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DEFECTS IDENTIFICATION ON SEMICONDUCTOR WAFER FOR YIELD 

IMPROVEMENT USING MACHINE LEARNING  

ABSTRACT 

The semiconductor industry underpins modern technology, with its products 

embedded in almost every electronic device. As semiconductor devices grow increasingly 

intricate, ensuring their quality and reliability becomes more challenging. Electrical 

testing is crucial to semiconductor wafer quality assurance, designed primarily to identify 

fabrication defects. However, the testing process itself can inadvertently introduce new 

defects that may go undetected by subsequent inspection methods such as manual and 

visual inspection. When these defects escape detection, defective wafers may reach 

customers, leading to rejection and return to the manufacturer, resulting in significant 

yield losses and operational inefficiencies. This study addresses the urgent issue of 

detecting hidden defects in semiconductor wafers that conventional methods overlook. 

This work presents a novel graph-based semi-supervised learning (GSSL) algorithm 

designed for wafer defect detection. The proposed methodology involves collecting wafer 

inspection data, extracting relevant features, and applying the GSSL algorithm to identify 

the hidden defects. The approach constructs a graph representation of the wafer, 

leveraging its physical layout and test configuration, and integrates domain-specific 

knowledge. The method uses weighted edges to represent the likelihood of defect 

propagation between dies, optimized through extensive experimentation, followed by an 

iterative label propagation process to uncover hidden defects. Experimental results 

demonstrate the effectiveness of our method, achieving a 68% accuracy in detecting 

hidden defects across multiple product categories in real-world semiconductor 

manufacturing environments. The algorithm showed consistent performance across 

different wafer types and test configurations, outperforming traditional detection methods 
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with improved computational efficiency. This study offers valuable insights into the 

semiconductor industry, providing an advanced tool to enhance yield management and 

quality control processes.  

Keywords: Semiconductor, Wafer Testing, Defect Identification, Test-Induced 

Defects, Graph-Based Semi-Supervised Learning 
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PENGENALPASTIAN KECACATAN PADA WAFER SEMIKONDUKTOR 

UNTUK PENINGKATAN HASIL MENGGUNAKAN PEMBELAJARAN MESIN  

ABSTRAK 

Industri semikonduktor merupakan tunjang teknologi moden, dengan produknya yang 

terkandung dalam hampir semua peranti elektronik. Seiring dengan peningkatan 

kerumitan peranti semikonduktor, usaha memastikan kualiti dan kebolehpercayaan 

menjadi semakin mencabar. Pengujian elektrik merupakan komponen penting dalam 

jaminan kualiti wafer semikonduktor yang direka terutamanya untuk mengenal pasti 

kecacatan fabrikasi. Walau bagaimanapun, proses pengujian itu sendiri boleh secara tidak 

sengaja menghasilkan kecacatan baharu yang mungkin tidak dapat dikesan oleh kaedah 

pemeriksaan seterusnya seperti pemeriksaan manual dan visual. Apabila kecacatan ini 

terlepas daripada pengesanan, wafer yang cacat mungkin sampai kepada pelanggan, 

menyebabkan penolakan dan pemulangan kepada pengilang, mengakibatkan kerugian 

hasil dan ketidakcekapan operasi yang ketara. Kajian ini menangani isu mendesak dalam 

pengesanan kecacatan tersembunyi pada wafer semikonduktor yang tidak dapat dikesan 

oleh kaedah konvensional. Kerja ini membentangkan algoritma pembelajaran separa 

terselia berasaskan graf (GSSL) baharu yang direka khusus untuk pengesanan kecacatan 

wafer. Metodologi yang dicadangkan melibatkan pengumpulan data pemeriksaan wafer, 

pengekstrakan ciri-ciri berkaitan, dan penggunaan algoritma GSSL untuk mengenal pasti 

kecacatan tersembunyi. Pendekatan ini membina perwakilan graf wafer, memanfaatkan 

susun atur fizikal dan konfigurasi ujian, serta mengintegrasikan pengetahuan domain 

khusus. Kaedah ini menggunakan sisi berpemberat untuk mewakili kebarangkalian 

perambatan kecacatan antara dai, yang dioptimumkan melalui eksperimen menyeluruh, 

diikuti dengan proses perambatan label berulang untuk mendedahkan kecacatan 

tersembunyi. Keputusan eksperimen menunjukkan keberkesanan kaedah kami, mencapai 

ketepatan 68% dalam mengesan kecacatan tersembunyi merentasi pelbagai kategori 
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produk dalam persekitaran pembuatan semikonduktor sebenar. Algoritma ini 

menunjukkan prestasi yang konsisten merentasi pelbagai jenis wafer dan konfigurasi 

ujian, mengatasi kaedah pengesanan tradisional dengan kecekapan pengkomputeran yang 

lebih baik. Kajian ini menawarkan pandangan berharga kepada industri semikonduktor, 

menyediakan alat termaju untuk meningkatkan pengurusan hasil dan proses kawalan 

kualiti. 

Keywords: Semikonduktor, Pengujian Wafer, Pengenalpastian Kecacatan, Kecacatan 

Aruhan-Ujian, Pembelajaran Separa Terselia Berasaskan Graf. 
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CHAPTER 1: INTRODUCTION 

1.1 Introduction 

The semiconductor industry has been the driving force behind the remarkable 

technological advancements witnessed in recent decades. Semiconductor devices, 

forming the bedrock of modern electronics, are essential components in a vast array of 

technologies. From the ubiquitous smartphones in our pockets to the powerful computer 

systems that drive artificial intelligence and scientific discovery, these devices rely on the 

intricate patterning of microscopic features on a silicon wafer substrate. This 

miniaturization process, though revolutionary, presents a complex challenge: ensuring 

that these features are formed perfectly at ever-shrinking scales. 

In the semiconductor industry, wafers are known as one of the most valuable assets to 

manage. In recent years, the ever-growing demands of faster development and availability 

to market with the advent of high-end integrated systems and Internet-of-Things (IoT) 

make a compelling case for semiconductor manufacturers to produce wafers of high 

product quality by yield enhancement and cost reduction. The fabrication of very large-

scale integration (VLSI) circuits is very complicated, with many manufacturing steps 

executed on the same wafer, hence it is critical for wafers to be tested and inspected with 

the highest accuracy to identify the failing dies before the packaging process. Otherwise, 

there could be defective semiconductor dies that will go through the assembly process 

and therefore lead to unnecessary expenses at the end of the manufacturing process. 

Monitoring the defects ensures manufacturers that the assets are managed in an efficient 

manner to increase profit.  

Traditional methods for identifying defects on semiconductor wafers have relied 

heavily on human inspection. Whether the probing and identification are done by machine 
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and verified by humans or entirely performed by human experts in the field, is not only 

time-consuming and labour-intensive but also susceptible to human error and 

inconsistencies. Moreover, the complexity of modern integrated circuits and the ever-

decreasing feature sizes have rendered manual inspection increasingly challenging and 

inefficient. In this context, Machine Learning (ML) techniques have emerged as a 

promising solution, offering the potential to automate the defect detection process while 

improving accuracy and throughput. 

The application of machine learning algorithms to defect identification on 

semiconductor wafers has garnered considerable attention from researchers and industry 

professionals alike. By leveraging the powerful pattern recognition and classification 

capabilities of these algorithms, it becomes possible to detect and classify defects with 

unprecedented precision. This not only enhances the overall yield but also facilitates root 

cause analysis, enabling manufacturers to identify and address the underlying sources of 

defects, thereby improving the overall manufacturing process. 

 

1.2 Motivation 

While the test process is designed to find the defects and avoid unnecessary expenses 

at the end of the manufacturing process, the test process itself may induce defects to good 

dies, which reduces manufacturing yield. Furthermore, they lead to the test economics 

problem, as it usually takes a lot of effort from process engineers and test engineers to 

find the problem. Besides, if test-induced defects cannot be properly identified, the 

accuracy of root-cause analysis will be adversely affected. Therefore, it is desirable to 

detect this problem as soon as possible.  
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With the introduction of Machine Learning and their ability to analyse the wafer maps 

more accurately than humans, manufacturers are able to identify faulty test equipment 

faster and easier. However, the current methods and technologies are being used for the 

known defects detected by the wafer test and advanced optical inspection machines, while 

the limitation of named detectors on detecting the defects, leads to having hidden defects 

on the wafers. 

Amidst the pursuit of robust solutions for identifying elusive and hidden defects on 

semiconductor wafers, the emerging field of semi-supervised graph-based machine 

learning techniques presents a promising avenue for exploration. Traditional supervised 

learning methods, while effective for known defect patterns, often falter when confronted 

with the complexities and nuances of previously unseen or rare defect manifestations. 

Conversely, purely unsupervised approaches may lack the guidance necessary to discern 

meaningful patterns from the vast expanse of data inherent to wafer maps. 

Semi-supervised graph-based algorithms offer a compelling middle ground, 

harnessing the strengths of both paradigms. By leveraging the representational power of 

graphs to capture the intricate relationships and dependencies within wafer data, these 

techniques can effectively propagate label information from a limited set of labelled 

instances to a broader collection of unlabelled data points. This synergistic approach not 

only capitalizes on existing knowledge but also enables the discovery of novel defect 

signatures, facilitating the identification of previously undetected anomalies. Univ
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1.3 Problem Statement 

In the semiconductor industry, maintaining high yield is crucial for profitability and 

competitiveness. However, defects consistently pose a significant threat to maintaining a 

high yield. Wafer testing is designed to identify and mitigate these defects to ensure the 

functionality of semiconductor devices. However, paradoxically, the testing process itself 

can introduce defects. These test-induced defects often go undetected by conventional 

methods, leading to substantial yield losses and financial burdens. While recent 

advancements have been made in detecting visible test-induced defects (Cheng et al., 

2021), a critical gap remains in identifying these hidden defects, which can have profound 

implications for device reliability and overall yield. Manual inspection, a traditional 

method for detecting defects, heavily relies on the expertise and vigilance of the inspector. 

However, this approach is prone to human error and subjectivity, making it difficult to 

identify hidden defects that require recognizing intricate patterns and subtle anomalies. 

Machine learning techniques have been applied to optical inspection systems to automate 

the defect detection process. However, these techniques face challenges in adapting to the 

constantly changing contrast of hidden defects, making it arduous to develop a robust 

detection algorithm that can handle these unique and rare cases. 

To address these limitations, graph-based semi-supervised learning (GSSL) algorithms 

have emerged as a promising approach for detecting hidden defects. However, current 

GSSL algorithms (Song et al., 2023) have their own limitations when applied to this 

specific problem. Constructing an appropriate graph that effectively captures the complex 

relationships between visible and hidden defects is a critical step in GSSL. Moreover, the 
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label propagation process in GSSL may not always accurately assign labels to hidden 

defects due to their unique nature and potential dissimilarity to visible defects. 

There is, therefore, a pressing need for innovative approaches that can effectively 

uncover these hidden defects by leveraging both the spatial and topological information 

inherent in wafer maps. Such methods must be capable of operating with limited labelled 

data, as extensive labelling in semiconductor manufacturing is often costly and time-

consuming. 

1.4 Objectives 

The objectives of the proposed research are as follows: 

i. To investigate the intricate relationship between defect occurrence and the 

configuration of testing methodologies to unveil underlying patterns of 

hidden defects. 

ii. To develop a machine learning-based method that demonstrates at least 60% 

average accuracy in predicting the precise location of hidden defects on 

semiconductor wafers. 

iii. To optimize the graph-based algorithm for improved accuracy and reduced 

time complexity in hidden defect localization. 

1.5 Thesis Contribution 

This thesis endeavours to make significant contributions to the field of semiconductor 

manufacturing by pioneering novel machine learning techniques that address the critical 

challenge of detecting test-induced defects on wafers. Through a collaborative effort with 

NXP Semiconductor Malaysia, a leading global manufacturer of integrated circuits, this 
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research has been driven by real-world industrial needs and informed by domain 

expertise. 

The outcomes of this work hold the promise of delivering substantial impact, both in 

academic and practical domains. From a theoretical standpoint, the development of 

advanced semi-supervised graph-based algorithms for defect identification will 

contribute to the expanding body of knowledge in machine learning and its applications 

in semiconductor yield enhancement. Concurrently, the proposed methodologies have the 

potential to translate into tangible benefits for the semiconductor industry, empowering 

manufacturers to overcome the limitations of conventional detection methods and unlock 

new levels of yield improvement. 

By leveraging the synergy between cutting-edge research and industrial collaboration, 

this thesis aims to bridge the gap between academic exploration and real-world 

implementation. The resulting techniques, validated through rigorous experimentation 

and evaluation on industrial datasets provided by NXP Semiconductor Malaysia, will 

offer a robust and scalable solution for identifying elusive test-induced defects, thereby 

mitigating yield losses, streamlining root cause analysis, and ultimately enhancing the 

overall efficiency and profitability of semiconductor manufacturing operations. 

1.6 Thesis Outline 

This dissertation is framed into five chapters as follows: 

Chapter 1 provides an overview of the research background, states the problem 

statement and main focus of the research, and points out the research objectives. 
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Chapter 2 gives a detailed background on the wafer test, the procedures and 

limitations. This chapter provides a technical review of the conventional methods of 

defect identification both for fabrication-induced and test-induced defects. The literature 

review on the available machine learning methods, especially on the semi-supervised 

graph-based algorithms is covered in this chapter. 

Chapter 3 describes the flow of designing a semi-supervised graph-based algorithm to 

identify the location of the defect on the Wafer Map. This includes the procedure of 

detection of test-induced defects on the wafer through the analysis of defects. Moreover, 

the root-causing method of test-induced defects is described here. 

Chapter 4 presents the development, validation, and characterization of a novel semi-

supervised graph-based algorithm, along with the simulation and experimental results 

achieved. Various types of semiconductor wafers were examined under different testing 

configurations, with algorithm parameters systematically adjusted to determine the most 

optimized combination. The effectiveness of the developed algorithm is further assessed 

by comparing its defect identification results with actual evaluations conducted by NXP 

engineers. Additionally, a comparative analysis between the proposed approach and the 

existing reported literature is provided to highlight its advancements and contributions. 

Chapter 5 represents the conclusion of this research work, summarizes the findings, 

contributions and design challenges. The potential improvement of the proposed 

algorithm is highlighted for future work. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Overview 

2.1.1 Importance of defect identification in semiconductor manufacturing 

The semiconductor industry is a vital cog in the global economy, producing the 

essential components that power everything from smartphones to supercomputers. As 

technology advances and devices become more sophisticated, the demand for high-

performance semiconductors continues to skyrocket. To meet this demand, manufacturers 

are constantly pushing the boundaries of miniaturization and complexity, making the 

identification and localization of defects on semiconductor wafers more challenging than 

ever before. 

Defects in semiconductor wafers can have catastrophic consequences. Even a 

minuscule flaw can lead to a device failure, rendering it unusable. This can result in 

significant financial losses for manufacturers, as scrapped wafers and rework costs can 

quickly add up. In addition, product quality can be compromised, undermining the 

reputation of the manufacturer and leading to lost market share. 

Given the high stakes involved, there is a pressing need for robust and accurate defect 

detection techniques. These techniques must be able to identify and localize defects with 

high precision, even on the most advanced semiconductor wafers. Failure to do so can 

have a devastating impact on the bottom line of semiconductor manufacturers. 

In addition to the financial implications, defects in semiconductor wafers can also have 

a negative impact on the environment. The manufacturing process for semiconductors is 

complex and resource-intensive, and any defects that result in scrapped wafers or rework 
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can lead to wasted materials and energy. By developing more efficient defect detection 

techniques, manufacturers can reduce their environmental footprint and contribute to a 

more sustainable future. 

The development of cutting-edge defect identification methodologies is an ongoing 

pursuit for semiconductor companies. By investing in research and development, 

manufacturers can stay ahead of the curve and maintain their competitive edge in the 

global market. The ability to identify and localize defects with high precision is essential 

for producing high-performance, reliable, and cost-effective electronic devices that meet 

the needs of consumers and businesses alike. 

2.1.2 Overview of the semiconductor wafer production process 

The semiconductor wafer manufacturing process is a meticulously orchestrated series 

of steps aimed at transforming a pure silicon crystal into a complex array of electronic 

circuits that can perform myriad functions. The process can be broadly categorized into 

three primary stages: fabrication, testing, and assembly. Each stage is crucial, employing 

sophisticated technology and stringent quality controls to ensure the functionality and 

reliability of the final products. Fabrication involves multiple processes such as 

photolithography, doping, and etching to create the intricate layers and circuit patterns on 

the silicon wafer. Testing, often referred to as probing, ensures each chip functions 

correctly and meets the desired specifications. Finally, assembly involves cutting the 

wafer into individual chips, packaging these chips into protective casings, and preparing 

them for shipment to customers. Figure 2.1 shows the top-view process-flow of 

semiconductor wafer manufacturing, based on (Srivastava, 2021). 
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Figure 2.1: Process-flow of semiconductor wafer manufacturing (Srivastava, 
2021)   

As described by (Quirk & Serda, 2001) in their comprehensive book "Semiconductor 

Manufacturing Technology" the process typically begins with the growth of a cylindrical 

ingot of highly purified silicon crystal. The fundamental fabrication steps involve 

photolithography, where patterns are transferred onto the wafer surface using light-

sensitive photoresist materials, followed by various deposition, etching, and implantation 

processes to create the desired device structures. These wafers undergo a series of critical 

steps, including polishing, cleaning, and epitaxial deposition, to prepare the surface for 

subsequent processing. 

The fabrication process is the heart of semiconductor manufacturing, where the 

intricate device structures are created on the wafer surface. This stage involves a series of 

steps, such as deposition of various materials (e.g., silicon dioxide, polysilicon, metals), 

photolithographic patterning using light-sensitive photoresists, etching to selectively 

Wafer 
Fabrication Test/Sort Assembly and 

Packaging Final Test
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remove materials, and ion implantation to introduce dopants. These steps are repeated 

multiple times in a specific sequence, with each layer building upon the previous one to 

form the complex three-dimensional structures of modern integrated circuits. 

After fabrication, the individual die on the wafer undergoes wafer-level testing and 

probing, a critical step for identifying functional and non-functional circuits. This process 

involves electrically probing each die on the wafer using specialized equipment and 

testing protocols. The probing data is used to generate wafer maps, which indicate the 

location and distribution of defective die, allowing for yield assessment and enhancement. 

The wafers are then singulated, separating the individual die through techniques like 

dicing or scribing. These individual dies are subsequently packaged, a process that 

involves encapsulating the die in protective materials and forming external connections, 

such as wire bonding or flip-chip assembly. The packaging stage is crucial for protecting 

the delicate die from environmental factors and facilitating integration into printed circuit 

boards or other electronic systems. 

2.1.3 Wafer Test 

Wafer testing is a crucial step in the semiconductor manufacturing process, ensuring 

the quality and functionality of the integrated circuits (ICs) before they are packaged and 

sent to customers. This crucial process unites electrical testing and optical inspection, 

meticulously scrutinizing each die on the wafer's surface to identify and isolate potential 

defects. Through this rigorous evaluation, wafer testing elevates the yield, reliability, and 

performance of the final products, ensuring that only the highest quality ICs reach the 

market. 
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2.1.3.1 Electric Test 

The electrical test, also known as wafer probe or wafer sort, is performed using a probe 

machine, which consists of a prober and a tester. The prober is responsible for handling 

the wafer and aligning the probe card to the bond pads on each die, while the tester 

executes the test program and measures the electrical characteristics of the devices. 

One crucial function of the prober is wafer handling. It securely holds the wafer during 

testing using a vacuum or electrostatic chuck. The prober can accommodate various wafer 

sizes, ranging from small to large diameters, to cater to different manufacturing processes. 

Automated wafer handling systems minimize human intervention and reduce 

contamination risks. Another vital function is probe card alignment. The prober precisely 

positions the probe card over the wafer's surface, ensuring accurate alignment with the 

bond pads on each die. This alignment is essential for proper electrical contact between 

the probes and the bond pads. Advanced probe systems employ high-resolution cameras 

and image processing algorithms to achieve sub-micron alignment accuracy. Once the 

probe card is aligned, the prober lowers it onto the wafer, establishing electrical contact 

between the probes and the bond pads. Probes are typically made of tungsten or gold-

plated materials to ensure good conductivity and minimize wear. The prober applies a 

controlled amount of force to maintain consistent and reliable contact throughout the 

testing process. Figure 2.2 visualises a prober machine with how the electric tester is 

getting aligned on the wafer. Univ
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Figure 2.2: Prober machine. 

The prober acts as an interface between the wafer and the electrical tester. It facilitates 

the transmission of test signals from the tester to the device under test (DUT) on the wafer. 

The prober also routes the electrical responses from the DUT back to the tester for 

analysis. 

The prober enables die-by-die testing, allowing for the evaluation of individual devices 

on the wafer. It moves the probe card systematically across the wafer, testing each die 

sequentially. Defective dies can be identified and marked for further analysis or rework. 

The prober collects electrical test data from each die and transmits it to the tester. The 

tester analyses the data to determine whether each device meets the specified electrical 

specifications. This collected data is crucial for statistical process control (SPC) and yield 

analysis. 

By precisely controlling wafer handling, probe card alignment, and electrical contact, 

the prober plays a vital role in ensuring the accurate and reliable testing of wafer dies. It 

is an integral part of the wafer probe process, helping manufacturers identify and sort 
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functional devices from defective ones, ultimately contributing to the quality and yield of 

semiconductor products. 

To increase testing efficiency, modern wafer test systems employ parallel testing, 

where multiple dies are tested simultaneously. The configuration of the electrical test 

includes the path and direction of movement for the prober, the number of dies being 

tested simultaneously, and the site number that identifies the index of the testing die. The 

prober moves in a predefined path, typically in a serpentine or zigzag pattern, to cover all 

the dies on the wafer. The number of dies tested at once depends on the probe card design 

and the tester's capabilities. Modern probe cards can have hundreds or even thousands of 

probes, allowing for parallel testing of multiple dies, which significantly reduces the 

overall test time. 

Figure 2.3 (a) illustrates a typical wafer test configuration with multiple test sites. In 

this example, a probe card with 32 test sites is used to test a wafer. The test sites are 

arranged in a 4x8 matrix, allowing 32 dies to be tested concurrently. The test process 

follows a predetermined test flow, which defines the sequence of tests to be performed 

on each die, as shown by the blue line path in Figure 2.3 (b). The starting point of the 

testing process is marked by a prominent blue square at the top of the wafer. Each time 

the prober evaluates a group of dies, the initial die in the group is highlighted with a blue 

square. The blue line connecting these squares visually represents the test sequence, 

indicating the direction and path of the testing process. Univ
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(a) Site-number orientation of 32 sites  

Figure 2.3: Test configuration example 
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(b) Example path of prober 

Figure 2.3, continued: Test configuration example 

The results of the electrical test are used to generate a wafer map, which visually 

represents the pass/fail status of each die on the wafer. This information is essential for 

yield analysis and process optimization. 

2.1.3.2 Optical Inspection 

Optical inspection techniques have emerged as a crucial tool for detecting and 

classifying defects in semiconductor wafer manufacturing. These methods have 
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significantly impacted the industry by enabling the identification of various defect types, 

leading to improved yield and quality control. The advent of machine vision and image 

processing technologies has revolutionized the way wafer inspection is performed, 

replacing manual inspection methods that were time-consuming, labour-intensive, and 

prone to human error (Ma et al., 2023). In their comprehensive review, (Ebayyeh & 

Mousavi, 2020) discussed the various automatic optical inspection (AOI) systems and 

algorithms used for detecting defects in electronic components such as semiconductor 

wafers, flat panel displays, printed circuit boards, and light-emitting diodes.  

The history of optical inspection in semiconductor manufacturing dates back to the 

early days of the industry. Initially, manual inspection using microscopes was the primary 

method for detecting defects on wafer surfaces. However, as the complexity of integrated 

circuits increased and feature sizes decreased, manual inspection became increasingly 

challenging and inefficient. AOI systems have played a crucial role in identifying these 

defects, which can be categorized as random, systematic, or mixed-type defects (Ebayyeh 

& Mousavi, 2020). The ability to detect and classify these defects accurately is essential 

for yield enhancement and process optimization in semiconductor manufacturing. 

AOI systems typically consist of an image acquisition unit, comprising cameras and 

illumination settings as used by (Hara et al., 1988) back in 1988, and an image processing 

unit that analyses the captured images using various algorithms. The selection of cameras 

and lenses depends on factors such as the field of view, resolution, and depth of field 

required for the specific application Illumination settings are also critical in AOI systems, 

as they can significantly impact the contrast and visibility of defects in the captured 

images. Figure 2.4 illustrates the normal setup of the camera and wafer for an AOI system.  
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Figure 2.4: Semiconductor wafer defect inspection 
(Cognex, 2024) 

The image processing unit of AOI systems employs a wide range of machine learning 

algorithms for defect detection and classification. These algorithms can be broadly 

categorized into supervised and unsupervised learning methods. Supervised learning 

algorithms, such as support vector machines (SVMs) and convolutional neural networks 

(CNNs), require labelled training data and are widely used for defect classification tasks. 

Unsupervised learning algorithms, such as k-means clustering and self-organizing maps 

(SOMs), do not require labelled data and are often used for anomaly detection and pattern 

recognition tasks in semiconductor wafer inspection. 

One of the most famous works in the field of wafer surface defect detection is the WM-

811K dataset, which consists of 811,457 wafer images with eight different defect types 
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(Ma et al., 2023). This dataset has been widely used as a benchmark for evaluating the 

performance of various defect detection and classification algorithms.  

Recent advancements in deep learning have further enhanced the capabilities of AOI 

systems in semiconductor wafer inspection. For example, (Nakazawa & Kulkarni, 2018) 

proposed a CNN-based approach for wafer map defect pattern classification. In another 

study, (Saqlain et al., 2020) developed a deep CNN for wafer defect identification on an 

imbalanced dataset, demonstrating the potential of deep learning in handling real-world 

challenges in semiconductor manufacturing. 

Despite the advancements in optical inspection techniques, there are still limitations 

and challenges. One major limitation is the difficulty in detecting sub-surface or non-

visible defects, as optical methods rely on surface imaging. Additionally, the increasing 

complexity of wafer patterns and the need for higher-resolution imaging pose challenges 

in terms of computational resources and inspection time. Moreover, the presence of 

mixed-type defects and the need for a large amount of labelled data for training machine 

learning models are other obstacles that need to be addressed. 

2.2 Types and sources of defects in semiconductor wafers 

2.2.1 Defect in semiconductor wafers 

In the realm of semiconductor manufacturing, a defect on a wafer refers to any 

deviation from the desired structure or composition that compromises the functionality, 

reliability, or yield of the semiconductor device. These defects can manifest in various 

forms, ranging from minute imperfections at the atomic scale to visible anomalies on the 

wafer surface. Common types of defects include point defects, dislocations, surface 
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roughness, particulates, and process-induced irregularities, each with its unique impact 

on device performance. Defects can arise from multiple stages of the fabrication process, 

including crystal growth, wafer preparation, deposition, etching, and lithography. They 

can also occur during testing, where physical contact with the wafer surface may 

inadvertently damage delicate structures or introduce contamination. Understanding and 

mitigating defects are paramount in semiconductor manufacturing, as even minor 

deviations can lead to significant yield losses and compromise the functionality of 

electronic devices. 

2.2.2 Fabrication Defects 

This category encompasses defects arising from various fabrication processes, 

including lithography, deposition, and etching. Lithographic defects, such as mask 

defects, exposure issues, or resist residues, can lead to pattern distortions, line edge 

roughness, or incomplete pattern transfer. Deposition defects, like non-uniform thickness, 

pinholes, or voids, can impact device performance and reliability. Etching defects, caused 

by improper etching conditions or etch residues, can result in issues like undercut, 

trenching, or incomplete pattern transfer. (Shinde et al., 2022). The defects in this 

category originate from a variety of fabrication processes, each posing unique challenges. 

As semiconductor technology advances and device dimensions continue to shrink, the 

impact of fabrication defects becomes more severe. Defects that were once considered 

tolerable can now cause significant yield losses and device failures in advanced integrated 

circuits. To maintain high yields and product quality, semiconductor manufacturers must 

implement stringent defect control strategies and continuously monitor the fabrication 

process for the presence of defects. 
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(Ebayyeh & Mousavi, 2020) stated that normally three types of wafer defects occur, 

which are random defects, systematic defects and mixed defects. Random defects are 

scattered haphazardly across the wafer. These defects are caused by unpredictable factors, 

such as particles in the clean room, and exhibit no discernible pattern. 

Systematic defects, in contrast, follow a regular pattern and are typically attributed to 

issues within the manufacturing process itself. (Wu et al., 2015). Examples include the 

ring pattern resulting from misalignment in the storage-node process, and the scratch 

pattern caused by agglomerated particles during the chemical mechanical process. 

Lastly, mixed defects, as the name suggests, combine elements of both random and 

systematic defects on a single wafer map. This type of defect is the most prevalent in the 

semiconductor manufacturing process. Figure 2.5 shows the most recognized defect 

patterns. 
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Figure 2.5: Fabrication defect pattern types 
(Ebayyeh & Mousavi, 2020) 

Automated wafer inspection systems and defect classification techniques play a crucial 

role in identifying and mitigating fabrication defects. Recent advancements in machine 

learning, particularly deep learning algorithms such as convolutional neural networks, 

have shown promise in improving the accuracy and efficiency of defect detection and 

classification. However, challenges remain in detecting sub-resolution defects and 

adapting to the ever-evolving landscape of defect types that emerge with each new 

technology node.  

2.2.3 Test-Induced Defects 

Test-induced defects are another major category of defects that can occur in 

semiconductor wafers during the manufacturing process. Unlike fabrication defects that 
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originate from issues in the wafer fabrication steps, test-induced defects are introduced 

during the wafer testing phase. (Cheng et al., 2021; Cheng et al., 2020) provide a 

comprehensive overview of test-induced defects, their causes, and their impact on 

semiconductor manufacturing yield. 

One of the key characteristics of test-induced defects is their spatial pattern on the 

wafer. Since dies are probed in a predetermined order during wafer testing, test-induced 

defects often exhibit specific patterns that can be captured in test paths. (Cheng et al., 

2021) highlight that these patterns can be leveraged to effectively identify test-induced 

defects. 

Another characteristic of test-induced defects is their repetitive nature over an area on 

the wafer. This phenomenon occurs when a faulty probe pin, responsible for making 

contact during testing, drags across the wafer's surface. As the faulty pin moves, it 

consistently causes similar defects at the same position on multiple dies throughout the 

wafer. These repeated defects share common visual properties, such as colour and pattern, 

making them easily identifiable. Figure 2.6 illustrates an example of repeated defects on 

the wafer. As can be seen, the defects are represented by 4 red dots, all the dots are on the 

same location of the die. Based on the images they also look almost the same in colour 

and pattern.  
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Figure 2.6: Repeated defects example 

The primary causes of such repeated defects can be attributed to issues with the probe 

card itself. For instance, the presence of liquid on the probe pin can lead to contamination 

and subsequent defects. Similarly, shifted probe pins or pins with short tip lengths can 

also contribute to this problem. 

In addition to probe card-related factors, defects on the wafer itself can also give rise 

to repeated test-induced defects. The presence of liquid FM (foreign material) on the 

wafer's surface can interact with the probe pins, resulting in the formation of similar 

defects at the same location on multiple dies. (Shankar & Zhong, 2005). 

Identifying and mitigating test-induced defects is crucial for improving semiconductor 

manufacturing yield. By accurately classifying test-induced defects and distinguishing 

them from fabrication defects, manufacturers can take targeted corrective actions. 
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2.2.4 Comparison and Effects 

Fabrication defects and test-induced defects, while both detrimental to semiconductor 

manufacturing yield, differ in their origins, characteristics, and impact on the final 

product. 

Fabrication defects, as discussed earlier, arise from issues in various manufacturing 

processes such as lithography, deposition, and etching. These defects can manifest as 

pattern distortions, non-uniform thickness, or incomplete pattern transfer, among others. 

The impact of fabrication defects on device performance and reliability can be significant, 

especially as device dimensions continue to shrink. Even minor defects that were once 

considered tolerable can now lead to device failures in advanced integrated circuits. 

On the other hand, test-induced defects are introduced during the wafer testing phase, 

where electrical tests are performed to identify functional dies. These defects often exhibit 

specific spatial patterns on the wafer, following the predetermined probing order. Test-

induced defects can also be repetitive, occurring at the same location on multiple dies due 

to issues with the probe card or the presence of foreign material on the wafer surface. 

While both types of defects can lead to yield losses, their impact on the final product 

may differ. Fabrication defects, if not detected and removed early in the manufacturing 

process, can propagate through subsequent steps and affect the functionality and 

reliability of the finished devices. Test-induced defects, however, primarily impact the 

yield by causing otherwise functional dies to be incorrectly identified as defective. 

The different characteristics of fabrication and test-induced defects also necessitate 

distinct detection and classification approaches. This study focuses specifically on test-
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induced defects, which have gained increasing attention as semiconductor devices 

become more complex and testing requirements more stringent. Identifying and 

mitigating these defects is crucial for improving overall yield and reliability, as well as 

reducing the risk of costly field failures and customer dissatisfaction. 

2.3 Defect Detection Methods 

2.3.1 Conventional Methods 

Conventionally, defect detection on semiconductor wafers has relied heavily on 

manual inspection by experienced engineers. This process is not only time-consuming 

and labour-intensive but also prone to human errors and subjectivity. (Shankar & Zhong, 

2005). As the complexity of integrated circuits increases with shrinking feature sizes, 

manual inspection becomes increasingly challenging and inadequate to meet the demands 

of modern semiconductor manufacturing (Huang & Pan, 2015). 

Early attempts to automate defect detection primarily focused on simple rule-based 

systems and basic machine-learning techniques. In their work, (Shankar & Zhong, 2005) 

developed a template-based machine vision system for inspecting wafer die surfaces. 

Their method compared the wafer images with a golden template using pixel subtraction 

and applied rule-based defect specifications to distinguish between critical and non-

critical defects. While this system demonstrated improved performance compared to 

manual inspection, it still had limitations in terms of adaptability and robustness (Huang 

& Pan, 2015). 

One major challenge in conventional defect detection methods is the detection of 

hidden or latent defects, particularly those induced during the testing process. Test-
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induced defects, such as probe marks or surface scratches, can be subtle and difficult to 

identify using traditional approaches. These defects may not cause immediate failures but 

can lead to reliability issues and affect the long-term performance of the semiconductor 

devices. 

Conventional methods often fail to capture the intricate patterns and characteristics of 

test-induced defects, as they rely on pre-defined rules or limited feature representations. 

This limitation highlights the need for more advanced and adaptive techniques capable of 

learning from data and discovering hidden patterns. 

2.3.2 Machine Learning for Defect Detection 

Machine learning techniques have revolutionized the field of defect detection in 

semiconductor manufacturing, enabling the development of automated systems that can 

identify and classify defects with high accuracy. These approaches can be broadly 

categorized into supervised learning, unsupervised learning, semi-supervised learning 

and deep learning methods, each with its strengths and limitations. Recent reviews by (Li 

& Kang, 2023; Ma et al., 2023; Theodosiou et al., 2023) provides comprehensive insights 

into state-of-the-art machine learning techniques for wafer map defect pattern 

recognition. Here we review some of the works done recently in the field of detection and 

classification of wafer defects patterns and highlight their strengths and limitations. 

2.3.2.1 Supervised Learning Methods 

Supervised learning methods have been widely applied to tackle this challenge, 

leveraging labelled data to train models capable of accurately identifying and categorizing 

various types of defects.  
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(Baly & Hajj, 2012) employed an SVM classifier to categorize 1,150 wafer images 

into high-yield and low-yield classes, demonstrating superior performance compared to 

decision trees, k-nearest neighbor (KNN), partial least squares regression, and 

generalized regression neural networks. The nonlinear SVM model exhibited better 

classification accuracy for wafer defect patterns. Nonetheless, the binary classification 

approach may not provide fine-grained insights into specific defect types, including those 

caused by latent testing processes. 

Building on the work of (Baly & Hajj, 2012), several researchers have further explored 

the application of SVM for wafer defect detection and classification. (Xie et al., 2014) 

proposed a wafer defect pattern detection scheme based on SVM algorithms. They 

utilized linear, Gaussian, and polynomial kernels, selecting the kernel with the smallest 

test error through cross-validation for SVM training. This method demonstrated 

robustness against false positives caused by image translation or rotation. However, like 

previous approaches, it may struggle with detecting subtle, test-induced defects that do 

not manifest as clear visual patterns. 

(Saqlain et al., 2019) proposed a voting ensemble classifier consisting of logistic 

regression, random forest, gradient boosting machine, and artificial neural networks for 

wafer map defect pattern recognition. The ensemble approach combines the best results 

of all classifiers to obtain the final classification, demonstrating improved accuracy 

compared to individual models. However, the method relies on handcrafted features and 

may struggle to detect subtle defects caused by repeated testing. (Li et al., 2021) proposed 

an AdaBoost-based method for wafer defect pattern recognition, focusing on scratch 

patterns. The five-step methodology enhances pattern visibility and achieves over 89% 
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recognition rate for scratch patterns and over 94% for common defect patterns. However, 

the method's performance on hidden test-induced defects is not explicitly addressed. 

2.3.2.2 Unsupervised learning methods 

Unsupervised learning methods, such as clustering and anomaly detection, have been 

explored to overcome some of the limitations of supervised learning. These methods do 

not require labelled data and can potentially discover new defect types. A comprehensive 

review by (Naeem et al., 2023) show the bright potential of these algorithms. 

One prominent unsupervised learning approach in wafer defect detection is the use of 

clustering algorithms. (Jin et al., 2019) proposed a novel framework based on the Density-

Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm for wafer map 

defect pattern detection and classification. Their method selectively removed outliers 

according to defect pattern characteristics, enabling simultaneous detection of abnormal 

points and defect patterns. The DBSCAN-based approach showed promise in handling 

complex defect patterns and noise reduction. However, the authors noted that the 

performance of DBSCAN can be sensitive to parameter selection, particularly in cases 

where sample density is not uniform or the dataset is very large, potentially leading to 

long convergence times and suboptimal clustering results. 

(Huang, 2007) proposed an innovative approach using self-supervised multilayer 

perceptrons for clustered defect detection in high-quality chips. This method aimed to 

enhance feature extraction capabilities through the use of multilayer perceptrons. The 

self-supervised nature of the approach allowed it to adapt to new defect patterns without 

the need for manual labelling. However, the performance of this method can be highly 
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dependent on the choice of activation functions, which may require careful tuning for 

optimal results. 

2.3.2.3 Semi-Supervised Learning 

Semi-supervised learning (SSL) approaches have emerged as a promising middle 

ground, combining the strengths of supervised and unsupervised learning. (van Engelen 

& Hoos, 2020; Y C a et al., 2018) SSL methods leverage both labelled and unlabelled 

data to improve defect detection accuracy while reducing the reliance on extensive 

labelled datasets. The core principle of SSL is to utilize the underlying structure and 

patterns in the unlabelled data to enhance the learning process. In the context of wafer 

defect detection, SSL algorithms can exploit the spatial and temporal relationships 

between defects, as well as the overall wafer map patterns, to better identify and classify 

defects even with limited labelled examples. 

Recent work by (L. L. Y. Chen et al., 2021) proposed a novel SSL approach 

specifically tailored for wafer map defect pattern recognition. Their method combines a 

convolutional neural network (CNN) with few-shot and self-supervised learning 

techniques. By incorporating unlabelled data through self-supervised pretext tasks, they 

demonstrated improved performance on the WM-811K dataset, a benchmark for wafer 

map defect classification. While this approach shows promise in capturing complex 

spatial patterns, it may still struggle with rare or previously unseen defect types. 

2.3.2.4 Deep Learning 

Convolutional Neural Networks (CNNs), a type of deep learning model, have proven 

to be highly effective for this task. CNNs are specifically designed to process data that 
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has a grid-like structure, such as images. They consist of multiple layers of neurons, each 

of which is responsible for extracting different features from the input data. The initial 

layers of a CNN typically learn basic features, such as edges and lines, while the deeper 

layers learn more complex features, such as shapes and objects. 

The application of CNNs in wafer defect detection has evolved significantly over 

recent years. (Nakazawa & Kulkarni, 2018) introduced a CNN for wafer map defect 

pattern recognition and image retrieval, demonstrating the potential of transfer learning 

by training on simulated wafer maps and achieving high classification accuracy on real 

wafer maps. Building upon this foundation, (Saqlain et al., 2020) developed a deep CNN 

model for wafer defect identification (CNN-WDI) that outperformed several previous 

models, achieving 96.2% classification accuracy on the WM-811K dataset. 

(Tsai & Lee, 2020) developed a lightweight neural network for wafer map 

classification based on data augmentation. Their approach combined a CNN with 

innovative data augmentation techniques to improve classification performance while 

reducing computational complexity. This method showed promise in handling limited 

data scenarios and improving generalization. However, its focus on static defect patterns 

may limit its effectiveness in capturing the dynamic nature of gradually fading test-

induced defects. 

(S. Chen et al., 2021) explored the use of transfer learning with CNNs for wafer map 

defect recognition. They utilized a 29-layer deep CNN model pre-trained on the MNIST 

dataset, which was then fine-tuned on wafer map data. This approach aimed to minimize 

the need for large wafer-specific datasets, achieving over 94.9% accuracy on a balanced 
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dataset of seven defect patterns. While this method shows potential for adapting to new 

defect types with limited data, it may not explicitly address the challenge of detecting 

defects that gradually lose visibility over repeated testing. 

Recent research has further advanced these techniques to handle more complex 

scenarios. (Wang et al., 2020) introduced a deformable convolutional network (DC-Net) 

for efficient mixed-type wafer defect pattern recognition. The DC-Net's innovative use of 

deformable convolution layers allows dynamic adaptation of the receptive field, enabling 

better handling of complex and mixed defect patterns. This approach achieved a 

classification accuracy of 93.2% on the WM-811K dataset, demonstrating significant 

progress in dealing with diverse defect types. 

Addressing the persistent challenge of imbalanced datasets, (Geng et al., 2021) 

proposed a novel approach combining few-shot learning and self-supervised learning. 

Their method, utilizing a CNN with Inception blocks, incorporates a few-shot loss for 

labelled data and a self-supervised loss for unlabelled data. This innovative technique 

showed superior performance compared to traditional machine learning methods, 

particularly in scenarios with limited labelled data. 

(Yu et al., 2021) further explored few-shot learning by proposing a hybrid self-

attention mechanism and prototype network for wafer map defect recognition. This 

approach aims to improve classification performance with small amounts of data, which 

is particularly relevant in semiconductor manufacturing where new defect types may 

emerge frequently. 
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To tackle the complexity of mixed-type defect patterns, (Li & Wang, 2021) developed 

an improved Mask R-CNN model. By integrating a feature pyramid network and an 

enhanced non-maximum suppression algorithm, their model showed superior 

performance in detecting small objects and shallow defects, addressing a critical 

challenge in wafer defect detection. 

(Kim et al., 2021) conducted a comparative study of various CNN architectures, 

including VGG16, ResNet, MobileNetV2, and ShuffleNet, for wafer defect pattern 

identification. They also incorporated out-of-distribution learning to handle undefined 

defect patterns, providing valuable insights into the trade-offs between model complexity 

and performance. 

2.3.2.5 Graph Neural Networks (GNNs) 

Graph Neural Networks (GNNs) have emerged as a promising advancement in deep 

learning, particularly for tasks involving graph-structured data (Scarselli et al., 2009; Wu 

et al., 2021). GNNs extend traditional deep learning architectures, such as convolutional 

neural networks (CNNs), to operate directly on graphs, enabling them to capture both the 

feature information of individual nodes and the structural information encoded in the 

graph topology (Bronstein et al., 2017). By learning node representations through the 

iterative aggregation of neighbourhood information, GNNs have shown remarkable 

performance in various applications, including node classification, link prediction, and 

graph classification (Zhou et al., 2018). 

In the context of semiconductor wafer defect detection, GNNs offer a powerful 

framework for leveraging the spatial and hierarchical relationships present in wafer map 
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data. By representing the wafer as a graph, with nodes corresponding to individual dies 

and edges encoding their spatial connections, GNNs can learn rich, context-aware 

representations that capture both local and global defect patterns. Moreover, the message-

passing mechanism of GNNs allows for efficient propagation of defect information across 

the wafer graph, potentially enabling the detection of subtle or hidden defects that may 

be missed by traditional methods (Wu et al., 2021). 

Recent works have demonstrated the potential of GNNs for wafer defect classification 

and yield prediction, showcasing their ability to outperform conventional CNNs and other 

machine-learning approaches. However, while GNNs show promise in this domain, they 

may not be the most suitable approach for the specific problem of detecting test-induced 

hidden defects in semiconductor wafers, as discussed in the limitations section. 

 

2.3.3 Limitations of Conventional Methods and Machine Learning approaches & 

hidden defects 

Despite the advancements in conventional methods and machine learning approaches 

for defect detection in semiconductor manufacturing, there remain significant limitations 

in their ability to detect hidden or latent defects, particularly those induced during the 

testing process. As discussed in the previous sections, conventional methods heavily rely 

on manual inspection by experienced engineers, which is not only time-consuming and 

labour-intensive but also prone to human errors and subjectivity These methods often fail 

to capture subtle defects and struggle to keep pace with the increasing complexity of 

integrated circuits. 

Univ
ers

iti 
Mala

ya



35 
 

 

Machine learning techniques, including supervised and unsupervised, semi-supervised 

and deep learning methods, have shown promise in automating defect detection and 

classification tasks.  

Supervised learning such as support vector machines (SVM), and deep learning 

methods such as convolutional neural networks (CNN) and Graph Neural Networks 

(GNNs), have demonstrated high accuracy in identifying known defect types. However, 

supervised learning methods have several limitations. Firstly, they require a large amount 

of labelled data for training, which can be time-consuming and costly to obtain in a 

manufacturing setting. Secondly, these methods are limited to detecting known defect 

types and may struggle with identifying novel or previously unseen defects. Lastly, and 

most importantly, as the prober moves throughout the wafer, the faulty site-number that 

caused repeated defects would gradually lose the effect, resulting in less visible defects 

that supervised learning methods fail to detect due to the contrast and lighting settings in 

the defined algorithm. 

On the other hand, unsupervised learning methods also have their drawbacks. They 

may struggle to distinguish between critical defects and benign process variations, leading 

to high false positive rates. Additionally, the performance of unsupervised learning 

methods often depends on the choice of hyperparameters and the quality of the input data, 

which can be challenging to optimize in a production environment. 

While the recent work on using semi-supervised learning has shown promising results, 

several challenges remain. The complexity and variability of test-induced defects pose 

significant difficulties for SSL methods. These algorithms often struggle to capture subtle 
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differences between defect types, especially when the labelled data is limited or not 

representative of all possible defect patterns. Additionally, the dynamic nature of 

semiconductor manufacturing processes means that new defect types may emerge over 

time, requiring SSL models to adapt continuously. Furthermore, most SSL approaches 

assume that the unlabelled data follows a similar distribution to the labelled data. 

However, in semiconductor manufacturing, this assumption may not always hold due to 

process variations and evolving defect patterns. This mismatch can lead to degraded 

performance or even negative transfer, where incorporating unlabelled data harms the 

model's accuracy. 

One of the major challenges in defect detection is the identification of hidden or latent 

defects, such as those induced during the testing process. Test-induced defects, including 

probe marks or surface scratches, can be subtle and difficult to detect using conventional 

methods and machine learning approaches. These defects may not cause immediate 

failures but can lead to reliability issues and affect the long-term performance of 

semiconductor devices. 

The limitations of existing methods in detecting hidden defects can be attributed to 

several factors. Firstly, these methods often rely on pre-defined rules or limited feature 

representations, which may not effectively capture the intricate patterns and 

characteristics of test-induced defects. Secondly, as the prober moves throughout the 

wafer, the faulty site-number that caused repeated defects would gradually lose its effect, 

resulting in less visible defects. 
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2.4 Graph-Based Semi-Supervised Learning 

2.4.1 Overview of semi-supervised learning and its advantages 

Graph-based Semi-Supervised Learning (GSSL) is a powerful approach that leverages 

the inherent structure of data to propagate label information from labelled to unlabelled 

instances. A comprehensive review done by (Chong et al., 2020; Song et al., 2023) 

provides insights and detailed information into the development and application of GSSL. 

By representing the data as a graph, where nodes correspond to instances and edges 

capture the similarity between them, GSSL can effectively exploit the underlying 

manifold structure to improve classification performance.  

The history of GSSL can be traced back to the early 2000s, with (Zhu et al., 2003) 

introduced the Gaussian Fields and Harmonic Functions (GRF) method, which 

formulates the semi-supervised learning problem as a Gaussian random field on the graph. 

(Zhou et al., 2004) proposed the Local and Global Consistency (LGC) method, which 

balances the local and global consistency of the classification function on the graph. 

The core idea behind GSSL is to construct a graph that encodes the relationships 

between instances and then use this graph to guide the learning process. Figure 2.7 and 

Figure 2.8 demonstrate a sample graph construction and label propagation. 
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Figure 2.7: Sample of graph construction 
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Figure 2.8: Sample of label propagation 

One of the key advantages of GSSL is its ability to capture complex data structures 

and relationships that may not be apparent in the original feature space. This is 

particularly useful in semiconductor wafer defect detection and classification, where 

defects often exhibit intricate patterns and dependencies. By constructing a graph that 

represents the similarities between different wafer regions or defect types, GSSL can 
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effectively propagate label information from known defects to unknown ones, improving 

overall classification accuracy. 

2.4.2 Graph construction techniques 

In GSSL, graph construction plays a crucial role in capturing the relationships between 

instances. Several techniques have been developed to construct graphs that effectively 

capture the relationships between data points. This section focuses on five key methods: 

k-Nearest Neighbors (kNN), b-matching, Linear Neighborhood Propagation (LNP), 

Robust Graph that Considers Labelled Instances (RGCLI), and Graph Based on 

Informativeness of Labelled Instances (GBILI). 

The k-Nearest Neighbors (kNN) approach is one of the most classic and widely used 

methods for graph construction in GSSL (Song et al., 2022). In this method, each node is 

connected to its k nearest neighbors based on a predefined distance metric. While simple 

and intuitive, kNN can lead to irregular graphs where nodes have varying degrees, 

potentially impacting the label propagation process. 

To address the irregularity issue of kNN, b-matching was introduced (Jebara et al., 

2009). This method ensures that every node in the resulting graph has exactly b neighbors, 

creating a more balanced graph structure. The b-matching approach formulates graph 

construction as an optimization problem, which can lead to more consistent label 

propagation. 

Linear Neighborhood Propagation (LNP) (Wang & Zhang, 2008) takes a different 

approach by assuming that each node can be linearly reconstructed by its neighbors. This 

method not only produces a new way of graph construction but also derives a 
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straightforward extension to the inductive setting, allowing for the handling of out-of-

sample data. 

Recognizing the potential value of labelled instances in graph construction, the Graph 

Based on the Informativeness of Labeled Instances (GBILI) method was developed 

(Berton & Lopes, 2014). GBILI utilizes the label information during the construction 

phase, potentially leading to graphs that are more informative for the subsequent label 

propagation step. 

Building upon GBILI, the Robust Graph that Considers Labelled Instances (RGCLI) 

method was proposed to create more robust graphs (Berton et al., 2017). RGCLI solves 

an optimization problem that incorporates labelled data, aiming to produce graphs that 

are more resilient to noise and better suited for semi-supervised learning tasks. 

However, these measures may not effectively capture the complex spatial relationships 

and hierarchical structures present in wafer map data, limiting their ability to accurately 

propagate label information for detecting hidden defects. 

2.4.3 Label propagation algorithms 

Label propagation algorithms in GSSL aim to assign labels to unlabelled nodes by 

minimizing a cost function that encourages label smoothness over the graph. Popular label 

propagation methods include Gaussian Random Fields (GRF), Local and Global 

Consistency (LGC), Special Label Propagation (SLP). 

Gaussian Random Fields (GRF), introduced by (Zhu et al., 2003), is one of the earliest 

and most popular approaches in GSSL. GRF formulates the label propagation problem as 
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estimating a function 𝑓 on the graph that satisfies two criteria: it should be as close as 

possible to the given labels on labelled nodes, and it should be smooth on the entire graph. 

The method uses a quadratic energy function to ensure smoothness, which leads to a 

harmonic function solution. GRF enforces a hard constraint that the labels of labelled 

nodes remain fixed during propagation, which can be beneficial when label information 

is highly reliable. 

Local and Global Consistency (LGC), proposed by (Zhou et al., 2004), extends the 

GRF approach to a multi-class setting and introduces some key modifications. Unlike 

GRF, LGC relaxes the hard constraint on labelled nodes, allowing their labels to change 

slightly during the propagation process. This flexibility can be advantageous when there's 

potential noise in the initial labels. LGC balances local consistency (neighbouring nodes 

should have similar labels) and global consistency (the overall label distribution should 

be smooth) through its objective function. The method also introduces a normalization 

factor based on node degrees, which helps regulate the influence of high-degree nodes in 

irregular graphs. 

Special Label Propagation (SLP), developed by (Nie et al., 2010), addresses a 

limitation of previous methods by introducing the capability to detect outliers or discover 

novel classes in the data. SLP achieves this by adding an extra label category, giving the 

algorithm the flexibility to assign nodes to a new, previously unseen class. This feature is 

particularly valuable in real-world scenarios where the unlabelled data might contain 

instances that don't belong to any of the known classes, such as new types of defects in 

semiconductor wafer inspection. 

Univ
ers

iti 
Mala

ya



43 
 

 

2.4.4 Opportunities for extending GSSL to semiconductor wafer analysis 

Graph-based semi-supervised learning techniques have the potential to be applied to 

the problem of detecting defects in semiconductor wafers. By representing the wafer as a 

graph, where nodes correspond to individual dies and edges represent the spatial 

relationships between dies, GSSL algorithms can propagate defect information from 

labelled defective dies to unlabelled dies, enabling more accurate and efficient defect 

detection. 

To extend GSSL to semiconductor wafer analysis, several challenges need to be 

addressed: 

i. Graph construction: Designing effective graph construction techniques 

that capture the spatial and structural relationships between dies on the 

wafer. This may involve incorporating domain knowledge about the wafer 

layout and the defect patterns. 

ii. Label propagation: Adapting label propagation algorithms to handle the 

specific characteristics of semiconductor wafer data, such as the sparsity of 

labelled defective dies and the potential imbalance between defective and 

non-defective classes. 

iii. Incorporation of wafer-specific features: Integrating additional features, 

such as process parameters or electrical test measurements, into the graph-

based models to improve defect detection performance. 

iv. Scalability: Develop scalable GSSL algorithms that can handle large-scale 

wafer data and enable real-time defect detection and analysis. 
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By addressing these challenges and leveraging the power of graph-based semi-

supervised learning, novel approaches can be developed to enhance the accuracy and 

efficiency of defect detection in semiconductor wafers, leading to improved yield and 

quality control in the manufacturing process. 

2.5 Research Gap 

The current literature on defect detection in semiconductor manufacturing has two 

main gaps. First, there is a lack of focus on detecting hidden defects induced by the testing 

process itself, which can significantly impact the quality and reliability of semiconductor 

devices. Existing methods fail to effectively leverage the spatial and topological 

information inherent in visible test-induced defect patterns to uncover these hidden 

defects. 

Second, the limitations of existing graph-based semi-supervised learning (GSSL) 

methods in addressing the unique challenges posed by hidden defect detection in wafer 

maps. Current GSSL methods often rely on simple similarity measures for graph 

construction, which may not effectively capture the complex spatial relationships and 

hierarchical structures present in wafer map data. Moreover, these methods often lack 

consideration for domain-specific knowledge, adaptive graph refinement mechanisms, 

and weighted edge initialization based on the unique characteristics of semiconductor 

wafer testing. 

To address these gaps, this work proposes a novel graph-based semi-supervised 

learning algorithm specifically designed for test-induced hidden defect detection in 

semiconductor wafers. The proposed approach integrates three key innovations:  
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i. a specialized graph construction mechanism that incorporates domain 

knowledge of wafer testing patterns and defect propagation behaviour. 

ii. an adaptive edge weighting scheme that dynamically adjusts based on both 

spatial relationships and test configuration parameters.  

iii. an iterative label propagation process that leverages information from 

visible defects to identify hidden ones.  

By combining these elements, the algorithm aims to capture the complex spatial and 

hierarchical relationships more effectively in wafer map data while maintaining 

computational efficiency. The method utilizes minimal labelled data and incorporates 

test-specific characteristics such as probe card movement patterns and site number 

configurations to enhance detection accuracy. This comprehensive approach promises to 

improve both the identification of test-induced hidden defects and the overall reliability 

of semiconductor manufacturing quality control. 

 

Univ
ers

iti 
Mala

ya



46 
 

 

CHAPTER 3: METHODOLOGY 

3.1 Introduction 

In this study, a machine-learning based solution is proposed to effectively identify 

hidden defects in semiconductor wafers. The proposed method involves a multi-step 

process designed to enhance the identification accuracy of these defects. The core part of 

the methodology is the development of a graph-based semi-supervised algorithm which 

is to construct the graph and build the label propagation. The graph construction requires 

the information on wafer map and visible defects, and label propagation requires 

information on test configuration. 

In order to achieve the quantitative research, the project collaborated with NXP 

Semiconductor Malaysia to study the wafer's defects, recognize the pattern of the defects, 

and identify the location of the hidden defects. The proposed methodology leverages the 

power of data analysis and machine learning to identify these hidden defects. The 

methodology flowchart is shown in Figure 3.1, and it involves several key steps: 

i. Data Acquisition: Defect data will be collected from wafers tested by the 

Automated Optical Inspection (AOI) machine at the fabrication plant of 

NXP Malaysia. Data from a variety of products manufactured over the past 

two years will be included. A dedicated software tool will be developed to 

integrate and preprocess this data. 

ii. Test-Induced Defect Discovery: Statistical analysis will be performed on 

the pre-processed data to identify recurring patterns in defect distribution. 

These visible defects are used as the backbone of the algorithm to find the 

hidden ones. 

Univ
ers

iti 
Mala

ya



47 
 

 

iii. Defect Clustering: Clustering techniques will be employed as a separate 

step to identify specific areas of interest on the wafer where defects are more 

likely to occur. This analysis focuses the investigation on regions with a 

higher concentration of defects. 

iv. Root-Cause Analysis: Data analysis will be conducted to establish 

connections between defect types and test configurations, revealing the 

underlying causes of these defects. This initial analysis lays the groundwork 

for subsequent hidden defect pattern recognition. 

v. Hidden Defect Localization with Graph-based Semi-supervised 

Learning: Once defect root causes are identified, a novel graph-based semi-

supervised learning algorithm will be developed. This algorithm will 

leverage the spatial relationships between defect patterns on the wafer, 

represented as a graph structure. It will exploit both labelled data (known 

defects) and unlabelled data (suspected hidden defects) to achieve high 

accuracy in pinpointing the locations of hidden defects. 

vi. Validation and Results: The effectiveness of the proposed algorithm will 

be validated by presenting the results on comprehensive wafer maps, along 

with supporting statistical analysis. This will demonstrate the algorithm's 

ability to uncover previously undetected defects. 
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Figure 3.1: Methodology overall process flow 

3.2 Data Acquisition 

3.2.1 Types and Sources of Data 

This project is collaborated with NXP Semiconductor Malaysia for sharing the 

knowledge and work, thus the dataset is provided by the probe department. The dataset 

is the collection of the wafers tested and analysed by the team from the Probe Department. 

The data collected from NXP are as follows: 

i. AOI Machine Report: The Automated Optical Inspection (AOI) Machine 

employs high-resolution image capture and computer vision algorithms to 

scan and analyse the wafer surface. The report provides valuable 

information and images of defects detected by the AOI machine during the 

manufacturing process. This data is crucial for discovering visible test-

induced defects that may have occurred during testing. The report is in text 

format and contains detailed information about the location, size, and type 

of defects classified by the AOI machine. The primary focus of this data is 
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to utilize the defect location data to gain insights into the distribution and 

patterns of test-induced defects. 

ii. Physical Test Configurations & Results: The Physical Test 

Configurations & Results data encompasses information about the test 

configurations used for each wafer and the corresponding test results. As 

mentioned in Chapter 2, each test performed on a wafer is based on a 

configuration file designed by test engineers in the plant. These 

configuration files contain crucial details such as the path and direction of 

movement for the prober and the number of dies tested simultaneously. The 

configuration files are accessible in Excel format, along with the test results. 

By extracting information from the Excel files, we can correlate the index 

of each die in the test with the corresponding AOI defect data. 

iii. Previous Cases of Analysis on Hidden Defects: The third type of data 

collected pertains to previous cases of hidden defects that were discovered 

through manual analysis by engineers. This analysis, documented in both 

Excel and PowerPoint formats, provides valuable insights into the number 

of hidden defects found and the time spent on manual inspection. The 

analysis is typically conducted after the rejection and return of the product 

by the customer. This data serves as a validation benchmark for the 

developed algorithm. It's important to note that the number of hidden defect 

cases is relatively small compared to fabrication defects, as test-induced 

defects occur less frequently. 
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3.2.2 Data Centralization and Script Development 

During the data collection phase, a significant challenge encountered was the disparate 

storage of required information across different databases. To address this challenge, a 

custom script was developed to centralize the information for each wafer. This script 

efficiently merges data from the AOI report and test configuration data into a unified 

database. The same database is utilized to store the analysis results, which facilitates 

further trend visualization and in-depth analysis. 

3.3 Data Preprocessing 

3.3.1 Data Cleaning 

The report for each wafer generated by the AOI machine is a text file format and 

contains the information about each wafer and its defects, such as the defect class type 

and location. The first step was to read this data in the software and convert the lines 

written by the AOI machine into data types to be used later in the algorithms. 

Besides the conversion, the data needed to be cleaned before being able to use it in the 

analysis. The report for each wafer contained a duplication of defects (due to the recipe 

defined for the AOI machine). Therefore, after converting, the software cleans the dataset 

to ensure no duplication is in the list of defects, as this would cause huge errors in finding 

the repeated defects, and consequently root-causing and hidden defect identification. 

3.3.2 Conversion 

As mentioned earlier, the data collected from AOI machine, and test configurations 

are from two different databases, and consequently required to have correlation 

preprocessing, to ensure the data acquired from both sources are in the same coordinates. 
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However, this correlation is challenging due to the data originating from different 

databases and the coordinate systems used for plotting the defect locations and die indices 

being different. 

To overcome these challenges, two main steps were undertaken: 

i. Rotating the AOI Data to Match the Physical Test Data Direction: The 

first step involved rotating the AOI data to ensure that it was aligned in the 

same direction as the Physical Test Data. This was achieved by comparing 

the direction information from the Physical Test Data and the AOI machine. 

A mapping was created to associate the direction strings with their 

corresponding direction angles in degrees: 

UP → 0° 

RIGHT → 90° 

DOWN → 180° 

LEFT → 270° 

Let the direction angle for the physical test data be represented as 𝜃𝑇𝑒𝑠𝑡𝐷𝑎𝑡𝑎, 

and the direction angle for the AOI machine be represented as 𝜃𝐴𝑂𝐼. 

The required rotation degree, 𝜃𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛, was calculated as the difference 

between 𝜃𝐴𝑂𝐼 and 𝜃𝑇𝑒𝑠𝑡𝐷𝑎𝑡𝑎: 

𝜃𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛  =  𝜃𝐴𝑂𝐼  −  𝜃𝑇𝑒𝑠𝑡𝐷𝑎𝑡𝑎 (3.1) 

If 𝜃𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 was non-zero, the AOI wafer map coordinates (𝑥𝐴𝑂𝐼 , 𝑦𝐴𝑂𝐼) and 

defect coordinates (𝑥𝐷𝑒𝑓𝑒𝑐𝑡 , 𝑦𝐷𝑒𝑓𝑒𝑐𝑡) were rotated accordingly using the 

following transformations: 
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• For 𝜃rotation =  ±90°: 

𝑥AOI_Rotated  =  𝑦AOI_Rotated (3.2) 

𝑦AOI_Rotated  =  −𝑥AOI_Rotated (3.3) 

𝑥Defect_Rotated  =  𝑦𝐷𝑒𝑓𝑒𝑐𝑡 (3.4) 

𝑦𝐷𝑒𝑓𝑒𝑐𝑡_𝑅𝑜𝑡𝑎𝑡𝑒𝑑  =  −𝑥𝐷𝑒𝑓𝑒𝑐𝑡 (3.5) 

• For 𝜃rotation =  ±180°: 

𝑥AOI_Rotated  =  −𝑥AOI (3.6) 

𝑦AOI_Rotated  =  −𝑦AOI (3.7) 

𝑥Defect_Rotated  =  −𝑥Defect (3.8) 

𝑦Defect_Rotated  =  −𝑦Defect (3.9) 

• For 𝜃rotation =  ±270°: 

𝑥𝐴𝑂𝐼_𝑅𝑜𝑡𝑎𝑡𝑒𝑑  =  −𝑦𝐴𝑂𝐼 (3.10) 

𝑦𝐴𝑂𝐼_𝑅𝑜𝑡𝑎𝑡𝑒𝑑  =  𝑥𝐴𝑂𝐼 (3.11) 

𝑥𝐷𝑒𝑓𝑒𝑐𝑡_𝑅𝑜𝑡𝑎𝑡𝑒𝑑  =  −𝑦𝐷𝑒𝑓𝑒𝑐𝑡 (3.12) 

𝑦𝐷𝑒𝑓𝑒𝑐𝑡_𝑅𝑜𝑡𝑎𝑡𝑒𝑑  =  𝑥𝐷𝑒𝑓𝑒𝑐𝑡 (3.13) 

After rotating the AOI data, it was aligned in the same direction as the 

Physical Test Data. 

ii. Transforming the AOI Coordinate System to Match the Physical Test 

Data Coordinate System: After rotating the AOI data, the next step was to 

transform its coordinate system to match the Physical Test Data coordinate 

system. This was achieved by finding the top-right coordinates of the wafer 

map in both the AOI and Physical Test Data, and then calculating the 
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translation vector required to align them. For the AOI data, let the top-right 

coordinates be represented as (𝑥𝐴𝑂𝐼_𝑇𝑅, 𝑦𝐴𝑂𝐼_𝑇𝑅). For the Physical Test Data, 

let the top-right coordinates be represented as (𝑥TestData_TR, 𝑦TestData_TR). 

The translation vector, (∆𝑥, ∆𝑦), was calculated as: 

∆𝑥 =  𝑥TestData_TR − 𝑥𝐴𝑂𝐼_𝑇𝑅 (3.14) 

∆𝑦 =  𝑦TestData_TR − 𝑦𝐴𝑂𝐼_𝑇𝑅 (3.15) 

If the translation vector was non-zero, the rotated AOI wafer map 

coordinates (𝑥𝐴𝑂𝐼_𝑁𝑒𝑤, 𝑦𝐴𝑂𝐼_𝑁𝑒𝑤) and defect coordinates 

(𝑥𝐷𝑒𝑓𝑒𝑐𝑡_𝑁𝑒𝑤, 𝑦𝐷𝑒𝑓𝑒𝑐𝑡_𝑁𝑒𝑤) were translated using the following 

transformations: 

𝑥𝐴𝑂𝐼_𝑁𝑒𝑤  =  𝑥𝐴𝑂𝐼_𝑅𝑜𝑡𝑎𝑡𝑒𝑑 + ∆𝑥 (3.16) 

𝑦𝐴𝑂𝐼_𝑁𝑒𝑤  =  𝑦𝐴𝑂𝐼_𝑅𝑜𝑡𝑎𝑡𝑒𝑑 + ∆𝑦 (3.17) 

𝑥𝐷𝑒𝑓𝑒𝑐𝑡_𝑁𝑒𝑤  =  𝑥𝐷𝑒𝑓𝑒𝑐𝑡_𝑅𝑜𝑡𝑎𝑡𝑒𝑑 + ∆𝑥 (3.18) 

𝑦𝐷𝑒𝑓𝑒𝑐𝑡_𝑁𝑒𝑤  =  𝑦𝐷𝑒𝑓𝑒𝑐𝑡_𝑅𝑜𝑡𝑎𝑡𝑒𝑑 + ∆𝑦 (3.19) 

By performing these two steps, the AOI data was rotated and translated to match the 

direction and coordinate system of the Physical Test Data, respectively. This enabled 

accurate correlation of the die indices from the Physical Test Data with the defect 

locations from the AOI machine, as they were now in the same coordinate space and 

aligned in the same direction. 

3.4 Detection of Visible Test-Induced Defects 

Since we are collecting our wafer map and defects information from the AOI machine, 

we need to come up with another procedure to find the test-induced defects than 
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mentioned in (Cheng et al., 2021). As mentioned in the 2nd chapter, the AOI machine is 

capable of detecting some of the test-induced defects, however as it goes through the 

general classification, it is just classified as a defect and not specifically a test-induced 

one. 

As mentioned in the literature review, one of the primary indicators of test-induced 

defects is their repetitive nature, as a defective probe pin on the test card can cause the 

same defect pattern to be replicated across different die locations.  Therefore, one of the 

main ways of identifying the test-induced defects detected by the AOI machine is to find 

the repeated defects on the wafer. The main characteristic to define the existence of 

repeated defects is to have multiple defects on the same area on the dies in the wafer. To 

achieve this, we define the area on each die, where the size of each area which is also 

known as the zone is defined by the AOI report. Figure 3.2 shows how the die is divided 

into zones. 

 

Figure 3.2: Zone division on a Die 
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In order to find the repeated defects, AOI defect coordinate data is fed into these zones. 

The more defects that fall at a certain location when stacked into a heatmap will produce 

red zones that are an early indicator of a repeated defect. Figure 3.3 visualizes how the 

zones are turned into a heatmap based on the density of defects in each zone. The 

threshold for identifying the zone as indicator of repeated defect, varies for each device, 

based on the number of dies in the wafer. 

 

Figure 3.3: Die Heatmap 

The more defects that fall at a certain location when stacked into a heatmap will 

produce red zones that are an early indicator of a repeated defect. This is the very first 

step in identifying the hidden defects, as we need to identify the faulty wafer first. 

3.5 Defect Clustering 

Once the test-induced defects are identified, they can be root-caused to find the pattern 

between them and their relationship with the test configuration, to confirm if it is caused 

by the probe card.  
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Each test contains a number of rounds of testing multiple dies at once, which is known 

as stepping. On each round, the probe card will analyse the dies based on the index 

configured in the configuration file. This is known as site number. 

To analyse the relationship between the defects and the site numbers of steppings, all 

the steppings that a probe card does for a wafer shall be analysed. However, this would 

not only take a long processing time to achieve but also require more computation power. 

To reduce and optimize this process, a clustering algorithm can be used to identify the 

area of interest on the wafer, to reduce the size, thus reducing the number of steppings 

going to be analysed for the comparison. Cluster algorithms’ goal is the divide a dataset 

into groups of similar objects that are called clusters. While these algorithms are 

extremely helpful in finding similar defect types and shapes in the wafer map, they are 

also used in removing the unwanted defects in the wafer map known as the noise. 

To achieve this task, various types of clustering algorithms can be applied. (Djouzi & 

Beghdad-Bey, 2019; Ezugwu et al., 2022), where each is based on the type of technique 

chosen for finding the similarities. As the defects do not have a preset number of groups 

they can join and with the characteristics of the defects, only a few algorithms were 

selected to be tested based on the review done by (Mahdi et al., 2021) as shown in Figure 

3.4. 
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Figure 3.4: The chosen algorithms for clustering  
(Mahdi et al., 2021) 

Two main parameters can be given to the clustering algorithms:  

i. The distance between the two defects to form a cluster is the same as the 

stepping size. 

ii. There must be at least two defects in a neighbourhood to define them as a 

cluster.  

To evaluate the effectiveness of different algorithms, a subset of wafers exhibiting 

repeated defects was subjected to multiple clustering techniques. Among the algorithms 

considered, Clustering In Quest (CLIQUE) (Jain & Dubes, 1988), Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN) (Ester et al., 1996) emerged as the 

most suitable choice for this specific application while Ordering Points To Identify the 

Clustering Structure (OPTICS) (Ankerst et al., 1999) was close. 

To evaluate the effectiveness of different algorithms, a subset of wafers exhibiting 

repeated defects was subjected to multiple clustering techniques. Among the algorithms 

considered, DBSCAN emerged as the most suitable choice for this specific application. 

Figure 4 shows an example of a comparison between DBSCAN (b) and non-density-

based algorithms like K-Means (c) and Louvian (d) on a wafer map with defects (a). 
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DBSCAN effectively groups nearby defects into a single cluster, represented by points of 

the same colour. In contrast, K-Means and Louvian tend to split defects into multiple 

smaller clusters, assigning different colours to defects that are likely related. It can be 

seen that DBSCAN consolidates related defects into a single cluster, unlike non-density-

based algorithms that fragment them, which increases computational complexity in 

subsequent steps. Also, due to the nature of the algorithm, DBSCAN doesn’t require the 

number of clusters to be predefined as input, which makes it particularly suited for 

handling varying defect patterns. Additionally, DBSCAN’s noise cancellation capability 

filters out irrelevant defects misclassified by AOI systems, enhancing the accuracy of 

clustering. These attributes make DBSCAN the most suitable algorithm for this 

application. 
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Figure 3.5: Comparison of clustering algorithms for defect detection on a 
specific wafer: (a) Original defects; (b) DBSCAN; (c) K-Means; (d) Louvain.   

 

With the chosen algorithm and clustering done, now the area of interest must be 

identified. As the goal of this study is to find the test-induced hidden defects, and as we 

know that test-induced defects are repeated throughout the wafer, it is considered that the 

area between two clusters is an indicator of having repeated defects. To ensure there’s no 

hidden defect being missed, we consider a margin to form the area of interest. The choice 

of clustering margins was determined empirically based on the observed spatial 

distribution of defects in the data. Specifically, the margins were set to double the height 

  

(a) Defects (b) DBSCAN 

  

(c) K-Means (d) Louvian 
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and width of defect clusters to ensure the inclusion of all potential test-induced defect 

areas. This choice balances sensitivity and specificity: narrower margins risk excluding 

significant defect regions, while overly broad margins could incorporate unrelated noise. 

Thus, to define the entire area on the wafers, boundaries of defined based on the 

location of clusters with a margin of double height/width: 

𝑦max = 𝑦max_cluster  +  (2 ×  ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑎𝑟𝑒𝑎) (3.20) 

𝑦𝑚𝑖𝑛 = 𝑦𝑚𝑖𝑛_cluster  −  (2 ×  ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑎𝑟𝑒𝑎) (3.21) 

𝑥max = 𝑥max_cluster +  (2 ×  𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑎𝑟𝑒𝑎) (3.22) 

𝑥min = 𝑥min_cluster −  (2 ×  𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑎𝑟𝑒𝑎) (3.23) 

 

3.6 Root-Cause Analysis 

After finalizing the area of interest, the root-cause analysis aims to identify the site-

number with the highest density of collisions with the defects. This site-number is 

considered the root cause of the test-induced defects, as concluded in (Cheng et al., 2021) 

And will be used as part of the label propagation algorithm structure in the next step. As 

mentioned earlier, the test-induced defects are repeatedly happening throughout the 

wafer. Therefore, we need to figure out the pattern of repeated defects through the site 

number representing the repeated defects. This will help us identify the potential 

coordinates of hidden defects. 

The movement of the prober around the wafer for the testing is also called stepping 

data. The process involves iterating through the stepping data, with each stepping 

Univ
ers

iti 
Mala

ya



61 
 

 

representing the coordinates of each die and the site-number assigned to that die during 

the stepping process. 

Let  𝐷 = {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑁𝐷  be the set of defect locations, where (𝑥𝑖, 𝑦𝑖) represents the 

coordinates of the 𝑖th defect and 𝑁𝐷 is the total number of defects.  

Let 𝑆 = {(𝑥𝑗,𝑘 , 𝑦𝑗,𝑘, dut𝑘) ∣ 𝑗 = 1, … , 𝑁𝑆; 𝑘 = 0, … , 𝑀 − 1} be the set of stepping 

coordinates, where 𝑁𝑆 is the total number of steppings, 𝑀 is the number of sites tested in 

each stepping, (𝑥𝑗,𝑘, 𝑦𝑗,𝑘) represents the coordinates of the 𝑘th site in the 𝑗th stepping, and 

dut𝑘 is the site-number associated with the 𝑘th position in each stepping. The following 

lists are initiated for each site-number dut𝑘 to hold their records: 

i. 𝑅dut𝑘
= ∅: an empty list to store defect locations that collide with the site-

number. 

ii. 𝑇dut𝑘
= ∅: an empty list to store stepping coordinates and their collision 

status for the site-number. 

The area of interest within the clustering parameters based on (1) will be defined as: 

A = {(𝑥, 𝑦) ∣ 𝑥min ≤ 𝑥 ≤ 𝑥max, 𝑦min ≤ 𝑦 ≤ 𝑦max} (3.24) 

The data analysis process involves the following steps for each stepping coordinate 

(𝑥𝑗,𝑘, 𝑦𝑗,𝑘, dut𝑘) ∈ S: 

i. check if it falls within the area of interest 𝐴, otherwise skip the stepping: 

(𝑥𝑗,𝑘, 𝑦𝑗,𝑘) ∈ 𝐴 ⟺ 𝑥min ≤ 𝑥𝑗 ≤ 𝑥max ∧ 𝑦min ≤ 𝑦𝑗 ≤ 𝑦max (3.25) 
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ii. If the stepping coordinate falls within 𝐴, check for collisions of site-number 

coordinates with defect locations: 

𝑖𝑠𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑛𝑔𝑗,𝑘 {
1, ∃(𝑥𝑖, 𝑦𝑖) ∈ 𝐷 such that (𝑥𝑖, 𝑦𝑖) = (𝑥𝑗,𝑘, 𝑦𝑗,𝑘) 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                               
 (3.26) 

iii. If 𝑖𝑠𝐶𝑜𝑙𝑙𝑖𝑑𝑖𝑛𝑔𝑗,𝑘 = 1, update 𝑅dut𝑘
 with relative defect location. 

iv. Update 𝑇dut𝑘
 with collision status. 

After processing all stepping coordinates, the site-number dut𝑘
∗  with the longest list 

𝑅dut𝑘
∗  is considered the root cause of the test-induced defects: 

Figure 3.5 shows an example of how the heatmap of site-number determines the faulty 

site-number, where the site-number #28 has 20 collisions with test-induced defects. This 

is a clear indication of the faulty site number. Therefore, coordinates of site-number #28 

are the potential for hidden defects. 
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Figure 3.6: Site-number heatmap 

3.7 The Proposed Methodology: Improved Graph-Based Semi-Supervised 

Learning for Defect Detection 

With the knowledge of the root-cause, this work proposed a novel graph-based semi-

supervised learning (GSSL). The proposed approach consists of two key steps: 1) Graph 

Modelling and 2) Label Propagation. By leveraging the structural information captured 

by the graph and requiring only a limited amount of labelled data, the algorithm 
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propagates defect information to unlabelled dies, effectively identifying hidden defects. 

Figure 3.6 shows a process flowchart of how the hidden defects are identified. 

 

Figure 3.7: Proposed novel GSSL flowchart 

3.7.1 Graph Modelling 

In this step, we construct an undirected graph 𝐺 = (𝑉, 𝐸), where 𝑉 represents the set 

of nodes (dies) and 𝐸 represents the set of edges connecting the nodes. Each node 𝑣𝑖 ∈ 𝑉 

is associated with a feature vector 𝑥𝑖 and a label 𝑦𝑖 ∈ 0,0.5,1, representing defective, 

potential, and good dies, respectively. The edges 𝑒𝑖𝑗 ∈ 𝐸 connect nodes 𝑣𝑖 and 𝑣𝑗  based 

on their site number information obtained from the root-cause analysis. To incorporate 

domain-specific knowledge, we introduce weighted edges that capture the relative 

importance of different connections in the context of semiconductor wafer testing. The 

edge weights are denoted as 𝑤𝑖𝑗 and are initialized based on three parameters: 𝑤𝐷, 𝑤𝐺, 

and 𝑤𝑃, which correspond to the weightage of defective, good, and potential dies, 

respectively. These weights are learned during the training stage to optimize the graph 

structure for accurate hidden defect detection. The graph construction process can be 

formalized as follows: 

Univ
ers

iti 
Mala

ya



65 
 

 

𝑉 = {𝑣𝑖|𝑖 = 1,2, … , 𝑁}  (3.27) 

where 𝑁 is the total number of dies. 

𝐸 = {𝑒𝑖𝑗|𝑣𝑖, 𝑣𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗} 

 

(3.28) 

where 𝑒𝑖𝑗 is an edge connecting nodes 𝑣𝑖 and 𝑣𝑗 . The edge weights are initialized as: 

𝑤𝑖𝑗  =  {

𝑤𝐷 ,    𝑖𝑓   𝑦𝑖  =  0  𝑜𝑟  𝑦𝑗  =  0 

𝑤𝐺 ,    𝑖𝑓   𝑦𝑖  =  1  𝑜𝑟  𝑦𝑗  =  1

𝑤𝑃 ,    𝑖𝑓   𝑦𝑖  =  0.5  𝑜𝑟  𝑦𝑗  =  0.5
 

(3.29) 

 

These weights are critical in determining the influence of each type of die on its 

neighbours, reflecting the likelihood of defect propagation. 

This graph construction approach differs from existing GSSL methods by 

incorporating domain-specific knowledge through weighted edges and considering the 

spatial proximity and site number information obtained from the root-cause analysis. 

Additionally, the proposed method introduces an adaptive graph refinement mechanism 

during the label propagation step, which will be discussed next. 

3.7.2 Label Propagation 

The label propagation step aims to propagate the label information from labelled nodes 

(good and defect dies) to unlabelled nodes (potential dies) iteratively until convergence. 

This approach is designed to identify hidden defects in semiconductor wafers by 

iteratively updating the classifications of potential dies based on their neighbours. This 

process leverages the graph structure constructed in the previous step and propagates 

labels through the network until convergence. At the start, each node 𝑣𝑖 in the graph 𝐺 is 
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assigned an initial label 𝑦𝑖. These initial labels are based on the root-cause analysis. The 

label assignment follows a normalized range between 0 and 1, where: 

• 𝑦𝑖 = 0 for defective dies, denoting nodes with confirmed defects. 

• 𝑦𝑖 = 0.5 for potential dies, indicating nodes with uncertain status. 

• 𝑦𝑖 = 1 for good dies, representing nodes with confirmed normal functionality. 

This normalized range allows for intuitive interpretation, where values closer to 1 

indicate higher likelihood of normal functionality, while values closer to 0 suggest higher 

probability of defects. The initial state of the labels can be represented as: 

𝑦𝑖
(0)

= 𝑐𝑖 (3.30) 

where 𝑐𝑖 denotes the class of node 𝑖 at the initial stage. 

The label propagation process updates the label of each potential die iteratively. 

During each iteration, the label of a node is updated based on the weighted average of its 

neighbours’ labels. The update rule for the label propagation is given by: 

𝑦𝑖
(𝑡+1)

=
∑ 𝑤𝑖𝑗𝑦𝑗

(𝑡)
𝑗∈𝒩(𝑖)

∑ 𝑤𝑖𝑗𝑗∈𝒩(𝑖)
 

(3.31) 

where: 

• 𝑦𝑖
(𝑡+1) is the updated label of node 𝑖 at iteration 𝑡 + 1, 

• 𝒩(𝑖) denotes the set of neighbours of node 𝑖, 

• 𝑤𝑖𝑗 is the weight of the edge connecting nodes 𝑖 and 𝑗, 

• 𝑦𝑗
(𝑡) is the label of the neighbouring node 𝑗 at iteration 𝑡. 
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The iterative process continues until the labels of the nodes converge, meaning that the 

change in labels between iterations falls below a predefined threshold 𝜖. The convergence 

criterion is mathematically defined as: 

|𝑦𝑖
(𝑡+1)

− 𝑦𝑖
(𝑡)

| < ϵ ∀𝑖 (3.32) 

Once convergence is achieved, the final labels indicate the probability of each potential 

die being a hidden defect.  

Figure 3.7 shows the graphical representation of label propagation. Figure 3.7 (a) 

shows the initial state of each node, with weighted edges. Figure 3.7 (b) shows the nodes 

classification after 1 iteration, in which the potential nodes that were initially identified 

as grey, get new classification based on the weightage of edge and classes of neighbours. 

This figure shows the effect of weighted edge as the right potential node is more blue than 

red, due to higher weightage of the blue node’s edge.  
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(a) Initial State 

 

(b) After 1 iteration 

Figure 3.8: Label Propagation example 
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3.8 Experimental Setup 

To evaluate the effectiveness of the proposed graph-based semi-supervised learning 

algorithm for defect detection in semiconductor wafers, we collaborated with NXP 

Semiconductor Malaysia and conducted experiments on real product data that had already 

been analysed by the probe team. For data collection, we utilized both the prober and 

automated optical inspection (AOI) systems from the production line, as illustrated in 

Figure 3.8 and Figure 3.9. This comprehensive data acquisition approach allowed us to 

capture both electrical test results from the prober and visual & statistical defect and wafer 

map information from the AOI, providing a holistic view of the wafer condition. 
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Figure 3.9: AOI Machine at NXP Semiconductor Malaysia 
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Figure 3.10: Prober Machine at NXP Semiconductor Malaysia 

The dataset consists of wafer maps with labelled defective dies, non-defective dies, 

and unlabelled dies, along with the test configuration information, including site numbers 

and relevant test parameters. Table 3.1 shows the information about the dataset. The 

experiments aim to assess the performance of the algorithm in detecting hidden defective 

dies that may have remained undetected by the manual analysis performed by the probe 

team. For each product category, we divided the wafers into a 60%-40% ratio for training 

and testing, respectively. 
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Table 3.1: Experiment Setup 

Product Category # Dies Sites # Wafers 

PC-1 <2000 16, 28 10 

PC-2 <3000 8, 64, 128 30 

PC-3 <4000 32, 128 10 
 

3.9 Optimization 

We consider the weightage assigned to the edges connecting good dies 𝑤𝐺, defective 

dies 𝑤𝐷, and potential dies 𝑤𝑃 as hyperparameters of the algorithm, as they play a crucial 

role in determining the algorithm's behaviour and performance. To optimize the 

performance of our proposed graph-based semi-supervised learning algorithm for wafer 

defect detection, we conducted an evaluation on these hyperparameters. 

We designed four cases of normalized combinations for these hyperparameters to test 

wafers as shown by Table 3.2. These four cases were strategically chosen to represent a 

spectrum of weight distributions that align with our understanding of defect propagation 

in semiconductor wafers. Case 1 serves as a baseline where all die types are equally 

weighted, providing a neutral starting point. Cases 2 through 4 progressively decrease the 

weights of good 𝑤𝐺,  and potential 𝑤𝑃 , dies relative to defective dies 𝑤𝐷, reflecting the 

hypothesis that defective dies have the strongest influence on their neighbours. This 

gradual reduction allows us to assess the impact of increasingly emphasizing defective 

dies in the model. Importantly, these cases were not arbitrarily chosen but were informed 

by industry expertise and initial experimental results. While a more exhaustive search 
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could potentially yield marginally better results, our preliminary studies indicated that 

these four cases effectively capture the most significant variations in model performance. 

The choice of these specific hyperparameter combinations is rooted in the physical 

characteristics of semiconductor wafer defects. In a typical wafer, defective dies tend to 

have a stronger influence on their neighbors compared to good or potential dies. This is 

because defects often propagate to adjacent dies due to the nature of the manufacturing 

process and the proximity of the dies on the wafer. By assigning higher weights to the 

edges connected to defective dies, the algorithm can more effectively capture this defect 

propagation behaviour. The progressive reduction of weights for good and potential dies 

in Cases 2 through 4 allows the model to focus more on the influence of defective dies 

while still considering the information provided by other die types. This approach aims 

to strike a balance between leveraging the most informative connections (i.e., those 

involving defective dies) and maintaining a comprehensive view of the wafer's overall 

defect landscape. By systematically evaluating these hyperparameter combinations, we 

can identify the optimal settings that maximize the algorithm's performance in detecting 

hidden defects, ultimately leading to improved yield and quality control in semiconductor 

manufacturing. 

Table 3.2: Hyperparameter Cases 

Case 𝑤𝐷 𝑤𝐺 𝑤𝑃 

Case 1 1 1 1 

Case 2 1 0.5 0.5 

Case 3 1 0.5 0.25 

Case 4 1 0.33 0.17 
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3.10 Limitations of the Methodology 

While the proposed graph-based semi-supervised learning methodology demonstrates 

promising capabilities in identifying test-induced hidden defects on semiconductor 

wafers, it is important to acknowledge and discuss the limitations inherent in this 

approach. These limitations stem from various factors, including the reliance on AOI 

reports, the complexity of test configurations, and the physical characteristics of the 

prober itself. 

One notable limitation arises from the methodology's dependence on the AOI report as 

the primary source for identifying visible test-induced defects. Although AOI systems 

provide valuable information about defect locations and types, they may not capture all 

relevant defects, especially those that are subtle or fall outside the predefined 

classification criteria. This can lead to an incomplete representation of the defect 

landscape, potentially impacting the effectiveness of the subsequent steps in the 

methodology. 

Another significant challenge stems from the inherent complexity of test configurations 

in semiconductor manufacturing. Modern testing processes often involve intricate 

overstepping patterns, where a single die may be tested multiple times by different site 

numbers. This redundancy can introduce ambiguity in associating defects with specific 

site numbers, complicating the root-cause analysis and the construction of the graph 

model. Overstepping also increases the computational complexity of the methodology, as 

it requires processing a larger volume of test data and handling more complex 

relationships between dies and site numbers. 
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These limitations highlight the need for careful consideration when applying the 

methodology in production environments and suggest potential areas for future 

enhancement. Understanding these constraints is crucial for proper implementation and 

interpretation of the results, particularly in cases where the testing scenario deviates from 

standard configurations. 
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CHAPTER 4: RESULTS & DISCUSSION 

4.1 Detection of Test-Induced defects 

A heatmap based solution has been created that provides the zonal defect density to 

indicate the location on the die where the most defects appeared. Based on the 

characteristics of the wafer, the die is divided into zones. The green indicates no defects 

have appeared on this section of the die throughout the wafer. Blue indicates that there’s 

only one defect that appeared on this location of the die. Red demonstrated the location 

of the die with the highest number of defects that are usually more than 3.  

Figure 4.1 shows different sets of heatmaps that appeared during the analysis. The axes 

in these heatmaps represent the physical dimensions of a semiconductor die in 

micrometres, with the x-axis showing the width and the y-axis showing the height. While 

the visual representation of the heatmaps may appear in different aspect ratios due to the 

visualization software's screen adaptation, the underlying coordinate system and 

measurements remain consistent. Each cell in the heatmap corresponds to a specific zone 

on the die, with the colour coding indicating the frequency of defects in that particular 

location. 

Figure 4.1 (a) represents example of wafers that showed no repeated defects on their 

maps. This could be seen as they have no red indicator on their heatmaps. Figure 4.1 (b) 

shows the example of wafers that has only 1 repeated location on their heatmaps. This is 

not indicative of having only 1 defect, but it shows that all the defects happened on the 

exact same location on the die which is a clear characteristic of test-induced defects. 
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In more complex situations, Figure 4.1 (c) shows examples of devices that have 

multiple locations that have more than one defect frequency on the idea. This is shown 

by a colour range that goes from blue which was the indicator of 1, to red which is the 

indicator of the highest number, resulting in having shades of purple and red that indicate 

the different frequencies on each location. This means that the prober has multiple issues, 

and it could be harder to determine the location of hidden ones as it has a more complex 

pattern. 

This results and the analysis on it have been verified by engineers of NXP 

Semiconductors Malaysia through verification of images of these defects. 

 

(a) No repeated defects 

Figure 4.1: Die Heatmap for Repeated Defect Detection Univ
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(b) 1 Location with a high frequency of defects 

 

(c) Multiple locations with a high frequency of defects 

Figure 4.2, continued: Die Heatmap for Repeated Defect Detection 

 

4.2 Area of Interest on the Wafer Map 

Clustering visualization is developed based on the selected algorithm, and calculation 

is done to indicate the area of interest on the wafer that requires the root-causing and 

identification of hidden defects.  
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Figure 4.2 shows an example of the 3 steps of defining the area of interest on the wafer 

for one of the tested wafers. The axes in these wafer maps represent the spatial coordinates 

of individual dies on the wafer surface. These coordinate systems are referenced relative 

to the wafer's notch position, which serves as a physical orientation marker. While 

different software applications may employ varying coordinate representations based on 

their specific use cases, the methodology presented in this study includes coordinate 

transformation algorithms to ensure consistent alignment and synchronization across 

different environments. This standardization enables accurate correlation of die locations 

across multiple analysis platforms.  

Figure 4.2 (a) indicates the initial wafer map, where the defects are shown in red dots. 

Figure 4.2 (b) shows 2 areas with red background, which is the result of the clustering 

algorithm (DBSCAN) applied on the defects locations. As it can be seen defects are 

categorized into 2 clusters, which indicates the efficiency of DBSCAN in identifying of 

clustering locations. 

Figure 4.2 (c) shows the orange background shape appeared on the wafer map, which 

indicates the area of interest on this wafer map. As it can be seen, it is connecting to 

clusters and giving a margin that is proportional to the width/height of area that the testing 

prober tests on the wafer. 
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(a) Wafer map 

 

(b) Clustering applied 

Figure 4.3: Example of determination of the area of interest on a wafer map 
using clustering. 

 

 

       

        

             

       

              

                

Univ
ers

iti 
Mala

ya



81 
 

 

 

(c) Area of interest developed 

Figure 4.2, continued: Example of determination of the area of interest on a 
wafer map using clustering. 

 

4.3 Root-Causing 

Similar to section 4.1, a heatmap is generated to indicate the root-cause of the repeated 

defects. Figure 4.3 shows examples of the heatmap for the root-causing representing the 

density of defects on each site number for each device. Each heatmap represents the 

collision frequency of site-numbers with defects. The higher the value is in the heatmap, 

the more it indicates that the relative site-numbers are responsible for test-induced defects. 

As mentioned in Chapter 2, the number of dies that are simultaneously getting tested 

by the prober are different for each device.  Figure 4.3 (a) shows the stepping with only 

8 site-numbers. It can be seen in the left heatmap, that the faulty site-number can be 
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identified through the high number of collisions that site-number 2 (10 times) has with 

the defects. 

In other examples illustrated by Figure 4.3 (b), Figure 4.3 (c) and Figure 4.3 (d), we 

can see steppings with 16, 32, 64 and 128 site-numbers. 

It can be seen from the distribution of the collisions among the site-numbers in 

different stepping configurations, that the lower the number of dies getting tested 

simultaneously, the higher the distribution is. It is due to the nature of probing of the 

wafer, that is the prober moves more with a lower number of simultaneous dies, resulting 

in engaging more dies should the prober carry a faulty needle. This could be also 

happening as in the design of the path of the stepping configuration, some of the dies in 

the wafer are getting tasted by multiple stepping, each time assigned with a different site-

number. This, also known as cross stepping makes the pattern of test-induced defects 

more complicated and complex. 
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(a) Stepping with 8 site-numbers 

 

(b) Stepping with 16 site-numbers 

Figure 4.4: Example of Root-Cause Heatmap, displaying defect density across 
different test configurations. 
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(c) Steppings with 32 site-numbers 

Figure 4.3, continued: Example of Root-Cause Heatmap, Example of Root-
Cause Heatmap, displaying defect density across different test configurations. 
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(d) Steppings with high 64 and 128 site-numbers 

Figure 4.3, continued: Example of Root-Cause Heatmap, displaying defect 
density across different test configurations. 

 

4.4 Identifying the Hidden Defects 

To evaluate the performance of our algorithm, we employed standard metrics 

commonly used in classification tasks. Table 4.1 shows the results of each case test for 

each product category. The accuracy is the ability of the model to correctly offer the 

coordinates where the hidden defects are there. 

  

Univ
ers

iti 
Mala

ya



86 
 

 

Table 4.1: Algorithm Evaluation 

Product Case Avg. Accuracy 

PC-1 

Case 1 58% 
Case 2 62% 
Case 3 68% 
Case 4 64% 

PC-2 

Case 1 50% 
Case 2 58% 
Case 3 64% 
Case 4 61% 

PC-3 

Case 1 59% 
Case 2 60% 
Case 3 60% 
Case 4 66% 

 

The results from Table 4.1 demonstrate that our proposed algorithm achieves the goal 

of identifying the hidden test-induced defects for all products. The best performance for 

products with less than 2000 dies is obtained when the defect weight. 𝑊𝐷 is set to 1, the 

good eight 𝑊𝐺 is set to 0.5, and the potential knowledge weight 𝑊𝑃 is set to 0.25. This 

indicates that placing a higher emphasis on the defect edge resulted in better accuracy.  

For PC-1, the algorithm's performance improves steadily from Case 1 to Case 3, with 

accuracy increasing from 58% to 68%, before slightly declining to 64% in Case 4. This 

suggests that for this product category, assigning higher weights to defective dies while 

moderately reducing weights for good and potential dies (Case 3) yields the best results. 

Accuracy in PC-2 wafers follows a similar trend as PC-1, with accuracy increasing 

from 50% in Case 1 to a peak of 64% in Case 3. This pattern confirms the effectiveness 

of the weighting scheme used in Case 3 for products with characteristics of PC-1 and PC-

2. 
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However, that’s not the best combination for PC-3. While accuracy marginally 

improves from Case 1 (59%) to Case 2 (60%), it remains stable in Case 3 before reaching 

its peak of 66% in Case 4. This suggests that a more extreme weighting scheme favouring 

defective dies is most effective for PC-3. 

Through extensive consultation, a minimum acceptable accuracy threshold of 60% 

was established for practical implementation in production environments. This threshold 

was determined based on several factors, including the current manual detection rates, the 

economic implications of false positives and negatives in semiconductor manufacturing, 

and the complexity of detecting hidden test-induced defects that often escape 

conventional inspection methods. The 60% threshold represents a significant 

improvement over existing manual and automated methods for hidden defect detection 

while acknowledging the inherent challenges in identifying defects that gradually lose 

visibility during the testing process. 

It is worth to mention that the iteration of the experiment was also studied, and it varied 

based on the number of sites, as the more site-numbers in a test configuration, result in 

more potential coordinates and consequently more iterations to reach the convergence. 

Figure 4.4 shows one of the experiment results from PC-1. All the possible defects 

after manual inspection have been plotted in blue colour, and some of the defects already 

been detected by AOI (visible test-induced defects) are shown in green colour. The 

remaining which are the hidden defects, are the point of an experiment to see if the 

algorithm could detect them with a combination of edge weights. This experiment 
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indicates the better accuracy of case #3 for this product category. Similarly, one of the 

results from PC-2 and PC-3 are illustrated in Figure 4.5 and Figure 4.6 respectively. 
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Figure 4.5: Experiment for one of the wafers in PC-1, for all 4 cases 
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Figure 4.6: Experiment for one of the wafers in PC-2, for all 4 cases 
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Figure 4.7: Experiment for one of the wafers in PC-3, for all 4 cases 
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4.5 Error Analysis 

While the proposed GSSL algorithm demonstrates promising results in detecting test-

induced hidden defects, achieving a maximum accuracy of 68%, our analysis revealed 

several key scenarios where the method's performance was suboptimal. Understanding 

these limitations is crucial for both practical implementation and future improvements. 

4.5.1 Complex Defect Patterns 

The algorithm's performance degrades when confronted with complex test 

configurations, particularly in scenarios with high site numbers or overlapping stepping 

patterns. This effect was particularly pronounced in cases where a single die location was 

assigned to multiple site numbers across different stepping iterations, as illustrated in 

Figure 12. In this example, the bottom-left region of the wafer shows overlapping 

steppings, causing a number of dies to be associated with multiple site numbers. To 

address this limitation, future work could explore more sophisticated methods for 

calculating and optimizing the weighted edges in the graph model. One potential approach 

is to incorporate additional information, such as the frequency and temporal order of site 

number assignments, into the edge weight calculation process. This could help the 

algorithm better distinguish between the relative importance of multiple site numbers 

assigned to a single die location. 

4.5.2 Physical Probe Card 

The physical nature of wafer testing introduces complexities that challenge our 

detection model. As probe cards degrade during testing, their impact pattern can evolve 

beyond the primary site number location. For example, in several cases from PC-2, we 

observed that a damaged probe needle not only affected its designated test site but also 
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created uncharacteristic defects in neighbouring dies, as it’s shown in Figure 13 (c). These 

secondary defects often lacked the consistent spatial patterns that our algorithm relies 

upon for detection, leading to missed detections. To mitigate this issue, future work could 

focus on enhancing the root-cause analysis stage by incorporating temporal information 

about probe card health. By tracking the degradation of probe cards over time and 

correlating this information with the observed defect patterns, the algorithm could 

potentially adapt its detection strategy to account for the evolving impact of damaged 

probe needles. This could be implemented by maintaining a time-series database of probe 

card performance metrics (e.g., contact resistance, alignment accuracy) and incorporating 

these temporal features into the graph.  

4.5.3 Novel Defect Types: 

The proposed GSSL algorithm relies on defect patterns initially identified by the 

Automated Optical Inspection (AOI) system. Since test-induced defects caused by the 

prober typically follow established patterns, this approach works well in most cases. 

However, proposed method may struggle with novel defect types that the AOI system 

fails to detect. If a completely new defect type is introduced and not detected by the AOI 

system, the algorithm will be unable to identify these defects during the initial graph 

construction stage. To address this limitation, future work could explore the integration 

of Graph Neural Networks (GNNs) into the algorithm. GNNs can learn rich node 

representations by aggregating information from neighboring nodes through multiple 

graph convolution layers. This would enable the detection of previously unseen defect 

patterns by learning complex spatial and topological features directly from the wafer 

graph structure. Hence it would allow the model to identify subtle correlations between 
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defect patterns that may not be apparent through conventional similarity measures. The 

GNN could be trained in a semi-supervised manner on the existing labeled defects while 

simultaneously learning to detect anomalous patterns that deviate from known defect 

distributions. By incorporating GNNs, the algorithm could learn to identify new defect 

types that the AOI system may miss, adapting to evolving defect patterns and improving 

its overall detection accuracy. 

4.6 Comparative Analysis 

In this section, we present a comparative analysis of the proposed method for wafer 

test-induced hidden defect detection against state-of-the-art techniques in graph-based 

semi-supervised learning (GSSL) and wafer defect detection. The analysis focuses on two 

key aspects: (1) test-induced defect detection and root-causing in wafer manufacturing, 

and (2) graph construction and label propagation in GSSL. 

4.6.1 Test-Induced Defect Detection and Root-Causing 

The proposed method addresses the limitations of existing techniques by explicitly 

considering hidden defects with uncertain classifications. By leveraging a graph-based 

approach, the proposed method enables the detection of hidden defects through the 

propagation of information from known defective nodes to potential nodes. The edge 

weighting scheme, based on the defect status, provides informative connections that 

facilitate the identification of hidden defects. In contrast, the methods proposed in (Cheng 

et al., 2021) primarily focus on detecting and diagnosing visible test-induced defects, with 

limited emphasis on hidden defects. The proposed method goes beyond the scope of these 

techniques by specifically targeting hidden defects and utilizing a graph-based approach 

to uncover them. 
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4.6.2 Graph Construction 

Table 4.2 shows the comparison between the proposed method and some of the 

techniques in this context mentioned in literature review.  

Table 4.2: Comparison of Graph Construction Methods 

Method Label 
Information 

Graph Type Topology-
aware 

Adaptive 
Weighting 

Prior 
Knowledge 

Incorporation 
Proposed 
Method 

Supervised Weighted Yes Yes Root-cause 
Analysis 

KNN Unsupervised Unweighted No No No 
b-Matching Unsupervised Unweighted No No No 

LNP Unsupervised Weighted No No No 
GBILI Supervised Weighted No No Label 

Information 
RGCLI Supervised Weighted No No Label 

Information 
 

The proposed method distinguishes itself from other graph construction techniques by 

leveraging supervised label information, domain-specific knowledge, and an adaptive 

weighting mechanism to create a weighted, topology-aware graph tailored to the 

semiconductor wafer hidden defect detection problem. While KNN-based, b-Matching, 

and LNP methods are unsupervised and construct graphs based on general approaches 

such as k-nearest neighbours, optimization, or linear neighbourhood, the proposed 

method incorporates label information (0, 0.5, 1) and generates edges based on site 

number, which is specific to the semiconductor wafer domain. GBILI and RGCLI utilize 

label information but do not incorporate domain-specific weights. In contrast, the 

proposed method assigns weights (𝑤𝐷, 𝑤𝐺, 𝑤𝑃) to the edges and adapts these weights 

during the iterative label propagation process to optimize the graph structure for accurate 
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hidden defect detection. Furthermore, the proposed method is topology-aware, 

considering the spatial arrangement of dies on the wafer, and incorporates prior 

knowledge from root-cause analysis to guide the graph construction process. 

4.6.3 Label Propagation 

The proposed method for identifying hidden defects in semiconductor wafers achieves 

a time complexity of 𝑂(𝑘|𝐸|), where 𝑘 is the number of iterations and |𝐸| is the number 

of edges in the graph. This complexity arises from the iterative label propagation process, 

which updates each node's label based on its neighbours’ weighted average in each 

iteration. The algorithm's efficiency stems from its targeted approach, focusing only on 

suspicious site numbers and leveraging the typically sparse nature of wafer graphs. A 

comparison between proposed method and the traditional learning approaches is shown 

by Table 4.3.  

Table 4.3: Comparison of Label Propagation Methods 

Method Learning 
Setting 

Label 
Clamping 

Time 
Complexity 

Targeted 
Propagation 

Per-Node 
Convergence 

Weighted 
Propagation 

Proposed 
Method Transductive 

Partial 
(good/ 

defective) 
𝑂(𝑘|𝐸|) Yes Yes Yes 

GRF Transductive Yes 𝑂(|𝑉|2) No No Yes 
LGC Transductive No 𝑂(|𝑉|2) No No Yes 
SLP Transductive No 𝑂(|𝑉|2) No No Yes 

 

In contrast to our method, traditional graph-based semi-supervised learning 

approaches such as GRF, LGC, and SLP exhibit a time complexity of 𝑂(|𝑉|2),where |𝑉| 

is the number of nodes, due to their matrix operations on the full graph. The proposed 

method's lower complexity translates to significant performance gains for large wafers, 
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especially when |𝐸|  <<  |𝑉|2. Beyond computational efficiency, the method introduces 

several key advantages: targeted propagation, per-node convergence checks, and domain-

specific weighted propagation (𝑤𝐷 , 𝑤𝐺 , 𝑤𝑃). These features, absent in GRF, LGC, and 

SLP, allow for more nuanced and context-aware label propagation. While maintaining a 

Transductive nature like its counterparts, the proposed approach's adaptive weighting 

scheme incorporates crucial domain knowledge about semiconductor defects, in contrast 

to the uniform weighting in traditional methods. 

Table 4.4: Quantitative Comparison of Label Propagation Methods 

Method Product Category Avg. Accuracy Avg. Sensitivity 

Proposed Method 
PC-1 68% 64% 
PC-2 64% 63% 
PC-3 66% 64% 

GRF 
PC-1 46% 55% 
PC-2 46% 53% 
PC-3 44% 54% 

LGC 
PC-1 58% 60% 
PC-2 56% 57% 
PC-3 55% 58% 

SLP 
PC-1 60% 60% 
PC-2 55% 58% 
PC-3 61% 66% 

 

Table 4.4 presents a quantitative comparison of the proposed label propagation method 

against other methods mentioned in Table 4.3 across three product categories (PC-1, PC-

2, and PC-3). The performance is evaluated using two metrics of average accuracy and 

average sensitivity. The proposed method consistently outperforms the other approaches 

in terms of average accuracy, achieving 68%, 64%, and 66% for PC-1, PC-2, and PC-3, 

respectively. This demonstrates the effectiveness of the proposed method in correctly 
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identifying test-induced hidden defects across various product categories. While the 

proposed method maintains a competitive edge in average sensitivity, ranging from 63% 

to 64%, it is worth noting that SLP exhibits slightly higher sensitivity for PC-3 at 66%. 

This suggests that SLP may be more effective in detecting true positive hidden defects 

for this specific product category. However, considering the overall performance across 

all product categories and metrics, the proposed method demonstrates a clear advantage, 

striking a balance between accuracy and sensitivity. 

The comparative analysis highlights the novelty and effectiveness of the proposed 

method in addressing the challenges of wafer test-induced hidden defect detection. By 

incorporating domain-specific knowledge, focusing on potential nodes with uncertain 

classifications, and leveraging a graph-based approach with informative edge weights, 

the proposed method offers a solution for detecting hidden defects in wafer testing. This 

approach has the potential to significantly improve the accuracy and efficiency of wafer 

defect detection and root-causing, ultimately leading to enhanced yield and quality in 

semiconductor manufacturing. 

4.7 Solution Implementation 

For the purpose of data integration, pre-processing, and detection of visible test-

induced defects, root-causing and identification of hidden defects, a stand-alone software 

has been created from scratch using Flutter framework which is an open-source 

framework by Google for building natively compiled, multi-platform applications from a 

single codebase, based on Dart language. Figure 4.7 illustrates the high-level components 

and their relationship within the architecture of the developed software. 

Univ
ers

iti 
Mala

ya



99 
 

 

 

Figure 4.8: Basic Structural Representation of Developed Software 

4.7.1 Pre-Processing in Developed Software 

Figure 4.8 shows aligning confirmation developed within the software, for AOI and 

Physical Test Data together with rotation and translation along with offset. As can be seen 

from Figure 4.8, the wafer map generated by AOI and Physical Test Data does not match 

the same coordinates, even after rotation and translation. Therefore, it’s been designed to 

have an extra offset to adjust the wafer maps together. 
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Figure 4.9: Alignment Confirmation Between AOI and Physical Test Data 

4.7.2 Root-Causing and Hidden Defect Identification in Developed Software 

In the developed software, engineers can view a predicted list of potential defects that 

are induced by the test process, alongside with root-causing of the faulty site-number. 

The only requirement for analyzing and visualizing is to load the AOI report from the 

server and select the respective Physical Test Data report. 

Figure 4.9 presents a screenshot of the developed software, where the engineers are 

enabled to have the quick look on the root-cause analysis on the left, and the identified 

coordinates of potential defects on the right, all within few seconds of loading AOI report. 

Univ
ers

iti 
Mala

ya



101 
 

 

 

Figure 4.10: Screenshot of Developed Software for Root-Causing and 
Identification of Hidden Defects 

 

4.8 Extending to Other Domains and Applications 

The algorithm's fundamental approach to pattern recognition and defect detection 

shows promise for adaptation to various manufacturing and quality control scenarios. 

Future work should investigate the algorithm's applicability to different industries and 

inspection challenges, such as electronic component manufacturing, printed circuit board 

inspection, or precision engineering. This research direction would focus on enhancing 

the algorithm's flexibility to handle diverse defect types, varying spatial patterns, and 

different inspection requirements while maintaining its core advantages in semi-

supervised learning and minimal labelling requirements. 
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CHAPTER 5: CONCLUSION 

5.1 Conclusion 

In conclusion, this study has successfully fulfilled its primary objectives in addressing 

the challenge of detecting test-induced hidden defects in semiconductor wafers. First, 

through a comprehensive investigation of the relationship between defect occurrence and 

test configuration, the research unveiled underlying patterns that contribute to the 

manifestation of hidden defects. This insight laid the foundation for the development of 

a novel graph-based semi-supervised learning (GSSL) algorithm. 

Second, the machine learning-based GSSL method demonstrated an average accuracy 

exceeding 60% in predicting the precise location of hidden defects across multiple 

semiconductor wafer products. By leveraging wafer inspection data and incorporating 

domain-specific knowledge, the algorithm constructs a graph representation of the wafer, 

enabling the identification of hidden defects through an iterative label propagation 

process. 

Finally, the study optimized the graph-based algorithm to improve accuracy and 

reduce time complexity in hidden defect localization. The algorithm's effectiveness was 

validated through extensive experimentation, showcasing its potential to enhance yield 

management and quality control processes in the semiconductor industry. 

By successfully addressing these objectives, this innovative approach provides a 

valuable tool for semiconductor manufacturers to improve production efficiency, 

minimize yield losses, and deliver high-quality products to their customers. The 

developed GSSL algorithm represents a significant advancement in the field of 
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semiconductor defect detection and paves the way for future research and industrial 

applications. 

5.2 Future Work 

As the enhanced GSSL approach with domain-based graph construction and iterative 

weighted label propagation demonstrated promising results in detecting hidden test-

induced defects, further work on this section can be explored. Future work involves 

exploring the recent advancements of neural networks in GSSL to detect test-induced 

hidden defects at higher levels. Neural network architectures have the capacity to learn 

representations of entire graphs, which could enable the extension of current work beyond 

individual wafer analysis. This approach has the potential to identify defects across 

multiple wafers or even entire production batches, thereby increasing manufacturing 

productivity and yield. 

Additionally, the enhanced GSSL approach proposed in this work could be extended 

to other semiconductor manufacturing applications, such as fabrication defect 

classification and wafer map pattern recognition. Applying GSSL with optimized graph 

construction to these related tasks may yield performance improvements by effectively 

utilizing both labelled and unlabelled wafer data.
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