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Real Time Long Range (LoRa) Based Indoor Positioning System Using Deep

Gaussian Process (DGP) Algorithm

ABSTRACT

This thesis explores the development of a real-time LoRa-based indoor positioning
system in industrial production lines. Recognizing the limitations of traditional GPS and
other indoor positioning technologies, this research investigates the feasibility of LoRa
and proposes a hybrid machine learning approach for accurate and reliable positioning.
The study addresses challenges posed by signal fluctuations, non-line-of-sight
propagation, and the need for continuous positioning estimation in dynamic environments.
Through experimental evaluation and comparison of various machine learning algorithms,
including Deep Gaussian Process (DGP) regression, the research demonstrates the
effectiveness of DGPs in achieving precise single-point estimation, by keeping the mean
absolute error to below 5 meters. Furthermore, the thesis introduces enhancement
techniques such as Temporal-Weighted RSSI averaging, Kalman filtering, and lane
constraints to improve the system's performance further. The experimental results,
conducted in a real industrial environment, demonstrate that the proposed system
achieves a mean absolute error of 1.58 meters and a root mean square error of 1.90 meters.
These findings highlight the potential of combining LoRa technology with advanced
machine learning algorithms and filtering techniques to achieve precise and reliable

indoor tracking.

Keywords: Indoor Positioning System, LoRa, Machine Learning, Deep Gaussian

Process, Continuous Positioning
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SISTEM PENENTUDUDUKAN DALAMAN MASA NYATA BERASASKAN
LORA MENGGUNAKAN ALGORIMA PROSES GAUSSIAN MENDALAM

ABSTRAK

Tesis ini meneroka pembangunan sistem penentuan kedudukan dalaman bangunan
berasaskan LoRa masa nyata dalam kawasan industri. Batasan daripada teknologi
tradisional untuk penentuan kedudukan seperti GPS telah memberi ruang untuk
penyelidikan kemungkinan penggunaan teknologi LoRa dalam sistem penentuan
kedudukan dalaman bangunan dan mencadangkan pembelajaran mesin hibrid untuk
penentuan kedudukan yang tepat. Kajian ini menangani cabaran yang ditimbulkan oleh
turun naik isyarat, penyebaran bukan garis penglihatan, dan keperluan untuk anggaran
kedudukan berterusan dalam persekitaran dinamik. Melalui penilaian eksperimen dan
perbandingan pelbagai algoritma pembelajaran mesin, termasuk regresi Proses Gaussian
Mendalam (DGP), penyelidikan ini menunjukkan keberkesanan DGP dalam mencapai
anggaran titik tunggal yang tepat, dengan mengekalkan ralat mutlak purata di bawah 5
meter. Selain itu, tesis ini memperkenalkan teknik penambahbaikan bagi keputusan
peruntukan kedudukan seperti purata RSSI berwajaran masa, penapisan Kalman, dan
kekangan lorong untuk meningkatkan lagi prestasi sistem. Keputusan eksperimen, yang
dijalankan dalam persekitaran industri sebenar, menunjukkan bahawa sistem yang
dicadangkan mencapai ralat mutlak purata 1.58 meter dan ralat kuasa dua purata 1.90
meter. Penemuan ini menyerlahkan potensi penggabungan teknologi LoRa dengan
algoritma pembelajaran mesin canggih dan teknik penapisan untuk mencapai penentuan

kedudukan dalaman bangunan yang tepat.

Keywords: Sistem Penentuan Kedudukan Dalaman Bangunan, LoRa, Pembelajaran

Mesin, Proses Gaussian Mendalam, Penentuan Kedudukan Berterusan
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CHAPTER 1: INTRODUCTION

1.1 Background

In recent years, the concept of smart factory and digital manufacturing has emerged as
a transformative paradigm in the industrial landscape. Digital manufacturing includes
aspects such as smart networking, flexibility, mobility and interoperability of industry
(Barreto et al., 2017). Handling and logistics controls of products are designed as a part
of digital manufacturing (Holmstrom et al., 2017). In the age of Industrial 4.0, traceability,
transparency (supply chain visibility), integrity control (incurring the right cost by
considering appropriate time, place. quantity, and condition), robustness, agility,
resilience and flexibility are the important aspects that needed attention when designing
a logistic system (Kirch et al.,, 2017). The integration of digital technologies in
manufacturing is revolutionizing traditional production methods, leading to improved

productivity, streamlined workflows, and data-driven decision-making.

Despite the remarkable benefits of smart factories and digital manufacturing,
companies still rely on Enterprise Resource Planning (ERP) systems and manual
processes to manage their resource flow. ERP systems have long served as the backbone
of operational management, facilitating data integration, resource planning, and process
coordination. Despite their ability to standardize operations, ERP systems frequently
struggle with agility and adaptability in manufacturing due to customization challenges,
slow real-time data processing, and reliance on workarounds when responding to dynamic
production demands (Yilmaz Borekei et al., 2020). Moreover, reliance on manual
processes can introduce inefficiencies and increase the likelihood of errors. Human
intervention in data entry, process monitoring, and quality control can be time-consuming
and prone to inaccuracies, leading to delays, disruptions, and quality issues in the
production line. An accurate indoor positioning system provides both management and

operators with clear visibility of ongoing operations and assets’ positions.



Indoor positioning plays a pivotal role in meeting this demand by providing real-time
and precise location information within the spaces of the manufactory. The importance
of indoor positioning in manufacturing floors rests in its capacity to support an extensive
variety of crucial applications. Asset monitoring makes it possible to quickly locate
finished goods, work-in-progress items, and raw materials, reducing manufacturing
delays and improving supply chain management. Personnel tracking maximizes
personnel deployment to increase productivity while also enhancing safety by keeping
track of workers' presence in forbidden or dangerous areas. The use of equipment tracking
guarantees effective maintenance programs, which save downtime and increase the life

of important machinery.

The reliance on indoor positioning system (IPS) solutions has grown due to the
limitations of traditional outdoor-based positioning technologies, the Global Navigation
Satellite System (GNSS) (Manzoni et al., 2019) such as GPS (https://www.gps.gov/),
GLONASS (https://www.glonass-iac.ru/en/), Galileo (https://www.usegalileo.eu/) or
BeiDou (http://en.beidou.gov.cn/) system. GNSS is well-established for outdoor
positioning and can be used in most outdoor environments. GNSS systems give sub-meter
accuracy but they cannot well work indoors as GNSS systems require a distinctive line
of sight (LOS) between satellites and device (Henriksson, 2016). Moreover, GNSS

devices used are more complex, costly and power inefficient (Manzoni et al., 2019).

Therefore, various technologies are being researched and implemented for indoor
localization. Primarily some widely used technologies are WiFi, Bluetooth, ZigBee,
RFID, UWB, Visible Light, Acoustic Signals and ultrasound (Zafari et al., 2019). In order
to determine the target positions, several parameters are utilized (Kim Geok et al., 2020).
The fundamental parameters used in indoor positioning systems are Received Signal

Strength Indicator (RSSI), Time of Arrival (ToA) and Angle of Arrival (AoA).



Furthermore, Time Difference of Arrival (TDOA), Round Trip Time (RTT), Angle
Difference of Arrival (ADOA), Phase of Arrival (POA), Phase Difference of Arrival
(PDOA) and Channel State Information (CSI) are used to overcome improve accuracy
and reduce complexity. These signal characteristics alone do not define the position
estimates. Hence, the parameters have to be fitted into positioning algorithms to define
the location coordinates (Kim Geok et al., 2020). Positioning algorithms can be classified

by four basic aspects distance-based, direction-based, connectivity-based and signal-

based.

The rise of the Internet of Things (IoT) (Zafari et al., 2019) has brought much attention
to researching indoor localization using low power loT devices. Low-power wide-area
networks (LPWANSs) are an emerging technology due to their characteristics of low
power consumption and low bandwidth (Islam et al., 2017). These characteristics are a
perfect fit for [oT data traffic which requires a high number of devices with low data rates
and deep penetration of signals in noisy urban environments (Gu et al., 2018). The low
power and long range characteristics of LPWANSs have attracted much attention in the
field of indoor positioning systems such that mobile tags can operate using batteries
without a static power supply and reduce infrastructure costs by decreasing the number

of access points.

LoRa was chosen as the positioning technology in this research due to its relatively
open ecosystem among other LPWANSs such as Sigfox and NB-IoT. LoRa defines the
physical layer technology functioning in the sub-GHz band, operating in a frequency band
less than 1 GHz (923 MHz, 915 MHz, 433 MHz), which is widely used in numerous IoT
applications including smart metering, smart parking, road traffic monitoring,
environment monitoring, street lighting, facility management, waste management, and

precision agriculture (Islam et al., 2019). LoRa’s long-range communication capability



minimizes the need for dense deployment of access points or beacon nodes. Just a small
amount of LoRa gateways is needed to cover a large area (Gu et al., 2018). LoRa is robust
against multipath, Doppler effect and interference on account of its unique Chirp Spread
Spectrum (CSS) Modulation scheme (Islam et al., 2017) which makes it a strong

competitor for being an indoor positioning technology.

Due to the robust conditions in indoor environments, fingerprinting technique has
gained much attention in the field of indoor positioning systems. The fingerprinting
technique collects radio characteristics and produce radio maps. In the online phase, radio
signals are matched to the radio map to predict the locations of the object. To further
improve the accuracy of conventional fingerprinting method, deep learning methods such
as Artificial Neural Network (ANN) (Belmonte-Herndndez et al., 2019), Recurrent
Neural Network (RNN) (Pichaimani & Manjula, 2022) and Deep Gaussian Processes
(DGP) (Wang et al., 2020) are used. They can learn the underlying patterns and
relationships within these fingerprints, enabling them to predict the location of the object

even in areas with slightly different signal characteristics.

This thesis delves into the implementation of indoor positioning system with LoRa
technology, employing RSSI-based fingerprinting method with a hybrid machine learning
approach. DGP, a machine learning technique that learns complex relationships between
the signal fingerprints and actual locations was leveraged for static point estimation. This
allows more precise positioning in challenging locations such as non-line-of-sight (NLOS)
and non-linear positions. Furthermore, we incorporate a maximum distance filter in
correlation to time to eliminate outliers and enhance the reliability of position estimates.
Additionally, a lane correction method is implemented to correct the position of the

trolleys and ensure accurate positioning within production lines.



1.2

Problem Statement

The problems to be addressed by this study are as followed:

1.

Traditional methods like GPS are ineffective indoors due to signal attenuation and
multipath interference, while existing technologies like WiFi, BLE, and UWB
have drawbacks related to accuracy, scalability, and cost-effectiveness. This
necessitates the investigation of alternative technologies, such as LoRa, for its long
range and robustness against multipath, to address these limitations and enable
efficient and reliable indoor positioning in industrial settings.

The dynamic and complex nature of industrial production lines presents significant
challenges for achieving accurate and reliable indoor positioning using LoRa
technology. Signal fluctuations, often caused by moving machinery and equipment,
can lead to inconsistent and unreliable RSSI measurements. NLOS propagation,
due to obstacles and the layout of production lines, can further degrade the
accuracy of position estimates. These challenges collectively impact the
performance and effectiveness of LoRa-based positioning systems, hindering their
widespread adoption in industrial applications.

While existing research on LoRa-based indoor positioning has demonstrated its
feasibility, there remains a gap in addressing the challenges of continuous
positioning estimation for objects in movement within complex industrial
environments. The focus has primarily been on single-point estimation, which does

not fully capture the dynamic nature of objects within production lines.



1.3

Research Objectives

The research aims to explore the potential of an accurate LoRa-based indoor

positioning system in industrial production line. This research will focus on the following

objectives.
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I.

To investigate the feasibility of implementing a LoRa-based indoor positioning
system as an alternative to conventional methods in the industrial production line.
To evaluate and compare the effectiveness of different machine learning
algorithms, particularly focusing on the potential superiority of Deep Gaussian
Process (DGP), for accurate and reliable single-point estimation using LoRa
technology by assessing positioning mean absolute error of below 5 meters.

To develop and implement a novel hybrid approach for LoRa-based indoor
positioning that combines single-point estimation with enhancement techniques,
addressing the gap in existing research and enabling accurate tracking of objects
in movement within complex industrial environments by achieving a mean

localization accuracy of less than 2 meters and 90™ percentile error of 5 meters.

Novelty and Contributions

The following list portrays the novelty and contributions of this research.

1.

Demonstrated the feasibility of LoRa technology for indoor positioning in dynamic
industrial environments.

Unlike many existing studies, this research specifically focuses on positioning in
dynamic industrial environments with moving objects.

The proposed system uniquely combines LoRa technology with a hybrid approach
of a two-layer Deep Gaussian Process Regression model together with spatial-

temporal enhancement techniques achieving high positioning accuracy.



1.5 Thesis Outline
The subsequent chapters of this thesis are organized to provide a comprehensive and

detailed exploration of the research topic. Here's a brief overview of the chapters:

Chapter 2, Literature Review offers a thorough examination of existing research on
indoor positioning systems, with a particular emphasis on LoRa-based solutions. It delves
into various techniques, algorithms, and methodologies employed in the field,
highlighting their strengths and limitations. The chapter also explores the application of

machine learning and deep learning techniques for enhancing positioning accuracy.

The following chapter, Methodology, outlines the research methodology adopted for
the study. It details the experimental setup, including the selection and configuration of
hardware components, the design of the testbed, and the data collection process. The
chapter also describes the data preprocessing steps undertaken to ensure data quality and
prepare it for analysis. Moreover, the chapter discuss the adaptation of various machine
learning techniques for single point estimation. Besides that, the chapter elaborates on the
DGP architecture, model design, hyperparameter selection, and training process. To

further enhance the accuracy of single-point estimation, several techniques were explored.

The Results and Discussion chapter presents the experimental results obtained from
the implementation of the LoRa-based indoor positioning system. It evaluates the
performance of different machine learning algorithms for single-point estimation and
assesses the effectiveness of the proposed hybrid approach for continuous positioning
estimation. The chapter also discusses the accuracy, reliability, and limitations of the

implemented system, drawing insights from the experimental findings.

Finally, the Conclusion and Future Work chapter summarizes the key contributions of

the research, highlighting the achievements and insights gained from the investigation of



LoRa-based indoor positioning. It also discusses potential avenues for future research,
identifying areas where further improvements or extensions can be made to enhance the

system's performance or applicability.



CHAPTER 2: LITERATURE REVIEW

An indoor positioning system (IPS) is a system that obtains a device or user location
in an indoor environment or setting. The wide-scale adoption of mobile devices with
wireless communication capabilities have made the localization and tracking of devices
possible and with ease. Real world applications of the indoor positioning system are many
and are mainly used by smart homes (Kim et al., 2021), museums (Dahlgren & Mahmood,
2014), healthcare centres (Dahlgren & Mahmood, 2014), shopping malls, parking lots

(Anjum et al., 2020) and warehouses (Batalla et al., 2020; Silva et al., 2021) .

Presently, the most popular real-time location system (RTLS) is the Global Navigation
Satellite System (GNSS). GNSS is well established for outdoor environments mainly
used for vehicle navigation and missile guidance. However, GNSS does not work well
indoors due to a lack of distinct line-of-sight (LOS) between the device and
satellites(Henriksson, 2016). For that reason, it has attracted attention of the academia to
research on simple, low-cost design indoor positioning systems that can provide accurate
localization in the indoor environments. However, indoor signal patterns are more
complicated than those in outdoor environment due to fading, reflecting, multipath and
deep shadowing effect (Kim Geok et al., 2020). Therefore, a variety of technologies and
positioning techniques were introduced to minimize the effect of the robust signal
characteristics. Moreover, indoor positioning systems should be evaluated in terms of cost,
availability, energy efficiency, reception range, tracking accuracy and scalability

(Hayward et al., 2022).

2.1 Indoor Positioning Technologies
Positioning technologies can be categorized into non-radio-based positioning and
radio-based positioning. As in Figure 2.1, Non-radio-based positioning includes infrared,

ultrasound, audible sound, magnetic, vision, visible light and dead reckoning (Sakpere et



al., 2017). Meanwhile, radio-based technologies for indoor positioning comprises of WiF1i,
Bluetooth, RFID, UWB, NFC, cellular, and low power wide area network (LPWAN)

technologies namely, LoRa and Sigfox (Zafari et al., 2019).

Most non-radio-based positioning such as light-based and sound-based systems are
short and medium range communications. They have high accuracy in room-level
localization but does not perform well in non-line of sight (NLOS) conditions due to low
penetration through walls. Hence, more beacons or receivers would be needed to improve

accuracy 1in large scale application.
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Figure 2.1: Types of indoor positioning technologies.
2.1.1 Radio-based Positioning Technology
Radio-based positioning system is the positioning technology that utilizes radio
frequency signals and infrastructures to determine the position of a person or object for
tracking and navigation purposes. Radio-based positioning is widely used and studied as
a result of its ability to penetrate walls and obstacles leading to a wider coverage area

(Sakpere et al., 2017).

WiF1, also known as the IEEE 802.11 standard, operates in the Industrial, Scientific,
and Medical (ISM) band and is widely used for providing networking capabilities in
private, public and commercial environments. WiF1 operates on the 2.4GHz and 5.0GHz

spectrum and with typical channel widths of 20MHz, 40MHZ and 80 MHZ. WiFi
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positioning is popular due to the common use of WiFi-enabled mobile devices such as
smartphones and laptops and also presence of existing infrastructure would reduce the

cost and complexity of deployment (Mendoza-Silva et al., 2019).

Bluetooth (or IEEE 802.15.1) consists of the physical and MAC layer specifications
for connecting different fixed or moving wireless devices within a certain personal space.
The latest version of Bluetooth is Bluetooth Low Energy (BLE). Most of the BLE based
localization techniques were based on RSS based inputs as they are less complex. Due to
medium communication range of BLE, number of beacons is needed for a large scale
deployment (Mendoza-Silva et al., 2019). BLE is often chosen in indoor positioning
systems because of its small, low cost, low complexity and low energy consumption

compared to other technologies (Kim Geok et al., 2020).

Recent study suggest combination of WiFi and BLE can improve localization accuracy.
(Molina et al., 2018) concluded that Wi-Fi alone is insufficient for precise indoor location
tracking. While it can provide reasonable estimates in specific areas, its accuracy
deteriorates significantly in large spaces with dynamic conditions, often requiring manual
adjustments. To enhance location precision and mitigate the impact of fluctuating signal
strengths, it's crucial to integrate additional technologies like Bluetooth Low Energy

(BLE) and GPS, when feasible.

Ultra-Wideband (UWB) is an attractive technology in indoor localization for its
immunity to interference from other signals due to its drastically different signal type and
radio spectrum. The short pulse with time period of lesser than 1 nanosecond (ns) over a
large bandwidth (>500MHz) make them less sensitive to multipath effects, allowing
accurate position estimation in the time domain. UWB also has relatively low power
consumption due to its low duty cycle. It has been shown that UWB can achieve

localization accuracy up to 10cm (Zafari et al., 2019). Despite offering high precision,
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UWB's technology is incompatible with current standards, hindering its widespread
public adoption. Furthermore, the high cost of implementing UWB infrastructure on a
large scale due to increase in UWB sensors deployment presents a significant barrier to

its broader use. (Sakpere et al., 2017).

Radio Frequency Identification (RFID) is one of the commonly used technologies for
indoor positioning. There are two basic types of RFID systems, passive RFID and active
RFID. Passive RFID do not have their energy source, the detection range is short (1-2m),
and receivers require external high power supply. Hence, it is generally used in geo-
fencing applications and not suitable for large scale localization. On the other hand, active
RFID operate in the Ultra High Frequency (UHF) and microwave frequency range. The
characteristics of active RFID having a reasonable range, low cost and can be easily
embedded in the tracking objects makes it a reasonable choice for localization and object
tracking. However, the active RFID technology cannot achieve sub-meter accuracy and
it is not readily available on most portable user devices (Zafari et al., 2019). Moreover,
random moving objects in the domain can reduce its accuracy due to multipath effect and

signal fluctuations. (Kim Geok et al., 2020).

2.1.2 LPWAN Positioning Technology

The rise of internet of things (IoT) has supported the research of LPWANSs in the field
of indoor localization. LPWAN has the following advantages, long range, low power
consumption, low cost, massive connections and communication capability. Some of the

popular LPWANs are NB-IoT, LTE-M, LoRaWAN and Sigfox (Li et al., 2020).

NB-IoT and LTE-M follows the 3GPP standard and fall in the licensed LTE frequency
band. Hence, the base stations and network are deployed by telecommunication operators.

They have the advantage of having operator-level security and quality assurance.
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However, it is difficult for independent companies to setup their own private network.

(Li et al., 2020).

Sigfox uses the 862-928 MHz ISM band and has a bandwidth of 100Hz and data rate
of 600bps. Given its low bandwidth and data rate, it can accommodate 1 million nodes
per gateway. Sigfox uses a proprietary Ultra Narrow Band (UNB) radio technology and
binary-phase-shift- keying (BPSK) based modulation. By using UNB radio, the noise
floor is reduced compared to classical narrow, medium or wideband systems. However,
it is not recommended for real-time localization because of its limitations in messages per
day and high latency time. Besides, the narrowband nature makes Sigfox radio susceptible

to multipath and fast fading.

LoRaWan is an open Medium Access Control (MAC) protocol which is built on top
of the LoRa physical layer. Typical LoRaWan bandwidth values are 125, 250 and 500kHz.
LoRa is unique compare to other IoT technologies for the use of Chirp Spread Spectrum
(CSS) modulation scheme, a spread spectrum technique where the signal is modulated by
frequency varying sinusoidal pulses, which provides resilience against multipath,
interference and Doppler effect, making LoRa a preferable technology for localization

(Zafari et al., 2019).

Table 2.1 summarizes the advantages and disadvantages of radio-based positioning
technology together with positioning metrics, range, power consumption, accuracy and

cost.
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Table 2.1: Summary and comparison of radio-based indoor positioning technologies

Technologies | Range Power Accuracy | Cost Advantages Disadvantages
consumption
WiFi 35m Medium Low Medium (Very low | No extra hardware Time-varying RSS
if using deployed Easy deployment Accuracy depends on number of
infrastructures and Cover large regions access points
smartphones)
Bluetooth 10-20m | Very Low Low Low Low power Requires extra hardware
Easy deployment Prone to noise
Small size Interference with the same
frequency band
Require large number of access
points to achieve better accuracy
UWB 10-20m | Medium High Medium High accuracy Needs extra hardware
Negligible effect from Short range, high cost
interference and multipath Challenges in NLoS
RFID 200 m Low Low Medium Larger range than WiFiand BLE | Needs extra hardware
Medium power consumption Multipath and signal fluctuations
Large error with more target
tags to locate
LoRa 20 km Very Low Low Low Low power Needs extra hardware
Covers large area Signal attenuation and multipath
Sigfox 40 km Very Low Low Low Low power Needs extra hardware

Covers large area

Signal attenuation and multipath
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2.2 Indoor Positioning Techniques

Generally, indoor positioning techniques can be identified as two classes: range-based
and range-free. Range-based techniques use distance or angle estimates such as Received
Signal Strength Indicator (RSSI) (Anjum et al., 2020), Time of Arrival (ToA) (Ha et al.,
2019), Time Difference of Arrival (TDoA) (Azmi et al., 2018), and Angle of Arrival
(AoA) (Kutakowski et al., 2010) as the basis of calculation. However, range-free

techniques use connectivity information between nodes and landmarks.

TOA calculates the distance between transmitter and receiver by taking account of the
propagation time using the speed of light formula ¢ = 3 x 10® m/sec. A minimum of three
reference nodes is used to estimate the coordinate of the device. TOA provides high
accuracy but the require high cost and complexity of hardware because precise time

synchronisation and high resolution timestamp is needed to obtain the accurate results.

Figure 2.2: TDOA positioning method.
(Zafari et al., 2019)
TDOA is developed to mitigate the need for complex hardware required for TOA.

TDOA applies the flight-time difference to a radio wave by comparing TOA at two
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different sensors and thus the absolute TOA is not needed (Laaraiedh et al., 2011; Sakpere

et al., 2017). Figure 2.2 shows the TDOA positioning technique.

AoA estimates the position of the target object by calculating the angle and distance
and the intersection of direction lines between two or more reference points. AoA use
antennae arrays to estimate the angle at which the transmitted signal impinges on the
receiver. AoA can provide accurate location estimation when transmitter-receiver
distance is small or in room level. However, in NLOS conditions AoA performs poorly.
Moreover, more complex hardware and precise calibration is needed. Figure 2.3 depicts

how angles of signals received by antenna array reflects to user location.

Figure 2.3: AoA based positioning.
(Zafari et al., 2019)

RSSI uses the measured signal strength intensity at the receiver side. RSSI method is
popular in position tracking as the implementation is much easier comparing to ToA or
TDoA which requires clock synchronisation between devices or AoA that needs special
and costly antennas. However, in indoor environment RSS is greatly affected by
multipath and shadowing henceforth is relatively inaccurate. RSSI uses a simple path-

loss propagation model to calculate the distance between transmitter and receiver. The
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log-distance path loss model relates the received signal power B, (d) at distance d from

the transmitter to the transmitted power P, as equation 2.1:

d
PL(d) = P, = P.(d) = PL(dy) — 10nlogo () + X,

d, 2.1)

where n is the path loss exponent, d is a reference distance, and X, is a zero-mean

Gaussian random variable (in dB) with standard deviation ¢ that models the shadowing

effect.

The position of the object can then be calculated by using trilateration, multilateration,

min-max and maximum likelihood algorithms. RSSI is susceptible to noise and multipath

effects which significantly decreases its localization accuracy (Kim Geok et al., 2020).

Table 2.2 summarises advantages and disadvantages of the positioning techniques.

Table 2.2: Summary of different positioning techniques

Positioning

technique

Advantages

Disadvantages

ToA

Provide high accuracy

Does not require fingerprinting

Require precise time synchronisation
and high resolution timestamps

LoS is needed for accurate
performance

Difficult to implement in narrow

bandwidth

TDoA

Does not require time synchronisation

between device and received nodes

Require high resolution timestamps
Difficult to implement in narrow
bandwidth

Time synchronisation required

between received nodes

AoA

Can provide high localization

accuracy in room level

High device complexity with multiple
directional antennas

Performance deteriorates with
increase in distance between

transmitter and receiver

RSSI

Easy to implement

Cost efficient

Prone to multipath, fading and noise

Lower localization accuracy
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chirps (frequency varying sinusoidal pulses) to improve its robustness against signal loss
particularly interference, such as Doppler effect and multipath fading (Islam et al., 2017).
These chirps have chip rates equivalent to the spectral bandwidth of signals, typically 125,
250 or 500kHz of bandwidth. Figure 2.4 shows the visualisation of the up chirps used in
LoRa modulation. To further mitigate interference, Frequency-Hopping Spread Spectrum
(FHSS) scheme is used. FHSS switches available channels according to pseudo-random

distribution.

Each symbol is encoded with 25F chirps, where SF is the spreading factor. SF sits in
the range of between 7 to 12, chirps with different values of SF are orthogonal to each
other, so multiple data packets can be sent in parallel by using different values of SF. The
higher the spreading factor value, the longer the time for each symbol transmission and

produce farther communication range.

2.3.2 Feasibility of LoRa Positioning

Islam et al. (2017) has discussed the feasibility of LoRa for indoor localization. WiFi
and Bluetooth Low Energy (BLE) were chosen as the comparison baselines because of
their popularity in indoor positioning and low power consumption. The author compared
the stability of the three technologies in terms of variance, median, mean and mode of
their RSSI. LoRa has a lower variance compared to WiFi and BLE. Furthermore, LoRa
shares similar behaviour with WiFi in terms of median and mean but LoRa outperforms
WiFi in mode comparison. The author also did ranging tests in both line of sight (LOS)
and non-line of sight (NLOS) conditions. Mean errors of 1.19 m in LOS and 1.72 m in

NLOS were obtained respectively by using unfiltered RSSI values.

The author did a continuation of the research in (Islam et al., 2019). The comparisons
between the three technologies were done in different test environments, long corridor

(23 m), open room (25 m x 23 m), single floor (25.29 m with four rooms of different sizes)
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and multiple floor (four and eight stories). LoRa outperforms WiFi and BLE in terms of
wireless coverage, stability, path loss trend, cost and power consumption. Therefore,
LoRa is a feasible choice for indoor positioning systems especially for large spaces such

as warehouses and multi-storeyed buildings.

Podevijn et al. (2018) preferred BLE over LoRa due to its lower cost and averaging
capabilities. However, the results obtained were not satisfying as a median accuracy of
15m was obtained in a 69 m x 69 m environment. (Sadowski & Spachos, 2018) compared
indoor positioning performance of WiFi, BLE, ZigBee and LoRaWan by applying
trilateration within a range of 1 — 5 m. It was concluded that WiFi has the highest accuracy
of 0.664m on average but with the most power consumption. BLE used the least amount
of power. LoRaWan has the furthest transmission range but delivers the largest error of
1.19m. Therefore, optimisation in power consumption and positioning algorithm has to
be done in order to have a well-performing LoRa-based positioning system. (Committee,
2018) mentioned that Kalman filtering of noisy data can improve localization

performance.

Anjum et al. (2019) investigates the potential of LoRa technology for indoor
positioning using RSSI fingerprinting. The study involves real-world testing in both
unobstructed (LOS) and obstructed (NLOS) environments to optimize LoRa packet
settings for accurate distance estimation based on signal strength. To enhance positioning
precision, environmental factors are considered. The researchers conducted extensive
experiments across different LoRa spreading factors, analysing signal attenuation (path

loss exponent) and signal variability (shadowing) in each environment.

Khan et al. (2021) compared LoRaWAN with WiFI and BLE in three different
environments, the graduate lab (24 x 24 square feet), corridor (23 x 23 square feet) and

classroom (50 x 30 square feet). RSSI (trilateration) is used to calculate the coordinates
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of a sensor node. The experimental results show that Wi-Fi produces the most accurate
result with an average error of 0.54 m. LoRa came in second with an average error of 0.62
m and BLE is the show the lowest accuracy with an average error of 0.82 m. The authors
propose LoRa as the best suited technology for indoor localization as it has significantly

lower power consumption than WiFi although it has slightly lower accuracy.

Bornholdt et al. (2021) presents a multi-step-approach with a dynamic optimal
algorithm selection for LoRaWAN networks with a modified stack for direct peer
communication. To minimize the influence of measurement errors, the authors examined
several filtering and compensation, and selection algorithms. A key benefit of this method
is the reduced need for anchor nodes due to the LoRa transmitters' extended range. The
relatively low initial and ongoing costs of LoRa transmitters make this approach attractive
for large-scale applications where an accuracy of approximately ten meters is acceptable.
The authors conducted a series of conducted experiments to demonstrate the potential of
the proposed method.

Research on RSSI-based indoor positioning using LoRa in the license free 2.4 GHz
band has been done in Simka and Polak (2022). Measurements are conducted in three
different indoor environments hall, locker room and corridor, for different signal
configurations of LoRa. The system demonstrated an average localization error of less
than 2.2 meters. However, LoRa's localization accuracy is significantly influenced by
factors such as signal configuration, node placement, and environmental conditions.

Aside from proving the feasibility of LoRa technology in indoor positioning, Marquez
et al. (2023) studies the impact of body obstruction on communication links and,
therefore , on the localization system in LoRaWAN. Results show that signal strength

decreases by an average of 3 dB on links with body shadowing.
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Hence, machine learning methods are used to further enhance the accuracy in LoRa-
based positioning. The following section will study different methods on improving the

accuracy for LoRa-based positioning.

2.3.3 Case Study of LoRa-based Positioning System

Savazzi et al. (2019) used Weiner algorithm to achieve higher ranging and localization
accuracy by combining RSSI values received for different LoRa modulation
configurations. The experiment resulted in the best mean localization error of more than
10 m using all modes Weiner with seven anchors. The localization error is even higher
when the number of anchors decreases. A localization error of more than 10 m is not
satisfactory. Hence, the accuracy can be improved by selecting a subset of modes that has

filter coefficients with maximum absolute values.

Lam et al. (2019) proposed positioning algorithms that reduce the non-Gaussian noise
in LoRa networks by eliminating ill-performing anchor nodes or selecting anchor nodes
that have higher confidence to be more accurate. In a large-scale indoor environment,
Minimum MBRE and Density-based Clustering shows the best results with median
localization error of 0.9821 m and 1.0895 m respectively. These two algorithms
significantly improved the traditional Linear Least Squares which has a median

localization error of 4.1823 m.

RSSI Fingerprinting combined with machine learning techniques is used by Anjum et
al. (2020). RSSI fingerprints were collected and fitted into different models to develop
RSSI-to-Distance functions. Among some methods used by the author are the path loss
model, traditional regression model and modern machine learning models such as
smoothing spline, support vector regression, decision trees and random forest. Then the
obtained distances were fitted in a trilateration algorithm to obtain the position estimates.

In indoor environments, smoothing spline achieved a mean error of 9.38 m and 91.92 %
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accuracy. The author proved the feasibility of LoRa positioning in an indoor environment,

but the error has to be reduced in order for it to be applied practically.

Kim et al. (2021) confirms the feasibility of using LoRa-based technology for indoor
localization in smart homes. The authors obtained a maximum error of 3.2 m and a
standard deviation of below 25 cm of stationary objects by solely using trilateration. The
authors suggested that the accuracy and precision can be further improved by using

filtering techniques, more anchor nodes and fingerprinting method.

Lazaro et al. (2021) proposed an interesting topic and utilizing LoRa backscatters for
localization. By using backscattering, the cost and power consumption of end user devices
can be further reduced. However, the author only tested out for room-level localization
and the experiment can be further researched by narrowing down the precision of position

estimates.

In (Hu et al., 2022), the authors proposed LTrack, a long-range tracking system based
on LoRa. This system consists of a mobile rotating anchor, a LoRa tag, and a commercial
robot. Due to the limitations of LoRa devices to estimate AoA of signals, the authors
designed a virtual circular antenna array in the mobile rotating anchor via a lightweight
hardware modification to multiplex the only radio frequency channel in the low-cost
LoRa device. To estimate the target AoA, the difference of time of flight (TDoF)
measured in the circular antenna array is fused with the rotating orientation. They also
redesigned and optimized the primitive LoRa ranging engine based on systematic analysis.
Additionally, the researchers developed a real-time algorithm to track moving targets by
utilizing Doppler frequency shifts, addressing the challenge of target movement-induced
uncertainty. The experiments were done in both LOS and NOLS indoor scenarios. The
experiment results shows that LTrack supports robust tracking with a median error of

0.12 m and 0.45 m in a 137 m? lab space and a 600 m? corridor, respectively.
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Chen et al. (2023) introduced a Kalman filter-based LoRa positioning algorithm

adaptable to various environments. Implemented using the NS-3 network simulator, their

approach significantly enhanced LoRa positioning accuracy. Simulation results

demonstrated the effectiveness of the improved LoRaWAN module for diverse

positioning scenarios and the substantial accuracy gains achieved through Kalman

filtering. Table 2.3 summarizes the methodology and findings of the LoRa-based

positioning systems case studies.

Table 2.3: Summary of Case Studies of LoRa-based Positioning Systems

Study Methodology Findings
Savazzi et Used Weiner algorithm to enhance Achieved best mean localization error of >10m using all
al., 2019 ranging and localization accuracy by | modes Weiner with seven anchors; error increased when
combining RSSI values from various | fewer anchors were used
LoRa modulation configurations
Lametal., Proposed positioning algorithms to Minimum MBRE and Density-based Clustering achieved
2019 reduce non-Gaussian noise in LoRa best results with median localization errors of 0.9821m
networks and 1.0895m, respectively, significantly improving
traditional Linear Least Squares (median error 4.1823m)
Anjum et Combined RSSI fingerprinting with | Developed RSSI-to-Distance functions using various
al., 2020 machine learning techniques models; achieved mean error of 9.38m and 91.92%
accuracy in indoor environments using smoothing spline
Kim et al., Confirmed feasibility of LoRa-based | Obtained maximum error of 3.2m and standard deviation
2021 indoor localization in smart homes <25cm for stationary objects using trilateration
Lazaro et Utilized LoRa backscatters for Demonstrated potential for reduced cost and power
al., 2021 localization consumption in end-user devices; focused on room-level
localization
Huetal., Proposed LTrack, a long-range Designed virtual circular antenna array and optimized
2022 tracking system with mobile rotating | LoRa ranging engine; used Doppler frequency shift for
anchor and LoRa tag real-time tracking; achieved median error of 0.12m and
0.45m in a 137 m? lab and 600 m? corridor, respectively
Chenetal., | Proposed multi-scene LoRa Implemented algorithm in NS-3 simulator; used Kalman
2023 positioning algorithm based on filter to improve accuracy; showed improved accuracy
Kalman filter with Kalman filter; validated algorithm in diverse
scenarios using simulation
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24 Fingerprinting Technique

Fingerprinting is a popular localization method, especially where line of sight
propagation is not typical. Fingerprinting technique has advantages of providing
promising performance and also low hardware cost (Chen et al., 2013). This technique
operates based on the concept of segmenting the map into grids, typically 1 meter squared

per grid.

The fingerprint-based localization process is divided into two phases, training
phase or “offline phase” and online phase(Dahlgren & Mahmood, 2014). The training
phase creates a fingerprint database. At training phase, each grid cell has some unique
attributes to break the symmetry among them. These attributes such as RSSI, IRR or LQ
are measured and assigned to each grid cell. For example, RSSI is continuously sampled
at each sampling point and the average is calculated.

In the second stage, the “online phase”, the estimation of the actual position of the
unknown node is performed. To locate the mobile node, the mobile node collects
measurements of the same attributes stored in the database and compare the values in the

fingerprints in the database.

2.4.1 Pattern recognition techniques in fingerprinting positioning

However, the collected signal in indoor propagation environments could be easily
affected by diffraction, reflection and scattering in indoor. Multiple pattern recognition
techniques are proposed for fingerprinting based positioning (Kim Geok et al., 2020),
namely, probabilistic methods, k-nearest neighbour (KNN), support vector machine
(SVM), Decision Trees (DT), Random Forest (RF), artificial neural networks (ANN),

Gaussian Processes (GP) and Deep Gaussian Processes (DGP).

The probabilistic approach utilizes the decision rule based on the probability that the

mobile node is in the estimated location by applying filters to the Gaussian distribution
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of the received signal vector. The HORUS WLAN location determination system
(Youssef & Agrawala, 2005) is one of the most referenced positioning system using the
probabilistic method. Given that S = (si, ..., sk) as recorded RSS vector, the estimated
location x is computed by maximizing the probability P(x|S) as shown in equation 2.2.

P(x|$) = P(S|x) * P(D) (2.2)
argmax,P(x|S) = argmax, O)
Assuming P(S) remains stable for a long duration and consider it as a constant, P(S) is

factored out from equation 2.3 and 2.4. By using Bayes.” Theorem, the equation is

equivalent to,
argmax,P(x|S) = argmax,P(S|x) (2.3)
k
argmax,P(S|x) = argmax, nP(si|x) 2.4)
i=1 )
Bayesian Fusion (BF) is proposed by using both Bayes Static Estimation (BSE) and

Point Kalman filter (PKF) estimation (Dahlgren & Mahmood, 2014). BF is

experimentally proved to have higher accuracy compared to using solely BSE or PKF.

The KNN sampling uses the latest RSSI to search for k-closest matches of known
location formerly stored in the database using root mean square errors principle.
KNN first originated as a method for estimating the nearest location in RADAR,(Bahl &
Padmanabhan, 2000). However, it does not work well with environmental changes.
Weighted k-Nearest Neighbour (WKNN) is an extension of KNN where values are the

values are weighted to improve accuracy and deal with simple environmental changes.

SVM is one of the most popular models in Machine Learning, capable of performing
linear or non-linear classification, regression and outlier detection. SVMs are powerful
algorithms that find a hyperplane in an N-dimensional space that distinctly classifies the

data points. Hyperplanes are decision boundaries that assist in the classification of data
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points. The dimension of the hyperplane increases with the number of features. SVMs
performs best for classifying complex but small or medium-sized datasets (Géron, 2019).
However, SVMs would be computationally expensive for the classification of large

datasets.

DT is an algorithm that has a tree-like structure, that split data into subsets based on
attribute values. RF is an ensemble of DTs trained on different subsets of data and
randomly chosen features. RF is more superior than DT because it is less susceptible to

overfitting and more efficient when handling large datasets.

Artificial neural networks (ANNs) have emerged in recent years as a promising
technique for indoor positioning due to their ability to model complex nonlinear
relationships. Deep Neural Networks (DNN) (Xingli et al., 2018) are ANNs with multiple
hidden layers between the input and output layers. Their hierarchical feature learning
capability makes DNNs suitable for modelling ambiguous and spatially correlated for
fingerprinting-based indoor positioning by a single or multi data sources. Recurrent
Neural Networks (RNN) (Hoang et al., 2019) is a class of ANN, where the output results
relies not only on current inputs but also on the preceding states. Hence, RNN can
correlate user to its previous locations as the user is in movement and set predicted
location estimates along a continuous trajectory. Long Short Term Memory (LSTM)
(Sahar & Han, 2018) is an extension of RNN that resolves its limitations of inability to

learn long-term temporal relationships due to the vanishing gradient problem.

GP have emerged as a promising technique for indoor localization due to their
nonparametric Bayesian modelling capability to capture complex indoor radio signal
propagation characteristics (Guan et al., 2021). Hence, it can interpolate to explored areas
and model RSSI uncertainty. The GP comprises of two main components, the mean

function and the kernel. The mean function defines the prior knowledge of the expected
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outputs and is assumed to be zero in most works. The kernel correlates the similarity
between the inputs, in the context of indoor positioning, the kernel encodes the spatial

correlations between locations.

DGP offers a powerful probabilistic nonparametric approach to address complex
machine learning problems while quantifying uncertainty effectively. These DGPs are
multilayer hierarchical extensions of GPs and share formal equivalence with neural
networks featuring infinitely wide hidden layers. DGPs retain the advantageous
properties of GPs, such as nonparametric modelling capabilities and well-calibrated
predictive uncertainty estimates. Moreover, they overcome the limitations of single-layer
GPs, which can only represent a restricted class of functions. Generally, DGPs are richer
models just like how deep networks surpass generalized linear models. Instead of highly
parameterized kernel-based models, DGPs learn a nonparametric representation
hierarchy with minimal hyperparameter tuning. The structural advantages of deep
models enhance learning quality, especially in intricate datasets associated with abstract

information (Wang et al., 2020).

DGP can be represented by a graphical model with three different types of nodes,
namely the leaf nodes, the intermediate latent nodes, and the parent nodes, as shown in

Figure 2.5.

Figure 2.5: Deep Gaussian process model for RSSI radio map construction
The nodes at each layer has a input dimension of the output of the previous layer. In

which where the parent node, X € R¥*M where N is the number of inputs and M is the
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number of input dimensions. The intermediate latent nodes L, € RVN*?h where h =
1,2, ..., H and H is the number of hidden layers and Q is the number of hidden dimensions
for layer h. The leaf node is Y € RV*? where D is the number of outputs. Each layer of

the DGP is an individual GP function which can be formulated as equation 2.5.

Lp,, = quhh (Lp) + Eflh ,WhereL; = X (2.5)
=f," o 2.6)
Ynd - fD (LH) + €n

Such that fDL h~GP (E, K L) where K represents the kernel function.
The DGP process can be solved by log likelihood optimization by equation 2.7.

logp(Y1X) =log [, p(ILy)pLully-1) ...p(Ls|X) 2.7)

2.4.2 Case Study of Indoor Positioning Using Fingerprinting Method with
Machine Learning

Kodippili and Dias (2010) proposes fingerprinting technique as a pre-processing step.
KNN (K=3) was used in this paper. Then, the distance between the Nearest Neighbours
(NNs) and beacon node was calculated using the modified path loss model. Then the
position of beacon node was estimated using trilateration. The proposed algorithm has an
44% improvement in accuracy compared to basic fingerprinting technique and is 73%

better compared to basic trilateration technique.

Fang et al. (2011) proposes a dynamic fingerprinting combination (DFC) algorithm
that improves mobile localization by weighting the spatial correlation dynamically from
multiple location fingerprinting systems. The DFC algorithm reduces the risk of selecting
poorly performing fingerprinting function. The DFC algorithm initially leverages the
strengths of different fingerprinting methods to create a combined profile. Subsequently,
it dynamically integrates the individual outputs based on the characteristics of the

surrounding data points. DFC improves the positioning accuracy of base fingerprinting
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algorithms, including the Bayesian approach and a neural network model. The DFC was
found out that it performs better than any individual fingerprinting approach. In addition,
the results also demonstrated that the Bayesian approach performed better than the neural

network.

Alraih et al. (2017) proposed a clustering algorithm to reduce computational time and
radio map size. Fingerprinting technique was used to evaluate the performance of the
proposed algorithm. Four WiFi Access Points (AP) were deployed in an area with
dimension of 52 m x 22 m. The construction and materials of the building in the
experiment were includes: the inner walls were made from plaster partition boards,
whereas the outer walls were concrete and glass, and light wood doors with a small glass.
The clustering algorithm outperformed the conventional method, reducing average

distance error from 3.4 m to 2.4 m, representing a 41 % improvement in system accuracy.

Alhammadi et al. (2017) proposes a fingerprinting-based localisation algorithm with
clustering technique (Signal space clustering algorithm) to estimate the user location. In
the offline phase, calibration points are collected at certain places in floor to build a radio
map. In the online phase, deterministic (KNN) and probabilistic Bayesian Network (BN)
approaches are applied. The results have shown the proposed clustering technique has
significantly reduced the size of radio map from 30 to 15 calibration points for both
approaches. The accuracy in deterministic approach was slightly improved from 7.3 to

6.9 m while the probabilistic approach achieved a better average accuracy of 2.6 m.

Abdelghani and Qiang (2017) propose a hybrid algorithm that integrates KNN and
Segmentation Nearest Neighbour (Seg-NN). The final estimated location will be the
result of the algorithm that is closest to the previously estimated location. The mean error
decreases from 83 m to 24 m after applying the hybrid algorithm. (Lu et al., 2016) exploits

two algorithms adapting the singular value including a least squares estimation (SVD-LS)
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and a minimum variance technique (SVD-MV). SVD-MV reports a more powerful ability
of noise reduction than SVD-LS. Under one meter accuracy, SVD-LS has 92.56 %

whereas SVD-MYV achieves 93.84 %.

Molina et al. (2018) integrates two different technologies (BLE and WiFi) to provide
improved accuracy. Various configuration parameters are used: Positioning algorithm
(WKNN), Maximum sample size, Missing MAC penalty, Candidate set size, Checks
before hop, Distance algorithm, Distance algorithm arguments, and Filter sequence. The
initial algorithm correctly identified the node in only 50 % of instances. To improve
accuracy, three filter sequences were implemented. The refined algorithm achieved a
success rate of 80% for correct node identification and 94 % for identifying an adjacent
node. The resulting indoor service accuracy of approximately 5 meters surpassed the

internal geolocation plugin's accuracy of around 10 meters.

Ji et al. (2021) proposes the building of a multivariable fingerprinting database by
choosing ten 5G variables related to distance-power relationship. To utilize correlation
among the multivariable fingerprints, Random Forest Variable Selection (RFVS) is used
to sort variable importance and combinations. In three different experimental scenarios,
five machine learning algorithms are used to calculate user equipment positions.
Combined with RFVS, MLP shows 31.4 2%, 39.56 %, 30.54 % accuracy improvements

for each respective room compared with that of only RSSI used.
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2.4.3 Case Study of Indoor Positioning Using Fingerprinting Method with Deep
Learning

Teng et al. (2018) proposes an indoor positioning system that is based on the deep
Gaussian process regression (DGPR) model. The nonparametric characteristics of the
model and the need to measure part of the reference points, reduces time and cost for data
collection. RSS values were converted into four types of characterizing values as input
data and then predicts the position coordinates using DGPR model. Lastly, after
reinforcement learning, the position coordinates are optimized. Several experiments were
conducted which includes a simulated environment by MATLAB and in the physical
environments at Tianjin University. The experiments examined positioning accuracy with
different kernels and in different environments. The results showed that the proposed
method achieve the results of average error of 2.28 m and maximum error of

approximately 6 m.

Belmonte-Hernandez et al. (2019) presents the framework SWiBluX, that integrates
various technologies, WiFi, Bluetooth and Xbee technologies adopting fingerprinting for
position estimation. The Neural Networks were used in combination with a novel
Gaussian Outliers Filter (GOF) to improve the positioning accuracy for person tracking.
The authors have compared positioning errors of several methods, deterministic and
probabilistic methods, machine learning methods and deep learning methods. Deep
Neural Network together with GOF, Weighted Combination and Particle Filter achieves

the best result with average error of 45.41 cm.

Wang et al. (2020) propose the DeepMap system, that is the first, to construct radio
maps and perform indoor localization using Deep Gaussian Process (DGP) model. The
proposed DeepMap system can effectively overcome the drawbacks of the Gaussian

process by generating detailed radio maps using sparse training data. The proposed
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system consisted of a two-layer deep Gaussian process model to regress the relationship
between RSS samples and location. Then, the Bayesian training method is used that
optimizes model parameters, and a Bayesian fusion method that boosts localization
performance were designed. DeepMap achieves median error of 1.3 m and maximum
error of 5.207 m as opposed to typical Gaussian Processes of 1.5 m and 6.182 m of median
and maximum error respectively. Impact of number of inducing points, impact of latent
nodes and impact of the number of iterations for initializing the variational distribution

were also studied.

Guan et al. (2021) proposes DGP as a more informative alternative to GP for
probabilistic positioning and points out the pitfall of using GP to model signal fingerprint
uncertainty. In a office building, DGP produces mean error of 3.36 m compared to mean
accuracy of 3.71 m by using GP. Whereas in a shopping environment, DGP produces a
mean accuracy of 5.79 m while GP produces mean accuracy of 6.25 m. DGP also

outperform GP in all percentiles.

Wang et al. (2021) present a geomagnetic indoor positioning algorithm based on the
hierarchical LSTM. The system can jointly consider the short-term features such as
divergences and anomalies as well as the long term features like the geomagnetic signal
shape change characteristics to improve the position accuracy. Utilizing the advantage of
LSTM which has strong learning ability on time series data, the authors utilize LSTM
networks to extract temporal features. Implementing the hierarchical structure of LSTM

networks enables the model to learn the short-term and long-term geomagnetic features.

Pichaimani and Manjula (2022) proposes a novel framework called Gaussian
Distributive Feature Embedding based Deep Recurrent Perceptive Neural Learning
(GDFE-DRPNL) that improves the accuracy of indoor positioning systems. The

framework reduces the time consumption and overhead for estimating the location of
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various devices by selecting principal features and utilizing Deep Recurrent multilayer
Perceptive Neural Learning to evaluate the device position with dimensionality reduced
features. The experimental assessments with various factors such as positioning accuracy
minimized by 70 % and 60 %, computation time minimized by 45 % and 55 % as well as
overhead by 11 % and 23 % compared with Particle Filter based Reinforcement Learning

(PFRL) and two-dimensional localization algorithm.

The authors, Tang et al. (2022) investigate three different methods of RSSI data
augmentation based on Multi-Output Gaussian Process (MOGP), by a single floor, by
neighbouring floors, and by a single building. The effectiveness of augmenting RSSI data
using a MOGP model was demonstrated through experiments on an RNN-based indoor
localization model trained with the UJIIndoorLoc dataset. By incorporating the entire
building's RSSI data into the MOGP model for data augmentation, the RNN model
achieved a mean three-dimensional positioning error of 8.42 meters, surpassing the

original model's error of 8.62 meters and outperforming other augmentation methods.

Nabati and Ghorashi (2023) proposes a positioning algorithm using deep neural
network (DNN) to learn the distribution of available RSS samples instead of averaging
them at offline phase. Then a novel state-based positioning method is utilized to consider
the previous state information of users assuming that users’ movements are continuous.
The proposed algorithm is tested on both benchmark and collected datasets in two
different scenarios (single RSS sample and many RSS samples for each user in the online
phase) and is shown to be superior to traditional regression algorithms such as Gaussian

process regression, deep neural network regression, random forest, and WKNN.

Qin et al. (2021) introduces CCpos, a novel WiFi fingerprinting-based indoor
positioning system that leverages a contractive denoising autoencoder (CDAE) and

convolutional neural network (CNN) to improve localization accuracy. The main
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innovation lies in the combination of CDAE for denoising and feature extraction with
CNN for spatial learning, enhancing the robustness of WiFi fingerprinting against
environmental noise and signal fluctuations. The average positioning error is reduced to
1.46 meters, compared to 2.32 meters in conventional methods. The system achieves a
24.8% improvement in localization accuracy, demonstrating superior robustness in

complex indoor environments

Nguyen et al. (2024) proposes an enhanced Wi-Fi fingerprint-based indoor localization
method by integrating Truncated Singular Value Decomposition (TSVD) and a LSTM
model. TSVD reduces the dimensionality of raw fingerprint data, improving signal
quality, while LSTM captures temporal dependencies to refine positioning accuracy. The
model achieves an average localization error of 1.25 meters, outperforming baseline
techniques with errors of 1.98 meters. The proposed TSVD-LSTM model improves

positioning accuracy by 37%, making it well-suited for dynamic indoor environments
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Table 2.4: Summary of Case Studies of Positioning Systems Using Fingerprinting
Techniques with Machine Learning

Study

Methodology

Findings

Kodippili and

Fingerprinting with KNN (K=3)

44 % accuracy improvement compared to basic

Dias (2010) and modified path loss model for | fingerprinting, 73 % accuracy improvement
distance calculation, trilateration | compared to basic trilateration
for position estimation
Fang et al. Dynamic fingerprinting DFC improved positioning accuracy compared to
(2011) combination (DFC) algorithm individual fingerprinting approaches, reducing

with Bayesian approach and

neural network model

67th percentile localization errors by 19.28 %
(Bayesian) and 27.78 % (neural network)

Alraih et al.
(2017)

Clustering algorithm with
fingerprinting using four WiFi
APs

Average distance error of 2.4 m (clustering) vs.
3.4 m (non-clustering), 41 % accuracy

improvement with clustering

Alhammadi et

Fingerprinting with signal space

Clustering reduced radio map size from 30 to 15

al. (2017) clustering, KNN, and Bayesian calibration points; KNN accuracy slightly
Network (BN) improved from 7.3 m to 6.9 m, BN accuracy

improved to 2.6 m

Abdelghani Hybrid algorithm integrating Mean error decreased from 83 m to 24 m using

and Qiang KNN and Segmentation Nearest | the hybrid algorithm

(2017) Neighbour (Seg-NN)

Lu et al. SVD-LS and SVD-MV SVD-MV showed better noise reduction; under

(2016) algorithms for noise reduction 1m accuracy, SVD-LS achieved 92.56 %, SVD-
MV achieved 93.84 %

(Molina et al., | Integrated WiFi and BLE with Initial accuracy of 50 % (right node), improved

2018) WKNN and filter sequences to 80 % (right node) and 94 % (adjacent node)

after applying filter sequences; average accuracy
of 5 m, outperforming internal geolocation plugin

(10 m accuracy)

Jietal. (2021)

RFVS for variable importance
and combinations, MLP for
position calculation using 5G

variables

MLP with RFVS showed 31.42 %, 39.56 %, and
30.54 % accuracy improvements in different

rooms compared to using RSSI only
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Table 2.4, continued: Summary of Case Studies of Positioning Systems Using
Fingerprinting Techniques with Machine Learning

Teng et al. Deep Gaussian Process Regression Average error of 2.28 m and maximum
(2018) (DGPR) with RSS values as input error of approximately 6 m
(Belmonte- SWiBluX framework using WiFi, Deep Neural Network with GOF, Weighted

Hernandez et

Bluetooth, and Xbee with

Combination, and Particle Filter achieved

al., 2019) fingerprinting and neural networks best result with average error of 45.41 cm

Wang and Park | DeepMap system using Deep Median error of 1.3 m and maximum error

(2020) Gaussian Process (DGP) for radio of 5.207m, outperforming typical Gaussian

map construction and localization Processes (1.5 m median error, 6.182 m

maximum error)

Guan et al. DGP for probabilistic positioning DGP outperformed GP in office building

(2021) (3.36 m mean error vs. 3.71 m) and
shopping environment (5.79 m mean error
vs. 6.25 m), as well as in all percentiles

Wang et al. Hierarchical LSTM for geomagnetic | Utilized LSTM networks to extract

(2021) indoor positioning considering short- | temporal features and hierarchical structure

term and long-term features

to learn geomagnetic features; improved
position accuracy compared to traditional

methods

Pichaimani and

GDFE-DRPNL framework with

Positioning error decrease up to 70% and

Manjula (2022) | feature selection and Deep Recurrent | computational time reduced up to 55 %.
Perceptive
Nabati and State-based deep neural network to Superior accuracy compared to traditional
Ghorashi consider the previous state regression algorithms.
(2023) information of users assuming that
users” movements are continuous
Qin et al. Leverages a CDAE and CNN The average positioning error is reduced to
(2021) 1.46 meters, compared to 2.32 meters in
conventional methods.
Nguyen et al. Proposed the TSVD-LSTM model. The model achieves an average localization
(2024) TSVD reduces the dimensionality of | error of 1.25 meters, outperforming

raw fingerprint data, while LSTM

captures temporal dependencies.

baseline techniques with errors of 1.98

meters.
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2.5  Research Gap

Despite extensive research on indoor positioning systems, significant challenges
remain, particularly in leveraging LoRa-based technology for dynamic motion tracking
in industrial environments. The existing literature provides valuable insights into different
aspects of positioning, including radio-based technologies (Chapter 2.1.1), LPWAN-
based positioning (Chapter 2.1.2), and LoRa’s feasibility for localization (Chapter 2.3.2).

However, several key limitations persist.

Firstly, previous studies demonstrate the feasibility of LoRa for positioning but often
focus on static or low-mobility environments. The accuracy of LoRa-based positioning
systems in dynamic motion scenarios has not been explored. While machine learning and
deep learning have been explored, most studies lack uncertainty quantification in their
models. This is crucial for low-data and high-noise environments like industrial settings,
where signal reception is highly variable. Deep Gaussian Process Regression (DGPR) has
been underutilized in positioning studies, despite its potential to improve accuracy by

capturing uncertainties in localization.

Moreover, many existing fingerprinting-based methods overlook the importance of
time-dependent signal variations. Signal strength fluctuations due to environmental
changes, device movement, and interference are often ignored, leading to inconsistent
and unreliable positioning results. To address these gaps, this research proposes an
enhanced LoRa-based indoor positioning system integrating DGPR and spatial-temporal
enhancement techniques, aiming to improve localization accuracy in dynamic industrial

environments.
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CHAPTER 3: METHODOLOGY

In this research, we equipped LoRa technology as the foundation for indoor
positioning. LoRa access points and beacons were strategically deployed within a real-
world industrial environment to capture and analyse radio characteristic data. This data
was then used to construct machine learning pipelines for precise beacon position
prediction. The result of this research saw the implementation of these models in a proof-
of-concept demonstration of trolley location detection, showcasing their practical

application and potential impact.

More precisely, the methodology progression involved five primary phases:

1. Configuring LoRa-enabled devices for radio fingerprint collections within the test
area by using static and striding methods.

2. Evaluate and validate the feasibility of LoRa-based indoor positioning systems by
comparing various machine learning models to map collected radio maps to
spatial coordinates.

3. Demonstrate the effectiveness of DGPs in positioning in complex environments.
Extensive parameter tuning was conducted to optimize the DGPs' internal
structure, enabling them to capture the intricate nuances of spatial relationships
within the environment.

4. Implementation of spatial-temporal techniques to reduce large positioning errors
and show object movements.

5. Integration of hardware, process flows, system backend, database and frontend
user interface to build a robust proof of concept of the real-world application of

the indoor positioning system.
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Figure 3.1: Flow diagram for the methodology section

Figure 3.2 presents the architecture of the proposed positioning system. The proposed
system is a combination of the fingerprinting-based indoor positioning system with
temporal-based filtering techniques for dynamic positioning (Ng et al., 2024). First, the
radio packets from the mobile nodes LoRa transceivers are received by the base stations,
then, the radio parameters, and necessary input information are sent to the server for
processing, and stored in the radio map. Second, a Temporal Weighted RSSI filter is used
to smoothen the current RSSI value with the previous RSSI values while carrying a
weightage. The weight is calculated using the exponential decay function by taking the
sending time difference between the current radio packet with the previous radio packet.
Thirdly, a Deep Gaussian Process Regression model is trained using the radio map for
single point estimation. Subsequently, the x and y coordinates from the single point
estimator are inserted into the Kalman filter to simulate real dynamic movement. Since
no external sensors were used to determine the acceleration and velocity, only the time

difference between the sending of radio packets is used as a variable in the Kalman filter.
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Figure 3.2: TWA-DGPR-KF overall system architecture. Temporal

Weighted RSSI Averaging was applied on the current and historical

RSSI vector with timestamps to form a filtered RSSI radio map. The

Deep Gaussian Process Regression model was trained on the filtered

RSSI radio map to produce single point position estimates. Kalman

filter was applied to the single point position estimate to predict the
current state which is the estimated position.
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3.1 Experimental Setup
3.1.1 System Hardware and Nodes

The TTGO LoRa32 V2.1.6 915MHz boards (Figure 3.3) were used as both beacons
and base stations (BSs). The LoRa32 module is an ESP32 module integrated with another
LoRa module. Since it operates at 2 different frequencies, 2.4GHz for WiFi and Bluetooth
and 433/868/915MHz for LoRa, it utilizes two different antennas. Table 3.1 shows the

specifications of the TTGO LoRa32 V2.1.6 module.

Table 3.1: Specifications of TTGO LoRa32 V2.1.6 module

ESP chip ESP32 PICO-D4

Working frequency 433/868/915MHz

Modulation method FSK, GFSK, MSK, GMSK, LoRa, OOK
LoRa RF power +2dBm to +20dBm

LoRa antenna SMA antenna

Number of pins 26

Power Consumption Active state: 20mA to 120mA

Idle state: 1.5puA

Sleep state: 0.2uA
Operating voltage 1.8V to 3.7V

Operating temperature -40°C to +85°C

The beacon nodes were configured to send LoRa radio packets at 2 dBm, and LoRa
configuration of spread factor (SF) 7 and bandwidth of 125 kHz. The radio packets are
sent with a constant interval of 1000 ms. The payload of the beacon node consists of the
beacon number, device timestamp and packet number for data processing purposes during
the data collection process. The beacon nodes are attached to a lithium battery for mobility

convenience purposes.
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Figure 3.3: The TTGO LoRa32 V2.1.6 (LILYGO®, n.d.)

The anchor nodes were configured to act as both LoRa and WiFi transceivers. Each
anchor node was continuously listening for incoming LoRa radio packets. Upon receiving
a packet with the correct packet type, the BS would further process the data payload. In
addition to the packet information, the BS recorded crucial radio signal parameters
available from the LoRa module, including the RSSI, SNR and frequency error, for the
received packet. The BS then compiled the packet information, RSSI, SNR, and
frequency error into a JSON formatted object. This JSON object encapsulated the
complete dataset for each received packet, providing a structured and standardized
representation of the collected data. Subsequently, the JSON objects were transmitted
from the BSs to a central server through websocket, where they were securely stored in a
fingerprint database. The fingerprint database was then used for further analysis and used
on various machine learning techniques as described in further sections. Figure 3.4
depicts the block diagram of the proposed loT-based indoor positioning infrastructure and

data flow.
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Figure 3.4: Block diagram of the proposed IoT-based indoor positioning
infrastructure and data flow.

3.1.2 Testbed and node placement

The experiment was performed in a production line at the Test Backend Department
in NXP Semiconductors, Malaysia. The floor plan layout of the production line is shown
in Figure 3.5 with the largest length and width of 53 meters and 34 meters. The
environment is filled with machines, shelves, workstations, trolleys and human
movement distributed intermittently characterized the space presenting potential radio

occlusion and reflection surfaces.

Five BSs were placed in locations represented by red star symbols where machines
and pillars are available for installation. The dark grey sections are partitions or portioned
rooms. The light grey sections are conveyor and packaging platforms. Purple, white, light
blue, and neon blue are packaging machines. Dark blue areas are inspection workstations.
Yellow boxes represent metallic shelves, and the orange colour represents wafer baking
machines. Data collection is done along the lanes where trolleys can commute. Further

details of data collection will be described in the next section.
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Figure 3.5: Floor plan layout of the testbed environment.
3.1.3 Data Collection
This research employed two distinct methods, static and motion, to gather data from

the LoRa devices deployed within the testbed.

The static dataset involved holding the beacon node at fixed points with 1 meter
intervals along the lanes where trolleys can commute (Figure 3.7). The location was first
set as location information in the radio packet payload. Then, 30 radio packets were
broadcasted at the location before moving on to the next predetermined point.
Subsequently, the process is repeated throughout all the points. Depiction of the radio

packets is shown in Figure 3.6.

For the motion dataset, the constant speed method described in (Li et al., 2017) was
used to infer the location of the beacon node. The authors suggested that the method can
reduce time for site surveying such as hardware configuration and precise distance
interval marking, without sacrificing localization performance. The user’s location loc;

at t; can be calculated by using equation 3.1,

ti — Ustart
loc; = locspare + 7 X (l0Cena — loCstare)

tena — Ustart (3°1)
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This experiment involved defining five lanes, including two horizontal and three
vertical lanes. The movement speed was approximately 1.5 ms™'. For each lane, data was
collected in two batches, with the batches moving in opposite directions along the entire

length of the lanes.

Figure 3.6: LoRa packet structure, showing its primary components of
Preamble, Header with CRC, Payload, and a final CRC section. The
lower portion details the Payload structure, where ID is the device ID, X
and Y represents the x and y coordinates, type indicates the type of
packet, timestamp is the sending timestamp, no. is the number of packet
sent, batt represents the battery value, and payload for additional
information.

The testing dataset is collected separately by moving around the testbed using the
constant speed method. The data points collected for the static and motion datasets are

shown in Figure 3.7 and Figure 3.8 respectively.

Overall, the RSSI, SNR and frequency error of the beacon nodes would be recorded
in the database as (x, y, packet ID, ID, timestamp, rx_1 RSSI, rx 1 SNR, rx 1 freq,
rx_2 RSSIL rx 2 SNR, rx 2 freq, ... rx_5 RSSIL rx 5 SNR, rx 5 freq) from BSI to
BS5 grouped by packet ID and timestamp where x and y represents the x and y

coordinates and ID represents the labelled value for each x, y coordinates pair.
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Figure 3.7: Data points collected using conventional static method

Figure 3.8: Data points collected in motion
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3.2 Data Preprocessing

Before applying machine learning algorithms for position estimation, several data

preprocessing steps were performed to ensure data quality, handle missing values, and

prepare the feature spaces (Figure 3.9). Proper data preprocessing is crucial for achieving

accurate and reliable position estimates, as it can significantly impact the performance of

the machine learning models.

Feature Missing Data Feature Ili/[ach}ne
1 i : earning
Selection Imputation Scaling carcie

Figure 3.9: Preprocessing steps on raw data before machine learning model
training

3.2.1 Feature Selection

In this research, the collected data was segmented into three distinct fingerprint

databases to investigate the impact of different feature combinations on position

estimation accuracy. The three fingerprint databases were:

1. RSSI, SNR, and Frequency Error (All Features). This database contained the
complete set of features from all BSs, including RSSI, SNR and frequency error
values.

2. RSSI and SNR. This database consisted of only the RSSI and SNR features from
all BSs, excluding the frequency error.

3. RSSI only. This database consisted of only the RSSI features from all BSs,

excluding the frequency error.

3.2.2 Missing Data Imputation and Feature scaling

To handle missing or incomplete data points in the collected datasets, a missing data

imputation technique was employed. Specifically, the K-Nearest Neighbours Imputer
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(KNNImputer) from the scikit-learn library was utilized, with the number of neighbours
(k) set to 3. To impute missing features, values from the n nearest neighbours that have
a value for the feature are utilized. The neighbours’ features are uniformly averaged by
their distance to each neighbour. The Euclidean distance metric is used to determine the

nearest neighbours.

To ensure that all features contribute equally to the position estimation models, to
reduce computational resources and to prevent any potential dominance of features with
larger numerical ranges, feature scaling was performed. The standard scaler was
employed to standardize the feature values, where each standard score z of sample x can
be calculated as shown in (3.2),

N D
- s (3.2)

where u is the mean of the training feature and s is the standard deviation of the training

feature.

33 Machine Learning Algorithms for Single Position Estimation

This subsection describes the application of various machine learning algorithms,
which leverage the collected data as mentioned in the previous section to learn patterns
and relationships between the radio signal parameters and the corresponding locations.
This research employed a diverse set of machine learning algorithms for position
estimation, including both classification and regression techniques. All machine learning
models in this subsection were trained using the scikit-learn library. Each machine
learning algorithm was evaluated with the three feature datasets (All features, RSSI and

SNR, RSSI only) for both motion and datasets.

The outputs of the machine learning algorithms were labelled values for classification

models, whereas, for regression models, the output would be in the form of coordinates.

48



The output results were then related to their corresponding coordinates on the testbed.
The errors of the position estimates were calculated with the absolute Euclidean distances

between the position estimate and the actual position.

The evaluation metrics for the machine learning algorithms were mean absolute error
(MAE) and root mean square error (RMSE). MAE measures the average magnitude of
the errors between predicted and actual values, providing a straightforward interpretation
of the average error. On the other hand, RMSE provides a more comprehensive measure
of the error by penalizing large errors more heavily compared to MAE. By utilizing these
evaluation metrics, we were able to not only observe the average error but also compare
large errors. The performance of these different models was evaluated by comparing their

accuracy, and the model with the highest accuracy was selected.

3.3.1 Classification Models for Single Position Estimation

The classification models explored in this study include Random Forest (RF), Decision
Tree, K-Nearest Neighbours (KNN), Weighted KNN (wKNN), Multilayer Perceptron
(MLP), and Naive Bayes (NB). Each model offers unique advantages and characteristics,

making them suitable for different scenarios and data distributions.

The Random Forest and Decision Tree are non-parametric supervised learning
methods that recursively partition the feature space into smaller regions based on the most
discriminative features. The tree-like structure consists of internal nodes representing
feature tests and leaf nodes representing class labels. The Random Forest is an ensemble
learning method that constructs multiple decision trees during training and combines their
predictions for classification tasks. Each tree is grown using a random subset of features,
and the final prediction is determined by majority voting of the individual trees. Random
Forests compared to Decision Trees are robust to overfitting, can handle high-

dimensional data, and are relatively insensitive to outliers.
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KNN is a non-parametric, instance-based learning algorithm that classifies new
instances based on their similarity to the nearest neighbours in the training set. The
algorithm computes the distances between the new instance and all training instances,
selects the k closest neighbours, and assigns the class label based on the majority vote of
these neighbours. WKNN is an extension of the KNN algorithm that assigns weights to
the neighbours based on their distances from the new instance. Closer neighbours
contribute more to the classification decision than farther neighbours. The Euclidean

distance metric and k value of 3 were used in this experiment.

MLP is a type of artificial neural network that consists of multiple layers of
interconnected nodes or neurons. One or more hidden layers between the input and output
layers perform non-linear transformations on the data. In this experiment, the MLP
consists of one hidden layer with 64 nodes, tangent hyperbolic (tanh) activation function

and the Adam optimizer with adaptive learning rate.

The NB classifiers are probabilistic models based on Bayes' theorem with the “naive”
assumption of conditional independence between every pair of features given the value
of the class variable. Despite the strong assumption of feature independence, which is
often violated in real-world data, Naive Bayes classifiers can perform surprisingly well

and are computationally efficient.

3.3.2 Regression Models for Single Position Estimation

In addition to classification models, regression techniques were also explored for the
position estimation task. Regression models aim to learn a mapping function that relates
the input features (radio signal parameters) to continuous target variables (location

coordinates).
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Similar to its classification counterpart, Random Forest Regression is an ensemble
learning method that constructs multiple decision trees during training. However, instead
of majority voting, the final prediction is obtained by averaging the predictions of
individual trees. Next, Decision Tree Regression shares the same tree-like structure as its
classification variant but predicts continuous target values at the leaf nodes instead of

class labels.

WKNN Regression is an adaptation of the Weighted KNN classifier for regression
tasks. Instead of majority voting, it predicts the target value by taking a weighted average
of the target values of the k nearest neighbours, where closer neighbours contribute more
to the prediction. Subsequently, MLP Regression is a variant of the MLP classifier, where
the output layer produces continuous target predictions instead of class labels. The
underlying architecture and training process remain similar, with the objective of

minimizing the error between the predicted and true target values.

On top of that, Linear Regression is a classical statistical method that models the
relationship between the input features and the target variable as a linear function. It
assumes that the target variable can be expressed as a linear combination of the input
features, weighted by coefficients learned from the training data. Linear Regression is

simple and interpretable but may not capture non-linear relationships effectively.

Gaussian Processes Regression (GPR) is a non-parametric Bayesian approach that
models the target variable as a Gaussian process governed by a covariance function also
known as a kernel. Unlike other regression models that learn a specific mapping function,
GPR directly models the distribution of the target variable, allowing for uncertainty

quantification and probabilistic predictions.
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In GPR, the covariance function encodes the assumptions about the smoothness and
behaviour of the target function. The choice of the kernel function plays a crucial role in
the performance of the GPR model, as it determines the properties of the underlying
Gaussian process. This research explored several kernel functions to capture different
types of non-linear relationships in the data, namely Radial Basis Function (RBF) Kernel,
Matérn kernel, sum of RBF kernel and Matérn kernel, product of RBF kernel and Matérn

kernel.

The RBF kernel, also known as the Gaussian kernel or the squared exponential kernel,
is a popular choice for GPR. It assumes that the target function is infinitely differentiable
and has a high degree of smoothness. The RBF kernel (equation 3.3) is particularly well-
suited for modelling continuous and smooth functions but may struggle with abrupt

changes or discontinuities in the data.

, llx — x'||?
kRBF(x;x ):= eXF)<_____EZEE___ (3h3)

The hyperparameter £ controls the length scale, determining how quickly the correlation

decays with distance.

The Matérn kernel is a class of kernels that can model functions with varying degrees
of smoothness. It is parameterized by a positive smoothness parameter that controls the
differentiability of the resulting functions. Lower values of the smoothness parameter
produce rougher functions, while higher values lead to smoother functions. The Matérn
kernel (equation 3.4), can be useful when the target function exhibits non-smooth or
discontinuous behaviour.

21—V
kMatérn(x; x,) = 0-2 F(V)

llx — x|\ llx — x'||
(mT) Ky (mT) (3.4)
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The hyperparameter v controls the degree of smoothness of the learned function. The
smaller nu, the less smooth the approximated function is. For v = inf, the kernel becomes
equivalent to the RBF kernel and for v = 0.5 to the absolute exponential kernel. Some of
the other popular v values are v = 1.5 and v = 2.5 as they are computationally less

expensive.

In some cases, a single kernel may not be sufficient to capture the complexities of the
underlying function. To address this, a combination of kernels can be used. The sum of

RBF and Matérn kernels as shown in equation 3.5

ksum (X, X,) = kRBF (X, x’) + kMatérn (X, x,) (3.5)
allows the model to leverage the strengths of both kernels, potentially capturing both

smooth and non-smooth aspects of the target function.

Another approach to combining kernels is through the product operation (equation 3.6).

kprod (x,x") = kppr(x,x") * Kmatern (X, x") (3.6)
The product of RBF and Matérn kernels can be useful when the target function exhibits

both smooth and non-smooth regions, and the product kernel can model these

characteristics more effectively than individual kernels alone.

34 Deep Gaussian Process Regression

Deep Gaussian Processes (DGPs) are a hierarchical extension of the Gaussian
Processes Regression (GPR) model, capable of learning rich representations from high-
dimensional data. In this research, DGPs were explored as a powerful approach for indoor

position estimation using LoRa technology.

Unlike traditional GPR, which models the target variable directly from the input

features, DGPs introduce a series of latent variables or hidden layers. These latent
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variables are themselves modelled as Gaussian Processes, allowing for the automatic

discovery of useful representations and feature abstractions from the input data.

The hierarchical nature of DGPs enables the model to capture complex non-linear
relationships and patterns in the data, making it well-suited for the intricate radio signal
propagation dynamics encountered in indoor environments. By learning these rich
representations, DGPs can potentially improve the accuracy and robustness of position

estimates (Wang et al., 2020).

3.4.1 DGP Architecture

The Deep Gaussian Processes (DGP) model employed in this research was
implemented using the GPyTorch library, a flexible and efficient Gaussian Process library
built on PyTorch. The DGP architecture consisted of multiple layers, with each layer

being a DGP layer, capable of learning rich representations from the input data.

The foundation of the DGP architecture was the standard DGP layer with configurable

input and output dimensions, number of inducing points, and kernel functions.

The DGP architecture can be visualized as a graphical model (Figure 3.10) where each
node represents a GP. The input layer receives the raw data, and the output layer produces
the final predictions. The hidden layers, composed of latent variables, enable the model
to learn increasingly abstract and informative features from the data. This hierarchical
structure allows DGPs to model complex functions that may not be well-represented by

a single-layer GPR.

The model utilized a Gaussian Likelihood. This likelihood function jointly modelled
the distribution of the target coordinates, allowing the DGP model to capture the

dependencies and correlations between them.
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Since the log likelihood is not analytically tractable because of the nonlinearity of the

GPs, sparse variational inference is used to optimise the DGP.

Figure 3.10: Graphical model of DGP with two hidden layers

3.4.2 Model Design and Hyperparameter Selection

3.4.2.1 Kernel Selection

The choice of kernel functions plays a crucial role in the performance of Gaussian
Processes models, as it determines the characteristics of the learned function. In this study,
though each layer can have varying kernels or covariance functions, the same kernel is
used for each layer. Two combinations of kernels were explored: the sum of the RBF

kernel and the Matérn kernel, and the product of the RBF kernel and the Matérn kernel.

To facilitate the initial exploration phase, a constant number of dimensions (5) and a
fixed number of inducing points (60) were chosen. While these values were selected
randomly, they provided a reasonable starting point for evaluating the performance of the
different kernel combinations. The covariance function that exhibited better performance,
as measured by the chosen evaluation metrics, was selected for further hyperparameter

tuning.

3.4.2.2 Number of Dimensions in the Hidden Layer

The number of dimensions in the hidden DGP layer determines the complexity of the
learned representations. Higher-dimensional representations can capture more intricate

patterns but may also increase the risk of overfitting and computational demands.

55



To find the optimal number of dimensions for the hidden layer, a range of values from
1 to 19, with an interval of 2, was explored (1, 3, 5, ..., 19). During this process, the
number of inducing points was fixed at 60. The dimension that yielded the best
performance, as measured by the lowest loss, was chosen as the optimal setting for the

hidden layer.

3.4.2.3 Number of Inducing Points

Inducing points are a key component of Gaussian Processes models, as they act as a
summary of the data, reducing computational complexity while maintaining reasonable
accuracy. The number of inducing points balances computational efficiency and model

performance.

With the optimal number of dimensions for the hidden layer determined, the next step
involved tuning the number of inducing points. A range of values from 24 to 72, with an
interval of 4, was evaluated (24, 28, 32, ..., 72). The range of values was selected
empirically based on initial observations of model performance. This ensures a sufficient
number of inducing points for good model performance while not overfitting the model
with high number of inducing points. Moreover, the interval of 4 has been chosen
empirically for showing model performance while considering computational efficiency.
The number of inducing points that resulted in the best performance, considering factors
such as accuracy and computational resources, was selected as the final configuration for

the DGP model.

3.4.3 Model Training
For the training process, the motion dataset containing the RSSI only feature set was
selected. The RSSI only feature set was chosen because of its exceptional performance in

the previous section on capturing the patterns and relationships between the radio signal
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characteristics and the corresponding location coordinates when used on other machine

learning methods.

The training process involved iteratively updating the model parameters to minimize
the objective function in equation 2.7 over the training dataset using the Adam optimizer
(Kingma & Ba, 2014). To ensure thorough convergence and optimal learning, the DGP
model was trained for 3000 epochs, which represents 3000 complete passes over the

entire training dataset.

The trained DGP model was subsequently evaluated on the test dataset where
evaluation metrics of MAE and RMSE were used. The accuracy of the DGP model was

compared to the better performing machine learning models in the previous section.

35 Improving Single Point Estimation

While the machine learning models in Section 3.3 and Section 3.4 provide single point
position estimates, there are still some large errors in the single point estimates, especially
in areas with poor signal quality or multipath propagation. The presence of large errors
can be referred to Figure 4.25, where there are multiple error values that are above 10
meters. Several techniques are employed to refine these estimates and improve overall

positioning accuracy and robustness.

First, a Temporal-Weighted RSSI Averaging (TWA) approach is used, where multiple
RSSI samples are collected over a sliding window and exponentially weighted, giving
more importance to the most recent samples. This helps mitigate the effects of RSSI
fluctuations and noise. A detailed evaluation of the effects of RSSI fluctuations and noise

mitigation is provided in Chapter 4.4.1.

Next, the position estimates from the machine learning models are then filtered using

a Kalman filter. A linear state-space model is defined, with the state vectors representing
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the device's position and velocity. The Kalman filter recursively incorporates the position
estimates as measurements to update the state estimates, leveraging the temporal

correlation between consecutive positions.

Finally, a lane constraint model is applied by mapping the navigable lanes in the
environment. The filtered position estimates are projected onto the nearest lane,
restricting the estimated positions to only feasible locations. This compensates for errors

where the raw estimates may fall outside of the walkable areas.

By combining Temporal-Weighted RSSI averaging, Kalman filtering, and lane
constraints, the single point position estimates become significantly more accurate, stable,

and consistent with the real-world spatial constraints of the operational environment.

3.5.1 Temporal-Weighted RSSI Averaging

Instantaneous RSSI values can be susceptible to temporal variations in RSSI readings
(Youssef & Agrawala, 2005). While simple averaging of RSSI samples over a fixed
window can help reduce noise, it treats all samples within the window equally, regardless
of their temporal distance from the current time instant. However, in scenarios involving
device movement, historical RSSI values become less correlated with the current RSSI
signature as the time difference increases, due to probable changes in the device's location

and surrounding environment.

To mitigate the effects of RSSI fluctuations and noise, a Temporal-Weighted RSSI
Averaging (TWA) approach is employed before feeding the RSSI data into the machine

learning models for position estimation.

To account for this temporal dependence, a time-weighting scheme is introduced,
where RSSI samples are weighted based on their time difference from the current time,

with more recent samples being given higher importance. The rationale is that RSSI
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values closer in time are more likely to be representative of the current position, while the
impact of older samples diminishes as the time difference increases. The TWA for anchor

node 1 at time t is calculated as:

n
1
RSSlynew = 7 Z w; * RSSI; a7
i=0

Where W is the sum of the time decay weightings w;, w,...w; and wj is the time decay

weighting for RSSI; which can be represented by

= a—Ax[t—t

Wi=e (3.8)
Where t is the timestamp of the latest RSSI data point in seconds and ¢; is the timestamp
of the RSSI of data point i. The weighting factor A determines the rate of decay for older
samples. Values closer to 1 give more importance to recent samples, while values near 0

weight all samples within the window nearly equally, effectively reducing to a simple

average.

For the TWA scheme, a lag of 1 (n=1) is employed in this experiment. This means that
only the immediately preceding RSSI sample and the current sample are considered for
the weighted average calculation. With n=1, the TWA for anchor node i at time t

simplifies to:

RSSI, + e Mtn=tn 1l x RSST |
1 + e=Atn—tn 1l 3.9

RSSIL, new =

3.5.2 Kalman Filtering

To further refine the single point position estimates obtained from the machine
learning models, a Kalman filter is applied. The Kalman filter is a recursive algorithm
that optimally estimates the state of a dynamic system from a series of noisy

measurements and a theoretical model of the system dynamics.
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The Kalman filter implementation used in this work is based on the standard linear
Kalman filter formulation. The filter maintains an estimate of the current state vector x;
and its associated covariance matrix P;. At each time step t, the filter performs two main

operations:

1. Prediction Step: The state vector and covariance are projected forward in time
using the system's transition model.

2. Update Step: The projected state and covariance are updated based on the current
measurement, incorporating the new information while accounting for the

measurement noise.

In the context of position tracking, the state vector x; typically consists of the device's
position and velocity components x; = {xt, Ve, vx,t,vy,t}. Where (x;,y;) represents the
position coordinates, and (v, ¢, vy ¢) are the velocity components in the x and y directions,

respectively.

The transition model describes the evolution of the state vector over time, assuming a

constant velocity motion model:

P = AXt + Wt (3.10)
Where A is the state transition matrix, and w; is the process noise, assumed to be zero-

mean Gaussian with covariance Q.

The measurement vector S consists of the position estimates obtained from the
machine learning models at each time step. The measurement model relates the state

vector to the measurement vector:

S= HXt + Vt (3.11)
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Where H is the measurement matrix, and v; is the measurement noise, assumed to be

zero-mean Gaussian with covariance R.

At each time step, the Kalman filter incorporates the new position estimate as a
measurement update, combining the prediction from the transition model with the
measurement information to obtain an optimal estimate of the state vector and its

associated uncertainty.

3.5.3 Lane Constraint

While the regression model provides position estimates, these estimates may still
deviate from the actual traversable paths or lanes within the environment. To account for
this, a lane constraint and correction step is applied to ensure that the estimated positions

adhere to the spatial constraints of the operational area.

The indoor environment is divided into a grid of tiles, with each tile representing a
specific location or area. A list of traversable lanes is predefined, which consists of a
sequence of connected tiles that correspond to the walkable or drivable paths within the
environment. To map the traversable lanes, each lane is represented as an ordered list of

tile coordinates.

Let (x,y) be the position estimate, the tile coordinate (x;,y;) in the lane list that

minimizes the Euclidean distance to (x, y) is found using the following formula:

. 2 2
(xl.’yi) = argmlnj\/(x - xj) + (y - y]) (3.12)

Where (xj, yj) are the tile coordinates in the lane list, and j is the index iterating over all

tile coordinates.
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By applying the lane constraints technique, the position estimates become more
consistent with the spatial layout of the environment, reducing the likelihood of erroneous
estimates falling outside of traversable areas and ensuring smooth transitions between

lanes during device movement.

This chapter outlined the methodology used in developing the LoRa-based indoor
positioning system for dynamic motion in industrial environments. The experimental
setup was described in detail, including the system hardware, node placements, and the
data collection process. The data preprocessing steps, such as feature selection, missing
data imputation, and feature scaling, were then discussed to ensure data quality and

consistency.

For single position estimation, various machine learning models, including
classification and regression-based approaches, were explored, followed by the
introduction of DGPR model. The DGPR model architecture, hyperparameter selection,
and training process were elaborated to demonstrate its adaptability in capturing complex

spatial relationships.

To further enhance localization accuracy, several spatial-temporal techniques were
integrated, including temporal-weighted RSSI averaging, Kalman filtering, and the lane
constraint method. These techniques aim to reduce positioning errors by leveraging
temporal dependencies and motion constraints, addressing the limitations of conventional

machine learning models in dynamic environments.
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CHAPTER 4: RESULTS

This section presents the findings from the research on developing a LoRa-based

indoor positioning system that utilizes Deep Gaussian Processes (DGP) for localization.

The results are organized into the following subsections:

1.

LoRa Signal Characterization

Analysis of LoRa signal propagation characteristics, including path loss
modelling, multipath effects, and small-scale fading observed in the indoor
test environment.
Machine Learning Algorithms for indoor positioning

Details on the development and implementation of machine learning
algorithms to improve indoor positioning accuracy. The process covers
datasets collection and application of various machine learning pipelines. The
results of the machine learning pipelines were compared on the static set and
motion set with multiple feature sets.
Deep Gaussian Processes Positioning Algorithm

The particulars on the development of the DGP-based positioning
algorithm, covering hyperparameter tuning of model architecture. The
algorithm was then evaluated with other machine learning methods in the
previous section.
Enhancement to Single Point Estimations

Implementation of techniques by taking historical RSSI inputs and DGP
output coordinates into account by using correlation and filtering technique.
The different combinations of enhancement techniques were benchmarked

against the DGP single point estimation model.
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4.1 LoRa Signal Characterization

Understanding the characteristics of the LoRa signal propagation in the indoor
environment was crucial for developing accurate positioning systems. The RSS
measurements, which form the basis for many positioning techniques, were influenced
by various propagation phenomena. In this subsection, the key signal characteristics
observed in our experimental data were analysed, including the path loss model, path loss
exponent, multipath fading, and small-scale fading effects. The experimental data was
collected from the longest row with line-of-sight available in the manufacturing line (53

m).

4.1.1 Log-Distance Path Loss Model and Path Loss Exponent

In this section, the path loss characteristics of the LoRa signals were analysed using
the log-distance path loss model. The path loss model captures the signal decay as a
function of the distance between the transmitter and receiver. We consider the following
log-distance path loss model in equation (2.1). To estimate the path loss exponent, the
graphs of RSS values against the corresponding distances in a log scale are plotted. The
linear scale representation shows the absolute variation of RSSI with increasing distance,
which helps visualize the direct relationship between distance and signal strength in real-
world scenarios. While the logarithmic scale helps highlight how signal attenuation
follows a power-law decay, making it easier to compare with theoretical models and fit

empirical data.

Two sets of data were collected, where the first dataset was collected moving away
from the receiver from 1 m to 52 m, whereas the second dataset was collected moving
towards the receiver from 50 m to 1 m, where both datasets consisted of a batch of around
25 to 30 radio packets at each location with a distance interval of 1 m. Figure 4.1 to Figure

4.4 shows the log-distance path loss model with the available data.
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Figure 4.1: Log distance path loss model of the RSSI data collected moving away
from the receiver, with x-axis in linear scale

Figure 4.2: Log distance path loss model of the RSSI data collected moving away
from the receiver, with x-axis in log scale
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Figure 4.3: Log distance path loss model of the RSSI data collected moving
towards the receiver, with x-axis in linear scale

Figure 4.4: Log distance path loss model of the RSSI data collected moving
towards the receiver with, x-axis in logarithmic scale
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From the graphs, we can observe a linear relationship between the RSS and the log of
the distance, proving the log-distance path loss model. In Figure 4.1 and Figure 4.2, for
the first dataset, with the beacon moving away from the receiver, the estimated path loss
exponent was approximately 2.35 and the estimated path loss at 1 m (do), was
approximately 52.65 dB. Figure 4.3 and Figure 4.4, for the second dataset, with the
beacon moving towards to the receiver, the estimated path loss exponent was

approximately 2.75 and the estimated path loss at 1 m (do), was approximately 44.51 dB.

As observed from Figures 4.1 to 4.4, the second dataset shows a steeper graph
compared to the first dataset, indicating that the body shadowing effect is more significant
in locations nearer to the receiver. When moving towards the receiver, with no obstacles
between the beacon and the receiver, the mean RSSI values were higher when collected

within 10 meters of the receiver.

Next, we present the results obtained from the experiments conducted to analyse the
characteristics of the LoRa signal propagation in a dynamic motion, where the beacon
was transported away and back towards the receiver. The beacon was moved 0.5 m after
each data packet was sent, collecting 212 data points. Figure 4.5 depicts the RSSI data
points that were gathered while traveling along the path, illustrating the alterations in
RSSI along with the distance. Figure 4.6 to Figure 4.9 show the log-distance path loss
model with the data points in Figure 4.5 in log scale and linear scale for moving away

and moving towards the receiver.
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Figure 4.5: RSSI values collected by moving dynamically along the path

Figure 4.6: Log distance path loss model of the RSSI data collected in motion
moving away from the receivercin linear scale
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Figure 4.7: Log distance path loss model of the RSSI data collected in motion
moving away from the receiver, with x-axis in logarithmic scale

Figure 4.8: Log distance path loss model of the RSSI data collected in motion
moving away from the receiver, with x-axis in linear scale
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Figure 4.9: Log distance path loss model of the RSSI data collected in motion
moving away from the receiver, with x-axis in logarithmic scale

From the graphs, we can observe a linear relationship between the RSSI values and
the log of the distance, proving the log-distance path loss model. In Figure 4.6 and Figure
4.7, for the data points moving away from the receiver, the estimated path loss exponent
was approximately 2.20 and the estimated path loss at 1m (do), was approximately 49.07
dB. In Figure 4.8 and Figure 4.9, for the data points with the beacon moving towards the
receiver, the estimated path loss exponent was approximately 2.40 and the estimated path

loss at 1m (do), was approximately 47.73 dB.

Similar to the log-distance experiment collected using static method, the estimated
path loss at 1m was lower when moving towards the receiver compared to moving away
from the receiver. This indicates that the body shadowing effect is more significant in

locations nearer to the receiver.

To sum up, the observed path loss exponents in the experiments ranged from 2.20 to

2.75, which generally aligns with theoretical expectations for indoor environments.
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Typical values for indoor settings range from 1.6 to 3.6 (Al-Saman et al., 2021). The
results fall within this range, indicating that the LoRa signal propagation in our test
environment behaves similarly to other radio frequencies in indoor spaces. However, the
variability in the observed exponents suggests that the data collection method, along with
the structural characteristics of the test environment, such as walls, partitions, large
industrial equipment, and dynamic obstacles, may influence signal propagation

characteristics.

4.1.2 Multipath and Small-Scale Fading Effects
In this section, we present the results of our experimental analysis of multipath and
small-scale fading effects on LoRa signal propagation in an indoor environment. The

experiment was carried out in the same location as the preceding section.

Figure 4.10: Plot of RSSI values against steps with increasing distance from
receiver

Figure 4.10 illustrates the variation of RSSI values with increasing distance from the

receiver. The overall trend of the graph shows that RSSI decreases when the distance
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between the receiver and transmitter increases. However, when we focus on shorter
distances, there was a non-monotonic pattern observed in the RSSI-distance relationship,
where the RSSI values initially decrease with increasing distance, then increase at a
certain point, and subsequently decrease again, suggesting the presence of multipath

effects in the indoor environment.

Figure 4.11 depicts a scatter plot of the RSSI measurements collected within 1 meter
or data collection point, with the first column representing 3.1 m, the second column
representing 3.5 m, and the third column representing 3.9 m away from the receiver.
These distances correspond to the start, middle, and end of a tile or data collection point,

respectively.

Figure 4.11: Scatter plot of RSSI values at the start, middle and end of a tile. The
red dots represent the mean at each location.

The plot suggests the presence of multipath effects and signal attenuation over distance.

The variations in RSSI values over different distances indicates the presence of multipath
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effects and signal attenuation. According to the large scale fading, the RSSI values
decrease with increasing distance. However, in this instance, the data exhibits a distinct
pattern. Contrary to the expected trend, the RSSI value at 3.5 m was the highest among
the three measurements, reaching mean RSSI at -56.08 dB. In contrast, the mean RSSI
values at 3.1 m (-60.2 dB) and 3.9 m (-65.5 dB) were lower, indicating signal attenuation
as the distance from the transmitter increases. The observed RSSI variations within the
I-meter range are likely due to multipath effects, small-scale fading, and environmental

reflections, which cause fluctuations in signal strength at different measurement points.

To quantify the variability in RSSI measurements, we calculated the standard
deviation of RSSI values from the experiments from section 4.1.1. Figure 4.12 describes

the standard deviation of RSSI values at each location.

Figure 4.12: Standard deviation of RSSI values at different distances from the
receiver

Figure 4.12 shows that there less correlation between distance and the standard

deviation of RSSI values. However, it was observed that there were spikes at a few
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locations where the standard deviation is much higher than the mean standard deviation.
When these positions were projected into the real test environment, it was discovered that
these positions are near to junctions to open areas such as lanes, doors and area for low
workspaces meanwhile most of the tested area were resembling a tunnel like environment
where machines are available at the left and right of the transmitter. Moreover, for some
of the spikes in between range 30 m to 40 m, human and object movements near the

transmitter were observed and noted manually during data collection.

Hence, this proves that the layout of the environment and nearby object movement
may cause significant changes to the RSSI value. Furthermore, RSSI values collected in
the same position are susceptible to temporal changes causing slight variations recorded
values. This variability poses challenges for positioning accuracy, as it introduces

uncertainty in distance estimation based on RSSI.

Conventional trilateration approaches for localization must account for the variable
path loss exponent across different areas of the environment to accurately estimate
distances from RSSI measurements. Fingerprinting methods may benefit from the distinct
multipath patterns observed at different locations, potentially improving location
discrimination. The observed small-scale fading effects suggest that positioning
algorithms should incorporate temporal averaging or filtering to mitigate short-term RSSI

fluctuations.

4.2 Machine Learning Methods for Single Point Estimation

In this section, the performance of various machine learning techniques for indoor
positioning were evaluated. The machine learning methods investigated in this work can
be broadly categorized into three classes: Classifier-based Methods, Regressor-based

Methods, and Gaussian Process Regressor (GPR) Methods.
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To assess the performance of these machine learning techniques, we utilized two
distinct datasets: the Motion Set and the Static Set. Within each dataset, we considered
three different feature sets as described in section 3.2.1, to provide a thorough exploration
of the impact of input data on the positioning accuracy. The feature sets included: (1)

RSSI, Frequency Error, and SNR (All), (2) RSSI and SNR, (3) RSSI.

To quantify the positioning accuracy of the machine learning methods, we utilized the
following performance metrics: Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE). Performances of machine learning methods for each category will be

described in detail in further subsections.

4.2.1 Classifier-based Methods for Indoor Positioning

First, we observe the performance of the classifier-based methods. Table 4.1 and Table
4.2 presents the MAE and RMSE results for the classifier-based methods, namely,
Random Forest (RF), Decision Trees (DT), k-Nearest Neighbours (KNN), Weighted k-
Nearest Neighbours (WKNN), Multilayer Perceptron (MLP), and Naive Bayes (NB)

across the Motion and Static datasets, using the three different feature sets.

Table 4.1 and table 4.2 present the MAE and RMSE for the classifier category. For the
static dataset with all features (RSSI, SNR & Frequency Error), the NB algorithm yielded
the highest MAE and RMSE values 25.71725 m and 28.5481 m respectively. DT, MLP,
KNN and wKNN algorithms present noticeable improvements in both MAE and RMSE
values compared to the NB algorithm. Finally, the RF algorithm demonstrates the lowest

error with MAE and RMSE values of 15.26747 m and 17.22313 m respectively.

Moving on to the static dataset with RSSI and SNR features, all algorithms show
significant improvements in terms of accuracy compared to the static dataset with all

features. The RF algorithm performs the best with MAE and RMSE values of 7.29921 m
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and 9.23356 m respectively. Followed by, MLP and wKNN with MAE of 8.26026 m and

8.26663 m and RMSE of 10.27202 m and 10.39511 m respectively.

Table 4.1: MAE values of various classifier models on the static and motion

datasets
Dataset Feature set MAE (m)
RF DT KNN wKNN | MLP NB
Static All 15.2675 | 21.6682 | 16.3969 | 16.2716 | 16.2385 | 25.7172
RSSI & SNR | 7.2992 11.1329 | 8.3278 | 8.2666 | 8.2603 11.3525
RSSI 7.2867 11.0054 | 7.5618 | 7.5302 | 8.1239 | 11.2048
Motion All 12.3557 | 13.7795 | 15.5437 | 15.4287 | 13.0594 | 16.9696
RSSI & SNR | 7.1242 | 8.2077 | 8.5046 | 7.6546 | 7.8079 | 8.4327
RSSI 6.9330 | 8.3621 6.7764 | 6.9552 | 6.5849 | 6.2811
Table 4.2: RMSE values of various classifier models on the static and motion
datasets
Dataset Feature set RMSE (m)
RF DT KNN wKNN | MLP NB
Static All 17.2231 | 25.0820 | 18.0150 | 17.8998 | 18.6869 | 28.5481
RSSI & SNR | 9.2336 13.1406 | 10.4301 | 10.3951 | 10.2720 | 14.7586
RSSI 9.3693 13.0476 | 9.4700 | 9.4545 10.2141 | 14.1974
Motion All 14.5169 | 15.7116 | 17.4767 | 17.1254 | 15.1562 | 19.3589
RSSI & SNR | 9.1848 10.3641 | 10.4061 | 9.4642 | 9.8456 10.7937
RSSI 8.9712 10.6624 | 8.5758 | 8.9235 | 8.6167 | 8.3063

For the static dataset with only RSSI, all classifier algorithms show an overall slight
improvement in accuracy compared to datasets with more features. wKNN and KNN
showed notable improvements of 8.91% and 9.19% in MAE and 9.05% and 9.20% in
RMSE. The RF algorithm still performs the best among all algorithms with MAE and
RMSE values of 7.28671 m and 9.36927 m, respectively, although the RMSE value was

slightly higher than that of the static dataset with both RSSI and SNR features.

Overall, for the static dataset, the RF algorithm outperforms the other algorithms for
all feature sets. The RSSI-only feature set has the highest overall accuracy, followed by

RSSI & SNR, and then RSSI, SNR & Frequency error.
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For the motion dataset with all features (RSSI, SNR & Frequency Error), the NB
algorithm again yielded the highest MAE and RMSE values of 16.96955 m and 19.35699
m, respectively. However, the other Classifier algorithms, such as DT, MLP, KNN, and
wKNN, demonstrated significant improvements in accuracy, with MAE values ranging
from 13.05941 m to 15.54375 m and RMSE values from 15.15616 m to 17.47666 m.
Among the algorithms, RF still exhibits the lowest MAE and RMSE values, with

12.35570 m and 14.51688 m, respectively.

Focusing on the motion dataset with RSSI and SNR features, the RF algorithm again
emerges as the top performer, with an MAE of 7.12415 m and an RMSE of 9.18478 m.
When considering the motion dataset with only RSSI features, the Classifier algorithms
generally demonstrated slightly lower errors compared to the motion dataset with RSSI
and SNR features. While RF, typically regarded as a robust performer, did not exhibit the
highest accuracy, the NB algorithm emerged as the best performer, with an MAE of
6.28115 m and RMSE of 8.30634 m, with MLP shows the second highest accuracy in

terms of MAE (6.58493 m) and KNN in terms of RMSE (8.57576 m).

For the motion dataset, the NB classifier when used on RSSI only features the highest
accuracy. In general, the classifier algorithms show better results when applied on Motion
dataset than Static dataset. Also, better accuracy can be obtained when using only RSSI

feature.

4.2.2 Regression-based Methods for Indoor Positioning
Table 4.3 and Table 4.4 presents the results for the regression-based methods, namely,
RF, DT, wKNN, MLP and Linear Regression (LR) across the Motion and Static datasets,

using the three different feature sets.
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Table 4.3: MAE values of various regression models on the static and motion

datasets
Dataset Feature set MAE (m)
RF DT wKNN MLP LR
Static All 18.21516 | 15.60140 | 16.26320 | 36.96480 | 18.57989
RSSI & SNR 6.18885 7.80812 7.88411 7.24342 6.85376
RSSI 5.85477 7.05994 7.09093 7.40290 7.07941
Motion All 9.97450 11.13061 | 14.88617 | 18.06706 | 13.55468
RSSI & SNR 5.67654 7.28150 6.54288 6.41449 6.99218
RSSI 5.39553 6.13065 5.51865 5.70889 7.05318

Table 4.4: RMSE values of various regression models on the static and motion

datasets
Dataset Feature set RMSE (m)
RF DT wKNN MLP LR
Static All 20.35705 | 17.38273 | 17.89919 | 38.58354 | 19.77187
RSSI & SNR 7.76168 9.87339 9.92101 8.48961 7.66823
RSSI 7.41759 9.04934 9.01177 8.73742 7.86590
Motion All 12.35449 | 13.57393 | 16.65390 | 19.58223 | 14.88372
RSSI & SNR 6.73506 9.14580 7.94713 7.30727 7.71376
RSSI 6.56478 6.61691 7.04710 6.69811 7.78369

Starting with the static dataset, the regressor models generally demonstrated higher
accuracy compared to the classifier models. For the static dataset with all features, the DT
algorithm achieved the lowest MAE of 15.60140 m and RMSE of 17.38273 m. Focusing
on the static dataset with only RSSI and SNR features, the performance of the Regressor
models improved significantly. The RF algorithm has the lowest MAE (6.18886 m) while
LR has the lowest RMSE (7.66822 m). When considering the static dataset with only
RSSI features, the Regressor models continued to demonstrate high accuracy. The RF
algorithm achieved an MAE of 5.85477 m and an RMSE of 7.41759 m, outperforming
the other Regression models, which was 17% more accurate than the second highest

performing model for this feature set.
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Transitioning to the motion dataset, the Regression models exhibited slightly lower
errors compared to the static dataset. For the motion dataset with all features, the RF
algorithm demonstrated the best results, with an MAE of 9.97450 m and RMSE of
12.35448 m. Examining the motion dataset with RSSI and SNR features, the Regressor
models showed further improvements in accuracy. The RF algorithm achieved an MAE
of 5.67654 m and an RMSE of 6.73506 m, outperforming the other Regression models.
When applying the Regression models on the motion dataset with only RSSI features, the
RF algorithm maintained its position as the top performer, with an MAE of 5.39553 m
and an RMSE of 6.56478 m. The RF algorithm with motion dataset with only RSSI
features appears to have the highest accuracy among all regressors with all datasets and

feature sets in the comparison.

Overall, the regression-based methods show a similar trend with the classifier-based
methods where the RSSI only feature set displays better performance over the other two
feature sets in both Motion and Static datasets. On top of that, the regressors show better
accuracy with the Motion dataset than the Static dataset. However, regression-based
methods show better accuracy when compared to classifier-based models, with a 14.1%

(MAE) and 21.0% (RMSE) increase in accuracy.

4.2.3 Gaussian Process Regression (GPR) for Indoor Positioning

Table 4.5 and Table 4.6 presents the performance of the GPR models in estimating
positioning error, using different kernel functions: Radial Basis Function (RBF), Matérn,
the sum of RBF and Matérn, and the product of RBF and Matérn. The models were
evaluated on the Static and Motion datasets with the feature sets: ALL, RSSI & SNR, and

RSSIL
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Table 4.5: MAE values of GPR models using different kernel combinations

Dataset Feature set MAE (m)
RBF Matérn Sum Product
Static All 32.11951 51.20579 52.32647 51.36770
RSSI & SNR 11.52446 6.96429 6.79526 6.96431
RSSI 15.03679 6.45970 6.09794 6.45974
Motion All 23.53539 15.54725 14.24731 15.54755
RSSI & SNR 6.40863 6.04709 6.04315 6.04710
RSSI 5.46437 5.25086 5.23723 5.25086

Table 4.6: RMSE values of GPR models using different kernel combinations

Dataset Feature set RMSE (m)
RBF Matérn Sum Product
Static All 3443144 54.13059 55.27158 54.29538
RSSI & SNR 15.51277 8.58881 8.08889 8.58886
RSSI 19.61008 7.78767 7.32813 7.78772
Motion All 26.01517 17.49776 15.36567 17.49814
RSSI & SNR 7.21374 6.89329 6.90022 6.89329
RSSI 6.39111 6.26103 6.25507 6.26103

Starting with the static dataset with all features, the GPR models underperform when
compared to classifier-based methods and regression-based methods with MAE values
ranging from 32.11951 m to 52.32647 m and RMSE values ranging from 34.43144 m to
55.27158 m. These results show that the GPR models with all features were highly

inaccurate and most of the estimates lie outside of the test space.

Moving on to the static dataset with only RSSI and SNR features, all GPR models
except for the GPR model with RBF kernel exhibits better accuracy than all classifiers
and all regressors except for the RF regressor. With the GPR model with RBF kernel
having the highest MAE and RMSE of 11.52446 m and 15.51276 m respectively while
the GPR model using the sum of RBF and Matérn kernel having the lowest MAE and

RMSE values of 6.79525 m and 8.08889 m respectively.
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When considering the static dataset with only RSSI features, the GPR model with the
sum of RBF and Matérn kernels achieved the lowest MAE of 6.09794 m and RMSE of
7.32813 m, which outperform all classifiers and most regressors used in Table 4.1 and

Table 4.2.

Transitioning to the motion dataset, the GPR models generally exhibited higher
accuracy compared to the static dataset, similar to the observations from Table 4.1 and
Table 4.2. For the motion dataset with all features, the GPR models have much higher
accuracy compared to when used on the static dataset with all features with MAE ranging
from 14.24731 m to 23.53539 m. However, they still exhibit higher errors compared to

classifiers in Table 4.1 and regressors in Table 4.2.

Similarly to the static dataset with RSSI and SNR feature set, the GPR models with
the motion dataset with RSSI and SNR features generally outperform all classifiers and
most of the regressors except for the RF regressor. The GPR models with Matérn kernel,
sum of RBF and Matérn kernels and product of RBF and Matérn kernels having similar
MAE (6.04709 m, 6.04315 m, 6.04709 m) and RMSE (6.89329 m, 6.90022 m, 6.89329

m).

When considering the motion dataset with only RSSI feature, the GPR models
generally surpassed the best results in Table 4.1 and Table 4.2. All GPR models except
for the model using RBF kernel has higher MAE (5.46437 m) than the RF regressor model
used on the motion dataset with only RSSI feature (5.39553 m), moreover, all GPR
models have better RMSE, indicating that GPR was able to reduce larger errors. The GPR
model with the sum of RBF and Matérn kernel achieved the best results, with an MAE of
5.23723 m and RMSE of 6.25507 m. The other 2 kernels (Matérn kernel and product of
Matérn and RBF kernel) also have similar accuracy with the model with sum of RBF and

Matérn kernels with only slight differences in error.
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Overall, the performance of GPR models were generally better compared to the
Classifier and Regressor models, particularly when the number of features were less and
used on the motion dataset. Besides, the usage of the Matérn kernel performs better than
the RBF kernel. Combining Matérn and RBF kernels by either summing or multiplying

them also proved effective.

To sum up, one key finding is that the motion dataset generally outperformed the static
dataset in terms of positioning error estimation accuracy. By collecting data in motion, a
more dynamic variation in the collected data is achieved. This dynamic variation leads to
increased positioning accuracy with a reduced total number of data points needed.
Another observation is that using only the RSSI feature, without the inclusion of SNR or
frequency error, yielded the best results across the Classifier, Regressor, and GPR models.
This indicates that the RSSI feature alone was the most informative and effective in
representing the signal characteristics necessary for accurate positioning error

estimation.

Regarding machine learning categories, by looking solely into the motion dataset with
only RSSI feature, which exhibits better results, the NB classifier achieved the best
accuracy among classification models, while the RF regressor exhibited superior
performance among regression models. Generally, the regression-based methods
outperformed the classifier-based methods in terms of both MAE and RMSE across most
datasets and feature sets. This can be attributed to the fact that regression models directly
predict continuous position coordinates, allowing for finer-grained localization compared

to classifiers that assign discrete class labels.
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Figure 4.13: Comparison of MAE for the best machine learning models from Table
4.1, Table 4.3 and Table 4.5 respectively

Figure 4.14: Comparison of RMSE for the best machine learning models from
Table 4.2, Table 4.4 and Table 4.6 respectively
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The GPR models generally demonstrate the highest accuracy specifically when used
on. Also, GPR models with motion dataset with only RSSI feature greatly reduced the
RMSE values, suggesting the improvement of larger errors. The best performing GPR
(with sum of Matérn and RBF kernels) achieved an increase in accuracy by 16.6% and
2.9% in MAE and 24.7% and 4.7% in RMSE in comparison to the NB classifier and RF

regressor respectively.

4.3  DGP Regression

In this section, the results obtained from the DGP Regression model for single point
estimation were presented. The system parameter selection process which includes kernel
selection, selection of number of dimensions in the hidden layer and number of inducing
points to identify the optimal model configuration were described. Subsequently, the
performance of the DGP model were evaluated using various metrics and compare it with

the results obtained from the previous sections.

4.3.1 System Parameter Selection

In selecting the kernel, we tested two types of kernel combinations: the sum and
product of the RBF kernel and the Matérn kernel. We chose these kernel combinations
because they outperformed a single kernel in section 4.2.3. Table 4.4 compares these

kernel combinations.

Table 4.7: Comparison of Sum and Product of the RBF kernel and the Matérn

kernel
Kernel name MAE (m) RMSE (m) Training loss Training time (s)
Sum 5.10877 6.19212 5.80792 183.48
Product 5.04566 6.14681 5.82745 185.00

The product of the RBF kernel and the Matérn kernel has slightly better performance

in all aspects except training time when compared to the sum of the RBF kernel and the
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Matérn kernel. The product of the RBF kernel and the Matérn kernel is chosen for further

experiments.

For the number of dimensions in the hidden layer, 10 different numbers of dimensions
were used ranging from 1 to 19. Figure 4.15 and Figure 4.16 show the MAE and RMSE
at different numbers of dimensions. The MAE and RMSE exhibit similar trends. When
the number of dimensions is 1, the MAE and RMSE were 7.15 m and 8.13 m respectively.
The positioning error dropped and remained relatively low and stable for the dimensions
ranging from 3 to 15 dimensions. The model with 3 dimensions has the lowest MAE of
4,98 m while the model with 15 dimensions has the lowest RMSE with 6.10 m. However,
beyond 15 dimensions, there is a noticeable and substantial increase in both MAE and
RMSE to approximately 9.94 m and 16.76 m. This indicates that the model performance

deteriorates rapidly with an oversized number of dimensions.

The rapid performance deterioration observed beyond 15 dimensions in the hidden
layer can be attributed to the curse of dimensionality. As the number of dimensions
increases, the data becomes increasingly sparse in the high-dimensional space, making it
more challenging for the model to generalize effectively. This sparsity can lead to
overfitting, where the model captures noise in the training data rather than the underlying
signal propagation patterns. This finding highlights the importance of careful
dimensionality selection in DGP models for indoor positioning applications, balancing

the need for expressive power with the risk of overfitting.

The training loss in Figure 4.17 also shows that it exhibits similar trends with the
evaluation accuracy at different numbers of dimensions with the lowest training loss at 5
dimensions (5.83). Figure 4.18 shows the training time at each number of dimensions.

As shown, the training times show an upward trend as number of dimensions increases.
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Figure 4.15: MAE of the DGP model on the Motion dataset with RSSI only feature
set at different number of dimensions

Figure 4.16: RMSE of the DGP model on the Motion dataset with RSSI only
feature set at different number of dimensions

86



Figure 4.17: Training loss of the DGP model on the Motion dataset with RSSI only
feature set at different number of dimensions

Figure 4.18: Training times of the DGP model on the Motion dataset with RSSI
only feature set at different number of dimensions
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Figure 4.19 to Figure 4.22 shows the MAE, RMSE, training loss and training time for
different numbers of inducing points. The MAE, RMSE and training loss is relatively
constant across the range of number of inducing points. The MAE and RMSE exhibit a
decreasing trend as the number of inducing points increases when ranging between 24
and 48 inducing points. Beyond 48 inducing points, the MAE and RMSE slowly increase
as the number of inducing points increases. 48 inducing points produces the lowest MAE
and RMSE at 4.95 m and 6.08 m respectively. Moreover, the training time of the models
shows a general up trend as the number of inducing points increases. For our specific
indoor positioning scenario, 48 inducing points provided the best balance between model

expressiveness and generalization ability. This value is chosen for further experiments.

Figure 4.19: MAE of the DGP model on the Motion dataset with RSSI only feature
set at different numbers of inducing points
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Figure 4.20: RMSE of the DGP model on the Motion dataset with RSSI only
feature set at different numbers of inducing points

Figure 4.21: Training loss of the DGP model on the Motion dataset with RSSI only
feature set at different number of inducing points
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Figure 4.22: Training times of the DGP model on the Motion dataset with RSSI
only feature set at different number of inducing points

4.3.2 Comparison with GPR

Taking the results with best accuracy, the model with 5 dimensions at the hidden layer
and 48 inducing points were chosen. The model performance was compared to the best
performing model in Section 4.3.1, GPR model with motion dataset. The DGP has an
accuracy of MAE and RMSE of 4.94972 m and 6.07725 m while the GP’s had MAE of
5.23723 m and RMSE of 6.25507 m. DGP showed an improvement of 5.5 % in terms of
MAE and 2.8 % in terms of RMSE. Additionally, the median positioning error for the

DGP was 4.27 m while the GPR has a positioning error of 4.55 m.

Figure 4.22 illustrates the cumulative distribution function (CDF) of positioning errors
for the DGP and GPR method. From the figure, it can be observed that the DGP curve
lies above the GPR curve for most of the distance error range. This is more obvious at
lower positioning errors, between 1.5 m and 6.0 m. 56 % of the positioning errors are
lower than 5 m for the GPR, whereas 59 % of the positioning errors are lower than 5 m

with DGP. 29 % of the positioning errors are lower than 3 m for the GPR, whereas 36 %
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of the positioning errors are lower than 3 m with DGP. The positioning errors have less
significant differences on larger distance errors when they are larger than 7 m. This
indicates that both models struggle similarly in challenging areas, possibly due to severe
fluctuations in RSSI readings in one or more BSs. Further improvements such as targeted

improvements or hybrid approaches are needed to overcome these challenging areas.

Figure 4.23: CDF of the positioning error for the DGP and GPR methods
4.4  Enhancing Single Point Estimation
This section analyses the impact and performance improvements achieved by
incorporating the various techniques proposed in Section 3.5 to enhance the single point
position estimates obtained from the machine learning models. The DGP regression

model would be used as the baseline model for the experiments in this section.

4.4.1 Temporal-Weighted RSSI Averaging
The weighting factor A in the Temporal-Weighted RSSI Averaging (TWA) scheme

determines the relative importance given to recent samples compared to older samples.
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Figure 4.24 show the positioning error distributions for different values of A ranging from

0.1 to 0.9 with lag numbers of 1, 2, and 3.

(a)

(b)

(©)

Figure 4.24: MAE and RMSE of the DGP model when using the TWA for lambda
values ranging from 0.1 to 0.9 with alag of (a) 1 (b) 2 (¢) 3

92



Figure 4.24 (a) shows the performance of TWA method with DGP regression with a
lag of 1. The MAE values range from approximately 3.1 to 3.6 meters, with the lowest
error occurring at lambda = 0.1. The higher lambda values result in increased errors
showing that the historical value carries a crucial weightage to improving the positioning
accuracy. Meanwhile in Figure 4.24 (b) shows the results with a lag of 2, The MAE values
show a slight improvement, ranging from approximately 2.6 to 3.0 meters, while the
RMSE values range from approximately 3.2 to 3.8 meters. The MAE has the lowest MAE
occurring at lambda = 0.4 while the lowest RMSE was at lambda = 0.1. The lambda
values between 0.1 to 0.4 show relatively close MAE and RMSE values but then showed
an increasing trend starting lambda = 0.5. Furthermore, Figure 4.24 (c) illustrates the
performance with a lag of 3. The MAE values exhibit the best performance, ranging from
approximately 2.4 to 3.0 meters, while the RMSE values range from approximately 3.1

to 3.6 meters, with the lowest error at lambda = 0.6.

In conclusion, the TWA technique can largely increase the positioning accuracy by
correlating the instantaneous RSSI value with its previous RSSI values. The lower lags
generally show better performance with the use of lower lambda values. However, when
the number of lags increases, a higher lambda value can be used for optimal results. Figure
4.25 shows the comparison of the histogram of errors between the DGP models with raw
data and TWA technique, represented by DGP and TWA-DGP respectively. It can be
observed that TWA-DGP significantly reduces the frequency of errors larger than 5 m
and only one position estimate is larger than 10 m which is the first data point where it

was unable to be smoothen by the weighting technique.
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The differing optimal R values for the Kalman Filter when applied to raw DGP output
(R =1) versus TWA-DGP output (R = 0.1) provide insight into the noise characteristics
of these estimates. The lower optimal R value for TWA-DGP suggests that the TWA
technique effectively reduces noise in the position estimates, resulting in more reliable

measurements that require less aggressive filtering.

This difference in optimal R values highlights the importance of properly tuning the
Kalman Filter for each specific preprocessing technique. It also suggests that the TWA
technique not only improves accuracy but also enhances the consistency of the estimates,
allowing the Kalman Filter to place more trust in each measurement.

Table 4.8: MAE and RMSE values on the result4s of Kalman Filter with different
R values used on output coordinates from DGP and TWA-DGP

R value 0.01 0.1 1 10

MAE (m) 3.95612 3.47434 2.86342 4.80262
DGP-KF

RMSE (m) 4.54630 3.99012 3.24485 5.23563

MAE (m) 2.00502 1.94439 2.81333 6.38965
TWA-DGP-KF

RMSE (m) 2.33968 2.20489 3.08949 6.83976

The results show that Kalman Filtering can improve the positioning accuracy by
smoothing the trajectory of the coordinate estimates and thus reduce the probability of
obtaining large errors. The movement trajectory of the position estimates of DGP and
TWA-DGP-KF were depicted in Figure 4.26 and Figure 4.27 respectively, the trajectory

itself was represented by the blue lines.

In Figure 4.26, the trajectory appeared jagged and erratic, indicating significant noise
or fluctuations in the position estimates. Instead of a smooth, continuous path, the
trajectory exhibits abrupt changes in direction and numerous scattered points, suggesting
that the DGP model alone may struggle to capture the underlying motion dynamics

accurately. In contrast to this noisy trajectory, the application of the Kalman filter is
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expected to result in a much smoother and more realistic movement path. The Kalman

filter can effectively smooth out the erratic fluctuations as observed in Figure 4.27.

Figure 4.26: Movement trajectory of the DGP position estimates

Figure 4.27: Movement trajectory of the TWA-DGP-KF position estimates
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4.4.3 Lane Constraint

The lane constraint method was applied to further refine the position estimates
obtained from the positioning system, leveraging the known layout and traversable paths
within the indoor environment. The building floor plan was segmented into a grid of tiles,
and navigable lanes were defined as sequences of connected tile coordinates. Table 4.9
presents the MAE and RMSE for the positioning system with and without applying the
lane constraint method, represented by DGP and DGP-LC.

Table 4.9: MAE and RMSE for the positioning system with and without applying
the lane constraint method

MAE (m) RMSE (m)
DGP 4.94972 6.07725
DGP-LC 4.84624 6.42983

The application of lane constraints yielded improvements in the MAE metric, as
position estimates with smaller errors were mapped onto the nearest lane coordinate,
effectively enhancing their accuracy. However, this mapping process came at the cost of
a slight increase in the RMSE. The RMSE deterioration indicates that lane constraints can
exacerbate large errors. These erroneous estimates were effectively "dragged" onto the
nearest feasible lane coordinate, potentially increasing the distance between the estimated

and true positions.

Hence, the positioning accuracy, in terms of both MAE and RMSE, can be further
improved by implementing techniques such as Temporal-Weighted RSSI averaging and
Kalman filtering as mentioned in the previous subsections to remove larger errors before
applying lane constraints. Table 4.10 shows the MAE and RMSE for the positioning
system with and without applying the lane constraint method together with Temporal-

Weighted RSSI Averaging and Kalman Filter and benchmarked by the pure DGP model.
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Table 4.10: MAE and RMSE for the positioning system with and without applying

the lane constraint method together with TWA and KF

MAE (m) RMSE (m)
DGP 4.94972 6.07725
TWA-DGP-KF 1.94439 2.20489
TWA-DGP-KF-LC 1.57958 1.90308

The table indicates that augmenting the DGP model with TWA and Kalman Filtering

significantly enhances the accuracy of position estimation under lane constraints. The

further inclusion of lane constraints leads to the best results, showcasing the importance

of leveraging contextual information to improve model performance.

4.4.4 Summary of Position Accuracy Enhancement Techniques

To comprehensively evaluate the effectiveness of the proposed position accuracy

enhancement techniques, several configurations were explored by combining Temporal-

Weighted RSSI Averaging (TWA), Kalman Filtering (KF), and Lane Constraints (LC).

Table 4.11 presents a summary of the performance metrics, including the MAE and

RMSE and the percentage improvement over the baseline DGP model.

Table 4.11: Performance of Position Accuracy Enhancement Techniques

Configuration MAE (m) MAE Improvement | RMSE (m) | RMSE Improvement
compared to DGP compared to DGP

DGP 4.94972 6.07725

DGP-LC 4.84624 2.09% 6.42983 -5.80%

DGP-KF 2.86342 42.15% 3.24485 46.61%

TWA-DGP 2.49319 49.63% 3.13971 48.34%
TWA-DGP-LC 2.19067 55.74% 2.96828 51.16%
TWA-DGP-KF 1.94439 60.72% 2.20489 63.72%

DGP-KF-LC 2.20631 55.43% 2.81086 53.75%
TWA-DGP-KF-LC | 1.57958 68.09% 1.90308 68.69%
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The baseline DGP model, without any enhancement techniques, exhibited an MAE of
4.94972 meters and an RMSE of 6.07725 meters, serving as the reference for performance

comparisons.

Applying Temporal-Weighted Averaging RSSI (TWA-DGP) led to improvements of
49.63 % in MAE and 48.34 % in RMSE compared to the baseline, demonstrating the
effectiveness of this technique in mitigating noise and leveraging temporal dynamics in

RSSI measurements.

The Kalman Filter (DGP-KF) provided more modest improvements, with a 42.15 %
reduction in MAE and a 46.61 % reduction in RMSE, indicating its potential for

incorporating motion models and further refining position estimates.

The combination of TWA and KF (TWA-DGP-KF) yielded significant enhancements,
with an MAE improvement of 60.72 % and an RMSE improvement of 63.72 %,

showcasing the synergistic effects of these complementary techniques.

Lane Constraints (TWA-DGP-LC and DGP-KF-LC) exhibited varying degrees of
improvement, with the DGP-KF-LC configuration outperforming the TWA-DGP-LC
configuration in terms of both MAE and RMSE. This highlights the importance of
combining Lane Constraints with noise mitigation techniques and KF ability in reducing

noise in the output coordinates.

However, the Lane Constraint method may introduce larger errors if the estimated
points deviate significantly from the actual position. The Lane Constraint method is
designed to improve positioning accuracy by restricting estimated locations to predefined
paths or lanes. However, if the initial position estimation is inaccurate or if the constraints
are too restrictive, the method can force the estimated position onto an incorrect path.

This misalignment can lead to larger errors instead of improving accuracy.
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The configuration incorporating all three enhancement techniques (TWA-DGP-KF-
LC) achieved the best overall performance, with a 68.09 % improvement in MAE and a
68.69 % improvement in RMSE compared to the baseline DGP model. This result
underscores the effectiveness of integrating TWA, KF and LC in a comprehensive

positioning system architecture as shown in Figure 4.28.

Figure 4.28: Movement trajectory of the TWA-DGP-KF-LC position estimates

In summary, the evaluation of various configurations demonstrates the potential for
significantly enhancing position accuracy by leveraging the strengths of each proposed
technique. This combination allows for a multi-layered approach to error reduction. The
TWA and DGP provide a solid foundation of accurate position estimates, which are then
refined by the KF to ensure temporal consistency. Finally, the LC step ensures that the

estimates adhere to the physical layout of the environment.
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CHAPTER 5: CONCLUSION

This thesis has presented a comprehensive investigation into the development of a
LoRa-based indoor positioning system tailored for the intricate and dynamic
environments found in industrial production lines. The research objectives outlined in
Chapter 1 have been systematically addressed, leading to the successful demonstration of
the feasibility and effectiveness of utilizing LoRa technology for indoor positioning

systems.

The research commenced with a thorough exploration of existing indoor positioning
technologies and techniques, as detailed in Chapter 2. This review highlighted the
limitations of traditional methods, particularly GPS, in indoor settings due to signal
attenuation and multipath interference. The emergence of LoRa technology, with its long-
range communication capabilities and robustness against interference, was identified as
a promising candidate for addressing these challenges. The case studies of fingerprinting

technique using machine learning were also studied.

The investigation into LoRa signal propagation characteristics revealed valuable
insights into path loss, multipath fading, and small-scale fading effects. These findings,
presented in Chapter 4, contributed to a deeper understanding of LoRa's behaviour in
indoor environments and informed the development of effective positioning algorithms.
The characterization of signal propagation provided a foundation for understanding the

challenges and opportunities associated with LoRa-based positioning.

The methodology adopted in this research, as expounded in Chapter 3, involved a
meticulous experimental setup within a real-world industrial production line. LoRa-
enabled nodes were strategically deployed to collect radio signal data, which was then

subjected to rigorous preprocessing to ensure data quality and consistency. A variety of
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machine learning algorithms, encompassing both classification and regression models,

were employed to evaluate their performance in single-point estimation tasks.

The exploration of various machine learning techniques showcased the potential of
these algorithms in mapping radio signal features to spatial coordinates. Notably, the
evaluation of these methods across different datasets and feature sets provided valuable
insights into their performance under varying conditions. The comparative analysis
revealed the superior performance of Gaussian Process Regression (GPR) in achieving

accurate and reliable position estimates.

Building upon the strengths of GPR, the thesis introduced Deep Gaussian Process
(DGP) regression as a means of further enhancing positioning accuracy. The hierarchical
nature of DGPs enabled the capture of complex non-linear relationships between radio
signal parameters and location coordinates, leading to improved positioning accuracy and
robustness. Through extensive experimentation and hyperparameter tuning, the DGP

model was optimized to achieve improved accuracy compared to GPR.

To address the limitations of single-point estimation and further enhance precision,
spatial-temporal techniques were used. Temporal-Weighted RSSI Averaging (TWA) and
Kalman filtering were implemented to smooth out fluctuations in position estimates and
provide a more continuous tracking experience. Additionally, a lane constraint method
was introduced to refine the positioning of objects within predefined lanes, ensuring their
accurate localization along production lines. These techniques effectively mitigated RSSI
fluctuations, noise, and outliers, resulting in more accurate, stable, and contextually aware

position estimates.

The culmination of these efforts was the successful implementation of a proof-of-

concept system that integrated the DGP model with temporal filtering and lane constraints.
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This system demonstrated its ability to accurately track the movement of trolleys within
the industrial production line, providing real-time location information that could be
visualized through a user-friendly interface. This real-world demonstration showcased

the potential of LoRa-based indoor positioning in industrial settings.

The findings of this research contribute significantly to the field of indoor positioning
by showcasing the potential of LoRa technology in conjunction with advanced machine
learning techniques. The integration of temporal filtering and lane constraints further

enhances the system's robustness and practicality in real-world applications.

This research not only advances indoor positioning technologies but also opens new
possibilities for various applications, including asset tracking, personnel monitoring, and
navigation assistance. The developed methodologies and insights gained from this study
pave the way for future advancements in the field and offer practical solutions for real-

world challenges.

5.1 Future Works

Future work in this area presents several promising avenues for further research and
development. The integration of additional sensor data, such as inertial measurement
units (IMUs) or ambient light sensors, could significantly enhance positioning accuracy
and reliability by providing complementary information to the LoRa signals. This multi-

modal approach could help mitigate environmental factors that affect LoRa performance.

Implementation of active learning techniques could optimize the data collection
process, allowing the system to intelligently select the most informative data points for
model training, thereby improving efficiency and reducing the need for extensive manual

data collection. Transfer learning methodologies could be explored to adapt pre-trained
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models to new environments or different types of indoor spaces, potentially reducing the

setup time and effort required for deployment in diverse settings.

Traditional LoRa systems operate on a fixed frequency, which may suffer from
interference and multipath fading in dense indoor environments. Future work could
explore the potential of multi-frequency LoRa, where multiple frequency bands are
utilized adaptively based on environmental conditions. By employing frequency-hopping
techniques, the system could dynamically switch between different channels to avoid
interference and maintain reliable communication. This approach would improve signal
stability, reduce packet loss, and enhance overall positioning accuracy in challenging

indoor scenarios.

The exploration of multi-sensor fusion techniques to combine LoRa with other
complementary technologies, such as Ultra-Wideband (UWB) or Bluetooth Low Energy
(BLE), could leverage the strengths of each technology to create a more robust and

versatile positioning system.

Energy efficiency is a crucial factor in ensuring the long-term sustainability of IoT-
based positioning systems, particularly for large-scale deployments. Future research
could focus on optimizing the power consumption of LoRa nodes by implementing
adaptive transmission power control and dynamic duty cycling. These techniques allow
devices to intelligently adjust their transmission power and frequency based on
environmental conditions and movement patterns, thereby reducing energy waste.
Additionally, integrating energy-harvesting solutions, such as solar panels or kinetic
energy systems, could extend the operational lifespan of deployed nodes and minimize

maintenance costs.
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To improve the responsiveness and scalability of the positioning system, real-time data
processing techniques need to be explored. One potential direction is the integration of
edge computing, where lightweight deep learning models are deployed on edge devices
such as microcontrollers or embedded systems. By processing localization data directly
at the edge, latency can be reduced, and reliance on cloud-based computation minimized.
Techniques such as model quantization and knowledge distillation can be leveraged to
ensure that deep learning models remain computationally efficient while maintaining high

accuracy.

As LoRa-based indoor positioning systems handle sensitive location data, ensuring
security and privacy is essential. Future work could explore the implementation of robust
encryption techniques to protect data transmissions from eavesdropping and unauthorized
access. End-to-end encryption schemes, coupled with secure authentication mechanisms
such as cryptographic key exchanges, can enhance the security of the system.
Furthermore, privacy-preserving localization techniques, such as federated learning and
homomorphic encryption, could be employed to allow collaborative model training while

keeping raw location data private.

Finally, increasing the scalability of the system to accommodate other areas and more
devices would be crucial for its widespread adoption. This could involve optimizing the
network architecture, improving data processing algorithms, and developing more
efficient communication protocols to handle increased data loads without compromising
performance. These future directions aim to enhance the system's accuracy, adaptability,

and practical applicability across various indoor positioning scenarios.
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