environments by achieving a mean 

localization accuracy of less than 2 meters and 90th percentile error of 5 meters. 

1.4 Novelty and Contributions 

The following list portrays the novelty and contributions of this research. 

1. Demonstrated the feasibility of LoRa technology for indoor positioning in dynamic 

industrial environments. 

2. Unlike many existing studies, this research specifically focuses on positioning in 

dynamic industrial environments with moving objects. 

3. The proposed system uniquely combines LoRa technology with a hybrid approach 

of a two-layer Deep Gaussian Process Regression model together with spatial-

temporal enhancement techniques achieving high positioning accuracy. 
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1.5 Thesis Outline 
The subsequent chapters of this thesis are organized to provide a comprehensive and 

detailed exploration of the research topic. Here's a brief overview of the chapters: 

Chapter 2, Literature Review offers a thorough examination of existing research on 

indoor positioning systems, with a particular emphasis on LoRa-based solutions. It delves 

into various techniques, algorithms, and methodologies employed in the field, 

highlighting their strengths and limitations. The chapter also explores the application of 

machine learning and deep learning techniques for enhancing positioning accuracy. 

The following chapter, Methodology, outlines the research methodology adopted for 

the study. It details the experimental setup, including the selection and configuration of 

hardware components, the design of the testbed, and the data collection process. The 

chapter also describes the data preprocessing steps undertaken to ensure data quality and 

prepare it for analysis. Moreover, the chapter discuss the adaptation of various machine 

learning techniques for single point estimation. Besides that, the chapter elaborates on the 

DGP architecture, model design, hyperparameter selection, and training process. To 

further enhance the accuracy of single-point estimation, several techniques were explored. 

The Results and Discussion chapter presents the experimental results obtained from 

the implementation of the LoRa-based indoor positioning system. It evaluates the 

performance of different machine learning algorithms for single-point estimation and 

assesses the effectiveness of the proposed hybrid approach for continuous positioning 

estimation. The chapter also discusses the accuracy, reliability, and limitations of the 

implemented system, drawing insights from the experimental findings. 

Finally, the Conclusion and Future Work chapter summarizes the key contributions of 

the research, highlighting the achievements and insights gained from the investigation of 
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LoRa-based indoor positioning. It also discusses potential avenues for future research, 

identifying areas where further improvements or extensions can be made to enhance the 

system's performance or applicability. 
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CHAPTER 2: LITERATURE REVIEW 

An indoor positioning system (IPS) is a system that obtains a device or user location 

in an indoor environment or setting. The wide-scale adoption of mobile devices with 

wireless communication capabilities have made the localization and tracking of devices 

possible and with ease. Real world applications of the indoor positioning system are many 

and are mainly used by smart homes (Kim et al., 2021), museums (Dahlgren & Mahmood, 

2014), healthcare centres (Dahlgren & Mahmood, 2014), shopping malls, parking lots 

(Anjum et al., 2020) and warehouses (Batalla et al., 2020; Silva et al., 2021) .  

Presently, the most popular real-time location system (RTLS) is the Global Navigation 

Satellite System (GNSS). GNSS is well established for outdoor environments mainly 

used for vehicle navigation and missile guidance. However, GNSS does not work well 

indoors due to a lack of distinct line-of-sight (LOS) between the device and 

satellites(Henriksson, 2016). For that reason, it has attracted attention of the academia to 

research on simple, low-cost design indoor positioning systems that can provide accurate 

localization in the indoor environments.  However, indoor signal patterns are more 

complicated than those in outdoor environment due to fading, reflecting, multipath and 

deep shadowing effect (Kim Geok et al., 2020). Therefore, a variety of technologies and 

positioning techniques were introduced to minimize the effect of the robust signal 

characteristics. Moreover, indoor positioning systems should be evaluated in terms of cost, 

availability, energy efficiency, reception range, tracking accuracy and scalability 

(Hayward et al., 2022). 

2.1 Indoor Positioning Technologies 

Positioning technologies can be categorized into non-radio-based positioning and 

radio-based positioning. As in Figure 2.1, Non-radio-based positioning includes infrared, 

ultrasound, audible sound, magnetic, vision, visible light and dead reckoning (Sakpere et 
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positioning is popular due to the common use of WiFi-enabled mobile devices such as 

smartphones and laptops and also presence of existing infrastructure would reduce the 

cost and complexity of deployment (Mendoza-Silva et al., 2019).  

Bluetooth (or IEEE 802.15.1) consists of the physical and MAC layer specifications 

for connecting different fixed or moving wireless devices within a certain personal space. 

The latest version of Bluetooth is Bluetooth Low Energy (BLE). Most of the BLE based 

localization techniques were based on RSS based inputs as they are less complex. Due to 

medium communication range of BLE, number of beacons is needed for a large scale 

deployment (Mendoza-Silva et al., 2019). BLE is often chosen in indoor positioning 

systems because of its small, low cost, low complexity and low energy consumption 

compared to other technologies (Kim Geok et al., 2020).  

Recent study suggest combination of WiFi and BLE can improve localization accuracy. 

(Molina et al., 2018) concluded that Wi-Fi alone is insufficient for precise indoor location 

tracking. While it can provide reasonable estimates in specific areas, its accuracy 

deteriorates significantly in large spaces with dynamic conditions, often requiring manual 

adjustments. To enhance location precision and mitigate the impact of fluctuating signal 

strengths, it's crucial to integrate additional technologies like Bluetooth Low Energy 

(BLE) and GPS, when feasible. 

Ultra-Wideband (UWB) is an attractive technology in indoor localization for its 

immunity to interference from other signals due to its drastically different signal type and 

radio spectrum. The short pulse with time period of lesser than 1 nanosecond (ns) over a 

large bandwidth (>500MHz) make them less sensitive to multipath effects, allowing 

accurate position estimation in the time domain. UWB also has relatively low power 

consumption due to its low duty cycle. It has been shown that UWB can achieve 

localization accuracy up to 10cm (Zafari et al., 2019). Despite offering high precision, 
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UWB's technology is incompatible with current standards, hindering its widespread 

public adoption. Furthermore, the high cost of implementing UWB infrastructure on a 

large scale due to increase in UWB sensors deployment presents a significant barrier to 

its broader use. (Sakpere et al., 2017). 

Radio Frequency Identification (RFID) is one of the commonly used technologies for 

indoor positioning. There are two basic types of RFID systems, passive RFID and active 

RFID. Passive RFID do not have their energy source, the detection range is short (1-2m), 

and receivers require external high power supply. Hence, it is generally used in geo-

fencing applications and not suitable for large scale localization. On the other hand, active 

RFID operate in the Ultra High Frequency (UHF) and microwave frequency range. The 

characteristics of active RFID having a reasonable range, low cost and can be easily 

embedded in the tracking objects makes it a reasonable choice for localization and object 

tracking. However, the active RFID technology cannot achieve sub-meter accuracy and 

it is not readily available on most portable user devices (Zafari et al., 2019). Moreover, 

random moving objects in the domain can reduce its accuracy due to multipath effect and 

signal fluctuations. (Kim Geok et al., 2020). 

2.1.2 LPWAN Positioning Technology 

The rise of internet of things (IoT) has supported the research of LPWANs in the field 

of indoor localization. LPWAN has the following advantages, long range, low power 

consumption, low cost, massive connections and communication capability. Some of the 

popular LPWANs are NB-IoT, LTE-M, LoRaWAN and Sigfox (Li et al., 2020).  

NB-IoT and LTE-M follows the 3GPP standard and fall in the licensed LTE frequency 

band. Hence, the base stations and network are deployed by telecommunication operators. 

They have the advantage of having operator-level security and quality assurance. 
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However, it is difficult for independent companies to setup their own private network.  

(Li et al., 2020). 

Sigfox uses the 862-928 MHz ISM band and has a bandwidth of 100Hz and data rate 

of 600bps. Given its low bandwidth and data rate, it can accommodate 1 million nodes 

per gateway.  Sigfox uses a proprietary Ultra Narrow Band (UNB) radio technology and 

binary-phase-shift- keying (BPSK) based modulation. By using UNB radio, the noise 

floor is reduced compared to classical narrow, medium or wideband systems. However, 

it is not recommended for real-time localization because of its limitations in messages per 

day and high latency time. Besides, the narrowband nature makes Sigfox radio susceptible 

to multipath and fast fading.  

LoRaWan is an open Medium Access Control (MAC) protocol which is built on top 

of the LoRa physical layer. Typical LoRaWan bandwidth values are 125, 250 and 500kHz. 

LoRa is unique compare to other IoT technologies for the use of Chirp Spread Spectrum 

(CSS) modulation scheme, a spread spectrum technique where the signal is modulated by 

frequency varying sinusoidal pulses, which provides resilience against multipath, 

interference and Doppler effect, making LoRa a preferable technology for localization 

(Zafari et al., 2019). 

Table 2.1 summarizes the advantages and disadvantages of radio-based positioning 

technology together with positioning metrics, range, power consumption, accuracy and 

cost. 
Univ

ers
iti 

Mala
ya



 

 
14 

Table 2.1: Summary and comparison of radio-based indoor positioning technologies 
Technologies Range Power 

consumption 
Accuracy Cost Advantages Disadvantages 

WiFi 35 m Medium  Low Medium (Very low 

if using deployed 

infrastructures and 

smartphones) 

No extra hardware 

Easy deployment 

Cover large regions 

Time-varying RSS 

Accuracy depends on number of 

access points 

Bluetooth 10 – 20 m Very Low  Low Low Low power 

Easy deployment 

Small size 

Requires extra hardware 

Prone to noise 

Interference with the same 

frequency band 

Require large number of access 

points to achieve better accuracy 

UWB 10 – 20 m Medium High Medium High accuracy 

Negligible effect from 

interference and multipath 

Needs extra hardware 

Short range, high cost 

Challenges in NLoS 

RFID 200 m Low Low Medium Larger range than WiFi and BLE 

Medium power consumption 

Needs extra hardware 

Multipath and signal fluctuations 

Large error with more target 

tags to locate 

LoRa 20 km Very Low Low Low Low power 

Covers large area 

Needs extra hardware 

Signal attenuation and multipath 

Sigfox 40 km Very Low Low Low Low power 

Covers large area 

Needs extra hardware 

Signal attenuation and multipath Univ
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2.2 Indoor Positioning Techniques 

Generally, indoor positioning techniques can be identified as two classes: range-based 

and range-free. Range-based techniques use distance or angle estimates such as Received 

Signal Strength Indicator (RSSI) (Anjum et al., 2020), Time of Arrival (ToA) (Ha et al., 

2019), Time Difference of Arrival (TDoA) (Azmi et al., 2018), and Angle of Arrival 

(AoA) (Kułakowski et al., 2010) as the basis of calculation. However, range-free 

techniques use connectivity information between nodes and landmarks.  

TOA calculates the distance between transmitter and receiver by taking account of the 

propagation time using the speed of light formula c = 3 x 108 m/sec. A minimum of three 

reference nodes is used to estimate the coordinate of the device. TOA provides high 

accuracy but the require high cost and complexity of hardware because precise time 

synchronisation and high resolution timestamp is needed to obtain the accurate results.  

 

Figure 2.2: TDOA positioning method. 

(Zafari et al., 2019) 

TDOA is developed to mitigate the need for complex hardware required for TOA. 

TDOA applies the flight-time difference to a radio wave by comparing TOA at two 
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different sensors and thus the absolute TOA is not needed (Laaraiedh et al., 2011; Sakpere 

et al., 2017). Figure 2.2 shows the TDOA positioning technique. 

AoA estimates the position of the target object by calculating the angle and distance 

and the intersection of direction lines between two or more reference points. AoA use 

antennae arrays to estimate the angle at which the transmitted signal impinges on the 

receiver. AoA can provide accurate location estimation when transmitter-receiver 

distance is small or in room level. However, in NLOS conditions AoA performs poorly. 

Moreover, more complex hardware and precise calibration is needed. Figure 2.3 depicts 

how angles of signals received by antenna array reflects to user location. 

 

Figure 2.3: AoA based positioning.  

(Zafari et al., 2019) 

RSSI uses the measured signal strength intensity at the receiver side. RSSI method is 

popular in position tracking as the implementation is much easier comparing to ToA or 

TDoA which requires clock synchronisation between devices or AoA that needs special 

and costly antennas. However, in indoor environment RSS is greatly affected by 

multipath and shadowing henceforth is relatively inaccurate. RSSI uses a simple path-

loss propagation model to calculate the distance between transmitter and receiver. The 
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log-distance path loss model relates the received signal power !!(#) at distance # from 

the transmitter to the transmitted power !"	as equation 2.1: 

!&(#) = !" − !!(#) = !&(##) − 10+ ,-.$# /
#
##
0 + 2%  (2.1) 

where +	is the path loss exponent, ##  is a reference distance, and 2&  is a zero-mean 

Gaussian random variable (in dB) with standard deviation σ that models the shadowing 

effect. 

The position of the object can then be calculated by using trilateration, multilateration, 

min-max and maximum likelihood algorithms. RSSI is susceptible to noise and multipath 

effects which significantly decreases its localization accuracy (Kim Geok et al., 2020). 

Table 2.2 summarises advantages and disadvantages of the positioning techniques. 

Table 2.2: Summary of different positioning techniques 

Positioning 
technique 

Advantages Disadvantages 

ToA Provide high accuracy 

Does not require fingerprinting 

Require precise time synchronisation 

and high resolution timestamps 

LoS is needed for accurate 

performance 

Difficult to implement in narrow 

bandwidth 

TDoA Does not require time synchronisation 

between device and received nodes 

Require high resolution timestamps 

Difficult to implement in narrow 

bandwidth 

Time synchronisation required 

between received nodes 

AoA Can provide high localization 

accuracy in room level 

High device complexity with multiple 

directional antennas 

Performance deteriorates with 

increase in distance between 

transmitter and receiver 

RSSI Easy to implement 

Cost efficient 

Prone to multipath, fading and noise 

Lower localization accuracy 
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chirps (frequency varying sinusoidal pulses) to improve its robustness against signal loss 

particularly interference, such as Doppler effect and multipath fading (Islam et al., 2017). 

These chirps have chip rates equivalent to the spectral bandwidth of signals, typically 125, 

250 or 500kHz of bandwidth. Figure 2.4 shows the visualisation of the up chirps used in 

LoRa modulation. To further mitigate interference, Frequency-Hopping Spread Spectrum 

(FHSS) scheme is used. FHSS switches available channels according to pseudo-random 

distribution.   

Each symbol is encoded with 2SF chirps, where SF is the spreading factor. SF sits in 

the range of between 7 to 12, chirps with different values of SF are orthogonal to each 

other, so multiple data packets can be sent in parallel by using different values of SF. The 

higher the spreading factor value, the longer the time for each symbol transmission and 

produce farther communication range. 

2.3.2 Feasibility of LoRa Positioning 

Islam et al. (2017) has discussed the feasibility of LoRa for indoor localization. WiFi 

and Bluetooth Low Energy (BLE) were chosen as the comparison baselines because of 

their popularity in indoor positioning and low power consumption. The author compared 

the stability of the three technologies in terms of variance, median, mean and mode of 

their RSSI. LoRa has a lower variance compared to WiFi and BLE. Furthermore, LoRa 

shares similar behaviour with WiFi in terms of median and mean but LoRa outperforms 

WiFi in mode comparison. The author also did ranging tests in both line of sight (LOS) 

and non-line of sight (NLOS) conditions. Mean errors of 1.19 m in LOS and 1.72 m in 

NLOS were obtained respectively by using unfiltered RSSI values.  

The author did a continuation of the research in (Islam et al., 2019). The comparisons 

between the three technologies were done in different test environments, long corridor 

(23 m), open room (25 m x 23 m), single floor (25.29 m with four rooms of different sizes) 
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and multiple floor (four and eight stories). LoRa outperforms WiFi and BLE in terms of 

wireless coverage, stability, path loss trend, cost and power consumption. Therefore, 

LoRa is a feasible choice for indoor positioning systems especially for large spaces such 

as warehouses and multi-storeyed buildings. 

Podevijn et al. (2018) preferred BLE over LoRa due to its lower cost and averaging 

capabilities. However, the results obtained were not satisfying as a median accuracy of 

15m was obtained in a 69 m x 69 m environment. (Sadowski & Spachos, 2018) compared 

indoor positioning performance of WiFi, BLE, ZigBee and LoRaWan by applying 

trilateration within a range of 1 – 5 m. It was concluded that WiFi has the highest accuracy 

of 0.664m on average but with the most power consumption. BLE used the least amount 

of power. LoRaWan has the furthest transmission range but delivers the largest error of 

1.19m. Therefore, optimisation in power consumption and positioning algorithm has to 

be done in order to have a well-performing LoRa-based positioning system. (Committee, 

2018) mentioned that Kalman filtering of noisy data can improve localization 

performance. 

Anjum et al. (2019) investigates the potential of LoRa technology for indoor 

positioning using RSSI fingerprinting. The study involves real-world testing in both 

unobstructed (LOS) and obstructed (NLOS) environments to optimize LoRa packet 

settings for accurate distance estimation based on signal strength. To enhance positioning 

precision, environmental factors are considered. The researchers conducted extensive 

experiments across different LoRa spreading factors, analysing signal attenuation (path 

loss exponent) and signal variability (shadowing) in each environment. 

Khan et al. (2021) compared LoRaWAN with WiFI and BLE in three different 

environments, the graduate lab (24 x 24 square feet), corridor (23 x 23 square feet) and 

classroom (50 x 30 square feet). RSSI (trilateration) is used to calculate the coordinates 
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of a sensor node. The experimental results show that Wi-Fi produces the most accurate 

result with an average error of 0.54 m. LoRa came in second with an average error of 0.62 

m and BLE is the show the lowest accuracy with an average error of 0.82 m. The authors 

propose LoRa as the best suited technology for indoor localization as it has significantly 

lower power consumption than WiFi although it has slightly lower accuracy. 

Bornholdt et al. (2021) presents a multi-step-approach with a dynamic optimal 

algorithm selection for LoRaWAN networks with a modified stack for direct peer 

communication. To minimize the influence of measurement errors, the authors examined 

several filtering and compensation, and selection algorithms. A key benefit of this method 

is the reduced need for anchor nodes due to the LoRa transmitters' extended range. The 

relatively low initial and ongoing costs of LoRa transmitters make this approach attractive 

for large-scale applications where an accuracy of approximately ten meters is acceptable. 

The authors conducted a series of conducted experiments to demonstrate the potential of 

the proposed method. 

Research on RSSI-based indoor positioning using LoRa in the license free 2.4 GHz 

band has been done in Simka and Polak (2022). Measurements are conducted in three 

different indoor environments hall, locker room and corridor, for different signal 

configurations of LoRa. The system demonstrated an average localization error of less 

than 2.2 meters. However, LoRa's localization accuracy is significantly influenced by 

factors such as signal configuration, node placement, and environmental conditions. 

Aside from proving the feasibility of LoRa technology in indoor positioning, Marquez 

et al. (2023) studies the impact of body obstruction on communication links and, 

therefore , on the localization system in LoRaWAN. Results show that signal strength 

decreases by an average of 3 dB on links with body shadowing.  
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Hence, machine learning methods are used to further enhance the accuracy in LoRa-

based positioning. The following section will study different methods on improving the 

accuracy for LoRa-based positioning. 

2.3.3 Case Study of LoRa-based Positioning System 

Savazzi et al. (2019) used Weiner algorithm to achieve higher ranging and localization 

accuracy by combining RSSI values received for different LoRa modulation 

configurations. The experiment resulted in the best mean localization error of more than 

10 m using all modes Weiner with seven anchors. The localization error is even higher 

when the number of anchors decreases. A localization error of more than 10 m is not 

satisfactory. Hence, the accuracy can be improved by selecting a subset of modes that has 

filter coefficients with maximum absolute values. 

Lam et al. (2019) proposed positioning algorithms that reduce the non-Gaussian noise 

in LoRa networks by eliminating ill-performing anchor nodes or selecting anchor nodes 

that have higher confidence to be more accurate. In a large-scale indoor environment, 

Minimum MBRE and Density-based Clustering shows the best results with median 

localization error of 0.9821 m and 1.0895 m respectively. These two algorithms 

significantly improved the traditional Linear Least Squares which has a median 

localization error of 4.1823 m. 

RSSI Fingerprinting combined with machine learning techniques is used by Anjum et 

al. (2020). RSSI fingerprints were collected and fitted into different models to develop 

RSSI-to-Distance functions. Among some methods used by the author are the path loss 

model, traditional regression model and modern machine learning models such as 

smoothing spline, support vector regression, decision trees and random forest. Then the 

obtained distances were fitted in a trilateration algorithm to obtain the position estimates. 

In indoor environments, smoothing spline achieved a mean error of 9.38 m and 91.92 % 
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accuracy. The author proved the feasibility of LoRa positioning in an indoor environment, 

but the error has to be reduced in order for it to be applied practically. 

Kim et al. (2021) confirms the feasibility of using LoRa-based technology for indoor 

localization in smart homes. The authors obtained a maximum error of 3.2 m and a 

standard deviation of below 25 cm of stationary objects by solely using trilateration. The 

authors suggested that the accuracy and precision can be further improved by using 

filtering techniques, more anchor nodes and fingerprinting method.  

Lazaro et al. (2021) proposed an interesting topic and utilizing LoRa backscatters for 

localization. By using backscattering, the cost and power consumption of end user devices 

can be further reduced. However, the author only tested out for room-level localization 

and the experiment can be further researched by narrowing down the precision of position 

estimates. 

In (Hu et al., 2022), the authors proposed LTrack, a long-range tracking system based 

on LoRa. This system consists of a mobile rotating anchor, a LoRa tag, and a commercial 

robot. Due to the limitations of LoRa devices to estimate AoA of signals, the authors 

designed a virtual circular antenna array in the mobile rotating anchor via a lightweight 

hardware modification to multiplex the only radio frequency channel in the low-cost 

LoRa device. To estimate the target AoA, the difference of time of flight (TDoF) 

measured in the circular antenna array is fused with the rotating orientation. They also 

redesigned and optimized the primitive LoRa ranging engine based on systematic analysis. 

Additionally, the researchers developed a real-time algorithm to track moving targets by 

utilizing Doppler frequency shifts, addressing the challenge of target movement-induced 

uncertainty. The experiments were done in both LOS and NOLS indoor scenarios. The 

experiment results shows that LTrack supports robust tracking with a median error of 

0.12 m and 0.45 m in a 137 m2 lab space and a 600 m2 corridor, respectively. 
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Chen et al. (2023) introduced a Kalman filter-based LoRa positioning algorithm 

adaptable to various environments. Implemented using the NS-3 network simulator, their 

approach significantly enhanced LoRa positioning accuracy. Simulation results 

demonstrated the effectiveness of the improved LoRaWAN module for diverse 

positioning scenarios and the substantial accuracy gains achieved through Kalman 

filtering. Table 2.3 summarizes the methodology and findings of the LoRa-based 

positioning systems case studies. 

Table 2.3: Summary of Case Studies of LoRa-based Positioning Systems 

Study Methodology Findings 

Savazzi et 

al., 2019 

Used Weiner algorithm to enhance 

ranging and localization accuracy by 

combining RSSI values from various 

LoRa modulation configurations 

Achieved best mean localization error of >10m using all 

modes Weiner with seven anchors; error increased when 

fewer anchors were used 

Lam et al., 

2019 

Proposed positioning algorithms to 

reduce non-Gaussian noise in LoRa 

networks 

Minimum MBRE and Density-based Clustering achieved 

best results with median localization errors of 0.9821m 

and 1.0895m, respectively, significantly improving 

traditional Linear Least Squares (median error 4.1823m) 

Anjum et 

al., 2020 

Combined RSSI fingerprinting with 

machine learning techniques 

Developed RSSI-to-Distance functions using various 

models; achieved mean error of 9.38m and 91.92% 

accuracy in indoor environments using smoothing spline 

Kim et al., 

2021 

Confirmed feasibility of LoRa-based 

indoor localization in smart homes 

Obtained maximum error of 3.2m and standard deviation 

<25cm for stationary objects using trilateration 

Lazaro et 

al., 2021 

Utilized LoRa backscatters for 

localization 

Demonstrated potential for reduced cost and power 

consumption in end-user devices; focused on room-level 

localization 

Hu et al., 

2022 

Proposed LTrack, a long-range 

tracking system with mobile rotating 

anchor and LoRa tag 

Designed virtual circular antenna array and optimized 

LoRa ranging engine; used Doppler frequency shift for 

real-time tracking; achieved median error of 0.12m and 

0.45m in a 137 m2 lab and 600 m2 corridor, respectively 

Chen et al., 

2023 

Proposed multi-scene LoRa 

positioning algorithm based on 

Kalman filter 

Implemented algorithm in NS-3 simulator; used Kalman 

filter to improve accuracy; showed improved accuracy 

with Kalman filter; validated algorithm in diverse 

scenarios using simulation 
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2.4 Fingerprinting Technique 

Fingerprinting is a popular localization method, especially where line of sight 

propagation is not typical. Fingerprinting technique has advantages of providing 

promising performance and also low hardware cost (Chen et al., 2013). This technique 

operates based on the concept of segmenting the map into grids, typically 1 meter squared 

per grid.  

The fingerprint-based localization process is divided into two phases, training 

phase or “offline phase” and online phase(Dahlgren & Mahmood, 2014). The training 

phase creates a fingerprint database. At training phase, each grid cell has some unique 

attributes to break the symmetry among them. These attributes such as RSSI, IRR or LQ 

are measured and assigned to each grid cell. For example, RSSI is continuously sampled 

at each sampling point and the average is calculated.  

In the second stage, the “online phase”, the estimation of the actual position of the 

unknown node is performed. To locate the mobile node, the mobile node collects 

measurements of the same attributes stored in the database and compare the values in the 

fingerprints in the database.  

2.4.1 Pattern recognition techniques in fingerprinting positioning 

However, the collected signal in indoor propagation environments could be easily 

affected by diffraction, reflection and scattering in indoor. Multiple pattern recognition 

techniques are proposed for fingerprinting based positioning (Kim Geok et al., 2020), 

namely, probabilistic methods, k-nearest neighbour (KNN), support vector machine 

(SVM), Decision Trees (DT), Random Forest (RF),  artificial neural networks (ANN), 

Gaussian Processes (GP) and Deep Gaussian Processes (DGP). 

The probabilistic approach utilizes the decision rule based on the probability that the 

mobile node is in the estimated location by applying filters to the Gaussian distribution 
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of the received signal vector. The HORUS WLAN location determination system 

(Youssef & Agrawala, 2005) is one of the most referenced positioning system using the 

probabilistic method. Given that S = (s1, …, sk) as recorded RSS vector, the estimated 

location x is computed by maximizing the probability P(x|S) as shown in equation 2.2. 

45.647'!(7|9) = 45.647'
!(9|7) ∗ !(,)

!(9)  
(2.2) 

Assuming P(S) remains stable for a long duration and consider it as a constant, P(S) is 

factored out from equation 2.3 and 2.4. By using Bayes.’ Theorem, the equation is 

equivalent to, 

45.647'!(7|9) = 45.647'!(9|7) (2.3) 

45.647'!(9|7) = 	45.647';!(<(|7)
)

(*$
 (2.4) 

Bayesian Fusion (BF) is proposed by using both Bayes Static Estimation (BSE) and 

Point Kalman filter (PKF) estimation (Dahlgren & Mahmood, 2014). BF is 

experimentally proved to have higher accuracy compared to using solely BSE or PKF.  

The KNN sampling uses the latest RSSI to search for k-closest matches of known 

location formerly stored in the database using root mean square errors principle.  

KNN first originated as a method for estimating the nearest location in RADAR,(Bahl & 

Padmanabhan, 2000). However, it does not work well with environmental changes. 

Weighted k-Nearest Neighbour (WKNN) is an extension of KNN where values are the 

values are weighted to improve accuracy and deal with simple environmental changes. 

SVM is one of the most popular models in Machine Learning, capable of performing 

linear or non-linear classification, regression and outlier detection. SVMs are powerful 

algorithms that find a hyperplane in an N-dimensional space that distinctly classifies the 

data points. Hyperplanes are decision boundaries that assist in the classification of data 
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points. The dimension of the hyperplane increases with the number of features. SVMs 

performs best for classifying complex but small or medium-sized datasets (Géron, 2019). 

However, SVMs would be computationally expensive for the classification of large 

datasets. 

DT is an algorithm that has a tree-like structure, that split data into subsets based on 

attribute values. RF is an ensemble of DTs trained on different subsets of data and 

randomly chosen features. RF is more superior than DT because it is less susceptible to 

overfitting and more efficient when handling large datasets. 

Artificial neural networks (ANNs) have emerged in recent years as a promising 

technique for indoor positioning due to their ability to model complex nonlinear 

relationships. Deep Neural Networks (DNN) (Xingli et al., 2018) are ANNs with multiple 

hidden layers between the input and output layers. Their hierarchical feature learning 

capability makes DNNs suitable for modelling ambiguous and spatially correlated for 

fingerprinting-based indoor positioning by a single or multi data sources. Recurrent 

Neural Networks (RNN)  (Hoang et al., 2019) is a class of ANN, where the output results 

relies not only on current inputs but also on the preceding states. Hence, RNN can 

correlate user to its previous locations as the user is in movement and set predicted 

location estimates along a continuous trajectory. Long Short Term Memory (LSTM) 

(Sahar & Han, 2018) is an extension of RNN that resolves its limitations of inability to 

learn long-term temporal relationships due to the vanishing gradient problem. 

GP have emerged as a promising technique for indoor localization due to their 

nonparametric Bayesian modelling capability to capture complex indoor radio signal 

propagation characteristics (Guan et al., 2021). Hence, it can interpolate to explored areas 

and model RSSI uncertainty. The GP comprises of two main components, the mean 

function and the kernel. The mean function defines the prior knowledge of the expected 
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outputs and is assumed to be zero in most works. The kernel correlates the similarity 

between the inputs, in the context of indoor positioning, the kernel encodes the spatial 

correlations between locations. 

DGP offers a powerful probabilistic nonparametric approach to address complex 

machine learning problems while quantifying uncertainty effectively. These DGPs are 

multilayer hierarchical extensions of GPs and share formal equivalence with neural 

networks featuring infinitely wide hidden layers. DGPs retain the advantageous 

properties of GPs, such as nonparametric modelling capabilities and well-calibrated 

predictive uncertainty estimates. Moreover, they overcome the limitations of single-layer 

GPs, which can only represent a restricted class of functions. Generally, DGPs are richer 

models just like how deep networks surpass generalized linear models. Instead of highly 

parameterized kernel-based models, DGPs learn a nonparametric representation 

hierarchy with minimal hyperparameter tuning.  The structural advantages of deep 

models enhance learning quality, especially in intricate datasets associated with abstract 

information (Wang et al., 2020). 

DGP can be represented by a graphical model with three different types of nodes, 

namely the leaf nodes, the intermediate latent nodes, and the parent nodes, as shown in 

Figure 2.5. 

 

Figure 2.5: Deep Gaussian process model for RSSI radio map construction  

The nodes at each layer has a input dimension of the output of the previous layer. In 

which where the parent node, 2 ∈ ℝ+×-, where N is the number of inputs and M is the 
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number of input dimensions. The intermediate latent nodes &. ∈ ℝ+×/! , where h = 

1,2, …, H and H is the number of hidden layers and Q is the number of hidden dimensions 

for layer h. The leaf node is ? ∈ ℝ+×0, where D is the number of outputs. Each layer of 

the DGP is an individual GP function which can be formulated as equation 2.5. 

&."# = @1!
2!(&.) + A3

2! 	, CℎE5E	&$ = 2 (2.5) 

?34 = @0
2$(&5) + A3

2$ (2.6) 

Such that @0
2!~G!H&. , I2J where I represents the kernel function.  

The DGP process can be solved by log likelihood optimization by equation 2.7. 

log $(&|() = log ∫!!,#$(&|,")$(,"|,"#$)…$(,$|() (2.7) 

2.4.2 Case Study of Indoor Positioning Using Fingerprinting Method with 

Machine Learning 

Kodippili and Dias (2010) proposes fingerprinting technique as a pre-processing step. 

KNN (K=3) was used in this paper. Then, the distance between the Nearest Neighbours 

(NNs) and beacon node was calculated using the modified path loss model. Then the 

position of beacon node was estimated using trilateration. The proposed algorithm has an 

44% improvement in accuracy compared to basic fingerprinting technique and is 73% 

better compared to basic trilateration technique. 

Fang et al. (2011) proposes a dynamic fingerprinting combination (DFC) algorithm 

that improves mobile localization by weighting the spatial correlation dynamically from 

multiple location fingerprinting systems. The DFC algorithm reduces the risk of selecting 

poorly performing fingerprinting function. The DFC algorithm initially leverages the 

strengths of different fingerprinting methods to create a combined profile. Subsequently, 

it dynamically integrates the individual outputs based on the characteristics of the 

surrounding data points. DFC improves the positioning accuracy of base fingerprinting 
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algorithms, including the Bayesian approach and a neural network model. The DFC was 

found out that it performs better than any individual fingerprinting approach. In addition, 

the results also demonstrated that the Bayesian approach performed better than the neural 

network.  

Alraih et al. (2017) proposed a clustering algorithm to reduce computational time and 

radio map size. Fingerprinting technique was used to evaluate the performance of the 

proposed algorithm. Four WiFi Access Points (AP) were deployed in an area with 

dimension of 52 m x 22 m.  The construction and materials of the building in the 

experiment were includes: the inner walls were made from plaster partition boards, 

whereas the outer walls were concrete and glass, and light wood doors with a small glass. 

The clustering algorithm outperformed the conventional method, reducing average 

distance error from 3.4 m to 2.4 m, representing a 41 % improvement in system accuracy. 

Alhammadi et al. (2017) proposes a fingerprinting-based localisation algorithm with 

clustering technique (Signal space clustering algorithm) to estimate the user location. In 

the offline phase, calibration points are collected at certain places in floor to build a radio 

map. In the online phase, deterministic (KNN) and probabilistic Bayesian Network (BN) 

approaches are applied. The results have shown the proposed clustering technique has 

significantly reduced the size of radio map from 30 to 15 calibration points for both 

approaches. The accuracy in deterministic approach was slightly improved from 7.3 to 

6.9 m while the probabilistic approach achieved a better average accuracy of 2.6 m. 

Abdelghani and Qiang (2017) propose a hybrid algorithm that integrates KNN and 

Segmentation Nearest Neighbour (Seg-NN). The final estimated location will be the 

result of the algorithm that is closest to the previously estimated location. The mean error 

decreases from 83 m to 24 m after applying the hybrid algorithm. (Lu et al., 2016) exploits 

two algorithms adapting the singular value including a least squares estimation (SVD-LS) 
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and a minimum variance technique (SVD-MV). SVD-MV reports a more powerful ability 

of noise reduction than SVD-LS. Under one meter accuracy, SVD-LS has 92.56 % 

whereas SVD-MV achieves 93.84 %. 

Molina et al. (2018) integrates two different technologies (BLE and WiFi) to provide 

improved accuracy. Various configuration parameters are used: Positioning algorithm 

(WKNN), Maximum sample size, Missing MAC penalty, Candidate set size, Checks 

before hop, Distance algorithm, Distance algorithm arguments, and Filter sequence. The 

initial algorithm correctly identified the node in only 50 % of instances. To improve 

accuracy, three filter sequences were implemented. The refined algorithm achieved a 

success rate of 80% for correct node identification and 94 % for identifying an adjacent 

node. The resulting indoor service accuracy of approximately 5 meters surpassed the 

internal geolocation plugin's accuracy of around 10 meters. 

Ji et al. (2021) proposes the building of a multivariable fingerprinting database by 

choosing ten 5G variables related to distance-power relationship. To utilize correlation 

among the multivariable fingerprints, Random Forest Variable Selection (RFVS) is used 

to sort variable importance and combinations. In three different experimental scenarios, 

five machine learning algorithms are used to calculate user equipment positions. 

Combined with RFVS, MLP shows 31.4 2%, 39.56 %, 30.54 % accuracy improvements 

for each respective room compared with that of only RSSI used. 
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2.4.3 Case Study of Indoor Positioning Using Fingerprinting Method with Deep 

Learning 

Teng et al. (2018) proposes an indoor positioning system that is based on the deep 

Gaussian process regression (DGPR) model. The nonparametric characteristics of the 

model and the need to measure part of the reference points, reduces time and cost for data 

collection. RSS values were converted into four types of characterizing values as input 

data and then predicts the position coordinates using DGPR model. Lastly, after 

reinforcement learning, the position coordinates are optimized. Several experiments were 

conducted which includes a simulated environment by MATLAB and in the physical 

environments at Tianjin University. The experiments examined positioning accuracy with 

different kernels and in different environments. The results showed that the proposed 

method achieve the results of average error of 2.28 m and maximum error of 

approximately 6 m. 

Belmonte-Hernández et al. (2019) presents the framework SWiBluX, that integrates 

various technologies, WiFi, Bluetooth and Xbee technologies adopting fingerprinting for 

position estimation. The Neural Networks were used in combination with a novel 

Gaussian Outliers Filter (GOF) to improve the positioning accuracy for person tracking. 

The authors have compared positioning errors of several methods, deterministic and 

probabilistic methods, machine learning methods and deep learning methods. Deep 

Neural Network together with GOF, Weighted Combination and Particle Filter achieves 

the best result with average error of 45.41 cm. 

Wang et al. (2020) propose the DeepMap system, that is the first, to construct radio 

maps and perform indoor localization using Deep Gaussian Process (DGP) model. The 

proposed DeepMap system can effectively overcome the drawbacks of the Gaussian 

process by generating detailed radio maps using sparse training data. The proposed 
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system consisted of a two-layer deep Gaussian process model to regress the relationship 

between RSS samples and location. Then, the Bayesian training method is used that 

optimizes model parameters, and a Bayesian fusion method that boosts localization 

performance were designed. DeepMap achieves median error of 1.3 m and maximum 

error of 5.207 m as opposed to typical Gaussian Processes of 1.5 m and 6.182 m of median 

and maximum error respectively. Impact of number of inducing points, impact of latent 

nodes and impact of the number of iterations for initializing the variational distribution 

were also studied. 

Guan et al. (2021) proposes DGP as a more informative alternative to GP for 

probabilistic positioning and points out the pitfall of using GP to model signal fingerprint 

uncertainty. In a office building, DGP produces mean error of 3.36 m compared to mean 

accuracy of 3.71 m by using GP. Whereas in a shopping environment, DGP produces a 

mean accuracy of 5.79 m while GP produces mean accuracy of 6.25 m. DGP also 

outperform GP in all percentiles. 

Wang et al. (2021) present a geomagnetic indoor positioning algorithm based on the 

hierarchical LSTM. The system can jointly consider the short-term features such as 

divergences and anomalies as well as the long term features like the geomagnetic signal 

shape change characteristics to improve the position accuracy. Utilizing the advantage of 

LSTM which has strong learning ability on time series data, the authors utilize LSTM 

networks to extract temporal features. Implementing the hierarchical structure of LSTM 

networks enables the model to learn the short-term and long-term geomagnetic features. 

Pichaimani and Manjula (2022) proposes a novel framework called Gaussian 

Distributive Feature Embedding based Deep Recurrent Perceptive Neural Learning 

(GDFE-DRPNL) that improves the accuracy of indoor positioning systems. The 

framework reduces the time consumption and overhead for estimating the location of 
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various devices by selecting principal features and utilizing Deep Recurrent multilayer 

Perceptive Neural Learning to evaluate the device position with dimensionality reduced 

features. The experimental assessments with various factors such as positioning accuracy 

minimized by 70 % and 60 %, computation time minimized by 45 % and 55 % as well as 

overhead by 11 % and 23 % compared with Particle Filter based Reinforcement Learning 

(PFRL) and two-dimensional localization algorithm. 

The authors, Tang et al. (2022) investigate three different methods of RSSI data 

augmentation based on Multi-Output Gaussian Process (MOGP), by a single floor, by 

neighbouring floors, and by a single building. The effectiveness of augmenting RSSI data 

using a MOGP model was demonstrated through experiments on an RNN-based indoor 

localization model trained with the UJIIndoorLoc dataset. By incorporating the entire 

building's RSSI data into the MOGP model for data augmentation, the RNN model 

achieved a mean three-dimensional positioning error of 8.42 meters, surpassing the 

original model's error of 8.62 meters and outperforming other augmentation methods. 

Nabati and Ghorashi (2023) proposes a positioning algorithm using deep neural 

network (DNN) to learn the distribution of available RSS samples instead of averaging 

them at offline phase. Then a novel state-based positioning method is utilized to consider 

the previous state information of users assuming that users’ movements are continuous. 

The proposed algorithm is tested on both benchmark and collected datasets in two 

different scenarios (single RSS sample and many RSS samples for each user in the online 

phase) and is shown to be superior to traditional regression algorithms such as Gaussian 

process regression, deep neural network regression, random forest, and WKNN. 

Qin et al. (2021) introduces CCpos, a novel WiFi fingerprinting-based indoor 

positioning system that leverages a contractive denoising autoencoder (CDAE) and 

convolutional neural network (CNN) to improve localization accuracy. The main 
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innovation lies in the combination of CDAE for denoising and feature extraction with 

CNN for spatial learning, enhancing the robustness of WiFi fingerprinting against 

environmental noise and signal fluctuations.  The average positioning error is reduced to 

1.46 meters, compared to 2.32 meters in conventional methods. The system achieves a 

24.8% improvement in localization accuracy, demonstrating superior robustness in 

complex indoor environments 

Nguyen et al. (2024) proposes an enhanced Wi-Fi fingerprint-based indoor localization 

method by integrating Truncated Singular Value Decomposition (TSVD) and a LSTM 

model. TSVD reduces the dimensionality of raw fingerprint data, improving signal 

quality, while LSTM captures temporal dependencies to refine positioning accuracy. The 

model achieves an average localization error of 1.25 meters, outperforming baseline 

techniques with errors of 1.98 meters. The proposed TSVD-LSTM model improves 

positioning accuracy by 37%, making it well-suited for dynamic indoor environments 
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Table 2.4: Summary of Case Studies of Positioning Systems Using Fingerprinting 
Techniques with Machine Learning 

Study Methodology Findings 

Kodippili and 

Dias (2010) 

Fingerprinting with KNN (K=3) 

and modified path loss model for 

distance calculation, trilateration 

for position estimation 

44 % accuracy improvement compared to basic 

fingerprinting, 73 % accuracy improvement 

compared to basic trilateration 

Fang et al. 

(2011) 

Dynamic fingerprinting 

combination (DFC) algorithm 

with Bayesian approach and 

neural network model 

DFC improved positioning accuracy compared to 

individual fingerprinting approaches, reducing 

67th percentile localization errors by 19.28 % 

(Bayesian) and 27.78 % (neural network) 

Alraih et al. 

(2017) 

Clustering algorithm with 

fingerprinting using four WiFi 

APs 

Average distance error of 2.4 m (clustering) vs. 

3.4 m (non-clustering), 41 % accuracy 

improvement with clustering 

Alhammadi et 

al. (2017) 

Fingerprinting with signal space 

clustering, KNN, and Bayesian 

Network (BN) 

Clustering reduced radio map size from 30 to 15 

calibration points; KNN accuracy slightly 

improved from 7.3 m to 6.9 m, BN accuracy 

improved to 2.6 m 

Abdelghani 

and Qiang 

(2017) 

Hybrid algorithm integrating 

KNN and Segmentation Nearest 

Neighbour (Seg-NN) 

Mean error decreased from 83 m to 24 m using 

the hybrid algorithm 

Lu et al. 

(2016) 

SVD-LS and SVD-MV 

algorithms for noise reduction 

SVD-MV showed better noise reduction; under 

1m accuracy, SVD-LS achieved 92.56 %, SVD-

MV achieved 93.84 % 

(Molina et al., 

2018) 

Integrated WiFi and BLE with 

WKNN and filter sequences 

Initial accuracy of 50 % (right node), improved 

to 80 % (right node) and 94 % (adjacent node) 

after applying filter sequences; average accuracy 

of 5 m, outperforming internal geolocation plugin 

(10 m accuracy) 

Ji et al. (2021) RFVS for variable importance 

and combinations, MLP for 

position calculation using 5G 

variables 

MLP with RFVS showed 31.42 %, 39.56 %, and 

30.54 % accuracy improvements in different 

rooms compared to using RSSI only 
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Table 2.4, continued: Summary of Case Studies of Positioning Systems Using 
Fingerprinting Techniques with Machine Learning 

Teng et al. 

(2018) 

Deep Gaussian Process Regression 

(DGPR) with RSS values as input 

Average error of 2.28 m and maximum 

error of approximately 6 m 

(Belmonte-

Hernández et 

al., 2019) 

SWiBluX framework using WiFi, 

Bluetooth, and Xbee with 

fingerprinting and neural networks 

Deep Neural Network with GOF, Weighted 

Combination, and Particle Filter achieved 

best result with average error of 45.41 cm 

Wang and Park 

(2020) 

DeepMap system using Deep 

Gaussian Process (DGP) for radio 

map construction and localization 

Median error of 1.3 m and maximum error 

of 5.207m, outperforming typical Gaussian 

Processes (1.5 m median error, 6.182 m 

maximum error) 

Guan et al. 

(2021) 

DGP for probabilistic positioning DGP outperformed GP in office building 

(3.36 m mean error vs. 3.71 m) and 

shopping environment (5.79 m mean error 

vs. 6.25 m), as well as in all percentiles 

Wang et al. 

(2021) 

Hierarchical LSTM for geomagnetic 

indoor positioning considering short-

term and long-term features 

Utilized LSTM networks to extract 

temporal features and hierarchical structure 

to learn geomagnetic features; improved 

position accuracy compared to traditional 

methods 

Pichaimani and 

Manjula (2022) 

GDFE-DRPNL framework with 

feature selection and Deep Recurrent 

Perceptive 

Positioning error decrease up to 70% and 

computational time reduced up to 55 %. 

Nabati and 

Ghorashi 

(2023) 

State-based deep neural network to 

consider the previous state 

information of users assuming that 

users’ movements are continuous 

Superior accuracy compared to traditional 

regression algorithms. 

Qin et al. 

(2021) 

Leverages a CDAE and CNN The average positioning error is reduced to 

1.46 meters, compared to 2.32 meters in 

conventional methods. 

Nguyen et al. 

(2024) 

Proposed the TSVD-LSTM model. 

TSVD reduces the dimensionality of 

raw fingerprint data, while LSTM 

captures temporal dependencies. 

The model achieves an average localization 

error of 1.25 meters, outperforming 

baseline techniques with errors of 1.98 

meters. 
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2.5 Research Gap 

Despite extensive research on indoor positioning systems, significant challenges 

remain, particularly in leveraging LoRa-based technology for dynamic motion tracking 

in industrial environments. The existing literature provides valuable insights into different 

aspects of positioning, including radio-based technologies (Chapter 2.1.1), LPWAN-

based positioning (Chapter 2.1.2), and LoRa’s feasibility for localization (Chapter 2.3.2). 

However, several key limitations persist. 

Firstly, previous studies demonstrate the feasibility of LoRa for positioning but often 

focus on static or low-mobility environments. The accuracy of LoRa-based positioning 

systems in dynamic motion scenarios has not been explored. While machine learning and 

deep learning have been explored, most studies lack uncertainty quantification in their 

models. This is crucial for low-data and high-noise environments like industrial settings, 

where signal reception is highly variable. Deep Gaussian Process Regression (DGPR) has 

been underutilized in positioning studies, despite its potential to improve accuracy by 

capturing uncertainties in localization.  

Moreover, many existing fingerprinting-based methods overlook the importance of 

time-dependent signal variations. Signal strength fluctuations due to environmental 

changes, device movement, and interference are often ignored, leading to inconsistent 

and unreliable positioning results. To address these gaps, this research proposes an 

enhanced LoRa-based indoor positioning system integrating DGPR and spatial-temporal 

enhancement techniques, aiming to improve localization accuracy in dynamic industrial 

environments. 
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CHAPTER 3: METHODOLOGY 

In this research, we equipped LoRa technology as the foundation for indoor 

positioning. LoRa access points and beacons were strategically deployed within a real-

world industrial environment to capture and analyse radio characteristic data. This data 

was then used to construct machine learning pipelines for precise beacon position 

prediction. The result of this research saw the implementation of these models in a proof-

of-concept demonstration of trolley location detection, showcasing their practical 

application and potential impact. 

More precisely, the methodology progression involved five primary phases: 

1. Configuring LoRa-enabled devices for radio fingerprint collections within the test 

area by using static and striding methods. 

2. Evaluate and validate the feasibility of LoRa-based indoor positioning systems by 

comparing various machine learning models to map collected radio maps to 

spatial coordinates. 

3. Demonstrate the effectiveness of DGPs in positioning in complex environments. 

Extensive parameter tuning was conducted to optimize the DGPs' internal 

structure, enabling them to capture the intricate nuances of spatial relationships 

within the environment. 

4. Implementation of spatial-temporal techniques to reduce large positioning errors 

and show object movements. 

5. Integration of hardware, process flows, system backend, database and frontend 

user interface to build a robust proof of concept of the real-world application of 

the indoor positioning system. 

Univ
ers

iti 
Mala

ya



 
39 

 

Figure 3.1: Flow diagram for the methodology section 

Figure 3.2 presents the architecture of the proposed positioning system. The proposed 

system is a combination of the fingerprinting-based indoor positioning system with 

temporal-based filtering techniques for dynamic positioning (Ng et al., 2024). First, the 

radio packets from the mobile nodes LoRa transceivers are received by the base stations, 

then, the radio parameters, and necessary input information are sent to the server for 

processing, and stored in the radio map. Second, a Temporal Weighted RSSI filter is used 

to smoothen the current RSSI value with the previous RSSI values while carrying a 

weightage. The weight is calculated using the exponential decay function by taking the 

sending time difference between the current radio packet with the previous radio packet. 

Thirdly, a Deep Gaussian Process Regression model is trained using the radio map for 

single point estimation. Subsequently, the x and y coordinates from the single point 

estimator are inserted into the Kalman filter to simulate real dynamic movement. Since 

no external sensors were used to determine the acceleration and velocity, only the time 

difference between the sending of radio packets is used as a variable in the Kalman filter. 

Experimental setup 
and data collection

Single point 
estimation with 

machine learning

Improvement in 
single point 

estimation with 
Deep Gaussian 

Processes

Improving single 
point estimation 

with spatial-
temporal 

techniques

Proof of Concept
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Figure 3.2: TWA-DGPR-KF overall system architecture. Temporal 
Weighted RSSI Averaging was applied on the current and historical 
RSSI vector with timestamps to form a filtered RSSI radio map. The 
Deep Gaussian Process Regression model was trained on the filtered 
RSSI radio map to produce single point position estimates. Kalman 
filter was applied to the single point position estimate to predict the 

current state which is the estimated position. 
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3.1 Experimental Setup 

3.1.1 System Hardware and Nodes 

The TTGO LoRa32 V2.1.6 915MHz boards (Figure 3.3) were used as both beacons 

and base stations (BSs). The LoRa32 module is an ESP32 module integrated with another 

LoRa module. Since it operates at 2 different frequencies, 2.4GHz for WiFi and Bluetooth 

and 433/868/915MHz for LoRa, it utilizes two different antennas. Table 3.1 shows the 

specifications of the TTGO LoRa32 V2.1.6 module. 

Table 3.1: Specifications of TTGO LoRa32 V2.1.6 module 

ESP chip ESP32 PICO-D4 

Working frequency 433/868/915MHz 

Modulation method FSK, GFSK, MSK, GMSK, LoRa, OOK 

LoRa RF power +2dBm to +20dBm 

LoRa antenna SMA antenna 

Number of pins 26 

Power Consumption Active state: 20mA to 120mA 

Idle state: 1.5µA 

Sleep state: 0.2µA 
Operating voltage 1.8V to 3.7V 

Operating temperature -40oC to +85oC 

 

The beacon nodes were configured to send LoRa radio packets at 2 dBm, and LoRa 

configuration of spread factor (SF) 7 and bandwidth of 125 kHz. The radio packets are 

sent with a constant interval of 1000 ms. The payload of the beacon node consists of the 

beacon number, device timestamp and packet number for data processing purposes during 

the data collection process. The beacon nodes are attached to a lithium battery for mobility 

convenience purposes. 
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Figure 3.3: The TTGO LoRa32 V2.1.6 (LILYGO®, n.d.) 

The anchor nodes were configured to act as both LoRa and WiFi transceivers. Each 

anchor node was continuously listening for incoming LoRa radio packets. Upon receiving 

a packet with the correct packet type, the BS would further process the data payload. In 

addition to the packet information, the BS recorded crucial radio signal parameters 

available from the LoRa module, including the RSSI, SNR and frequency error, for the 

received packet. The BS then compiled the packet information, RSSI, SNR, and 

frequency error into a JSON formatted object. This JSON object encapsulated the 

complete dataset for each received packet, providing a structured and standardized 

representation of the collected data. Subsequently, the JSON objects were transmitted 

from the BSs to a central server through websocket, where they were securely stored in a 

fingerprint database. The fingerprint database was then used for further analysis and used 

on various machine learning techniques as described in further sections. Figure 3.4 

depicts the block diagram of the proposed IoT-based indoor positioning infrastructure and 

data flow. 
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Figure 3.4: Block diagram of the proposed IoT-based indoor positioning 
infrastructure and data flow. 

3.1.2 Testbed and node placement 

The experiment was performed in a production line at the Test Backend Department 

in NXP Semiconductors, Malaysia. The floor plan layout of the production line is shown 

in Figure 3.5 with the largest length and width of 53 meters and 34 meters. The 

environment is filled with machines, shelves, workstations, trolleys and human 

movement distributed intermittently characterized the space presenting potential radio 

occlusion and reflection surfaces.  

Five BSs were placed in locations represented by red star symbols where machines 

and pillars are available for installation. The dark grey sections are partitions or portioned 

rooms. The light grey sections are conveyor and packaging platforms. Purple, white, light 

blue, and neon blue are packaging machines. Dark blue areas are inspection workstations. 

Yellow boxes represent metallic shelves, and the orange colour represents wafer baking 

machines. Data collection is done along the lanes where trolleys can commute. Further 

details of data collection will be described in the next section. 
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Figure 3.5: Floor plan layout of the testbed environment.  

3.1.3 Data Collection 

This research employed two distinct methods, static and motion, to gather data from 

the LoRa devices deployed within the testbed.  

The static dataset involved holding the beacon node at fixed points with 1 meter 

intervals along the lanes where trolleys can commute (Figure 3.7). The location was first 

set as location information in the radio packet payload. Then, 30 radio packets were 

broadcasted at the location before moving on to the next predetermined point. 

Subsequently, the process is repeated throughout all the points. Depiction of the radio 

packets is shown in Figure 3.6. 

For the motion dataset, the constant speed method described in (Li et al., 2017) was 

used to infer the location of the beacon node. The authors suggested that the method can 

reduce time for site surveying such as hardware configuration and precise distance 

interval marking, without sacrificing localization performance. The user’s location ,-K( 

at L( can be calculated by using equation 3.1, 

,-K( = ,-K6"7!" +
L( − L6"7!"
L834 − L6"7!"

		× (,-K834 − ,-K6"7!") (3.1) 
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This experiment involved defining five lanes, including two horizontal and three 

vertical lanes. The movement speed was approximately 1.5 ms-1. For each lane, data was 

collected in two batches, with the batches moving in opposite directions along the entire 

length of the lanes. 

 

Figure 3.6: LoRa packet structure, showing its primary components of 
Preamble, Header with CRC, Payload, and a final CRC section. The 

lower portion details the Payload structure, where ID is the device ID, X 
and Y represents the x and y coordinates, type indicates the type of 

packet, timestamp is the sending timestamp, no. is the number of packet 
sent, batt represents the battery value, and payload for additional 

information. 

The testing dataset is collected separately by moving around the testbed using the 

constant speed method. The data points collected for the static and motion datasets are 

shown in Figure 3.7 and Figure 3.8 respectively. 

Overall, the RSSI, SNR and frequency error of the beacon nodes would be recorded 

in the database as (x, y, packet ID, ID, timestamp, rx_1_RSSI, rx_1_SNR, rx_1_freq, 

rx_2_RSSI, rx_2_SNR, rx_2_freq,  … rx_5_RSSI, rx_5_SNR, rx_5_freq) from BS1 to 

BS5 grouped by packet ID and timestamp where x and y represents the x and y 

coordinates and ID represents the labelled value for each x, y coordinates pair. 
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Figure 3.7: Data points collected using conventional static method 

 

Figure 3.8: Data points collected in motion 
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3.2 Data Preprocessing 

Before applying machine learning algorithms for position estimation, several data 

preprocessing steps were performed to ensure data quality, handle missing values, and 

prepare the feature spaces (Figure 3.9). Proper data preprocessing is crucial for achieving 

accurate and reliable position estimates, as it can significantly impact the performance of 

the machine learning models. 

 

Figure 3.9: Preprocessing steps on raw data before machine learning model 
training 

3.2.1 Feature Selection 

In this research, the collected data was segmented into three distinct fingerprint 

databases to investigate the impact of different feature combinations on position 

estimation accuracy. The three fingerprint databases were: 

1. RSSI, SNR, and Frequency Error (All Features). This database contained the 

complete set of features from all BSs, including RSSI, SNR and frequency error 

values. 

2. RSSI and SNR. This database consisted of only the RSSI and SNR features from 

all BSs, excluding the frequency error. 

3. RSSI only. This database consisted of only the RSSI features from all BSs, 

excluding the frequency error. 

3.2.2 Missing Data Imputation and Feature scaling 

To handle missing or incomplete data points in the collected datasets, a missing data 

imputation technique was employed. Specifically, the K-Nearest Neighbours Imputer 

Feature 
Selection

Missing Data 
Imputation

Feature 
Scaling

Machine 
Learning 
Model
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(KNNImputer) from the scikit-learn library was utilized, with the number of neighbours 

(k) set to 3.  To impute missing features, values from the n nearest neighbours that have 

a value for the feature are utilized. The neighbours’ features are uniformly averaged by 

their distance to each neighbour. The Euclidean distance metric is used to determine the 

nearest neighbours. 

To ensure that all features contribute equally to the position estimation models, to 

reduce computational resources and to prevent any potential dominance of features with 

larger numerical ranges, feature scaling was performed. The standard scaler was 

employed to standardize the feature values, where each standard score z of sample x can 

be calculated as shown in (3.2), 

N	 = 	
(7	 − 	O)

<  (3.2) 

where O is the mean of the training feature and < is the standard deviation of the training 

feature. 

3.3 Machine Learning Algorithms for Single Position Estimation 

This subsection describes the application of various machine learning algorithms, 

which leverage the collected data as mentioned in the previous section to learn patterns 

and relationships between the radio signal parameters and the corresponding locations. 

This research employed a diverse set of machine learning algorithms for position 

estimation, including both classification and regression techniques. All machine learning 

models in this subsection were trained using the scikit-learn library. Each machine 

learning algorithm was evaluated with the three feature datasets (All features, RSSI and 

SNR, RSSI only) for both motion and datasets. 

The outputs of the machine learning algorithms were labelled values for classification 

models, whereas, for regression models, the output would be in the form of coordinates. 
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The output results were then related to their corresponding coordinates on the testbed. 

The errors of the position estimates were calculated with the absolute Euclidean distances 

between the position estimate and the actual position.  

The evaluation metrics for the machine learning algorithms were mean absolute error 

(MAE) and root mean square error (RMSE). MAE measures the average magnitude of 

the errors between predicted and actual values, providing a straightforward interpretation 

of the average error. On the other hand, RMSE provides a more comprehensive measure 

of the error by penalizing large errors more heavily compared to MAE. By utilizing these 

evaluation metrics, we were able to not only observe the average error but also compare 

large errors. The performance of these different models was evaluated by comparing their 

accuracy, and the model with the highest accuracy was selected. 

3.3.1 Classification Models for Single Position Estimation 

The classification models explored in this study include Random Forest (RF), Decision 

Tree, K-Nearest Neighbours (KNN), Weighted KNN (wKNN), Multilayer Perceptron 

(MLP), and Naive Bayes (NB). Each model offers unique advantages and characteristics, 

making them suitable for different scenarios and data distributions. 

The Random Forest and Decision Tree are non-parametric supervised learning 

methods that recursively partition the feature space into smaller regions based on the most 

discriminative features. The tree-like structure consists of internal nodes representing 

feature tests and leaf nodes representing class labels. The Random Forest is an ensemble 

learning method that constructs multiple decision trees during training and combines their 

predictions for classification tasks. Each tree is grown using a random subset of features, 

and the final prediction is determined by majority voting of the individual trees. Random 

Forests compared to Decision Trees are robust to overfitting, can handle high-

dimensional data, and are relatively insensitive to outliers. 
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KNN is a non-parametric, instance-based learning algorithm that classifies new 

instances based on their similarity to the nearest neighbours in the training set. The 

algorithm computes the distances between the new instance and all training instances, 

selects the k closest neighbours, and assigns the class label based on the majority vote of 

these neighbours. WKNN is an extension of the KNN algorithm that assigns weights to 

the neighbours based on their distances from the new instance. Closer neighbours 

contribute more to the classification decision than farther neighbours. The Euclidean 

distance metric and k value of 3 were used in this experiment. 

MLP is a type of artificial neural network that consists of multiple layers of 

interconnected nodes or neurons. One or more hidden layers between the input and output 

layers perform non-linear transformations on the data. In this experiment, the MLP 

consists of one hidden layer with 64 nodes, tangent hyperbolic (tanh) activation function 

and the Adam optimizer with adaptive learning rate. 

The NB classifiers are probabilistic models based on Bayes' theorem with the “naive” 

assumption of conditional independence between every pair of features given the value 

of the class variable. Despite the strong assumption of feature independence, which is 

often violated in real-world data, Naive Bayes classifiers can perform surprisingly well 

and are computationally efficient. 

3.3.2 Regression Models for Single Position Estimation  

In addition to classification models, regression techniques were also explored for the 

position estimation task. Regression models aim to learn a mapping function that relates 

the input features (radio signal parameters) to continuous target variables (location 

coordinates).  
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Similar to its classification counterpart, Random Forest Regression is an ensemble 

learning method that constructs multiple decision trees during training. However, instead 

of majority voting, the final prediction is obtained by averaging the predictions of 

individual trees. Next, Decision Tree Regression shares the same tree-like structure as its 

classification variant but predicts continuous target values at the leaf nodes instead of 

class labels.  

WKNN Regression is an adaptation of the Weighted KNN classifier for regression 

tasks. Instead of majority voting, it predicts the target value by taking a weighted average 

of the target values of the k nearest neighbours, where closer neighbours contribute more 

to the prediction. Subsequently, MLP Regression is a variant of the MLP classifier, where 

the output layer produces continuous target predictions instead of class labels. The 

underlying architecture and training process remain similar, with the objective of 

minimizing the error between the predicted and true target values. 

On top of that, Linear Regression is a classical statistical method that models the 

relationship between the input features and the target variable as a linear function. It 

assumes that the target variable can be expressed as a linear combination of the input 

features, weighted by coefficients learned from the training data. Linear Regression is 

simple and interpretable but may not capture non-linear relationships effectively. 

Gaussian Processes Regression (GPR) is a non-parametric Bayesian approach that 

models the target variable as a Gaussian process governed by a covariance function also 

known as a kernel. Unlike other regression models that learn a specific mapping function, 

GPR directly models the distribution of the target variable, allowing for uncertainty 

quantification and probabilistic predictions. 
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In GPR, the covariance function encodes the assumptions about the smoothness and 

behaviour of the target function. The choice of the kernel function plays a crucial role in 

the performance of the GPR model, as it determines the properties of the underlying 

Gaussian process. This research explored several kernel functions to capture different 

types of non-linear relationships in the data, namely Radial Basis Function (RBF) Kernel, 

Matérn kernel, sum of RBF kernel and Matérn kernel, product of RBF kernel and Matérn 

kernel. 

The RBF kernel, also known as the Gaussian kernel or the squared exponential kernel, 

is a popular choice for GPR. It assumes that the target function is infinitely differentiable 

and has a high degree of smoothness. The RBF kernel (equation 3.3) is particularly well-

suited for modelling continuous and smooth functions but may struggle with abrupt 

changes or discontinuities in the data.  

P9:;(7, 7<) = expT−
‖7 − 7<‖=

2ℓ= X (3.3) 

The hyperparameter ℓ controls the length scale, determining how quickly the correlation 

decays with distance. 

The Matérn kernel is a class of kernels that can model functions with varying degrees 

of smoothness. It is parameterized by a positive smoothness parameter that controls the 

differentiability of the resulting functions. Lower values of the smoothness parameter 

produce rougher functions, while higher values lead to smoother functions. The Matérn 

kernel (equation 3.4), can be useful when the target function exhibits non-smooth or 

discontinuous behaviour. 

P>?@éBC(7, 7<) = σ=
2$DE

Γ(ν) T√2ν
‖7 − 7<‖

ℓ X
E
IE T√2ν

‖7 − 7<‖
ℓ X (3.4) 
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The hyperparameter \ controls the degree of smoothness of the learned function. The 

smaller nu, the less smooth the approximated function is. For \ = inf, the kernel becomes 

equivalent to the RBF kernel and for \ = 0.5 to the absolute exponential kernel. Some of 

the other popular \  values are \ = 1.5  and \ = 2.5  as they are computationally less 

expensive. 

In some cases, a single kernel may not be sufficient to capture the complexities of the 

underlying function. To address this, a combination of kernels can be used. The sum of 

RBF and Matérn kernels as shown in equation 3.5 

P6FG(7, 7<) = P9:;(7, 7<) + P>?@éBC(7, 7<) (3.5) 

allows the model to leverage the strengths of both kernels, potentially capturing both 

smooth and non-smooth aspects of the target function. 

Another approach to combining kernels is through the product operation (equation 3.6).  

PH!I4(7, 7<) = P9:;(7, 7<) ∙ P>?@éBC(7, 7<) (3.6) 

The product of RBF and Matérn kernels can be useful when the target function exhibits 

both smooth and non-smooth regions, and the product kernel can model these 

characteristics more effectively than individual kernels alone. 

3.4 Deep Gaussian Process Regression 

Deep Gaussian Processes (DGPs) are a hierarchical extension of the Gaussian 

Processes Regression (GPR) model, capable of learning rich representations from high-

dimensional data. In this research, DGPs were explored as a powerful approach for indoor 

position estimation using LoRa technology. 

Unlike traditional GPR, which models the target variable directly from the input 

features, DGPs introduce a series of latent variables or hidden layers. These latent 
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variables are themselves modelled as Gaussian Processes, allowing for the automatic 

discovery of useful representations and feature abstractions from the input data. 

The hierarchical nature of DGPs enables the model to capture complex non-linear 

relationships and patterns in the data, making it well-suited for the intricate radio signal 

propagation dynamics encountered in indoor environments. By learning these rich 

representations, DGPs can potentially improve the accuracy and robustness of position 

estimates (Wang et al., 2020). 

3.4.1 DGP Architecture 

The Deep Gaussian Processes (DGP) model employed in this research was 

implemented using the GPyTorch library, a flexible and efficient Gaussian Process library 

built on PyTorch. The DGP architecture consisted of multiple layers, with each layer 

being a DGP layer, capable of learning rich representations from the input data. 

The foundation of the DGP architecture was the standard DGP layer with configurable 

input and output dimensions, number of inducing points, and kernel functions.  

The DGP architecture can be visualized as a graphical model (Figure 3.10) where each 

node represents a GP. The input layer receives the raw data, and the output layer produces 

the final predictions. The hidden layers, composed of latent variables, enable the model 

to learn increasingly abstract and informative features from the data. This hierarchical 

structure allows DGPs to model complex functions that may not be well-represented by 

a single-layer GPR. 

The model utilized a Gaussian Likelihood. This likelihood function jointly modelled 

the distribution of the target coordinates, allowing the DGP model to capture the 

dependencies and correlations between them.  
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Since the log likelihood is not analytically tractable because of the nonlinearity of the 

GPs, sparse variational inference is used to optimise the DGP. 

 

Figure 3.10: Graphical model of DGP with two hidden layers 

3.4.2 Model Design and Hyperparameter Selection 

3.4.2.1 Kernel Selection 

The choice of kernel functions plays a crucial role in the performance of Gaussian 

Processes models, as it determines the characteristics of the learned function. In this study, 

though each layer can have varying kernels or covariance functions, the same kernel is 

used for each layer. Two combinations of kernels were explored: the sum of the RBF 

kernel and the Matérn kernel, and the product of the RBF kernel and the Matérn kernel.  

To facilitate the initial exploration phase, a constant number of dimensions (5) and a 

fixed number of inducing points (60) were chosen. While these values were selected 

randomly, they provided a reasonable starting point for evaluating the performance of the 

different kernel combinations. The covariance function that exhibited better performance, 

as measured by the chosen evaluation metrics, was selected for further hyperparameter 

tuning. 

3.4.2.2 Number of Dimensions in the Hidden Layer 

The number of dimensions in the hidden DGP layer determines the complexity of the 

learned representations. Higher-dimensional representations can capture more intricate 

patterns but may also increase the risk of overfitting and computational demands. 
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To find the optimal number of dimensions for the hidden layer, a range of values from 

1 to 19, with an interval of 2, was explored (1, 3, 5, ..., 19). During this process, the 

number of inducing points was fixed at 60. The dimension that yielded the best 

performance, as measured by the lowest loss, was chosen as the optimal setting for the 

hidden layer. 

3.4.2.3 Number of Inducing Points 

Inducing points are a key component of Gaussian Processes models, as they act as a 

summary of the data, reducing computational complexity while maintaining reasonable 

accuracy. The number of inducing points balances computational efficiency and model 

performance. 

With the optimal number of dimensions for the hidden layer determined, the next step 

involved tuning the number of inducing points. A range of values from 24 to 72, with an 

interval of 4, was evaluated (24, 28, 32, ..., 72). The range of values was selected 

empirically based on initial observations of model performance. This ensures a sufficient 

number of inducing points for good model performance while not overfitting the model 

with high number of inducing points. Moreover, the interval of 4 has been chosen 

empirically for showing model performance while considering computational efficiency.  

The number of inducing points that resulted in the best performance, considering factors 

such as accuracy and computational resources, was selected as the final configuration for 

the DGP model. 

3.4.3 Model Training 

For the training process, the motion dataset containing the RSSI only feature set was 

selected. The RSSI only feature set was chosen because of its exceptional performance in 

the previous section on capturing the patterns and relationships between the radio signal 
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characteristics and the corresponding location coordinates when used on other machine 

learning methods. 

The training process involved iteratively updating the model parameters to minimize 

the objective function in equation 2.7 over the training dataset using the Adam optimizer 

(Kingma & Ba, 2014). To ensure thorough convergence and optimal learning, the DGP 

model was trained for 3000 epochs, which represents 3000 complete passes over the 

entire training dataset. 

The trained DGP model was subsequently evaluated on the test dataset where 

evaluation metrics of MAE and RMSE were used. The accuracy of the DGP model was 

compared to the better performing machine learning models in the previous section. 

3.5 Improving Single Point Estimation 

While the machine learning models in Section 3.3 and Section 3.4 provide single point 

position estimates, there are still some large errors in the single point estimates, especially 

in areas with poor signal quality or multipath propagation. The presence of large errors 

can be referred to Figure 4.25, where there are multiple error values that are above 10 

meters. Several techniques are employed to refine these estimates and improve overall 

positioning accuracy and robustness. 

First, a Temporal-Weighted RSSI Averaging (TWA) approach is used, where multiple 

RSSI samples are collected over a sliding window and exponentially weighted, giving 

more importance to the most recent samples. This helps mitigate the effects of RSSI 

fluctuations and noise. A detailed evaluation of the effects of RSSI fluctuations and noise 

mitigation is provided in Chapter 4.4.1. 

Next, the position estimates from the machine learning models are then filtered using 

a Kalman filter. A linear state-space model is defined, with the state vectors representing 
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the device's position and velocity. The Kalman filter recursively incorporates the position 

estimates as measurements to update the state estimates, leveraging the temporal 

correlation between consecutive positions. 

Finally, a lane constraint model is applied by mapping the navigable lanes in the 

environment. The filtered position estimates are projected onto the nearest lane, 

restricting the estimated positions to only feasible locations. This compensates for errors 

where the raw estimates may fall outside of the walkable areas.  

By combining Temporal-Weighted RSSI averaging, Kalman filtering, and lane 

constraints, the single point position estimates become significantly more accurate, stable, 

and consistent with the real-world spatial constraints of the operational environment. 

3.5.1 Temporal-Weighted RSSI Averaging 

Instantaneous RSSI values can be susceptible to temporal variations in RSSI readings 

(Youssef & Agrawala, 2005). While simple averaging of RSSI samples over a fixed 

window can help reduce noise, it treats all samples within the window equally, regardless 

of their temporal distance from the current time instant. However, in scenarios involving 

device movement, historical RSSI values become less correlated with the current RSSI 

signature as the time difference increases, due to probable changes in the device's location 

and surrounding environment. 

To mitigate the effects of RSSI fluctuations and noise, a Temporal-Weighted RSSI 

Averaging (TWA) approach is employed before feeding the RSSI data into the machine 

learning models for position estimation. 

To account for this temporal dependence, a time-weighting scheme is introduced, 

where RSSI samples are weighted based on their time difference from the current time, 

with more recent samples being given higher importance. The rationale is that RSSI 

Univ
ers

iti 
Mala

ya



 
59 

values closer in time are more likely to be representative of the current position, while the 

impact of older samples diminishes as the time difference increases. The TWA for anchor 

node i at time t is calculated as: 

`99a3_38K =
1
WcCL ∗ `99aL

C

L	*	#
 (3.7) 

Where W is the sum of the time decay weightings C$, C=…CL and CL is the time decay 

weighting for `99aL which can be represented by 

wL = eDN∗|"D"%| (3.8) 

Where L is the timestamp of the latest RSSI data point in seconds and L( is the timestamp 

of the RSSI of data point i. The weighting factor e determines the rate of decay for older 

samples. Values closer to 1 give more importance to recent samples, while values near 0 

weight all samples within the window nearly equally, effectively reducing to a simple 

average. 

For the TWA scheme, a lag of 1 (n=1) is employed in this experiment. This means that 

only the immediately preceding RSSI sample and the current sample are considered for 

the weighted average calculation. With n=1, the TWA for anchor node i at time t 

simplifies to: 

`99a3_38K =
`99aC + eDN|""D"" '| ∗ `99aCD$

1 + eDN|""D"" '|  (3.9) 

3.5.2 Kalman Filtering 

To further refine the single point position estimates obtained from the machine 

learning models, a Kalman filter is applied. The Kalman filter is a recursive algorithm 

that optimally estimates the state of a dynamic system from a series of noisy 

measurements and a theoretical model of the system dynamics. 
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The Kalman filter implementation used in this work is based on the standard linear 

Kalman filter formulation. The filter maintains an estimate of the current state vector 7" 

and its associated covariance matrix !". At each time step L, the filter performs two main 

operations: 

1. Prediction Step: The state vector and covariance are projected forward in time 

using the system's transition model. 

2. Update Step: The projected state and covariance are updated based on the current 

measurement, incorporating the new information while accounting for the 

measurement noise. 

In the context of position tracking, the state vector 7" typically consists of the device's 

position and velocity components 7" = f7" , g" , h'," , hR,"i. Where (7" , g") represents the 

position coordinates, and (h'," , hR,") are the velocity components in the x and y directions, 

respectively. 

The transition model describes the evolution of the state vector over time, assuming a 

constant velocity motion model: 

j = klS +mS (3.10) 

Where n is the state transition matrix, and mS is the process noise, assumed to be zero-

mean Gaussian with covariance o. 

The measurement vector p  consists of the position estimates obtained from the 

machine learning models at each time step. The measurement model relates the state 

vector to the measurement vector: 

p = qlS + rS (3.11) 
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Where s is the measurement matrix, and rS is the measurement noise, assumed to be 

zero-mean Gaussian with covariance R. 

At each time step, the Kalman filter incorporates the new position estimate as a 

measurement update, combining the prediction from the transition model with the 

measurement information to obtain an optimal estimate of the state vector and its 

associated uncertainty. 

3.5.3 Lane Constraint  

While the regression model provides position estimates, these estimates may still 

deviate from the actual traversable paths or lanes within the environment. To account for 

this, a lane constraint and correction step is applied to ensure that the estimated positions 

adhere to the spatial constraints of the operational area. 

The indoor environment is divided into a grid of tiles, with each tile representing a 

specific location or area. A list of traversable lanes is predefined, which consists of a 

sequence of connected tiles that correspond to the walkable or drivable paths within the 

environment. To map the traversable lanes, each lane is represented as an ordered list of 

tile coordinates. 

Let (x, y)  be the position estimate, the tile coordinate (xL, yL)  in the lane list that 

minimizes the Euclidean distance to (7, g) is found using the following formula: 

(7( , g() = vwxyz{T|H} − }TJ
U + H~ − ~TJ

U 

 

(3.12) 

Where H7V , gVJ are the tile coordinates in the lane list, and � is the index iterating over all 

tile coordinates. 
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By applying the lane constraints technique, the position estimates become more 

consistent with the spatial layout of the environment, reducing the likelihood of erroneous 

estimates falling outside of traversable areas and ensuring smooth transitions between 

lanes during device movement. 

This chapter outlined the methodology used in developing the LoRa-based indoor 

positioning system for dynamic motion in industrial environments. The experimental 

setup was described in detail, including the system hardware, node placements, and the 

data collection process. The data preprocessing steps, such as feature selection, missing 

data imputation, and feature scaling, were then discussed to ensure data quality and 

consistency. 

For single position estimation, various machine learning models, including 

classification and regression-based approaches, were explored, followed by the 

introduction of DGPR model. The DGPR model architecture, hyperparameter selection, 

and training process were elaborated to demonstrate its adaptability in capturing complex 

spatial relationships. 

To further enhance localization accuracy, several spatial-temporal techniques were 

integrated, including temporal-weighted RSSI averaging, Kalman filtering, and the lane 

constraint method. These techniques aim to reduce positioning errors by leveraging 

temporal dependencies and motion constraints, addressing the limitations of conventional 

machine learning models in dynamic environments. 
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CHAPTER 4: RESULTS 

This section presents the findings from the research on developing a LoRa-based 

indoor positioning system that utilizes Deep Gaussian Processes (DGP) for localization. 

The results are organized into the following subsections: 

1. LoRa Signal Characterization 

Analysis of LoRa signal propagation characteristics, including path loss 

modelling, multipath effects, and small-scale fading observed in the indoor 

test environment. 

2. Machine Learning Algorithms for indoor positioning 

Details on the development and implementation of machine learning 

algorithms to improve indoor positioning accuracy. The process covers 

datasets collection and application of various machine learning pipelines. The 

results of the machine learning pipelines were compared on the static set and 

motion set with multiple feature sets. 

3. Deep Gaussian Processes Positioning Algorithm 

The particulars on the development of the DGP-based positioning 

algorithm, covering hyperparameter tuning of model architecture. The 

algorithm was then evaluated with other machine learning methods in the 

previous section. 

4. Enhancement to Single Point Estimations 

Implementation of techniques by taking historical RSSI inputs and DGP 

output coordinates into account by using correlation and filtering technique. 

The different combinations of enhancement techniques were benchmarked 

against the DGP single point estimation model. 
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4.1 LoRa Signal Characterization 

Understanding the characteristics of the LoRa signal propagation in the indoor 

environment was crucial for developing accurate positioning systems. The RSS 

measurements, which form the basis for many positioning techniques, were influenced 

by various propagation phenomena. In this subsection, the key signal characteristics 

observed in our experimental data were analysed, including the path loss model, path loss 

exponent, multipath fading, and small-scale fading effects. The experimental data was 

collected from the longest row with line-of-sight available in the manufacturing line (53 

m). 

4.1.1 Log-Distance Path Loss Model and Path Loss Exponent 

In this section, the path loss characteristics of the LoRa signals were analysed using 

the log-distance path loss model. The path loss model captures the signal decay as a 

function of the distance between the transmitter and receiver. We consider the following 

log-distance path loss model in equation (2.1). To estimate the path loss exponent, the 

graphs of RSS values against the corresponding distances in a log scale are plotted. The 

linear scale representation shows the absolute variation of RSSI with increasing distance, 

which helps visualize the direct relationship between distance and signal strength in real-

world scenarios. While the logarithmic scale helps highlight how signal attenuation 

follows a power-law decay, making it easier to compare with theoretical models and fit 

empirical data. 

Two sets of data were collected, where the first dataset was collected moving away 

from the receiver from 1 m to 52 m, whereas the second dataset was collected moving 

towards the receiver from 50 m to 1 m, where both datasets consisted of a batch of around 

25 to 30 radio packets at each location with a distance interval of 1 m. Figure 4.1 to Figure 

4.4 shows the log-distance path loss model with the available data. 
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Figure 4.1: Log distance path loss model of the RSSI data collected moving away 
from the receiver, with x-axis in linear scale 

 

Figure 4.2: Log distance path loss model of the RSSI data collected moving away 
from the receiver, with x-axis in log scale 
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Figure 4.3: Log distance path loss model of the RSSI data collected moving 
towards the receiver, with x-axis in linear scale 

 

Figure 4.4: Log distance path loss model of the RSSI data collected moving 
towards the receiver with, x-axis in logarithmic scale 
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From the graphs, we can observe a linear relationship between the RSS and the log of 

the distance, proving the log-distance path loss model. In Figure 4.1 and Figure 4.2, for 

the first dataset, with the beacon moving away from the receiver, the estimated path loss 

exponent was approximately 2.35 and the estimated path loss at 1 m (d0), was 

approximately 52.65 dB. Figure 4.3 and Figure 4.4, for the second dataset, with the 

beacon moving towards to the receiver, the estimated path loss exponent was 

approximately 2.75 and the estimated path loss at 1 m (d0), was approximately 44.51 dB.  

As observed from Figures 4.1 to 4.4, the second dataset shows a steeper graph 

compared to the first dataset, indicating that the body shadowing effect is more significant 

in locations nearer to the receiver. When moving towards the receiver, with no obstacles 

between the beacon and the receiver, the mean RSSI values were higher when collected 

within 10 meters of the receiver. 

Next, we present the results obtained from the experiments conducted to analyse the 

characteristics of the LoRa signal propagation in a dynamic motion, where the beacon 

was transported away and back towards the receiver. The beacon was moved 0.5 m after 

each data packet was sent, collecting 212 data points. Figure 4.5 depicts the RSSI data 

points that were gathered while traveling along the path, illustrating the alterations in 

RSSI along with the distance. Figure 4.6 to Figure 4.9 show the log-distance path loss 

model with the data points in Figure 4.5 in log scale and linear scale for moving away 

and moving towards the receiver. Univ
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Figure 4.5: RSSI values collected by moving dynamically along the path 

 

Figure 4.6: Log distance path loss model of the RSSI data collected in motion 
moving away from the receivercin linear scale 
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Figure 4.7: Log distance path loss model of the RSSI data collected in motion 
moving away from the receiver, with x-axis in logarithmic scale 

 

Figure 4.8: Log distance path loss model of the RSSI data collected in motion 
moving away from the receiver, with x-axis in linear scale 
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Figure 4.9: Log distance path loss model of the RSSI data collected in motion 
moving away from the receiver, with x-axis in logarithmic scale 

From the graphs, we can observe a linear relationship between the RSSI values and 

the log of the distance, proving the log-distance path loss model. In Figure 4.6 and Figure 

4.7, for the data points moving away from the receiver, the estimated path loss exponent 

was approximately 2.20 and the estimated path loss at 1m (d0), was approximately 49.07 

dB. In Figure 4.8 and Figure 4.9, for the data points with the beacon moving towards the 

receiver, the estimated path loss exponent was approximately 2.40 and the estimated path 

loss at 1m (d0), was approximately 47.73 dB.  

Similar to the log-distance experiment collected using static method, the estimated 

path loss at 1m was lower when moving towards the receiver compared to moving away 

from the receiver. This indicates that the body shadowing effect is more significant in 

locations nearer to the receiver.  

To sum up, the observed path loss exponents in the experiments ranged from 2.20 to 

2.75, which generally aligns with theoretical expectations for indoor environments. 
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Typical values for indoor settings range from 1.6 to 3.6 (Al-Saman et al., 2021). The 

results fall within this range, indicating that the LoRa signal propagation in our test 

environment behaves similarly to other radio frequencies in indoor spaces. However, the 

variability in the observed exponents suggests that the data collection method, along with 

the structural characteristics of the test environment, such as walls, partitions, large 

industrial equipment, and dynamic obstacles, may influence signal propagation 

characteristics. 

4.1.2 Multipath and Small-Scale Fading Effects 

In this section, we present the results of our experimental analysis of multipath and 

small-scale fading effects on LoRa signal propagation in an indoor environment. The 

experiment was carried out in the same location as the preceding section. 

 

Figure 4.10: Plot of RSSI values against steps with increasing distance from 
receiver 

Figure 4.10 illustrates the variation of RSSI values with increasing distance from the 

receiver. The overall trend of the graph shows that RSSI decreases when the distance 
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between the receiver and transmitter increases. However, when we focus on shorter 

distances, there was a non-monotonic pattern observed in the RSSI-distance relationship, 

where the RSSI values initially decrease with increasing distance, then increase at a 

certain point, and subsequently decrease again, suggesting the presence of multipath 

effects in the indoor environment. 

Figure 4.11 depicts a scatter plot of the RSSI measurements collected within 1 meter 

or data collection point, with the first column representing 3.1 m, the second column 

representing 3.5 m, and the third column representing 3.9 m away from the receiver. 

These distances correspond to the start, middle, and end of a tile or data collection point, 

respectively.  

 

Figure 4.11: Scatter plot of RSSI values at the start, middle and end of a tile. The 
red dots represent the mean at each location. 

The plot suggests the presence of multipath effects and signal attenuation over distance. 

The variations in RSSI values over different distances indicates the presence of multipath 
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effects and signal attenuation. According to the large scale fading, the RSSI values 

decrease with increasing distance. However, in this instance, the data exhibits a distinct 

pattern. Contrary to the expected trend, the RSSI value at 3.5 m was the highest among 

the three measurements, reaching mean RSSI at -56.08 dB. In contrast, the mean RSSI 

values at 3.1 m (-60.2 dB) and 3.9 m (-65.5 dB) were lower, indicating signal attenuation 

as the distance from the transmitter increases. The observed RSSI variations within the 

1-meter range are likely due to multipath effects, small-scale fading, and environmental 

reflections, which cause fluctuations in signal strength at different measurement points.  

To quantify the variability in RSSI measurements, we calculated the standard 

deviation of RSSI values from the experiments from section 4.1.1. Figure 4.12 describes 

the standard deviation of RSSI values at each location.  

 

Figure 4.12: Standard deviation of RSSI values at different distances from the 
receiver 

Figure 4.12 shows that there less correlation between distance and the standard 

deviation of RSSI values. However, it was observed that there were spikes at a few 
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locations where the standard deviation is much higher than the mean standard deviation. 

When these positions were projected into the real test environment, it was discovered that 

these positions are near to junctions to open areas such as lanes, doors and area for low 

workspaces meanwhile most of the tested area were resembling a tunnel like environment 

where machines are available at the left and right of the transmitter. Moreover, for some 

of the spikes in between range 30 m to 40 m, human and object movements near the 

transmitter were observed and noted manually during data collection.  

Hence, this proves that the layout of the environment and nearby object movement 

may cause significant changes to the RSSI value. Furthermore, RSSI values collected in 

the same position are susceptible to temporal changes causing slight variations recorded 

values. This variability poses challenges for positioning accuracy, as it introduces 

uncertainty in distance estimation based on RSSI. 

Conventional trilateration approaches for localization must account for the variable 

path loss exponent across different areas of the environment to accurately estimate 

distances from RSSI measurements. Fingerprinting methods may benefit from the distinct 

multipath patterns observed at different locations, potentially improving location 

discrimination. The observed small-scale fading effects suggest that positioning 

algorithms should incorporate temporal averaging or filtering to mitigate short-term RSSI 

fluctuations. 

4.2 Machine Learning Methods for Single Point Estimation 

In this section, the performance of various machine learning techniques for indoor 

positioning were evaluated. The machine learning methods investigated in this work can 

be broadly categorized into three classes: Classifier-based Methods, Regressor-based 

Methods, and Gaussian Process Regressor (GPR) Methods. 
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To assess the performance of these machine learning techniques, we utilized two 

distinct datasets: the Motion Set and the Static Set. Within each dataset, we considered 

three different feature sets as described in section 3.2.1, to provide a thorough exploration 

of the impact of input data on the positioning accuracy. The feature sets included: (1) 

RSSI, Frequency Error, and SNR (All), (2) RSSI and SNR, (3) RSSI.  

To quantify the positioning accuracy of the machine learning methods, we utilized the 

following performance metrics: Mean Absolute Error (MAE) and Root Mean Squared 

Error (RMSE). Performances of machine learning methods for each category will be 

described in detail in further subsections. 

4.2.1 Classifier-based Methods for Indoor Positioning 

First, we observe the performance of the classifier-based methods. Table 4.1 and Table 

4.2 presents the MAE and RMSE results for the classifier-based methods, namely, 

Random Forest (RF), Decision Trees (DT), k-Nearest Neighbours (KNN), Weighted k-

Nearest Neighbours (wKNN), Multilayer Perceptron (MLP), and Naive Bayes (NB) 

across the Motion and Static datasets, using the three different feature sets. 

Table 4.1 and table 4.2 present the MAE and RMSE for the classifier category. For the 

static dataset with all features (RSSI, SNR & Frequency Error), the NB algorithm yielded 

the highest MAE and RMSE values 25.71725 m and 28.5481 m respectively. DT, MLP, 

KNN and wKNN algorithms present noticeable improvements in both MAE and RMSE 

values compared to the NB algorithm. Finally, the RF algorithm demonstrates the lowest 

error with MAE and RMSE values of 15.26747 m and 17.22313 m respectively.  

Moving on to the static dataset with RSSI and SNR features, all algorithms show 

significant improvements in terms of accuracy compared to the static dataset with all 

features. The RF algorithm performs the best with MAE and RMSE values of 7.29921 m 
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and 9.23356 m respectively. Followed by, MLP and wKNN with MAE of 8.26026 m and 

8.26663 m and RMSE of 10.27202 m and 10.39511 m respectively. 

Table 4.1: MAE values of various classifier models on the static and motion 
datasets 

Dataset 
 

Feature set 
 

MAE (m) 

RF DT KNN wKNN MLP NB 

Static All 15.2675 21.6682 16.3969 16.2716 16.2385 25.7172 

  RSSI & SNR 7.2992 11.1329 8.3278 8.2666 8.2603 11.3525 

  RSSI 7.2867 11.0054 7.5618 7.5302 8.1239 11.2048 

Motion All 12.3557 13.7795 15.5437 15.4287 13.0594 16.9696 

  RSSI & SNR 7.1242 8.2077 8.5046 7.6546 7.8079 8.4327 

  RSSI 6.9330 8.3621 6.7764 6.9552 6.5849 6.2811 

Table 4.2: RMSE values of various classifier models on the static and motion 
datasets 

Dataset 
 

Feature set 
 

RMSE (m) 

RF DT KNN wKNN MLP NB 

Static All 17.2231 25.0820 18.0150 17.8998 18.6869 28.5481 

  RSSI & SNR 9.2336 13.1406 10.4301 10.3951 10.2720 14.7586 

  RSSI 9.3693 13.0476 9.4700 9.4545 10.2141 14.1974 

Motion All 14.5169 15.7116 17.4767 17.1254 15.1562 19.3589 

  RSSI & SNR 9.1848 10.3641 10.4061 9.4642 9.8456 10.7937 

  RSSI 8.9712 10.6624 8.5758 8.9235 8.6167 8.3063 

 

For the static dataset with only RSSI, all classifier algorithms show an overall slight 

improvement in accuracy compared to datasets with more features. wKNN and KNN 

showed notable improvements of 8.91% and 9.19% in MAE and 9.05% and 9.20% in 

RMSE. The RF algorithm still performs the best among all algorithms with MAE and 

RMSE values of 7.28671 m and 9.36927 m, respectively, although the RMSE value was 

slightly higher than that of the static dataset with both RSSI and SNR features. 

Overall, for the static dataset, the RF algorithm outperforms the other algorithms for 

all feature sets. The RSSI-only feature set has the highest overall accuracy, followed by 

RSSI & SNR, and then RSSI, SNR & Frequency error. 
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For the motion dataset with all features (RSSI, SNR & Frequency Error), the NB 

algorithm again yielded the highest MAE and RMSE values of 16.96955 m and 19.35699 

m, respectively. However, the other Classifier algorithms, such as DT, MLP, KNN, and 

wKNN, demonstrated significant improvements in accuracy, with MAE values ranging 

from 13.05941 m to 15.54375 m and RMSE values from 15.15616 m to 17.47666 m. 

Among the algorithms, RF still exhibits the lowest MAE and RMSE values, with 

12.35570 m and 14.51688 m, respectively. 

Focusing on the motion dataset with RSSI and SNR features, the RF algorithm again 

emerges as the top performer, with an MAE of 7.12415 m and an RMSE of 9.18478 m. 

When considering the motion dataset with only RSSI features, the Classifier algorithms 

generally demonstrated slightly lower errors compared to the motion dataset with RSSI 

and SNR features. While RF, typically regarded as a robust performer, did not exhibit the 

highest accuracy, the NB algorithm emerged as the best performer, with an MAE of 

6.28115 m and RMSE of 8.30634 m, with MLP shows the second highest accuracy in 

terms of MAE (6.58493 m) and KNN in terms of RMSE (8.57576 m). 

For the motion dataset, the NB classifier when used on RSSI only features the highest 

accuracy. In general, the classifier algorithms show better results when applied on Motion 

dataset than Static dataset. Also, better accuracy can be obtained when using only RSSI 

feature. 

4.2.2 Regression-based Methods for Indoor Positioning 

Table 4.3 and Table 4.4 presents the results for the regression-based methods, namely, 

RF, DT, wKNN, MLP and Linear Regression (LR) across the Motion and Static datasets, 

using the three different feature sets.  
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Table 4.3: MAE values of various regression models on the static and motion 
datasets 

Dataset 
 

Feature set 
 

MAE (m) 

RF DT wKNN MLP LR 

Static All 18.21516 15.60140 16.26320 36.96480 18.57989 

  RSSI & SNR 6.18885 7.80812 7.88411 7.24342 6.85376 

  RSSI 5.85477 7.05994 7.09093 7.40290 7.07941 

Motion All 9.97450 11.13061 14.88617 18.06706 13.55468 

  RSSI & SNR 5.67654 7.28150 6.54288 6.41449 6.99218 

  RSSI 5.39553 6.13065 5.51865 5.70889 7.05318 

 

Table 4.4: RMSE values of various regression models on the static and motion 
datasets 

Dataset 
 

Feature set 
 

RMSE (m) 

RF DT wKNN MLP LR 

Static All 20.35705 17.38273 17.89919 38.58354 19.77187 

  RSSI & SNR 7.76168 9.87339 9.92101 8.48961 7.66823 

  RSSI 7.41759 9.04934 9.01177 8.73742 7.86590 

Motion All 12.35449 13.57393 16.65390 19.58223 14.88372 

  RSSI & SNR 6.73506 9.14580 7.94713 7.30727 7.71376 

  RSSI 6.56478 6.61691 7.04710 6.69811 7.78369 

 

Starting with the static dataset, the regressor models generally demonstrated higher 

accuracy compared to the classifier models. For the static dataset with all features, the DT 

algorithm achieved the lowest MAE of 15.60140 m and RMSE of 17.38273 m. Focusing 

on the static dataset with only RSSI and SNR features, the performance of the Regressor 

models improved significantly. The RF algorithm has the lowest MAE (6.18886 m) while 

LR has the lowest RMSE (7.66822 m). When considering the static dataset with only 

RSSI features, the Regressor models continued to demonstrate high accuracy. The RF 

algorithm achieved an MAE of 5.85477 m and an RMSE of 7.41759 m, outperforming 

the other Regression models, which was 17% more accurate than the second highest 

performing model for this feature set.  
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Transitioning to the motion dataset, the Regression models exhibited slightly lower 

errors compared to the static dataset. For the motion dataset with all features, the RF 

algorithm demonstrated the best results, with an MAE of 9.97450 m and RMSE of 

12.35448 m. Examining the motion dataset with RSSI and SNR features, the Regressor 

models showed further improvements in accuracy. The RF algorithm achieved an MAE 

of 5.67654 m and an RMSE of 6.73506 m, outperforming the other Regression models. 

When applying the Regression models on the motion dataset with only RSSI features, the 

RF algorithm maintained its position as the top performer, with an MAE of 5.39553 m 

and an RMSE of 6.56478 m. The RF algorithm with motion dataset with only RSSI 

features appears to have the highest accuracy among all regressors with all datasets and 

feature sets in the comparison. 

Overall, the regression-based methods show a similar trend with the classifier-based 

methods where the RSSI only feature set displays better performance over the other two 

feature sets in both Motion and Static datasets. On top of that, the regressors show better 

accuracy with the Motion dataset than the Static dataset. However, regression-based 

methods show better accuracy when compared to classifier-based models, with a 14.1% 

(MAE) and 21.0% (RMSE) increase in accuracy. 

4.2.3 Gaussian Process Regression (GPR) for Indoor Positioning 

Table 4.5 and Table 4.6 presents the performance of the GPR models in estimating 

positioning error, using different kernel functions: Radial Basis Function (RBF), Matérn, 

the sum of RBF and Matérn, and the product of RBF and Matérn. The models were 

evaluated on the Static and Motion datasets with the feature sets: ALL, RSSI & SNR, and 

RSSI. 
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Table 4.5: MAE values of GPR models using different kernel combinations 

Dataset 
 

Feature set 
 

MAE (m) 

RBF Matérn Sum Product 

Static All 32.11951 51.20579 52.32647 51.36770 

  RSSI & SNR 11.52446 6.96429 6.79526 6.96431 

  RSSI 15.03679 6.45970 6.09794 6.45974 

Motion All 23.53539 15.54725 14.24731 15.54755 

  RSSI & SNR 6.40863 6.04709 6.04315 6.04710 

  RSSI 5.46437 5.25086 5.23723 5.25086 

 

Table 4.6: RMSE values of GPR models using different kernel combinations  

Dataset 
 

Feature set 
 

RMSE (m) 

RBF Matérn Sum Product 

Static All 34.43144 54.13059 55.27158 54.29538 

  RSSI & SNR 15.51277 8.58881 8.08889 8.58886 

  RSSI 19.61008 7.78767 7.32813 7.78772 

Motion All 26.01517 17.49776 15.36567 17.49814 

  RSSI & SNR 7.21374 6.89329 6.90022 6.89329 

  RSSI 6.39111 6.26103 6.25507 6.26103 

 

Starting with the static dataset with all features, the GPR models underperform when 

compared to classifier-based methods and regression-based methods with MAE values 

ranging from 32.11951 m to 52.32647 m and RMSE values ranging from 34.43144 m to 

55.27158 m. These results show that the GPR models with all features were highly 

inaccurate and most of the estimates lie outside of the test space.  

Moving on to the static dataset with only RSSI and SNR features, all GPR models 

except for the GPR model with RBF kernel exhibits better accuracy than all classifiers 

and all regressors except for the RF regressor. With the GPR model with RBF kernel 

having the highest MAE and RMSE of 11.52446 m and 15.51276 m respectively while 

the GPR model using the sum of RBF and Matérn kernel having the lowest MAE and 

RMSE values of 6.79525 m and 8.08889 m respectively. 
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When considering the static dataset with only RSSI features, the GPR model with the 

sum of RBF and Matérn kernels achieved the lowest MAE of 6.09794 m and RMSE of 

7.32813 m, which outperform all classifiers and most regressors used in Table 4.1 and 

Table 4.2. 

Transitioning to the motion dataset, the GPR models generally exhibited higher 

accuracy compared to the static dataset, similar to the observations from Table 4.1 and 

Table 4.2. For the motion dataset with all features, the GPR models have much higher 

accuracy compared to when used on the static dataset with all features with MAE ranging 

from 14.24731 m to 23.53539 m. However, they still exhibit higher errors compared to 

classifiers in Table 4.1 and regressors in Table 4.2.  

Similarly to the static dataset with RSSI and SNR feature set, the GPR models with 

the motion dataset with RSSI and SNR features generally outperform all classifiers and 

most of the regressors except for the RF regressor. The GPR models with Matérn kernel, 

sum of RBF and Matérn kernels and product of RBF and Matérn kernels having similar 

MAE (6.04709 m, 6.04315 m, 6.04709 m) and RMSE (6.89329 m, 6.90022 m, 6.89329 

m). 

When considering the motion dataset with only RSSI feature, the GPR models 

generally surpassed the best results in Table 4.1 and Table 4.2. All GPR models except 

for the model using RBF kernel has higher MAE (5.46437 m) than the RF regressor model 

used on the motion dataset with only RSSI feature (5.39553 m), moreover, all GPR 

models have better RMSE, indicating that GPR was able to reduce larger errors. The GPR 

model with the sum of RBF and Matérn kernel achieved the best results, with an MAE of 

5.23723 m and RMSE of 6.25507 m. The other 2 kernels (Matérn kernel and product of 

Matérn and RBF kernel) also have similar accuracy with the model with sum of RBF and 

Matérn kernels with only slight differences in error. 
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Overall, the performance of GPR models were generally better compared to the 

Classifier and Regressor models, particularly when the number of features were less and 

used on the motion dataset. Besides, the usage of the Matérn kernel performs better than 

the RBF kernel. Combining Matérn and RBF kernels by either summing or multiplying 

them also proved effective. 

To sum up, one key finding is that the motion dataset generally outperformed the static 

dataset in terms of positioning error estimation accuracy. By collecting data in motion, a 

more dynamic variation in the collected data is achieved. This dynamic variation leads to 

increased positioning accuracy with a reduced total number of data points needed. 

Another observation is that using only the RSSI feature, without the inclusion of SNR or 

frequency error, yielded the best results across the Classifier, Regressor, and GPR models. 

This indicates that the RSSI feature alone was the most informative and effective in 

representing the signal characteristics necessary for accurate positioning error 

estimation.  

Regarding machine learning categories, by looking solely into the motion dataset with 

only RSSI feature, which exhibits better results, the NB classifier achieved the best 

accuracy among classification models, while the RF regressor exhibited superior 

performance among regression models. Generally, the regression-based methods 

outperformed the classifier-based methods in terms of both MAE and RMSE across most 

datasets and feature sets. This can be attributed to the fact that regression models directly 

predict continuous position coordinates, allowing for finer-grained localization compared 

to classifiers that assign discrete class labels. 
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Figure 4.13: Comparison of MAE for the best machine learning models from Table 
4.1, Table 4.3 and Table 4.5 respectively 

 

Figure 4.14: Comparison of RMSE for the best machine learning models from 
Table 4.2, Table 4.4 and Table 4.6 respectively 
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The GPR models generally demonstrate the highest accuracy specifically when used 

on. Also, GPR models with motion dataset with only RSSI feature greatly reduced the 

RMSE values, suggesting the improvement of larger errors. The best performing GPR 

(with sum of Matérn and RBF kernels) achieved an increase in accuracy by 16.6% and 

2.9% in MAE and 24.7% and 4.7% in RMSE in comparison to the NB classifier and RF 

regressor respectively. 

4.3 DGP Regression  

In this section, the results obtained from the DGP Regression model for single point 

estimation were presented. The system parameter selection process which includes kernel 

selection, selection of number of dimensions in the hidden layer and number of inducing 

points to identify the optimal model configuration were described. Subsequently, the 

performance of the DGP model were evaluated using various metrics and compare it with 

the results obtained from the previous sections. 

4.3.1 System Parameter Selection 

In selecting the kernel, we tested two types of kernel combinations: the sum and 

product of the RBF kernel and the Matérn kernel. We chose these kernel combinations 

because they outperformed a single kernel in section 4.2.3. Table 4.4 compares these 

kernel combinations. 

Table 4.7: Comparison of Sum and Product of the RBF kernel and the Matérn 
kernel 

Kernel name MAE (m) RMSE (m) Training loss Training time (s) 

Sum 5.10877 6.19212 5.80792 183.48 

Product 5.04566 6.14681 5.82745 185.00 

 

The product of the RBF kernel and the Matérn kernel has slightly better performance 

in all aspects except training time when compared to the sum of the RBF kernel and the 

Univ
ers

iti 
Mala

ya



 
85 

Matérn kernel. The product of the RBF kernel and the Matérn kernel is chosen for further 

experiments. 

For the number of dimensions in the hidden layer, 10 different numbers of dimensions 

were used ranging from 1 to 19. Figure 4.15 and Figure 4.16 show the MAE and RMSE 

at different numbers of dimensions. The MAE and RMSE exhibit similar trends. When 

the number of dimensions is 1, the MAE and RMSE were 7.15 m and 8.13 m respectively. 

The positioning error dropped and remained relatively low and stable for the dimensions 

ranging from 3 to 15 dimensions. The model with 3 dimensions has the lowest MAE of 

4.98 m while the model with 15 dimensions has the lowest RMSE with 6.10 m. However, 

beyond 15 dimensions, there is a noticeable and substantial increase in both MAE and 

RMSE to approximately 9.94 m and 16.76 m. This indicates that the model performance 

deteriorates rapidly with an oversized number of dimensions.  

The rapid performance deterioration observed beyond 15 dimensions in the hidden 

layer can be attributed to the curse of dimensionality. As the number of dimensions 

increases, the data becomes increasingly sparse in the high-dimensional space, making it 

more challenging for the model to generalize effectively. This sparsity can lead to 

overfitting, where the model captures noise in the training data rather than the underlying 

signal propagation patterns. This finding highlights the importance of careful 

dimensionality selection in DGP models for indoor positioning applications, balancing 

the need for expressive power with the risk of overfitting. 

The training loss in Figure 4.17 also shows that it exhibits similar trends with the 

evaluation accuracy at different numbers of dimensions with the lowest training loss at 5 

dimensions (5.83).  Figure 4.18 shows the training time at each number of dimensions. 

As shown, the training times show an upward trend as number of dimensions increases.  

Univ
ers

iti 
Mala

ya



 
86 

 

 

Figure 4.15: MAE of the DGP model on the Motion dataset with RSSI only feature 
set at different number of dimensions 

 

Figure 4.16: RMSE of the DGP model on the Motion dataset with RSSI only 
feature set at different number of dimensions 
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Figure 4.17: Training loss of the DGP model on the Motion dataset with RSSI only 
feature set at different number of dimensions 

 

Figure 4.18: Training times of the DGP model on the Motion dataset with RSSI 
only feature set at different number of dimensions 
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Figure 4.19 to Figure 4.22 shows the MAE, RMSE, training loss and training time for 

different numbers of inducing points. The MAE, RMSE and training loss is relatively 

constant across the range of number of inducing points. The MAE and RMSE exhibit a 

decreasing trend as the number of inducing points increases when ranging between 24 

and 48 inducing points. Beyond 48 inducing points, the MAE and RMSE slowly increase 

as the number of inducing points increases. 48 inducing points produces the lowest MAE 

and RMSE at 4.95 m and 6.08 m respectively. Moreover, the training time of the models 

shows a general up trend as the number of inducing points increases. For our specific 

indoor positioning scenario, 48 inducing points provided the best balance between model 

expressiveness and generalization ability. This value is chosen for further experiments. 

 

Figure 4.19: MAE of the DGP model on the Motion dataset with RSSI only feature 
set at different numbers of inducing points 
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Figure 4.20: RMSE of the DGP model on the Motion dataset with RSSI only 
feature set at different numbers of inducing points 

 

Figure 4.21: Training loss of the DGP model on the Motion dataset with RSSI only 
feature set at different number of inducing points 
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Figure 4.22: Training times of the DGP model on the Motion dataset with RSSI 
only feature set at different number of inducing points 

4.3.2 Comparison with GPR 

Taking the results with best accuracy, the model with 5 dimensions at the hidden layer 

and 48 inducing points were chosen. The model performance was compared to the best 

performing model in Section 4.3.1, GPR model with motion dataset. The DGP has an 

accuracy of MAE and RMSE of 4.94972 m and 6.07725 m while the GP’s had MAE of 

5.23723 m and RMSE of 6.25507 m. DGP showed an improvement of 5.5 % in terms of 

MAE and 2.8 % in terms of RMSE. Additionally, the median positioning error for the 

DGP was 4.27 m while the GPR has a positioning error of 4.55 m.   

Figure 4.22 illustrates the cumulative distribution function (CDF) of positioning errors 

for the DGP and GPR method. From the figure, it can be observed that the DGP curve 

lies above the GPR curve for most of the distance error range. This is more obvious at 

lower positioning errors, between 1.5 m and 6.0 m. 56 % of the positioning errors are 

lower than 5 m for the GPR, whereas 59 % of the positioning errors are lower than 5 m 

with DGP. 29 % of the positioning errors are lower than 3 m for the GPR, whereas 36 % 
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of the positioning errors are lower than 3 m with DGP. The positioning errors have less 

significant differences on larger distance errors when they are larger than 7 m. This 

indicates that both models struggle similarly in challenging areas, possibly due to severe 

fluctuations in RSSI readings in one or more BSs. Further improvements such as targeted 

improvements or hybrid approaches are needed to overcome these challenging areas. 

 

Figure 4.23: CDF of the positioning error for the DGP and GPR methods 

4.4 Enhancing Single Point Estimation 

This section analyses the impact and performance improvements achieved by 

incorporating the various techniques proposed in Section 3.5 to enhance the single point 

position estimates obtained from the machine learning models. The DGP regression 

model would be used as the baseline model for the experiments in this section. 

4.4.1 Temporal-Weighted RSSI Averaging 

The weighting factor e in the Temporal-Weighted RSSI Averaging (TWA) scheme 

determines the relative importance given to recent samples compared to older samples. 
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Figure 4.24 show the positioning error distributions for different values of e ranging from 

0.1 to 0.9 with lag numbers of 1, 2, and 3. 

 

(a) 

 

(b) 

 

(c) 

Figure 4.24: MAE and RMSE of the DGP model when using the TWA for lambda 
values ranging from 0.1 to 0.9 with a lag of (a) 1 (b) 2 (c) 3 
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Figure 4.24 (a) shows the performance of TWA method with DGP regression with a 

lag of 1. The MAE values range from approximately 3.1 to 3.6 meters, with the lowest 

error occurring at lambda = 0.1. The higher lambda values result in increased errors 

showing that the historical value carries a crucial weightage to improving the positioning 

accuracy. Meanwhile in Figure 4.24 (b) shows the results with a lag of 2, The MAE values 

show a slight improvement, ranging from approximately 2.6 to 3.0 meters, while the 

RMSE values range from approximately 3.2 to 3.8 meters. The MAE has the lowest MAE 

occurring at lambda = 0.4 while the lowest RMSE was at lambda = 0.1. The lambda 

values between 0.1 to 0.4 show relatively close MAE and RMSE values but then showed 

an increasing trend starting lambda = 0.5. Furthermore, Figure 4.24 (c) illustrates the 

performance with a lag of 3. The MAE values exhibit the best performance, ranging from 

approximately 2.4 to 3.0 meters, while the RMSE values range from approximately 3.1 

to 3.6 meters, with the lowest error at lambda = 0.6. 

In conclusion, the TWA technique can largely increase the positioning accuracy by 

correlating the instantaneous RSSI value with its previous RSSI values. The lower lags 

generally show better performance with the use of lower lambda values. However, when 

the number of lags increases, a higher lambda value can be used for optimal results. Figure 

4.25 shows the comparison of the histogram of errors between the DGP models with raw 

data and TWA technique, represented by DGP and TWA-DGP respectively. It can be 

observed that TWA-DGP significantly reduces the frequency of errors larger than 5 m 

and only one position estimate is larger than 10 m which is the first data point where it 

was unable to be smoothen by the weighting technique. 
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The differing optimal R values for the Kalman Filter when applied to raw DGP output 

(R = 1) versus TWA-DGP output (R = 0.1) provide insight into the noise characteristics 

of these estimates. The lower optimal R value for TWA-DGP suggests that the TWA 

technique effectively reduces noise in the position estimates, resulting in more reliable 

measurements that require less aggressive filtering. 

This difference in optimal R values highlights the importance of properly tuning the 

Kalman Filter for each specific preprocessing technique. It also suggests that the TWA 

technique not only improves accuracy but also enhances the consistency of the estimates, 

allowing the Kalman Filter to place more trust in each measurement. 

Table 4.8: MAE and RMSE values on the result4s of Kalman Filter with different 
R values used on output coordinates from DGP and TWA-DGP  

 R value 0.01 0.1 1 10 

DGP-KF 
MAE (m) 3.95612 3.47434 2.86342 4.80262 

RMSE (m) 4.54630 3.99012 3.24485 5.23563 

TWA-DGP-KF 
MAE (m) 2.00502 1.94439 2.81333 6.38965 

RMSE (m) 2.33968 2.20489 3.08949 6.83976 

The results show that Kalman Filtering can improve the positioning accuracy by 

smoothing the trajectory of the coordinate estimates and thus reduce the probability of 

obtaining large errors. The movement trajectory of the position estimates of DGP and 

TWA-DGP-KF were depicted in Figure 4.26 and Figure 4.27 respectively, the trajectory 

itself was represented by the blue lines.  

In Figure 4.26, the trajectory appeared jagged and erratic, indicating significant noise 

or fluctuations in the position estimates. Instead of a smooth, continuous path, the 

trajectory exhibits abrupt changes in direction and numerous scattered points, suggesting 

that the DGP model alone may struggle to capture the underlying motion dynamics 

accurately. In contrast to this noisy trajectory, the application of the Kalman filter is 
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expected to result in a much smoother and more realistic movement path. The Kalman 

filter can effectively smooth out the erratic fluctuations as observed in Figure 4.27. 

 

Figure 4.26: Movement trajectory of the DGP position estimates 

 

Figure 4.27: Movement trajectory of the TWA-DGP-KF position estimates 
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4.4.3 Lane Constraint 

The lane constraint method was applied to further refine the position estimates 

obtained from the positioning system, leveraging the known layout and traversable paths 

within the indoor environment. The building floor plan was segmented into a grid of tiles, 

and navigable lanes were defined as sequences of connected tile coordinates. Table 4.9 

presents the MAE and RMSE for the positioning system with and without applying the 

lane constraint method, represented by DGP and DGP-LC. 

Table 4.9: MAE and RMSE for the positioning system with and without applying 
the lane constraint method 

 MAE (m) RMSE (m) 

DGP 4.94972 6.07725 

DGP-LC 4.84624 6.42983 

The application of lane constraints yielded improvements in the MAE metric, as 

position estimates with smaller errors were mapped onto the nearest lane coordinate, 

effectively enhancing their accuracy. However, this mapping process came at the cost of 

a slight increase in the RMSE. The RMSE deterioration indicates that lane constraints can 

exacerbate large errors. These erroneous estimates were effectively "dragged" onto the 

nearest feasible lane coordinate, potentially increasing the distance between the estimated 

and true positions.  

Hence, the positioning accuracy, in terms of both MAE and RMSE, can be further 

improved by implementing techniques such as Temporal-Weighted RSSI averaging and 

Kalman filtering as mentioned in the previous subsections to remove larger errors before 

applying lane constraints. Table 4.10 shows the MAE and RMSE for the positioning 

system with and without applying the lane constraint method together with Temporal-

Weighted RSSI Averaging and Kalman Filter and benchmarked by the pure DGP model. 
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Table 4.10: MAE and RMSE for the positioning system with and without applying 
the lane constraint method together with TWA and KF 

 MAE (m) RMSE (m) 

DGP 4.94972 6.07725 

TWA-DGP-KF 1.94439 2.20489 

TWA-DGP-KF-LC 1.57958 1.90308 

The table indicates that augmenting the DGP model with TWA and Kalman Filtering 

significantly enhances the accuracy of position estimation under lane constraints. The 

further inclusion of lane constraints leads to the best results, showcasing the importance 

of leveraging contextual information to improve model performance. 

4.4.4 Summary of Position Accuracy Enhancement Techniques 

To comprehensively evaluate the effectiveness of the proposed position accuracy 

enhancement techniques, several configurations were explored by combining Temporal-

Weighted RSSI Averaging (TWA), Kalman Filtering (KF), and Lane Constraints (LC). 

Table 4.11 presents a summary of the performance metrics, including the MAE and 

RMSE and the percentage improvement over the baseline DGP model. 

Table 4.11: Performance of Position Accuracy Enhancement Techniques 

Configuration MAE (m) MAE Improvement 
compared to DGP 

RMSE (m) RMSE Improvement 
compared to DGP 

DGP 4.94972 
 

6.07725 
 

DGP-LC 4.84624 2.09% 6.42983 -5.80% 

DGP-KF 2.86342 42.15% 3.24485 46.61% 

TWA-DGP 2.49319 49.63% 3.13971 48.34% 

TWA-DGP-LC 2.19067 55.74% 2.96828 51.16% 

TWA-DGP-KF 1.94439 60.72% 2.20489 63.72% 

DGP-KF-LC 2.20631 55.43% 2.81086 53.75% 

TWA-DGP-KF-LC 1.57958 68.09% 1.90308 68.69% 
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The baseline DGP model, without any enhancement techniques, exhibited an MAE of 

4.94972 meters and an RMSE of 6.07725 meters, serving as the reference for performance 

comparisons. 

Applying Temporal-Weighted Averaging RSSI (TWA-DGP) led to improvements of 

49.63 % in MAE and 48.34 % in RMSE compared to the baseline, demonstrating the 

effectiveness of this technique in mitigating noise and leveraging temporal dynamics in 

RSSI measurements. 

The Kalman Filter (DGP-KF) provided more modest improvements, with a 42.15 % 

reduction in MAE and a 46.61 % reduction in RMSE, indicating its potential for 

incorporating motion models and further refining position estimates. 

The combination of TWA and KF (TWA-DGP-KF) yielded significant enhancements, 

with an MAE improvement of 60.72 % and an RMSE improvement of 63.72 %, 

showcasing the synergistic effects of these complementary techniques. 

Lane Constraints (TWA-DGP-LC and DGP-KF-LC) exhibited varying degrees of 

improvement, with the DGP-KF-LC configuration outperforming the TWA-DGP-LC 

configuration in terms of both MAE and RMSE. This highlights the importance of 

combining Lane Constraints with noise mitigation techniques and KF ability in reducing 

noise in the output coordinates.  

However, the Lane Constraint method may introduce larger errors if the estimated 

points deviate significantly from the actual position. The Lane Constraint method is 

designed to improve positioning accuracy by restricting estimated locations to predefined 

paths or lanes. However, if the initial position estimation is inaccurate or if the constraints 

are too restrictive, the method can force the estimated position onto an incorrect path. 

This misalignment can lead to larger errors instead of improving accuracy. 
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The configuration incorporating all three enhancement techniques (TWA-DGP-KF-

LC) achieved the best overall performance, with a 68.09 % improvement in MAE and a 

68.69 % improvement in RMSE compared to the baseline DGP model. This result 

underscores the effectiveness of integrating TWA, KF and LC in a comprehensive 

positioning system architecture as shown in Figure 4.28. 

 

Figure 4.28: Movement trajectory of the TWA-DGP-KF-LC position estimates 

In summary, the evaluation of various configurations demonstrates the potential for 

significantly enhancing position accuracy by leveraging the strengths of each proposed 

technique. This combination allows for a multi-layered approach to error reduction. The 

TWA and DGP provide a solid foundation of accurate position estimates, which are then 

refined by the KF to ensure temporal consistency. Finally, the LC step ensures that the 

estimates adhere to the physical layout of the environment. 
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CHAPTER 5: CONCLUSION 

This thesis has presented a comprehensive investigation into the development of a 

LoRa-based indoor positioning system tailored for the intricate and dynamic 

environments found in industrial production lines. The research objectives outlined in 

Chapter 1 have been systematically addressed, leading to the successful demonstration of 

the feasibility and effectiveness of utilizing LoRa technology for indoor positioning 

systems. 

The research commenced with a thorough exploration of existing indoor positioning 

technologies and techniques, as detailed in Chapter 2. This review highlighted the 

limitations of traditional methods, particularly GPS, in indoor settings due to signal 

attenuation and multipath interference. The emergence of LoRa technology, with its long-

range communication capabilities and robustness against interference, was identified as 

a promising candidate for addressing these challenges. The case studies of fingerprinting 

technique using machine learning were also studied. 

The investigation into LoRa signal propagation characteristics revealed valuable 

insights into path loss, multipath fading, and small-scale fading effects. These findings, 

presented in Chapter 4, contributed to a deeper understanding of LoRa's behaviour in 

indoor environments and informed the development of effective positioning algorithms. 

The characterization of signal propagation provided a foundation for understanding the 

challenges and opportunities associated with LoRa-based positioning. 

The methodology adopted in this research, as expounded in Chapter 3, involved a 

meticulous experimental setup within a real-world industrial production line. LoRa-

enabled nodes were strategically deployed to collect radio signal data, which was then 

subjected to rigorous preprocessing to ensure data quality and consistency. A variety of 
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machine learning algorithms, encompassing both classification and regression models, 

were employed to evaluate their performance in single-point estimation tasks. 

The exploration of various machine learning techniques showcased the potential of 

these algorithms in mapping radio signal features to spatial coordinates. Notably, the 

evaluation of these methods across different datasets and feature sets provided valuable 

insights into their performance under varying conditions. The comparative analysis 

revealed the superior performance of Gaussian Process Regression (GPR) in achieving 

accurate and reliable position estimates. 

Building upon the strengths of GPR, the thesis introduced Deep Gaussian Process 

(DGP) regression as a means of further enhancing positioning accuracy. The hierarchical 

nature of DGPs enabled the capture of complex non-linear relationships between radio 

signal parameters and location coordinates, leading to improved positioning accuracy and 

robustness. Through extensive experimentation and hyperparameter tuning, the DGP 

model was optimized to achieve improved accuracy compared to GPR. 

To address the limitations of single-point estimation and further enhance precision, 

spatial-temporal techniques were used. Temporal-Weighted RSSI Averaging (TWA) and 

Kalman filtering were implemented to smooth out fluctuations in position estimates and 

provide a more continuous tracking experience. Additionally, a lane constraint method 

was introduced to refine the positioning of objects within predefined lanes, ensuring their 

accurate localization along production lines. These techniques effectively mitigated RSSI 

fluctuations, noise, and outliers, resulting in more accurate, stable, and contextually aware 

position estimates. 

The culmination of these efforts was the successful implementation of a proof-of-

concept system that integrated the DGP model with temporal filtering and lane constraints. 
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This system demonstrated its ability to accurately track the movement of trolleys within 

the industrial production line, providing real-time location information that could be 

visualized through a user-friendly interface. This real-world demonstration showcased 

the potential of LoRa-based indoor positioning in industrial settings. 

The findings of this research contribute significantly to the field of indoor positioning 

by showcasing the potential of LoRa technology in conjunction with advanced machine 

learning techniques. The integration of temporal filtering and lane constraints further 

enhances the system's robustness and practicality in real-world applications. 

This research not only advances indoor positioning technologies but also opens new 

possibilities for various applications, including asset tracking, personnel monitoring, and 

navigation assistance. The developed methodologies and insights gained from this study 

pave the way for future advancements in the field and offer practical solutions for real-

world challenges. 

5.1 Future Works 

Future work in this area presents several promising avenues for further research and 

development. The integration of additional sensor data, such as inertial measurement 

units (IMUs) or ambient light sensors, could significantly enhance positioning accuracy 

and reliability by providing complementary information to the LoRa signals. This multi-

modal approach could help mitigate environmental factors that affect LoRa performance.  

Implementation of active learning techniques could optimize the data collection 

process, allowing the system to intelligently select the most informative data points for 

model training, thereby improving efficiency and reducing the need for extensive manual 

data collection. Transfer learning methodologies could be explored to adapt pre-trained 
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models to new environments or different types of indoor spaces, potentially reducing the 

setup time and effort required for deployment in diverse settings.  

Traditional LoRa systems operate on a fixed frequency, which may suffer from 

interference and multipath fading in dense indoor environments. Future work could 

explore the potential of multi-frequency LoRa, where multiple frequency bands are 

utilized adaptively based on environmental conditions. By employing frequency-hopping 

techniques, the system could dynamically switch between different channels to avoid 

interference and maintain reliable communication. This approach would improve signal 

stability, reduce packet loss, and enhance overall positioning accuracy in challenging 

indoor scenarios. 

The exploration of multi-sensor fusion techniques to combine LoRa with other 

complementary technologies, such as Ultra-Wideband (UWB) or Bluetooth Low Energy 

(BLE), could leverage the strengths of each technology to create a more robust and 

versatile positioning system.  

Energy efficiency is a crucial factor in ensuring the long-term sustainability of IoT-

based positioning systems, particularly for large-scale deployments. Future research 

could focus on optimizing the power consumption of LoRa nodes by implementing 

adaptive transmission power control and dynamic duty cycling. These techniques allow 

devices to intelligently adjust their transmission power and frequency based on 

environmental conditions and movement patterns, thereby reducing energy waste. 

Additionally, integrating energy-harvesting solutions, such as solar panels or kinetic 

energy systems, could extend the operational lifespan of deployed nodes and minimize 

maintenance costs. 
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To improve the responsiveness and scalability of the positioning system, real-time data 

processing techniques need to be explored. One potential direction is the integration of 

edge computing, where lightweight deep learning models are deployed on edge devices 

such as microcontrollers or embedded systems. By processing localization data directly 

at the edge, latency can be reduced, and reliance on cloud-based computation minimized. 

Techniques such as model quantization and knowledge distillation can be leveraged to 

ensure that deep learning models remain computationally efficient while maintaining high 

accuracy. 

As LoRa-based indoor positioning systems handle sensitive location data, ensuring 

security and privacy is essential. Future work could explore the implementation of robust 

encryption techniques to protect data transmissions from eavesdropping and unauthorized 

access. End-to-end encryption schemes, coupled with secure authentication mechanisms 

such as cryptographic key exchanges, can enhance the security of the system. 

Furthermore, privacy-preserving localization techniques, such as federated learning and 

homomorphic encryption, could be employed to allow collaborative model training while 

keeping raw location data private. 

Finally, increasing the scalability of the system to accommodate other areas and more 

devices would be crucial for its widespread adoption. This could involve optimizing the 

network architecture, improving data processing algorithms, and developing more 

efficient communication protocols to handle increased data loads without compromising 

performance. These future directions aim to enhance the system's accuracy, adaptability, 

and practical applicability across various indoor positioning scenarios. 
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