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ENHANCING RESERVOIR SIMULATION MODELS WITH GENETIC 

ALGORITHM OPTIMIZED NEURAL NETWORKS ACROSS DIVERSE 

CLIMATIC ZONES 

ABSTRACT 

Dams and reservoir systems help improve livelihoods, agriculture productivity, and 

farmers' drought resilience by regulating and increasing water supply reliability.  In fact, 

the reservoir simulation depends on several hydrological parameters. Since hydrologic 

parameters exhibit a high degree of stochasticity, developing an accurate forecasting 

model that reproduces such a complex pattern is becoming increasingly challenging. A 

well-designed and reliable forecasting model is key to the successful reservoir simulation 

so as to maximize the use of water resources. Since the hydrological parameters are 

difficult to handle mathematically, existing prediction models are burdened with several 

drawbacks. The aims of the study are to develop robust models to predict two different 

parameters of hydrology in the dam reservoir and examine their performance under 

different climate conditions. Also, the study introduces a new procedure for reservoir 

simulation. 

The current research presents three different AI approaches: i) Multi-Layer Perceptron 

Neural Network (MLP-NN), ii) Radial Basis Function Neural Network (RBF-NN), and 

iii) Deep Learning Neural Network (DLNN). The proposed models were utilized to 

predict two key hydrological parameters related to reservoir simulation: inflow and 

evaporation. The research improved the predictive models by integrating them with the 

Genetic Algorithm (GA). The optimizer algorithm (i.e., GA) determines the optimal input 

variables and internal parameters in the prediction models. To illustrate the models' 

efficacy, predictive models were applied to predict reservoir inflow and evaporation in 

two different case studies representing different environmental conditions, semi-arid and 
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tropical case studies. The first case study is Dukan Dam, located in Iraq (semi-arid 

region), and the second is Timah Tasoh Dam (TTD), located in Malaysia (tropical region). 

Comparative analysis was performed between predictive models based on several 

statistical indicators. The prediction outcomes demonstrated that the GA-DLNN performs 

better than other proposed models. The GA-DLNN achieved well results in forecasting 

inflow values where it attained low (RMSE (23.49 m3/sec at Dukan, 2.92 MCM month-1 

at TTD) MAE (15.55 m3/sec at Dukan, 2.06 MCM month-1 at TTD) and high correlation 

coefficient (R2 = 0.967 at Dukan, R2 = 0.969 at TTD). Also, the results indicated that the 

GA-DLNN achieved high level accuracy in prediction reservoir evaporation values, 

where it attained a low (RMSE (0.73 mm day-1 at Dukan, 6.77 mm month-1 at TTD) MAE 

(0.30 mm day-1 at Dukan, 3.87 mm month-1 at TTD) and high correlation coefficient (R2 

= 0.976 at Dukan, R2 = 0937 at TTD) . On the other hand, the current study introduced a 

new procedure for simulating reservoirs under realistic conditions. This procedure was 

performed by including the prediction results obtained by the best and worst models in 

the balance equation. Reservoir condition assessment under new and conventional 

procedures was performed by calculating the percentage error during the simulation 

period. It was observed that the reservoir condition changed significantly with the 

inclusion of the predicted flow and evaporation data within simulation session. This 

research found that GA-DLNN method is better than alternative models put forth 

in predicting reservoir inflow and evaporation data. The predicted data should be adopted 

while performing the reservoir simulation.  

 

Keywords: Inflow, Evaporation, Simulation, Deep learning, Tropical & Semi-arid 

region
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MENINGKATKAN MODEL SIMULASI TAKUNGAN DENGAN RANGKAIAN 

SARAF YANG DIOPTIMALKAN ALGORITMA GENETIK MERENTAS ZON 

IKLIM PELBAGAI 

ABSTRAK 

Sistem empangan dan takungan membantu meningkatkan mata pencarian, produktiviti 

pertanian, dan daya tahan kemarau petani dengan mengawal selia dan meningkatkan 

kebolehpercayaan bekalan air. Malah, simulasi takungan bergantung kepada beberapa 

parameter hidrologi. Memandangkan parameter hidrologi mempamerkan tahap stokastik 

yang tinggi, membangunkan model ramalan yang tepat yang menghasilkan semula corak 

kompleks sedemikian menjadi semakin mencabar. Model peramalan yang direka dengan 

baik dan boleh dipercayai adalah kunci kepada simulasi takungan yang berjaya untuk 

memaksimumkan penggunaan sumber air. Memandangkan parameter hidrologi sukar 

dikendalikan secara matematik, model ramalan sedia ada dibebani dengan beberapa 

kelemahan. 

Penyelidikan semasa membentangkan tiga pendekatan AI berbeza: i) Rangkaian Neural 

Perceptron Berbilang Lapisan (MLP-NN), ii) Rangkaian Neural Fungsi Asas Radial 

(RBF-NN), dan iii) Rangkaian Neural Pembelajaran Dalam (DLNN). Objektif utama 

kajian ini adalah untuk meningkatkan ketepatan meramalkan aliran takungan dan 

penyejatan berdasarkan data sejarah parameter ini merentas dua senario berbeza. Secara 

khusus, penyelidikan ini bertujuan untuk: i) menyesuaikan kaedah DLNN sebagai model 

ramalan untuk menangkap ciri-ciri parameter hidrologi takungan dengan lebih berkesan; 

ii) meneliti struktur dan konfigurasi pelbagai model untuk meningkatkan ketepatan aliran 

takungan dan ramalan sejatan; iii) menilai keupayaan model ramalan yang dicadangkan 

untuk membuat generalisasi merentasi kawasan tropika dan separa gersang; dan iv) 
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mencadangkan prosedur simulasi baharu untuk sistem takungan. Selain itu, model yang 

dicadangkan telah digunakan untuk meramalkan dua parameter hidrologi utama yang 

berkaitan dengan simulasi takungan: aliran dan penyejatan. Penyelidikan menambah baik 

model ramalan dengan mengintegrasikannya dengan Algoritma Genetik (GA). Algoritma 

pengoptimum (iaitu, GA) menentukan pembolehubah input optimum dan parameter 

dalaman dalam model ramalan. Untuk menggambarkan keberkesanan model, model 

ramalan telah digunakan untuk meramalkan aliran masuk takungan dan penyejatan dalam 

dua kajian kes berbeza yang mewakili keadaan persekitaran yang berbeza, kajian kes 

separa gersang dan tropika. Kajian kes pertama ialah Empangan Dukan, terletak di Iraq 

(wilayah separa gersang), dan yang kedua ialah Empangan Timah Tasoh (TTD), yang 

terletak di Malaysia (wilayah tropika). Analisis perbandingan dilakukan antara model 

ramalan berdasarkan beberapa penunjuk statistik. Hasil ramalan menunjukkan bahawa 

GA-DLNN berprestasi lebih baik daripada model lain yang dicadangkan. Dalam 

meramalkan aliran masuk takungan, GA-DLNN mencapai paras rendah (RMSE (23.49 

m3/sec di Dukan, 2.92 MCM bulan-1 pada TTD) MAE (15.55 m3/sec di Dukan, 2.06 

MCM bulan-1 pada TTD). Selain itu, dalam ramalan sejatan GA-DL0NN yang rendah 

(RM33SENN) takungan mencapai ramalan rendah. hari-1 di Dukan, 6.77 mm bulan-1 di 

TTD) MAE (0.30 mm hari-1 di Dukan, 3.87 mm bulan-1 di TTD Plus, kajian semasa 

memperkenalkan prosedur baru untuk mensimulasikan takungan di bawah keadaan yang 

realistik Prosedur ini dilakukan dengan memasukkan keputusan ramalan yang diperolehi 

oleh model yang terbaik dan terburuk dalam keadaan keseimbangan ralat peratusan 

semasa tempoh simulasi adalah diperhatikan bahawa keadaan takungan berubah dengan 

ketara dengan kemasukan data aliran dan sejatan yang diramalkan semasa tempoh 

simulasi. Data yang diramalkan harus diterima pakai semasa melakukan 

simulasi takungan. 
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Kata Kunci: Aliran masuk, Pengewapan, Simulasi, Pembelajaran mendalam, Tropika dan 

Kawasan separa kering
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CHAPTER 1: INTRODUCTION 

1.1 Background   

Operating reservoir systems is a crucial concern for those who make decisions regarding 

the management of water resources. Choosing the best operating guidelines to run the 

reservoir system is frequently complicated by the conflicts that exist between the multiple 

objectives of the reservoir. Reservoirs were created to serve many purposes such as 

irrigation with water, hydroelectric power generation, flood control, water supply, as well 

as additional purposes. Although there is some degree of proportionality between these 

purposes, rivalries and conflict are more prevalent, particularly during the drought and 

flood seasons (Bozorg-Haddad, Janbaz, et al., 2016). To deal with these issues, decision-

makers must have the ability to define optimal water management policies. Accordingly, 

the focus should be on redoubling efforts to enhance the operational efficiency and 

effectiveness of the reservoir system, enhancing the positive applications of these 

initiatives. Furthermore, a few drawbacks of a big storage project can be reduced by 

improving operational management with the addition of facilities (Higgins & Brock, 

1999).  

Indeed, the success of optimization methods depends on the accuracy of the measurement 

of key hydrological parameters in the reservoir system  (Lu et al., 2017). There are two 

different hydrological parameters that affect the operation of a dam and reservoir: the 

inflow of water into the reservoir and its evaporation. The first parameter represents the 

system inputs, while the second parameter represents the reservoir system losses. To 

effectively anticipate and realistically replicate the tank under the generated operating 

rule, it is necessary to have a thorough understanding of both variables, which are actually 

very unpredictable. 
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For decision makers to mitigate the effects of water surpluses or deficits, reliable and 

accurate reservoir flow forecasts are critical information. In addition, choosing the best 

model to predict future water flows may be critical for developing successful reservoir 

management policies and making effective management decisions. In this regard, 

hydrology and water resources planning are particularly interested in creating a model to 

predict reservoir flow (Coulibaly et al., 2000; Lohani et al., 2012).      

Due to the nonlinear properties and spatio-temporal distribution of the data, reservoir flow 

patterns are too complex processes to be represented by direct prediction models. (Bai et 

al., 2015; Lin, Chen, Wu, et al., 2009; Valizadeh et al., 2017). Two main approaches to 

inflow forecasting have been investigated in earlier research (e.g. (Coulibaly et al., 2000; 

Gragne et al., 2015; Hidalgo et al., 2015; Kişi, 2004; Zealand et al., 1999)): i) conceptual 

"physical" model as well as ii) the system-theoretic (data-driven) models. 

Conceptual models for reservoir flow prediction are made to approximately represent the 

physical mechanisms and general internal subprocesses that control the hydrological 

cycle inside of their structures (in a physically realistic manner). These models are usually 

nonlinear, time constant, as well as deterministic, with parameters denoting the 

characteristics of reservoir flow. They often incorporate simplified versions of physical 

laws. For pragmatic reasons (data availability, calibration issues, etc.), up until recently, 

the majority of putative reservoir inflow prediction models have combined variable 

representations (Gragne et al., 2015). Although the spatially distributed, time-varying, as 

well as stochastic aspects of the flow process are disregarded, these models make an effort 

to include accurate depictions of the principal linearity that exists in the relationships 

between flows and climatic parameters. Complex mathematical tools, extensive 

calibration, as well as a certain level of model experience, are some of the challenges that 
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can arise during the implementation as well as calibration of a model of this type (El-

Shafie & Noureldin, 2011). 

While conceptual models are crucial for understanding hydrologic processes, many real-

world scenarios exist, for instance, forecasting influx, where accuracy at specific places 

is the primary concern. Instead of building a conceptual model, creating and applying a 

more straightforward system-theoretic model is more efficient. In order to model complex 

hydrological processes, hydrologists have concentrated their efforts on employing rapidly 

expanding data-driven models founded on system theoretical ideas. This is due to the fact 

that data-driven models may faithfully replicate the input-output dynamics of water 

systems without necessitating a deep comprehension of the underlying physical 

mechanisms of the system (Keshtegar et al., 2016).  

Because linear approaches are relatively easy to develop and implement, they are often 

used for forecasting inflows (Valipour et al., 2013). While these methods have produced 

good results, they have failed in various aspects of implementation, primarily because 

they are unable to address the nonlinear and dynamical behavior of the inflow values 

(Arunkumar & Jothiprakash, 2013; Jothiprakash & Magar, 2009). One of the most 

popular linear methodologies in this approach is the Auto-Regressive Moving Average 

(ARMA), which was established by Box and Jenkins in 1970. Alternative nonlinear 

models are in high demand because these models are not always able to achieve high 

accuracy levels. 

Evaporation is the reservoir system's second most important hydrological parameter. 

Evaporation happens when a variation in vapor pressure exists between the surface of the 

water and the surrounding air. The primary factors influencing evaporation patterns are 

solar radiation, temperature, relative humidity, vapour pressure deficit, atmospheric 
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pressure, as well as wind speed. It is important to consider evaporation losses when 

designing irrigation systems and water resources. In areas with little rainfall, evaporation 

losses can make up a sizable amount of a lake or reservoir's water budget and have a 

considerable impact on the decline in the water's surface level (Ghorbani et al., 2017; 

Tabari et al., 2010a). In fact, evaporation causes a significant amount of water to be lost 

from reservoirs. Calculating the volume of water that evaporates is a critical component 

of water resource planning and management. As a result, precise forecasting of 

evaporation from a water body is critical for water resource monitoring and allocation. A 

reliable predictive model for evaporation forecasting is required to determine the volume 

of water in a reservoir system. Successful evaporation modeling aids decision-makers in 

achieving water resource management reliability  (Guven and Kişi 2011; Allawi and El-

Shafie 2016a). 

1.2  Problem statement 

Soft computing methods, like as Artificial Intelligence (AI) methods, have become a more 

and more common modeling tool for anticipating evaporation and inflow. Soft computing 

models, which have a better ability to detect the dynamics of nonlinearity within the 

reservoir evaporation and inflow patterns, have gradually supplanted traditional models 

over the past three decades. Recent studies on the application of soft computing 

techniques provide evidence of their appeal (Danandeh Mehr et al., 2013; Deo & Şahin, 

2016; El-Shafie, Abdin, & Noureldin, 2009; Guo et al., 2011a; Kisi et al., 2012; Malik et 

al., 2018). However, the mathematical procedures associated with the classic AI methods 

are facing difficulty in detecting the highly stochastic patterns and wide range attributes 

of the inflow and evaporation data, which warrants a need to enhance their procedures. 
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The Deep Learning Neural Network (DLNN) method is one of the new versions of 

machine learning that are considered in the current research, which can contribute to 

overcoming the classical AI models. The recognition of the appropriate features to 

develop the DLNN model's learning procedure has been observed to be a serious element 

in the computer aid model development. Thus, the reliable nature-inspired optimization 

called genetic algorithm has been integrated as feature selection for the proper lead time 

reservoir inflow and evaporation forecasting. As a matter of fact, stochasticity variance 

from one dam to another is varied; hence, the adopted methodology can be implemented 

on two different inflow mechanisms in which the generalization manner can be inspected 

for this hydrological problem.  

In reality, reservoir simulation is considered the first stage of optimization modeling to 

generate optimal operating rules. The simulation procedure still depends on the 

deterministic data for inflow and evaporation parameters. This procedure for the reservoir 

system considers that the perfect prediction is available. In fact, this assumption is 

inappropriate and does not reflect the realistic state of the reservoir system. As a result, 

the conventional reservoir and dam system simulation process needs to be changed. In 

this regard, this specific study presents a fresh approach to realistic reservoir system 

simulation. 

1.3 Scope of work 

A thorough review of the literature researches propose using artificial intelligence 

methods was conducted to forecast whether the evaporation or the inflow parameters will 

be used to determine their drawbacks. The majority of AI-based methods now in use have 

these drawbacks. First, the AI-based models require specific adaptation for the learning 

mechanism to use historical data to extract important information. Second, while 
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conventional AI-based models require multiple trial-and-error processes to determine 

their optimal architecture, several model internal parameters must be optimized. Third, 

the existing AI models might suffer an over-fitting problem, so the AI models could 

experience a significant reduction in the model accuracy when switching from training to 

testing mode. The present study will focus on adapting the DLNN method in order to 

overcome the first drawback and probably detect the information and features of the 

historical data for both inflow and evaporation data parameters. In addition, different 

model architectures and configurations will be examined. The proposed models will be 

combined with a common optimizer algorithm to search for optimal input variables and 

internal parameters. The developed model's performance will be evaluated against that of 

the traditional AI models. 

To examine the ability of the suggested DLNN method to be widely applied, the method's 

performance will be evaluated in two different case studies. The first case study is Dukan 

Dam, located in the semi-arid region. Next, the second case study is Timah Tasoh Dam 

(TTD) which is located in a tropical region. Several time series of monthly records of 

inflow and evaporation have been collected and considered for modeling purposes. Daily 

reservoir inflow data time series between January 2010 and December 2020 and daily 

evaporation data from 1st January 2015 to 31st December 2020 are collected from the 

Dukan Dam. Moreover, monthly inflow data for 1st January 1989 to 31st December 2013 

and monthly evaporation data for 1st January 1994 to 31st December 2013 are collected 

from the TTD. 

The new simulation procedure will be implemented to simulate the reservoir system under 

real conditions. The proposed simulation procedure will be determined by the two distinct 

situations. In the initial case, the worst predictive model will be adopted to provide the 
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expected data. In contrast, in the second scenario, the best model will be used to predict 

the hydrological parameters during the simulation period. 

1.4 Objectives of research 

The present research seeks to increase the forecasting accuracy of reservoir inflow and 

evaporation. The primary goals of this research are: 

1. To apply the RBF-NN, MLPNN and DLNN methods as prediction models to 

better reveal the features of the hydrologic parameters of a reservoir. 

2. To examine different model structures and configurations to improve the 

prediction accuracy of reservoir flow and evaporation. 

3. To examine the generalization ability of the proposed prediction model in 

tropical and semi-arid regions. 

4. To propose a new simulation procedure for the reservoir system. 

1.5 Thesis outline 

The trajectory of AI development in reservoir simulation's primary components, reservoir 

inflow, and evaporation forecasting is examined in the second chapter. This chapter's 

primary focus was on pertinent research projects completed during the previous 20 years. 

This study outlined the efficiency with which applied AI techniques have produced high-

efficiency predictive models, specifically with regard to input variables, the efficiency of 

AI-integrated modeling, and the external or internal structure of the AI models. Finally, 

a critical assessment of the characteristics of prediction methods and disadvantages of 

prediction of the primary hydrological parameters pertaining to the reservoir system (i.e., 

reservoir simulation) has been reported. 
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The methodology and case study sections were given in Chapter 3 and presented in sseven 

main parts. The first part summarizes the strategy of research methodology. The second 

part introduces the methodology of forecasting methods, which are Radial Basis Function 

(RBFNN), Multi-Layer Perceptron Neural Network (MLPNN), as well as DLNN. The 

input selection and forecasting model structure are presented in the third part. Integration 

between predictive models with the optimizer algorithm will be presented in the fourth 

part. The performance criteria equations provided in the fifth section have been used to 

assess the performance of the suggested models. Sixth part of Chapter 3 presents the 

methodology of the new simulation procedure of the reservoir system. An overview of 

the reservoir system's evaporation and inflow data has been introduced in seventh part. A 

description of two cases of study is presented in this section. Two different climate zones 

(semi-arid and tropical regions ) are selected. Dukan Dam is located in the semi-arid 

region, whereas the TTD is located in the tropical zone. Chapter 3 also outlines the details 

of the time series for the evaporation and inflow of reservoirs in addition to the data 

duration for each parameter.  

Chapter 4 presents the outcomes of the suggested models for two case studies. The 

introductory part presents the structure of this chapter. The comparison between the three 

forecasting methods is given in Chapter 4. This particular chapter addresses how accurate 

are the forecasts obtained by the developed models. Moreover, the simulation results 

obtained using the proposed procedure will be discussed in that chapter.   

Chapter 5 presents the results of the models' performance as well as suggestions for 

further exploration. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

Droughts and floods occur frequently in numerous regions of the globe due to climate 

change. These phenomena challenge the planning and management of water resources 

(Ehteram et al., 2017). In addition to controlling these phenomena, dams and reservoirs 

are constructed for a variety of uses, including irrigation, hydropower production, as well 

as water supply. There is a noticeable amount of rivalry and conflict among reservoir 

purposes, especially when conditions are critical (Labadie, 2004). As a result, finding and 

defining the best operating rules is often a complex problem while managing a reservoir 

system.    

A water reservoir is a closed space used to store water for later use. It is also used to 

collect floods, protect lower valleys, create an aquatic environment, or alter the properties 

of water. The main parameters of the reservoir are volume, submerged area, and range of 

water level fluctuation. The primary function of an artificial reservoir is to change the 

flow rate of a stream or store water for optimal use. Climatic conditions, such as 

temperature, solar radiation, and rainfall, affect the amount of storage in the reservoir. 

Moreover, hydrological parameters, such as inflow, evaporation, and seepage, directly 

affect the control of water storage in the reservoir. 

The operation of the dam reservoir is among the most significant obstacles that planners 

and decision-makers must overcome in order to utilize the water resources that are 

currently available. Accordingly, the focus should be on further studies to enhance the 

durability as well as efficiency of a dam reservoir system's operations to optimize 

beneficial uses of the system (Higgins & Brock, 1999).      
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Optimization algorithms are appropriate tools to address reservoir operation problems 

and enhance water resources management field. Past researches have employed various 

models of optimization for the operation of dam reservoir systems. The two main 

categories of optimization algorithms are evolutionary as well as conventional 

(traditional) methods (Ahmadi et al., 2014; Ashofteh et al., 2015). The traditional 

approach is useful for determining the proper way to achieve the maximum and minimum 

unconstrained functions of continuous functions (Wehrens et al., 2000). The first 

approach includes linear and nonlinear dynamic programming, random search, stochastic 

programming, etc. Many previous studies have applied these techniques when using the 

reservoir system. Yet,  the performance of such traditional approaches is imprecise in 

addressing the complex operational issue, especially with multi-purpose reservoirs 

(Bozorg-Haddad, Janbaz, et al., 2016). 

The problem of a dam reservoir's ideal operation is resolved by applying evolutionary 

techniques. Previous studies reported that evolutionary methods have higher efficiency 

and reliability than conventional techniques. These methods provide satisfactory results 

in handling and solving the multi-objective functions. 

Indeed, the accuracy of the data on hydrological parameters is essential for the effective 

management of the dam reservoir operation. The inflow and evaporation parameters have 

the largest influence on the operation procedure among hydrological parameters. As a 

result, to achieve an effective dam reservoir operating policy, it is crucial to establish an 

accurate predictive model that can forecast inflow and evaporation records (M. F. Allawi, 

Jaafar, Mohamad Hamzah, & El-Shafie, 2019; M. F. Allawi, Jaafar, Mohamad Hamzah, 

Koting, et al., 2019).  
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Reservoir inflow forecasting is a large and active research area in the field of water 

resources. In actuality, there are a number of meteorological parameters that influence the 

behavior and pattern of the inflow parameter. Accordingly, long- and short-term forecast 

models are crucial for the long-term sustainable management of water supplies. Because 

of influence of the numerous phenomena, including solar radiation, and relative humidity, 

in addition to rainfall, on the inflow behavior, the actual inflow time-series data are 

frequently nonlinear, non-stationary, as well as temporally variable. The reservoir flow 

mechanism will likely be extremely different from time to time and from one place to 

another. Therefore, forecasting reservoir flow with acceptable accuracy is quite 

complicated (Guo et al., 2011b).  

Over the past few years, it has been noted that there has been a significant increase in the 

type and number of methods developed that can be used to model and predict hydrological 

parameters, including popular data-driven methods. Traditional black box time series 

methods, for instance, Auto-Regressive Integrated Moving Average (ARIMA), Linear 

Regression (LR), and Nonlinear Regression (NLR), assume that the data for hydrological 

parameters are stationarity and linear (Solomatine & Ostfeld, 2008). Thus, such methods 

are often unable to deal with the instability and nonlinearity involved in the hydrological 

process. As a result, previous studies have paid a lot of attention to developing models 

capable of modeling nonstationary and nonlinear processes.   

Another significant problem with the dam and reservoir system's operation is 

evaporation-related reservoir losses. One of the most important steps in creating a reliable 

operating policy is estimating the volume of surface water losses. Knowing how much 

water is available in the dam reservoir at any given time is essential for developing a 

modern model that accurately predicts reservoir evaporation (Fayaed et al., 2013).  

Univ
ers

iti 
Mala

ya



 

12 

Two primary methods exist for calculating evaporation from an open body of water: 

indirect and direct methods. The first technique is gauging the evaporation pan using tools 

such as class U-pan, A-pan, and others (Farnsworth & Thompson, 1982; Rosenberg et al., 

1983). The indirect approach includes many methods such as water budget (Guitjens 

1982), energy budget (Fritschen 1966), mass transfer (Harbeck 1962), combination 

(Penman 1948), as well as measurement (Arthur A. Young 1947). Even though these 

equations or techniques have been employed in past research, the majority of the 

suggested approaches necessitate a significant amount of observed meteorological data. 

As such, they are more likely to make mistakes. Because data is not always available, 

using such methods can be challenging (Bai, Chen, et al., 2016; Yu et al., 2017). 

Furthermore, the intricate nonlinear pattern of evaporation factors makes the empirical 

equations less effective than necessary and fails to yield encouraging findings (Nourani 

& Fard, 2012). Therefore, an efficient and accurate predictive model is needed that is 

capable of detecting evaporation patterns with a high level of accuracy. 

In the past few decades, numerous contemporary techniques have been created to predict 

the hydrological parameters of a reservoir, such as Artificial Intelligence (AI) models. 

Hydrologists have been interested in AI methods in dealing with non-static, dynamic, and 

stochastic patterns of hydrological databases. These computational methods and models 

have a high capacity to overcome complex simulations of pattern parameters. The AI-

based models are distinguished by their ability to handle a large amount of data. The 

prediction of evaporation and inflow depends on several environmental parameters, and 

these traits are subject to temporal fluctuations (Nourani et al., 2014). 

Recently, the number of data-driven methods used in hydrologic modeling has 

significantly increased; this is especially true for evaporation and inflow data prediction. 
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Particularly, a variety of AI techniques, including artificial neural networks (ANN), 

support vector machines (SVM), and fuzzy logic (FL), as well as others, have been 

applied in the field of forecasting the primary hydrological parameters in a reservoir 

system (Ehteram et al. 2019; Rezaei et al. 2021; Hanoon et al. 2022). 

2.2  Artificial Neural Network (ANN) 

The most common type of artificial intelligence method is ANN, which was created using 

the network theory of the human brain (Haykin, 1994). An ANN's architecture typically 

consists of three main layers: i) input, ii) hidden layer, and iii) output. There are multiple 

input nodes in the first section; the total number of nodes depends on the number of input 

variables. The second part of the architecture has one or more activation-functioning 

hidden layers, in contrast to the last part, which has only one output layer node. There 

exist three distinct types of ANN: i) Radial Basis Function Neural Network (RBFNN), ii) 

Feed-Forward Neural Network (FFNN), and iii) Generalized Neural Network (GNN). 

The FFNN model is widely used in solving engineering problems, and it could be 

considered a promising nonlinear tool (Hornik et al., 1989). By determining the ideal set 

of connection weights, this type of model seeks to reduce the calculated error between 

the predicted and actual records. Broomhead and Lowe (1988) made the initial proposal 

for RBFNN. The RBFNN model has a popular activation function called radial basis. 

Such type of ANN can address complicated issues such as water resources problems. 

GRNN was introduced by (Specht 1991). This model does not need an iterative training 

procedure like the RBFNN model.  

Coulibaly et al. (2000) evaluated the ability of FFNN model to forecast inflow data. Many 

statistical indicators have been used to evaluate the predictive method. The findings 

demonstrated that, in comparison to alternative prediction models, the FFNN approach 
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increased prediction accuracy. In additional investigation, Coulibaly et al. (2001) 

employed Dynamic Neural-Network (DNN) method to forecast inflow data. Several 

embedded representations of temporal information have been taken into consideration 

when examining three distinct forms of temporal neural network topologies. The Multi-

Layer Perceptron Neural Network (MLPNN) approach was used to compare the 

methodology's performance. They discovered that DNN might be a useful instrument for 

producing high-quality resins for influx prediction.   

Streamflow forecasting for Nile River, which is located in Egypt, has been carried out by 

several previous researchers. In 2009, El-Shafie et al. (2009b) developed the RBFNN 

method to forecast inflow data. The proposed prediction methods were created utilizing 

historical data from natural inflow spanning 30 years, collected from four different 

monitoring stations upstream. A thorough analysis has been conducted to assess the 

efficiency as well as performance of the recommended methodology. The study explored 

that forecasting accuracy has improved by 50% during the low inflow season. The 

forecasting error magnitude and its distribution obtained when using the RBFNN model 

are better than those obtained by other predictive methods.  

In another research, El-Shafie and Noureldin (2011) developed two generalized methods 

called Ensemble Neural Networks (ENN) as well as Regularized Neural Networks (RNN) 

to overcome the drawbacks of classic ANN. Actual monthly streamflow data over 130 

years has been utilized for training, testing and validation the suggested methodology. 

The outcomes demonstrated that the RNN model outperforms the ENN and conventional 

ANN models. Good improvement in forecasting accuracy was attained with the RNN 

model.  
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Development for the Dynamic Auto-Regressive Neural Network has been done by 

Valipour et al. (2012). The developed model was employed to forecast inflow data for 

Dez Dam, located in Iran. In order to assess the suggested model's validity and reliability, 

the dynamic auto-regressive model's performance was compared to the static neural 

network method. Different architectures have been made for the models used, considering 

two transfer functions, sigmoid and radial basis functions. The study concluded that using 

the sigmoid function with a dynamic model could enhance the forecasting results. The 

results supported the performance of the dynamic model in contrast to alternative 

forecasting techniques. 

In the same case study (Dez Dam), the efficiency of three different models to forecast 

monthly inflow was investigated by Valipour et al. (2013). The monthly inflow data from 

1960 to 2007 were considered in the study. The observed inflow data over 42 years were 

utilized to train ARMA, ARIMA, as well as auto-regressive neural network models. 

Meanwhile, the past 5 years were used to test the proposed forecasting models. A number 

of statistical metrics have been used to assess how well various approaches work. The 

ARIMA method outperformed the ARMA method. Additionally, the outcomes showed 

that the Dynamic Auto-Regressive Neural Network outperforms the static model. Elizaga 

et al., (2014) utilized neural network-based backpropagation models for predicting 

reservoir inflow. Based on a comparison of the actual and anticipated values, the 

suggested methods provided acceptable prediction accuracy. 

Chiamsathit et al. (2016) used the MLPNN model to predict a reservoir inflow at the 

Ubol-Ratana Dam in Thailand that is one step ahead of schedule. They looked at how the 

reservoir operation was affected by the forecasted accuracy level. Overall, it is possible 

to view the suggested model as an appropriate tool for predicting reservoir inflow. 
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Apaydin et al. (2020) utilized a recurrent neural network (RNN) model to forecast daily 

inflow data. The RNN model's performance is assessed in relation to that of the 

conventional ANN model in order to validate the predictive model. According to the 

study's findings, the RNN model forecasts reservoir inflow records more accurately than 

the ANN model.  

Lee et al. (2020) examined the performance with regard to three popular data-driven 

models, namely, MLP, ANN and SVM, to forecast monthly reservoir inflow. These 

predictive methods were evaluated using the coefficient S (expected error), NSE  (Nash-

Sutcliffe Efficiency), and other indexes. The research found that the developed models 

could be promising tools for forecasting inflow data. Hadiyan et al. (2020) studied the 

possibility of using an ANN model for reservoir inflow forecasting. The research 

provided useful information for simulated inflows at the Sefidround reservoir located in 

Iran. 

The second hydrological parameter in the reservoir system is evaporation. Indeed, several 

previous studies have developed many artificial intelligence methods to predict reservoir 

evaporation values. Keskin and Terzi (2006) used the ANN approach to estimate daily 

evaporation. Several climate characteristics were used as input variables, including 

temperature, wind speed, humidity, sun radiation, and others. The prediction findings 

showed a reasonably good agreement between the actual daily evaporation records and 

the ANN-generated forecasted values. 

The ability of the ANN method has been evaluated by comparing it with a radiation-based 

method and temperature-based method by Tan et al. (2007). The proposed methods were 

applied to predict daily and hourly evaporation data. Analysis of the original evaporation 

and climate parameters has been conducted. The study showed a high correlation between 
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solar radiation and evaporation for both time scales (hourly and daily). Meanwhile, the 

relative humidity parameter influences the daily evaporation scale. The researchers have 

found that the ANN model's efficiency is greater than that of conventional methods.  

Moghaddamnia et al. (2009b) have developed two popular AI-based models (e.g., ANN 

and Adaptive Neural Fuzzy Inference System (ANFIS)) to forecast data on evaporation. 

The performance of such models has been evaluated by comparing them with different 

empirical equations. It is noted that ANN and ANFIS models achieved their aims with 

some interesting outputs concerning the influence of climate parameters. The study first 

concluded that the outcomes from the ANN and ANFIS methods were superior to those 

from empirical equations. Secondly, the ANN efficiency is relatively better than that of 

the ANFIS method. Pertaining to this research, the Gamma Test (GT) approach was 

employed to boost prediction accuracy by improving ANN and ANFIS performance. The 

study recommends giving significant attention and gaining a wider experience regarding 

the input selection approach.  

The estimation of daily evaporation values for the Hamedan province region located in 

Iran was carried out by Tabari et al. (2010). They employed both ANN as well as 

Multivariate Nonlinear Regression (MNLR) methods. Five different architectures of 

proposed models were developed based on several input variables. The study found that 

temperature and wind speed have a big impact on the accuracy of the prediction. The 

outcomes showed that ANN approach could be a promising tool for evaporation 

prediction by comparing it with the MNLR method. 

Allawi and El-Shafie (2016b) have studied the possibility of using two AI-based models 

(i.e., RBFNN and ANFIS) for daily evaporation records. They applied models to predict 

the evaporation records for the Layang Reservoir, which is situated in southeast Malaysia. 
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Daily air temperature, humidity, pan evaporation, and solar radiation for 40 years have 

been used to test and train the suggested models. To assess and investigate the availability 

and dependability of the suggested predictive models, a number of statistical metrics were 

used. According to the indicators, both AI models produced predictions that were 

satisfactory. In terms of daily evaporation value prediction, RBFNN outperformed 

ANFIS.   

The RBFNN, Self-Organizing Map Neural Network (SOMNN), as well as MLR models, 

were used by Malik et al. (2018) to forecast data on evaporation. The prediction modeling 

was structured based on several meteorological parameters. The predictions obtained by 

RBFNN were more accurate than those obtained by SOMNN and MLR models. The 

study reported that the RBFNN model is an effective and robust predictive model in 

estimating reservoir evaporation records. 

In further research, Allawi et al. (2019c) examined the reliability and efficiency of ANN 

and Support Vector Regression (SVR) models in forecasting reservoir evaporation. To 

verify the applicability of the prediction models, two distinct scenarios for the input 

variables were put forth. In comparison to the SVR model, the ANN model produced 

more accurate predictions, according to the statistical indices.  

Allawi et al. (2025) applied two various artificial intelligence models which are ANN and 

SVR to predict evaporation data. The proposed methodology was evaluated utilizing 

numerous statistical indexes. The ANN and SVR have been used to predict daily 

evaporation data of the Haditha dam located in Iraq. The research found that the reliability 

of the ANN method is better than SVR method. 
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2.3  Support Vector Machine (SVM) 

The SVM method was promoted as a modern algebraic realizing model and proven to be 

a strong and effective method for classification and regression for stochastic data sets by 

comparing its performance with the conventional methods. In fact, the concept of the 

SVM model is based on drawing the input data group into towering dimensional introduce 

space to streamline the regression issue and re-provide the unknown relationship between 

the input-output variables. The SVM approach's mechanism is simple, which modelers 

could adequately understand. The further attraction of such a model is its remarkable 

superiority over other forecasting methods such as ANN, decision trees, and nearest 

neighbors. The SVM employs a kernel trick function to establish information regarding 

the problem type to minimize forecasting error and model complexity jointly. Indeed, the 

prediction ability of the SVM model can be understood by several essential theories, 

including soft margin, separation hyperplane, hard margin, and kernel function separation 

hyperplane. Numerous previous studies have employed SVM-based models to forecast 

inflow and evaporation parameters. 

Accurate reservoir inflow forecasting is important in managing and scheduling reservoir 

systems. In 2006, LIN et al. (2006) employed SVM to project the monthly values of 

reservoir inflow. To test the validity of the suggested model, two different forecasting 

models have been employed for comparison: Auto-Regressive Moving Average (ARMA) 

and ANN method. They have found that SVM-based models are expected to be promising 

tools due to their efficiency, robustness, and accuracy in forecasting reservoir inflow data. 

SVM-based efficient inflow forecasting models are introduced by Lin et al. (2009a). The 

SVR has better generalization, the weights of the SVR are guaranteed, and the SVR is 

trained much more rapidly. A comparison has been made between the suggested model's 
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performance and the Backpropagation Network (BPN) according to several statistical 

indicators. The obtained results indicated that compared to BPN-based models, the 

suggested SVR-based models are more efficient and reliable. The study recommended 

that the SVR-based models could be helpful in increasing the accuracy of inflow 

forecasting and as an alternative to the existing forecasting methods. 

Modification for the SVM model has been carried out by Li et al. (2009) to predict 

reservoir inflow. The updated model was employed for reservoir inflow forecasting for 

the Shihmen reservoir, which is in Taiwan. The forecasting modeling was established 

based on several input variables, including meteorological parameters. The Genetic 

Algorithm (GA) was applied in order to identify the SVM model's ideal internal 

parameters. The SVM-based models achieved excellent forecasting accuracy. From the 

point of view of several statistical indicators, the study showed that the modified SVM 

can be a promising model for forecasting reservoir inflow.  

Temperature, sun radiation, rainfall, and other climate parameters have been embedded 

to establish the reservoir inflow modeling by Noori et al. (2011). Monthly inflow data is 

anticipated using the SVM method. The best input combinations for modeling have been 

chosen using a variety of input selection algorithms. SVM's performance is examined in 

comparison with the conventional ANN model. They concluded that the suggested 

model's (SVM) efficiency is superior to the ANN model in forecasting reservoir inflow 

data. Plus, the selection of the proper input combinations has a considerable role in 

improving the forecasting accuracy. 

Several previous studies have also utilized SVM-based models for reservoir evaporation 

prediction. In 2009, Moghaddamnia et al. (2009a) combined the Gamma Test (GT) 

technique with the SVR method for the daily prediction of evaporation records. The 
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Gamma Test (GT) technique has been employed for choosing the optimal input .variables 

among many meteorological parameters. A comprehensive evaluation and analysis have 

been done for the proposed model using popular statistical indicators. The performance 

of SVR was examined by comparing it with empirical equations. The results show that 

good prediction accuracy was obtained when using SVR. The utilization of GT with the 

SVR model has improved the predictability of reservoir evaporation.  

Reservoir evaporation prediction values based on SVR modeling have been developed by 

Baydaroğlu and Koçak (2014). Five different input variables have been considered for 

modeling, which include wind speed, temperature, solar radiation, as well as time-lag 

evaporation. The best input combinations to feed the SVR-based models were determined 

by a popular technique called the Chaos algorithm. In the study, two different prediction 

models were employed, which are ANN and ARIMA models. The best SVR could 

achieve satisfactory prediction accuracy. The proposed model, based on combining SVR 

with the Chaos algorithm, provided accurate predictions in contrast to the finest ARIMA 

and ANN techniques.  

Considering how intricate the evaporation pattern is and the lack of meteorological and 

hydrological data in the reservoir area, the models based on physical processes have 

limited applicability in predicting the evaporation data. In light of this, Tezel and 

Buyukyildiz (2016) investigated the efficiency of three different models, including Multi-

Layer Perceptron (MLP), RBFNN, and SVR, for evaporation prediction. SVR and 

RBFNN models have attained the best accuracy of the prediction, but the SVR method 

was a little better than the RBFNN model. The study results showed that the SVR method 

could be more suitable for predicting evaporation data.    
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2.4  Fuzzy Logic 

The primary aim of designing mathematical models is to maximize the advantage of such 

models. To achieve this, many key features, including the model system, should be 

considered, including credibility, uncertainty, and complexity. It could be observed that 

allowing more uncertainty could lead to minimizing the complexity and then obtaining 

more reliable results from the model. Based on such a concept, Zadeh (1965) has 

proposed fuzzy theory sets whereby the primary characteristic of such theory is 

addressing and studying the uncertain characteristics that could exist in the parameter 

patterns. In fact, the fuzzy sets handle the uncertainty by studying the input parameters 

connected with priority to focus modeling vagueness. Furthermore, the system considers 

the input parameters to be a shape of space data, not crisp point data. In this way, the 

system could smoothly solve the modeling ambiguity Klir & Yuan (1995). 

It could be noted that the fuzzy system set has an important part called fuzzification, 

which addresses uncertainties. Several past papers mentioned that the uncertainty feature 

exists in the pattern of reservoir inflow and evaporation parameters (Cheng et al., 2015; 

El-Shafie & Noureldin, 2011; Tan et al., 2007). Therefore, the modelers attempted to 

develop and support the fuzzification part to increase the model's ability to handle 

ambiguous data. The FL models have been employed for mapping between variables in 

many engineering areas. In this chapter, the study focuses on the fuzzy models' utilization 

for two main hydrological parameters which are inflow and evaporation. 

The ANFIS method was used to forecast reservoir inflow using monthly data at Nile River 

located in Egypt by El-Shafie et al. (2007). The ANFIS method is highly capable of 

addressing the uncertainties and ambiguities present in the inflow pattern. The historical 

data for 130 years was employed to train and test the proposed model. The architecture 
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was established based on multi-lead inflow for enhancing the model's ability. The 

proposed modeling was developed to be eligible for 3-month-ahead forecasting. The 

research has shown that the ANFIS-based models exhibited high accuracy and 

harmonious performance when forecasting inflow. The ANFIS performance was 

compared to a popular predictive model called MLPNN. The proposed model 

outperformed MLPNN and has shown superior strength and reliable performance in 

predicting monthly reservoir flow. 

BAE et al. (2007) have utilized ANFIS-based models to forecast inflow data. They 

concluded that the ANFIS model has a high ability to provide accurate results. The study 

demonstrated that the ANFIS model outperformed other predictive models. Moreover, 

Wang et al. (2009b) studied the performance of several AI-based models to forecast 

monthly reservoir inflow records. The monthly inflow data was collected from two 

different case studies. The research used the collected data to develop different predictive 

models, namely ANFIS, SVM, ANN, ARAM, and Genetic Programming (GP) 

technology. The findings showed that ANFIS, GP, and SVM models can achieve the best 

efficiency depending on a number of criteria for assessment. 

Lohani et al. (2012) compared the effectiveness of the ANFIS approach with that of the 

ANN and Auto-Regression (AR) models in order to anticipate monthly lake inflow. The 

suggested approach was actually used to predict inflow statistics for India's Bhakra Dam. 

Predictive techniques were evaluated using a number of widely used statistical markers. 

The findings showed that for reservoir inflow forecasting, ANFIS-based methods 

outperform ANN and AR methods.   

Awan and Bae (2013) developed a predictive model based on the ANFIS method to 

forecast monthly inflow data. Monthly inflow, temperature, and rainfall data are input 
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variables to train the proposed models. Different architectures of the proposed model have 

been considered based on different input combinations. The study showed that using 

rainfall parameters as input variables improves forecasting accuracy. The results 

demonstrated the ANFIS model's effectiveness in forecasting reservoir inflow data.  

Monthly and Yearly reservoir inflow forecasting modeling has been developed by Bai et 

al. (2016b). They adopted the Even Grey Model (EGM) and ANFIS model for forecasting 

both time scales. The proposed models have been applied to forecast the inflow for the 

Three Gorges reservoir, and the data were collected from January 2000 to December 

2012. The prediction accuracy of reservoir inflow data is improved substantially by the 

proposed models. Two peer methods, the ANN and autoregressive integrated moving 

average method, were used to inspect the predictive model. According to several 

evaluation indicators, the results showed that the developed predictive model is better 

than other methods.  

The CoActive Neuro-Fuzzy Inference System (CANFIS) was modified by Allawi et al. 

(2017) to forecast monthly reservoir inflow data. The authors utilized the suggested 

CANFIS method for a case study located in Egypt, Aswan High Dam. A comparison has 

been made between the CANFIS model and other AI-based models. The evaluation 

criteria demonstrated the advantage of the CANFIS model by comparing with the other 

predictive approaches.   

Practically speaking, there are difficulties faced by hydrologists when using Class-A pan 

with regard to direct measurements. To overcome such difficulties, Keskin et al. (2004) 

utilized the FL model for daily pan evaporation prediction. A comparison of the efficiency 

of the ANFIS method was made with the Penman empirical equation. The study results 

revealed that the ANFIS model achieved good accuracy and has a significant ability to 
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predict evaporation data. The researchers recommended adopting the ANFIS model as a 

promising predictive model for reservoir evaporation prediction. 

In 2012, Tabari et al. (2012) investigated the CANFIS model's ability to predict pan 

evaporation data for a semi-arid region of Iran. A comparison of the proposed CANFIS 

model has been carried out with the MLP model. The performing of the predictive 

methods were assessed using several numerical indexes. The study found that the 

CANFIS method is more reliable in predicting evaporation data compared to the MLP 

model.    

In the study of Salih et al. (2019), the CANFIS model was employed to predict monthly 

evaporation data. CANFIS performance was compared to that of the three AI-based 

models, which are SVR, ANFIS, and ANN models. Several statistical indicators have 

proven the reliability and effectiveness of the CANFIS model in predicting reservoir 

evaporation records. 

The CANFIS method was modified by Allawi et al. (2020a) in order to predict monthly 

evaporation data. A comparison between the performance of the modified CANFIS with 

ANFIS, RBFNN, and SVR models was performed using several evaluation indicators. 

The study found that a modified CANFIS model can predict evaporation records more 

accurately than other predictive AI-based models.    

2.5  Hybrid and Other Models 

Different other predictive models were developed to forecast the hydrological parameters, 

like combining optimization algorithms or data preprocessing techniques with AI 

methods.  
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Indeed, there are several editable internal parameters that identify the final shape of the 

model structure. Over the last decades, numerous studies have been conducted on the 

development and application of evolutionary algorithms to improve the performance of 

AI models. Such algorithms attempt to find the optimal form of internal parameters of AI 

models that could produce robust and effective modeling. 

Many techniques were developed to address the stochastic process involved in raw data. 

Wavelet Transform (WT) is the most popular technique for data preprocessing. WT is a 

significant model for analysis and handling time series data. The use of this technique has 

increased dramatically since its introduction in 1984 by Grossmann and Morlet (1984). 

The primary objective of using the WT approach is to analyze the original data in terms 

of frequency and non-static, thus producing significant information about the time-series 

data. 

The ability of the ANN model with WT has been investigated for reservoir inflow 

forecasting by Wang et al. (2009a). They applied a predictive method to forecast the 

inflow parameter for the Three Gorges Dam, located on the Yangtze River in China. 

WNN's performance was evaluated by comparing its efficiency with a common predictive 

model called the Threshold Auto-Regressive (TAR) model. The study showed that the 

proposed model attained excellent results. The forecasting accuracy level is improved 

when using WNN compared to another model. The researchers concluded that further 

improvement in the WNN procedure could produce a robust and effective predictive 

model. 

In further study, the integration between the Particle Swarm Optimization (PSO) with the 

SVM model has been carried out by Wang et al. (2010) to forecast annual inflow data. 

The objective of the PSO algorithm is to find the optimal parameters of the SVM model. 
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A comparison between the suggested model (PSOSVM) and the ANN model was 

conducted using several statistical indicators. The results obtained demonstrated that the 

PSOSVM model is better than ANN in forecasting reservoir inflow. According to the 

research, the PSOSVM-based approach may serve as a substitute for current prediction 

methodologies. The researchers suggest that the forecasting model's precision and 

efficacy can be enhanced through the integration of SVM with techniques for 

optimization. 

The capacity of the M5 Tree (MT) model to predict inflow variables was examined by 

Jothiprakash and Kote (2011). To confirm model performance, two distinct timelines—

monthly and seasonally—are taken into account. The superiority of the MT model over 

the Moving Average model is evident. The statistical indicators demonstrated the great 

effectiveness and dependability of the suggested methodology. The study's findings 

showed that, when employing seasonal inflow records, the MT model produced accurate 

forecasts.  

The ANN, ANFIS, and Linear Genetic Programming (LGP) were employed for 

multistep-ahead forecasting of inflow data by Jothiprakash and Magar (2012). Daily and 

hourly inflow data have been utilized to establish the modeling structure. To illustrate the 

applicability of the proposed models, the Koyna River watershed in Maharashtra, located 

in India, has been chosen as a case study. The proposed model's reliability is evaluated 

utilizing various performance criteria. The study found that the LGP-based model was 

superior to other models for daily and hourly time scales. 

The integration of three predictive models, FFNN, MLP, and RBFNN, with the WT 

technique was done by Budu (2014) for reservoir inflow forecasting. Research has shown 
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that WT technology improves prediction accuracy. The study recommended adopting WT 

to enhance the original data to be understandable for the predictive models. 

An ensemble model based on WT analysis, bootstrap resampling, and ANN (BWANN) 

has been proposed by Kumar et al. (2015) to forecast inflow records. For comparison, 

several peer models, including wavelet-based ANN (WANN), Multi Linear Regression 

(MLR), WMLR, and Bootstrap and Wavelet-based MLR (BWMLR) models, were 

adopted. Fourteen years of daily reservoir inflow data collected from upstream were used 

to train and test predictive models. Several evaluation indicators were employed to check 

the reliability and validity of the models used. The study found that the effectiveness of 

WANN is superior to that of WMLR, ANN, and MLR methods. Another observation is 

that the BWANN performance is superior to the BWMLR model and could be more 

accurate and useful for daily reservoir inflow forecasting, as requested. 

Heuristic methods for monthly reservoir inflow forecasting have been employed by 

Cheng et al. (2015). The ANN, SVM, and SVM based on GA were employed to predict 

inflow at the Xinfengjiang reservoir. A comparison has been conducted between the 

hybrid predictive model and the classic ANN and SVM model. The study revealed that 

three predictive methods have satisfactory performance in forecasting monthly inflow 

values. Five statistical indicators revealed that the capability of the hybrid technique is 

superior to that of ANN and SVM. It could be concluded that the hybrid technique is a 

robust tool for long-term prediction.  

The Multi-Scale Deep Feature Learning (MDFL) strategy was established by Bai et al. 

(2016a) using modern model to manage the daily inflow forecasts. Ensemble empirical 

decomposition and Fourier spectrum have been used to extract multiple time scales. The 

structure of the proposed modeling was established using the historical daily reservoir 
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inflow series for 12 years. The raw data was collected from the Three Gorges Reservoir 

located in China. Four different predictive models were adopted to compare with the 

suggested model. According to the attained results, the present model's efficiency 

overwhelmed all the peer methods for the same task. The minimum forecasting error and 

maximum correlation between the forecasted and actual data have been obtained using 

the proposed predictive model. 

In 2016, Bozorg-Haddad et al. (2016b) coupled the GA technique with the ANN model 

to forecast inflow data. Historical data from two case studies were utilized to evaluate the 

proposed ANN; 80% of the data was used to train, and 20% of the original data was used 

to test the suggested model. The results demonstrated that the proposed hybrid model 

(ANN-GA) is applicable and effectively forecasts monthly inflow data. 

Moeeni and Bonakdari (2016) used an ANN with a linear seasonal auto-regression 

integrated moving average (SARIMA) model. They looked at how well the suggested 

forecasting framework predicted a dam reservoir's inflow data. The Jamishan Dam, 

located in Iran, was chosen as a case study for this research. The efficiency of the hybrid 

model (SARIMA-ANN) was compared with the SARIMA and ANN models. The study 

investigated the effect of changing the forecasting period length on the accuracy level of 

models. The results showed that the hybrid model forecasts peak inflow values much 

better than the classic predictive methods. Moreover, the SARIMA model is more 

accurate in forecasting low records compared to other AI-based models. Overall, the 

forecasting error is minimized when utilizing the hybrid model more than other predictive 

models. The correlation magnitude between predicted and original values is high with the 

hybrid technique. 
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Li et al. (2016) have introduced two different predictive models, Deep Restricted 

Boltzmann Machine (DRBM) and Stack Auto-Encoder (SAE), to forecast inflow data. 

The proposed models have been employed to forecast daily reservoir inflow at Three 

Gorges Reservoir and Gezhouba in China. This study investigates the utilization of deep 

learning architectures for the forecasting of daily reservoir inflow, a topic of considerable 

interest across multiple domains due to its capacity to extract and acquire valuable 

features from extensive datasets. The autoregressive integrated moving average 

(ARIMA), the basic fed-forward neural networks (FFNN), and two types of deep neural 

networks (DNNs) built by integrating the FFNN with two deep learning of features 

architectures—DRBM-based NN and stack SAE-based NN, respectively are evaluated. 

Meanwhile, in 2020, Afan et al. (2020) used GA to select the proper input combination 

for the predictive model. The integration has been made between RBFNN and GA to 

forecast monthly reservoir inflow. The results showed that the proposed RBFNN-GA 

model outperformed other predictive models. 

Six machine learning models, including MLP, Decision Tree (DT), RNN, Random Forest 

(RF), and Gradient Boosting (GB), were employed for inflow forecasting by Hong et al. 

(2020). According to several statistical indicators, the MLP model attained the best 

prediction results compared to other predictive models. On the other hand, the study found 

that the GB and RF performed better than the MLP model when the inflow volume was 

less than 100 m3/s. Therefore, a combination between MLP and those models (i.e., 

GBMLP and RFMLP) has been carried out. The developed model achieved a high level 

of forecasting accuracy.    

Tikhamarine et al. (2020) provided a robust and effective predictive model. The 

improvement of forecasting accuracy was achieved by integrating SVR, ANN, and MLP 
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with the Grey Wolf Optimization (GWO) algorithm. The research showed that hybrid 

techniques are more accurate and reliable than classic AI-based models. Moreover, the 

efficiency of the SVR-GWO method for inflow prediction based on the monthly data is 

better than that of the ANN-GWO and MLP-GWO models.    

In Zhang et al. (2020), three distinct data-driven models—ANN, ANFIS, and SVM—

were utilized to predict reservoir inflow. A number of climate variables were utilized as 

input factors for the forecasting techniques, and the findings showed that the predictive 

model is more accurate and dependable than the other theories. 

Osman et al. (2020), the Fast Orthogonal Search (FOS) method was adopted to forecast 

monthly inflow data. The study reported that the FOS method has the ability to avoid the 

over-fitting problem. It was observed that the forecasting accuracy has been highly 

improved using the FOS method.  

In order to address the drawbacks of deep learning optimizers and increase deep learning 

accuracy, Ryu and Lee (2025) suggests a combined optimizer (CO) that combines 

adaptive moment and vision correction algorithms. The suggested method was employed 

for inflow forecasting data of the Daecheong Dam located in Korea. The CO optimizer 

addresses the storage space and convergence issues faced by deep learning optimizers. 

Furthermore, CO was treated with explainable artificial intelligence (XAI), resulting in a 

Dual-AI model that improves accuracy and interpretability.  

Instead of utilizing the popular sigmoid activation function in the MLPNN model, 

Abghari et al. (2012) employed the Wavelet function as an activation function. Two 

different wavelet types have been considered: Mexican hat and polyWOG1. The 

suggested models are applied for daily pan evaporation prediction. According to the 
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obtained results, Mexican hat wavelet NN presented 98.35% and 96.04% accuracy during 

training and testing sessions, respectively. Meanwhile, PolyWOG1 wavelet NN presented 

95.92% and 91.03% accuracy during the training and testing phases, respectively. The 

MLP model with the standard sigmoid function provided 90.6% accuracy in the training 

period and 87.63 within the testing period. It has been observed that the MLP with 

Mexican hat Wavelet achieved excellent performance accuracy. 

In the research of Arunkumar and Jothiprakash (2013), the reservoir evaporation data 

were predicted using three several data-driven methods, including ANN, model tree, and 

GP method. The daily reservoir evaporation records for a period of 49 years were 

employed to develop prediction modeling. The evaluation criteria showed that the GP 

method is superior to the model tree and ANN method in predicting the evaporation 

parameter.  

Izadbakhsh and Javadikia (2014) coupled the FFNN model and GA technology to predict 

the evaporation data of a dam reservoir. FFNN with GA to predict evaporation data from 

the dam reservoir. The performance of the hybrid predictive model (FFNNGA) is 

compared with the classic FFNN model. Several meteorological parameters, including 

wind speed, sunshine, and temperature, are employed as input variables for modeling. 

The researchers found the proposed predictive model (i.e., FFNNGA) is accurate and 

reliable in predicting evaporation data compared to the classic FFNN model. The 

FFNNGA could be a promising predictive tool for reservoir evaporation prediction. 

A hybrid model consisting of MLP with a Fire-Fly Algorithm (FFA) was adopted by 

Ghorbani et al. (2017) to predict pan evaporation records. The execution of the MLP-FFA 

method has been examined by assessing the accuracy of its forecasting with standard 

MLP and SVM methods. The results demonstrated that the hybrid predictive model 
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outperformed other models. The study found that the FFA technique improves the 

accuracy of the forecasted evaporation data.   

Allawi et al. (2020b) developed a new predictive method called CANFIS to predict 

monthly reservoir evaporation records for two different case studies. GA has been 

employed to obtain optimal internal factors of the suggested model. The execution of the 

GACANFIS in predicting evaporation data was inspected by comparing it with GASVR, 

GAANFIS, and GARBFNN models. A hybrid model (GACANFIS) succeeded in 

achieving minimal prediction errors and a high agreement level between predicted and 

actual data. The results show that the developed model could be an excellent tool for 

predicting the reservoir evaporation data.   

In a recent study, Wu et al. (2020) predicted monthly evaporation data by coupling an 

Extreme Learning Machine (ELM) with two different heuristic algorithms, namely, the 

Whale Optimization Algorithm (WOA) and Flower Pollination Algorithm (FPA). The 

applicability of the proposed models has been compared with ANN, Differential 

Evolution algorithm optimized ELM (DEELM), and M5 Tree model (MT). The research 

demonstrated that the hybrid model (i.e., FPAELM) achieved high-level prediction 

accuracy, followed by the WOAELM model. Further, hybrid predictive models are 

superior to conventional methods. 

To predict evaporation rates, a number of machine learning methods were used by Amer 

and Farah (2025). The suggested models are Random Forest Regression (RFR), Extreme 

Gradient Boosting (XGBoost), Gradient Boosting Regression Trees (GBRT), Adaptive 

Boosting (AdaBoost), and a hybrid model called Multi Boost-RFR. The information 

comes from Beni Haroun Dam, Algeria. To assess each model's performance, the dataset 

was split into subgroups for training (70%) and testing (30%). The findings show how 
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well hybrid models perform in raising the accuracy of evaporation forecasts, highlighting 

how crucial it is to select models that complement the unique features of the data in order 

to produce accurate predictions. 

Farzad et al. (2025) integrated Long Short-Term Memory (LSTM) deep learning with 

several optimization algorithms. The suggested hybrid model was utilized to predict the 

evaporation rate at Dez Dam, Khuzestan Province, Iran. The study used several 

metrological parameters for evaporation prediction. The proposed model provided a high 

level of prediction accuracy. 

2.6  Evaluation and Assessment  

The current research has focused on applying AI models to forecast the primary 

hydrological factors in reservoir systems: inflow and evaporation. It is noted that 

hydrologists have paid much attention to forecasting reservoir inflow, with fewer studies 

being done on modeling reservoir evaporation.  

According to the effectiveness and efficiency of AI techniques in addressing the nonlinear 

and stochastic nature of hydrological processes, a considerable understanding and 

capability to forecast inflow and evaporation could be attained.  

The results of numerous studies reviewed in this paper have indicated the high 

effectiveness of integrated or hybrid models in forecasting inflow and evaporation as an 

accurate, compared with single or classic AI models. Such enhancements in forecasting 

inflow and evaporation parameters can provide a best interpretation of these phenomena' 

behavior and hence give proper policies for the development of water resources 

management. The last sections reviewed the previous work that applied AI-based models 
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to predict the reservoir inflow and evaporation. One of the more important matters 

explored is that FL models can best fit with the specific hydrologic processes.  

Past studies reported that the ANN models suffered limitations and shortcomings like 

low-speed learning, local minima, and overfitting problems. There are three major types 

of ANN methods: MLP, RBFNN, and FFNN models. Based on past papers, the RBFNN 

model has high efficiency and the ability to forecast hydrological factors associated with 

other models. This is due to the RBFNN model is exemplified quicker by convergence 

and high robustness (M. F. Allawi & El-Shafie, 2016; Fernando & Jayawardena, 1998; 

Valipour et al., 2012). At the same time, some research papers reported that the RBFNN 

model has some weak points and shortages, where the RBFNN model suffers from 

providing acceptable accuracy when using short raw data. 

Furthermore, the DNN methods are superior to the static neural network models in 

prediction the inflow and evaporation parameters. Indeed, the concept of DNN methods 

is that the neuron depends not only on the present signal of input but also on the prior 

states of the neurons. Thus, the DNN models are characterized by robustness and high 

efficiency in reducing the learning time. Moreover, the DNN methods have the 

exceptional ability to map the relationship between input-output variables because of their 

high capability to adjust the network weights, as requested (Coulibaly et al., 2001; 

Valipour et al., 2013). 

It was also found that SVM-based models with optimization algorithms are more efficient 

than ANN and ANFIS models in monitoring peak values. It is observed that peak values 

in inflow and evaporation time series that occur in periodic patterns could be detected 

more accurately using SVM-based models with optimization techniques. The classic 

models could attain good forecasting results for short-term real-time forecasting (i.e., 
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hourly or daily). The hybrid or integrated AI models could achieve high-level accuracy 

for long-term time scales (i.e., seasonally or monthly). Moreover, the type of data has a 

significant role in selecting a reliable and effective model. For example, probabilistic 

preprocessing could be useful for obtaining satisfactory results when modeling a highly 

stochastic process. 

According to past studies, one of the most important steps that could influence modeling 

performance is selecting a suitable transferal function. With such step, the selected 

function can mapping and understate the relationship of the parameter patten. The 

selection of appropriate functions could improve forecasting accuracy. Several papers 

have concluded that the tangent sigmoid transfer function is better than other functions in 

terms of the capability to recognize the pattern of inflow and evaporation parameters. The 

review demonstrated that most past studies attained their objectives as high accurately 

using sigmoid function (M. F. Allawi & El-Shafie, 2016; Chiamsathit et al., 2016; 

Hidalgo et al., 2015; Moghaddamnia, Ghafari, et al., 2009; Tabari et al., 2010a).  

Authors' names, types of AI-based models, timescales, and other information about past 

studies that have addressed inflow forecasting are presented in Table 2.1. It is noted that 

most of the reviewed papers have used monthly time scales to model inflow prediction. 

Referring to Table 2.1, the ANN-based models have got high consideration from 

modelers. Many hydrologists attempted to enhance the ability of AI methods by 

integrating them with optimizer techniques. 
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Table 2.1: Summary of previous studies that were established to model 

reservoir inflow forecasting using AI methods. 

Authors Developed 
model 

Performance 
metrics 

Time scale Research remark 

Coulibaly et 
al. (2000) 

FFNN NSE, R2, 
RMSE, PFC, 

CORR 

Daily The proposed FFNN model was 
applied to forecast inflow in a case 
study located in Canada. 

Coulibaly et 
al. (2001) 

DNN NSE, R2, 
RMSE, PFC, 

LFC 

Daily The inflow data was forecasted in a 
case study located in Canada. 

El-Shafie et 
al. (2009b) 

RBFNN PFC, LFC, 
FE, RE 

Monthly Aswan High Dam (AHD), located 
in Egypt, was chosen as a case 
study. The study concluded that the 
RBFNN model was very successful 
in predicting the inflow data for the 
next few months. 

El-Shafie 
and 

Noureldin 
(2011) 

ENN RMSE, RE Monthly Reservoir Inflow Forecasting was 
performed in a case study located in 
Egypt. It has achieved a good 
improvement in forecasting 
accuracy with the RNN model. 
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Table 2.1, Continued 

Authors Developed 
model 

Performance 
metrics 

Time scale Research remark 

Valipour et 
al. (2012) 

DARNN RMSE, MSE, 
RE, Cv 

Monthly Dez reservoir, located in Iran, was 
selected as a case study. Different 
architectures were created for the 
proposed models utilizing two 
transfer functions, sigmoid and radial 
basis functions. 

Valipour et 
al. (2013) 

ARNN RMSE, 
MBE, RE, Cv 

Monthly The forecasting accuracy of the dam 
reservoir inflow has been improved 
by the predictive model used. The 
proposed ARNN model was used to 
forecast inflow data for a case study 
located in Iran. 

Elizaga et 
al. (2014) 

ANN RMSE, 
MAE, RRSE, 

R, RAE 

Daily The authors forecasted daily inflow 
records in a case study in the 
Philippines. 

Chiamsathit 
et al. (2016) 

MLP NSE, R2 Monthly The inflow data was forecasted in a 
case study located in Thailand. The 
proposed MLP model is evidenced to 
be reliable for reservoir inflow 
records. 

Apaydin et 
al. (2020) 

RNN NSE, RMSE, 
MAE, CC 

Daily The authors predicted the inflow data 
for a case study located in Turkey. 

Lee et al. 
(2020) 

MLP Coefficient S Monthly The inflow forecasting model was 
applied to a case study in Korea. 

Hadiyan et 
al. (2020) 

NARNN RMSE, R, R2 Monthly The proposed NARNN was applied 
to forecast inflow data for a case 
study located in Iran. 

Zhang et al. 
(2020) 

ANN NSE 10-day Six different climate parameters were 
used as input variables. The case 
study is about the Huranren 
Reservoir, located in China. 

LIN et al. 
(2006) 

SVM RMSE, 
CORR 

Monthly The study concluded that the SVM-
based model could be a promising 
tool due to its efficiency, robustness, 
and accuracy in forecasting reservoir 
inflow data. The authors used the 
predictive model to forecast monthly 
inflow data for a case study located in 
China. 
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Table 2.1, Continued 

Authors Developed 
model 

Performance 
metrics 

Time scale Research remark 

Lin et al. 
(2009a) 

SVR RMSE, 
MCE, MCP 

Hourly A comparison was made between the 
performance of the proposed model 
and the Backpropagation Network 
(BPN). The Fei-Tsui reservoir, 
located in Taiwan, was chosen as a 
case study. 

Li et al. 
(2009) 

SVM Box Plot Monthly The authors forecasted the inflow 
data in a case study located in 
Taiwan. The SVM-based forecasting 
framework has been modified to 
enhance the predictability of the 
inflow. 

El-Shafie et 
al. (2007) 

ANFIS RMSE, RE, 
R2 

Monthly The ANFIS method is highly capable 
of addressing the uncertainties and 
ambiguities present in the inflow 
pattern. The reservoir inflow 
parameter was forecasted in a case 
study located in Egypt. 

BAE et al. 
(2007) 

ANFIS RMSE, CC Monthly The researchers applied the ANFIS 
model to forecast inflow for a case 
study in South Korea. 

Wang et al. 
(2009b) 

ANFIS R, NSE, 
RMSE, 
MAPE 

Monthly The monthly inflow data were 
collected from two different case 
studies and were used to develop 
different predictive models 
investigated in the research. The 
selected case studies are located in 
China. 

Lohani et al. 
(2012) 

ANFIS RMSE, NSE, 
R2 

Monthly The ANFIS model was employed to 
forecast the reservoir inflow in a case 
study located in India. 

Awan and 
Bae (2013) 

ANFIS RMSE, CC Monthly Temperature and Rainfall data have 
been employed as input variables to 
train the proposed models. The 
authors predicted the inflow data for 
a case study located in South Korea. 

Bai et al. 
(2016b) 

ANFIS MAPE, 
NRMSE, R, 

PPTS 

Monthly 
and yearly 

The forecasting accuracy was 
improved by integrating ANFIS with 
an Even Grey Model (EGM). The 
Three Gorges Reservoir, located in 
China, was selected as a case study. 
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Table 2.1, Continued 

Authors Developed 
model 

Performance 
metrics 

Time scale Research remark 

Allawi et al. 
(2017) 

CANFIS RMSE, 
MAE, RE, R2 

Monthly Four training procedures were 
proposed to check the reliability of 
the CANFIS model. The inflow 
records have been predicted in a case 
study which is in Egypt. 

Wang et al. 
(2009a) 

WNM RE Annual, 10 
days, Daily 

The proposed WNM was applied to 
forecast inflow data for a case study 
located in China. 

Wang et al. 
(2010) 

SVMPSO RMSE, RE Annual The PSO algorithm is used to find the 
optimal internal parameters for the 
SVM model. The inflow data was 
predicted in a case study in China. 

Noori et al. 
(2011) 

SVMPCA RMSE, R2 Monthly 

 

Several input selection algorithms 
have been used to select optimal 
input combinations for modeling. 
The case study was selected based on 
the location of Iran. 

Jothiprakash 
and Kote 
(2011) 

M5 Model 
Tree 

MSE, MAE, 
MRE, NSE, 
R, AIC, RD 

Monthly, 
Seasonal 

The predictive model was used to 
forecast inflow data for a case study 
located in India. 

Jothiprakash 
and Magar 

(2012) 

LGP RMSE, NSE, 
BIC, AIC 

and R2 

Daily, 
Hourly 

The authors used the LGP model to 
forecast the inflow data for a case 
study located in India. 

Budu (2014) WNN RMSE, PFC, 
MAD, COE, 
PI, d and R2 

Daily The predictive model was applied to 
forecast inflow for a case study 
located in India. 

Kumar et al. 
(2015) 

BWNN R2, NSE, 
RMSE, Pdv, 

MAE 

Daily Daily inflow records were predicted 
in a case study located in India. 

Cheng et al. 
(2015) 

Hybrid 
model 

RMSE, 
MAE, 

MAPE, R2, 
NSE 

Monthly The proposed model was employed 
to forecast inflow data for a case 
study located in China. 

Bai et al. 
(2016a) 

MDFL MAPE, 
PPTS, 

NRMSE, R2 

Daily The Three Gorges Reservoir, located 
in China, was selected as a case 
study. The MDFL model provided 
excellent forecasting results. 
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Table 2.1, Continued 

Authors Developed 
model 

Performance 
metrics 

Time scale Research remark 

Bozorg-
Haddad et 
al. (2016b) 

ANNGA MSE, NSE, 
R2 

Monthly Two different case studies were 
chosen in the research. The first case 
study is located in Iran, and the 
second case study is located in China. 

Moeeni and 
Bonakdari 

(2016) 

SARIMA-
ANN 

MARE, R2, 
RMSE, 

BIAS, SI, 
MSE, AIC, 

SBC 

Monthly The hybrid model forecasts peak 
inflow values much better than the 
classic predictive methods. The 
inflow records were forecasted in the 
case study of the Jamishan Dam, 
located in Iran. 

Li et al. 
(2016) 

DRBM MAPE, 
NRMSE, TS 

Daily The performance of the predictive 
model was inspected by forecasting 
inflow in two different case studies 
located in China. 

Hong et al. 
(2020) 

RFMLP R, R2, NSE, 
RMSE, MAE 

Daily Daily inflow data was forecasted in a 
case study located in South Korea. 

Tikhamarine 
et al. (2020) 

SVRGWO RMSE, 
MAE, R, 
NSE, WI 

Monthly Aswan High Dam, located in Egypt, 
was selected as a case study to 
examine the performance of the 
proposed model. 

Afan et al. 
(2020) 

RBFNNGA MAPE, 
MBE, MAE, 

d, RE, R2 

Monthly The authors forecasted inflow data 
for a case study located in Egypt. 

Osman et al. 
(2020) 

FOS RMSE, 
NRMSE, 
NSE, RE, 
MBE, R2 

Monthly The case study was selected and 
located in Egypt. 

Ryu and Lee 
(2025) 

XAI RMSE, R2 Monthly The case study was selected and 
located in Korea. 

 

Table 2.2 summarizes the major details of the reviewed studies that employed AI-based 

models for modeling evaporation prediction. The type of the predictive model, timescale, 

research remark, author's name, and evaluation criteria were presented in Table 2.2. It is 

observed that the researchers are concerned with selecting the appropriate input 

combination for modeling. The performance of predictive models could be enhanced in 

the case, including the effective climate parameters, like temperature and humidity, with 
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modeling. Through Table 2.2, the majority of the researchers utilized a daily time scale 

for evaporation prediction modeling. It has been found that long-term scales, like monthly 

scales, are used with large reservoirs. The evaporation prediction modeling has been 

mostly established based on ANN models. It was observed that RMSE, MAE, and R2 

were mainly used to evaluate the prediction accuracy. 

Table 2.2: Summary of previous studies that were established to model 

reservoir evaporation prediction using AI methods. 

Authors Developed 
model 

Performance 
metrics 

Time 
scale 

Research remark 

Keskin and Terzi 
(2006) 

ANN MSE, R2 Daily Six meteorological 
parameters, including air 
temperature, RH, SR, WS, 
sunshine, and water 
temperature, were employed 
to develop the ANN model. 
The reservoir evaporation data 
was predicted in a case study 
located in Turkey. 

Tan et al. (2007) ANN R2 Daily The authors predicted 
evaporation records for a case 
study located in Singapore. 

Moghaddamnia 
et al. (2009b) 

ANN RMSE, R2 Daily The performance of the 
proposed models was 
improved using a technique 
called gamma test. Chahnimeh 
Reservoirs were selected as a 
case study, which is located in 
Iran 

Tabari et al. 
(2010) 

ANN R, RMSE, MAE Daily Evaporation data were 
collected from a reservoir 
located in Iran. 

Allawi and El-
Shafie (2016b) 

ANN MAE, RE, MSE, 
R2 

Monthly The ANN model was applied 
to predict evaporation records 
for a case study located in 
Malaysia. 

Malik et al. 
(2018) 

RBFNN RMSE, CE, R Daily The evaporation data were 
collected from a case study 
located in India. 
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Allawi et al. 
(2019c) 

ANN RMSE, RE, 
MAE, NSE, 
KGE, R2 

Daily, 
Weekly, 
Monthly 

Prediction of evaporation 
amounts was performed in a 
case study located in Malaysia. 

Moghaddamnia 
et al. (2009a) 

SVM RMSE, MAE, 
MSE, R2 

Daily The researchers used the SVM 
to predict the evaporation data 
for a case study located in Iran. 

Allawi et al. 
(2025) 

ANN RMSE, MAE, 
MSE, R2, NSH 

Daily The study used ANN and SVR 
for evaporation prediction is 
Iraq. 

Amer and Farah 
(2025) 

Hybrid 
Model 

RMSE, R2. Monthly The study used several ML 
models to predict evaporation 
from Beni Haroun Dam, 
Algeria 

Farzad et al. 
(2025) 

Hybrid 
Model 

RMSE, MAE, 
KGE, and WI 

Monthly The evaporation prediction 
modelling was based on 
integrating LSTM with several 
optimization algorithms. 
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Table 2.2, Continued 

Authors Developed 
model 

Performance 
metrics 

Time 
scale 

Research remark 

Baydaroğlu and 
Koçak (2014) 

SVM MAE, R2 Daily The selected data were collected 
from the Ercan meteorological 
station. 

Tezel and 
Buyukyildiz 
(2016) 

SVM MAE, RMSE Monthly The proposed SVM model was 
applied to predict evaporation 
data for a case study located in 
Turkey. 

Keskin et al. 
(2004) 

ANFIS MSE, R2 Daily The ANFIS model was applied to 
predict evaporation records for a 
case study located in Turkey. 

Tabari et al. 
(2012) 

CANFIS RMSE, MAE, 
PE, R 

Daily The authors predicted 
evaporation data for a case study 
located in Iran. 

Salih et al. 
(2019) 

CANFIS MAE, RMSE, 
NSE, MAPE, RE, 
R2 

Monthly Evaporation prediction modeling 
has been established based on 
several meteorological 
parameters. Nasser Lake was 
chosen as a case study. 

Allawi et al. 
(2020a) 

CANFIS RMSE, MAE, 
MAPE, RE, R2 

Monthly The evaporation data were 
predicted for two case studies 
located in Malaysia and Egypt. 

Abghari et al. 
(2012) 

WNN RMSE, R2 Daily The authors predicted 
evaporation data for a case study 
located in Iran. 

Arunkumar and 
Jothiprakash 
(2013) 

GP MSE, MAE, 
RMSE, NSE, 
%MH, %ML, R 

Daily The predictive model succeeded 
in providing accurate results with 
five input climate parameters. 
The case study located in India 
has been considered in this 
research. 

Izadbakhsh and 
Javadikia (2014) 

FFNNGA MSE, MSNE, 
MAE, P, R, R2 

Daily The structure of the predictive 
model was optimized by the GA 
technique. The case study is in 
Iran. 

Ghorbani et al. 
(2017) 

MLPFFA RMSE, NSE, WI, 
MAE, Taylor 
diagram 

Daily Five meteorological parameters 
have been used to establish the 
evaporation prediction modeling. 
The evaporation data was 
predicted for a case study located 
in Iran. 
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Table 2.2, Continued 

Authors Developed 
model 

Performance 
metrics 

Time 
scale 

Research remark 

Allawi et al. 
(2020b) 

CANFISGA RMSE, MAE, 
MAPE, RE, R2 

Monthly The proposed CANFIS-GA 
model was applied to predict the 
evaporation records for two 
different case studies. The first 
case study is located in Malaysia, 
and the second case study is 
located in Egypt. 

Wu et al. (2020) ELM RMSE, MAE, 
MAPE, NSE, 
AE, t-statistic, R2 

Monthly The research was conducted to 
predict the evaporation records 
for a case study located in China. 

 

Figure 2.1 shows the number of times the artificial intelligence methods were utilized to 

predict the primary hydrological parameters in the reservoir system based on the reviewed 

studies. It is remarkable that prediction modeling was constructed many times based on 

hybrid models. The ANN method was widely employed for modeling the prediction of 

the primary hydrological parameters in the reservoir system. It is worth mentioning that 

the CANFIS model could be a predictive candidate model for the development of the 

prediction modeling for inflow and evaporation parameters. The development of the 

CANFIS model procedure may yield accurate prediction results. 

 
Figure 2.1: Number of times that the AI methods have been used for predicting 

reservoir inflow and evaporation based on reviewed studies. 
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To enrich the review study, the major points can be summarized as the following: 

i. The optimization techniques have improved the performance of predictive 

models. The optimizer is used to find the optimal internal parameters for the 

model's structure and then select the proper final shape of the modeling.   

ii. In general, preprocessing techniques such as WT have reduced the data noise. 

By employing WT, the predictive model can better understand the behavior 

of data, hence providing high accuracy.  

iii. The hybrid models achieved acceptable accuracy in forecasting inflow 

parameters, whether short-term or long-term.  

2.7  Summary   

The optimization algorithms provided acceptable solutions for optimization reservoir 

operation. Based on the results obtained from several literature studies, some drawbacks 

and shortcomings of these techniques can be observed during employment. Several gaps 

were identified through a review of previous literature: 

1. The mathematical procedures associated with the classic AI methods face difficulty 

detecting the greatly stochastic forms and wide-range attributes of the flow and 

evaporation data. 

2. Due to the diversity and random variation from one dam to another, it is challenging 

to implement a specific methodology for the internal flow mechanism and, thus, the 

difficulty of generalization for this hydrological problem. 

3. The simulation relies on deterministic data for internal flow and evaporation 

parameters. This procedure for the reservoir system is inappropriate and does not 

reflect the actual state of the reservoir system. 

In this study, consideration is given to the variation of the new version of ML, such as the 

Deep Learning Neural Network (DLNN) method, which can contribute to overcoming 

the classical AI models.  
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CHAPTER 3: METHODOLOGY AND CASE STUDY 

3.1 Introduction  

The methodology of three different Artificial Intelligence (AI) models will be explained 

in the current chapter. The description of the modeling work is divided into three main 

parts to simplify readability for a better understanding of the outcome of the thesis. Figure 

3.1 summarizes the strategy of the modeling methodology adopted by the present study. 

In the first part, three artificial intelligence methods (Radial Basis Function Neural 

Network (RBFNN), Multi-Layer Perceptron Neural Network (MLPNN), and Deep 

Learning Neural Network (DLNN) are utilized in forecasting two different hydrological 

parameters in the dam and reservoir system. The proposed methods are employed for flow 

and evaporation prediction in the dam and reservoir system. The performance of each 

method is tested in two different case studies representing two different climate zones. 

These are the Dukan Dam in Iraq and Timah Tasoh Dam (TTD) In Malaysia. In fact, 

evaluating the effectiveness of the suggested models in predicting evaporation and inflow 

parameters across various climate zones is the third goal of the present work. The 

autocorrelation (AC) technique is adopted to select the relevant lag time for input 

variables. To obtain the optimal architecture for each method, several different model 

structures are established based on the relevant input lag time selected by the AC 

technique. The fact that both reservoirs are situated in two distinct climate zones is the 

justification for choosing this case study. Dukan Dam is located in a semi-arid region, 

while TTD is located in a tropical zone. It is well known that climates in such areas vary. 

In reality, there are significant climatic altitude variations as a result of climate variance, 

particularly in terms of temperature and precipitation. This may have an impact on the 

reservoir system's data on evaporation and inflow. Each region's characteristics directly 

influence how evaporation and inflow behave. Another important factor in choosing such 
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case studies is the availability of data for the hydrological parameters since the AI models 

use the quantity of accessible data to determine the patterns of the hydrological processes. 

In this chapter, specifics on the chosen case studies and statistical analysis for the given 

data will be discussed.  

 
Figure 3.1: Schematic diagram of the methodology. 

The second part of the methodology deals with the automatic selection of relevant input 

variables for the modeling. In this context, the current research used the popular 

optimization algorithm, which is the Genetic Algorithm (GA). GA is considered a 

research technique that explores the relationship between variable data to determine the 

best input combination for a predictive model. The second part is important in integrating 
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GA with the proposed prediction models to obtain successful and optimal input variables 

in forecasting. The assessment of the method's reliability is confirmed by several popular 

statistical indicators. 

Each model is fed ten previous values of each flow and evaporation tank variables that 

give a different set of input variables for the modeling. The input variables for RBFNN, 

MLPNN, and DLNN are selected in two ways. In the first method, the traditional manual 

trial and error method based on the delay time partial autocorrelation is adopted to 

determine the best input combination. Meanwhile, the GA method is used in the second 

method to search for the optimal input variables for the predictive model. Accordingly, 

two types of comparison will be made. First, the study compares the performance of 

RBFNN, MLPNN, and DLNN models based on manual input selection. Second, a 

comparison is made between the proposed predictive models based on GA when selecting 

relevant input variables. 

The last part of the methodology deals with the reservoir simulation based on forecasted 

data. Indeed, the modeling of reservoir optimization is carried out according to the main 

steps. The first step is to simulate the reservoir system, and the second step is to provide 

optimal operating rules for the dam and reservoir system. The current study focuses on 

improving the first stage to simulate the reservoir under realistic conditions. Table 3.1 

shows the summary of the methodology for enhancing reservoir simulation models. 
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Table 3.1: Summary of Methodology 

Objective Methodology 

1.To apply the RBF-NN, 
MLPNN and DLNN methods 
as prediction models to better 
reveal the features of the 
hydrologic parameters of a 
reservoir. 

Three artificial intelligence models—Radial Basis 
Function Neural Network (RBFNN), Multi-Layer 
Perceptron Neural Network (MLPNN), and Deep 
Learning Neural Network (DLNN)—are employed to 
forecast reservoir inflow and evaporation. 

2. Examine different model 
structures and configurations 
to improve reservoir flow and 
evaporation prediction 
accuracy. 

The performance of RBFNN, MLPNN, and DLNN is 
tested in two different climate zones. Autocorrelation 
(AC) is used to determine input lag time, and multiple 
model structures are tested to identify optimal 
architectures. 

3. Examine the generalization 
ability of the proposed 
prediction model in tropical 
and semi-arid regions. 

Case studies from two different climatic regions—
Dokan Dam (semi-arid) and Timah Tasoh Dam 
(tropical)—are used to validate model generalization. 

4. Propose a new simulation 
procedure for the reservoir 
system. 

A reservoir simulation model is developed based on 
forecasted inflow and evaporation data. The model 
provides optimal operating rules for the dam and 
reservoir system. 

3.2 Predictive Models  

3.2.1 Radial Basis Function Neural Network (RBFNN) 

Experts in computer science and neurophysiology have constructed neural networks in 

the past years. Many initiatives led to the creation of a brand-new mathematical model 

called Neural Networks. Any neural network, in its most basic form, is made up of a unit 

element (neuron), as seen in Figure 3.2. These neurons take in weights from the 

environment, which are subsequently synthesized to create the output signal. Simple 

transformation functions of the input signals are used to create the output signals. By 

joining these neurons to build a network in a way that allows the output signal of one 

neuron to transform into the input signal of either one or many neurons, these NNs are 

able to complete complicated tasks with ease (Nelson & Illingworth, 1991). 
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Figure 3.2: Single neuron. 

Researchers have taken notice of the artificial neural network (ANN) approach. Over the 

past few decades, the ANN approach has been refined and adapted to achieve accurate 

forecasting for a variety of engineering applications. It now incorporates a number of 

designs, including RBFNN and Feed-Forward Neural Network (FFNN).  

A function approximation variant of the conventional ANN model with a quicker learning 

rate is called RBFNN (Cotar & Brilly, 2008). With one input layer, one output layer, and 

one hidden layer, the model structure employs the least-squares criterion as the objective 

function and Gaussian functions as the basis (Talukdar et al., 2020). When the network 

input falls into a specific region of the input space, the Gaussian functions in the hidden 

layer respond significantly to the input boost. The RBF is presented as 𝜑, which is also 

known as the hidden later function. Meanwhile, the hidden space is stated in the following 

form {𝜑𝑖(𝑥)}𝑖=1
𝑁 . 

Because of the mathematical mechanism of RNF-NN model, the model is sometimes 

known as a localized receptive field network. The convex form of the error function of 
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BFNN allows for fast conjunction to global optima (Bagtzoglou & Hossain, 2009). The 

RBFNN structure has been selected  in this work using a trial-and-error method and four 

distinct learning algorithms (Elzwayie et al., 2016). 

According to Figure 3.3, the RBFNN architecture consists of an input layer, one hidden 

layer, and an output layer. Numerous neurons in the top layer receive the input variables. 

Five alternative inflow and evaporation lag durations are considered input variables for 

the modelling in this investigation. To predict the inflow value at time (t), the inflow at 

(t-1), (t-2),..., (t-5) values are used as input variables for models. Similarly, to predict the 

evaporation value at time (t), the evaporation values at (t-1), (t-2),..., (t-5) are considered 

as input parameters. The first layer actually has an infinite capacity for input parameters. 

A radial basis activation function is present inside the neurons of the RBFNN architecture, 

which features a single hidden layer. A concealed layer makes up the second layer. The 

output layer, which represents the intended output variable, is the third layer.  

The nonlinear transformation function links the input layer's space to the hidden layer's 

space, whereas the linear transformation function links the hidden layer's space to the 

output layer's space.
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Figure 3.3: The structure of the Radial Basis Function (RBFNN) method. 

The transfer function passes via the neurons in the hidden layer before beginning its 

journey to the input layer of neurons. The radial basis function φ1, φ2, φ3, … … . , φn is 

known as the hidden function. Due to its synthetic, one-dimensional character, the 

Gaussian function is the most widely used transfer function among the several radial basis 

functions. The Gaussian activation function is depicted in Figure 3.4, and Equation 3.1 

expresses its mathematical structure.  
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Figure 3.4: The Gauss Activation Function. 

φ ( x , µ ) =  e
‖x−µ‖ ^2

2d2 , 
 (3.1) 

where µ = center of the Gaussian function (mean value of x) and d = distance (radius) 

from the center of φ(x, µ), which denotes the degree of the spread of the Gaussian curve. 

The general network result is calculated by adding the linking weights of each hidden unit 

to the output units, which scales the response of each hidden unit. Equation (3.2) is used 

to compute the network's response. 

𝑄𝑘 = 𝑏𝑘 + ∑ 𝑤𝑗𝑘 ∗ ѱ𝑗(𝑥)

𝑘

𝑗=1

,  (3.2) 

where ѱ𝑗(𝑥)  denotes the response of the j, the hidden neuron  𝑤𝑗𝑘 is the weight 

coefficient between (j) the hidden unit and (k) the output unit, while 𝑏𝑘 is the bias. 

The length of the input data set, the location of neurons, and the determination of other 

training parameters are quite important during the training of RBFNN. The location of 
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the first center may be chosen from the training data set and the standard deviation r (i.e., 

width) of the j neuron (Equation 3.3 and Equation 3.4). 

σ = √𝑑2𝑚𝑎𝑥

𝑗+1
    , (3.3) 

𝑗𝑟 =  1
2

∑ (𝑄𝑜𝑏𝑠 − 𝑌𝑛𝑒𝑡 )2𝑘 
𝑖=1 ,  (3.4) 

which dmax is the maximum distance between the training data set, 𝑌𝑛𝑒𝑡 is the response of 

the network, while 𝑄𝑜𝑏𝑠 is the observation value. The training process continues until this 

error reaches an acceptable value (Bishop, 1995; Ripley, 1996; Simon, 1999). 

Chaotic disturbances, complex nonlinear dynamics as well as unpredictability are 

characteristics of complex processes like hydrological parameters. The RBFNN 

approach, has a good capacity for generalization employing minimum nodes to minimize 

needless lengthy calculations (Moradkhani et al., 2004). 

3.2.2 Multiple linear perceptron  

A multi-layer perceptron NN (MLPNN) with multiple layers is called a feed-forward 

network. In a feed-forward network, the result of one neuron is used as the input for the 

subsequent layer of neuron. The parameters that are entered of the node in the first hidden 

layer are the only ones that the input layer nodes in the MLPNN can forward. The hidden 

layers can show each node's input-output correlation in the manner described below:  
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𝑦 = 𝑓 (∑  

𝑗

𝑤𝑗𝑥𝑗 + 𝑏) , (3.5) 

where 𝑥𝑗 is the output that corresponds to the j node of the previous layer, 𝑤𝑗 is the weight 

that connects the j node and the current node, b is the bias value at the current node, and 

f is a sigmoid-like transfer function with nonlinear attributes. 

𝑓(𝑧) =
1

1 + exp (𝑧)
 , (3.6) 

where z is the weighted input aggregate, while f(z) is the neuron's output aggregate. 

The unit description of an MLPNN is an architecture that allows the computation of a 

nonlinear function using the scalar product of the weight and input vectors. Network 

architecture determines the efficiency of MLPNN models. It contains the hidden layer 

count, the neurons specific to each layer, as well as the form of computation employed 

by each neuron. 

3.2.3 Deep Learning Neural Network 

Deep learning (DL) has emerged as a new ANN research branch that alters different 

modern scientific disciplines (Goodfellow et al., 2016). The term 'deep' in this method 

refers to a connection of layers that allows the translation of data representation from one 

to another. A deep net (DN) is a type of ANN that has numerous hidden layers, an input 

layer, and an output layer (Lecun et al., 2015). In comparison to traditional machine 

learning methods, a DL-based model necessitates a huge amount of training data in order 

to comprehend the underlying data patterns increases in the network depth (i.e., number 
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of layers) allows the extraction of the most appropriate data hierarchical representations 

using a proper data transformation (Schmidhuber, 2015). Although DL has different 

versions adopted over the literature, the current research utilizes Long Short-Term 

Memory (LSTM) for reservoir inflow and evaporation prediction.  

The design of the LSTM model has a feedback connection with the learning layers, which 

supports the concept of complete input sequences. The LSTM model is established to fit 

the pattern of the inflow and evaporation based on the lag times of these parameters. 

Conceptually, LSTM is a version of the recurrent artificial neural network "Cell 

construction model." Every cell consists of three gates: the input gate, the forgetting gate, 

and the model output gate. In addition, the transmission vector that handles the long-term 

memory of the forgoing gates must be present. Owing to this, the input lags can be 

added/deleted due to the gates setting. It is worth highlighting here the gradient 

disappearance can be resolved based on the potential of the last two gates to forget the 

past information (Lang et al., 2019). 

The main disadvantage of classical neural networks is their shorter memory for 

remembering features and the disappearance and detonation of gradients (Cinar et al., 

2018; He et al., 2020). The LSTM model was suggested as a solution to the vanishing and 

exploding gradients issue. LSTMs are one of the types of DLNN, and they use unique 

units known as memory blocks to implement the function of regular neurons in hidden 

layers (Sainath et al., 2015). Additionally, the memory blocks have three gate units known 

as input, output, and forget gates that aid in updating and regulating the information flow 

and evaporation across the memory blocks (J. Chen et al., 2018). The LSTM network is 

calculated as follows (Shi et al., 2015): i) If the input gate is activated, any new input 

information in the system will be collected in the cell, ii) The previous cell state is 
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forgotten if the forgetting gate is activated, as well as iii) the diffusion of the output of the 

newest cell to the final state is controlled by the output gate. The architecture of the LSTM 

model is presented in Figure 3.5. 

  
Figure 3.5: The architecture of the Long Short-Term Memory (LSTM) 

Network. 

Regarding the prediction of reservoir inflow and evaporation, the historical lagged input 

records are depicted as 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑡) whereas the forecasted data is represented as 

𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑡). The computation of the forecasted data series is carried out as 

follows:  

𝐼𝑛𝑝𝑢𝑡 𝑔𝑎𝑡𝑒 𝑖𝑡 =  𝜎 (𝑊𝑖𝑥 𝑥𝑡 +  𝑊𝑖𝑚 𝑚𝑡−1 +  𝑊𝑖𝑐 𝑐𝑡−1 +  𝑏𝑖) (3.7) 

𝐹𝑜𝑟𝑔𝑒𝑡 𝑔𝑎𝑡𝑒 𝑓𝑡 =  𝜎 (𝑊𝑓𝑥 𝑥𝑡 +  𝑊𝑓𝑚 𝑚𝑡−1 +  𝑊𝑓𝑐 𝑐𝑡−1 +  𝑏𝑓) (3.8) 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑔𝑎𝑡𝑒 𝑜𝑡 =  𝜎 (𝑊𝑜𝑥 𝑥𝑡 +  𝑊𝑜𝑚 𝑚𝑡−1 +  𝑊𝑜𝑐 𝑐𝑡−1 +  𝑏𝑖) (3.9) 
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𝑐𝑡 =  𝑓𝑡  𝑜 𝑐𝑡−1 + 𝑖𝑡 𝑜 𝑔 (𝑊𝑐𝑥 𝑥𝑡 +  𝑊𝑐𝑚 𝑚𝑡−1 +  𝑏𝑐) (3.10) 

𝑚𝑡 =  𝑜𝑡 𝑜 ℎ(𝑐𝑡) (3.11) 

𝑦𝑡 =  𝑊𝑦𝑚 𝑚𝑡 +  𝑏𝑦, (3.12) 

in which ct is the activation vector for the cell as well as mt is the activation vector for 

each memory block. The weight and bias vectors are represented by (W and b), 

respectively. 𝜎 is the gate activation function, while the input and output activation 

functions are represented by (g(.) and h(.)), respectively.  

3.3 Input Selection and Model Structure  

The task of creating the prediction model involves choosing appropriate input variables. 

To rely mainly on the relationship between the pattern of inputs and outputs, different 

strategies have been used. The input style should be chosen based on how it affects the 

value of the expected variable. According to statistics, the preceding values have the 

greatest influence on the predicted value for any time series. In fact, the strength of the 

linear and nonlinear relationship, which is the main feature found in the pattern of 

hydrologic parameters, is the basis for the association between two separate variables. 

Actually, the correct combinations of input variables are chosen to model the output using 

a search technique that reveals the relationship between different data types. Choosing 

input variables during the hydrologic modeling process is made a little easier by the prior 

premise of the prediction model's functional structure, which relies on a physical 

interpretation of the fundamental model. 
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The optimal model architecture cannot be directly predicted in AI models. As a result, 

there are a number of challenges that make the input selection process difficult, including 

the sheer size of the variables, the duplication of correlation of input variables, and the 

fact that some factors have no bearing on the accuracy of results. Therefore, it is necessary 

to use a technique to identify and select the ideal input pattern to better predict the flux 

and evaporation values. Such a method can search for combinations of inputs that have 

the greatest impact on modeling success to obtain high-accuracy predictions. In this work, 

partial-autocorrelation methodology and GA were used to pre-select the input variable to 

improve the effectiveness of the proposed methods. 

3.3.1 Partial-Autocorrelation 

The model input parameters were predetermined according to partial autocorrelation, as 

shown in Figs 3.6 and 3.7 for inflow and evaporation, respectively. Patterns in the 

observed inflow and evaporation data were examined by applying correlation statistics 

via a partial autocorrelation function to discover suitable predictors in order to create an 

accurate prediction model. The statistical method used time-lagged data from the flow or 

evaporation time series to analyze the monthly data gaps between the value of current 

flow (I) or evaporation (E) and the value of (I) or (E) that at a given previous level point 

(i.e., time interval) to determine if there are any time dependencies in the time series.  

The best entries for each time delay (monthly) were determined by statistical examination 

of the delayed constructions and the corresponding correlation coefficients. Figure 3.6a 

shows that lags 1, 2, 3, 4, and 5 had the highest correlation for inflow. Figure 3.7a shows 

that delays 1, 2, 3, 4, and 5 have a strong correlation with the evaporation variable. The 

first four lags have a significant correlation, as shown in Fig. 3.7b. According to such 

correlation, the composition of the inputs for the proposed models is chosen from those 
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first five periods except when using Timah Tasoh Dam (TTD) evaporation data, where 

only the first four periods are considered input variables for the proposed models. 

 
Figure 3.6: Partial-Auto-correlation for 10 antecedent lag times (a) reservoir 

inflow for Dukan Dam (b) reservoir inflow for Timah Tasoh Dam. Univ
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Figure 3.7: Partial-Auto-correlation for 10 antecedent lag times (a) reservoir 
evaporation for Dukan Dam (b) reservoir evaporation for Timah Tasoh Dam. 

Current models investigate the possibility of utilizing geometric retention for diverse sets 

of input variables series according to autocorrelation results. The first lag time has the 

highest correlation, which is a well-known observation. Thus, the first lag is assumed to 

be mandatory in every possible type of combination of inputs in the current investigation. 

Four alternative input groups (i.e., four models) can be used as input variables for the 

proposed prediction methods because the PAC approach found that five delays are 

significant in relation to time. Table 3.2 presents all possible combinations of inputs to 

feed the predictive models in forecasting the reservoir inflow parameter. Table 3.3 shows 
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all possible combinations of inputs to feed the predictive models in forecasting the 

reservoir evaporation parameter. 

Table 3.2: The architecture of inflow forecasting models. 

Model Number Input Variables 

Model 1 (If = Ia(t − 1)) 

Model 2 (If = Ia(t − 1), Ia(t − 2)) 

Model 3 (If = Ia(t − 1), Ia(t − 2), Ia(t − 3)) 

Model 4 (If = Ia(t − 1), Ia(t − 2), Ia(t − 3), Ia(t − 4)) 

Model 5 (If = Ia(t − 1), Ia(t − 2), Ia(t − 3), Ia(t − 4), Ia(t − 5)) 

Table 3.3: The architecture of evaporation forecasting models. 

Model Number Input Variables 

Model 1 (𝐸𝑓 = 𝐸𝑎(𝑡 − 1)) 

Model 2 (𝐸𝑓 = 𝐸𝑎(𝑡 − 1), 𝐸𝑎(𝑡 − 2)) 

Model 3 (𝐸𝑓 = 𝐸𝑎(𝑡 − 1), 𝐸𝑎(𝑡 − 2), 𝐸𝑎(𝑡 − 3)) 

Model 4 (𝐸𝑓 = 𝐸𝑎(𝑡 − 1), 𝐸𝑎(𝑡 − 2), 𝐸𝑎(𝑡 − 3), 𝐸𝑎(𝑡 − 4)) 

Model 5 (𝐸𝑓 = 𝐸𝑎(𝑡 − 1), 𝐸𝑎(𝑡 − 2), 𝐸𝑎(𝑡 − 3), 𝐸𝑎(𝑡 − 4), 𝐸𝑎(𝑡

− 5)) 

Here, the actual and forecasted inflow are represented by (𝐼𝑎 and 𝐼𝑓), respectively. 

Meanwhile, the actual and forecasted evaporation are represented by (𝐸𝑎 and 𝐸𝑓), 

respectively. The collected data is often divided into two groups: training and test sets. 

Usually, AI models are not reliable enough to extrapolate the data that are out of the range 

of hydrological data used in training. As a result, when the test data contains values 

beyond the range of the training data, poor predictions can be expected. 

The present work used the time series of daily reservoir inflow and evaporation from the 

Dukan Dam. The reservoir inflow data was divided into two groups; 85% of the total data 
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(i.e., 11 years) is used to train the proposed models, while 15% is utilized in testing the 

model's performance. For the evaporation parameter, the training set is 85% of the total 

data, and the testing set is 15% of the data.  

The TTD case study used monthly data for reservoir flow and evaporation during the 

training and testing period. In the reservoir inflow parameter, the training period 

represents 75% of the total collected data, while the test period is 25% of the total data. 

On the other hand, the reservoir evaporation data was divided into 70% of the total data 

for training the predictive model and 30% for testing the proposed models. 

3.4 Genetic algorithm  

A search algorithm known as GA is based on the principles of natural selection and 

genetics (Goldberg, 1989). The principles of natural evolution and survival of the fittest 

are the basis of GA, as its name suggests. A population of potential solutions to the issue 

is used in GAs. Several potential solutions to the problem are considered simultaneously 

by GAs, which then move this set of solutions in a global better direction. 

There is a basic practical cycle of generations in GAs. The generation number is the 

primary force behind this cycle. In this cycle, an initial population is created, each person 

is coded to be represented numerically, each member of the population is assigned a 

fitness value, and a parameter is used to determine whether each member will survive in 

subsequent generations. Genetic factors, such as selection, crossover, and mutation, are 

used to evaluate and select which individuals will be privileged to survive in future 

generations (D. Chen et al., 2016). 

Univ
ers

iti 
Mala

ya



 

65 

Initially, the GA created a set of chromosomes as their original complexes (or sequences). 

Depending on the nature of the problem, the population can range from a few hundred to 

thousands of potential solutions.  Traditionally, the population is randomly generated, 

including all possible outcomes (search space). They are randomly generated to stay 

within each chromosome's upper and lower bounds, known in advance (Chiu et al., 2007). 

The basic idea is to maintain a set of chromosomes, which represent potential solutions 

to the problem over time through the process of managed competition and divergence. 

Each chromosome in a population has a fitness value that is used to select the 

chromosomes that will be combined to create new chromosomes during the competition 

process known as selection (Sharif & Wardlaw, 2000). By using genetic factors such as 

crossover and mutation, new factors are produced. The values of fitness are expected to 

rise, which signifies the emergence of better people in future generations (Hınçal et al., 

2011).  

3.4.1 Genetic algorithm as input selection  

Similar to several introduced feature selections, GA is one of the robust ones introduced 

in the domain of hydrology (Kamp & Savenije, 2006; Moreno & Paster, 2019). The most 

popular methods used in optimization algorithms come from evolutionary computation, 

a branch of computational intelligence. GA is a good example of the concept of 

evolutionary computation (Y.-S. Lee & Tong, 2011; Olyaie et al., 2017; Sreekanth & 

Datta, 2010; Zou et al., 2007). The framework of the GA is reported in Figure 3. The 

optimal lags are selected simultaneously and determined based on the minimal error 

metric (i.e., root mean square error). The procedure is adopted due to the satisfaction of 

the fitness function of the GA approach (Chang et al., 2019). It is worth highlighting that 

the GA approach works based on the three optimization processes: selection, crossover, 

and mutation. 
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The genetic coding for the input is done into the initially presented mental sequencing 

chromosome before the selection process begins. A string is a code that has the same 

length as all input variables. It encodes the input into two types. Number 0 indicates an 

absence that was not selected, and the number 1 indicates an absence that was chosen to 

be included in the modeling. For instance, when there are four input operands, the string 

(1, 0, 1, 0) indicates that the inputs one and three are chosen while the second and fourth 

inputs are ignored. 

The number of potential solutions will rise as the variety of input parameters increases as 

well. The GA search procedure begins with an initial random set of entries after decoding 

the entries into sequences (the community of chromosomes). Using AI models for each 

input set, the suitability of the solution will be evaluated. The highest fitness with the 

lowest Root Mean Square Error (RMSE) will be chosen. One of the most popular ways 

of selection, along with the Boltzmann and Roulette Wheel methods, is chromosome 

genetic selection by tournament technique. A tournament technique was successfully 

used for a variety of issues (Samarasinghe, 2006). The lowest RMSE will then be chosen 

to begin a new generation after selecting a pair of chromosomes at random. Due to the 

fact that only half of the chromosomes are chosen, a new tournament is carried out 

utilizing all the primary chromosomes. However, this time, it is a different set of randomly 

chosen chromosomal pairs. 

The better and worse chromosomes are reproduced in the crossover pool during the search 

process. When two randomly paired chromosomes exchange genetic material to create a 

new generation of parent chromosomes, this process is known as crossover. The exchange 

of information between chromosomes will continue if the probability of crossover is 

greater than the predetermined probability parameter. Still, it will not be so if it is less 
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than or equal to the predetermined parameter. Two original unchanged chromosomes 

would then become potential candidates for the new population. A critical factor in 

determining how to change selection pressure and establish a useful mechanism is the 

intersection probability coefficient. In order to favor suitable candidates, the intersection 

probability parameter is usually preset at > 0.5 in practice. 

Mutation is the last stage of the genetic process. In such a step, potential solutions will 

modify their structures (0 will be replaced by 1 and vice versa). The mutation procedure 

created to give flexibility to the solution can be eliminated early in the process for 

reconsideration. This could also occur to maintain population diversity and prevent early 

convergence with local minimums. The mutation probability factor determines the 

probability that each chromosomal bit will change during the process of mutation. To 

change the selected bits and complete one genetic cycle, their values are reversed. Once 

more, the fit of each individual chromosome is assessed using the RMSE. Such a 

procedure is performed again until a set of termination criteria are met, or the best possible 

solution is found. The optimum combination of inputs that can successfully predict the 

outcome is determined when the problem of selecting the inputs has been completely 

resolved. 
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Figure 3.8: The genetic algorithm mechanism procedure. 

After GA is applied, the optimal input combinations chosen by GA are shown in Table 

3.4 for reservoir flow and Table 3.5 for reservoir evaporation parameters. 

Table 3.4: The architecture of inflow forecasting models. 

Model Number Input Variables 

Model 1 (If = Ia(t − 1)) 

Model 2 (If = Ia(t − 1), Ia(t − 3)) 

Model 3 (If = Ia(t − 1), Ia(t − 3), Ia(t − 4)) 

Model 4 (If = Ia(t − 1), Ia(t − 3), Ia(t − 4), Ia(t − 5)) 

Model 5 (If = Ia(t − 1), Ia(t − 2), Ia(t − 3), Ia(t − 4), Ia(t − 6)) 

Table 3.5: The architecture of evaporation forecasting models. 

Model Number Input Variables 

𝑀𝑜𝑑𝑒𝑙 1 (𝐸𝑓 = 𝐸𝑎(𝑡 − 1)) 

𝑀𝑜𝑑𝑒𝑙 2 (𝐸𝑓 = 𝐸𝑎(𝑡 − 1), 𝐸𝑎(𝑡 − 3)) 
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Table 3.5, Continued 

Model Number Input Variables 

𝑀𝑜𝑑𝑒𝑙 3 (𝐸𝑓 = 𝐸𝑎(𝑡 − 1), 𝐸𝑎(𝑡 − 2), 𝐸𝑎(𝑡 − 4)) 

𝑀𝑜𝑑𝑒𝑙 4 (𝐸𝑓 = 𝐸𝑎(𝑡 − 1), 𝐸𝑎(𝑡 − 4), 𝐸𝑎(𝑡 − 5), 𝐸𝑎(𝑡 − 6)) 

𝑀𝑜𝑑𝑒𝑙 5 (𝐸𝑓 = 𝐸𝑎(𝑡 − 1), 𝐸𝑎(𝑡 − 3), 𝐸𝑎(𝑡 − 4), 𝐸𝑎(𝑡 − 5), 𝐸𝑎(𝑡 − 6)) 

3.5 Performance Criteria  

The reliability of the proposed prediction methods was assessed using a number of 

statistical indicators. The predictive model with the best reliability and the most stable 

accuracy pattern was chosen. Relative Error (RE), Mean Absolute Error (MAE), Nash-

Sutcliffe Efficiency (NSE), RMSE, Scatter Index (SI), Bias (BIAS), Mean Bias Error 

(MBE), Willmott Index of Agreement (d), and Confidence Index (CI) are some of these 

measures.  

MAE is a measure of the error between two values of the same phenomenon. NSE is 

computed as one less than the ratio of the observed time series' variance to the modeled 

time series' error variance. RMSE is the main performance indicator that computes the 

root mean error between the predicted and actual values. SI gives the percentage of 

predicted error of the variable. In fact, RE is one of the important indicators used to 

evaluate the performance of predictive models. This indicator displays the behavior of 

the models in terms of over- or underestimation during the testing period. 

Introduced by Willmott in 1981, the Index of Agreement is a standardized metric that 

provides hydrologists with a useful tool for evaluating model performance by measuring 

the extent of prediction inaccuracy in models. This 'd'-designated index has a value 
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between 0 and 1, where 1 represents a perfect match between model predictions and actual 

data, and 0 represents no agreement at all. 

They are frequently utilized to assess the prediction findings' accuracy. The following 

formulae are used to compute such metrics (M. F. Allawi, Jaafar, Mohamad Hamzah, 

Koting, et al., 2019; Mohamadi et al., 2020; Osman et al., 2020). 

MAE = 1

𝑁
∑ ⃓ 𝑁

𝑡=1 𝐹𝑡 − 𝐴𝑡  ⃓  (3.18) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑( (𝐹𝑡) − (𝐴𝑡) )2

𝑁

𝑡=1

 (3.19) 

NSE = 1 −
∑ (Ft − At)2n

t=1

∑ (At −  At
̅̅ ̅)2n

t=1

             − ∞ ≤ 𝑁𝑆𝐸 ≤ 1        (3.20) 

%RE =  
Ft −  At 

 At 
∗ 100                                                            (3.21) 

𝑆𝐼 =  
√1

𝑁
∑ ( (𝐹𝑡 − 𝐹𝑡̅) − (𝐴𝑡 −  (𝐴𝑡

̅̅ ̅̅ ) )2𝑁
𝑡=1

1
𝑁

∑ 𝐴𝑡
𝑁
𝑡=1

                        (3.22) 

𝑀𝐵𝐸 =  
1

𝑁
∑

𝐹𝑡 − 𝐴𝑡

𝐴𝑡

𝑁

𝑡=1

                                                              (3.23) 

𝐵𝐼𝐴𝑆 (𝑀𝐸) =
∑ 𝐹𝑡 − 𝐴𝑡

𝑁
𝑡=1

𝑁
                                                     (3.24) 

𝑑 = 1 −  
∑ (𝐹𝑡 − 𝐴𝑡)2𝑁

𝑡=1

∑ (|𝐹𝑡 − 𝐴𝑡| +  |𝐴𝑡 −  𝐴𝑡
̅̅ ̅|)2𝑁

𝑡=1

        0 ≤ 𝑑 ≤ 1    (3.25) 
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𝐶𝐼 = 𝑑 × 𝑁𝑆𝐸    , (3.26) 

where 𝐹𝑡 = the forecasted data and 𝐴𝑡 = the actual data. Meanwhile, the average forecasted 

and actual data are represented by 𝐹𝑡̅  and  𝐴𝑡
̅̅ ̅  symbols. Moreover, N is the amount of 

data. 

The MAE, RMSE, MBE, RE, and SI values are closer to zero, which shows that the model 

is performing well. The Nash-Sutcliffe coefficient is sensitive to extreme values and may 

yield less-than-ideal results when a dataset has a sizable number of huge outliers. The 

model's relative accuracy is evaluated using the RE indicator. 

3.6 Simulation Procedure  

There are two main steps during the development of reservoir optimization modeling. The 

first step is to simulate the reservoir system using the water balance equation. The second 

step involves creating operating rules for scheduling the volume of water release for the 

reservoir and dam system. 

In fact, the reservoir system is simulated over a specified period of time to determine the 

state of the reservoir in the first stage of optimization modeling. The classical simulation 

process is performed with deterministic or perfect hydrological parameter predictions and 

is unrealistic. In other words, the water balance equation is considered according to actual 

values of the flow and losses data by the evaporation phenomena as follows:   
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𝑆(𝑡) = 𝑆𝑖 + 𝐼𝑎 − 𝐸𝑎 ∗ 𝑤𝑎𝑡𝑒𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 − 𝑅, (3.27) 

where 𝐼𝑎 is the original flow value and evaporation parameter is represented by 𝐸𝑎, 

respectively. R is the water release, while 𝑆𝑖 is the starting reservoir storage. 

The above simulation is an unrealistic procedure because, in the simulation stage, the 

storage details of the reservoir for each stage (day or month) need to be obtained. The 

storage calculation is based on hydrological parameter values (i.e., flow and evaporation). 

In practice, the actual values of these hydrological parameters are unknown at the 

beginning of the month. Therefore, the predictive models will provide the forecasted 

values for these parameters. 

Based on that, the current study introduces a new contribution to the first stage of 

reservoir and dam improvement modeling. The worst and best forecast findings are used 

to carry out the suggested simulation method. The suggested process will reflect the 

realistic simulation of the reservoir. The current study will include the predicted values 

of the flow and evaporation into the water balance equation as follows. 

𝑆(𝑡)∗ = 𝑆𝑖 + 𝐼𝑓 − 𝐸𝑓 ∗ 𝑤𝑎𝑡𝑒𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 − 𝑅 +  ∆, (3.28) 

where the predicted values of the flow and evaporation parameters are represented by 𝐼𝑓 

and 𝐸𝑓, respectively. R is the water release, while 𝑆𝑖 is the starting reservoir storage. 

The evaluation and assessment of the new simulation procedure will be conducted by 

calculating the difference between the actual reservoir storage and the reservoir storage 

obtained by Equation (3.29) as follows:   
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∆ (%𝐸𝑟𝑟𝑜𝑟) =
𝑆(𝑡) − 𝑆(𝑡)∗

100
 . (3.29) 

The actual storage of the reservoir is represented by S(t). ∆ represents the percentage 

difference between the reservoir storage at the beginning of a month/day and the reservoir 

storage at the end of a month/day. Equation 3.29 is used to check the error percentage 

between the results obtained by traditional simulation procedure and the new procedure. 

3.7 Case Study and Data Description 

The current section of chapter 3 describes the location of case study whether in semi-

arid or tropical regions. Full information about the inflow and evaporation data of the 

reservoirs is mentioned in the current section. 

3.7.1 Dukan Dam (Semi-arid Region)  

The first case study used in the current research is the Dukan reservoir. It is located around 

67 kilometers north of Sulaimani City in northern Iraq. The dam is adjacent to the city of 

Ranya and is located at 35°57'13.24"N and 44°57'11.61"E. It has a total capacity of 6.8 

km3 and is situated near Latitude 35°57'13.24"N and Longitude 44°57'11.61"E. It is a 

reservoir that was created during Dukan Dam construction on the small Zab River. This 

multipurpose dam was constructed between 1954 and 1959 to provide water to farmers 

and to supply hydro plants for power generation. The dam is a concrete arch dam with 

gravity monoliths abutting it. It measures 360 meters (1,180 feet) in length and 116.5 

meters (382 feet) in height. It measures 32.5 m (107 ft) wide at the bottom and 6.2 m (20 

ft) wide at the top. The dam's total maximum discharge is around 4,300 m3/s (150,000 

ft3/s). This is partitioned between a spillway tunnel with 3 radial gates and an emergency 
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bell mouth glory hole spillway that can discharge 2,440 m3/s (86,000 ft3) and 1,860 m3/s 

(66,000 cu ft) per second, respectively. There are also 2 irrigation outlets that can co-

discharge 220 m3/s (7,800 ft3/s) per second, but they haven't been used in 10 years. There 

is a powerhouse of 5 Francis units, each with an output of 80 MW, emitting between 110 

and 550 m3/s (3,900 and 19,000 ft3/s) of water. The lake has a surface size of 270 km2. 

The reservoir's capacity is 6.8 km3 in normal operation, with a maximum capacity of 8.3 

km3. The surface elevation is 515 meters above sea level. The surface elevation of the 

dam must be within 469 and 511 meters to operate the power station. The Dukan Dam's 

drainage basin spans 11,700 square kilometers, with part of it in Iraq and the rest in Iran. 

The main source of water is the Zab River. The daily inflow to the reservoir over 11 years 

(January 2010 - December 2020) is the only available data record. The map of the Dukan 

reservoir is shown in Figure 3.1. 

 
Figure 3.9: The location of Dukan Dam and its reservoir. 

The Dukan reservoir was selected for the present study primarily because it offers a 

lengthy time series of monthly recordings for two important hydrological indicators (i.e., 

inflow and evaporation). These data are regarded as a sizable database that can be used 
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to create Predictive models. Additionally, as opposed to the Timah Tasoh reservoir, which 

is situated in a tropical area, this reservoir is situated in a semi-arid climate. In fact, a 

number of factors, such as the weather, have an impact on how the reservoir system 

behaves (temperature, rainfall, and wind speed). In order to reduce or promote 

evaporation and inflow, such variables directly affect the patterns of reservoir inflow and 

evaporation. 

For instance, a reservoir's water level decreases when there is no rain in the reservoir's 

drainage basin. On the other hand, a rise in temperature will result in more water surface 

evaporation. As a result of the variable weather in the semi-arid region, a distinct pattern 

of reservoir inflow and evaporation is anticipated. These indicators have displayed 

dynamism and non-stationary patterns throughout the period of study. 

3.7.1.1     Reservoir Inflow Data 

The upstream gauge's daily inflow data from the year 2010 to 2020 were used in this 

study. The inflow station, which is situated on the Tigris River's main channel, is known 

as the Dukan gauge station. The Ministry of Water Resources in Iraq provided the data 

used in the research presented. 

An initial examination of the reservoir inflow data reveals that the historical inflow data 

for the period studied has a high degree of daily variation. Figure 3.2 displays the Dukan 

Dam's natural inflow. It is clear that during the course of the past 11 years, the average 

values of the inflow have varied on a daily basis. According to observations, the various 

extreme occurrences that took place during the study period showed how the Dukan 

Dam's water inflow behaved dynamically. Figure 3.10 shows that the extreme 
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occurrences recorded in January 2013 (2442 m3/sec), March 2016 (2464 m3/sec), 

February 2018 (1981 m3/sec), January 2019 (2431 m3/sec) and April 2019 (1990 m3/sec).  

It is notable that the highest value of inflow data ever recorded was 2464 m3/sec in March 

2016. Meanwhile, the minimum inflow amount was 2 m3/sec, which was recorded in 

August 2017. The time series data revealed that a reservoir's average annual inflow of 

water is 134.6 m3/sec. According to this analysis, the difficulty in achieving reliable 

forecasting of such data is revealed by the vast range of data acquired over the historical 

inflow period. Therefore, in order to achieve trustworthy forecasting accuracy, robust 

forecasting models are required. 

 
Figure 3.10: Historical naturalized reservoir inflow trends at the Dukan Dam for 

years between (2010 to 2020). 

The statistical parameters of the daily inflow data for the case study location, the Dukan, 

are displayed in Table 3.6. Here, the mean, maximum, and minimum values for the 

previous ten years are listed (Xmean, Xmax, and Xmin). This table also includes the 

monthly inflow data's standard deviation (Sx), skewness (Csx), variation coefficient (Cv), 

as well as median values. In terms of dynamic changes, the year 2019 has a pretty high 

standard deviation, whereas the standard deviation for the records from 2015 is rather 

low. 
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While records acquired during the year 2015 show a low variation coefficient, the inflow 

values for the year 2018 show a significant variation coefficient. The fact that the high 

and low skewness indications in Table 3.6 correlate to the years 2013 and 2015, 

respectively, is another noteworthy aspect of the table. However, for the 11-year period, 

the minimum and highest daily inflow numbers were reported for the years (2017, 2020) 

and 2016, respectively. The results show that, in comparison to previous years during the 

11-year period, the median values in the second half of the period were comparatively 

high. This is because the current dam's reservoir often receives a considerable amount of 

water throughout the years 2015, 2016, and 2019.
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Table 3.6: Statistical analysis of inflow data at the Dukan for the study period 
between (2010 to 2020). 

Year Xmean                
(m3/sec) 

Sx           
(m3/sec) 

Cv (Sx / 
Xmean) 

Csx Xmax        
(m3/sec) 

Xmin      
(m3/sec 

Median 
(m3/sec) 

2010 117.82 129.81 1.1 2.45 1064 11 56 

2011 105.47 135.48 1.28 2.95 1008 14 42 

2012 104.28 108.20 1.03 1.54 539 11 52 

2013 129.18 203.21 1.57 6.44 2442 12 73 

2014 91.97 93.37 1.01 2.48 665 10 62 

2015 90.835 72.21 0.79 1.20 503 13 91 

2016 187.55 272.99 1.45 3.98 2464 9 85 

2017 87.805 123.35 1.40 2.36 929 2 32 

2018 138.28 215.51 1.55 3.47 1981 3 48 

2019 287.05 351.23 1.22 2.38 2431 5 125 

2020 141.34 133.91 0.94 1.21 652 2 91 

Training 
Period 134.55 199.55 1.483 4.53 2464 2 59 

Testing 
Period 135.51 128.91 0.951 1.351 652 2 90 

(Note: Xmean = mean value; Sx = standard; deviation; Cv = coefficient of variation; Csx 
= skewness; X¬min = minimum value; Xmax = maximum and median value) 

3.7.1.2 Reservoir Evaporation Data 

Dukan Lake's water is situated halfway between a body of clean water and a land surface 

(semi-desert). Due to the lake's depth and relative clarity over a large portion of its 

surface, solar energy may be massively stored in a significantly larger volume. Over the 

course of a day, the lake's bulk temperature (the temperature below roughly half a meter) 

will vary slightly, and the evaporation rate will adjust accordingly. As an excessive 

quantity of energy is stored in the water, for instance, the temperature of the lake will rise 

dramatically between June and September. The reservoir's storage contents and related 
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surface areas generally change significantly over time. Evaporation rates fluctuate greatly 

seasonally and dramatically between years.  

In the current research, daily evaporation data from the years 2015 to 2020 were used. 

The data was taken from the Ministry of Water Resources in Iraq. The collected 

evaporation data was split into groups, which are training and testing data (more details 

on the percentage of each group will be provided in the methodology chapter). Figure 3.3 

shows the 6-year monthly time series of evaporation values. The Dukan Dam's reservoir 

evaporates an average of 6 mm every day. According to historical statistics, the largest 

amount of evaporation occurred in August 2020 at 21.3 mm/day. It is amazing that the 

reservoir only experienced 0.4 mm/day of evaporation on average over the six years.   

 
Figure 3.11: The time series of monthly evaporation records for Dukan Dam 

(2015 to 2020) 

Table 3.7 provides the statistical analysis of evaporation data collected over six years. To 

emphasize the behavior of the data, the mean (Xmean), maximum (Xmax), and minimum 

(Xmin) values for these years were used. The standard deviation (Sx), skewness (Csx), 

variation coefficient (Cv), and median values for the daily evaporation data are also 

shown in this table. It was observed that the highest value of evaporation occurred in 

2020, while the lowest value of evaporation from a reservoir appeared in 2016. It was 
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noted that the records of 2020 show a remarkably large standard deviation, while the 

evaporation data from 2016 showed a modest standard deviation. The maximum and 

minimum coefficient of variation values correspond to the years of 2019 and (2016 and 

2018), respectively. 

Table 3.7: Statistical analysis of the evaporation data at the Dukan Dam for the 

study period between (2015 to 2020). 

Year Xmean                
(mm/day) 

Sx           
(mm/day) 

Cv (Sx / 
Xmean) 

Csx Xmax        
(mm/day) 

Xmin      
(mm/day) 

Median 
(mm/day) 

2015 5.78 4.29 0.74 0.43 17.00 0.40 4.80 
2016 4.03 2.48 0.61 0.70 12.30 0.40 3.60 
2017 6.15 4.37 0.71 0.61 20.00 0.40 5.20 
2018 7.30 4.43 0.61 0.07 16.70 0.40 7.30 
2019 6.24 4.68 0.75 0.55 20.30 0.40 4.70 
2020 6.61 4.85 0.73 0.51 21.30 0.40 5.45 

Training 
Period 5.80 4.26 0.73 0.62 20.3 0 4.7 

Testing 
Period 7.19 4.75 0.66 0.38 21.3 0.3 6 

(Note: Xmean = mean value; Sx = standard deviation; Cv = coefficient of variation; 
 Csx = skewness; X¬min = minimum value, Xmax = maximum and media value). 

3.7.2 Timah Tasoh Dam (Tropical Region)  

TTDTimah Tasoh Dam (TTD) construction began in 1987 and was finished in 1992 

in Perlis, Malaysia (6o 36' N; 100o 14'E). TTD is an essential hydraulic construction 

within Peninsular Malaysia and its Qflow patterns operation and quantification are highly 

important for the water resources management of that region. In fact, the high variance 

and non-linearity seen in the Qflow of the tropical zone frequently include a high stochastic 

pattern that contributes to the complexity of the dam's reservoir systems. This case study 

will necessitate the development of a new method for evaluating the offered models. As 

a result, a thorough comparison of the existing and proposed operating procedures is 
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required. The reservoir system has a total surface area of over 13.3 km2. The reservoir's 

overall capacity is around 40 million cubic meters (MCM). With an entry average runoff 

of over 100 MCM, the reservoir water storage has two major zones: a dead zone of 6.7 

MCM and a live zone of 33.3 MCM. The reservoir could be classified as a shallow 

reservoir, with a maximum depth of 10 meters. The reservoir's position was chosen to 

receive water from two main rivers in Perlis State: The Tasoh and Perlarit Rivers. The 

TTD provides irrigation water for 3100 ha at a rate of roughly 55 MCM per year. 

Furthermore, it delivers around 55*103m3 of water each day for home consumption. 

Dams are built to regulate and avoid floods that are expected during the rainy season. The 

location of the Timah Tasoh Dam is displayed in Figure 3.4. 

TTD construction began in 1987 and was finished in 1992 in Perlis, Malaysia (6o 36' N; 

100o 14'E). TTD is an essential hydraulic construction within Peninsular Malaysia, and 

its inflow pattern operation and quantification are highly important for the water resources 

management of that region. In fact, the high variance and nonlinearity seen in the inflow 

of the tropical zone frequently include a high stochastic pattern that contributes to the 

complexity of the dam's reservoir systems. This case study will necessitate the 

development of a new method for evaluating the offered models. As a result, a thorough 

comparison of the existing and proposed operating procedures is required. 

The reservoir system has a total surface area of over 13.3 km2. The reservoir's overall 

capacity is around 40 million cubic meters (MCM). The reservoir could be classified as 

a shallow reservoir, with a maximum depth of 10 meters. The reservoir's position was 

chosen to receive water from two main rivers in Perlis State: The Tasoh and Perlarit 

Rivers. The TTD provides irrigation water for 3100 ha at a rate of roughly 55 MCM per 

year. Furthermore, it delivers around 55 ×103 m3 of water each day for home 
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consumption. Dams are built to regulate and avoid floods that are expected during the 

rainy season. The location of the TTD is displayed in Figure 3.4, and Table 3.8 shows the 

main features of the TTD and reservoir (Department of Irrigation and Drainage (DID), 

Malaysia). 

To investigate the models offered in a distinct case study situated in the tropical zone, 

TTD was chosen as the candidate. Additionally, in comparison to the Dukan reservoir, 

the TTD reservoir is relatively small. Moreover, it is critical to investigate the 

performance of the suggested predicting method by taking a variety of random 

hydrological processes into account.  

In reality, a tropical region's high variation and nonlinearity for reservoir inflow and 

evaporation typically integrate a high stochastic pattern, which further complicates the 

dam's reservoir system. In order to assess the proposed prediction methods, the current 

study was applied to the TTD reservoir as a case study. It would substantially mirror and 

reflect the performance indicators attained by the operation rule generated during the 

historical events-based deterministic and predicted inflows to have such high stochastic 

levels for the reservoir's parameters. In order to treat the reservoir's inflow and 

evaporation equitably, a thorough comparison between the two scenarios must be made. 
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Figure 3.12: Geographic location of the Timah Tasoh Dam and the Timah Tasoh 

reservoir region in Malaysia highlighted by the red circle. 
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Table 3.8: The Timah Tasoh Dam and reservoir's primary characteristics 
(Department of Irrigation and Drainage (DID), Malaysia). 

Dam Height 17.3 m 

Crest Length 3455 m 

Height of Crest 32 m 

Spillway Control spillway 

The area of drainage 191 km2 

Runoff (annual) 72 km2 

Surface area of the lake 13.3 km2 

 

Despite the reservoir's size being relatively big, the rapid rise in water level following 

heavy rains is primarily due to its shallow depth (10m). So, the emergency spillway 

opening is to blame for flooding incidents in the downstream area (Wan, Ruslan, R.A.B, 

Khairul, A.R, Zullyadini 2002). The government proposed updating the TT reservoir's 

capacities due to extensive development in the reservoir catchment to strengthen the 

control ability to prevent and reduce disasters. The reservoir capacity may be doubled to 

over 75 MCM with a 3.5 m increase in the height of the dam. As depicted in Figure 3.5, 

construction is now ongoing. 

 
Figure 3.13: New Standard feature for the Timah Tasoh Dam (under 
construction); a) Current feature and b) Future feature (Ismail, 2012). 

Univ
ers

iti 
Mala

ya



 

85 

In actuality, Malaysia is situated in a tropical area. The Malaysian climate is characterized 

by consistent temperatures, high levels of humidity, and abundant rainfall. The 

distribution patterns of rainfall across the nation are influenced by seasonal wind flow 

patterns as well as regional topographic factors. 

Vulnerable locations, such as the east coast of Peninsular Malaysia, Western Sarawak, 

and the northeast coast of Sabah, endure intense downpours during the northeast monsoon 

season (Lau et al., 2016). In contrast, inland regions or regions protected by mountain 

ranges are largely unaffected by its effects. The best way to explain the country's rainfall 

distribution is by season. Malaysia has high relative humidity levels, with a typical 

monthly value that ranges from 70 to 90%, depending on the location and the month. The 

range of mean monthly relative humidity for any given place ranges from a minimum of 

around 3% to a maximum of about 15% (Zainal et al., 2002). 

Despite the fact that the wind across the country is typically weak and unpredictable, the 

patterns of the wind flow undergo some predictable periodic variations. Four distinct 

seasons—the southwest monsoon, northeast monsoon, and two shorter inter-monsoon 

seasons—can be identified as a result of these shifts. Due to its proximity to the equator, 

Malaysia naturally experiences a lot of sunshine and solar radiation. Even in times of 

intense drought, it is highly uncommon to spend an entire day with a clear sky. There is 

a significant quantity of sunlight blocked by the cloud cover. Malaysia experiences 

roughly 6 hours of sunshine on average each day (Irwanto et al., 2014). 

3.7.2.1 Reservoir Inflow Data 

The monthly flow data were regarded as historical time series data from 1 January 1989 

to 31 December 2013. Sungai Pelaritat Kaki Bukit is the name of the station, and its 
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identification number is 6602402 (6°35'38.0"N 100°13'15.4"E). The Department of 

Irrigation and Drainage (DID) in Malaysia provided the Water Resources Management 

and Hydrology Division with information regarding reservoir inflow. The allocated 

reservoir inflow data have been used to train and test the suggested approach. 

The natural monthly inflow over the 25-year period is shown in Figure 3.6. The inflow 

has been seen to be random in character. This is so because the influx is a result of the 

occurrence of rainfall, which might have varying levels. The maximum reservoir inflow 

volume was measured in November 2011, while the lowest inflow volume was recorded 

in February 1989. Each year's reservoir inflow values fall between the ranges of 0.01 and 

62.49 MCM/month. In conclusion, the unrecognized pattern of the inflow over time 

makes forecasting more challenging. 

 

Figure 3.14: Historical naturalized reservoir inflow trends at the TTD for years 
between (1989 to 2013) 

The United States Geological Survey (USGS) (https://help.waterdata.usgs.gov 2011) 

suggested classifying the flow data into three distinct groups at the early phase of the 

research, including high, medium, and low classes. According to historical data, the high 

category is defined as flow values representing the first 75% of all data, the medium 
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category as flow data between 75% and 25%, and the low category as flow data with 25% 

or less. Due to the data's extremely stochastic character, additional categorization has 

been added to the earlier categories. The records less than 25% and more than 10% were 

classified as medium-low, while two more categories for the inflow records, between 75% 

and 90%, have been designated as medium-high. Five categories of reservoir inflow are 

shown in Table 3.9. The second crucial factor that should be considered while creating 

the operation guidelines for the dam's reservoir system is the pattern of water demand. In 

Table 3.9, the monthly distribution of the water demand for irrigation usage is shown. 

The current study solely takes irrigation into account when calculating water demand. 

The months between September and November were shown to have the highest water 

demand; this is probably because there are more agricultural operations during these three 

months, which increases the need for irrigation. Contrarily, because there is no 

agricultural activity in January and February, there is essentially no demand for water 

(apart from the water designated for domestic use). 

Table 3.9: The monthly inflow categories and the amount of demand for Timah 
Tasoh Dam 

Month Low 

(MCM) 

Medium Low 
(MCM) 

Medium 

(MCM) 

Medium-High 
(MCM) 

High 

(MCM) 

Demand 

(MCM) 

January 1.2 1.88 4.17 7.09 9.73 0 

February 0.7 1.06 2.03 2.96 3.83 0 

March 1.81 2.22 3.79 5.66 7.18 3.28 

April 2.12 2.25 3.43 6.8 9.71 5.36 

May 1.67 1.87 3.37 5.92 8.73 3 

June 1.83 2.04 3.26 5.34 7.16 3.22 

July 1.2 1.48 5.71 10.74 11.75 3.22 

August 2.63 3.42 6.31 10.93 14.8 1.24 
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Table 3.9, Continued 

Month Low 

(MCM) 

Medium Low 
(MCM) 

Medium 

(MCM) 

Medium-High 
(MCM) 

High 

(MCM) 

Demand 

(MCM) 

September 2.71 3.12 5.6 9.97 14.66 8.06 

October 5.49 6.9 14.87 23.64 28.76 7.65 

November 6.98 8.01 18.17 32.63 40.77 7.65 

December 4.13 5.5 12.78 22.47 26.39 4.71 

 

Table 3.10 presents the statistics of the raw data which were utilized to train and test the 

models. For the years 1989 to 2013, the values of the mean inflow volume, standard 

deviation, coefficient of variation, skewness, as well as the highest and minimum inflow 

volumes are computed individually for each month (from January to December). There 

are various variances in the calculated values of mean and standard deviation since the 

historical data used for models are of a long duration. The monthly inflow data exhibits 

high median values, especially from August to December, which demonstrates that the 

data sets are dispersed over a wide range of values. 

During the months of September to December, the fluctuation in monsoon rainfall 

contributes to the inflow to a reservoir system. The calculated standard deviations have 

greater values for these months, indicating that the annual flows have experienced 

significant fluctuations. The pattern of the flows is quite consistent throughout each year. 

The average monthly inflow series' annual regularity allows us to notice this. In addition, 

the flow data shows very significant year-to-year variability. 
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Table 3.10: Statistical analysis of the monthly inflow data at the TTD for the 
study period between (1989 to 2013). 

Month Xmean                
(MCM 

month-1) 

Sx           
(MCM  

month-1) 

Cv (Sx / 
Xmean) 

Csx Xmax        
(MCM   

month-1) 

Xmin      
(MCM 

month-1) 

Median 
(MCM      

month-1) 

January 4.04 3.51 0.87 1.10 13.66 0.09 3.16 

February 1.70 1.17 0.69 0.30 4.41 0.01 1.6 

March 3.42 2.61 0.76 1.70 12.1 0.21 3.1 

April 3.96 3.02 0.76 1.58 12.37 0.75 2.84 

May 3.19 2.16 0.68 1.36 9.62 0.7 3.06 

June 3.38 2.47 0.73 1.62 11.37 0.06 3.08 

July 5.14 5.63 1.10 2.18 25.4 0.71 3.52 

August 6.16 4.64 0.75 1.15 17.67 0.78 4.58 

September 9.63 11.37 1.18 1.87 41.77 1.06 5.03 

October 15.39 12.83 0.83 1.45 53.74 1.37 11.45 

November 18.87 16.82 0.89 1.24 62.49 0.42 13.07 

December 13.52 12.70 0.94 1.77 56.11 0.3 10.6 

Training 
Period 6.39 9.04 1.41 3.1 56.11 0.01 3.2 

Testing 
Period 10.17 11.19 1.11 2.64 62.49 0.27 5.88 

(Note: Xmean = mean value; Sx = standard deviation; Cv = coefficient of variation; Csx 
= skewness; X¬min = minimum value, Xmax = maximum and median value). 

3.7.2.2 Reservoir Evaporation Data 

The fundamental problem that has an impact on a wide range of both aquatic and 

terrestrial life is evaporation from the reservoir system. The present study makes use of 

the Timah Tasoh reservoir's monthly evaporation values. Monthly data spanning 20 years 

(1994–2013) made up the data sample. Padang Katong in Kangar is the name of the 

station, and its identification number is 6401302 (6°30'44.2"N 100°12'34.3"E). The 

Department of Irrigation and Drainage (DID) of Malaysia's Water Resources 

Management and Hydrology Division provided the information on reservoir evaporation. 

Figure 3.7 displays the time-series data graph of the entire evaporation data. It is clear 

that during the same year, the evaporation varies greatly from month to month. In 
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actuality, during the duration of the study, the maximum and minimum values of the 

evaporation records were 153.42 mm/month and 51.45 mm/month, respectively. 

 

Figure 3.15: The time series of monthly evaporation records for Timah Tasoh 
Dam (1994 to 2013). 

Table 3.11 contains a list of the fundamental statistical indices for the evaporation data. 

The highest standard deviation was observed and reported in August. According to the 

statistical analysis, the minimum value of evaporation in the research period occurred in 

January, while the largest volume of evaporation of the reservoir was observed in July. 

The data sets are scattered over a wide range of values, as indicated by the high mean 

values of Table 3.11, especially from June to September. 

Table 3.11: Statistical analysis of the monthly evaporation data at the TTD for 
the study period between (1994 to 2013). 

Month Xmean                
(MCM 

month-1) 

Sx           
(MCM  

month-1) 

Cv (Sx / 
Xmean) 

Csx Xmax        
(MCM   

month-1) 

Xmin      
(MCM 

month-1) 

Median 
(MCM      

month-1) 

January 63.94 8.47 0.13 0.01 75.61 51.45 63.15 
February 69.83 7.79 0.11 -0.49 81.23 53.18 68.87 

March 82.36 8.21 0.10 1.61 107.90 72.48 81.85 
April 95.70 7.61 0.08 0.05 112.56 81.58 96.56 
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Table 3.11, Continued 

Month Xmean                
(MCM 

month-1) 

Sx           
(MCM  

month-1) 

Cv (Sx / 
Xmean) 

Csx Xmax        
(MCM   

month-1) 

Xmin      
(MCM 

month-1) 

Median 
(MCM      

month-1) 

May 107.70 9.46 0.09 -0.36 124.85 90.40 109.21 
June 124.96 8.97 0.07 -0.08 145.82 105 125.53 

July 137.77 6.39 0.05 0.41 153.42 124.87 137.74 
August 128.94 17.99 0.14 -0.36 150.28 100.20 135.12 

September 110.47 16.78 0.15 0.12 143.74 82.45 108.85 
October 94.13 14.74 0.16 0.45 123.87 71.42 92.08 
November 82.38 11.96 0.15 0.56 108.50 62.45 80.18 

December 71.69 8.91 0.12 0.09 87.40 58.42 72.10 
Training 
Period 

98.30 25.61 0.26 0.27 153.42 51.48 95.5 

Testing 
Period 

92.06 27.91 0.31 0.48 146.92 51.45 82.45 

(Note: Xmean = mean value; Sx = standard deviation; Cv = coefficient of variation; Csx 
= skewness; X¬min = minimum value: Xmax = maximum and media value) 
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Introduction  

The research relied on developing a new machine learning (ML) model to predict two 

major hydrological parameters in the dam and reservoir system: reservoir inflow and 

evaporation. The study was conducted in two different regions, semi-arid and tropical 

(Iraq and Malaysia). The proposed predictive method was emphasized from the latest 

deep learning version and validated against two conventional ANN methods. The 

modeling structure was initiated based on univariate modeling, where only the lead time 

of previous records was used for the initial development of the learning algorithms. In 

this context, the correlated lags were used as predictors for the prediction matrix. It is 

worth highlighting that the prediction of the hydrological parameters using only lag times 

is a distinguished modeling scheme where the merit of the ML models takes place in 

mimicking the complex relationship between the predicted and actual values. Since this 

research is conducted to predict two different parameters, the present chapter will include 

three main sections: reservoir inflow forecasting, evaporation prediction, and reservoir 

simulation. The last subsection in the second and third main sections focuses on the 

feasibility of incorporating a feature selection algorithm prior to the prediction process. 

There are several metrics calculated for the prediction evaluation that present the best-fit-

goodness (i.e., Nash-Sutcliffe efficiency (NSE), Willmott index (d)), absolute error 

indicators (i.e., root mean square error (RMSE), mean absolute error (MAE), Nash), and 

scatter index (SI), BIAS, MBE. 

4.2 Reservoir inflow forecasting  

Three different prediction models have been developed to forecast reservoir inflow at 

semi-arid and tropical regions. This section of the current chapter includes two main 
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scenarios for prediction. The first scenario involves applying the proposed models based 

on relevant input variables selected by PAC. Whereas, in the second scenario, GA method 

was used to select the relevant input variables for the prediction models. 

4.2.1 Semi-arid case study 

Table 4.1 tabulated the statistical results of the testing phase for the semi-arid region case 

study. The introduced DLNN model reported superior results in comparison with the two 

classical ANN algorithms. It can be observed that MLPNN and Radial Basis Function 

Neural Network (RBFNN) attained almost similar forecasting results. In quantitative 

explanation, the DLNN model attained minimum RMSE and MAE (39.62 and 23.67) and 

maximum d and NSE (0.96 and 0.95). With respect to the benchmark models MLPNN 

and RBFNN, the statistical indicators showed much lower prediction results MLPNN 

attained (RMSE = 53.18, MAE = 36.79, d = 0.94, NSE = 0.91) and RBFNN reported 

(RMSE = 52.19, MAE = 33.34, d = 0.95, NSE = 0.92). It can be noted here that in all 

models for the semi-arid region, the second lag time series provided the best forecasting 

results. However, the correlation was determined by the five lags using the auto-

correlation statistics. This gives credit to the fact that the applied ML models reported a 

homogeneous mechanism in abstracting the essential information from the memorial time 

series. 

Table 4.1: The statistical indicators while testing phase for three methods of 

"Semi-arid case study." The optimal model has been boldfaced. 

Models RMSE 

(m3/sec) 

MAE 

(m3/sec) 

MBE NSE SI BIAS 

(m3/sec) 

d CI 

MLPNN1 81.032 46.983 0.109 0.813 0.598 -5.570 0.896 0.728 

MLPNN2 53.188 36.794 0.164 0.919 0.393 17.141 0.948 0.871 

MLPNN3 66.727 45.720 0.245 0.873 0.494 17.276 0.927 0.809 
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Table 4.1, Continued 

Models RMSE 

(m3/sec) 

MAE 

(m3/sec) 

MBE NSE SI BIAS 

(m3/sec) 

d CI 

MLPNN4 71.482 47.623 0.229 0.854 0.529 14.492 0.919 0.785 

MLPNN5 68.598 45.949 0.226 0.866 0.508 20.233 0.924 0.800 

RBFNN1 72.505 40.174 0.014 0.850 0.535 24.549 0.916 0.778 

RBFNN2 52.193 33.347 -0.061 0.922 0.386 21.283 0.950 0.876 

RBFNN3 71.537 47.540 0.148 0.854 0.530 30.092 0.921 0.787 

RBFNN4 59.987 41.991 0.199 0.897 0.444 16.716 0.938 0.842 

RBFNN5 65.299 44.097 0.230 0.878 0.484 16.682 0.930 0.816 

DLNN1 48.763 27.322 0.052 0.932 0.360 9.766 0.954 0.889 

DLNN2 39.627 23.678 0.125 0.955 0.293 2.578 0.967 0.923 

DLNN3 45.795 27.632 0.169 0.940 0.339 3.010 0.958 0.901 

DLNN4 53.427 34.548 0.140 0.918 0.396 9.788 0.948 0.871 

DLNN5 57.845 36.355 0.155 0.904 0.428 15.894 0.941 0.851 

 

The distribution of anticipated data that matches real lake evaporating data along the line 

of convenience can be usefully visualized. Figure 4.1 shows the scatter plots of the best 

versions of the MLPNN method. It can be seen that the data predicted by MLPNN is far 

from the right line. This indicates that MLPNN is not able to provide high-level accuracy 

for evaporation prediction. It could be observed that the best correlation has been 

achieved with two input variables (R2 = 0.85). 
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Figure 4.1: Scatter plots for different input combinations using the MLPNN 

method 

The distribution of the actual data against the predicted data obtained by the RBFNN 

method with different input variables is shown in Figure 4.2. The RBFNN method 

achieves a high magnitude correlation between the predicted and real data using two past 

values of inflow. In comparison among models, the second model has a substantially 

higher level of predictability for inflow at the semi-arid case study. 
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Figure 4.2: Scatter plots for different input combinations using the RBFNN 

method. 

Figure 4.3 explains the deviation from the identical line in the form of scatter plots for 

the applied ML models (i.e., DLNN) and for the five-input combination configured in the 

first place. The maximum determination coefficient using the second input combination 

for the DLNN model (R2 = 0.90). The comparable models attained MLPNN (R2 = 0.85) 

and RBFNN (R2 = 0.87). It can be observed from the presentation in Figure 5.3 that the 

models, in general, performed well. Particularly, the DLNN attained identical predictions 

for the whole range of the data, including minimum and maximum reservoir inflow data.  
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Figure 4.3: Scatter plots for different input combinations using the DLNN 

method. 

4.2.2 Tropical case study 

The statistical results over the testing phases for the tropical region case study reported in 

Table 4.2 Apparently, the developed DLNN model attained the best prediction results 

with values of (RMSE = 4.69, MAE = 2.89, d = 0.94, NSE = 0.90). In contrast, MLPNN 

attained (RMSE = 5.66, MAE = 3.67, d = 0.92, NSE = 0.85) and RBFNN attained (RMSE 

= 5.16, MAE = 3.08, d = 0.93, NSE = 0.88). The best results indicated that the best results 

were achieved using the second lags incorporating two months of previous inflow to 

forecast one step ahead inflow for the DLNN and RBFNN models. On the other hand, the 
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MLPNN showed that including three lags is the best scenario for the forecasting process. 

The superiority of the DLNN clearly explains the enhancement of prediction 

performance. Plus, this elaborates the merit of the DLNN in better understanding the 

complicated relationship using the feasibility of the deep learning processes executed 

using multiple layers of learning over the classical introduced ML algorithms over the 

literature. 

Table 4.2: The statistical indicators during the testing phase for three methods 
of "Tropical case study." The optimal model has been boldfaced. 

Models RMSE 

(MCM 

month-1) 

MAE 

(MCM 

month-1) 

MBE NSE SI BIAS 

(MCM 

month-1) 

d CI 

MLPNN1 6.062 4.271 0.230 0.844 0.584 0.342 0.916 0.773 

MLPNN2 7.895 5.144 0.521 0.734 0.767 0.119 0.876 0.643 

MLPNN3 5.661 3.676 0.048 0.859 0.567 1.567 0.922 0.792 

MLPNN4 7.346 5.363 0.790 0.738 0.769 -1.466 0.865 0.639 

MLPNN5 7.020 4.711 0.433 0.760 0.741 0.687 0.883 0.671 

RBFNN1 7.215 5.039 0.375 0.779 0.695 0.976 0.891 0.695 

RBFNN2 5.160 3.084 0.093 0.887 0.501 0.826 0.934 0.828 

RBFNN3 6.306 4.340 0.421 0.824 0.632 -0.433 0.903 0.744 

RBFNN4 6.544 4.758 0.667 0.792 0.685 -1.004 0.890 0.705 

RBFNN5 7.196 3.398 0.198 0.747 0.760 0.068 0.878 0.656 

DLNN1 6.930 5.069 0.366 0.796 0.667 1.236 0.899 0.716 

DLNN2 4.699 2.899 0.007 0.906 0.456 1.528 0.944 0.855 

DLNN3 4.833 2.867 0.258 0.897 0.484 -0.020 0.939 0.842 

DLNN4 5.381 3.786 0.423 0.859 0.564 0.461 0.921 0.791 

DLNN5 6.756 4.672 0.433 0.777 0.713 1.128 0.889 0.691 

 

For further statistical analysis, the correlation between actual and predicted inflow data 

for MLPNN is presented in Figure 4.4. Prediction results for five different modeling 

structures based on the MLPNN method are shown. It is noted that the distribution of data 

around the fit line varies greatly from one model to another. The results reveal that the 

performance of MLPNN improved when three input variables were considered. The 
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optimal prediction was attained by Moldel-3, achieving maximum correlation (R2 = 0.78) 

compared to the other models. 

 
Figure 4.4: Scatter plots for different input combinations using the MLPNN 

method. 

After viewing the performance of the proposed models based on the arithmetic indicators, 

a comparison between the models according to the visualization of the predicted data 

distribution corresponding to the observed data is critical. Accordingly, the correlation 

plots of five models using RBFNN are illustrated in Figure 4.5. It is remarkable that the 

second model obtains accurate inflow predictions.  
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Figure 4.5: Scatter plots for different input combinations using the RBFNN 

method. 

Figure 4.6 displays the scatter plots for the best prediction results when using the DLNN 

method. The DLNN achieves a high correlation between the predicted and observed data. 

Compared to previously used methods, the DLNN method has a substantially higher level 

of predictability for reservoir inflow at Timah Tasoh Dam (TTD). This demonstrates that 

during training, the DLNN method is able to map the link between input and output 

values. As a result, it was capable of predicting the testing data very accurately. 
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Figure 4.6: Scatter plots for different input combinations using the DLNN 

method. 

4.2.3 Integrative predictive model results 

Modeling reservoir inflow based on univariate modeling where only historical data of 

inflow is used for the learning process is somehow a complex hydrological problem. 

Hence, reducing the dimension of the prediction matrix through feature selection 

integration can essentially provide a reliable and robust predictive model. Hence, the 

results of the hypothesized integration of GA as a selection algorithm are presented in 

this subsection. 
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The results of the semi-arid indicated the variation between the best-selected lags between 

the applied ML models. The best results configured using GA feature selection were 

second and third lags according to several statistical indicators (i.e., GA-DLNN-2: 

(RMSE = 23.49, MAE = 15.55, d = 0.98, NSE = 0.98) and GA-DLNN-3: (RMSE = 39.30, 

MAE = 24.24, d = 0.96, NSE = 0.95)). On the other hand, prediction results were lower 

using the first two lags. The results of the tropical case study revealed similar results with 

respect to the optimal lags, with GA-MLPNN and GA-RBF-NN being the best results in 

the first two lags. GA-DLNN has the best results using the second and third lags. In 

quantitative results, (i.e., GA-DLNN-2: (RMSE = 2.92, MAE = 2.06, d = 0.97, NSE = 

0.96) and GA-DLNN-3: (RMSE = 3.99, MAE = 2.57, d = 0.95, NSE = 0.93) are shown 

in Table 4.3. 

Table 4.3: The statistical indicators during the testing phase for three methods. 

The optimal model has been boldfaced. 

Semi-arid Case Study 

Models RMSE MAE MBE NSE SI BIAS d CI 

GA-MLPNN-2 36.986 21.717 -0.009 0.961 0.273 10.238 0.970 0.932 

GA-MLPNN-5 48.942 28.943 0.037 0.932 0.362 16.034 0.955 0.889 

GA-RBF-NN-1 40.561 25.641 0.160 0.953 0.299 -8.349 0.965 0.920 

GA-RBF-NN-2 33.680 21.886 0.093 0.968 0.249 -3.799 0.974 0.943 

GA-DLNN-2 23.493 15.556 -0.008 0.984 0.174 2.882 0.987 0.972 

GA-DLNN-3 39.304 24.247 -0.031 0.956 0.291 6.834 0.967 0.924 Univ
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Table 4.3, Continued 

Semi-arid Case Study 

Models RMSE MAE MBE NSE SI BIAS d CI 

Tropical Case Study 

GA-MLPNN-1 6.342 3.949 0.080 0.829 0.611 1.583 0.912 0.756 

GA-MLPNN-3 5.483 3.428 0.015 0.867 0.550 1.475 0.926 0.803 

GA-RBF-NN-2 4.216 2.612 0.019 0.924 0.410 0.901 0.952 0.880 

GA-RBF-NN-3 5.691 3.939 0.276 0.857 0.570 0.075 0.919 0.788 

GA-DLNN-2 2.922 2.063 0.001 0.964 0.284 0.061 0.974 0.939 

GA-DLNN-3 3.993 2.574 0.214 0.930 0.400 -0.073 0.955 0.887 

 

Figure 4.7 shows the scatter plots for the optimal model using different methods in the 

Semi-arid region. It could be observed that the lowest regression is attained using the 

MLPNN method (R2 = 0.88). However, the MLPNN achieved attemptable prediction 

results when considering two variables as input parameters. The results confirmed that 

GA-DLNN is superior to other proposed methods. The higher determination of the 

coefficient (R2 = 0.96) was achieved by the GA-DLNN method, as shown in Figure 4.7. 
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Figure 4.7: Scatter Plots between actual and predicted Qflow using integrated ML 

models, a: GA-DLNN, b: GA-RBF-NN, c: GA-MLPNN "Semi-arid region." 

Graphical results based on scatter plots for the Tropical Case study are presented in Figure 

4.8. It was observed that the distribution of data around the line fit differed significantly 

between the proposed methods. The correlation between predicted and actual inflow data 

is better using GA-MLPNN and GA-DLNN methods. The maximum coefficient of 

determination (R2 = 0.96) was achieved by GA-DLNN with two different input variables. 

The results showed a significant difference in prediction accuracy when changing the 

input variables. The results confirmed that selecting relevant input variables can achieve 

optimal prediction results. According to the scatter plots, GA-DLNN-2 achieved the best 
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results for reservoir inflow prediction compared to the GA-MLPNN and GA-RBF-NN 

methods. 

 

Figure 4.8: Scatter Plots between actual and predicted Qflow using integrated ML 
models, a: GA-DLNN, b: GA-RBF-NN, c: GA-MLPNN "Tropical case study." 

 

Graphical presentation tested for the research results model is the Taylor diagram (Taylor, 

2001). Figures 4.9 and 4.10 presented the 2-dimensions of the Taylor diagram for the 

conducted integrative ML models for both cases. Clearly, the GA-DLNN model showed 

a nearer coordinate to the observed record of reservoir inflow.  
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Figure 4.9: Taylor diagram for GA-model: GA-MLPNN, GA-RBF-NN and GA-

DLNN "Semi-arid case study." 

 
Figure 4.10: Taylor diagram for GA-model: GA-MLPNN, GA-RBF-NN and GA-

DLNN "Tropical case study."  

 

The relative error percentage and actual/forecasted time series graphics were calculated 

and presented in Figure 4.11 for a semi-arid case study using the optimal method (GA-

DLNN-2). It can be seen that the relative error percentage ranged between ∓ 30% for the 
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semi-arid case study. It is noted that the method's performance was overestimated most 

of the time. This may be due to the training period containing many outliers. On the other 

hand, the pattern of the predicted data was close to the actual pattern on most days. The 

results showed the ability of the method to reveal actual behavior. 

 
Figure 4.11:  (a) The relative error percentage for the integrative GA-DLNN 

model for the Semi-arid case study, (b) The actual and predicted best results of the 
integrative GA-DLNN model for the Semi-arid case study. 

Figure 5.9 presents the relative error percentage of the best model (i.e., GA-DLNN-2) 

during the test period for the tropical case study. The distribution of the original data 

against the predicted data obtained by the best model is also shown in Figure 4.12. 

According to the relative error-index, the proposed modelling (GA-DLNN-2) provided 

the best prediction accuracy in the tropical region compared to the semi-arid case study. 

The predictive model achieved a relative error of less than ∓25%. As highlighted by 
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Figure 5.12b, GA-DLNN-2 has good performance in detecting and following the pattern 

of actual data up to extreme values. 

 
Figure 4.12: (a) The relative error percentage for the integrative GA-DLNN 

model for the Tropical case study, (b) The actual and predicted best results of the 
integrative GA-DLNN model for the Tropical case study. 
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4.3 Reservoir evaporation prediction  

4.3.1 Semi-arid case study 

Several types of inputs have been utilized to foresee the reservoir evaporation using the 

suggested methods. In reality, a suitable approach must be developed to choose the ideal 

combination of inputs for modeling. Based on the auto-correlation technique, all feasible 

input combinations were used to complete this assignment, which ranged from lag one 

E(t-1) to lag four E(t-4). In general, the performance metrics shown in the mathematical 

formulas provided in the methodology chapter will be used to determine which approach 

is the best. Multiple models were looked at while taking into account various evaporation 

quantities as prediction variables for input. The results of the prediction models were 

compared to realistic reservoir evaporation records throughout the testing period in order 

to get all indices. 

In order to ensure more prediction regularity, it is necessary to assess a prediction method 

using unobserved input data. This is due to the possibility that a model may perform well 

during training but offer reduced accuracy throughout testing. In this regard, a number of 

proposed metrics have been used throughout all stages of the model development to 

ensure that the suggested architecture of the model could reach a stable range of accuracy. 

Beginning with the testing phase of the data set, RMSE (summations of root mean square 

errors) was used to moderately assure that the greatest forecasting error is within an 

acceptable range. 

The approach would then have an excellent capacity and potential to deliver equivalent 

accuracy utilizing the unknown input pattern if all other statistical indices were used and 

evaluated, and their values would have to be satisfactory. The eight analytical metrics for 
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the models that were suggested with various input patterns have been generated and 

assessed solely within the period of testing and are shown in Table 5.4 demonstrates that 

all statistical index-based different modeling architectures exhibit a considerable degree 

of variability. The third alternative model with three past evaporation records as inputs 

clearly has the best chance of producing the most suitable analytical metrics out of all the 

model designs. Using three past evaporation records as inputs (E (t-1), E (t-2), E (t-3)) 

and using the DLNN approach, the greatest and most dependable predicting accuracy has 

been reached. 

Table 4.4: The statistical indicators during the testing phase for three methods 
"Semi-arid case study." The optimal model has been boldfaced. 

Models RMSE 
(mm day-1) 

MAE 
(mm day-1) 

MBE NSE SI BIAS 
(mm day-1) 

d CI 

MLPNN1 1.882 1.356 0.104 0.953 0.260 0.192 0.966 0.920 

MLPNN2 1.767 1.262 0.056 0.958 0.245 0.136 0.969 0.929 

MLPNN3 1.831 1.323 0.131 0.955 0.254 0.137 0.967 0.924 

MLPNN4 1.880 1.361 0.139 0.953 0.260 0.110 0.966 0.920 

RBF-NN1 2.087 1.528 0.123 0.942 0.289 0.320 0.960 0.904 

RBF-NN2 2.202 1.548 0.127 0.935 0.305 0.314 0.956 0.894 

RBF-NN3 2.331 1.739 0.139 0.927 0.323 0.536 0.953 0.883 

RBF-NN4 2.345 1.665 0.127 0.927 0.325 0.491 0.951 0.881 

DLNN1 2.032 1.432 0.123 0.945 0.281 0.100 0.961 0.908 

DLNN2 2.344 1.912 0.566 0.927 0.324 -1.110 0.949 0.879 

DLNN3 1.461 1.067 0.065 0.971 0.202 0.068 0.978 0.950 

DLNN4 1.954 1.414 0.091 0.949 0.271 0.162 0.964 0.915 

 

Figure 4.13 displays the scatter plot diagrams for the MLPNN method. A visual 

comparison of the outcomes is possible to distribution of the observed and predicted 

records around the fit line. The black line serves as a representation of the fit data 

distribution line. In comparison to other models, Model II with MLPNN has regularly 
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offered a better agreement. Additionally, the MLPNN technique achieved the worst 

correlation between the anticipated and actual evaporation numbers with the first and 

fourth models. 

 
Figure 4.13: Scatter plots for different input combinations using the MLPNN 

method. 

The distribution of the observed evaporation data and predicted data around the fit line 

based on the RBFNN method is presented in Figure 4.14. Four models with different 

combinations of inputs were considered to verify the performance of the proposed 

method. The results showed that RBFNN provided acceptable predictable results in all 

cases. It can be seen that the first model made a better and more reliable prediction than 

the other models. The maximum correlation magnitude (R2 = 0.81) is attained by 

employing three evaporation values as input variables. 
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Figure 4.14: Scatter plots for different input combinations using the RBFNN 

method. 

The correlation between predicted and actual reservoir evaporation using the DLNN 

method is presented in Figure 4.15. The predicted reservoir evaporation by the DLNN 

technique produced more concentrated values along the fit line, even with peak data. This 

shows that the DLNN approach can produce acceptable predictions for a larger variety of 

data sets. The area of data distribution surrounding the fit line was significantly reduced 

by the best input combination. The correlation index shows that the DLNN method 

performs significantly better than other methods in predicting reservoir evaporation data. Univ
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Figure 4.15: Scatter plots for different input combinations using the DLNN 

method. 

4.3.2 Tropical case study 

The current research investigated how well the MLPNN, RBFNN, and DLNN might 

predict monthly evaporation in the tropical region case study. After numerous tests, the 

proposed prediction methods were used for the simulation of evaporation. The proposed 

methodology was applied to a number of lags in the evaporation values using the 

autocorrelation approach. The proposed methods, which are descended from ML, are 

used in the present part to perform research on predicting the amounts of water loss by 

evaporation. Due to the sensitivity to the initial conditions, the short-term prediction is 

expected to be more accurate than the long-term prediction when the time series is 

chaotic. In this context, the present research used one-step or one-month ahead 

forecasting. 
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The types of input sets that correspond to the chaos distribution throughout the training 

phase will affect how well the prediction algorithms perform. The proposed approaches 

are developed using the best input variables from the autocorrelation function. The 

predictions of four models developed using MLPNN, RBFNN, and DLNN are 

summarized in Table 4.5. It can be observed that all evaluation criteria clearly showed 

that Model 3 with DLNN is a successful model to predict the evaporation values form the 

reservoir system where it provided low prediction errors. The outcomes demonstrate that 

the prediction errors for the MLPNN method are a little greater. In order to successfully 

model the evaporation process, it was discovered that the prediction methods with Model 

3 (i.e., Model 3 = E(t-1), E(t-2), and E(t-3)) can be utilized. Model 3 provided prediction 

data that was most consistent with actual evaporation data, in accordance with the 

assessment of the precision of the employed methods in predicting reservoir evaporation. 

Accordingly, using the DLNN approach with three input variables, it is possible to 

estimate monthly reservoir evaporation in the tropical region accurately. 

Table 4.5: The statistical indicators during the testing phase for three methods 
of "Tropical case study." The optimal model has been boldfaced. 

Models RMSE  
(mm month-1) 

MAE  
(mm month-1) 

MBE NSE SI BIAS  
(mm month-1) 

d 
 

CI 
 
 

MLPNN1 16.089 11.296 0.045 0.974 0.168 -1.988 0.979 0.953 

MLPNN2 15.812 10.921 0.041 0.975 0.165 -1.624 0.980 0.955 

MLPNN3 14.156 9.849 -0.023 0.980 0.148 3.422 0.984 0.964 

MLPNN4 14.411 11.703 0.026 0.979 0.150 -0.425 0.983 0.962 

RBF-NN1 13.008 8.914 0.008 0.983 0.136 1.034 0.986 0.969 

RBF-NN2 12.952 8.794 0.013 0.983 0.135 0.385 0.986 0.969 

RBF-NN3 12.362 8.082 -0.015 0.984 0.129 3.156 0.987 0.972 

RBF-NN4 12.507 8.800 0.017 0.984 0.130 -0.290 0.987 0.971 

DLNN1 13.416 10.152 0.037 0.982 0.140 1.047 0.985 0.967 
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Table 4.5, Continued 

Models RMSE  
(mm month-1) 

MAE  
(mm month-1) 

MBE NSE SI BIAS  
(mm month-1) 

d CI 

DLNN2 11.990 8.481 0.022 0.985 0.125 0.018 0.988 0.973 

DLNN3 9.326 6.988 0.007 0.991 0.097 -1.316 0.992 0.983 

DLNN4 11.700 8.443 0.026 0.986 0.122 -0.755 0.988 0.974 

 

Additional comparisons between the methods suggested in the current section are made 

by another indicator. The performance of the methods was examined by calculating the 

size of the correlation between the expected and actual data, as shown in Figures 4.16, 

4.17, as well as 4.18. 

Figure 4.16 displays the distribution of the actual and predicted data obtained by the 

MLPNN method. It was observed that the MLPNN achieved low prediction accuracy 

with several input combinations. The scatter graph of the MLPNN algorithm shows that 

the medium-range evaporation values had the smallest error, whereas the high and low 

evaporation values had the largest error. The maximum correlation magnitude (R2 = 0.73) 

was attained by considering three input variables.   
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Figure 4.16: Scatter plots for different input combinations using the MLPNN 

method. 

The scatter plots for the predicted data obtained by the RBFNN method are presented in 

Figure 4.17. It can be seen that the predicted data provided by the RBFNN method have 

acceptable distribution values around the fit line compared to the MLPNN model. The 

scatter diagrams showed that RBFNN based on three lag times of evaporation values 

achieved good prediction accuracy in the tropical case study. 

Univ
ers

iti 
Mala

ya



 

117 

 
Figure 4.17: Scatter plots for different input combinations using the RBFNN 

method.  

For better visualization, Figure 4.18 demonstrates the performance of the DLNN method 

and how its reliability in improving the prediction accuracy is based on scatter plots. It 

should be noted that the maximum and minimum reservoir evaporation values are the 

most important records that should be considered in the modeling. This is because this 

data has a significant impact on drawing up the operating policy of the dam and reservoir 

system. As mentioned, the predicted data obtained by MLPNN and RBFNN were slightly 

distant from the observed pattern. Meanwhile, the DLNN method succeeded in achieving 

acceptable prediction accuracy in most of the evapotranspiration data during the test 

period. The maximum correlation (R2 = 0.87) between the actual and predicted data was 

achieved by integrating three input variables with the DLNN method. 
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Figure 4.18: Scatter plots for different input combinations using the DLNN 

method. 

4.3.3 Integrative predictive model results 

The evaporation time series was employed to predict the amount of water losses via 

evaporation from the reservoir in both case studies (i.e., Semi-arid and Tropical). In the 

current section, the study of predicting evaporation values was carried out by integrating 

the GA with ML methods. The research demonstrates the sensitivity of predicting results 

by analyzing the effect of input groups on the proposed method's performance. Prediction 

results for the proposed methods based on the statistical indexes are shown in Table 4.6. 

It should be noted that GA-MLPNN obtained the worst predictive results. Performance 

indicators explore the reliability of the possibility of improving outcome prediction when 

adopting the third model structure. The study reveals that the GA-DLNN-3 model 

achieved a high level of accuracy. Based on standard indices, GA-DLNN-3 outperforms 

other prediction models. 
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Table 4.6: The statistical indicators during the testing phase for three methods. 
The optimal model has been boldfaced. 

Semi-arid Case Study 

Models RMSE MAE MBE NSE SI BIAS d CI 

GA-MLPNN-2 1.780 1.276 0.040 0.958 0.246 0.198 0.969 0.928 

GA-MLPNN-3 1.832 1.286 0.054 0.955 0.254 0.193 0.967 0.924 

GA-RBF-NN-3 1.501 1.133 0.048 0.970 0.208 0.079 0.977 0.947 

GA-RBF-NN-4 1.765 1.249 0.021 0.958 0.244 0.174 0.969 0.929 

GA-DLNN-2 0.730 0.304 0.006 0.993 0.101 -0.044 0.994 0.986 

GA-DLNN-3 0.935 0.509 0.040 0.988 0.129 -0.056 0.990 0.978 

Tropical Case Study 

GA-MLPNN-1 10.782 6.818 0.030 0.988 0.112 -1.305 0.990 0.978 

GA-MLPNN-2 10.080 5.245 0.006 0.990 0.105 0.517 0.991 0.981 

GA-RBF-NN-2 12.656 8.904 0.026 0.984 0.132 -0.774 0.986 0.970 

GA-RBF-NN-3 13.080 8.993 0.000 0.983 0.136 1.520 0.986 0.968 

GA-DLNN-2 8.479 6.481 0.007 0.993 0.088 0.228 0.994 0.986 

GA-DLNN-3 6.770 3.873 0.003 0.995 0.071 0.637 0.996 0.991 

 

The scatter plots for the optimal prediction models are illustrated in Figure 4.19. The best 

correlation (R2 = 0.97) between actual and predicted evaporation data was obtained by 

GA-DLNN-2. It can be seen that the distribution of the data around the fit line is better 

than that of other models. Moreover, the fit line shown in the figure is closer to the perfect 

line (θ = 45o). The correlation indicator confirmed that the GA significantly improves the 

prediction accuracy of reservoir evaporation data. Univ
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Figure 4.19: Scatter Plots between actual and predicted evaporation using 

integrated ML models, a: GA-DLNN, b: GA-RBF-NN, c: GA-MLPNN "Semi-arid 
region." 

To better demonstrate the predictability of the proposed models, Figure 4.20 shows the 

distribution of the actual against predicted data provided by prediction methods. It was 

observed that lower correlation values were obtained using GA-RBF-NN. On the other 

hand, the results revealed that GA-MLPNN has a good ability to provide an acceptable 

agreement between the observed and predicted evaporation data. The study found that the 

combination of the optimizer algorithm (i.e., GA) with DLNN achieved satisfactory 

prediction results. Statistical indicators demonstrated that the GA-DLNN-3 is superior to 

other models. 
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Figure 4.20: Scatter Plots between actual and predicted evaporation using 

integrated ML models, a: GA-DLNN, b: GA-RBF-NN, c: GA-MLPNN "Tropical 
region." 

Taylor diagram indicator has also been employed to evaluate the performance of the 

proposed methods. Taylor diagrams for all models of semi-arid and tropical regions are 

presented in Figure 4.21 and Figure 4.22, respectively. In both cases, the GA-DLNN 

method was closer to the observed data compared to other predictive models. In more 

detail, the best model (GA-DLNN) provided a higher level of prediction accuracy in the 

semi-arid regions than in the tropical regions. The Taylor indicator confirmed that GA-

DLNN methods outperformed other models in predicting reservoir evaporation data. 
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Figure 4.21: Taylor diagram for GA-model: GA-MLPNN, GA-RBF-NN, and GA-

DLNN "Semi-arid case study." 

 
Figure 4.22: Taylor diagram for GA-model: GA-MLPNN, GA-RBF-NN, and GA-

DLNN "Tropical case study." 

Choosing appropriate input groups adds to the improvement in prediction results, as 

described in the above sections. The outcomes showed that the second model, when 

employing the GA-DLNN approach, realizes the optimal prediction results. The research 

contrasts the distribution of the predicted data against observed evaporation values to 
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assess the performances of the ideal models after exhausting the preliminary round of 

searching for the best input variables for each suggested approach. Figure 4.23a shows 

the relative error percentage between actual and predicted values during the testing 

period. It can be seen that the suggested predictive model (i.e., GA-DLNN-2) provided 

excellent results where the maximum percentage error was less than (+25 or – 25). The 

comparison of the pattern of expected values against the actual data is shown in Figure 

4.23b. The study found that GA-DLNN-3 has great ability and reliability in following the 

pattern of actual data. 

 

 

 

Figure 4.23: (a) The relative error percentage for the integrative GA-DLNN 
model for the Semi-arid case study, (b) The actual and predicted best results of the 

integrative GA-DLNN model for the Semi-arid case study. 
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In fact, one of the most important metrics for assessing the effectiveness of forecasting 

models is relative error. Figure 4.24a displays the relative error distribution for the best 

predictive model. The results show that the GA-DLNN-3 exhibits low relative errors in 

the range of + 11% - 10%. Extreme reservoir evaporation must be studied from a practical 

perspective because decision-makers rely heavily on these occurrences. In order to 

evaluate the performance of the predictive model in predicting low and peak evaporation 

events, it is helpful to investigate the pattern and levels of agreement between the 

observed and predicted data during the testing phase. Figure 4.24b compares the 

hydrograph pattern obtained using the third type model based on the GA-DLNN approach 

to the real pattern. The GA-DLNN method yielded more concentrated results in predicting 

reservoir evaporation data over the testing period, even with peak values. 
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Figure 4.24:  (a) The relative error percentage for the integrative GA-DLNN 

model for the Tropical case study, (b) The actual and predicted best results of the 

integrative GA-DLNN model for the Tropical case study. 

4.4 The reservoir simulation  

The study's final objective is to incorporate the predicted model's accuracy for the 

reservoir's evaporation and inflow while in the reservoir simulation system. The new 

simulation procedure will be performed based on the methodology described in the last 

section of Chapter 3. The primary objective of this evaluation of optimization models is 

to ensure that the process is applied under actual conditions based on the reservoir's 

hidden inflow and evaporation. The above sections in the current chapter showed that in 

the semi-arid region, GA-DLNN was the best model, and the worst model for predicting 

inflow was MLPNN and RBFNN for predicting evaporation. Consequently, the 
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simulation procedure in the semi-arid region was carried out based on the forecasted data 

provided by GA-DLNN. This step could be considered as the first scenario of the 

reservoir simulation. In the second scenario, the forecasted inflow values obtained by 

MLPNN and the predicted evaporation values obtained by RBFNN are included in the 

reservoir simulation. 

To evaluate the new simulation procedure, Figure 4.25 presents the difference between 

the reservoir storage computed using the predicted data provided by the best/worst model 

and the reservoir storage obtained by the conventional simulation procedure. The 

reservoir simulation in the semi-arid area was conducted during the last 90 days of the 

collected data, within the predictive models' testing period. It was observed that the 

difference values obtained using the worst models were high during the entire simulation 

period. The results revealed that the storage values acquired by the best predictive model 

are closer to the actual reservoir storage. The study found that the use of forecasted data 

for inflow and evaporation coefficients has a significant impact on reservoir simulation. 

 
Figure 4.25 Reservoir simulation of the semi-arid case study (a) using the worst 

predictive model and (b) using the best predictive model.
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Figure 4.25 Continued 

Similar procedures were applied to simulate the reservoir in the tropical region. The last 

65 months of the collected data were considered to simulate the reservoir system. In the 

tropical case study, the study found that the best predictive model is GA-DLNN, and the 

worst model is MLPNN for forecasting both hydrological parameters. Figure 4.26 

presents the difference values between the reservoir storage obtained by a new procedure 

and the reservoir storage computed using the traditional simulation procedure. It is clear 

that there are relatively large differences when adopting MLPNN as a predictive model 

to provide predicted data, as shown in Figure 4.26a. On the other hand, the simulation 

results indicated that the inclusion of GA-DLNN within the simulation procedure can 

provide satisfactory results. It has been proven that the reservoir simulation based on GA-

DLNN is better accomplished than using the MLPNN model. 
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Figure 4.26: Reservoir simulation of the tropical case study (a) using the worst 

predictive model and (b) using the best predictive model. 

Reservoir storage was unstable when using the predicted data, as storage was not within 

reservoir limits several times when using the worst model. On the contrary, performing 

the simulation based on the best model yielded excellent results. Indeed, the major 

purpose of suggesting the new simulation procedure is to show the state of the reservoir 

system under realistic simulation conditions, not to choose the best simulation procedure. 

The study concluded that including predicted data with reservoir simulation has a 

significant impact on reservoir conditions. Thus, the adoption of a new simulation 

procedure can provide reliable and realistic operating policies for the dam and reservoir 

system. 
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4.5 Summary    

The current study is significant because it helps to improve reservoir management by 

using sophisticated forecasting models that increase water resource reliability, 

particularly when dealing with stochastic hydrological characteristics. Three AI methods 

MLP-NN, RBF-NN and DLNN have been applied with integrated Genetic algorithm to 

obtain reliable and accurate prediction results. 

The successful application of the proposed prediction models in two different climatic 

zones not only proves their ability to predict key parameters, namely inflow and 

evaporation, but also produces a novel reservoir simulation procedure. This simulation 

procedure greatly improves the assessment of the dam reservoir condition. 

According to the statistical indicators, the study finds that the integration of genetic 

algorithm with the DLNN method provides high level prediction accuracy. GA-DLNN 

model has a good ability to capture the pattern of the reservoir hydrological parameters. 

The best model has a reliable mechanism to map the relationship between input and 

output variables. The results confirmed that the GA-DLNN model can be adopted for 

prediction and reservoir simulation. 

The examination of the models’ performance under different climate conditions was 

significant for evaluating the reliability of the proposed models. The DLNN attained high 

levels of prediction accuracy in semi-arid and tropical regions. The time scale of the 

databased in semi-arid region was daily for inflow and evaporation. Whereas the time 

scale of the data in tropical region was monthly. The proposed model achieved good 

prediction results with two different time scales. The results confirmed that the DLNN is 

better than other prediction models, therefore, such model was generalist to simulate the 

reservoir system in two different case studies.  

The objectives of the current study were successfully achieved by developing three 

models to predict reservoir flow and evaporation. The study found that GA significantly 
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improves the accuracy of model performance. The best GA-DLNN model showed 

superior performance compared to other proposed models. The GA-DLNN model greatly 

enhanced reservoir simulation and management. The introduction of a new simulation 

procedure enhanced the evaluation of reservoir conditions, validating the research 

objectives. 
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CHAPTER 5: CONCLUSION 

5.1 Conclusion  

Forecasting reservoir inflow and evaporation data is essential for water resource 

management and appropriate decision-making in practical hydrological practices. Indeed, 

the reliability of the predictive models applied to forecast inflow and evaporation is 

critical. This is because accurately predicting these hydrological parameters can provide 

early warning of potential floods or droughts at an early enough stage to reduce damage 

significantly. The current study was to roll out a new robust and reliable predictive model 

to forecast reservoir inflow and evaporation data. This research used Radial Basis 

Function Neural Network (RBFNN), Multi-Layer Perceptron Neural Network (MLPNN), 

and Deep Learning Neural Network (DLNN) methods to model two main hydrological 

parameters. In addition, transcriptomes of certified machine learning models were tested 

where the genetic algorithm was incorporated to select reliable input variables. To 

evaluate the diversity of the proposed methods, they were subjected to inflow and 

evaporation prediction in two different case studies: Dokan Dam and Timah Tasoh Dam 

(TTD), representing the semi-arid and tropical regions, respectively. The performance of 

the suggested methods was evaluated using eight common indicators. Further analysis 

was performed with scatter plots and relative errors, and the actual pattern data was 

compared to the forecasted data to evaluate the visual data. Moreover, a new simulation 

procedure to simulate the reservoir has been proposed. The suggested simulation was 

performed based on integrating the predictive model during the simulation period. The 

present study concluded with four main points:  

1. The proposed methods RBFNN, MLPNN, and DLN are designed as individual 

models for the prediction of hydrological parameters. The results revealed that the 
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DLNN method is superior to other predictive methods. DLNN succeeded in 

providing acceptable prediction results for inflow and evaporation parameters. 

2. To improve and support the performance of the methods, the proposed methods 

were modified by combining them with an optimizer algorithm (Genetic 

Algorithm (GA)). With such modification, the predictive methods have become 

more reliable and suitable to predict the hydrological parameters in the reservoir 

system. The study showed that the GA-DLNN model achieved accurate prediction 

results. Statistical indicators confirmed that GA-DLNN outperformed GA-RBF-

NN and GA-MLPNN in predicting inflow and evaporation. 

3. The current research has examined the feasibility and generalization ability of the 

proposed approaches by including two case studies. The study found that the GA-

DLNN is able to provide excellent predictions of inflow and evaporation in the 

semi-arid region (i.e., Dukan Dam). The GA-DLNN model also made high-

accuracy predictions in the tropical case study (i.e., TTD). Based on the visual 

indicators, the GA-DLNN attained more accurate results in the semi-arid region 

than in the tropical region with both parameters. 

4. To simulate the reservoir system under realistic conditions, the study introduced 

a new simulation procedure to show the real state of the reservoir. The proposed 

simulations were performed in two scenarios: integration with the worst and best 

predictive models. The results showed that using the predicted data during the 

simulation period has a significant impact on the state of the reservoir. 

Incorporating the best predictive model into the water balance equation for 

reservoir simulation provided excellent simulation results. 
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5.2 Limitations  

The results of the current study demonstrate some limitations or weaknesses in the 

proposed methodology. It can list these limitations as the following: 

1. The research's first restriction is its exploration of the potential for adding more 

temporally and spatial data on short-term flow and evaporation predictions, that 

is difficult to do in theoretical hydrological frameworks or standard time-series 

equations. A sophisticated model for short-term inflow and evaporation 

predictions should be created in order to accomplish this goal, and a number of 

problems related to its application should be investigated. 

2. Several methods for forecasting hydrologic reservoir variables have been 

established in this research. These methods have been developed, however there 

are still issues that need to be addressed. Managing nonstationary data, gleaning 

important information from data, and calculating the degree of uncertainty in 

expected values are some of these difficulties. 

3. The reservoir simulation has been performed based on only two hydrological 

parameters which are inflow and evaporation. Whereas there are other parameters 

such as seepage also can effect on the simulation results. The losses by seepage 

maybe have high impact on the simulation period. 

5.3 Novelty  

The present research focuses on the diversity of new versions of machine learning, 

such as the deep learning neural network (DLNN) method, which can contribute to 

overcoming traditional AI models. It is noted that identifying appropriate features for 

developing a deep neural network (DLNN) model learning process is a key element 

in developing a computational assistance model. Thus, a reliable, nature-inspired 
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optimization, known as a genetic algorithm, is incorporated as a feature selection 

mechanism for timely prediction of reservoir flow and evaporation. Since the random 

variability varies from dam to dam, the proposed technique can be applied to two 

different inflow mechanisms, allowing the generalization of this hydrological 

problem to be examined. Reservoir simulation is actually the first step in optimization 

modeling that produces the best operating rules. Deterministic data for evaporation 

and internal flow parameters remain essential for the simulation process. The 

operation of the reservoir system assumes the possibility of achieving perfect 

forecasting. Actually, such assumption is incorrect and does not represent the actual 

condition of the reservoir system. As a result, the traditional reservoir and dam system 

simulation process must be changed. In this regard, this study specifically presents a 

new prediction model by integrating with genetic algorithm and integrating the 

proposed model into a realistic reservoir system simulation. 

5.4 Recommendation for Future Research  

Although the GA-DLNN model described in the present research achieved great accuracy 

results in forecasting two main hydrological reservoir parameters, the current study 

suggests several recommendations for future research.  

1. Indeed, the prediction model learns the pattern of inflow and evaporation 

parameters according to the training period data. As a result, it is important 

to select the training phase containing most events that occurred during the 

entire research period. To solve this problem, the researcher should consider 

the data partitioning approach and then choose the data distribution that best 

adds useful information to the models. The designer should select more 

effective training techniques in data segmentation approaches that would be 
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able to produce a robust model to mimic several patterns of inflow and 

evaporation data. In this context, this study advises the use of a variety of data 

segmentation techniques to test the effectiveness of the proposed models in 

this situation. In order to create a robust predictive model, a variety of 

approaches are used to separate the data. 

2. Identification of the adoption of proper input selection techniques is one of 

the major concerns in hydro-climatological methods. Evaluating the 

relationship between input-output variables is the first deficiency. Secondly, 

effective input parameters should be explored, and redundant inputs avoided, 

even if these variables could help the ANN-based models. Such variables may 

lead to an increase in the complexity and uncertainty of the model. These two 

matters could appear with other AI-based models. Thus, attention should be 

given to reducing uncertainty and improving the performance of the 

predictive models. In this regard, pre-processing techniques, such as Wavelet 

Transform (WT), Fast Orthogonal Research (FOS), and other techniques can 

address the two aforementioned issues.  

3. Most of the existing research papers are focused on applying and introducing 

the optimization modeling of deterministic hydrological and climate 

parameters. In fact, few of these studies attempted to improve the reliability 

and efficiency of operation in a dynamic environment. It is useful to introduce 

modern methodologies that can help decision-makers when they face 

environmental uncertainty. With such a modern model, a viable and reliable 

operation of the reservoir can be provided. This optimization procedure is 

able to quickly deal with unexpected disturbances in the reservoir system, as 
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required. The current study opened the door to enhancing optimization 

modeling and thus establishing optimal operating rules. Using the new 

simulation procedure proposed in this study and optimization modeling may 

yield satisfactory results for the dam and reservoir system operation. 
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