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DEFECTS IDENTIFICATION ON SEMICONDUCTOR WAFER FOR YIELD
IMPROVEMENT USING MACHINE LEARNING

ABSTRACT

The semiconductor industry underpins modern technology, with its products
embedded in almost every electronic device. As semiconductor devices grow increasingly
intricate, ensuring their quality and reliability becomes more challenging. Electrical
testing is crucial to semiconductor wafer quality assurance, designed primarily to identify
fabrication defects. However, the testing process itself can inadvertently introduce new
defects that may go undetected by subsequent inspection methods such as manual and
visual inspection. When these defects escape detection, defective wafers may reach
customers, leading to rejection and return to the manufacturer, resulting in significant
yield losses and operational inefficiencies. This study addresses the urgent issue of
detecting hidden defects in semiconductor wafers that conventional methods overlook.
This work presents a novel graph-based semi-supervised learning (GSSL) algorithm
designed for wafer defect detection. The proposed methodology involves collecting wafer
inspection data, extracting relevant features, and applying the GSSL algorithm to identify
the hidden defects. The approach constructs a graph representation of the wafer,
leveraging its physical layout and test configuration, and integrates domain-specific
knowledge. The method uses weighted edges to represent the likelithood of defect
propagation between dies, optimized through extensive experimentation, followed by an
iterative label propagation process to uncover hidden defects. Experimental results
demonstrate the effectiveness of our method, achieving a 68% accuracy in detecting
hidden defects across multiple product categories in real-world semiconductor
manufacturing environments. The algorithm showed consistent performance across

different wafer types and test configurations, outperforming traditional detection methods
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with improved computational efficiency. This study offers valuable insights into the
semiconductor industry, providing an advanced tool to enhance yield management and

quality control processes.

Keywords: Semiconductor, Wafer Testing, Defect Identification, Test-Induced

Defects, Graph-Based Semi-Supervised Learning
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PENGENALPASTIAN KECACATAN PADA WAFER SEMIKONDUKTOR
UNTUK PENINGKATAN HASIL MENGGUNAKAN PEMBELAJARAN MESIN
ABSTRAK

Industri semikonduktor merupakan tunjang teknologi moden, dengan produknya yang
terkandung dalam hampir semua peranti elektronik. Seiring dengan peningkatan
kerumitan peranti semikonduktor, usaha memastikan kualiti dan kebolehpercayaan
menjadi semakin mencabar. Pengujian elektrik merupakan komponen penting dalam
jaminan kualiti wafer semikonduktor yang direka terutamanya untuk mengenal pasti
kecacatan fabrikasi. Walau bagaimanapun, proses pengujian itu sendiri boleh secara tidak
sengaja menghasilkan kecacatan baharu yang mungkin tidak dapat dikesan oleh kaedah
pemeriksaan seterusnya seperti pemeriksaan manual dan visual. Apabila kecacatan ini
terlepas daripada pengesanan, wafer yang cacat mungkin sampai kepada pelanggan,
menyebabkan penolakan dan pemulangan kepada pengilang, mengakibatkan kerugian
hasil dan ketidakcekapan operasi yang ketara. Kajian ini menangani isu mendesak dalam
pengesanan kecacatan tersembunyi pada wafer semikonduktor yang tidak dapat dikesan
oleh kaedah konvensional. Kerja ini membentangkan algoritma pembelajaran separa
terselia berasaskan graf (GSSL) baharu yang direka khusus untuk pengesanan kecacatan
wafer. Metodologi yang dicadangkan melibatkan pengumpulan data pemeriksaan wafer,
pengekstrakan ciri-ciri berkaitan, dan penggunaan algoritma GSSL untuk mengenal pasti
kecacatan tersembunyi. Pendekatan ini membina perwakilan graf wafer, memanfaatkan
susun atur fizikal dan konfigurasi ujian, serta mengintegrasikan pengetahuan domain
khusus. Kaedah ini menggunakan sisi berpemberat untuk mewakili kebarangkalian
perambatan kecacatan antara dai, yang dioptimumkan melalui eksperimen menyeluruh,
diikuti dengan proses perambatan label berulang untuk mendedahkan kecacatan
tersembunyi. Keputusan eksperimen menunjukkan keberkesanan kaedah kami, mencapai

ketepatan 68% dalam mengesan kecacatan tersembunyi merentasi pelbagai kategori



produk dalam persekitaran pembuatan semikonduktor sebenar. Algoritma ini
menunjukkan prestasi yang konsisten merentasi pelbagai jenis wafer dan konfigurasi
ujian, mengatasi kaedah pengesanan tradisional dengan kecekapan pengkomputeran yang
lebih baik. Kajian ini menawarkan pandangan berharga kepada industri semikonduktor,
menyediakan alat termaju untuk meningkatkan pengurusan hasil dan proses kawalan

kualiti.

Keywords: Semikonduktor, Pengujian Wafer, Pengenalpastian Kecacatan, Kecacatan

Aruhan-Ujian, Pembelajaran Separa Terselia Berasaskan Graf.
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CHAPTER 1: INTRODUCTION
1.1 Introduction

The semiconductor industry has been the driving force behind the remarkable
technological advancements witnessed in recent decades. Semiconductor devices,
forming the bedrock of modern electronics, are essential components in a vast array of
technologies. From the ubiquitous smartphones in our pockets to the powerful computer
systems that drive artificial intelligence and scientific discovery, these devices rely on the
intricate patterning of microscopic features on a silicon wafer substrate. This
miniaturization process, though revolutionary, presents a complex challenge: ensuring
that these features are formed perfectly at ever-shrinking scales.

In the semiconductor industry, wafers are known as one of the most valuable assets to
manage. In recent years, the ever-growing demands of faster development and availability
to market with the advent of high-end integrated systems and Internet-of-Things (IoT)
make a compelling case for semiconductor manufacturers to produce wafers of high
product quality by yield enhancement and cost reduction. The fabrication of very large-
scale integration (VLSI) circuits is very complicated, with many manufacturing steps
executed on the same wafer, hence it is critical for wafers to be tested and inspected with
the highest accuracy to identify the failing dies before the packaging process. Otherwise,
there could be defective semiconductor dies that will go through the assembly process
and therefore lead to unnecessary expenses at the end of the manufacturing process.
Monitoring the defects ensures manufacturers that the assets are managed in an efficient
manner to increase profit.

Traditional methods for identifying defects on semiconductor wafers have relied

heavily on human inspection. Whether the probing and identification are done by machine

1



and verified by humans or entirely performed by human experts in the field, is not only
time-consuming and labour-intensive but also susceptible to human error and
inconsistencies. Moreover, the complexity of modern integrated circuits and the ever-
decreasing feature sizes have rendered manual inspection increasingly challenging and
inefficient. In this context, Machine Learning (ML) techniques have emerged as a
promising solution, offering the potential to automate the defect detection process while
improving accuracy and throughput.

The application of machine learning algorithms to defect identification on
semiconductor wafers has garnered considerable attention from researchers and industry
professionals alike. By leveraging the powerful pattern recognition and classification
capabilities of these algorithms, it becomes possible to detect and classify defects with
unprecedented precision. This not only enhances the overall yield but also facilitates root
cause analysis, enabling manufacturers to identify and address the underlying sources of

defects, thereby improving the overall manufacturing process.

1.2 Motivation

While the test process is designed to find the defects and avoid unnecessary expenses
at the end of the manufacturing process, the test process itself may induce defects to good
dies, which reduces manufacturing yield. Furthermore, they lead to the test economics
problem, as it usually takes a lot of effort from process engineers and test engineers to
find the problem. Besides, if test-induced defects cannot be properly identified, the
accuracy of root-cause analysis will be adversely affected. Therefore, it is desirable to

detect this problem as soon as possible.



With the introduction of Machine Learning and their ability to analyse the wafer maps
more accurately than humans, manufacturers are able to identify faulty test equipment
faster and easier. However, the current methods and technologies are being used for the
known defects detected by the wafer test and advanced optical inspection machines, while
the limitation of named detectors on detecting the defects, leads to having hidden defects

on the wafers.

Amidst the pursuit of robust solutions for identifying elusive and hidden defects on
semiconductor wafers, the emerging field of semi-supervised graph-based machine
learning techniques presents a promising avenue for exploration. Traditional supervised
learning methods, while effective for known defect patterns, often falter when confronted
with the complexities and nuances of previously unseen or rare defect manifestations.
Conversely, purely unsupervised approaches may lack the guidance necessary to discern

meaningful patterns from the vast expanse of data inherent to wafer maps.

Semi-supervised graph-based algorithms offer a compelling middle ground,
harnessing the strengths of both paradigms. By leveraging the representational power of
graphs to capture the intricate relationships and dependencies within wafer data, these
techniques can effectively propagate label information from a limited set of labelled
instances to a broader collection of unlabelled data points. This synergistic approach not
only capitalizes on existing knowledge but also enables the discovery of novel defect

signatures, facilitating the identification of previously undetected anomalies.



1.3 Problem Statement

In the semiconductor industry, maintaining high yield is crucial for profitability and
competitiveness. However, defects consistently pose a significant threat to maintaining a
high yield. Wafer testing is designed to identify and mitigate these defects to ensure the
functionality of semiconductor devices. However, paradoxically, the testing process itself
can introduce defects. These test-induced defects often go undetected by conventional
methods, leading to substantial yield losses and financial burdens. While recent
advancements have been made in detecting visible test-induced defects (Cheng et al.,
2021), a critical gap remains in identifying these hidden defects, which can have profound
implications for device reliability and overall yield. Manual inspection, a traditional
method for detecting defects, heavily relies on the expertise and vigilance of the inspector.
However, this approach is prone to human error and subjectivity, making it difficult to
identify hidden defects that require recognizing intricate patterns and subtle anomalies.
Machine learning techniques have been applied to optical inspection systems to automate
the defect detection process. However, these techniques face challenges in adapting to the
constantly changing contrast of hidden defects, making it arduous to develop a robust

detection algorithm that can handle these unique and rare cases.

To address these limitations, graph-based semi-supervised learning (GSSL) algorithms
have emerged as a promising approach for detecting hidden defects. However, current
GSSL algorithms (Song et al., 2023) have their own limitations when applied to this
specific problem. Constructing an appropriate graph that effectively captures the complex

relationships between visible and hidden defects is a critical step in GSSL. Moreover, the



label propagation process in GSSL may not always accurately assign labels to hidden

defects due to their unique nature and potential dissimilarity to visible defects.

There is, therefore, a pressing need for innovative approaches that can effectively
uncover these hidden defects by leveraging both the spatial and topological information
inherent in wafer maps. Such methods must be capable of operating with limited labelled
data, as extensive labelling in semiconductor manufacturing is often costly and time-

consuming.

1.4 Objectives

The objectives of the proposed research are as follows:

1. To investigate the intricate relationship between defect occurrence and the
configuration of testing methodologies to unveil underlying patterns of
hidden defects.

ii. To develop a machine learning-based method that demonstrates at least 60%
average accuracy in predicting the precise location of hidden defects on
semiconductor wafers.

iii. To optimize the graph-based algorithm for improved accuracy and reduced

time complexity in hidden defect localization.

1.5 Thesis Contribution

This thesis endeavours to make significant contributions to the field of semiconductor
manufacturing by pioneering novel machine learning techniques that address the critical
challenge of detecting test-induced defects on wafers. Through a collaborative effort with

NXP Semiconductor Malaysia, a leading global manufacturer of integrated circuits, this
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research has been driven by real-world industrial needs and informed by domain

expertise.

The outcomes of this work hold the promise of delivering substantial impact, both in
academic and practical domains. From a theoretical standpoint, the development of
advanced semi-supervised graph-based algorithms for defect identification will
contribute to the expanding body of knowledge in machine learning and its applications
in semiconductor yield enhancement. Concurrently, the proposed methodologies have the
potential to translate into tangible benefits for the semiconductor industry, empowering
manufacturers to overcome the limitations of conventional detection methods and unlock

new levels of yield improvement.

By leveraging the synergy between cutting-edge research and industrial collaboration,
this thesis aims to bridge the gap between academic exploration and real-world
implementation. The resulting techniques, validated through rigorous experimentation
and evaluation on industrial datasets provided by NXP Semiconductor Malaysia, will
offer a robust and scalable solution for identifying elusive test-induced defects, thereby
mitigating yield losses, streamlining root cause analysis, and ultimately enhancing the

overall efficiency and profitability of semiconductor manufacturing operations.

1.6 Thesis Outline

This dissertation is framed into five chapters as follows:

Chapter 1 provides an overview of the research background, states the problem

statement and main focus of the research, and points out the research objectives.



Chapter 2 gives a detailed background on the wafer test, the procedures and
limitations. This chapter provides a technical review of the conventional methods of
defect identification both for fabrication-induced and test-induced defects. The literature
review on the available machine learning methods, especially on the semi-supervised

graph-based algorithms is covered in this chapter.

Chapter 3 describes the flow of designing a semi-supervised graph-based algorithm to
identify the location of the defect on the Wafer Map. This includes the procedure of
detection of test-induced defects on the wafer through the analysis of defects. Moreover,

the root-causing method of test-induced defects is described here.

Chapter 4 presents the development, validation, and characterization of a novel semi-
supervised graph-based algorithm, along with the simulation and experimental results
achieved. Various types of semiconductor wafers were examined under different testing
configurations, with algorithm parameters systematically adjusted to determine the most
optimized combination. The effectiveness of the developed algorithm is further assessed
by comparing its defect identification results with actual evaluations conducted by NXP
engineers. Additionally, a comparative analysis between the proposed approach and the

existing reported literature is provided to highlight its advancements and contributions.

Chapter 5 represents the conclusion of this research work, summarizes the findings,
contributions and design challenges. The potential improvement of the proposed

algorithm is highlighted for future work.



CHAPTER 2: LITERATURE REVIEW

2.1 Overview
2.1.1 Importance of defect identification in semiconductor manufacturing

The semiconductor industry is a vital cog in the global economy, producing the
essential components that power everything from smartphones to supercomputers. As
technology advances and devices become more sophisticated, the demand for high-
performance semiconductors continues to skyrocket. To meet this demand, manufacturers
are constantly pushing the boundaries of miniaturization and complexity, making the
identification and localization of defects on semiconductor wafers more challenging than

ever before.

Defects in semiconductor wafers can have catastrophic consequences. Even a
minuscule flaw can lead to a device failure, rendering it unusable. This can result in
significant financial losses for manufacturers, as scrapped wafers and rework costs can
quickly add up. In addition, product quality can be compromised, undermining the

reputation of the manufacturer and leading to lost market share.

Given the high stakes involved, there is a pressing need for robust and accurate defect
detection techniques. These techniques must be able to identify and localize defects with
high precision, even on the most advanced semiconductor wafers. Failure to do so can

have a devastating impact on the bottom line of semiconductor manufacturers.

In addition to the financial implications, defects in semiconductor wafers can also have
a negative impact on the environment. The manufacturing process for semiconductors is

complex and resource-intensive, and any defects that result in scrapped wafers or rework



can lead to wasted materials and energy. By developing more efficient defect detection
techniques, manufacturers can reduce their environmental footprint and contribute to a

more sustainable future.

The development of cutting-edge defect identification methodologies is an ongoing
pursuit for semiconductor companies. By investing in research and development,
manufacturers can stay ahead of the curve and maintain their competitive edge in the
global market. The ability to identify and localize defects with high precision is essential
for producing high-performance, reliable, and cost-effective electronic devices that meet

the needs of consumers and businesses alike.

2.1.2  Overview of the semiconductor wafer production process

The semiconductor wafer manufacturing process is a meticulously orchestrated series
of steps aimed at transforming a pure silicon crystal into a complex array of electronic
circuits that can perform myriad functions. The process can be broadly categorized into
three primary stages: fabrication, testing, and assembly. Each stage is crucial, employing
sophisticated technology and stringent quality controls to ensure the functionality and
reliability of the final products. Fabrication involves multiple processes such as
photolithography, doping, and etching to create the intricate layers and circuit patterns on
the silicon wafer. Testing, often referred to as probing, ensures each chip functions
correctly and meets the desired specifications. Finally, assembly involves cutting the
wafer into individual chips, packaging these chips into protective casings, and preparing
them for shipment to customers. Figure 2.1 shows the top-view process-flow of

semiconductor wafer manufacturing, based on (Srivastava, 2021).



Wafer Assembly and

Test/Sort Packaging

Final Test

Fabrication

Figure 2.1: Process-flow of semiconductor wafer manufacturing (Srivastava,
2021)

As described by (Quirk & Serda, 2001) in their comprehensive book "Semiconductor
Manufacturing Technology" the process typically begins with the growth of a cylindrical
ingot of highly purified silicon crystal. The fundamental fabrication steps involve
photolithography, where patterns are transferred onto the wafer surface using light-
sensitive photoresist materials, followed by various deposition, etching, and implantation
processes to create the desired device structures. These wafers undergo a series of critical
steps, including polishing, cleaning, and epitaxial deposition, to prepare the surface for

subsequent processing.

The fabrication process is the heart of semiconductor manufacturing, where the
intricate device structures are created on the wafer surface. This stage involves a series of
steps, such as deposition of various materials (e.g., silicon dioxide, polysilicon, metals),

photolithographic patterning using light-sensitive photoresists, etching to selectively
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remove materials, and ion implantation to introduce dopants. These steps are repeated
multiple times in a specific sequence, with each layer building upon the previous one to

form the complex three-dimensional structures of modern integrated circuits.

After fabrication, the individual die on the wafer undergoes wafer-level testing and
probing, a critical step for identifying functional and non-functional circuits. This process
involves electrically probing each die on the wafer using specialized equipment and
testing protocols. The probing data is used to generate wafer maps, which indicate the

location and distribution of defective die, allowing for yield assessment and enhancement.

The wafers are then singulated, separating the individual die through techniques like
dicing or scribing. These individual dies are subsequently packaged, a process that
involves encapsulating the die in protective materials and forming external connections,
such as wire bonding or flip-chip assembly. The packaging stage is crucial for protecting
the delicate die from environmental factors and facilitating integration into printed circuit

boards or other electronic systems.

2.1.3  Wafer Test

Wafer testing is a crucial step in the semiconductor manufacturing process, ensuring
the quality and functionality of the integrated circuits (ICs) before they are packaged and
sent to customers. This crucial process unites electrical testing and optical inspection,
meticulously scrutinizing each die on the wafer's surface to identify and isolate potential
defects. Through this rigorous evaluation, wafer testing elevates the yield, reliability, and
performance of the final products, ensuring that only the highest quality ICs reach the

market.
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2.1.3.1 Electric Test

The electrical test, also known as wafer probe or wafer sort, is performed using a probe
machine, which consists of a prober and a tester. The prober is responsible for handling
the wafer and aligning the probe card to the bond pads on each die, while the tester

executes the test program and measures the electrical characteristics of the devices.

One crucial function of the prober is wafer handling. It securely holds the wafer during
testing using a vacuum or electrostatic chuck. The prober can accommodate various wafer
sizes, ranging from small to large diameters, to cater to different manufacturing processes.
Automated wafer handling systems minimize human intervention and reduce
contamination risks. Another vital function is probe card alignment. The prober precisely
positions the probe card over the wafer's surface, ensuring accurate alignment with the
bond pads on each die. This alignment is essential for proper electrical contact between
the probes and the bond pads. Advanced probe systems employ high-resolution cameras
and image processing algorithms to achieve sub-micron alignment accuracy. Once the
probe card is aligned, the prober lowers it onto the wafer, establishing electrical contact
between the probes and the bond pads. Probes are typically made of tungsten or gold-
plated materials to ensure good conductivity and minimize wear. The prober applies a
controlled amount of force to maintain consistent and reliable contact throughout the
testing process. Figure 2.2 visualises a prober machine with how the electric tester is

getting aligned on the wafer.
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— PROBE CARD

WAFER

Figure 2.2: Prober machine.
The prober acts as an interface between the wafer and the electrical tester. It facilitates
the transmission of test signals from the tester to the device under test (DUT) on the wafer.
The prober also routes the electrical responses from the DUT back to the tester for

analysis.

The prober enables die-by-die testing, allowing for the evaluation of individual devices
on the wafer. It moves the probe card systematically across the wafer, testing each die

sequentially. Defective dies can be identified and marked for further analysis or rework.

The prober collects electrical test data from each die and transmits it to the tester. The
tester analyses the data to determine whether each device meets the specified electrical
specifications. This collected data is crucial for statistical process control (SPC) and yield

analysis.

By precisely controlling wafer handling, probe card alignment, and electrical contact,
the prober plays a vital role in ensuring the accurate and reliable testing of wafer dies. It

is an integral part of the wafer probe process, helping manufacturers identify and sort
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functional devices from defective ones, ultimately contributing to the quality and yield of

semiconductor products.

To increase testing efficiency, modern wafer test systems employ parallel testing,
where multiple dies are tested simultaneously. The configuration of the electrical test
includes the path and direction of movement for the prober, the number of dies being
tested simultaneously, and the site number that identifies the index of the testing die. The
prober moves in a predefined path, typically in a serpentine or zigzag pattern, to cover all
the dies on the wafer. The number of dies tested at once depends on the probe card design
and the tester's capabilities. Modern probe cards can have hundreds or even thousands of
probes, allowing for parallel testing of multiple dies, which significantly reduces the

overall test time.

Figure 2.3 (a) illustrates a typical wafer test configuration with multiple test sites. In
this example, a probe card with 32 test sites is used to test a wafer. The test sites are
arranged in a 4x8 matrix, allowing 32 dies to be tested concurrently. The test process
follows a predetermined test flow, which defines the sequence of tests to be performed
on each die, as shown by the blue line path in Figure 2.3 (b). The starting point of the
testing process is marked by a prominent blue square at the top of the wafer. Each time
the prober evaluates a group of dies, the initial die in the group is highlighted with a blue
square. The blue line connecting these squares visually represents the test sequence,

indicating the direction and path of the testing process.
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(a) Site-number orientation of 32 sites

Figure 2.3: Test configuration example
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(b) Example path of prober
Figure 2.3, continued: Test configuration example
The results of the electrical test are used to generate a wafer map, which visually
represents the pass/fail status of each die on the wafer. This information is essential for

yield analysis and process optimization.

2.1.3.2 Optical Inspection
Optical inspection techniques have emerged as a crucial tool for detecting and

classifying defects in semiconductor wafer manufacturing. These methods have
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significantly impacted the industry by enabling the identification of various defect types,
leading to improved yield and quality control. The advent of machine vision and image
processing technologies has revolutionized the way wafer inspection is performed,
replacing manual inspection methods that were time-consuming, labour-intensive, and
prone to human error (Ma et al., 2023). In their comprehensive review, (Ebayyeh &
Mousavi, 2020) discussed the various automatic optical inspection (AOI) systems and
algorithms used for detecting defects in electronic components such as semiconductor

wafers, flat panel displays, printed circuit boards, and light-emitting diodes.

The history of optical inspection in semiconductor manufacturing dates back to the
early days of the industry. Initially, manual inspection using microscopes was the primary
method for detecting defects on wafer surfaces. However, as the complexity of integrated
circuits increased and feature sizes decreased, manual inspection became increasingly
challenging and inefficient. AOI systems have played a crucial role in identifying these
defects, which can be categorized as random, systematic, or mixed-type defects (Ebayyeh
& Mousavi, 2020). The ability to detect and classify these defects accurately is essential

for yield enhancement and process optimization in semiconductor manufacturing.

AOI systems typically consist of an image acquisition unit, comprising cameras and
illumination settings as used by (Hara et al., 1988) back in 1988, and an image processing
unit that analyses the captured images using various algorithms. The selection of cameras
and lenses depends on factors such as the field of view, resolution, and depth of field
required for the specific application Illumination settings are also critical in AOI systems,
as they can significantly impact the contrast and visibility of defects in the captured

images. Figure 2.4 illustrates the normal setup of the camera and wafer for an AOI system.

17



Figure 2.4: Semiconductor wafer defect inspection
(Cognex, 2024)

The image processing unit of AOI systems employs a wide range of machine learning
algorithms for defect detection and classification. These algorithms can be broadly
categorized into supervised and unsupervised learning methods. Supervised learning
algorithms, such as support vector machines (SVMs) and convolutional neural networks
(CNNs), require labelled training data and are widely used for defect classification tasks.
Unsupervised learning algorithms, such as k-means clustering and self-organizing maps
(SOMs), do not require labelled data and are often used for anomaly detection and pattern

recognition tasks in semiconductor wafer inspection.

One of the most famous works in the field of wafer surface defect detection is the WM-

811K dataset, which consists of 811,457 wafer images with eight different defect types

18



(Ma et al., 2023). This dataset has been widely used as a benchmark for evaluating the

performance of various defect detection and classification algorithms.

Recent advancements in deep learning have further enhanced the capabilities of AOI
systems in semiconductor wafer inspection. For example, (Nakazawa & Kulkarni, 2018)
proposed a CNN-based approach for wafer map defect pattern classification. In another
study, (Saqlain et al., 2020) developed a deep CNN for wafer defect identification on an
imbalanced dataset, demonstrating the potential of deep learning in handling real-world

challenges in semiconductor manufacturing.

Despite the advancements in optical inspection techniques, there are still limitations
and challenges. One major limitation is the difficulty in detecting sub-surface or non-
visible defects, as optical methods rely on surface imaging. Additionally, the increasing
complexity of wafer patterns and the need for higher-resolution imaging pose challenges
in terms of computational resources and inspection time. Moreover, the presence of
mixed-type defects and the need for a large amount of labelled data for training machine

learning models are other obstacles that need to be addressed.

2.2 Types and sources of defects in semiconductor wafers
2.2.1 Defect in semiconductor wafers

In the realm of semiconductor manufacturing, a defect on a wafer refers to any
deviation from the desired structure or composition that compromises the functionality,
reliability, or yield of the semiconductor device. These defects can manifest in various
forms, ranging from minute imperfections at the atomic scale to visible anomalies on the

wafer surface. Common types of defects include point defects, dislocations, surface
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roughness, particulates, and process-induced irregularities, each with its unique impact
on device performance. Defects can arise from multiple stages of the fabrication process,
including crystal growth, wafer preparation, deposition, etching, and lithography. They
can also occur during testing, where physical contact with the wafer surface may
inadvertently damage delicate structures or introduce contamination. Understanding and
mitigating defects are paramount in semiconductor manufacturing, as even minor
deviations can lead to significant yield losses and compromise the functionality of

electronic devices.

2.2.2  Fabrication Defects

This category encompasses defects arising from various fabrication processes,
including lithography, deposition, and etching. Lithographic defects, such as mask
defects, exposure issues, or resist residues, can lead to pattern distortions, line edge
roughness, or incomplete pattern transfer. Deposition defects, like non-uniform thickness,
pinholes, or voids, can impact device performance and reliability. Etching defects, caused
by improper etching conditions or etch residues, can result in issues like undercut,
trenching, or incomplete pattern transfer. (Shinde et al., 2022). The defects in this

category originate from a variety of fabrication processes, each posing unique challenges.

As semiconductor technology advances and device dimensions continue to shrink, the
impact of fabrication defects becomes more severe. Defects that were once considered
tolerable can now cause significant yield losses and device failures in advanced integrated
circuits. To maintain high yields and product quality, semiconductor manufacturers must
implement stringent defect control strategies and continuously monitor the fabrication

process for the presence of defects.
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(Ebayyeh & Mousavi, 2020) stated that normally three types of wafer defects occur,
which are random defects, systematic defects and mixed defects. Random defects are
scattered haphazardly across the wafer. These defects are caused by unpredictable factors,

such as particles in the clean room, and exhibit no discernible pattern.

Systematic defects, in contrast, follow a regular pattern and are typically attributed to
issues within the manufacturing process itself. (Wu et al., 2015). Examples include the
ring pattern resulting from misalignment in the storage-node process, and the scratch

pattern caused by agglomerated particles during the chemical mechanical process.

Lastly, mixed defects, as the name suggests, combine elements of both random and
systematic defects on a single wafer map. This type of defect is the most prevalent in the
semiconductor manufacturing process. Figure 2.5 shows the most recognized defect

patterns.
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Figure 2.5: Fabrication defect pattern types
(Ebayyeh & Mousavi, 2020)

Automated wafer inspection systems and defect classification techniques play a crucial
role in identifying and mitigating fabrication defects. Recent advancements in machine
learning, particularly deep learning algorithms such as convolutional neural networks,
have shown promise in improving the accuracy and efficiency of defect detection and
classification. However, challenges remain in detecting sub-resolution defects and
adapting to the ever-evolving landscape of defect types that emerge with each new

technology node.

2.2.3 Test-Induced Defects
Test-induced defects are another major category of defects that can occur in
semiconductor wafers during the manufacturing process. Unlike fabrication defects that
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originate from issues in the wafer fabrication steps, test-induced defects are introduced
during the wafer testing phase. (Cheng et al., 2021; Cheng et al., 2020) provide a
comprehensive overview of test-induced defects, their causes, and their impact on

semiconductor manufacturing yield.

One of the key characteristics of test-induced defects is their spatial pattern on the
wafer. Since dies are probed in a predetermined order during wafer testing, test-induced
defects often exhibit specific patterns that can be captured in test paths. (Cheng et al.,
2021) highlight that these patterns can be leveraged to effectively identify test-induced

defects.

Another characteristic of test-induced defects is their repetitive nature over an area on
the wafer. This phenomenon occurs when a faulty probe pin, responsible for making
contact during testing, drags across the wafer's surface. As the faulty pin moves, it
consistently causes similar defects at the same position on multiple dies throughout the
wafer. These repeated defects share common visual properties, such as colour and pattern,
making them easily identifiable. Figure 2.6 illustrates an example of repeated defects on
the wafer. As can be seen, the defects are represented by 4 red dots, all the dots are on the
same location of the die. Based on the images they also look almost the same in colour

and pattern.
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Figure 2.6: Repeated defects example
The primary causes of such repeated defects can be attributed to issues with the probe
card itself. For instance, the presence of liquid on the probe pin can lead to contamination
and subsequent defects. Similarly, shifted probe pins or pins with short tip lengths can

also contribute to this problem.

In addition to probe card-related factors, defects on the wafer itself can also give rise
to repeated test-induced defects. The presence of liquid FM (foreign material) on the
wafer's surface can interact with the probe pins, resulting in the formation of similar

defects at the same location on multiple dies. (Shankar & Zhong, 2005).

Identifying and mitigating test-induced defects is crucial for improving semiconductor
manufacturing yield. By accurately classifying test-induced defects and distinguishing

them from fabrication defects, manufacturers can take targeted corrective actions.
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2.24  Comparison and Effects
Fabrication defects and test-induced defects, while both detrimental to semiconductor
manufacturing yield, differ in their origins, characteristics, and impact on the final

product.

Fabrication defects, as discussed earlier, arise from issues in various manufacturing
processes such as lithography, deposition, and etching. These defects can manifest as
pattern distortions, non-uniform thickness, or incomplete pattern transfer, among others.
The impact of fabrication defects on device performance and reliability can be significant,
especially as device dimensions continue to shrink. Even minor defects that were once

considered tolerable can now lead to device failures in advanced integrated circuits.

On the other hand, test-induced defects are introduced during the wafer testing phase,
where electrical tests are performed to identify functional dies. These defects often exhibit
specific spatial patterns on the wafer, following the predetermined probing order. Test-
induced defects can also be repetitive, occurring at the same location on multiple dies due

to issues with the probe card or the presence of foreign material on the wafer surface.

While both types of defects can lead to yield losses, their impact on the final product
may differ. Fabrication defects, if not detected and removed early in the manufacturing
process, can propagate through subsequent steps and affect the functionality and
reliability of the finished devices. Test-induced defects, however, primarily impact the

yield by causing otherwise functional dies to be incorrectly identified as defective.

The different characteristics of fabrication and test-induced defects also necessitate

distinct detection and classification approaches. This study focuses specifically on test-
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induced defects, which have gained increasing attention as semiconductor devices
become more complex and testing requirements more stringent. Identifying and
mitigating these defects is crucial for improving overall yield and reliability, as well as

reducing the risk of costly field failures and customer dissatisfaction.

2.3 Defect Detection Methods
2.3.1 Conventional Methods

Conventionally, defect detection on semiconductor wafers has relied heavily on
manual inspection by experienced engineers. This process is not only time-consuming
and labour-intensive but also prone to human errors and subjectivity. (Shankar & Zhong,
2005). As the complexity of integrated circuits increases with shrinking feature sizes,
manual inspection becomes increasingly challenging and inadequate to meet the demands

of modern semiconductor manufacturing (Huang & Pan, 2015).

Early attempts to automate defect detection primarily focused on simple rule-based
systems and basic machine-learning techniques. In their work, (Shankar & Zhong, 2005)
developed a template-based machine vision system for inspecting wafer die surfaces.
Their method compared the wafer images with a golden template using pixel subtraction
and applied rule-based defect specifications to distinguish between critical and non-
critical defects. While this system demonstrated improved performance compared to
manual inspection, it still had limitations in terms of adaptability and robustness (Huang

& Pan, 2015).

One major challenge in conventional defect detection methods is the detection of

hidden or latent defects, particularly those induced during the testing process. Test-
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induced defects, such as probe marks or surface scratches, can be subtle and difficult to
identify using traditional approaches. These defects may not cause immediate failures but
can lead to reliability issues and affect the long-term performance of the semiconductor

devices.

Conventional methods often fail to capture the intricate patterns and characteristics of
test-induced defects, as they rely on pre-defined rules or limited feature representations.
This limitation highlights the need for more advanced and adaptive techniques capable of

learning from data and discovering hidden patterns.

2.3.2  Machine Learning for Defect Detection

Machine learning techniques have revolutionized the field of defect detection in
semiconductor manufacturing, enabling the development of automated systems that can
identify and classify defects with high accuracy. These approaches can be broadly
categorized into supervised learning, unsupervised learning, semi-supervised learning
and deep learning methods, each with its strengths and limitations. Recent reviews by (Li
& Kang, 2023; Ma et al., 2023; Theodosiou et al., 2023) provides comprehensive insights
into state-of-the-art machine learning techniques for wafer map defect pattern
recognition. Here we review some of the works done recently in the field of detection and

classification of wafer defects patterns and highlight their strengths and limitations.

2.3.2.1 Supervised Learning Methods
Supervised learning methods have been widely applied to tackle this challenge,
leveraging labelled data to train models capable of accurately identifying and categorizing

various types of defects.
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(Baly & Hajj, 2012) employed an SVM classifier to categorize 1,150 wafer images
into high-yield and low-yield classes, demonstrating superior performance compared to
decision trees, k-nearest neighbor (KNN), partial least squares regression, and
generalized regression neural networks. The nonlinear SVM model exhibited better
classification accuracy for wafer defect patterns. Nonetheless, the binary classification
approach may not provide fine-grained insights into specific defect types, including those

caused by latent testing processes.

Building on the work of (Baly & Hajj, 2012), several researchers have further explored
the application of SVM for wafer defect detection and classification. (Xie et al., 2014)
proposed a wafer defect pattern detection scheme based on SVM algorithms. They
utilized linear, Gaussian, and polynomial kernels, selecting the kernel with the smallest
test error through cross-validation for SVM training. This method demonstrated
robustness against false positives caused by image translation or rotation. However, like
previous approaches, it may struggle with detecting subtle, test-induced defects that do

not manifest as clear visual patterns.

(Saqlain et al., 2019) proposed a voting ensemble classifier consisting of logistic
regression, random forest, gradient boosting machine, and artificial neural networks for
wafer map defect pattern recognition. The ensemble approach combines the best results
of all classifiers to obtain the final classification, demonstrating improved accuracy
compared to individual models. However, the method relies on handcrafted features and
may struggle to detect subtle defects caused by repeated testing. (Li et al., 2021) proposed
an AdaBoost-based method for wafer defect pattern recognition, focusing on scratch

patterns. The five-step methodology enhances pattern visibility and achieves over 89%
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recognition rate for scratch patterns and over 94% for common defect patterns. However,

the method's performance on hidden test-induced defects is not explicitly addressed.

2.3.2.2 Unsupervised learning methods

Unsupervised learning methods, such as clustering and anomaly detection, have been
explored to overcome some of the limitations of supervised learning. These methods do
not require labelled data and can potentially discover new defect types. A comprehensive

review by (Naeem et al., 2023) show the bright potential of these algorithms.

One prominent unsupervised learning approach in wafer defect detection is the use of
clustering algorithms. (Jin et al., 2019) proposed a novel framework based on the Density-
Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm for wafer map
defect pattern detection and classification. Their method selectively removed outliers
according to defect pattern characteristics, enabling simultaneous detection of abnormal
points and defect patterns. The DBSCAN-based approach showed promise in handling
complex defect patterns and noise reduction. However, the authors noted that the
performance of DBSCAN can be sensitive to parameter selection, particularly in cases
where sample density is not uniform or the dataset is very large, potentially leading to

long convergence times and suboptimal clustering results.

(Huang, 2007) proposed an innovative approach using self-supervised multilayer
perceptrons for clustered defect detection in high-quality chips. This method aimed to
enhance feature extraction capabilities through the use of multilayer perceptrons. The
self-supervised nature of the approach allowed it to adapt to new defect patterns without

the need for manual labelling. However, the performance of this method can be highly
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dependent on the choice of activation functions, which may require careful tuning for

optimal results.

2.3.2.3 Semi-Supervised Learning

Semi-supervised learning (SSL) approaches have emerged as a promising middle
ground, combining the strengths of supervised and unsupervised learning. (van Engelen
& Hoos, 2020; Y C a et al., 2018) SSL methods leverage both labelled and unlabelled
data to improve defect detection accuracy while reducing the reliance on extensive
labelled datasets. The core principle of SSL is to utilize the underlying structure and
patterns in the unlabelled data to enhance the learning process. In the context of wafer
defect detection, SSL algorithms can exploit the spatial and temporal relationships
between defects, as well as the overall wafer map patterns, to better identify and classify

defects even with limited labelled examples.

Recent work by (L. L. Y. Chen et al., 2021) proposed a novel SSL approach
specifically tailored for wafer map defect pattern recognition. Their method combines a
convolutional neural network (CNN) with few-shot and self-supervised learning
techniques. By incorporating unlabelled data through self-supervised pretext tasks, they
demonstrated improved performance on the WM-811K dataset, a benchmark for wafer
map defect classification. While this approach shows promise in capturing complex

spatial patterns, it may still struggle with rare or previously unseen defect types.

2.3.2.4 Deep Learning
Convolutional Neural Networks (CNNs), a type of deep learning model, have proven

to be highly effective for this task. CNNs are specifically designed to process data that
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has a grid-like structure, such as images. They consist of multiple layers of neurons, each
of which is responsible for extracting different features from the input data. The initial
layers of a CNN typically learn basic features, such as edges and lines, while the deeper

layers learn more complex features, such as shapes and objects.

The application of CNNs in wafer defect detection has evolved significantly over
recent years. (Nakazawa & Kulkarni, 2018) introduced a CNN for wafer map defect
pattern recognition and image retrieval, demonstrating the potential of transfer learning
by training on simulated wafer maps and achieving high classification accuracy on real
wafer maps. Building upon this foundation, (Saqlain et al., 2020) developed a deep CNN
model for wafer defect identification (CNN-WDI) that outperformed several previous

models, achieving 96.2% classification accuracy on the WM-811K dataset.

(Tsai & Lee, 2020) developed a lightweight neural network for wafer map
classification based on data augmentation. Their approach combined a CNN with
innovative data augmentation techniques to improve classification performance while
reducing computational complexity. This method showed promise in handling limited
data scenarios and improving generalization. However, its focus on static defect patterns
may limit its effectiveness in capturing the dynamic nature of gradually fading test-

induced defects.

(S. Chen et al., 2021) explored the use of transfer learning with CNNs for wafer map
defect recognition. They utilized a 29-layer deep CNN model pre-trained on the MNIST
dataset, which was then fine-tuned on wafer map data. This approach aimed to minimize

the need for large wafer-specific datasets, achieving over 94.9% accuracy on a balanced
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dataset of seven defect patterns. While this method shows potential for adapting to new
defect types with limited data, it may not explicitly address the challenge of detecting

defects that gradually lose visibility over repeated testing.

Recent research has further advanced these techniques to handle more complex
scenarios. (Wang et al., 2020) introduced a deformable convolutional network (DC-Net)
for efficient mixed-type wafer defect pattern recognition. The DC-Net's innovative use of
deformable convolution layers allows dynamic adaptation of the receptive field, enabling
better handling of complex and mixed defect patterns. This approach achieved a
classification accuracy of 93.2% on the WM-811K dataset, demonstrating significant

progress in dealing with diverse defect types.

Addressing the persistent challenge of imbalanced datasets, (Geng et al., 2021)
proposed a novel approach combining few-shot learning and self-supervised learning.
Their method, utilizing a CNN with Inception blocks, incorporates a few-shot loss for
labelled data and a self-supervised loss for unlabelled data. This innovative technique
showed superior performance compared to traditional machine learning methods,

particularly in scenarios with limited labelled data.

(Yu et al.,, 2021) further explored few-shot learning by proposing a hybrid self-
attention mechanism and prototype network for wafer map defect recognition. This
approach aims to improve classification performance with small amounts of data, which
is particularly relevant in semiconductor manufacturing where new defect types may

emerge frequently.
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To tackle the complexity of mixed-type defect patterns, (Li & Wang, 2021) developed
an improved Mask R-CNN model. By integrating a feature pyramid network and an
enhanced non-maximum suppression algorithm, their model showed superior
performance in detecting small objects and shallow defects, addressing a critical

challenge in wafer defect detection.

(Kim et al., 2021) conducted a comparative study of various CNN architectures,
including VGG16, ResNet, MobileNetV2, and ShuffleNet, for wafer defect pattern
identification. They also incorporated out-of-distribution learning to handle undefined
defect patterns, providing valuable insights into the trade-offs between model complexity

and performance.

2.3.2.5 Graph Neural Networks (GNNs)

Graph Neural Networks (GNNs) have emerged as a promising advancement in deep
learning, particularly for tasks involving graph-structured data (Scarselli et al., 2009; Wu
et al., 2021). GNNs extend traditional deep learning architectures, such as convolutional
neural networks (CNNs), to operate directly on graphs, enabling them to capture both the
feature information of individual nodes and the structural information encoded in the
graph topology (Bronstein et al., 2017). By learning node representations through the
iterative aggregation of neighbourhood information, GNNs have shown remarkable
performance in various applications, including node classification, link prediction, and

graph classification (Zhou et al., 2018).

In the context of semiconductor wafer defect detection, GNNs offer a powerful

framework for leveraging the spatial and hierarchical relationships present in wafer map
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data. By representing the wafer as a graph, with nodes corresponding to individual dies
and edges encoding their spatial connections, GNNs can learn rich, context-aware
representations that capture both local and global defect patterns. Moreover, the message-
passing mechanism of GNNs allows for efficient propagation of defect information across
the wafer graph, potentially enabling the detection of subtle or hidden defects that may

be missed by traditional methods (Wu et al., 2021).

Recent works have demonstrated the potential of GNNs for wafer defect classification
and yield prediction, showcasing their ability to outperform conventional CNNs and other
machine-learning approaches. However, while GNNs show promise in this domain, they
may not be the most suitable approach for the specific problem of detecting test-induced

hidden defects in semiconductor wafers, as discussed in the limitations section.

2.3.3  Limitations of Conventional Methods and Machine Learning approaches &
hidden defects

Despite the advancements in conventional methods and machine learning approaches
for defect detection in semiconductor manufacturing, there remain significant limitations
in their ability to detect hidden or latent defects, particularly those induced during the
testing process. As discussed in the previous sections, conventional methods heavily rely
on manual inspection by experienced engineers, which is not only time-consuming and
labour-intensive but also prone to human errors and subjectivity These methods often fail
to capture subtle defects and struggle to keep pace with the increasing complexity of

integrated circuits.
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Machine learning techniques, including supervised and unsupervised, semi-supervised
and deep learning methods, have shown promise in automating defect detection and

classification tasks.

Supervised learning such as support vector machines (SVM), and deep learning
methods such as convolutional neural networks (CNN) and Graph Neural Networks
(GNNSs), have demonstrated high accuracy in identifying known defect types. However,
supervised learning methods have several limitations. Firstly, they require a large amount
of labelled data for training, which can be time-consuming and costly to obtain in a
manufacturing setting. Secondly, these methods are limited to detecting known defect
types and may struggle with identifying novel or previously unseen defects. Lastly, and
most importantly, as the prober moves throughout the wafer, the faulty site-number that
caused repeated defects would gradually lose the effect, resulting in less visible defects
that supervised learning methods fail to detect due to the contrast and lighting settings in

the defined algorithm.

On the other hand, unsupervised learning methods also have their drawbacks. They
may struggle to distinguish between critical defects and benign process variations, leading
to high false positive rates. Additionally, the performance of unsupervised learning
methods often depends on the choice of hyperparameters and the quality of the input data,

which can be challenging to optimize in a production environment.

While the recent work on using semi-supervised learning has shown promising results,
several challenges remain. The complexity and variability of test-induced defects pose

significant difficulties for SSL methods. These algorithms often struggle to capture subtle
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differences between defect types, especially when the labelled data is limited or not
representative of all possible defect patterns. Additionally, the dynamic nature of
semiconductor manufacturing processes means that new defect types may emerge over
time, requiring SSL models to adapt continuously. Furthermore, most SSL approaches
assume that the unlabelled data follows a similar distribution to the labelled data.
However, in semiconductor manufacturing, this assumption may not always hold due to
process variations and evolving defect patterns. This mismatch can lead to degraded
performance or even negative transfer, where incorporating unlabelled data harms the

model's accuracy.

One of the major challenges in defect detection is the identification of hidden or latent
defects, such as those induced during the testing process. Test-induced defects, including
probe marks or surface scratches, can be subtle and difficult to detect using conventional
methods and machine learning approaches. These defects may not cause immediate
failures but can lead to reliability issues and affect the long-term performance of

semiconductor devices.

The limitations of existing methods in detecting hidden defects can be attributed to
several factors. Firstly, these methods often rely on pre-defined rules or limited feature
representations, which may not effectively capture the intricate patterns and
characteristics of test-induced defects. Secondly, as the prober moves throughout the
wafer, the faulty site-number that caused repeated defects would gradually lose its effect,

resulting in less visible defects.
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24 Graph-Based Semi-Supervised Learning
2.4.1  Overview of semi-supervised learning and its advantages

Graph-based Semi-Supervised Learning (GSSL) is a powerful approach that leverages
the inherent structure of data to propagate label information from labelled to unlabelled
instances. A comprehensive review done by (Chong et al., 2020; Song et al., 2023)

provides insights and detailed information into the development and application of GSSL.

By representing the data as a graph, where nodes correspond to instances and edges
capture the similarity between them, GSSL can effectively exploit the underlying

manifold structure to improve classification performance.

The history of GSSL can be traced back to the early 2000s, with (Zhu et al., 2003)
introduced the Gaussian Fields and Harmonic Functions (GRF) method, which
formulates the semi-supervised learning problem as a Gaussian random field on the graph.
(Zhou et al., 2004) proposed the Local and Global Consistency (LGC) method, which

balances the local and global consistency of the classification function on the graph.

The core idea behind GSSL is to construct a graph that encodes the relationships
between instances and then use this graph to guide the learning process. Figure 2.7 and

Figure 2.8 demonstrate a sample graph construction and label propagation.
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Figure 2.7: Sample of graph construction
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Figure 2.8: Sample of label propagation
One of the key advantages of GSSL is its ability to capture complex data structures
and relationships that may not be apparent in the original feature space. This is
particularly useful in semiconductor wafer defect detection and classification, where
defects often exhibit intricate patterns and dependencies. By constructing a graph that

represents the similarities between different wafer regions or defect types, GSSL can
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effectively propagate label information from known defects to unknown ones, improving

overall classification accuracy.

2.4.2  Graph construction techniques

In GSSL, graph construction plays a crucial role in capturing the relationships between
instances. Several techniques have been developed to construct graphs that effectively
capture the relationships between data points. This section focuses on five key methods:
k-Nearest Neighbors (kNN), b-matching, Linear Neighborhood Propagation (LNP),
Robust Graph that Considers Labelled Instances (RGCLI), and Graph Based on

Informativeness of Labelled Instances (GBILI).

The k-Nearest Neighbors (kNN) approach is one of the most classic and widely used
methods for graph construction in GSSL (Song et al., 2022). In this method, each node is
connected to its k nearest neighbors based on a predefined distance metric. While simple
and intuitive, kNN can lead to irregular graphs where nodes have varying degrees,

potentially impacting the label propagation process.

To address the irregularity issue of kNN, b-matching was introduced (Jebara et al.,
2009). This method ensures that every node in the resulting graph has exactly b neighbors,
creating a more balanced graph structure. The b-matching approach formulates graph
construction as an optimization problem, which can lead to more consistent label

propagation.

Linear Neighborhood Propagation (LNP) (Wang & Zhang, 2008) takes a different
approach by assuming that each node can be linearly reconstructed by its neighbors. This

method not only produces a new way of graph construction but also derives a

40



straightforward extension to the inductive setting, allowing for the handling of out-of-

sample data.

Recognizing the potential value of labelled instances in graph construction, the Graph
Based on the Informativeness of Labeled Instances (GBILI) method was developed
(Berton & Lopes, 2014). GBILI utilizes the label information during the construction
phase, potentially leading to graphs that are more informative for the subsequent label

propagation step.

Building upon GBILI, the Robust Graph that Considers Labelled Instances (RGCLI)
method was proposed to create more robust graphs (Berton et al., 2017). RGCLI solves
an optimization problem that incorporates labelled data, aiming to produce graphs that

are more resilient to noise and better suited for semi-supervised learning tasks.

However, these measures may not effectively capture the complex spatial relationships
and hierarchical structures present in wafer map data, limiting their ability to accurately

propagate label information for detecting hidden defects.

2.43 Label propagation algorithms

Label propagation algorithms in GSSL aim to assign labels to unlabelled nodes by
minimizing a cost function that encourages label smoothness over the graph. Popular label
propagation methods include Gaussian Random Fields (GRF), Local and Global

Consistency (LGC), Special Label Propagation (SLP).

Gaussian Random Fields (GRF), introduced by (Zhu et al., 2003), is one of the earliest

and most popular approaches in GSSL. GRF formulates the label propagation problem as
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estimating a function f on the graph that satisfies two criteria: it should be as close as
possible to the given labels on labelled nodes, and it should be smooth on the entire graph.
The method uses a quadratic energy function to ensure smoothness, which leads to a
harmonic function solution. GRF enforces a hard constraint that the labels of labelled
nodes remain fixed during propagation, which can be beneficial when label information

is highly reliable.

Local and Global Consistency (LGC), proposed by (Zhou et al., 2004), extends the
GRF approach to a multi-class setting and introduces some key modifications. Unlike
GRF, LGC relaxes the hard constraint on labelled nodes, allowing their labels to change
slightly during the propagation process. This flexibility can be advantageous when there's
potential noise in the initial labels. LGC balances local consistency (neighbouring nodes
should have similar labels) and global consistency (the overall label distribution should
be smooth) through its objective function. The method also introduces a normalization
factor based on node degrees, which helps regulate the influence of high-degree nodes in

irregular graphs.

Special Label Propagation (SLP), developed by (Nie et al., 2010), addresses a
limitation of previous methods by introducing the capability to detect outliers or discover
novel classes in the data. SLP achieves this by adding an extra label category, giving the
algorithm the flexibility to assign nodes to a new, previously unseen class. This feature is
particularly valuable in real-world scenarios where the unlabelled data might contain
instances that don't belong to any of the known classes, such as new types of defects in

semiconductor wafer inspection.
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244  Opportunities for extending GSSL to semiconductor wafer analysis

Graph-based semi-supervised learning techniques have the potential to be applied to

the problem of detecting defects in semiconductor wafers. By representing the wafer as a

graph, where nodes correspond to individual dies and edges represent the spatial

relationships between dies, GSSL algorithms can propagate defect information from

labelled defective dies to unlabelled dies, enabling more accurate and efficient defect

detection.

To extend GSSL to semiconductor wafer analysis, several challenges need to be

addressed:

il.

1il.

1v.

Graph construction: Designing effective graph construction techniques
that capture the spatial and structural relationships between dies on the
wafer. This may involve incorporating domain knowledge about the wafer
layout and the defect patterns.

Label propagation: Adapting label propagation algorithms to handle the
specific characteristics of semiconductor wafer data, such as the sparsity of
labelled defective dies and the potential imbalance between defective and
non-defective classes.

Incorporation of wafer-specific features: Integrating additional features,
such as process parameters or electrical test measurements, into the graph-
based models to improve defect detection performance.

Scalability: Develop scalable GSSL algorithms that can handle large-scale

wafer data and enable real-time defect detection and analysis.
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By addressing these challenges and leveraging the power of graph-based semi-
supervised learning, novel approaches can be developed to enhance the accuracy and
efficiency of defect detection in semiconductor wafers, leading to improved yield and

quality control in the manufacturing process.

25 Research Gap

The current literature on defect detection in semiconductor manufacturing has two
main gaps. First, there is a lack of focus on detecting hidden defects induced by the testing
process itself, which can significantly impact the quality and reliability of semiconductor
devices. Existing methods fail to effectively leverage the spatial and topological
information inherent in visible test-induced defect patterns to uncover these hidden

defects.

Second, the limitations of existing graph-based semi-supervised learning (GSSL)
methods in addressing the unique challenges posed by hidden defect detection in wafer
maps. Current GSSL methods often rely on simple similarity measures for graph
construction, which may not effectively capture the complex spatial relationships and
hierarchical structures present in wafer map data. Moreover, these methods often lack
consideration for domain-specific knowledge, adaptive graph refinement mechanisms,
and weighted edge initialization based on the unique characteristics of semiconductor

wafer testing.

To address these gaps, this work proposes a novel graph-based semi-supervised
learning algorithm specifically designed for test-induced hidden defect detection in

semiconductor wafers. The proposed approach integrates three key innovations:
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1. a specialized graph construction mechanism that incorporates domain
knowledge of wafer testing patterns and defect propagation behaviour.

ii. an adaptive edge weighting scheme that dynamically adjusts based on both
spatial relationships and test configuration parameters.

1ii. an iterative label propagation process that leverages information from

visible defects to identify hidden ones.

By combining these elements, the algorithm aims to capture the complex spatial and
hierarchical relationships more effectively in wafer map data while maintaining
computational efficiency. The method utilizes minimal labelled data and incorporates
test-specific characteristics such as probe card movement patterns and site number
configurations to enhance detection accuracy. This comprehensive approach promises to
improve both the identification of test-induced hidden defects and the overall reliability

of semiconductor manufacturing quality control.
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CHAPTER 3: METHODOLOGY

3.1 Introduction

In this study, a machine-learning based solution is proposed to effectively identify
hidden defects in semiconductor wafers. The proposed method involves a multi-step
process designed to enhance the identification accuracy of these defects. The core part of
the methodology is the development of a graph-based semi-supervised algorithm which
is to construct the graph and build the label propagation. The graph construction requires
the information on wafer map and visible defects, and label propagation requires

information on test configuration.

In order to achieve the quantitative research, the project collaborated with NXP
Semiconductor Malaysia to study the wafer's defects, recognize the pattern of the defects,
and identify the location of the hidden defects. The proposed methodology leverages the
power of data analysis and machine learning to identify these hidden defects. The

methodology flowchart is shown in Figure 3.1, and it involves several key steps:

1. Data Acquisition: Defect data will be collected from wafers tested by the
Automated Optical Inspection (AOI) machine at the fabrication plant of
NXP Malaysia. Data from a variety of products manufactured over the past
two years will be included. A dedicated software tool will be developed to
integrate and preprocess this data.

ii. Test-Induced Defect Discovery: Statistical analysis will be performed on
the pre-processed data to identify recurring patterns in defect distribution.
These visible defects are used as the backbone of the algorithm to find the

hidden ones.
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iii. Defect Clustering: Clustering techniques will be employed as a separate

1v.

V1.

step to identify specific areas of interest on the wafer where defects are more
likely to occur. This analysis focuses the investigation on regions with a
higher concentration of defects.

Root-Cause Analysis: Data analysis will be conducted to establish
connections between defect types and test configurations, revealing the
underlying causes of these defects. This initial analysis lays the groundwork
for subsequent hidden defect pattern recognition.

Hidden Defect Localization with Graph-based Semi-supervised
Learning: Once defect root causes are identified, a novel graph-based semi-
supervised learning algorithm will be developed. This algorithm will
leverage the spatial relationships between defect patterns on the wafer,
represented as a graph structure. It will exploit both labelled data (known
defects) and unlabelled data (suspected hidden defects) to achieve high
accuracy in pinpointing the locations of hidden defects.

Validation and Results: The effectiveness of the proposed algorithm will
be validated by presenting the results on comprehensive wafer maps, along
with supporting statistical analysis. This will demonstrate the algorithm's

ability to uncover previously undetected defects.
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Figure 3.1: Methodology overall process flow
3.2 Data Acquisition
3.2.1 Types and Sources of Data
This project is collaborated with NXP Semiconductor Malaysia for sharing the
knowledge and work, thus the dataset is provided by the probe department. The dataset
is the collection of the wafers tested and analysed by the team from the Probe Department.

The data collected from NXP are as follows:

1.  AOI Machine Report: The Automated Optical Inspection (AOI) Machine
employs high-resolution image capture and computer vision algorithms to
scan and analyse the wafer surface. The report provides valuable
information and images of defects detected by the AOI machine during the
manufacturing process. This data is crucial for discovering visible test-
induced defects that may have occurred during testing. The report is in text
format and contains detailed information about the location, size, and type

of defects classified by the AOI machine. The primary focus of this data is
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11.

1il.

to utilize the defect location data to gain insights into the distribution and
patterns of test-induced defects.

Physical Test Configurations & Results: The Physical Test
Configurations & Results data encompasses information about the test
configurations used for each wafer and the corresponding test results. As
mentioned in Chapter 2, each test performed on a wafer is based on a
configuration file designed by test engineers in the plant. These
configuration files contain crucial details such as the path and direction of
movement for the prober and the number of dies tested simultaneously. The
configuration files are accessible in Excel format, along with the test results.
By extracting information from the Excel files, we can correlate the index
of each die in the test with the corresponding AOI defect data.

Previous Cases of Analysis on Hidden Defects: The third type of data
collected pertains to previous cases of hidden defects that were discovered
through manual analysis by engineers. This analysis, documented in both
Excel and PowerPoint formats, provides valuable insights into the number
of hidden defects found and the time spent on manual inspection. The
analysis is typically conducted after the rejection and return of the product
by the customer. This data serves as a validation benchmark for the
developed algorithm. It's important to note that the number of hidden defect
cases is relatively small compared to fabrication defects, as test-induced

defects occur less frequently.
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3.2.2 Data Centralization and Script Development

During the data collection phase, a significant challenge encountered was the disparate
storage of required information across different databases. To address this challenge, a
custom script was developed to centralize the information for each wafer. This script
efficiently merges data from the AOI report and test configuration data into a unified
database. The same database is utilized to store the analysis results, which facilitates

further trend visualization and in-depth analysis.

33 Data Preprocessing
3.3.1 Data Cleaning

The report for each wafer generated by the AOI machine is a text file format and
contains the information about each wafer and its defects, such as the defect class type
and location. The first step was to read this data in the software and convert the lines

written by the AOI machine into data types to be used later in the algorithms.

Besides the conversion, the data needed to be cleaned before being able to use it in the
analysis. The report for each wafer contained a duplication of defects (due to the recipe
defined for the AOI machine). Therefore, after converting, the software cleans the dataset
to ensure no duplication is in the list of defects, as this would cause huge errors in finding

the repeated defects, and consequently root-causing and hidden defect identification.

3.3.2 Conversion
As mentioned earlier, the data collected from AOI machine, and test configurations
are from two different databases, and consequently required to have correlation

preprocessing, to ensure the data acquired from both sources are in the same coordinates.
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However, this correlation is challenging due to the data originating from different

databases and the coordinate systems used for plotting the defect locations and die indices

being different.

To overcome these challenges, two main steps were undertaken:

1.

Rotating the AOI Data to Match the Physical Test Data Direction: The
first step involved rotating the AOI data to ensure that it was aligned in the
same direction as the Physical Test Data. This was achieved by comparing
the direction information from the Physical Test Data and the AOI machine.
A mapping was created to associate the direction strings with their
corresponding direction angles in degrees:
UP — 0°
RIGHT — 90°
DOWN — 180°
LEFT — 270°

Let the direction angle for the physical test data be represented as Oro5tpata-
and the direction angle for the AOI machine be represented as 8,;.
The required rotation degree, 0,¢qtion, Was calculated as the difference

between 640; and Orestpata:

Orotation = Baor — Orestpata (3.1)

If 6,ptation Was non-zero, the AOI wafer map coordinates (x40;, Yao;) and
defect coordinates (Xpefect) Ypefect) Were rotated accordingly using the
following transformations:
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e For Brptation = 90

XAO0I_Rotated = YAOI_Rotated
YAOI Rotated — —XAOI Rotated
XDefect_Rotated — YDefect

Ypefect_Rotated = ~XDefect

e For Orotation = +180°:

XAOIRotated = —XA0I
YAOI Rotated = ~YAOI
XDefect_Rotated — ~XDefect
YDefect_Rotated = —YDefect

* For Orotation = £270%

XA01_Rotated — —Yaol
YAoI_Rotated = X401
XDefect_Rotated — ~YDefect

YDpefect_Rotated — XDefect

(3.2)
(3.3)
(3.4)

(3.5)

(3.6)
(3.7)
(3.8)

(3.9)

(3.10)
(3.11)
(3.12)

(3.13)

After rotating the AOI data, it was aligned in the same direction as the

Physical Test Data.

ii. Transforming the AOI Coordinate System to Match the Physical Test

Data Coordinate System: After rotating the AOI data, the next step was to

transform its coordinate system to match the Physical Test Data coordinate

system. This was achieved by finding the top-right coordinates of the wafer

map in both the AOI and Physical Test Data, and then calculating the
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translation vector required to align them. For the AOI data, let the top-right
coordinates be represented as (X40; 7r> Yaor rr)- For the Physical Test Data,
let the top-right coordinates be represented as (XTestpata TR YTestData TR)-

The translation vector, (Ax, Ay), was calculated as:

AX = XrestData TR — X401 TR (3.14)

Ay = YTestData TR — Y40l TR (3.15)

If the translation vector was non-zero, the rotated AOI wafer map
coordinates (X401 New»Ya0I New) and defect coordinates

(Xpefect New» Ypefect New) ~Were translated using the following

transformations:
XA01 New = X4o0I Rotatea T DX (3.16)
Yaoi New = Yaol Rotatea T AY (3.17)
Xpefect New = XDefect Rotated T Ax (3.18)
Ypefect New = YDefect Rotated T Ay (3.19)

By performing these two steps, the AOI data was rotated and translated to match the

direction and coordinate system of the Physical Test Data, respectively. This enabled

accurate correlation of the die indices from the Physical Test Data with the defect

locations from the AOI machine, as they were now in the same coordinate space and

aligned in the same direction.

3.4

Detection of Visible Test-Induced Defects

Since we are collecting our wafer map and defects information from the AOI machine,

we need to come up with another procedure to find the test-induced defects than
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mentioned in (Cheng et al., 2021). As mentioned in the 2nd chapter, the AOI machine is
capable of detecting some of the test-induced defects, however as it goes through the
general classification, it is just classified as a defect and not specifically a test-induced

one.

As mentioned in the literature review, one of the primary indicators of test-induced
defects is their repetitive nature, as a defective probe pin on the test card can cause the
same defect pattern to be replicated across different die locations. Therefore, one of the
main ways of identifying the test-induced defects detected by the AOI machine is to find
the repeated defects on the wafer. The main characteristic to define the existence of
repeated defects is to have multiple defects on the same area on the dies in the wafer. To
achieve this, we define the area on each die, where the size of each area which is also
known as the zone is defined by the AOI report. Figure 3.2 shows how the die is divided

into zones.

Figure 3.2: Zone division on a Die
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In order to find the repeated defects, AOI defect coordinate data is fed into these zones.
The more defects that fall at a certain location when stacked into a heatmap will produce
red zones that are an early indicator of a repeated defect. Figure 3.3 visualizes how the
zones are turned into a heatmap based on the density of defects in each zone. The
threshold for identifying the zone as indicator of repeated defect, varies for each device,

based on the number of dies in the wafer.

Figure 3.3: Die Heatmap
The more defects that fall at a certain location when stacked into a heatmap will
produce red zones that are an early indicator of a repeated defect. This is the very first

step in identifying the hidden defects, as we need to identify the faulty wafer first.

3.5 Defect Clustering

Once the test-induced defects are identified, they can be root-caused to find the pattern
between them and their relationship with the test configuration, to confirm if it is caused
by the probe card.
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Each test contains a number of rounds of testing multiple dies at once, which is known
as stepping. On each round, the probe card will analyse the dies based on the index

configured in the configuration file. This is known as site number.

To analyse the relationship between the defects and the site numbers of steppings, all
the steppings that a probe card does for a wafer shall be analysed. However, this would
not only take a long processing time to achieve but also require more computation power.
To reduce and optimize this process, a clustering algorithm can be used to identify the
area of interest on the wafer, to reduce the size, thus reducing the number of steppings
going to be analysed for the comparison. Cluster algorithms’ goal is the divide a dataset
into groups of similar objects that are called clusters. While these algorithms are
extremely helpful in finding similar defect types and shapes in the wafer map, they are

also used in removing the unwanted defects in the wafer map known as the noise.

To achieve this task, various types of clustering algorithms can be applied. (Djouzi &
Beghdad-Bey, 2019; Ezugwu et al., 2022), where each is based on the type of technique
chosen for finding the similarities. As the defects do not have a preset number of groups
they can join and with the characteristics of the defects, only a few algorithms were
selected to be tested based on the review done by (Mahdi et al., 2021) as shown in Figure

3.4.
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Figure 3.4: The chosen algorithms for clustering
(Mahdi et al., 2021)

Two main parameters can be given to the clustering algorithms:

1. The distance between the two defects to form a cluster is the same as the
stepping size.
ii. There must be at least two defects in a neighbourhood to define them as a

cluster.

To evaluate the effectiveness of different algorithms, a subset of wafers exhibiting
repeated defects was subjected to multiple clustering techniques. Among the algorithms
considered, Clustering In Quest (CLIQUE) (Jain & Dubes, 1988), Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) (Ester et al., 1996) emerged as the
most suitable choice for this specific application while Ordering Points To Identify the

Clustering Structure (OPTICS) (Ankerst et al., 1999) was close.

To evaluate the effectiveness of different algorithms, a subset of wafers exhibiting
repeated defects was subjected to multiple clustering techniques. Among the algorithms
considered, DBSCAN emerged as the most suitable choice for this specific application.
Figure 4 shows an example of a comparison between DBSCAN (b) and non-density-

based algorithms like K-Means (c) and Louvian (d) on a wafer map with defects (a).
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DBSCAN effectively groups nearby defects into a single cluster, represented by points of
the same colour. In contrast, K-Means and Louvian tend to split defects into multiple
smaller clusters, assigning different colours to defects that are likely related. It can be
seen that DBSCAN consolidates related defects into a single cluster, unlike non-density-
based algorithms that fragment them, which increases computational complexity in
subsequent steps. Also, due to the nature of the algorithm, DBSCAN doesn’t require the
number of clusters to be predefined as input, which makes it particularly suited for
handling varying defect patterns. Additionally, DBSCAN’s noise cancellation capability
filters out irrelevant defects misclassified by AOI systems, enhancing the accuracy of
clustering. These attributes make DBSCAN the most suitable algorithm for this

application.
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(a) Defects (b) DBSCAN

(c) K-Means (d) Louvian

Figure 3.5: Comparison of clustering algorithms for defect detection on a
specific wafer: (a) Original defects; (b) DBSCAN; (c) K-Means; (d) Louvain.

With the chosen algorithm and clustering done, now the area of interest must be
identified. As the goal of this study is to find the test-induced hidden defects, and as we
know that test-induced defects are repeated throughout the wafer, it is considered that the
area between two clusters is an indicator of having repeated defects. To ensure there’s no
hidden defect being missed, we consider a margin to form the area of interest. The choice
of clustering margins was determined empirically based on the observed spatial

distribution of defects in the data. Specifically, the margins were set to double the height
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and width of defect clusters to ensure the inclusion of all potential test-induced defect
areas. This choice balances sensitivity and specificity: narrower margins risk excluding

significant defect regions, while overly broad margins could incorporate unrelated noise.

Thus, to define the entire area on the wafers, boundaries of defined based on the

location of clusters with a margin of double height/width:

Ymax = Ymax cluster T (2 X height of testing area) (3.20)
Ymin = Ymin custer — (2 X height of testing area) (3.21)
Xmax = Xmax cluster T (2 X width of testing area) (3.22)
Xmin = Xmin_cluster — (2 X width of testing area) (3.23)

3.6 Root-Cause Analysis

After finalizing the area of interest, the root-cause analysis aims to identify the site-
number with the highest density of collisions with the defects. This site-number is
considered the root cause of the test-induced defects, as concluded in (Cheng et al., 2021)
And will be used as part of the label propagation algorithm structure in the next step. As
mentioned earlier, the test-induced defects are repeatedly happening throughout the
wafer. Therefore, we need to figure out the pattern of repeated defects through the site
number representing the repeated defects. This will help us identify the potential

coordinates of hidden defects.

The movement of the prober around the wafer for the testing is also called stepping

data. The process involves iterating through the stepping data, with each stepping
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representing the coordinates of each die and the site-number assigned to that die during

the stepping process.

Let D = {(xi,yl-)}ﬁszl be the set of defect locations, where (x;,y;) represents the
coordinates of the ™ defect and Np is the total number of defects.
Let S={(XjYjrduty)|j=1,..,N;k=0,..,M—1} be the set of stepping
coordinates, where N is the total number of steppings, M is the number of sites tested in
each stepping, (X; x, y; x ) represents the coordinates of the k™ site in the j™ stepping, and
duty, is the site-number associated with the k™ position in each stepping. The following

lists are initiated for each site-number dut, to hold their records:

i.  Rgy, = O: an empty list to store defect locations that collide with the site-
number.
ii. Tyy, = @: an empty list to store stepping coordinates and their collision

status for the site-number.

The area of interest within the clustering parameters based on (1) will be defined as:

A= {(X, y) | Xmin Sx < Xmax» Ymin < y < ymax} (324)

The data analysis process involves the following steps for each stepping coordinate

(xj,k'yj,kl dutk) eS:

1. check if it falls within the area of interest A, otherwise skip the stepping:

(xj,k' yj,k) SR Xmin < xj < Xmax A Ymin < yj < Ymax (325)
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ii. Ifthe stepping coordinate falls within A, check for collisions of site-number

coordinates with defect locations:

isCollising { ; H(xi’yi? € D such that (x;, ¥1) = (%) Vjk)  (3.26)
=0, otherwise

iii. If isColliding, = 1, update Ry, with relative defect location.

iv. Update Tgy, with collision status.

After processing all stepping coordinates, the site-number dut, with the longest list

Rqyy;, 1s considered the root cause of the test-induced defects:

Figure 3.5 shows an example of how the heatmap of site-number determines the faulty
site-number, where the site-number #28 has 20 collisions with test-induced defects. This
is a clear indication of the faulty site number. Therefore, coordinates of site-number #28

are the potential for hidden defects.
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Figure 3.6: Site-number heatmap

3.7 The Proposed Methodology: Improved Graph-Based Semi-Supervised
Learning for Defect Detection

With the knowledge of the root-cause, this work proposed a novel graph-based semi-

supervised learning (GSSL). The proposed approach consists of two key steps: 1) Graph

Modelling and 2) Label Propagation. By leveraging the structural information captured

by the graph and requiring only a limited amount of labelled data, the algorithm
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propagates defect information to unlabelled dies, effectively identifying hidden defects.

Figure 3.6 shows a process flowchart of how the hidden defects are identified.

Figure 3.7: Proposed novel GSSL flowchart

3.71 Graph Modelling

In this step, we construct an undirected graph G = (V, E), where V represents the set
of nodes (dies) and E represents the set of edges connecting the nodes. Each node v; € V
is associated with a feature vector x; and a label y; € 0,0.5,1, representing defective,
potential, and good dies, respectively. The edges e;; € E connect nodes v; and v; based
on their site number information obtained from the root-cause analysis. To incorporate
domain-specific knowledge, we introduce weighted edges that capture the relative
importance of different connections in the context of semiconductor wafer testing. The
edge weights are denoted as w;; and are initialized based on three parameters: wp, wg,
and wp, which correspond to the weightage of defective, good, and potential dies,
respectively. These weights are learned during the training stage to optimize the graph
structure for accurate hidden defect detection. The graph construction process can be

formalized as follows:
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V={vli=12..N} (3.27)

where N is the total number of dies.

E = {eij|vi, 1.7]' € V,l :/—']} (328)

where e;; is an edge connecting nodes v; and v;. The edge weights are initialized as:

wp, if yi =00ry =0 (3.29)
wij = {We if yi=1lory =1
wp, if y; = 05 0ry; =05

These weights are critical in determining the influence of each type of die on its

neighbours, reflecting the likelihood of defect propagation.

This graph construction approach differs from existing GSSL methods by
incorporating domain-specific knowledge through weighted edges and considering the
spatial proximity and site number information obtained from the root-cause analysis.
Additionally, the proposed method introduces an adaptive graph refinement mechanism

during the label propagation step, which will be discussed next.

3.7.2  Label Propagation

The label propagation step aims to propagate the label information from labelled nodes
(good and defect dies) to unlabelled nodes (potential dies) iteratively until convergence.
This approach is designed to identify hidden defects in semiconductor wafers by
iteratively updating the classifications of potential dies based on their neighbours. This
process leverages the graph structure constructed in the previous step and propagates

labels through the network until convergence. At the start, each node v; in the graph G is
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assigned an initial label y;. These initial labels are based on the root-cause analysis. The

label assignment follows a normalized range between 0 and 1, where:

. y; = 0 for defective dies, denoting nodes with confirmed defects.
. y; = 0.5 for potential dies, indicating nodes with uncertain status.

. y; = 1 for good dies, representing nodes with confirmed normal functionality.

This normalized range allows for intuitive interpretation, where values closer to 1
indicate higher likelihood of normal functionality, while values closer to 0 suggest higher

probability of defects. The initial state of the labels can be represented as:

NONS (3.30)

L

where c; denotes the class of node i at the initial stage.

The label propagation process updates the label of each potential die iteratively.
During each iteration, the label of a node is updated based on the weighted average of its

neighbours’ labels. The update rule for the label propagation is given by:

®
y(t+1) _ Yjen( WijYj (3.31)
l Yjen @) Wij
where:
yi(tﬂ) is the updated label of node i at iteration t + 1,

e V(i) denotes the set of neighbours of node i,
e w;; is the weight of the edge connecting nodes i and j,

. yj(t) is the label of the neighbouring node j at iteration t.
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The iterative process continues until the labels of the nodes converge, meaning that the
change in labels between iterations falls below a predefined threshold €. The convergence

criterion is mathematically defined as:

YD 0] oy (3.32)

L l

Once convergence is achieved, the final labels indicate the probability of each potential

die being a hidden defect.

Figure 3.7 shows the graphical representation of label propagation. Figure 3.7 (a)
shows the initial state of each node, with weighted edges. Figure 3.7 (b) shows the nodes
classification after 1 iteration, in which the potential nodes that were initially identified
as grey, get new classification based on the weightage of edge and classes of neighbours.
This figure shows the effect of weighted edge as the right potential node is more blue than

red, due to higher weightage of the blue node’s edge.
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(a) Initial State

(b) After 1 iteration

Figure 3.8: Label Propagation example
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3.8 Experimental Setup

To evaluate the effectiveness of the proposed graph-based semi-supervised learning
algorithm for defect detection in semiconductor wafers, we collaborated with NXP
Semiconductor Malaysia and conducted experiments on real product data that had already
been analysed by the probe team. For data collection, we utilized both the prober and
automated optical inspection (AOI) systems from the production line, as illustrated in
Figure 3.8 and Figure 3.9. This comprehensive data acquisition approach allowed us to
capture both electrical test results from the prober and visual & statistical defect and wafer

map information from the AOI, providing a holistic view of the wafer condition.
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Figure 3.9: AOI Machine at NXP Semiconductor Malaysia
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Figure 3.10: Prober Machine at NXP Semiconductor Malaysia

The dataset consists of wafer maps with labelled defective dies, non-defective dies,
and unlabelled dies, along with the test configuration information, including site numbers
and relevant test parameters. Table 3.1 shows the information about the dataset. The
experiments aim to assess the performance of the algorithm in detecting hidden defective
dies that may have remained undetected by the manual analysis performed by the probe
team. For each product category, we divided the wafers into a 60%-40% ratio for training
and testing, respectively.
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Table 3.1: Experiment Setup

Product Category # Dies Sites # Wafers
PC-1 <2000 16, 28 10
PC-2 <3000 8, 64,128 30
PC-3 <4000 32,128 10

3.9 Optimization

We consider the weightage assigned to the edges connecting good dies w;, defective
dies wp, and potential dies wp as hyperparameters of the algorithm, as they play a crucial
role in determining the algorithm's behaviour and performance. To optimize the
performance of our proposed graph-based semi-supervised learning algorithm for wafer

defect detection, we conducted an evaluation on these hyperparameters.

We designed four cases of normalized combinations for these hyperparameters to test
wafers as shown by Table 3.2. These four cases were strategically chosen to represent a
spectrum of weight distributions that align with our understanding of defect propagation
in semiconductor wafers. Case 1 serves as a baseline where all die types are equally
weighted, providing a neutral starting point. Cases 2 through 4 progressively decrease the
weights of good wg;, and potential wp, dies relative to defective dies wp, reflecting the
hypothesis that defective dies have the strongest influence on their neighbours. This
gradual reduction allows us to assess the impact of increasingly emphasizing defective
dies in the model. Importantly, these cases were not arbitrarily chosen but were informed

by industry expertise and initial experimental results. While a more exhaustive search
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could potentially yield marginally better results, our preliminary studies indicated that

these four cases effectively capture the most significant variations in model performance.

The choice of these specific hyperparameter combinations is rooted in the physical
characteristics of semiconductor wafer defects. In a typical wafer, defective dies tend to
have a stronger influence on their neighbors compared to good or potential dies. This is
because defects often propagate to adjacent dies due to the nature of the manufacturing
process and the proximity of the dies on the wafer. By assigning higher weights to the
edges connected to defective dies, the algorithm can more effectively capture this defect
propagation behaviour. The progressive reduction of weights for good and potential dies
in Cases 2 through 4 allows the model to focus more on the influence of defective dies
while still considering the information provided by other die types. This approach aims
to strike a balance between leveraging the most informative connections (i.e., those
involving defective dies) and maintaining a comprehensive view of the wafer's overall
defect landscape. By systematically evaluating these hyperparameter combinations, we
can identify the optimal settings that maximize the algorithm's performance in detecting

hidden defects, ultimately leading to improved yield and quality control in semiconductor

manufacturing.
Table 3.2: Hyperparameter Cases
Case Wp Wg Wp
Case 1 1 1 1
Case 2 1 0.5 0.5
Case 3 1 0.5 0.25
Case 4 1 0.33 0.17
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3.10  Limitations of the Methodology

While the proposed graph-based semi-supervised learning methodology demonstrates
promising capabilities in identifying test-induced hidden defects on semiconductor
wafers, it is important to acknowledge and discuss the limitations inherent in this
approach. These limitations stem from various factors, including the reliance on AOI
reports, the complexity of test configurations, and the physical characteristics of the

prober itself.

One notable limitation arises from the methodology's dependence on the AOI report as
the primary source for identifying visible test-induced defects. Although AOI systems
provide valuable information about defect locations and types, they may not capture all
relevant defects, especially those that are subtle or fall outside the predefined
classification criteria. This can lead to an incomplete representation of the defect
landscape, potentially impacting the effectiveness of the subsequent steps in the

methodology.

Another significant challenge stems from the inherent complexity of test configurations
in semiconductor manufacturing. Modern testing processes often involve intricate
overstepping patterns, where a single die may be tested multiple times by different site
numbers. This redundancy can introduce ambiguity in associating defects with specific
site numbers, complicating the root-cause analysis and the construction of the graph
model. Overstepping also increases the computational complexity of the methodology, as
it requires processing a larger volume of test data and handling more complex

relationships between dies and site numbers.
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These limitations highlight the need for careful consideration when applying the
methodology in production environments and suggest potential areas for future
enhancement. Understanding these constraints is crucial for proper implementation and

interpretation of the results, particularly in cases where the testing scenario deviates from

standard configurations.
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CHAPTER 4: RESULTS & DISCUSSION
4.1 Detection of Test-Induced defects
A heatmap based solution has been created that provides the zonal defect density to
indicate the location on the die where the most defects appeared. Based on the
characteristics of the wafer, the die is divided into zones. The green indicates no defects
have appeared on this section of the die throughout the wafer. Blue indicates that there’s
only one defect that appeared on this location of the die. Red demonstrated the location

of the die with the highest number of defects that are usually more than 3.

Figure 4.1 shows different sets of heatmaps that appeared during the analysis. The axes
in these heatmaps represent the physical dimensions of a semiconductor die in
micrometres, with the x-axis showing the width and the y-axis showing the height. While
the visual representation of the heatmaps may appear in different aspect ratios due to the
visualization software's screen adaptation, the underlying coordinate system and
measurements remain consistent. Each cell in the heatmap corresponds to a specific zone
on the die, with the colour coding indicating the frequency of defects in that particular

location.

Figure 4.1 (a) represents example of wafers that showed no repeated defects on their
maps. This could be seen as they have no red indicator on their heatmaps. Figure 4.1 (b)
shows the example of wafers that has only 1 repeated location on their heatmaps. This is
not indicative of having only 1 defect, but it shows that all the defects happened on the

exact same location on the die which is a clear characteristic of test-induced defects.
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In more complex situations, Figure 4.1 (c) shows examples of devices that have
multiple locations that have more than one defect frequency on the idea. This is shown
by a colour range that goes from blue which was the indicator of 1, to red which is the
indicator of the highest number, resulting in having shades of purple and red that indicate
the different frequencies on each location. This means that the prober has multiple issues,
and it could be harder to determine the location of hidden ones as it has a more complex

pattern.

This results and the analysis on it have been verified by engineers of NXP

Semiconductors Malaysia through verification of images of these defects.
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(a) No repeated defects

Figure 4.1: Die Heatmap for Repeated Defect Detection
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(c) Multiple locations with a high frequency of defects

Figure 4.2, continued: Die Heatmap for Repeated Defect Detection

4.2 Area of Interest on the Wafer Map
Clustering visualization is developed based on the selected algorithm, and calculation
is done to indicate the area of interest on the wafer that requires the root-causing and

identification of hidden defects.
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Figure 4.2 shows an example of the 3 steps of defining the area of interest on the wafer
for one of the tested wafers. The axes in these wafer maps represent the spatial coordinates
of individual dies on the wafer surface. These coordinate systems are referenced relative
to the wafer's notch position, which serves as a physical orientation marker. While
different software applications may employ varying coordinate representations based on
their specific use cases, the methodology presented in this study includes coordinate
transformation algorithms to ensure consistent alignment and synchronization across
different environments. This standardization enables accurate correlation of die locations

across multiple analysis platforms.

Figure 4.2 (a) indicates the initial wafer map, where the defects are shown in red dots.
Figure 4.2 (b) shows 2 areas with red background, which is the result of the clustering
algorithm (DBSCAN) applied on the defects locations. As it can be seen defects are
categorized into 2 clusters, which indicates the efficiency of DBSCAN in identifying of

clustering locations.

Figure 4.2 (c) shows the orange background shape appeared on the wafer map, which
indicates the area of interest on this wafer map. As it can be seen, it is connecting to
clusters and giving a margin that is proportional to the width/height of area that the testing

prober tests on the wafer.
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(a) Wafer map

° Good Die
Step Starting

° Defects
Defect Cluster

Area of Interest

(b) Clustering applied

Figure 4.3: Example of determination of the area of interest on a wafer map
using clustering.
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° Good Die
Step Starting
° Defects

Defect Cluster
Area of Interest

(c) Area of interest developed

Figure 4.2, continued: Example of determination of the area of interest on a
wafer map using clustering.

4.3 Root-Causing

Similar to section 4.1, a heatmap is generated to indicate the root-cause of the repeated
defects. Figure 4.3 shows examples of the heatmap for the root-causing representing the
density of defects on each site number for each device. Each heatmap represents the
collision frequency of site-numbers with defects. The higher the value is in the heatmap,

the more it indicates that the relative site-numbers are responsible for test-induced defects.

As mentioned in Chapter 2, the number of dies that are simultaneously getting tested
by the prober are different for each device. Figure 4.3 (a) shows the stepping with only

8 site-numbers. It can be seen in the left heatmap, that the faulty site-number can be
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identified through the high number of collisions that site-number 2 (10 times) has with

the defects.

In other examples illustrated by Figure 4.3 (b), Figure 4.3 (c) and Figure 4.3 (d), we

can see steppings with 16, 32, 64 and 128 site-numbers.

It can be seen from the distribution of the collisions among the site-numbers in
different stepping configurations, that the lower the number of dies getting tested
simultaneously, the higher the distribution is. It is due to the nature of probing of the
wafer, that is the prober moves more with a lower number of simultaneous dies, resulting
in engaging more dies should the prober carry a faulty needle. This could be also
happening as in the design of the path of the stepping configuration, some of the dies in
the wafer are getting tasted by multiple stepping, each time assigned with a different site-
number. This, also known as cross stepping makes the pattern of test-induced defects

more complicated and complex.
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(a) Stepping with 8 site-numbers

(b) Stepping with 16 site-numbers

Figure 4.4: Example of Root-Cause Heatmap, displaying defect density across
different test configurations.
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(c) Steppings with 32 site-numbers

Figure 4.3, continued: Example of Root-Cause Heatmap, Example of Root-
Cause Heatmap, displaying defect density across different test configurations.
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(d) Steppings with high 64 and 128 site-numbers

Figure 4.3, continued: Example of Root-Cause Heatmap, displaying defect
density across different test configurations.

4.4 Identifying the Hidden Defects

To evaluate the performance of our algorithm, we employed standard metrics
commonly used in classification tasks. Table 4.1 shows the results of each case test for
each product category. The accuracy is the ability of the model to correctly offer the

coordinates where the hidden defects are there.
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Table 4.1: Algorithm Evaluation

Product Case Avg. Accuracy
Case 1 58%
0

PC-1 Case 2 62%
Case 3 68%
Case 4 64%
Case 1 50%
Case 2 58%

PC-2
Case 3 64%
Case 4 61%
Case 1 59%
Case 2 60%

PC-3
Case 3 60%
Case 4 66%

The results from Table 4.1 demonstrate that our proposed algorithm achieves the goal
of identifying the hidden test-induced defects for all products. The best performance for
products with less than 2000 dies is obtained when the defect weight. W), is set to 1, the
good eight W;; is set to 0.5, and the potential knowledge weight Wp is set to 0.25. This

indicates that placing a higher emphasis on the defect edge resulted in better accuracy.

For PC-1, the algorithm's performance improves steadily from Case 1 to Case 3, with
accuracy increasing from 58% to 68%, before slightly declining to 64% in Case 4. This
suggests that for this product category, assigning higher weights to defective dies while

moderately reducing weights for good and potential dies (Case 3) yields the best results.

Accuracy in PC-2 wafers follows a similar trend as PC-1, with accuracy increasing
from 50% in Case 1 to a peak of 64% in Case 3. This pattern confirms the effectiveness
of the weighting scheme used in Case 3 for products with characteristics of PC-1 and PC-

2.
86



However, that’s not the best combination for PC-3. While accuracy marginally
improves from Case 1 (59%) to Case 2 (60%), it remains stable in Case 3 before reaching
its peak of 66% in Case 4. This suggests that a more extreme weighting scheme favouring

defective dies is most effective for PC-3.

Through extensive consultation, a minimum acceptable accuracy threshold of 60%
was established for practical implementation in production environments. This threshold
was determined based on several factors, including the current manual detection rates, the
economic implications of false positives and negatives in semiconductor manufacturing,
and the complexity of detecting hidden test-induced defects that often escape
conventional inspection methods. The 60% threshold represents a significant
improvement over existing manual and automated methods for hidden defect detection
while acknowledging the inherent challenges in identifying defects that gradually lose

visibility during the testing process.

It is worth to mention that the iteration of the experiment was also studied, and it varied
based on the number of sites, as the more site-numbers in a test configuration, result in

more potential coordinates and consequently more iterations to reach the convergence.

Figure 4.4 shows one of the experiment results from PC-1. All the possible defects
after manual inspection have been plotted in blue colour, and some of the defects already
been detected by AOI (visible test-induced defects) are shown in green colour. The
remaining which are the hidden defects, are the point of an experiment to see if the

algorithm could detect them with a combination of edge weights. This experiment
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indicates the better accuracy of case #3 for this product category. Similarly, one of the

results from PC-2 and PC-3 are illustrated in Figure 4.5 and Figure 4.6 respectively.
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Figure 4.5: Experiment for one of the wafers in PC-1, for all 4 cases
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Figure 4.7: Experiment for one of the wafers in PC-3, for all 4 cases
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4.5 Error Analysis

While the proposed GSSL algorithm demonstrates promising results in detecting test-
induced hidden defects, achieving a maximum accuracy of 68%, our analysis revealed
several key scenarios where the method's performance was suboptimal. Understanding

these limitations is crucial for both practical implementation and future improvements.

4.5.1 Complex Defect Patterns

The algorithm's performance degrades when confronted with complex test
configurations, particularly in scenarios with high site numbers or overlapping stepping
patterns. This effect was particularly pronounced in cases where a single die location was
assigned to multiple site numbers across different stepping iterations, as illustrated in
Figure 12. In this example, the bottom-left region of the wafer shows overlapping
steppings, causing a number of dies to be associated with multiple site numbers. To
address this limitation, future work could explore more sophisticated methods for
calculating and optimizing the weighted edges in the graph model. One potential approach
is to incorporate additional information, such as the frequency and temporal order of site
number assignments, into the edge weight calculation process. This could help the
algorithm better distinguish between the relative importance of multiple site numbers

assigned to a single die location.

4.5.2  Physical Probe Card

The physical nature of wafer testing introduces complexities that challenge our
detection model. As probe cards degrade during testing, their impact pattern can evolve
beyond the primary site number location. For example, in several cases from PC-2, we
observed that a damaged probe needle not only affected its designated test site but also
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created uncharacteristic defects in neighbouring dies, as it’s shown in Figure 13 (¢). These
secondary defects often lacked the consistent spatial patterns that our algorithm relies
upon for detection, leading to missed detections. To mitigate this issue, future work could
focus on enhancing the root-cause analysis stage by incorporating temporal information
about probe card health. By tracking the degradation of probe cards over time and
correlating this information with the observed defect patterns, the algorithm could
potentially adapt its detection strategy to account for the evolving impact of damaged
probe needles. This could be implemented by maintaining a time-series database of probe
card performance metrics (e.g., contact resistance, alignment accuracy) and incorporating

these temporal features into the graph.

453 Novel Defect Types:

The proposed GSSL algorithm relies on defect patterns initially identified by the
Automated Optical Inspection (AOI) system. Since test-induced defects caused by the
prober typically follow established patterns, this approach works well in most cases.
However, proposed method may struggle with novel defect types that the AOI system
fails to detect. If a completely new defect type is introduced and not detected by the AOI
system, the algorithm will be unable to identify these defects during the initial graph
construction stage. To address this limitation, future work could explore the integration
of Graph Neural Networks (GNNs) into the algorithm. GNNs can learn rich node
representations by aggregating information from neighboring nodes through multiple
graph convolution layers. This would enable the detection of previously unseen defect
patterns by learning complex spatial and topological features directly from the wafer

graph structure. Hence it would allow the model to identify subtle correlations between
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defect patterns that may not be apparent through conventional similarity measures. The
GNN could be trained in a semi-supervised manner on the existing labeled defects while
simultaneously learning to detect anomalous patterns that deviate from known defect
distributions. By incorporating GNNs, the algorithm could learn to identify new defect
types that the AOI system may miss, adapting to evolving defect patterns and improving

its overall detection accuracy.

4.6 Comparative Analysis

In this section, we present a comparative analysis of the proposed method for wafer
test-induced hidden defect detection against state-of-the-art techniques in graph-based
semi-supervised learning (GSSL) and wafer defect detection. The analysis focuses on two
key aspects: (1) test-induced defect detection and root-causing in wafer manufacturing,

and (2) graph construction and label propagation in GSSL.

4.6.1  Test-Induced Defect Detection and Root-Causing

The proposed method addresses the limitations of existing techniques by explicitly
considering hidden defects with uncertain classifications. By leveraging a graph-based
approach, the proposed method enables the detection of hidden defects through the
propagation of information from known defective nodes to potential nodes. The edge
weighting scheme, based on the defect status, provides informative connections that
facilitate the identification of hidden defects. In contrast, the methods proposed in (Cheng
etal., 2021) primarily focus on detecting and diagnosing visible test-induced defects, with
limited emphasis on hidden defects. The proposed method goes beyond the scope of these
techniques by specifically targeting hidden defects and utilizing a graph-based approach

to uncover them.
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4.6.2

Graph Construction

Table 4.2 shows the comparison between the proposed method and some of the

techniques in this context mentioned in literature review.

Table 4.2: Comparison of Graph Construction Methods

Method Label Graph Type | Topology- | Adaptive Prior
Information aware Weighting | Knowledge
Incorporation
Proposed Supervised Weighted Yes Yes Root-cause
Method Analysis
KNN Unsupervised | Unweighted No No No
b-Matching Unsupervised | Unweighted No No No
LNP Unsupervised | Weighted No No No
GBILI Supervised Weighted No No Label
Information
RGCLI Supervised Weighted No No Label
Information

The proposed method distinguishes itself from other graph construction techniques by
leveraging supervised label information, domain-specific knowledge, and an adaptive
weighting mechanism to create a weighted, topology-aware graph tailored to the
semiconductor wafer hidden defect detection problem. While KNN-based, b-Matching,
and LNP methods are unsupervised and construct graphs based on general approaches
such as k-nearest neighbours, optimization, or linear neighbourhood, the proposed
method incorporates label information (0, 0.5, 1) and generates edges based on site
number, which is specific to the semiconductor wafer domain. GBILI and RGCLI utilize
label information but do not incorporate domain-specific weights. In contrast, the
proposed method assigns weights (wp, wg, wp) to the edges and adapts these weights
during the iterative label propagation process to optimize the graph structure for accurate
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hidden defect detection. Furthermore, the proposed method is topology-aware,
considering the spatial arrangement of dies on the wafer, and incorporates prior

knowledge from root-cause analysis to guide the graph construction process.

4.6.3 Label Propagation

The proposed method for identifying hidden defects in semiconductor wafers achieves
a time complexity of O(k|E|), where k is the number of iterations and |E| is the number
of edges in the graph. This complexity arises from the iterative label propagation process,
which updates each node's label based on its neighbours’ weighted average in each
iteration. The algorithm's efficiency stems from its targeted approach, focusing only on

suspicious site numbers and leveraging the typically sparse nature of wafer graphs. A

comparison between proposed method and the traditional learning approaches is shown

by Table 4.3.
Table 4.3: Comparison of Label Propagation Methods
Method Learning Label Time Targeted Per-Node Weighted
Setting Clamping | Complexity | Propagation | Convergence | Propagation
Proposed . perigl
Transductive (good/ O(k|E]) Yes Yes Yes
Method .
defective)

GRF Transductive Yes o(vV|» No No Yes

LGC | Transductive No o(v|» No No Yes

SLP Transductive No o(vV|» No No Yes

In contrast to our method, traditional graph-based semi-supervised learning

approaches such as GRF, LGC, and SLP exhibit a time complexity of O(|V|?),where |V|
is the number of nodes, due to their matrix operations on the full graph. The proposed

method's lower complexity translates to significant performance gains for large wafers,
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especially when |E| << |V|2. Beyond computational efficiency, the method introduces
several key advantages: targeted propagation, per-node convergence checks, and domain-
specific weighted propagation (wp, wg, wp). These features, absent in GRF, LGC, and
SLP, allow for more nuanced and context-aware label propagation. While maintaining a
Transductive nature like its counterparts, the proposed approach's adaptive weighting
scheme incorporates crucial domain knowledge about semiconductor defects, in contrast

to the uniform weighting in traditional methods.

Table 4.4: Quantitative Comparison of Label Propagation Methods

Method Product Category Avg. Accuracy Avg. Sensitivity

PC-1 68% 64%

Proposed Method PC-2 64% 63%
PC-3 66% 64%

PC-1 46% 55%

GRF PC-2 46% 53%
PC-3 44% 54%

PC-1 58% 60%

LGC PC-2 56% 57%
PC-3 55% 58%

PC-1 60% 60%

SLP PC-2 55% 58%
PC-3 61% 66%

Table 4.4 presents a quantitative comparison of the proposed label propagation method
against other methods mentioned in Table 4.3 across three product categories (PC-1, PC-
2, and PC-3). The performance is evaluated using two metrics of average accuracy and
average sensitivity. The proposed method consistently outperforms the other approaches
in terms of average accuracy, achieving 68%, 64%, and 66% for PC-1, PC-2, and PC-3,

respectively. This demonstrates the effectiveness of the proposed method in correctly
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identifying test-induced hidden defects across various product categories. While the
proposed method maintains a competitive edge in average sensitivity, ranging from 63%
to 64%, it is worth noting that SLP exhibits slightly higher sensitivity for PC-3 at 66%.
This suggests that SLP may be more effective in detecting true positive hidden defects
for this specific product category. However, considering the overall performance across
all product categories and metrics, the proposed method demonstrates a clear advantage,

striking a balance between accuracy and sensitivity.

The comparative analysis highlights the novelty and effectiveness of the proposed
method in addressing the challenges of wafer test-induced hidden defect detection. By
incorporating domain-specific knowledge, focusing on potential nodes with uncertain
classifications, and leveraging a graph-based approach with informative edge weights,
the proposed method offers a solution for detecting hidden defects in wafer testing. This
approach has the potential to significantly improve the accuracy and efficiency of wafer
defect detection and root-causing, ultimately leading to enhanced yield and quality in

semiconductor manufacturing.

4.7 Solution Implementation

For the purpose of data integration, pre-processing, and detection of visible test-
induced defects, root-causing and identification of hidden defects, a stand-alone software
has been created from scratch using Flutter framework which is an open-source
framework by Google for building natively compiled, multi-platform applications from a
single codebase, based on Dart language. Figure 4.7 illustrates the high-level components

and their relationship within the architecture of the developed software.
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Figure 4.8: Basic Structural Representation of Developed Software
471  Pre-Processing in Developed Software
Figure 4.8 shows aligning confirmation developed within the software, for AOI and
Physical Test Data together with rotation and translation along with offset. As can be seen
from Figure 4.8, the wafer map generated by AOI and Physical Test Data does not match
the same coordinates, even after rotation and translation. Therefore, it’s been designed to

have an extra offset to adjust the wafer maps together.
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Figure 4.9: Alignment Confirmation Between AOI and Physical Test Data
4.7.2  Root-Causing and Hidden Defect Identification in Developed Software
In the developed software, engineers can view a predicted list of potential defects that
are induced by the test process, alongside with root-causing of the faulty site-number.
The only requirement for analyzing and visualizing is to load the AOI report from the

server and select the respective Physical Test Data report.

Figure 4.9 presents a screenshot of the developed software, where the engineers are
enabled to have the quick look on the root-cause analysis on the left, and the identified

coordinates of potential defects on the right, all within few seconds of loading AOI report.
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Figure 4.10: Screenshot of Developed Software for Root-Causing and
Identification of Hidden Defects

4.8 Extending to Other Domains and Applications

The algorithm's fundamental approach to pattern recognition and defect detection
shows promise for adaptation to various manufacturing and quality control scenarios.
Future work should investigate the algorithm's applicability to different industries and
inspection challenges, such as electronic component manufacturing, printed circuit board
inspection, or precision engineering. This research direction would focus on enhancing
the algorithm's flexibility to handle diverse defect types, varying spatial patterns, and
different inspection requirements while maintaining its core advantages in semi-

supervised learning and minimal labelling requirements.
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CHAPTER 5: CONCLUSION
5.1 Conclusion
In conclusion, this study has successfully fulfilled its primary objectives in addressing
the challenge of detecting test-induced hidden defects in semiconductor wafers. First,
through a comprehensive investigation of the relationship between defect occurrence and
test configuration, the research unveiled underlying patterns that contribute to the
manifestation of hidden defects. This insight laid the foundation for the development of

a novel graph-based semi-supervised learning (GSSL) algorithm.

Second, the machine learning-based GSSL method demonstrated an average accuracy
exceeding 60% in predicting the precise location of hidden defects across multiple
semiconductor wafer products. By leveraging wafer inspection data and incorporating
domain-specific knowledge, the algorithm constructs a graph representation of the wafer,
enabling the identification of hidden defects through an iterative label propagation

process.

Finally, the study optimized the graph-based algorithm to improve accuracy and
reduce time complexity in hidden defect localization. The algorithm's effectiveness was
validated through extensive experimentation, showcasing its potential to enhance yield

management and quality control processes in the semiconductor industry.

By successfully addressing these objectives, this innovative approach provides a
valuable tool for semiconductor manufacturers to improve production efficiency,
minimize yield losses, and deliver high-quality products to their customers. The

developed GSSL algorithm represents a significant advancement in the field of
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semiconductor defect detection and paves the way for future research and industrial

applications.

5.2 Future Work

As the enhanced GSSL approach with domain-based graph construction and iterative
weighted label propagation demonstrated promising results in detecting hidden test-
induced defects, further work on this section can be explored. Future work involves
exploring the recent advancements of neural networks in GSSL to detect test-induced
hidden defects at higher levels. Neural network architectures have the capacity to learn
representations of entire graphs, which could enable the extension of current work beyond
individual wafer analysis. This approach has the potential to identify defects across
multiple wafers or even entire production batches, thereby increasing manufacturing

productivity and yield.

Additionally, the enhanced GSSL approach proposed in this work could be extended
to other semiconductor manufacturing applications, such as fabrication defect
classification and wafer map pattern recognition. Applying GSSL with optimized graph
construction to these related tasks may yield performance improvements by effectively

utilizing both labelled and unlabelled wafer data.
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