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ENHANCING RESERVOIR SIMULATION MODELS WITH GENETIC
ALGORITHM OPTIMIZED NEURAL NETWORKS ACROSS DIVERSE

CLIMATIC ZONES

ABSTRACT

Dams and reservoir systems help improve livelihoods, agriculture productivity, and
farmers' drought resilience by regulating and increasing water supply reliability. In fact,
the reservoir simulation depends on several hydrological parameters. Since hydrologic
parameters exhibit a high degree of stochasticity, developing an accurate forecasting
model that reproduces such a complex pattern is becoming increasingly challenging. A
well-designed and reliable forecasting model is key to the successful reservoir simulation
so as to maximize the use of water resources. Since the hydrological parameters are
difficult to handle mathematically, existing prediction models are burdened with several
drawbacks. The aims of the study are to develop robust models to predict two different
parameters of hydrology in the dam reservoir and examine their performance under
different climate conditions. Also, the study introduces a new procedure for reservoir
simulation.

The current research presents three different Al approaches: 1) Multi-Layer Perceptron
Neural Network (MLP-NN), i1) Radial Basis Function Neural Network (RBF-NN), and
1i1) Deep Learning Neural Network (DLNN). The proposed models were utilized to
predict two key hydrological parameters related to reservoir simulation: inflow and
evaporation. The research improved the predictive models by integrating them with the
Genetic Algorithm (GA). The optimizer algorithm (i.e., GA) determines the optimal input
variables and internal parameters in the prediction models. To illustrate the models'
efficacy, predictive models were applied to predict reservoir inflow and evaporation in

two different case studies representing different environmental conditions, semi-arid and

il



tropical case studies. The first case study is Dukan Dam, located in Iraq (semi-arid
region), and the second is Timah Tasoh Dam (TTD), located in Malaysia (tropical region).
Comparative analysis was performed between predictive models based on several
statistical indicators. The prediction outcomes demonstrated that the GA-DLNN performs
better than other proposed models. The GA-DLNN achieved well results in forecasting
inflow values where it attained low (RMSE (23.49 m?/sec at Dukan, 2.92 MCM month!
at TTD) MAE (15.55 m?/sec at Dukan, 2.06 MCM month™! at TTD) and high correlation
coefficient (R? = 0.967 at Dukan, R? = 0.969 at TTD). Also, the results indicated that the
GA-DLNN achieved high level accuracy in prediction reservoir evaporation values,
where it attained a low (RMSE (0.73 mm day™! at Dukan, 6.77 mm month™' at TTD) MAE
(0.30 mm day™! at Dukan, 3.87 mm month™! at TTD) and high correlation coefficient (R?
=0.976 at Dukan, R? = 0937 at TTD) . On the other hand, the current study introduced a
new procedure for simulating reservoirs under realistic conditions. This procedure was
performed by including the prediction results obtained by the best and worst models in
the balance equation. Reservoir condition assessment under new and conventional
procedures was performed by calculating the percentage error during the simulation
period. It was observed that the reservoir condition changed significantly with the
inclusion of the predicted flow and evaporation data within simulation session. This
research found that GA-DLNN method is better than alternative models put forth
in predicting reservoir inflow and evaporation data. The predicted data should be adopted

while performing the reservoir simulation.

Keywords: Inflow, Evaporation, Simulation, Deep learning, Tropical & Semi-arid

region
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MENINGKATKAN MODEL SIMULASI TAKUNGAN DENGAN RANGKAIAN
SARAF YANG DIOPTIMALKAN ALGORITMA GENETIK MERENTAS ZON

IKLIM PELBAGAI

ABSTRAK

Sistem empangan dan takungan membantu meningkatkan mata pencarian, produktiviti
pertanian, dan daya tahan kemarau petani dengan mengawal selia dan meningkatkan
kebolehpercayaan bekalan air. Malah, simulasi takungan bergantung kepada beberapa
parameter hidrologi. Memandangkan parameter hidrologi mempamerkan tahap stokastik
yang tinggi, membangunkan model ramalan yang tepat yang menghasilkan semula corak
kompleks sedemikian menjadi semakin mencabar. Model peramalan yang direka dengan
baik dan boleh dipercayai adalah kunci kepada simulasi takungan yang berjaya untuk
memaksimumkan penggunaan sumber air. Memandangkan parameter hidrologi sukar
dikendalikan secara matematik, model ramalan sedia ada dibebani dengan beberapa
kelemahan.

Penyelidikan semasa membentangkan tiga pendekatan Al berbeza: 1) Rangkaian Neural
Perceptron Berbilang Lapisan (MLP-NN), ii) Rangkaian Neural Fungsi Asas Radial
(RBF-NN), dan iii) Rangkaian Neural Pembelajaran Dalam (DLNN). Objektif utama
kajian ini adalah untuk meningkatkan ketepatan meramalkan aliran takungan dan
penyejatan berdasarkan data sejarah parameter ini merentas dua senario berbeza. Secara
khusus, penyelidikan ini bertujuan untuk: i) menyesuaikan kaedah DLNN sebagai model
ramalan untuk menangkap ciri-ciri parameter hidrologi takungan dengan lebih berkesan;
i1) meneliti struktur dan konfigurasi pelbagai model untuk meningkatkan ketepatan aliran
takungan dan ramalan sejatan; iii) menilai keupayaan model ramalan yang dicadangkan

untuk membuat generalisasi merentasi kawasan tropika dan separa gersang; dan iv)



mencadangkan prosedur simulasi baharu untuk sistem takungan. Selain itu, model yang
dicadangkan telah digunakan untuk meramalkan dua parameter hidrologi utama yang
berkaitan dengan simulasi takungan: aliran dan penyejatan. Penyelidikan menambah baik
model ramalan dengan mengintegrasikannya dengan Algoritma Genetik (GA). Algoritma
pengoptimum (iaitu, GA) menentukan pembolehubah input optimum dan parameter
dalaman dalam model ramalan. Untuk menggambarkan keberkesanan model, model
ramalan telah digunakan untuk meramalkan aliran masuk takungan dan penyejatan dalam
dua kajian kes berbeza yang mewakili keadaan persekitaran yang berbeza, kajian kes
separa gersang dan tropika. Kajian kes pertama ialah Empangan Dukan, terletak di Iraq
(wilayah separa gersang), dan yang kedua ialah Empangan Timah Tasoh (TTD), yang
terletak di Malaysia (wilayah tropika). Analisis perbandingan dilakukan antara model
ramalan berdasarkan beberapa penunjuk statistik. Hasil ramalan menunjukkan bahawa
GA-DLNN berprestasi lebih baik daripada model lain yang dicadangkan. Dalam
meramalkan aliran masuk takungan, GA-DLNN mencapai paras rendah (RMSE (23.49
m>/sec di Dukan, 2.92 MCM bulan pada TTD) MAE (15.55 m?/sec di Dukan, 2.06
MCM bulan pada TTD). Selain itu, dalam ramalan sejatan GA-DLONN yang rendah
(RM33SENN) takungan mencapai ramalan rendah. hari”' di Dukan, 6.77 mm bulan™ di
TTD) MAE (0.30 mm hari!' di Dukan, 3.87 mm bulan" di TTD Plus, kajian semasa
memperkenalkan prosedur baru untuk mensimulasikan takungan di bawah keadaan yang
realistik Prosedur ini dilakukan dengan memasukkan keputusan ramalan yang diperolehi
oleh model yang terbaik dan terburuk dalam keadaan keseimbangan ralat peratusan
semasa tempoh simulasi adalah diperhatikan bahawa keadaan takungan berubah dengan
ketara dengan kemasukan data aliran dan sejatan yang diramalkan semasa tempoh
simulasi. Data yang diramalkan harus diterima pakai semasa melakukan

simulasi takungan.
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CHAPTER 1: INTRODUCTION

1.1 Background

Operating reservoir systems is a crucial concern for those who make decisions regarding
the management of water resources. Choosing the best operating guidelines to run the
reservoir system is frequently complicated by the conflicts that exist between the multiple
objectives of the reservoir. Reservoirs were created to serve many purposes such as
irrigation with water, hydroelectric power generation, flood control, water supply, as well
as additional purposes. Although there is some degree of proportionality between these
purposes, rivalries and conflict are more prevalent, particularly during the drought and
flood seasons (Bozorg-Haddad, Janbaz, et al., 2016). To deal with these issues, decision-
makers must have the ability to define optimal water management policies. Accordingly,
the focus should be on redoubling efforts to enhance the operational efficiency and
effectiveness of the reservoir system, enhancing the positive applications of these
initiatives. Furthermore, a few drawbacks of a big storage project can be reduced by
improving operational management with the addition of facilities (Higgins & Brock,

1999).

Indeed, the success of optimization methods depends on the accuracy of the measurement
of key hydrological parameters in the reservoir system (Lu et al., 2017). There are two
different hydrological parameters that affect the operation of a dam and reservoir: the
inflow of water into the reservoir and its evaporation. The first parameter represents the
system inputs, while the second parameter represents the reservoir system losses. To
effectively anticipate and realistically replicate the tank under the generated operating
rule, it is necessary to have a thorough understanding of both variables, which are actually

very unpredictable.



For decision makers to mitigate the effects of water surpluses or deficits, reliable and
accurate reservoir flow forecasts are critical information. In addition, choosing the best
model to predict future water flows may be critical for developing successful reservoir
management policies and making effective management decisions. In this regard,
hydrology and water resources planning are particularly interested in creating a model to

predict reservoir flow (Coulibaly et al., 2000; Lohani et al., 2012).

Due to the nonlinear properties and spatio-temporal distribution of the data, reservoir flow
patterns are too complex processes to be represented by direct prediction models. (Bai et
al., 2015; Lin, Chen, Wu, et al., 2009; Valizadeh et al., 2017). Two main approaches to
inflow forecasting have been investigated in earlier research (e.g. (Coulibaly et al., 2000;
Gragne et al., 2015; Hidalgo et al., 2015; Kisi, 2004; Zealand et al., 1999)): 1) conceptual

"physical" model as well as ii) the system-theoretic (data-driven) models.

Conceptual models for reservoir flow prediction are made to approximately represent the
physical mechanisms and general internal subprocesses that control the hydrological
cycle inside of their structures (in a physically realistic manner). These models are usually
nonlinear, time constant, as well as deterministic, with parameters denoting the
characteristics of reservoir flow. They often incorporate simplified versions of physical
laws. For pragmatic reasons (data availability, calibration issues, etc.), up until recently,
the majority of putative reservoir inflow prediction models have combined variable
representations (Gragne et al., 2015). Although the spatially distributed, time-varying, as
well as stochastic aspects of the flow process are disregarded, these models make an effort
to include accurate depictions of the principal linearity that exists in the relationships
between flows and climatic parameters. Complex mathematical tools, extensive

calibration, as well as a certain level of model experience, are some of the challenges that



can arise during the implementation as well as calibration of a model of this type (El-

Shafie & Noureldin, 2011).

While conceptual models are crucial for understanding hydrologic processes, many real-
world scenarios exist, for instance, forecasting influx, where accuracy at specific places
is the primary concern. Instead of building a conceptual model, creating and applying a
more straightforward system-theoretic model is more efficient. In order to model complex
hydrological processes, hydrologists have concentrated their efforts on employing rapidly
expanding data-driven models founded on system theoretical ideas. This is due to the fact
that data-driven models may faithfully replicate the input-output dynamics of water
systems without necessitating a deep comprehension of the underlying physical

mechanisms of the system (Keshtegar et al., 2016).

Because linear approaches are relatively easy to develop and implement, they are often
used for forecasting inflows (Valipour et al., 2013). While these methods have produced
good results, they have failed in various aspects of implementation, primarily because
they are unable to address the nonlinear and dynamical behavior of the inflow values
(Arunkumar & Jothiprakash, 2013; Jothiprakash & Magar, 2009). One of the most
popular linear methodologies in this approach is the Auto-Regressive Moving Average
(ARMA), which was established by Box and Jenkins in 1970. Alternative nonlinear
models are in high demand because these models are not always able to achieve high

accuracy levels.

Evaporation is the reservoir system's second most important hydrological parameter.
Evaporation happens when a variation in vapor pressure exists between the surface of the
water and the surrounding air. The primary factors influencing evaporation patterns are

solar radiation, temperature, relative humidity, vapour pressure deficit, atmospheric



pressure, as well as wind speed. It is important to consider evaporation losses when
designing irrigation systems and water resources. In areas with little rainfall, evaporation
losses can make up a sizable amount of a lake or reservoir's water budget and have a
considerable impact on the decline in the water's surface level (Ghorbani et al., 2017,
Tabari et al., 2010a). In fact, evaporation causes a significant amount of water to be lost
from reservoirs. Calculating the volume of water that evaporates is a critical component
of water resource planning and management. As a result, precise forecasting of
evaporation from a water body is critical for water resource monitoring and allocation. A
reliable predictive model for evaporation forecasting is required to determine the volume
of water in a reservoir system. Successful evaporation modeling aids decision-makers in
achieving water resource management reliability (Guven and Kisi 2011; Allawi and El-

Shafie 2016a).

1.2  Problem statement

Soft computing methods, like as Artificial Intelligence (Al) methods, have become a more
and more common modeling tool for anticipating evaporation and inflow. Soft computing
models, which have a better ability to detect the dynamics of nonlinearity within the
reservoir evaporation and inflow patterns, have gradually supplanted traditional models
over the past three decades. Recent studies on the application of soft computing
techniques provide evidence of their appeal (Danandeh Mehr et al., 2013; Deo & Sahin,
2016; El-Shafie, Abdin, & Noureldin, 2009; Guo et al., 2011a; Kisi et al., 2012; Malik et
al., 2018). However, the mathematical procedures associated with the classic Al methods
are facing difficulty in detecting the highly stochastic patterns and wide range attributes

of the inflow and evaporation data, which warrants a need to enhance their procedures.



The Deep Learning Neural Network (DLNN) method is one of the new versions of
machine learning that are considered in the current research, which can contribute to
overcoming the classical Al models. The recognition of the appropriate features to
develop the DLNN model's learning procedure has been observed to be a serious element
in the computer aid model development. Thus, the reliable nature-inspired optimization
called genetic algorithm has been integrated as feature selection for the proper lead time
reservoir inflow and evaporation forecasting. As a matter of fact, stochasticity variance
from one dam to another is varied; hence, the adopted methodology can be implemented
on two different inflow mechanisms in which the generalization manner can be inspected

for this hydrological problem.

In reality, reservoir simulation is considered the first stage of optimization modeling to
generate optimal operating rules. The simulation procedure still depends on the
deterministic data for inflow and evaporation parameters. This procedure for the reservoir
system considers that the perfect prediction is available. In fact, this assumption is
inappropriate and does not reflect the realistic state of the reservoir system. As a result,
the conventional reservoir and dam system simulation process needs to be changed. In
this regard, this specific study presents a fresh approach to realistic reservoir system

simulation.

1.3 Scope of work

A thorough review of the literature researches propose using artificial intelligence
methods was conducted to forecast whether the evaporation or the inflow parameters will
be used to determine their drawbacks. The majority of Al-based methods now in use have
these drawbacks. First, the Al-based models require specific adaptation for the learning

mechanism to use historical data to extract important information. Second, while



conventional Al-based models require multiple trial-and-error processes to determine
their optimal architecture, several model internal parameters must be optimized. Third,
the existing Al models might suffer an over-fitting problem, so the Al models could
experience a significant reduction in the model accuracy when switching from training to
testing mode. The present study will focus on adapting the DLNN method in order to
overcome the first drawback and probably detect the information and features of the
historical data for both inflow and evaporation data parameters. In addition, different
model architectures and configurations will be examined. The proposed models will be
combined with a common optimizer algorithm to search for optimal input variables and
internal parameters. The developed model's performance will be evaluated against that of

the traditional Al models.

To examine the ability of the suggested DLNN method to be widely applied, the method's
performance will be evaluated in two different case studies. The first case study is Dukan
Dam, located in the semi-arid region. Next, the second case study is Timah Tasoh Dam
(TTD) which is located in a tropical region. Several time series of monthly records of
inflow and evaporation have been collected and considered for modeling purposes. Daily
reservoir inflow data time series between January 2010 and December 2020 and daily
evaporation data from 1st January 2015 to 31st December 2020 are collected from the
Dukan Dam. Moreover, monthly inflow data for 1st January 1989 to 31st December 2013
and monthly evaporation data for 1st January 1994 to 31st December 2013 are collected

from the TTD.

The new simulation procedure will be implemented to simulate the reservoir system under
real conditions. The proposed simulation procedure will be determined by the two distinct

situations. In the initial case, the worst predictive model will be adopted to provide the



expected data. In contrast, in the second scenario, the best model will be used to predict

the hydrological parameters during the simulation period.

1.4 Objectives of research

The present research seeks to increase the forecasting accuracy of reservoir inflow and

evaporation. The primary goals of this research are:

1. To apply the RBF-NN, MLPNN and DLNN methods as prediction models to
better reveal the features of the hydrologic parameters of a reservoir.

2. To examine different model structures and configurations to improve the
prediction accuracy of reservoir flow and evaporation.

3. To examine the generalization ability of the proposed prediction model in
tropical and semi-arid regions.

4.  To propose a new simulation procedure for the reservoir system.

1.5 Thesis outline

The trajectory of Al development in reservoir simulation's primary components, reservoir
inflow, and evaporation forecasting is examined in the second chapter. This chapter's
primary focus was on pertinent research projects completed during the previous 20 years.
This study outlined the efficiency with which applied Al techniques have produced high-
efficiency predictive models, specifically with regard to input variables, the efficiency of
Al-integrated modeling, and the external or internal structure of the Al models. Finally,
a critical assessment of the characteristics of prediction methods and disadvantages of
prediction of the primary hydrological parameters pertaining to the reservoir system (i.e.,

reservoir simulation) has been reported.



The methodology and case study sections were given in Chapter 3 and presented in sseven
main parts. The first part summarizes the strategy of research methodology. The second
part introduces the methodology of forecasting methods, which are Radial Basis Function
(RBFNN), Multi-Layer Perceptron Neural Network (MLPNN), as well as DLNN. The
input selection and forecasting model structure are presented in the third part. Integration
between predictive models with the optimizer algorithm will be presented in the fourth
part. The performance criteria equations provided in the fifth section have been used to
assess the performance of the suggested models. Sixth part of Chapter 3 presents the
methodology of the new simulation procedure of the reservoir system. An overview of
the reservoir system's evaporation and inflow data has been introduced in seventh part. A
description of two cases of study is presented in this section. Two different climate zones
(semi-arid and tropical regions ) are selected. Dukan Dam is located in the semi-arid
region, whereas the TTD is located in the tropical zone. Chapter 3 also outlines the details
of the time series for the evaporation and inflow of reservoirs in addition to the data

duration for each parameter.

Chapter 4 presents the outcomes of the suggested models for two case studies. The
introductory part presents the structure of this chapter. The comparison between the three
forecasting methods is given in Chapter 4. This particular chapter addresses how accurate
are the forecasts obtained by the developed models. Moreover, the simulation results

obtained using the proposed procedure will be discussed in that chapter.

Chapter 5 presents the results of the models' performance as well as suggestions for

further exploration.



CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

Droughts and floods occur frequently in numerous regions of the globe due to climate
change. These phenomena challenge the planning and management of water resources
(Ehteram et al., 2017). In addition to controlling these phenomena, dams and reservoirs
are constructed for a variety of uses, including irrigation, hydropower production, as well
as water supply. There is a noticeable amount of rivalry and conflict among reservoir
purposes, especially when conditions are critical (Labadie, 2004). As a result, finding and
defining the best operating rules is often a complex problem while managing a reservoir

system.

A water reservoir is a closed space used to store water for later use. It is also used to
collect floods, protect lower valleys, create an aquatic environment, or alter the properties
of water. The main parameters of the reservoir are volume, submerged area, and range of
water level fluctuation. The primary function of an artificial reservoir is to change the
flow rate of a stream or store water for optimal use. Climatic conditions, such as
temperature, solar radiation, and rainfall, affect the amount of storage in the reservoir.
Moreover, hydrological parameters, such as inflow, evaporation, and seepage, directly

affect the control of water storage in the reservoir.

The operation of the dam reservoir is among the most significant obstacles that planners
and decision-makers must overcome in order to utilize the water resources that are
currently available. Accordingly, the focus should be on further studies to enhance the
durability as well as efficiency of a dam reservoir system's operations to optimize

beneficial uses of the system (Higgins & Brock, 1999).



Optimization algorithms are appropriate tools to address reservoir operation problems
and enhance water resources management field. Past researches have employed various
models of optimization for the operation of dam reservoir systems. The two main
categories of optimization algorithms are evolutionary as well as conventional
(traditional) methods (Ahmadi et al.,, 2014; Ashofteh et al., 2015). The traditional
approach is useful for determining the proper way to achieve the maximum and minimum
unconstrained functions of continuous functions (Wehrens et al., 2000). The first
approach includes linear and nonlinear dynamic programming, random search, stochastic
programming, etc. Many previous studies have applied these techniques when using the
reservoir system. Yet, the performance of such traditional approaches is imprecise in
addressing the complex operational issue, especially with multi-purpose reservoirs

(Bozorg-Haddad, Janbaz, et al., 2016).

The problem of a dam reservoir's ideal operation is resolved by applying evolutionary
techniques. Previous studies reported that evolutionary methods have higher efficiency
and reliability than conventional techniques. These methods provide satisfactory results

in handling and solving the multi-objective functions.

Indeed, the accuracy of the data on hydrological parameters is essential for the effective
management of the dam reservoir operation. The inflow and evaporation parameters have
the largest influence on the operation procedure among hydrological parameters. As a
result, to achieve an effective dam reservoir operating policy, it is crucial to establish an
accurate predictive model that can forecast inflow and evaporation records (M. F. Allawi,
Jaafar, Mohamad Hamzah, & El-Shafie, 2019; M. F. Allawi, Jaafar, Mohamad Hamzah,

Koting, et al., 2019).
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Reservoir inflow forecasting is a large and active research area in the field of water
resources. In actuality, there are a number of meteorological parameters that influence the
behavior and pattern of the inflow parameter. Accordingly, long- and short-term forecast
models are crucial for the long-term sustainable management of water supplies. Because
of influence of the numerous phenomena, including solar radiation, and relative humidity,
in addition to rainfall, on the inflow behavior, the actual inflow time-series data are
frequently nonlinear, non-stationary, as well as temporally variable. The reservoir flow
mechanism will likely be extremely different from time to time and from one place to
another. Therefore, forecasting reservoir flow with acceptable accuracy is quite

complicated (Guo et al., 2011Db).

Over the past few years, it has been noted that there has been a significant increase in the
type and number of methods developed that can be used to model and predict hydrological
parameters, including popular data-driven methods. Traditional black box time series
methods, for instance, Auto-Regressive Integrated Moving Average (ARIMA), Linear
Regression (LR), and Nonlinear Regression (NLR), assume that the data for hydrological
parameters are stationarity and linear (Solomatine & Ostfeld, 2008). Thus, such methods
are often unable to deal with the instability and nonlinearity involved in the hydrological
process. As a result, previous studies have paid a lot of attention to developing models

capable of modeling nonstationary and nonlinear processes.

Another significant problem with the dam and reservoir system's operation is
evaporation-related reservoir losses. One of the most important steps in creating a reliable
operating policy is estimating the volume of surface water losses. Knowing how much
water is available in the dam reservoir at any given time is essential for developing a

modern model that accurately predicts reservoir evaporation (Fayaed et al., 2013).
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Two primary methods exist for calculating evaporation from an open body of water:
indirect and direct methods. The first technique is gauging the evaporation pan using tools
such as class U-pan, A-pan, and others (Farnsworth & Thompson, 1982; Rosenberg et al.,
1983). The indirect approach includes many methods such as water budget (Guitjens
1982), energy budget (Fritschen 1966), mass transfer (Harbeck 1962), combination
(Penman 1948), as well as measurement (Arthur A. Young 1947). Even though these
equations or techniques have been employed in past research, the majority of the
suggested approaches necessitate a significant amount of observed meteorological data.
As such, they are more likely to make mistakes. Because data is not always available,
using such methods can be challenging (Bai, Chen, et al., 2016; Yu et al., 2017).
Furthermore, the intricate nonlinear pattern of evaporation factors makes the empirical
equations less effective than necessary and fails to yield encouraging findings (Nourani
& Fard, 2012). Therefore, an efficient and accurate predictive model is needed that is

capable of detecting evaporation patterns with a high level of accuracy.

In the past few decades, numerous contemporary techniques have been created to predict
the hydrological parameters of a reservoir, such as Artificial Intelligence (Al) models.
Hydrologists have been interested in Al methods in dealing with non-static, dynamic, and
stochastic patterns of hydrological databases. These computational methods and models
have a high capacity to overcome complex simulations of pattern parameters. The Al-
based models are distinguished by their ability to handle a large amount of data. The
prediction of evaporation and inflow depends on several environmental parameters, and

these traits are subject to temporal fluctuations (Nourani et al., 2014).

Recently, the number of data-driven methods used in hydrologic modeling has

significantly increased; this is especially true for evaporation and inflow data prediction.
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Particularly, a variety of Al techniques, including artificial neural networks (ANN),
support vector machines (SVM), and fuzzy logic (FL), as well as others, have been
applied in the field of forecasting the primary hydrological parameters in a reservoir

system (Ehteram et al. 2019; Rezaei et al. 2021; Hanoon et al. 2022).

2.2 Artificial Neural Network (ANN)

The most common type of artificial intelligence method is ANN, which was created using
the network theory of the human brain (Haykin, 1994). An ANN's architecture typically
consists of three main layers: 1) input, ii) hidden layer, and iii) output. There are multiple
input nodes in the first section; the total number of nodes depends on the number of input
variables. The second part of the architecture has one or more activation-functioning
hidden layers, in contrast to the last part, which has only one output layer node. There
exist three distinct types of ANN: i) Radial Basis Function Neural Network (RBFNN), ii)
Feed-Forward Neural Network (FFNN), and iii) Generalized Neural Network (GNN).
The FFNN model is widely used in solving engineering problems, and it could be
considered a promising nonlinear tool (Hornik et al., 1989). By determining the ideal set
of connection weights, this type of model seeks to reduce the calculated error between
the predicted and actual records. Broomhead and Lowe (1988) made the initial proposal
for RBFNN. The RBFNN model has a popular activation function called radial basis.
Such type of ANN can address complicated issues such as water resources problems.
GRNN was introduced by (Specht 1991). This model does not need an iterative training

procedure like the RBFNN model.

Coulibaly et al. (2000) evaluated the ability of FFNN model to forecast inflow data. Many
statistical indicators have been used to evaluate the predictive method. The findings

demonstrated that, in comparison to alternative prediction models, the FFNN approach
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increased prediction accuracy. In additional investigation, Coulibaly et al. (2001)
employed Dynamic Neural-Network (DNN) method to forecast inflow data. Several
embedded representations of temporal information have been taken into consideration
when examining three distinct forms of temporal neural network topologies. The Multi-
Layer Perceptron Neural Network (MLPNN) approach was used to compare the
methodology's performance. They discovered that DNN might be a useful instrument for

producing high-quality resins for influx prediction.

Streamflow forecasting for Nile River, which is located in Egypt, has been carried out by
several previous researchers. In 2009, El-Shafie et al. (2009b) developed the RBFNN
method to forecast inflow data. The proposed prediction methods were created utilizing
historical data from natural inflow spanning 30 years, collected from four different
monitoring stations upstream. A thorough analysis has been conducted to assess the
efficiency as well as performance of the recommended methodology. The study explored
that forecasting accuracy has improved by 50% during the low inflow season. The
forecasting error magnitude and its distribution obtained when using the RBFNN model

are better than those obtained by other predictive methods.

In another research, ElI-Shafie and Noureldin (2011) developed two generalized methods
called Ensemble Neural Networks (ENN) as well as Regularized Neural Networks (RNN)
to overcome the drawbacks of classic ANN. Actual monthly streamflow data over 130
years has been utilized for training, testing and validation the suggested methodology.
The outcomes demonstrated that the RNN model outperforms the ENN and conventional
ANN models. Good improvement in forecasting accuracy was attained with the RNN

model.
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Development for the Dynamic Auto-Regressive Neural Network has been done by
Valipour et al. (2012). The developed model was employed to forecast inflow data for
Dez Dam, located in Iran. In order to assess the suggested model's validity and reliability,
the dynamic auto-regressive model's performance was compared to the static neural
network method. Different architectures have been made for the models used, considering
two transfer functions, sigmoid and radial basis functions. The study concluded that using
the sigmoid function with a dynamic model could enhance the forecasting results. The
results supported the performance of the dynamic model in contrast to alternative

forecasting techniques.

In the same case study (Dez Dam), the efficiency of three different models to forecast
monthly inflow was investigated by Valipour et al. (2013). The monthly inflow data from
1960 to 2007 were considered in the study. The observed inflow data over 42 years were
utilized to train ARMA, ARIMA, as well as auto-regressive neural network models.
Meanwhile, the past 5 years were used to test the proposed forecasting models. A number
of statistical metrics have been used to assess how well various approaches work. The
ARIMA method outperformed the ARMA method. Additionally, the outcomes showed
that the Dynamic Auto-Regressive Neural Network outperforms the static model. Elizaga
et al.,, (2014) utilized neural network-based backpropagation models for predicting
reservoir inflow. Based on a comparison of the actual and anticipated values, the

suggested methods provided acceptable prediction accuracy.

Chiamsathit et al. (2016) used the MLPNN model to predict a reservoir inflow at the
Ubol-Ratana Dam in Thailand that is one step ahead of schedule. They looked at how the
reservoir operation was affected by the forecasted accuracy level. Overall, it is possible

to view the suggested model as an appropriate tool for predicting reservoir inflow.

15



Apaydin et al. (2020) utilized a recurrent neural network (RNN) model to forecast daily
inflow data. The RNN model's performance is assessed in relation to that of the
conventional ANN model in order to validate the predictive model. According to the
study's findings, the RNN model forecasts reservoir inflow records more accurately than

the ANN model.

Lee et al. (2020) examined the performance with regard to three popular data-driven
models, namely, MLP, ANN and SVM, to forecast monthly reservoir inflow. These
predictive methods were evaluated using the coefficient S (expected error), NSE (Nash-
Sutcliffe Efficiency), and other indexes. The research found that the developed models
could be promising tools for forecasting inflow data. Hadiyan et al. (2020) studied the
possibility of using an ANN model for reservoir inflow forecasting. The research
provided useful information for simulated inflows at the Sefidround reservoir located in

Iran.

The second hydrological parameter in the reservoir system is evaporation. Indeed, several
previous studies have developed many artificial intelligence methods to predict reservoir
evaporation values. Keskin and Terzi (2006) used the ANN approach to estimate daily
evaporation. Several climate characteristics were used as input variables, including
temperature, wind speed, humidity, sun radiation, and others. The prediction findings
showed a reasonably good agreement between the actual daily evaporation records and

the ANN-generated forecasted values.

The ability of the ANN method has been evaluated by comparing it with a radiation-based
method and temperature-based method by Tan et al. (2007). The proposed methods were
applied to predict daily and hourly evaporation data. Analysis of the original evaporation

and climate parameters has been conducted. The study showed a high correlation between
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solar radiation and evaporation for both time scales (hourly and daily). Meanwhile, the
relative humidity parameter influences the daily evaporation scale. The researchers have

found that the ANN model's efficiency is greater than that of conventional methods.

Moghaddamnia et al. (2009b) have developed two popular Al-based models (e.g., ANN
and Adaptive Neural Fuzzy Inference System (ANFIS)) to forecast data on evaporation.
The performance of such models has been evaluated by comparing them with different
empirical equations. It is noted that ANN and ANFIS models achieved their aims with
some interesting outputs concerning the influence of climate parameters. The study first
concluded that the outcomes from the ANN and ANFIS methods were superior to those
from empirical equations. Secondly, the ANN efficiency is relatively better than that of
the ANFIS method. Pertaining to this research, the Gamma Test (GT) approach was
employed to boost prediction accuracy by improving ANN and ANFIS performance. The
study recommends giving significant attention and gaining a wider experience regarding

the input selection approach.

The estimation of daily evaporation values for the Hamedan province region located in
Iran was carried out by Tabari et al. (2010). They employed both ANN as well as
Multivariate Nonlinear Regression (MNLR) methods. Five different architectures of
proposed models were developed based on several input variables. The study found that
temperature and wind speed have a big impact on the accuracy of the prediction. The
outcomes showed that ANN approach could be a promising tool for evaporation

prediction by comparing it with the MNLR method.

Allawi and El-Shafie (2016b) have studied the possibility of using two Al-based models
(i.e., RBFNN and ANFIS) for daily evaporation records. They applied models to predict

the evaporation records for the Layang Reservoir, which is situated in southeast Malaysia.
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Daily air temperature, humidity, pan evaporation, and solar radiation for 40 years have
been used to test and train the suggested models. To assess and investigate the availability
and dependability of the suggested predictive models, a number of statistical metrics were
used. According to the indicators, both AI models produced predictions that were
satisfactory. In terms of daily evaporation value prediction, RBFNN outperformed

ANFIS.

The RBFNN, Self-Organizing Map Neural Network (SOMNN), as well as MLR models,
were used by Malik et al. (2018) to forecast data on evaporation. The prediction modeling
was structured based on several meteorological parameters. The predictions obtained by
RBFNN were more accurate than those obtained by SOMNN and MLR models. The
study reported that the RBFNN model is an effective and robust predictive model in

estimating reservoir evaporation records.

In further research, Allawi et al. (2019¢) examined the reliability and efficiency of ANN
and Support Vector Regression (SVR) models in forecasting reservoir evaporation. To
verify the applicability of the prediction models, two distinct scenarios for the input
variables were put forth. In comparison to the SVR model, the ANN model produced

more accurate predictions, according to the statistical indices.

Allawi et al. (2025) applied two various artificial intelligence models which are ANN and
SVR to predict evaporation data. The proposed methodology was evaluated utilizing
numerous statistical indexes. The ANN and SVR have been used to predict daily
evaporation data of the Haditha dam located in Iraq. The research found that the reliability

of the ANN method is better than SVR method.
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2.3  Support Vector Machine (SVM)

The SVM method was promoted as a modern algebraic realizing model and proven to be
a strong and effective method for classification and regression for stochastic data sets by
comparing its performance with the conventional methods. In fact, the concept of the
SVM model is based on drawing the input data group into towering dimensional introduce
space to streamline the regression issue and re-provide the unknown relationship between
the input-output variables. The SVM approach's mechanism is simple, which modelers
could adequately understand. The further attraction of such a model is its remarkable
superiority over other forecasting methods such as ANN, decision trees, and nearest
neighbors. The SVM employs a kernel trick function to establish information regarding
the problem type to minimize forecasting error and model complexity jointly. Indeed, the
prediction ability of the SVM model can be understood by several essential theories,
including soft margin, separation hyperplane, hard margin, and kernel function separation
hyperplane. Numerous previous studies have employed SVM-based models to forecast

inflow and evaporation parameters.

Accurate reservoir inflow forecasting is important in managing and scheduling reservoir
systems. In 2006, LIN et al. (2006) employed SVM to project the monthly values of
reservoir inflow. To test the validity of the suggested model, two different forecasting
models have been employed for comparison: Auto-Regressive Moving Average (ARMA)
and ANN method. They have found that SVM-based models are expected to be promising

tools due to their efficiency, robustness, and accuracy in forecasting reservoir inflow data.

SVM-based efficient inflow forecasting models are introduced by Lin et al. (2009a). The
SVR has better generalization, the weights of the SVR are guaranteed, and the SVR is

trained much more rapidly. A comparison has been made between the suggested model's
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performance and the Backpropagation Network (BPN) according to several statistical
indicators. The obtained results indicated that compared to BPN-based models, the
suggested SVR-based models are more efficient and reliable. The study recommended
that the SVR-based models could be helpful in increasing the accuracy of inflow

forecasting and as an alternative to the existing forecasting methods.

Modification for the SVM model has been carried out by Li et al. (2009) to predict
reservoir inflow. The updated model was employed for reservoir inflow forecasting for
the Shihmen reservoir, which is in Taiwan. The forecasting modeling was established
based on several input variables, including meteorological parameters. The Genetic
Algorithm (GA) was applied in order to identify the SVM model's ideal internal
parameters. The SVM-based models achieved excellent forecasting accuracy. From the
point of view of several statistical indicators, the study showed that the modified SVM

can be a promising model for forecasting reservoir inflow.

Temperature, sun radiation, rainfall, and other climate parameters have been embedded
to establish the reservoir inflow modeling by Noori et al. (2011). Monthly inflow data is
anticipated using the SVM method. The best input combinations for modeling have been
chosen using a variety of input selection algorithms. SVM's performance is examined in
comparison with the conventional ANN model. They concluded that the suggested
model's (SVM) efficiency is superior to the ANN model in forecasting reservoir inflow
data. Plus, the selection of the proper input combinations has a considerable role in

improving the forecasting accuracy.

Several previous studies have also utilized SVM-based models for reservoir evaporation
prediction. In 2009, Moghaddamnia et al. (2009a) combined the Gamma Test (GT)

technique with the SVR method for the daily prediction of evaporation records. The
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Gamma Test (GT) technique has been employed for choosing the optimal input .variables
among many meteorological parameters. A comprehensive evaluation and analysis have
been done for the proposed model using popular statistical indicators. The performance
of SVR was examined by comparing it with empirical equations. The results show that
good prediction accuracy was obtained when using SVR. The utilization of GT with the

SVR model has improved the predictability of reservoir evaporation.

Reservoir evaporation prediction values based on SVR modeling have been developed by
Baydaroglu and Kogak (2014). Five different input variables have been considered for
modeling, which include wind speed, temperature, solar radiation, as well as time-lag
evaporation. The best input combinations to feed the SVR-based models were determined
by a popular technique called the Chaos algorithm. In the study, two different prediction
models were employed, which are ANN and ARIMA models. The best SVR could
achieve satisfactory prediction accuracy. The proposed model, based on combining SVR
with the Chaos algorithm, provided accurate predictions in contrast to the finest ARIMA

and ANN techniques.

Considering how intricate the evaporation pattern is and the lack of meteorological and
hydrological data in the reservoir area, the models based on physical processes have
limited applicability in predicting the evaporation data. In light of this, Tezel and
Buyukyildiz (2016) investigated the efficiency of three different models, including Multi-
Layer Perceptron (MLP), RBFNN, and SVR, for evaporation prediction. SVR and
RBFNN models have attained the best accuracy of the prediction, but the SVR method
was a little better than the RBFNN model. The study results showed that the SVR method

could be more suitable for predicting evaporation data.
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2.4  Fuzzy Logic

The primary aim of designing mathematical models is to maximize the advantage of such
models. To achieve this, many key features, including the model system, should be
considered, including credibility, uncertainty, and complexity. It could be observed that
allowing more uncertainty could lead to minimizing the complexity and then obtaining
more reliable results from the model. Based on such a concept, Zadeh (1965) has
proposed fuzzy theory sets whereby the primary characteristic of such theory is
addressing and studying the uncertain characteristics that could exist in the parameter
patterns. In fact, the fuzzy sets handle the uncertainty by studying the input parameters
connected with priority to focus modeling vagueness. Furthermore, the system considers
the input parameters to be a shape of space data, not crisp point data. In this way, the

system could smoothly solve the modeling ambiguity Klir & Yuan (1995).

It could be noted that the fuzzy system set has an important part called fuzzification,
which addresses uncertainties. Several past papers mentioned that the uncertainty feature
exists in the pattern of reservoir inflow and evaporation parameters (Cheng et al., 2015;
El-Shafie & Noureldin, 2011; Tan et al., 2007). Therefore, the modelers attempted to
develop and support the fuzzification part to increase the model's ability to handle
ambiguous data. The FL models have been employed for mapping between variables in
many engineering areas. In this chapter, the study focuses on the fuzzy models' utilization

for two main hydrological parameters which are inflow and evaporation.

The ANFIS method was used to forecast reservoir inflow using monthly data at Nile River
located in Egypt by El-Shafie et al. (2007). The ANFIS method is highly capable of
addressing the uncertainties and ambiguities present in the inflow pattern. The historical

data for 130 years was employed to train and test the proposed model. The architecture
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was established based on multi-lead inflow for enhancing the model's ability. The
proposed modeling was developed to be eligible for 3-month-ahead forecasting. The
research has shown that the ANFIS-based models exhibited high accuracy and
harmonious performance when forecasting inflow. The ANFIS performance was
compared to a popular predictive model called MLPNN. The proposed model
outperformed MLPNN and has shown superior strength and reliable performance in

predicting monthly reservoir flow.

BAE et al. (2007) have utilized ANFIS-based models to forecast inflow data. They
concluded that the ANFIS model has a high ability to provide accurate results. The study
demonstrated that the ANFIS model outperformed other predictive models. Moreover,
Wang et al. (2009b) studied the performance of several Al-based models to forecast
monthly reservoir inflow records. The monthly inflow data was collected from two
different case studies. The research used the collected data to develop different predictive
models, namely ANFIS, SVM, ANN, ARAM, and Genetic Programming (GP)
technology. The findings showed that ANFIS, GP, and SVM models can achieve the best

efficiency depending on a number of criteria for assessment.

Lohani et al. (2012) compared the effectiveness of the ANFIS approach with that of the
ANN and Auto-Regression (AR) models in order to anticipate monthly lake inflow. The
suggested approach was actually used to predict inflow statistics for India's Bhakra Dam.
Predictive techniques were evaluated using a number of widely used statistical markers.
The findings showed that for reservoir inflow forecasting, ANFIS-based methods

outperform ANN and AR methods.

Awan and Bae (2013) developed a predictive model based on the ANFIS method to

forecast monthly inflow data. Monthly inflow, temperature, and rainfall data are input
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variables to train the proposed models. Different architectures of the proposed model have
been considered based on different input combinations. The study showed that using
rainfall parameters as input variables improves forecasting accuracy. The results

demonstrated the ANFIS model's effectiveness in forecasting reservoir inflow data.

Monthly and Yearly reservoir inflow forecasting modeling has been developed by Bai et
al. (2016b). They adopted the Even Grey Model (EGM) and ANFIS model for forecasting
both time scales. The proposed models have been applied to forecast the inflow for the
Three Gorges reservoir, and the data were collected from January 2000 to December
2012. The prediction accuracy of reservoir inflow data is improved substantially by the
proposed models. Two peer methods, the ANN and autoregressive integrated moving
average method, were used to inspect the predictive model. According to several
evaluation indicators, the results showed that the developed predictive model is better

than other methods.

The CoActive Neuro-Fuzzy Inference System (CANFIS) was modified by Allawi et al.
(2017) to forecast monthly reservoir inflow data. The authors utilized the suggested
CANFIS method for a case study located in Egypt, Aswan High Dam. A comparison has
been made between the CANFIS model and other Al-based models. The evaluation
criteria demonstrated the advantage of the CANFIS model by comparing with the other

predictive approaches.

Practically speaking, there are difficulties faced by hydrologists when using Class-A pan
with regard to direct measurements. To overcome such difficulties, Keskin et al. (2004)
utilized the FL model for daily pan evaporation prediction. A comparison of the efficiency
of the ANFIS method was made with the Penman empirical equation. The study results

revealed that the ANFIS model achieved good accuracy and has a significant ability to
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predict evaporation data. The researchers recommended adopting the ANFIS model as a

promising predictive model for reservoir evaporation prediction.

In 2012, Tabari et al. (2012) investigated the CANFIS model's ability to predict pan
evaporation data for a semi-arid region of Iran. A comparison of the proposed CANFIS
model has been carried out with the MLP model. The performing of the predictive
methods were assessed using several numerical indexes. The study found that the
CANFIS method is more reliable in predicting evaporation data compared to the MLP

model.

In the study of Salih et al. (2019), the CANFIS model was employed to predict monthly
evaporation data. CANFIS performance was compared to that of the three Al-based
models, which are SVR, ANFIS, and ANN models. Several statistical indicators have
proven the reliability and effectiveness of the CANFIS model in predicting reservoir

evaporation records.

The CANFIS method was modified by Allawi et al. (2020a) in order to predict monthly
evaporation data. A comparison between the performance of the modified CANFIS with
ANFIS, RBFNN, and SVR models was performed using several evaluation indicators.
The study found that a modified CANFIS model can predict evaporation records more

accurately than other predictive Al-based models.

2.5 Hybrid and Other Models

Different other predictive models were developed to forecast the hydrological parameters,
like combining optimization algorithms or data preprocessing techniques with Al

methods.
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Indeed, there are several editable internal parameters that identify the final shape of the
model structure. Over the last decades, numerous studies have been conducted on the
development and application of evolutionary algorithms to improve the performance of
Al models. Such algorithms attempt to find the optimal form of internal parameters of Al

models that could produce robust and effective modeling.

Many techniques were developed to address the stochastic process involved in raw data.
Wavelet Transform (WT) is the most popular technique for data preprocessing. WT is a
significant model for analysis and handling time series data. The use of this technique has
increased dramatically since its introduction in 1984 by Grossmann and Morlet (1984).
The primary objective of using the WT approach is to analyze the original data in terms
of frequency and non-static, thus producing significant information about the time-series

data.

The ability of the ANN model with WT has been investigated for reservoir inflow
forecasting by Wang et al. (2009a). They applied a predictive method to forecast the
inflow parameter for the Three Gorges Dam, located on the Yangtze River in China.
WNN's performance was evaluated by comparing its efficiency with a common predictive
model called the Threshold Auto-Regressive (TAR) model. The study showed that the
proposed model attained excellent results. The forecasting accuracy level is improved
when using WNN compared to another model. The researchers concluded that further
improvement in the WNN procedure could produce a robust and effective predictive

model.

In further study, the integration between the Particle Swarm Optimization (PSO) with the
SVM model has been carried out by Wang et al. (2010) to forecast annual inflow data.

The objective of the PSO algorithm is to find the optimal parameters of the SVM model.
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A comparison between the suggested model (PSOSVM) and the ANN model was
conducted using several statistical indicators. The results obtained demonstrated that the
PSOSVM model is better than ANN in forecasting reservoir inflow. According to the
research, the PSOSVM-based approach may serve as a substitute for current prediction
methodologies. The researchers suggest that the forecasting model's precision and
efficacy can be enhanced through the integration of SVM with techniques for

optimization.

The capacity of the M5 Tree (MT) model to predict inflow variables was examined by
Jothiprakash and Kote (2011). To confirm model performance, two distinct timelines—
monthly and seasonally—are taken into account. The superiority of the MT model over
the Moving Average model is evident. The statistical indicators demonstrated the great
effectiveness and dependability of the suggested methodology. The study's findings
showed that, when employing seasonal inflow records, the MT model produced accurate

forecasts.

The ANN, ANFIS, and Linear Genetic Programming (LGP) were employed for
multistep-ahead forecasting of inflow data by Jothiprakash and Magar (2012). Daily and
hourly inflow data have been utilized to establish the modeling structure. To illustrate the
applicability of the proposed models, the Koyna River watershed in Maharashtra, located
in India, has been chosen as a case study. The proposed model's reliability is evaluated
utilizing various performance criteria. The study found that the LGP-based model was

superior to other models for daily and hourly time scales.

The integration of three predictive models, FFNN, MLP, and RBFNN, with the WT

technique was done by Budu (2014) for reservoir inflow forecasting. Research has shown
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that WT technology improves prediction accuracy. The study recommended adopting WT

to enhance the original data to be understandable for the predictive models.

An ensemble model based on WT analysis, bootstrap resampling, and ANN (BWANN)
has been proposed by Kumar et al. (2015) to forecast inflow records. For comparison,
several peer models, including wavelet-based ANN (WANN), Multi Linear Regression
(MLR), WMLR, and Bootstrap and Wavelet-based MLR (BWMLR) models, were
adopted. Fourteen years of daily reservoir inflow data collected from upstream were used
to train and test predictive models. Several evaluation indicators were employed to check
the reliability and validity of the models used. The study found that the effectiveness of
WANN is superior to that of WMLR, ANN, and MLR methods. Another observation is
that the BWANN performance is superior to the BWMLR model and could be more

accurate and useful for daily reservoir inflow forecasting, as requested.

Heuristic methods for monthly reservoir inflow forecasting have been employed by
Cheng et al. (2015). The ANN, SVM, and SVM based on GA were employed to predict
inflow at the Xinfengjiang reservoir. A comparison has been conducted between the
hybrid predictive model and the classic ANN and SVM model. The study revealed that
three predictive methods have satisfactory performance in forecasting monthly inflow
values. Five statistical indicators revealed that the capability of the hybrid technique is
superior to that of ANN and SVM. It could be concluded that the hybrid technique is a

robust tool for long-term prediction.

The Multi-Scale Deep Feature Learning (MDFL) strategy was established by Bai et al.
(2016a) using modern model to manage the daily inflow forecasts. Ensemble empirical
decomposition and Fourier spectrum have been used to extract multiple time scales. The

structure of the proposed modeling was established using the historical daily reservoir
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inflow series for 12 years. The raw data was collected from the Three Gorges Reservoir
located in China. Four different predictive models were adopted to compare with the
suggested model. According to the attained results, the present model's efficiency
overwhelmed all the peer methods for the same task. The minimum forecasting error and
maximum correlation between the forecasted and actual data have been obtained using

the proposed predictive model.

In 2016, Bozorg-Haddad et al. (2016b) coupled the GA technique with the ANN model
to forecast inflow data. Historical data from two case studies were utilized to evaluate the
proposed ANN; 80% of the data was used to train, and 20% of the original data was used
to test the suggested model. The results demonstrated that the proposed hybrid model

(ANN-GA) is applicable and effectively forecasts monthly inflow data.

Moeeni and Bonakdari (2016) used an ANN with a linear seasonal auto-regression
integrated moving average (SARIMA) model. They looked at how well the suggested
forecasting framework predicted a dam reservoir's inflow data. The Jamishan Dam,
located in Iran, was chosen as a case study for this research. The efficiency of the hybrid
model (SARIMA-ANN) was compared with the SARIMA and ANN models. The study
investigated the effect of changing the forecasting period length on the accuracy level of
models. The results showed that the hybrid model forecasts peak inflow values much
better than the classic predictive methods. Moreover, the SARIMA model is more
accurate in forecasting low records compared to other Al-based models. Overall, the
forecasting error is minimized when utilizing the hybrid model more than other predictive
models. The correlation magnitude between predicted and original values is high with the

hybrid technique.

29



Li et al. (2016) have introduced two different predictive models, Deep Restricted
Boltzmann Machine (DRBM) and Stack Auto-Encoder (SAE), to forecast inflow data.
The proposed models have been employed to forecast daily reservoir inflow at Three
Gorges Reservoir and Gezhouba in China. This study investigates the utilization of deep
learning architectures for the forecasting of daily reservoir inflow, a topic of considerable
interest across multiple domains due to its capacity to extract and acquire valuable
features from extensive datasets. The autoregressive integrated moving average
(ARIMA), the basic fed-forward neural networks (FFNN), and two types of deep neural
networks (DNNs) built by integrating the FFNN with two deep learning of features
architectures—DRBM-based NN and stack SAE-based NN, respectively are evaluated.
Meanwhile, in 2020, Afan et al. (2020) used GA to select the proper input combination
for the predictive model. The integration has been made between RBFNN and GA to
forecast monthly reservoir inflow. The results showed that the proposed RBFNN-GA

model outperformed other predictive models.

Six machine learning models, including MLP, Decision Tree (DT), RNN, Random Forest
(RF), and Gradient Boosting (GB), were employed for inflow forecasting by Hong et al.
(2020). According to several statistical indicators, the MLP model attained the best
prediction results compared to other predictive models. On the other hand, the study found
that the GB and RF performed better than the MLP model when the inflow volume was
less than 100 m®/s. Therefore, a combination between MLP and those models (i.e.,
GBMLP and RFMLP) has been carried out. The developed model achieved a high level

of forecasting accuracy.

Tikhamarine et al. (2020) provided a robust and effective predictive model. The

improvement of forecasting accuracy was achieved by integrating SVR, ANN, and MLP
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with the Grey Wolf Optimization (GWO) algorithm. The research showed that hybrid
techniques are more accurate and reliable than classic Al-based models. Moreover, the
efficiency of the SVR-GWO method for inflow prediction based on the monthly data is

better than that of the ANN-GWO and MLP-GWO models.

In Zhang et al. (2020), three distinct data-driven models—ANN, ANFIS, and SVM—
were utilized to predict reservoir inflow. A number of climate variables were utilized as
input factors for the forecasting techniques, and the findings showed that the predictive

model is more accurate and dependable than the other theories.

Osman et al. (2020), the Fast Orthogonal Search (FOS) method was adopted to forecast
monthly inflow data. The study reported that the FOS method has the ability to avoid the
over-fitting problem. It was observed that the forecasting accuracy has been highly

improved using the FOS method.

In order to address the drawbacks of deep learning optimizers and increase deep learning
accuracy, Ryu and Lee (2025) suggests a combined optimizer (CO) that combines
adaptive moment and vision correction algorithms. The suggested method was employed
for inflow forecasting data of the Daecheong Dam located in Korea. The CO optimizer
addresses the storage space and convergence issues faced by deep learning optimizers.
Furthermore, CO was treated with explainable artificial intelligence (XAI), resulting in a

Dual-Al model that improves accuracy and interpretability.

Instead of utilizing the popular sigmoid activation function in the MLPNN model,
Abghari et al. (2012) employed the Wavelet function as an activation function. Two
different wavelet types have been considered: Mexican hat and polyWOGI. The
suggested models are applied for daily pan evaporation prediction. According to the
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obtained results, Mexican hat wavelet NN presented 98.35% and 96.04% accuracy during
training and testing sessions, respectively. Meanwhile, PolyWOG1 wavelet NN presented
95.92% and 91.03% accuracy during the training and testing phases, respectively. The
MLP model with the standard sigmoid function provided 90.6% accuracy in the training
period and 87.63 within the testing period. It has been observed that the MLP with

Mexican hat Wavelet achieved excellent performance accuracy.

In the research of Arunkumar and Jothiprakash (2013), the reservoir evaporation data
were predicted using three several data-driven methods, including ANN, model tree, and
GP method. The daily reservoir evaporation records for a period of 49 years were
employed to develop prediction modeling. The evaluation criteria showed that the GP
method is superior to the model tree and ANN method in predicting the evaporation

parameter.

Izadbakhsh and Javadikia (2014) coupled the FFNN model and GA technology to predict
the evaporation data of a dam reservoir. FFNN with GA to predict evaporation data from
the dam reservoir. The performance of the hybrid predictive model (FFNNGA) is
compared with the classic FFNN model. Several meteorological parameters, including
wind speed, sunshine, and temperature, are employed as input variables for modeling.
The researchers found the proposed predictive model (i.e., FFNNGA) is accurate and
reliable in predicting evaporation data compared to the classic FFNN model. The

FFNNGA could be a promising predictive tool for reservoir evaporation prediction.

A hybrid model consisting of MLP with a Fire-Fly Algorithm (FFA) was adopted by
Ghorbani et al. (2017) to predict pan evaporation records. The execution of the MLP-FFA
method has been examined by assessing the accuracy of its forecasting with standard

MLP and SVM methods. The results demonstrated that the hybrid predictive model
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outperformed other models. The study found that the FFA technique improves the

accuracy of the forecasted evaporation data.

Allawi et al. (2020b) developed a new predictive method called CANFIS to predict
monthly reservoir evaporation records for two different case studies. GA has been
employed to obtain optimal internal factors of the suggested model. The execution of the
GACANFIS in predicting evaporation data was inspected by comparing it with GASVR,
GAANFIS, and GARBFNN models. A hybrid model (GACANFIS) succeeded in
achieving minimal prediction errors and a high agreement level between predicted and
actual data. The results show that the developed model could be an excellent tool for

predicting the reservoir evaporation data.

In a recent study, Wu et al. (2020) predicted monthly evaporation data by coupling an
Extreme Learning Machine (ELM) with two different heuristic algorithms, namely, the
Whale Optimization Algorithm (WOA) and Flower Pollination Algorithm (FPA). The
applicability of the proposed models has been compared with ANN, Differential
Evolution algorithm optimized ELM (DEELM), and M5 Tree model (MT). The research
demonstrated that the hybrid model (i.e., FPAELM) achieved high-level prediction
accuracy, followed by the WOAELM model. Further, hybrid predictive models are

superior to conventional methods.

To predict evaporation rates, a number of machine learning methods were used by Amer
and Farah (2025). The suggested models are Random Forest Regression (RFR), Extreme
Gradient Boosting (XGBoost), Gradient Boosting Regression Trees (GBRT), Adaptive
Boosting (AdaBoost), and a hybrid model called Multi Boost-RFR. The information
comes from Beni Haroun Dam, Algeria. To assess each model's performance, the dataset

was split into subgroups for training (70%) and testing (30%). The findings show how
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well hybrid models perform in raising the accuracy of evaporation forecasts, highlighting
how crucial it is to select models that complement the unique features of the data in order

to produce accurate predictions.

Farzad et al. (2025) integrated Long Short-Term Memory (LSTM) deep learning with
several optimization algorithms. The suggested hybrid model was utilized to predict the
evaporation rate at Dez Dam, Khuzestan Province, Iran. The study used several
metrological parameters for evaporation prediction. The proposed model provided a high

level of prediction accuracy.

2.6 Evaluation and Assessment

The current research has focused on applying Al models to forecast the primary
hydrological factors in reservoir systems: inflow and evaporation. It is noted that
hydrologists have paid much attention to forecasting reservoir inflow, with fewer studies

being done on modeling reservoir evaporation.

According to the effectiveness and efficiency of Al techniques in addressing the nonlinear
and stochastic nature of hydrological processes, a considerable understanding and

capability to forecast inflow and evaporation could be attained.

The results of numerous studies reviewed in this paper have indicated the high
effectiveness of integrated or hybrid models in forecasting inflow and evaporation as an
accurate, compared with single or classic Al models. Such enhancements in forecasting
inflow and evaporation parameters can provide a best interpretation of these phenomena'
behavior and hence give proper policies for the development of water resources

management. The last sections reviewed the previous work that applied Al-based models
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to predict the reservoir inflow and evaporation. One of the more important matters

explored is that FL models can best fit with the specific hydrologic processes.

Past studies reported that the ANN models suffered limitations and shortcomings like
low-speed learning, local minima, and overfitting problems. There are three major types
of ANN methods: MLP, RBFNN, and FFNN models. Based on past papers, the RBFNN
model has high efficiency and the ability to forecast hydrological factors associated with
other models. This is due to the RBFNN model is exemplified quicker by convergence
and high robustness (M. F. Allawi & El-Shafie, 2016; Fernando & Jayawardena, 1998;
Valipour et al., 2012). At the same time, some research papers reported that the RBFNN
model has some weak points and shortages, where the RBFNN model suffers from

providing acceptable accuracy when using short raw data.

Furthermore, the DNN methods are superior to the static neural network models in
prediction the inflow and evaporation parameters. Indeed, the concept of DNN methods
is that the neuron depends not only on the present signal of input but also on the prior
states of the neurons. Thus, the DNN models are characterized by robustness and high
efficiency in reducing the learning time. Moreover, the DNN methods have the
exceptional ability to map the relationship between input-output variables because of their
high capability to adjust the network weights, as requested (Coulibaly et al., 2001;

Valipour et al., 2013).

It was also found that SVM-based models with optimization algorithms are more efficient
than ANN and ANFIS models in monitoring peak values. It is observed that peak values
in inflow and evaporation time series that occur in periodic patterns could be detected
more accurately using SVM-based models with optimization techniques. The classic

models could attain good forecasting results for short-term real-time forecasting (i.e.,
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hourly or daily). The hybrid or integrated Al models could achieve high-level accuracy
for long-term time scales (i.e., seasonally or monthly). Moreover, the type of data has a
significant role in selecting a reliable and effective model. For example, probabilistic
preprocessing could be useful for obtaining satisfactory results when modeling a highly

stochastic process.

According to past studies, one of the most important steps that could influence modeling
performance is selecting a suitable transferal function. With such step, the selected
function can mapping and understate the relationship of the parameter patten. The
selection of appropriate functions could improve forecasting accuracy. Several papers
have concluded that the tangent sigmoid transfer function is better than other functions in
terms of the capability to recognize the pattern of inflow and evaporation parameters. The
review demonstrated that most past studies attained their objectives as high accurately
using sigmoid function (M. F. Allawi & El-Shafie, 2016; Chiamsathit et al., 2016;

Hidalgo et al., 2015; Moghaddamnia, Ghafari, et al., 2009; Tabari et al., 2010a).

Authors' names, types of Al-based models, timescales, and other information about past
studies that have addressed inflow forecasting are presented in Table 2.1. It is noted that
most of the reviewed papers have used monthly time scales to model inflow prediction.
Referring to Table 2.1, the ANN-based models have got high consideration from
modelers. Many hydrologists attempted to enhance the ability of Al methods by

integrating them with optimizer techniques.
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Table 2.1:

Summary of previous studies that were established to model

reservoir inflow forecasting using AI methods.

Authors Developed |Performance|Time scale |Research remark
model metrics
Coulibaly et| FFNN NSE, R?, Daily The proposed FFNN model was
al. (2000) RMSE, PFC, applied to forecast inflow in a case
CORR study located in Canada.
Coulibaly et DNN NSE, R?, Daily The inflow data was forecasted in a
al. (2001) RMSE, PFC, case study located in Canada.
LFC

El-Shafie et| RBFNN PFC, LFC, Monthly | Aswan High Dam (AHD), located
al. (2009b) FE, RE in Egypt, was chosen as a case
study. The study concluded that the
RBFNN model was very successful
in predicting the inflow data for the

next few months.
El-Shafie ENN RMSE, RE Monthly Reservoir Inflow Forecasting was
and performed in a case study located in
Noureldin Egypt. It has achieved a good
(2011) improvement  in  forecasting

accuracy with the RNN model.
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Table 2.1, Continued

Authors Developed |Performance Time scale |Research remark
model metrics

Valipour et | DARNN |RMSE, MSE,| Monthly | Dez reservoir, located in Iran, was
al. (2012) RE, C, selected as a case study. Different

architectures were created for the
proposed models utilizing two
transfer functions, sigmoid and radial
basis functions.

Valipour et ARNN RMSE, Monthly | The forecasting accuracy of the dam
al. (2013) MBE, RE, C, reservoir inflow has been improved

by the predictive model used. The
proposed ARNN model was used to
forecast inflow data for a case study
located in Iran.
Elizaga et ANN RMSE, Daily The authors forecasted daily inflow
al. (2014) MAE, RRSE, records in a case study in the
R, RAE Philippines.

Chiamsathit MLP NSE, R? Monthly | The inflow data was forecasted in a

et al. (2016) case study located in Thailand. The

proposed MLP model is evidenced to
be reliable for reservoir inflow
records.

Apaydin et RNN NSE, RMSE,| Daily The authors predicted the inflow data
al. (2020) MAE, CC for a case study located in Turkey.
Lee et al. MLP Coefficient S| Monthly | The inflow forecasting model was

(2020) applied to a case study in Korea.

Hadiyan et | NARNN |RMSE, R, R?| Monthly | The proposed NARNN was applied
al. (2020) to forecast inflow data for a case

study located in Iran.

Zhang et al. ANN NSE 10-day | Six different climate parameters were

(2020) used as input variables. The case
study is about the Huranren

Reservoir, located in China.
LIN et al. SVM RMSE, Monthly | The study concluded that the SVM-
(2006) CORR based model could be a promising

tool due to its efficiency, robustness,
and accuracy in forecasting reservoir
inflow data. The authors used the
predictive model to forecast monthly
inflow data for a case study located in
China.
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Table 2.1, Continued

Authors

Developed
model

Performance

metrics

Time scale

Research remark

Lin et al.
(2009a)

SVR

RMSE,
MCE, MCP

Hourly

A comparison was made between the
performance of the proposed model
and the Backpropagation Network
(BPN). The Fei-Tsui reservoir,
located in Taiwan, was chosen as a
case study.

Lietal.
(2009)

SVM

Box Plot

Monthly

The authors forecasted the inflow
data in a case study located in
Taiwan. The SVM-based forecasting
framework has been modified to
enhance the predictability of the
inflow.

El-Shafie et
al. (2007)

ANFIS

RMSE, RE,
RZ

Monthly

The ANFIS method is highly capable
of addressing the uncertainties and
ambiguities present in the inflow
pattern. The reservoir inflow
parameter was forecasted in a case
study located in Egypt.

BAE et al.
(2007)

ANFIS

RMSE, CC

Monthly

The researchers applied the ANFIS
model to forecast inflow for a case
study in South Korea.

Wang et al.
(2009b)

ANFIS

R, NSE,
RMSE,
MAPE

Monthly

The monthly inflow data were
collected from two different case
studies and were used to develop
different predictive models
investigated in the research. The
selected case studies are located in
China.

Lohani et al.

(2012)

ANFIS

RMSE, NSE,
R2

Monthly

The ANFIS model was employed to
forecast the reservoir inflow in a case
study located in India.

Awan and
Bae (2013)

ANFIS

RMSE, CC

Monthly

Temperature and Rainfall data have
been employed as input variables to
train the proposed models. The
authors predicted the inflow data for
a case study located in South Korea.

Bai et al.
(2016b)

ANFIS

MAPE,
NRMSE, R,
PPTS

Monthly
and yearly

The forecasting accuracy was
improved by integrating ANFIS with
an Even Grey Model (EGM). The
Three Gorges Reservoir, located in
China, was selected as a case study.

39




Table 2.1, Continued

Authors Developed |Performance Time scale |Research remark
model metrics
Allawi et al.| CANFIS RMSE, Monthly | Four training procedures were
(2017) MAE, RE, R? proposed to check the reliability of
the CANFIS model. The inflow
records have been predicted in a case
study which is in Egypt.
Wang et al. WNM RE Annual, 10 | The proposed WNM was applied to
(2009a) days, Daily| forecast inflow data for a case study
located in China.
Wang etal. | SVMPSO | RMSE,RE | Annual | The PSO algorithm is used to find the
(2010) optimal internal parameters for the
SVM model. The inflow data was
predicted in a case study in China.
Noori etal. | SVMPCA | RMSE,R? | Monthly | Several input selection algorithms
(2011) have been used to select optimal
input combinations for modeling.
The case study was selected based on
the location of Iran.
Jothiprakash| M5 Model | MSE, MAE, | Monthly, | The predictive model was used to
and Kote Tree MRE, NSE, | Seasonal | forecast inflow data for a case study
(2011) R, AIC,RD located in India.
Jothiprakash LGP RMSE, NSE,| Daily, The authors used the LGP model to
and Magar BIC, AIC Hourly | forecast the inflow data for a case
(2012) and R? study located in India.
Budu (2014) WNN RMSE, PFC,| Daily The predictive model was applied to
MAD, COE, forecast inflow for a case study
PI, d and R? located in India.
Kumar et al.|] BWNN R2, NSE, Daily Daily inflow records were predicted
(2015) RMSE, Py, in a case study located in India.
MAE
Cheng etal.| Hybrid RMSE, Monthly | The proposed model was employed
(2015) model MAE, to forecast inflow data for a case
MAPE, R?, study located in China.
NSE
Bai et al. MDFL MAPE, Daily The Three Gorges Reservoir, located
(2016a) PPTS, in China, was selected as a case
NRMSE, R? study. The MDFL model provided

excellent forecasting results.
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Table 2.1, Continued

Authors Developed |Performance Time scale |Research remark
model metrics
Bozorg- ANNGA | MSE, NSE, | Monthly | Two different case studies were
Haddad et R? chosen in the research. The first case
al. (2016b) study is located in Iran, and the
second case study is located in China.
Moeeni and| SARIMA- | MARE, R%, | Monthly | The hybrid model forecasts peak
Bonakdari ANN RMSE, inflow values much better than the
(2016) BIAS, SI, classic predictive methods. The
MSE, AIC, inflow records were forecasted in the
SBC case study of the Jamishan Dam,
located in Iran.

Lietal. DRBM MAPE, Daily The performance of the predictive
(2016) NRMSE, TS model was inspected by forecasting
inflow in two different case studies

located in China.

Hong et al. RFMLP R, R?, NSE, Daily Daily inflow data was forecasted in a
(2020) RMSE, MAE case study located in South Korea.
Tikhamarine] SVRGWO RMSE, Monthly | Aswan High Dam, located in Egypt,
et al. (2020) MAE, R, was selected as a case study to

NSE, WI examine the performance of the
proposed model.
Afan et al. | RBFNNGA MAPE, Monthly | The authors forecasted inflow data
(2020) MBE, MAE, for a case study located in Egypt.
d, RE, R?
Osman et al. FOS RMSE, Monthly | The case study was selected and
(2020) NRMSE, located in Egypt.
NSE, RE,
MBE, R?
Ryu and Lee XAl RMSE, R? | Monthly | The case study was selected and
(2025) located in Korea.

Table 2.2 summarizes the major details of the reviewed studies that employed Al-based
models for modeling evaporation prediction. The type of the predictive model, timescale,
research remark, author's name, and evaluation criteria were presented in Table 2.2. It is
observed that the researchers are concerned with selecting the appropriate input
combination for modeling. The performance of predictive models could be enhanced in
the case, including the effective climate parameters, like temperature and humidity, with
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modeling. Through Table 2.2, the majority of the researchers utilized a daily time scale
for evaporation prediction modeling. It has been found that long-term scales, like monthly
scales, are used with large reservoirs. The evaporation prediction modeling has been
mostly established based on ANN models. It was observed that RMSE, MAE, and R?

were mainly used to evaluate the prediction accuracy.

Table 2.2:  Summary of previous studies that were established to model

reservoir evaporation prediction using AI methods.

Authors Developed |Performance Time Research remark
model metrics scale
Keskin and Terzi|ANN MSE, R? Daily Six meteorological
(2006) parameters, including air
temperature, RH, SR, WS,
sunshine, and water

temperature, were employed
to develop the ANN model.
The reservoir evaporation data
was predicted in a case study
located in Turkey.

Tan et al. (2007) |ANN R? Daily The authors predicted
evaporation records for a case
study located in Singapore.

Moghaddamnia |ANN RMSE, R? Daily The performance of the
et al. (2009b) proposed models was
improved using a technique
called gamma test. Chahnimeh
Reservoirs were selected as a
case study, which is located in

Iran
Tabari et al. ANN R, RMSE, MAE |Daily Evaporation  data  were
(2010) collected from a reservoir

located in Iran.

Allawi and El- |ANN MAE, RE, MSE, |Monthly | The ANN model was applied

Shafie (2016b) R? to predict evaporation records
for a case study located in
Malaysia.

Malik et al. RBFNN RMSE, CE, R Daily The evaporation data were

(2018) collected from a case study

located in India.
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Allawi et al. ANN RMSE, RE, Daily, Prediction of evaporation
(2019¢) MAE, NSE, Weekly, | amounts was performed in a
KGE, R? Monthly | case study located in Malaysia.
Moghaddamnia |SVM RMSE, MAE, |Daily The researchers used the SVM
et al. (2009a) MSE, R? to predict the evaporation data
for a case study located in Iran.
Allawi et al. ANN RMSE, MAE, |Daily The study used ANN and SVR
(2025) MSE, R?, NSH for evaporation prediction is
Iraq.

Amer and Farah |Hybrid RMSE, R2. Monthly | The study used several ML
(2025) Model models to predict evaporation
from Beni Haroun Dam,

Algeria
Farzad et al. Hybrid RMSE, MAE, Monthly | The evaporation prediction
Model KGE, and WI modelling was based on

(2025)

integrating LSTM with several
optimization algorithms.
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Table 2.2, Continued

Authors Developed |Performance Time Research remark
model metrics scale

Baydaroglu and [SVM MAE, R? Daily  |The selected data were collected

Kogak (2014) from the Ercan meteorological
station.

Tezel and SVM MAE, RMSE Monthly |The proposed SVM model was

Buyukyildiz applied to predict evaporation

(2016) data for a case study located in
Turkey.

Keskin et al. ANFIS MSE, R? Daily  |The ANFIS model was applied to

(2004) predict evaporation records for a
case study located in Turkey.

Tabari et al. CANFIS RMSE, MAE, |Daily |The authors predicted

(2012) PE,R evaporation data for a case study
located in Iran.

Salih et al. CANFIS MAE, RMSE,  [Monthly [Evaporation prediction modeling

(2019) NSE, MAPE, RE, has been established based on

R? several meteorological

parameters. Nasser Lake was
chosen as a case study.

Allawi et al. CANFIS RMSE, MAE, Monthly |The evaporation data were

(2020a) MAPE, RE, R? predicted for two case studies
located in Malaysia and Egypt.

Abgharietal. |WNN RMSE, R? Daily  |The authors predicted

(2012) evaporation data for a case study
located in Iran.

Arunkumar and |GP MSE, MAE, Daily  |The predictive model succeeded

Jothiprakash RMSE, NSE, in providing accurate results with

(2013) %MH, %ML, R five input climate parameters.
The case study located in India
has been considered in this
research.

Izadbakhsh and |FFNNGA  |[MSE, MSNE, Daily |The structure of the predictive

Javadikia (2014) MAE, P, R, R model was optimized by the GA
technique. The case study is in
Iran.

Ghorbani et al. |MLPFFA RMSE, NSE, WI, [Daily Five meteorological parameters

(2017) MAE, Taylor have been used to establish the

diagram evaporation prediction modeling.

The evaporation data was
predicted for a case study located
in Iran.
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Table 2.2, Continued

AE, t-statistic, R?

Authors Developed |Performance Time Research remark
model metrics scale
Allawi et al. CANFISGA |[RMSE, MAE, |Monthly [The proposed CANFIS-GA
(2020b) MAPE, RE, R? model was applied to predict the
evaporation records for two
different case studies. The first
case study is located in Malaysia,
and the second case study is
located in Egypt.
Wu et al. (2020) |[ELM RMSE, MAE, |Monthly |The research was conducted to
MAPE, NSE, predict the evaporation records

for a case study located in China.

Figure 2.1 shows the number of times the artificial intelligence methods were utilized to

predict the primary hydrological parameters in the reservoir system based on the reviewed

studies. It is remarkable that prediction modeling was constructed many times based on

hybrid models. The ANN method was widely employed for modeling the prediction of

the primary hydrological parameters in the reservoir system. It is worth mentioning that

the CANFIS model could be a predictive candidate model for the development of the

prediction modeling for inflow and evaporation parameters. The development of the

CANFIS model procedure may yield accurate prediction results.

Figure 2.1:

Number of times that the AI methods have been used for predicting

reservoir inflow and evaporation based on reviewed studies.
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To enrich the review study, the major points can be summarized as the following:

1. The optimization techniques have improved the performance of predictive
models. The optimizer is used to find the optimal internal parameters for the
model's structure and then select the proper final shape of the modeling.

ii. In general, preprocessing techniques such as WT have reduced the data noise.
By employing WT, the predictive model can better understand the behavior
of data, hence providing high accuracy.

1ii. The hybrid models achieved acceptable accuracy in forecasting inflow

parameters, whether short-term or long-term.

2.7 Summary

The optimization algorithms provided acceptable solutions for optimization reservoir

operation. Based on the results obtained from several literature studies, some drawbacks

and shortcomings of these techniques can be observed during employment. Several gaps
were identified through a review of previous literature:

1. The mathematical procedures associated with the classic Al methods face difficulty
detecting the greatly stochastic forms and wide-range attributes of the flow and
evaporation data.

2. Due to the diversity and random variation from one dam to another, it is challenging
to implement a specific methodology for the internal flow mechanism and, thus, the
difficulty of generalization for this hydrological problem.

3. The simulation relies on deterministic data for internal flow and evaporation
parameters. This procedure for the reservoir system is inappropriate and does not
reflect the actual state of the reservoir system.

In this study, consideration is given to the variation of the new version of ML, such as the

Deep Learning Neural Network (DLNN) method, which can contribute to overcoming

the classical Al models.
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CHAPTER 3: METHODOLOGY AND CASE STUDY

3.1 Introduction

The methodology of three different Artificial Intelligence (Al) models will be explained
in the current chapter. The description of the modeling work is divided into three main
parts to simplify readability for a better understanding of the outcome of the thesis. Figure
3.1 summarizes the strategy of the modeling methodology adopted by the present study.
In the first part, three artificial intelligence methods (Radial Basis Function Neural
Network (RBFNN), Multi-Layer Perceptron Neural Network (MLPNN), and Deep
Learning Neural Network (DLNN) are utilized in forecasting two different hydrological
parameters in the dam and reservoir system. The proposed methods are employed for flow
and evaporation prediction in the dam and reservoir system. The performance of each
method is tested in two different case studies representing two different climate zones.
These are the Dukan Dam in Iraq and Timah Tasoh Dam (TTD) In Malaysia. In fact,
evaluating the effectiveness of the suggested models in predicting evaporation and inflow
parameters across various climate zones is the third goal of the present work. The
autocorrelation (AC) technique is adopted to select the relevant lag time for input
variables. To obtain the optimal architecture for each method, several different model
structures are established based on the relevant input lag time selected by the AC
technique. The fact that both reservoirs are situated in two distinct climate zones is the
justification for choosing this case study. Dukan Dam is located in a semi-arid region,
while TTD is located in a tropical zone. It is well known that climates in such areas vary.
In reality, there are significant climatic altitude variations as a result of climate variance,
particularly in terms of temperature and precipitation. This may have an impact on the
reservoir system's data on evaporation and inflow. Each region's characteristics directly

influence how evaporation and inflow behave. Another important factor in choosing such
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case studies is the availability of data for the hydrological parameters since the Al models
use the quantity of accessible data to determine the patterns of the hydrological processes.
In this chapter, specifics on the chosen case studies and statistical analysis for the given

data will be discussed.

Figure 3.1:  Schematic diagram of the methodology.

The second part of the methodology deals with the automatic selection of relevant input
variables for the modeling. In this context, the current research used the popular
optimization algorithm, which is the Genetic Algorithm (GA). GA is considered a
research technique that explores the relationship between variable data to determine the
best input combination for a predictive model. The second part is important in integrating
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GA with the proposed prediction models to obtain successful and optimal input variables
in forecasting. The assessment of the method's reliability is confirmed by several popular

statistical indicators.

Each model is fed ten previous values of each flow and evaporation tank variables that
give a different set of input variables for the modeling. The input variables for RBFNN,
MLPNN, and DLNN are selected in two ways. In the first method, the traditional manual
trial and error method based on the delay time partial autocorrelation is adopted to
determine the best input combination. Meanwhile, the GA method is used in the second
method to search for the optimal input variables for the predictive model. Accordingly,
two types of comparison will be made. First, the study compares the performance of
RBFNN, MLPNN, and DLNN models based on manual input selection. Second, a
comparison is made between the proposed predictive models based on GA when selecting

relevant input variables.

The last part of the methodology deals with the reservoir simulation based on forecasted
data. Indeed, the modeling of reservoir optimization is carried out according to the main
steps. The first step is to simulate the reservoir system, and the second step is to provide
optimal operating rules for the dam and reservoir system. The current study focuses on
improving the first stage to simulate the reservoir under realistic conditions. Table 3.1

shows the summary of the methodology for enhancing reservoir simulation models.
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Table 3.1:

Summary of Methodology

Objective

Methodology

1.To apply the RBF-NN,
MLPNN and DLNN methods
as prediction models to better
reveal the features of the
hydrologic parameters of a
reservoir.

Three artificial intelligence models—Radial Basis
Function Neural Network (RBFNN), Multi-Layer
Perceptron Neural Network (MLPNN), and Deep
Learning Neural Network (DLNN)—are employed to
forecast reservoir inflow and evaporation.

2. Examine different model
structures and configurations
to improve reservoir flow and
evaporation prediction
accuracy.

The performance of RBFNN, MLPNN, and DLNN is
tested in two different climate zones. Autocorrelation
(AC) is used to determine input lag time, and multiple
model structures are tested to identify optimal
architectures.

3. Examine the generalization
ability of the proposed
prediction model in tropical
and semi-arid regions.

Case studies from two different climatic regions—
Dokan Dam (semi-arid) and Timah Tasoh Dam
(tropical)—are used to validate model generalization.

4. Propose a new simulation
procedure for the reservoir
system.

A reservoir simulation model is developed based on
forecasted inflow and evaporation data. The model
provides optimal operating rules for the dam and
reservoir system.

3.2 Predictive Models

3.2.1 Radial Basis Function Neural Network (RBFNN)

Experts in computer science and neurophysiology have constructed neural networks in
the past years. Many initiatives led to the creation of a brand-new mathematical model
called Neural Networks. Any neural network, in its most basic form, is made up of a unit
element (neuron), as seen in Figure 3.2. These neurons take in weights from the
environment, which are subsequently synthesized to create the output signal. Simple
transformation functions of the input signals are used to create the output signals. By
joining these neurons to build a network in a way that allows the output signal of one
neuron to transform into the input signal of either one or many neurons, these NNs are

able to complete complicated tasks with ease (Nelson & Illingworth, 1991).
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Figure 3.2:  Single neuron.

Researchers have taken notice of the artificial neural network (ANN) approach. Over the
past few decades, the ANN approach has been refined and adapted to achieve accurate
forecasting for a variety of engineering applications. It now incorporates a number of

designs, including RBFNN and Feed-Forward Neural Network (FFNN).

A function approximation variant of the conventional ANN model with a quicker learning
rate is called RBFNN (Cotar & Brilly, 2008). With one input layer, one output layer, and
one hidden layer, the model structure employs the least-squares criterion as the objective
function and Gaussian functions as the basis (Talukdar et al., 2020). When the network
input falls into a specific region of the input space, the Gaussian functions in the hidden
layer respond significantly to the input boost. The RBF is presented as ¢, which is also

known as the hidden later function. Meanwhile, the hidden space is stated in the following

form {¢; (x)}L;.

Because of the mathematical mechanism of RNF-NN model, the model is sometimes

known as a localized receptive field network. The convex form of the error function of
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BFNN allows for fast conjunction to global optima (Bagtzoglou & Hossain, 2009). The
RBFNN structure has been selected in this work using a trial-and-error method and four

distinct learning algorithms (Elzwayie et al., 2016).

According to Figure 3.3, the RBFNN architecture consists of an input layer, one hidden
layer, and an output layer. Numerous neurons in the top layer receive the input variables.
Five alternative inflow and evaporation lag durations are considered input variables for
the modelling in this investigation. To predict the inflow value at time (t), the inflow at
(t-1), (t-2),..., (t-5) values are used as input variables for models. Similarly, to predict the
evaporation value at time (t), the evaporation values at (t-1), (t-2),..., (t-5) are considered
as input parameters. The first layer actually has an infinite capacity for input parameters.
A radial basis activation function is present inside the neurons of the RBFNN architecture,
which features a single hidden layer. A concealed layer makes up the second layer. The

output layer, which represents the intended output variable, is the third layer.

The nonlinear transformation function links the input layer's space to the hidden layer's
space, whereas the linear transformation function links the hidden layer's space to the

output layer's space.
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Figure 3.3:  The structure of the Radial Basis Function (RBFNN) method.

The transfer function passes via the neurons in the hidden layer before beginning its
journey to the input layer of neurons. The radial basis function @4, @4, @3, ... ...., @, i
known as the hidden function. Due to its synthetic, one-dimensional character, the
Gaussian function is the most widely used transfer function among the several radial basis
functions. The Gaussian activation function is depicted in Figure 3.4, and Equation 3.1

expresses its mathematical structure.
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Figure 3.4:  The Gauss Activation Function.

Ix—ul ~2 .
@(x,p)=¢e 247" G-

where p = center of the Gaussian function (mean value of x) and d = distance (radius)

from the center of @(x, p), which denotes the degree of the spread of the Gaussian curve.

The general network result is calculated by adding the linking weights of each hidden unit
to the output units, which scales the response of each hidden unit. Equation (3.2) is used

to compute the network's response.

k
Qu = bic ) W= W), (32)
=1

where Y;(x) denotes the response of the j, the hidden neuron wy;, is the weight

coefficient between (j) the hidden unit and (k) the output unit, while b, is the bias.

The length of the input data set, the location of neurons, and the determination of other

training parameters are quite important during the training of RBFNN. The location of
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the first center may be chosen from the training data set and the standard deviationr (i.e.,

width) of the j neuron (Equation 3.3 and Equation 3.4).

_ |d?max
o= | el (3.3)

Jr = %Zle (Qobs — Ynet )?, (3.4)

which dmax 1s the maximum distance between the training data set, Y,,,; is the response of
the network, while Q, is the observation value. The training process continues until this

error reaches an acceptable value (Bishop, 1995; Ripley, 1996; Simon, 1999).

Chaotic disturbances, complex nonlinear dynamics as well as unpredictability are
characteristics of complex processes like hydrological parameters. The RBFNN
approach, has a good capacity for generalization employing minimum nodes to minimize

needless lengthy calculations (Moradkhani et al., 2004).

3.2.2 Multiple linear perceptron

A multi-layer perceptron NN (MLPNN) with multiple layers is called a feed-forward
network. In a feed-forward network, the result of one neuron is used as the input for the
subsequent layer of neuron. The parameters that are entered of the node in the first hidden
layer are the only ones that the input layer nodes in the MLPNN can forward. The hidden

layers can show each node's input-output correlation in the manner described below:

55



y=f ijx,-+b ) (3.5)
j

where x; is the output that corresponds to the j node of the previous layer, w; is the weight

that connects the j node and the current node, b is the bias value at the current node, and

f is a sigmoid-like transfer function with nonlinear attributes.

f(2) = (3.6)

1+exp(2)’

where z is the weighted input aggregate, while f(z) is the neuron's output aggregate.

The unit description of an MLPNN is an architecture that allows the computation of a
nonlinear function using the scalar product of the weight and input vectors. Network
architecture determines the efficiency of MLPNN models. It contains the hidden layer
count, the neurons specific to each layer, as well as the form of computation employed

by each neuron.

3.2.3 Deep Learning Neural Network

Deep learning (DL) has emerged as a new ANN research branch that alters different
modern scientific disciplines (Goodfellow et al., 2016). The term 'deep' in this method
refers to a connection of layers that allows the translation of data representation from one
to another. A deep net (DN) is a type of ANN that has numerous hidden layers, an input
layer, and an output layer (Lecun et al., 2015). In comparison to traditional machine
learning methods, a DL-based model necessitates a huge amount of training data in order

to comprehend the underlying data patterns increases in the network depth (i.e., number

56



of layers) allows the extraction of the most appropriate data hierarchical representations
using a proper data transformation (Schmidhuber, 2015). Although DL has different
versions adopted over the literature, the current research utilizes Long Short-Term

Memory (LSTM) for reservoir inflow and evaporation prediction.

The design of the LSTM model has a feedback connection with the learning layers, which
supports the concept of complete input sequences. The LSTM model is established to fit
the pattern of the inflow and evaporation based on the lag times of these parameters.
Conceptually, LSTM is a version of the recurrent artificial neural network "Cell
construction model." Every cell consists of three gates: the input gate, the forgetting gate,
and the model output gate. In addition, the transmission vector that handles the long-term
memory of the forgoing gates must be present. Owing to this, the input lags can be
added/deleted due to the gates setting. It is worth highlighting here the gradient
disappearance can be resolved based on the potential of the last two gates to forget the

past information (Lang et al., 2019).

The main disadvantage of classical neural networks is their shorter memory for
remembering features and the disappearance and detonation of gradients (Cinar et al.,
2018; He et al., 2020). The LSTM model was suggested as a solution to the vanishing and
exploding gradients issue. LSTMs are one of the types of DLNN, and they use unique
units known as memory blocks to implement the function of regular neurons in hidden
layers (Sainath et al., 2015). Additionally, the memory blocks have three gate units known
as input, output, and forget gates that aid in updating and regulating the information flow
and evaporation across the memory blocks (J. Chen et al., 2018). The LSTM network is
calculated as follows (Shi et al., 2015): 1) If the input gate is activated, any new input

information in the system will be collected in the cell, i1) The previous cell state is
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forgotten if the forgetting gate is activated, as well as iii) the diffusion of the output of the
newest cell to the final state is controlled by the output gate. The architecture of the LSTM

model is presented in Figure 3.5.

Figure 3.5: The architecture of the Long Short-Term Memory (LSTM)

Network.

Regarding the prediction of reservoir inflow and evaporation, the historical lagged input
records are depicted as x = (xq, X5, ..., X;) whereas the forecasted data is represented as

Yy = (¥1,¥2, -, Y¢)- The computation of the forecasted data series is carried out as

follows:
Input gate iy, = 0 (Wi x¢ + Wiy, me_q1 + Wi ce_1 + by) 3.7
Forget gate fy = 0 (Wsyx x¢ + We my_q + Wee cooq + by) (3.8)
Output gate o, = 0 (W x¢ + Wy me_q + Wy ceq + by) (3.9)
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¢t= froc1+ir0g Wey xe + Wepme_q + be) (3.10)

m; = 0,0 h(cy) (3.11)

Ve = Wymme + by, (3.12)

in which c; is the activation vector for the cell as well as my is the activation vector for
each memory block. The weight and bias vectors are represented by (W and b),
respectively. o is the gate activation function, while the input and output activation

functions are represented by (g(.) and h(.)), respectively.

3.3 Input Selection and Model Structure

The task of creating the prediction model involves choosing appropriate input variables.
To rely mainly on the relationship between the pattern of inputs and outputs, different
strategies have been used. The input style should be chosen based on how it affects the
value of the expected variable. According to statistics, the preceding values have the
greatest influence on the predicted value for any time series. In fact, the strength of the
linear and nonlinear relationship, which is the main feature found in the pattern of

hydrologic parameters, is the basis for the association between two separate variables.

Actually, the correct combinations of input variables are chosen to model the output using
a search technique that reveals the relationship between different data types. Choosing
input variables during the hydrologic modeling process is made a little easier by the prior
premise of the prediction model's functional structure, which relies on a physical

interpretation of the fundamental model.
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The optimal model architecture cannot be directly predicted in Al models. As a result,
there are a number of challenges that make the input selection process difficult, including
the sheer size of the variables, the duplication of correlation of input variables, and the
fact that some factors have no bearing on the accuracy of results. Therefore, it is necessary
to use a technique to identify and select the ideal input pattern to better predict the flux
and evaporation values. Such a method can search for combinations of inputs that have
the greatest impact on modeling success to obtain high-accuracy predictions. In this work,
partial-autocorrelation methodology and GA were used to pre-select the input variable to

improve the effectiveness of the proposed methods.

3.3.1 Partial-Autocorrelation

The model input parameters were predetermined according to partial autocorrelation, as
shown in Figs 3.6 and 3.7 for inflow and evaporation, respectively. Patterns in the
observed inflow and evaporation data were examined by applying correlation statistics
via a partial autocorrelation function to discover suitable predictors in order to create an
accurate prediction model. The statistical method used time-lagged data from the flow or
evaporation time series to analyze the monthly data gaps between the value of current
flow (I) or evaporation (E) and the value of (I) or (E) that at a given previous level point

(i.e., time interval) to determine if there are any time dependencies in the time series.

The best entries for each time delay (monthly) were determined by statistical examination
of the delayed constructions and the corresponding correlation coefficients. Figure 3.6a
shows that lags 1, 2, 3, 4, and 5 had the highest correlation for inflow. Figure 3.7a shows
that delays 1, 2, 3, 4, and 5 have a strong correlation with the evaporation variable. The
first four lags have a significant correlation, as shown in Fig. 3.7b. According to such

correlation, the composition of the inputs for the proposed models is chosen from those
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first five periods except when using Timah Tasoh Dam (TTD) evaporation data, where

only the first four periods are considered input variables for the proposed models.

Figure 3.6:  Partial-Auto-correlation for 10 antecedent lag times (a) reservoir
inflow for Dukan Dam (b) reservoir inflow for Timah Tasoh Dam.
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Figure 3.7:  Partial-Auto-correlation for 10 antecedent lag times (a) reservoir
evaporation for Dukan Dam (b) reservoir evaporation for Timah Tasoh Dam.

Current models investigate the possibility of utilizing geometric retention for diverse sets
of input variables series according to autocorrelation results. The first lag time has the
highest correlation, which is a well-known observation. Thus, the first lag is assumed to
be mandatory in every possible type of combination of inputs in the current investigation.
Four alternative input groups (i.e., four models) can be used as input variables for the
proposed prediction methods because the PAC approach found that five delays are
significant in relation to time. Table 3.2 presents all possible combinations of inputs to

feed the predictive models in forecasting the reservoir inflow parameter. Table 3.3 shows
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all possible combinations of inputs to feed the predictive models in forecasting the

reservoir evaporation parameter.

Table 3.2: The architecture of inflow forecasting models.

Model Number Input Variables
Model 1 (I = L(t— 1))
Model 2 (I = L(t— 1), Li(t— 2))
Model 3 (I =1Lt —1),1,(t—2),I,(t—3))
Model 4 (If = L(t— 1), Lt — 2), I,(t — 3), [,(t — 4))
Model 5 (Ir=1Lt—-1),1,(t—2),,(t—3),L,(t—4),1,(t—5))
Table 3.3: The architecture of evaporation forecasting models.
Model Number Input Variables
Model 1 (Ef = Ea(t - 1))
Model 2 (Ef = E,(t—1),E,(t 2))
Model 3 (Ef = Eq(t — 1),Eq(t — 2),Eq(t — 3))
Model 4 (Ef = E,(t — 1), E,(t — 2), E,(t — 3), E, (t — 4))
Model 5 (Ef = Eq(t — 1_),;5)61)@ —2),E,(t —=3),E,(t —4),E,(t

Here, the actual and forecasted inflow are represented by (I, and If), respectively.
Meanwhile, the actual and forecasted evaporation are represented by (E, and Ef),

respectively. The collected data is often divided into two groups: training and test sets.
Usually, Al models are not reliable enough to extrapolate the data that are out of the range
of hydrological data used in training. As a result, when the test data contains values

beyond the range of the training data, poor predictions can be expected.

The present work used the time series of daily reservoir inflow and evaporation from the

Dukan Dam. The reservoir inflow data was divided into two groups; 85% of the total data
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(i.e., 11 years) is used to train the proposed models, while 15% is utilized in testing the
model's performance. For the evaporation parameter, the training set is 85% of the total

data, and the testing set is 15% of the data.

The TTD case study used monthly data for reservoir flow and evaporation during the
training and testing period. In the reservoir inflow parameter, the training period
represents 75% of the total collected data, while the test period is 25% of the total data.
On the other hand, the reservoir evaporation data was divided into 70% of the total data

for training the predictive model and 30% for testing the proposed models.

3.4 Genetic algorithm

A search algorithm known as GA is based on the principles of natural selection and
genetics (Goldberg, 1989). The principles of natural evolution and survival of the fittest
are the basis of GA, as its name suggests. A population of potential solutions to the issue
is used in GAs. Several potential solutions to the problem are considered simultaneously

by GAs, which then move this set of solutions in a global better direction.

There is a basic practical cycle of generations in GAs. The generation number is the
primary force behind this cycle. In this cycle, an initial population is created, each person
1s coded to be represented numerically, each member of the population is assigned a
fitness value, and a parameter is used to determine whether each member will survive in
subsequent generations. Genetic factors, such as selection, crossover, and mutation, are
used to evaluate and select which individuals will be privileged to survive in future

generations (D. Chen et al., 2016).
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Initially, the GA created a set of chromosomes as their original complexes (or sequences).
Depending on the nature of the problem, the population can range from a few hundred to
thousands of potential solutions. Traditionally, the population is randomly generated,
including all possible outcomes (search space). They are randomly generated to stay
within each chromosome's upper and lower bounds, known in advance (Chiu et al., 2007).
The basic idea is to maintain a set of chromosomes, which represent potential solutions
to the problem over time through the process of managed competition and divergence.
Each chromosome in a population has a fitness value that is used to select the
chromosomes that will be combined to create new chromosomes during the competition
process known as selection (Sharif & Wardlaw, 2000). By using genetic factors such as
crossover and mutation, new factors are produced. The values of fitness are expected to
rise, which signifies the emergence of better people in future generations (Hingal et al.,

2011).

3.4.1 Genetic algorithm as input selection

Similar to several introduced feature selections, GA 1is one of the robust ones introduced
in the domain of hydrology (Kamp & Savenije, 2006; Moreno & Paster, 2019). The most
popular methods used in optimization algorithms come from evolutionary computation,
a branch of computational intelligence. GA is a good example of the concept of
evolutionary computation (Y.-S. Lee & Tong, 2011; Olyaie et al., 2017; Sreekanth &
Datta, 2010; Zou et al., 2007). The framework of the GA is reported in Figure 3. The
optimal lags are selected simultaneously and determined based on the minimal error
metric (i.e., root mean square error). The procedure is adopted due to the satisfaction of
the fitness function of the GA approach (Chang et al., 2019). It is worth highlighting that
the GA approach works based on the three optimization processes: selection, crossover,

and mutation.
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The genetic coding for the input is done into the initially presented mental sequencing
chromosome before the selection process begins. A string is a code that has the same
length as all input variables. It encodes the input into two types. Number O indicates an
absence that was not selected, and the number 1 indicates an absence that was chosen to
be included in the modeling. For instance, when there are four input operands, the string
(1, 0, 1, 0) indicates that the inputs one and three are chosen while the second and fourth

inputs are ignored.

The number of potential solutions will rise as the variety of input parameters increases as
well. The GA search procedure begins with an initial random set of entries after decoding
the entries into sequences (the community of chromosomes). Using Al models for each
input set, the suitability of the solution will be evaluated. The highest fitness with the
lowest Root Mean Square Error (RMSE) will be chosen. One of the most popular ways
of selection, along with the Boltzmann and Roulette Wheel methods, is chromosome
genetic selection by tournament technique. A tournament technique was successfully
used for a variety of issues (Samarasinghe, 2006). The lowest RMSE will then be chosen
to begin a new generation after selecting a pair of chromosomes at random. Due to the
fact that only half of the chromosomes are chosen, a new tournament is carried out
utilizing all the primary chromosomes. However, this time, it is a different set of randomly

chosen chromosomal pairs.

The better and worse chromosomes are reproduced in the crossover pool during the search
process. When two randomly paired chromosomes exchange genetic material to create a
new generation of parent chromosomes, this process is known as crossover. The exchange
of information between chromosomes will continue if the probability of crossover is

greater than the predetermined probability parameter. Still, it will not be so if it is less
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than or equal to the predetermined parameter. Two original unchanged chromosomes
would then become potential candidates for the new population. A critical factor in
determining how to change selection pressure and establish a useful mechanism is the
intersection probability coefficient. In order to favor suitable candidates, the intersection

probability parameter is usually preset at > 0.5 in practice.

Mutation is the last stage of the genetic process. In such a step, potential solutions will
modify their structures (0 will be replaced by 1 and vice versa). The mutation procedure
created to give flexibility to the solution can be eliminated early in the process for
reconsideration. This could also occur to maintain population diversity and prevent early
convergence with local minimums. The mutation probability factor determines the
probability that each chromosomal bit will change during the process of mutation. To
change the selected bits and complete one genetic cycle, their values are reversed. Once
more, the fit of each individual chromosome is assessed using the RMSE. Such a
procedure is performed again until a set of termination criteria are met, or the best possible
solution is found. The optimum combination of inputs that can successfully predict the
outcome is determined when the problem of selecting the inputs has been completely

resolved.
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Figure 3.8: The genetic algorithm mechanism procedure.

After GA is applied, the optimal input combinations chosen by GA are shown in Table

3.4 for reservoir flow and Table 3.5 for reservoir evaporation parameters.

Table 3.4: The architecture of inflow forecasting models.

Model Number Input Variables
Model 1 (I = L(t— 1))
Model 2 (I = L(t— 1), I,(t - 3))
Model 3 (=1Lt —-1),L{t-3)L{t—4)
Model 4 (If = Lt — 1), I,(t = 3), I,(t — 4), 1,(t — 5))
Model 5 (Ir=1t—-1),L{t—-2),L{t-3)L{t—4),L{t—-6))

Table 3.5: The architecture of evaporation forecasting models.

Model Number Input Variables
Model 1 (Ef = E,(t — 1))
Model 2 (Ef = Ea(t — 1), Eq(t - 3))
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Table 3.5, Continued

Model Number Input Variables
Model 3 (Ef = Eq(t —1),Eq(t — 2), Eo (¢t — 4))
Model 4 (Ef = E,(t — 1), E,(t — 4), E,(t — 5), E,(t — 6))
Model 5 (Ef = Eq(t — 1),Eq(t — 3),Eq(t —4),E,(t — 5),Eo(t — 6))

3.5 Performance Criteria

The reliability of the proposed prediction methods was assessed using a number of
statistical indicators. The predictive model with the best reliability and the most stable
accuracy pattern was chosen. Relative Error (RE), Mean Absolute Error (MAE), Nash-
Sutcliffe Efficiency (NSE), RMSE, Scatter Index (SI), Bias (BIAS), Mean Bias Error
(MBE), Willmott Index of Agreement (d), and Confidence Index (CI) are some of these

measures.

MAE is a measure of the error between two values of the same phenomenon. NSE is
computed as one less than the ratio of the observed time series' variance to the modeled
time series' error variance. RMSE is the main performance indicator that computes the
root mean error between the predicted and actual values. SI gives the percentage of
predicted error of the variable. In fact, RE is one of the important indicators used to
evaluate the performance of predictive models. This indicator displays the behavior of

the models in terms of over- or underestimation during the testing period.

Introduced by Willmott in 1981, the Index of Agreement is a standardized metric that
provides hydrologists with a useful tool for evaluating model performance by measuring

the extent of prediction inaccuracy in models. This 'd'-designated index has a value
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between 0 and 1, where 1 represents a perfect match between model predictions and actual

data, and 0 represents no agreement at all.

They are frequently utilized to assess the prediction findings' accuracy. The following
formulae are used to compute such metrics (M. F. Allawi, Jaafar, Mohamad Hamzah,

Koting, et al., 2019; Mohamadi et al., 2020; Osman et al., 2020).

MAE=—3Y | F,— A, | (3.18)
1 N
RMSE = N;((Ft)—mt))z (3.19)

n_ F _ A 2
NSE =1— erf‘l((At A_t))z —w<NSE<1 (3.20)
t=1 t t

Fe — A

%RE =

* 100 (3.21)

VRSP Ry — (4~ ) )?
SI =

(3.22)
1 N
Nzt=1 At
N
MBE = 1ZFt_At 303
=5 a (3.23)
t=1
N F.—A
BIAS (ME) = % (3.24)

N_ F.— A 2
d=1- =% 2e=(F = 40) ——  0<d<1 (3.25)
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Cl =dxNSE (3.26)

where F; = the forecasted data and A, = the actual data. Meanwhile, the average forecasted
and actual data are represented by F, and A, symbols. Moreover, N is the amount of

data.

The MAE, RMSE, MBE, RE, and SI values are closer to zero, which shows that the model
is performing well. The Nash-Sutcliffe coefficient is sensitive to extreme values and may
yield less-than-ideal results when a dataset has a sizable number of huge outliers. The

model's relative accuracy is evaluated using the RE indicator.

3.6 Simulation Procedure

There are two main steps during the development of reservoir optimization modeling. The
first step is to simulate the reservoir system using the water balance equation. The second
step involves creating operating rules for scheduling the volume of water release for the

reservoir and dam system.

In fact, the reservoir system is simulated over a specified period of time to determine the
state of the reservoir in the first stage of optimization modeling. The classical simulation
process is performed with deterministic or perfect hydrological parameter predictions and
is unrealistic. In other words, the water balance equation is considered according to actual

values of the flow and losses data by the evaporation phenomena as follows:
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S(t) = Si+ Ila — Ea * water surface area — R, (3.27)

where Ia is the original flow value and evaporation parameter is represented by Ea,

respectively. R is the water release, while Si is the starting reservoir storage.

The above simulation is an unrealistic procedure because, in the simulation stage, the
storage details of the reservoir for each stage (day or month) need to be obtained. The
storage calculation is based on hydrological parameter values (i.e., flow and evaporation).
In practice, the actual values of these hydrological parameters are unknown at the
beginning of the month. Therefore, the predictive models will provide the forecasted

values for these parameters.

Based on that, the current study introduces a new contribution to the first stage of
reservoir and dam improvement modeling. The worst and best forecast findings are used
to carry out the suggested simulation method. The suggested process will reflect the
realistic simulation of the reservoir. The current study will include the predicted values

of the flow and evaporation into the water balance equation as follows.

S(t)" =Si+1f —Ef »water surface area — R + A, (3.28)

where the predicted values of the flow and evaporation parameters are represented by If

and Ef, respectively. R is the water release, while Si is the starting reservoir storage.

The evaluation and assessment of the new simulation procedure will be conducted by
calculating the difference between the actual reservoir storage and the reservoir storage

obtained by Equation (3.29) as follows:
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S(t) —S(t)”

3.29
100 (3.29)

A (%Error) =

The actual storage of the reservoir is represented by S(t). A represents the percentage
difference between the reservoir storage at the beginning of a month/day and the reservoir
storage at the end of a month/day. Equation 3.29 is used to check the error percentage

between the results obtained by traditional simulation procedure and the new procedure.

3.7 Case Study and Data Description

The current section of chapter 3 describes the location of case study whether in semi-
arid or tropical regions. Full information about the inflow and evaporation data of the

reservoirs is mentioned in the current section.

3.7.1 Dukan Dam (Semi-arid Region)

The first case study used in the current research is the Dukan reservoir. It is located around
67 kilometers north of Sulaimani City in northern Iraq. The dam is adjacent to the city of
Ranya and is located at 35°57'13.24"N and 44°57'11.61"E. It has a total capacity of 6.8
km® and is situated near Latitude 35°57'13.24"N and Longitude 44°57'11.61"E. It is a
reservoir that was created during Dukan Dam construction on the small Zab River. This
multipurpose dam was constructed between 1954 and 1959 to provide water to farmers
and to supply hydro plants for power generation. The dam is a concrete arch dam with
gravity monoliths abutting it. It measures 360 meters (1,180 feet) in length and 116.5
meters (382 feet) in height. It measures 32.5 m (107 ft) wide at the bottom and 6.2 m (20
ft) wide at the top. The dam's total maximum discharge is around 4,300 m>®/s (150,000

ft*/s). This is partitioned between a spillway tunnel with 3 radial gates and an emergency
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bell mouth glory hole spillway that can discharge 2,440 m?/s (86,000 ft*) and 1,860 m>/s
(66,000 cu ft) per second, respectively. There are also 2 irrigation outlets that can co-
discharge 220 m3/s (7,800 ft*/s) per second, but they haven't been used in 10 years. There
is a powerhouse of 5 Francis units, each with an output of 80 MW, emitting between 110
and 550 m%/s (3,900 and 19,000 ft3/s) of water. The lake has a surface size of 270 km?.
The reservoir's capacity is 6.8 km? in normal operation, with a maximum capacity of 8.3
km?. The surface elevation is 515 meters above sea level. The surface elevation of the
dam must be within 469 and 511 meters to operate the power station. The Dukan Dam's
drainage basin spans 11,700 square kilometers, with part of it in Iraq and the rest in Iran.
The main source of water is the Zab River. The daily inflow to the reservoir over 11 years
(January 2010 - December 2020) is the only available data record. The map of the Dukan

reservoir is shown in Figure 3.1.

Figure 3.9: The location of Dukan Dam and its reservoir.

The Dukan reservoir was selected for the present study primarily because it offers a
lengthy time series of monthly recordings for two important hydrological indicators (i.e.,

inflow and evaporation). These data are regarded as a sizable database that can be used
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to create Predictive models. Additionally, as opposed to the Timah Tasoh reservoir, which
is situated in a tropical area, this reservoir is situated in a semi-arid climate. In fact, a
number of factors, such as the weather, have an impact on how the reservoir system
behaves (temperature, rainfall, and wind speed). In order to reduce or promote
evaporation and inflow, such variables directly affect the patterns of reservoir inflow and

evaporation.

For instance, a reservoir's water level decreases when there is no rain in the reservoir's
drainage basin. On the other hand, a rise in temperature will result in more water surface
evaporation. As a result of the variable weather in the semi-arid region, a distinct pattern
of reservoir inflow and evaporation is anticipated. These indicators have displayed

dynamism and non-stationary patterns throughout the period of study.

3.7.1.1 Reservoir Inflow Data

The upstream gauge's daily inflow data from the year 2010 to 2020 were used in this
study. The inflow station, which is situated on the Tigris River's main channel, is known
as the Dukan gauge station. The Ministry of Water Resources in Iraq provided the data

used in the research presented.

An 1nitial examination of the reservoir inflow data reveals that the historical inflow data
for the period studied has a high degree of daily variation. Figure 3.2 displays the Dukan
Dam's natural inflow. It is clear that during the course of the past 11 years, the average
values of the inflow have varied on a daily basis. According to observations, the various
extreme occurrences that took place during the study period showed how the Dukan

Dam's water inflow behaved dynamically. Figure 3.10 shows that the extreme
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occurrences recorded in January 2013 (2442 m®/sec), March 2016 (2464 m?¥/sec),

February 2018 (1981 m¥/sec), January 2019 (2431 m?/sec) and April 2019 (1990 m?/sec).

It is notable that the highest value of inflow data ever recorded was 2464 m*/sec in March
2016. Meanwhile, the minimum inflow amount was 2 m?®/sec, which was recorded in
August 2017. The time series data revealed that a reservoir's average annual inflow of
water is 134.6 m®/sec. According to this analysis, the difficulty in achieving reliable
forecasting of such data is revealed by the vast range of data acquired over the historical
inflow period. Therefore, in order to achieve trustworthy forecasting accuracy, robust

forecasting models are required.

Figure 3.10: Historical naturalized reservoir inflow trends at the Dukan Dam for
years between (2010 to 2020).

The statistical parameters of the daily inflow data for the case study location, the Dukan,
are displayed in Table 3.6. Here, the mean, maximum, and minimum values for the
previous ten years are listed (Xmean, Xmax, and Xmin). This table also includes the
monthly inflow data's standard deviation (Sx), skewness (Csx), variation coefficient (Cv),
as well as median values. In terms of dynamic changes, the year 2019 has a pretty high
standard deviation, whereas the standard deviation for the records from 2015 is rather
low.
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While records acquired during the year 2015 show a low variation coefficient, the inflow
values for the year 2018 show a significant variation coefficient. The fact that the high
and low skewness indications in Table 3.6 correlate to the years 2013 and 2015,
respectively, is another noteworthy aspect of the table. However, for the 11-year period,
the minimum and highest daily inflow numbers were reported for the years (2017, 2020)
and 2016, respectively. The results show that, in comparison to previous years during the
11-year period, the median values in the second half of the period were comparatively
high. This is because the current dam's reservoir often receives a considerable amount of

water throughout the years 2015, 2016, and 2019.
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Table 3.6: Statistical analysis of inflow data at the Dukan for the study period
between (2010 to 2020).
Year Xmean Sx Cv (Sx/ Csx Xmax Xmin Median
(m3/sec) | (m%sec) | Xmean) (m3/sec) | (m’/sec | (m’/sec)
2010 117.82 129.81 1.1 2.45 1064 11 56
2011 105.47 135.48 1.28 2.95 1008 14 42
2012 104.28 108.20 1.03 1.54 539 11 52
2013 129.18 203.21 1.57 6.44 2442 12 73
2014 91.97 93.37 1.01 2.48 665 10 62
2015 90.835 72.21 0.79 1.20 503 13 91
2016 187.55 272.99 1.45 3.98 2464 9 85
2017 87.805 123.35 1.40 2.36 929 2 32
2018 138.28 215.51 1.55 3.47 1981 3 48
2019 287.05 351.23 1.22 2.38 2431 5 125
2020 141.34 133.91 0.94 1.21 652 2 91
Training
Period 134.55 199.55 1.483 4.53 2464 2 59
Testing
Period 135.51 128.91 0.951 1.351 652 2 90

(Note: Xmean = mean value; Sx = standard; deviation; Cv = coefficient of variation; Csx
= skewness; X—min = minimum value; Xmax = maximum and median value)

3.7.1.2 Reservoir Evaporation Data

Dukan Lake's water is situated halfway between a body of clean water and a land surface
(semi-desert). Due to the lake's depth and relative clarity over a large portion of its
surface, solar energy may be massively stored in a significantly larger volume. Over the
course of a day, the lake's bulk temperature (the temperature below roughly half a meter)
will vary slightly, and the evaporation rate will adjust accordingly. As an excessive
quantity of energy is stored in the water, for instance, the temperature of the lake will rise

dramatically between June and September. The reservoir's storage contents and related
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surface areas generally change significantly over time. Evaporation rates fluctuate greatly

seasonally and dramatically between years.

In the current research, daily evaporation data from the years 2015 to 2020 were used.
The data was taken from the Ministry of Water Resources in Iraq. The collected
evaporation data was split into groups, which are training and testing data (more details
on the percentage of each group will be provided in the methodology chapter). Figure 3.3
shows the 6-year monthly time series of evaporation values. The Dukan Dam's reservoir
evaporates an average of 6 mm every day. According to historical statistics, the largest
amount of evaporation occurred in August 2020 at 21.3 mm/day. It is amazing that the

reservoir only experienced 0.4 mm/day of evaporation on average over the six years.

Figure 3.11: The time series of monthly evaporation records for Dukan Dam
(2015 to 2020)

Table 3.7 provides the statistical analysis of evaporation data collected over six years. To
emphasize the behavior of the data, the mean (Xmean), maximum (Xmax), and minimum
(Xmin) values for these years were used. The standard deviation (Sx), skewness (Csx),
variation coefficient (Cv), and median values for the daily evaporation data are also
shown in this table. It was observed that the highest value of evaporation occurred in

2020, while the lowest value of evaporation from a reservoir appeared in 2016. It was
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noted that the records of 2020 show a remarkably large standard deviation, while the
evaporation data from 2016 showed a modest standard deviation. The maximum and
minimum coefficient of variation values correspond to the years of 2019 and (2016 and

2018), respectively.

Table 3.7: Statistical analysis of the evaporation data at the Dukan Dam for the

study period between (2015 to 2020).

Year | Xmean Sx Cv (Sx/ Csx Xmax Xmin Median
(mm/day) | (mm/day) | Xmean) (mm/day) | (mm/day) | (mm/day)
2015 5.78 4.29 0.74 0.43 17.00 0.40 4.80
2016 4.03 2.48 0.61 0.70 12.30 0.40 3.60
2017 6.15 4.37 0.71 0.61 20.00 0.40 5.20
2018 7.30 4.43 0.61 0.07 16.70 0.40 7.30
2019 6.24 4.68 0.75 0.55 20.30 0.40 4.70
2020 6.61 4.85 0.73 0.51 21.30 0.40 5.45
Training
Period 5.80 4.26 0.73 0.62 20.3 0 4.7
Testing
Period 7.19 4.75 0.66 0.38 21.3 0.3 6

(Note: Xmean = mean value; Sx = standard deviation; Cv = coefficient of variation;
Csx = skewness; X—min = minimum value, Xmax = maximum and media value).

3.7.2 Timah Tasoh Dam (Tropical Region)

TTDTimah Tasoh Dam (TTD) construction began in 1987 and was finished in 1992
in Perlis, Malaysia (6°36' N; 100° 14'E). TTD is an essential hydraulic construction
within Peninsular Malaysia and its Qnow patterns operation and quantification are highly
important for the water resources management of that region. In fact, the high variance
and non-linearity seen in the Qnow of the tropical zone frequently include a high stochastic
pattern that contributes to the complexity of the dam's reservoir systems. This case study
will necessitate the development of a new method for evaluating the offered models. As

a result, a thorough comparison of the existing and proposed operating procedures is
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required. The reservoir system has a total surface area of over 13.3 km?. The reservoir's
overall capacity is around 40 million cubic meters (MCM). With an entry average runoff
of over 100 MCM, the reservoir water storage has two major zones: a dead zone of 6.7
MCM and a live zone of 33.3 MCM. The reservoir could be classified as a shallow
reservoir, with a maximum depth of 10 meters. The reservoir's position was chosen to
receive water from two main rivers in Perlis State: The Tasoh and Perlarit Rivers. The
TTD provides irrigation water for 3100 ha at a rate of roughly 55 MCM per year.

Furthermore, it delivers around 55*%103m?

of water each day for home consumption.
Dams are built to regulate and avoid floods that are expected during the rainy season. The

location of the Timah Tasoh Dam is displayed in Figure 3.4.

TTD construction began in 1987 and was finished in 1992 in Perlis, Malaysia (60 36' N;
1000 14'E). TTD is an essential hydraulic construction within Peninsular Malaysia, and
its inflow pattern operation and quantification are highly important for the water resources
management of that region. In fact, the high variance and nonlinearity seen in the inflow
of the tropical zone frequently include a high stochastic pattern that contributes to the
complexity of the dam's reservoir systems. This case study will necessitate the
development of a new method for evaluating the offered models. As a result, a thorough

comparison of the existing and proposed operating procedures is required.

The reservoir system has a total surface area of over 13.3 km?. The reservoir's overall
capacity is around 40 million cubic meters (MCM). The reservoir could be classified as
a shallow reservoir, with a maximum depth of 10 meters. The reservoir's position was
chosen to receive water from two main rivers in Perlis State: The Tasoh and Perlarit
Rivers. The TTD provides irrigation water for 3100 ha at a rate of roughly 55 MCM per

3

year. Furthermore, it delivers around 55 %103 m’ of water each day for home
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consumption. Dams are built to regulate and avoid floods that are expected during the
rainy season. The location of the TTD is displayed in Figure 3.4, and Table 3.8 shows the
main features of the TTD and reservoir (Department of Irrigation and Drainage (DID),

Malaysia).

To investigate the models offered in a distinct case study situated in the tropical zone,
TTD was chosen as the candidate. Additionally, in comparison to the Dukan reservoir,
the TTD reservoir is relatively small. Moreover, it is critical to investigate the
performance of the suggested predicting method by taking a variety of random

hydrological processes into account.

In reality, a tropical region's high variation and nonlinearity for reservoir inflow and
evaporation typically integrate a high stochastic pattern, which further complicates the
dam's reservoir system. In order to assess the proposed prediction methods, the current
study was applied to the TTD reservoir as a case study. It would substantially mirror and
reflect the performance indicators attained by the operation rule generated during the
historical events-based deterministic and predicted inflows to have such high stochastic
levels for the reservoir's parameters. In order to treat the reservoir's inflow and

evaporation equitably, a thorough comparison between the two scenarios must be made.
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Figure 3.12: Geographic location of the Timah Tasoh Dam and the Timah Tasoh
reservoir region in Malaysia highlighted by the red circle.
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Table 3.8: The Timah Tasoh Dam and reservoir's primary characteristics
(Department of Irrigation and Drainage (DID), Malaysia).

Dam Height 173 m
Crest Length 3455 m
Height of Crest 32m
Spillway Control spillway
The area of drainage 191 km?
Runoff (annual) 72 km?
Surface area of the lake 13.3 km?

Despite the reservoir's size being relatively big, the rapid rise in water level following
heavy rains is primarily due to its shallow depth (10m). So, the emergency spillway
opening is to blame for flooding incidents in the downstream area (Wan, Ruslan, R.A.B,
Khairul, A.R, Zullyadini 2002). The government proposed updating the TT reservoir's
capacities due to extensive development in the reservoir catchment to strengthen the
control ability to prevent and reduce disasters. The reservoir capacity may be doubled to
over 75 MCM with a 3.5 m increase in the height of the dam. As depicted in Figure 3.5,

construction is now ongoing.

Figure 3.13: New Standard feature for the Timah Tasoh Dam (under
construction); a) Current feature and b) Future feature (Ismail, 2012).
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In actuality, Malaysia is situated in a tropical area. The Malaysian climate is characterized
by consistent temperatures, high levels of humidity, and abundant rainfall. The
distribution patterns of rainfall across the nation are influenced by seasonal wind flow

patterns as well as regional topographic factors.

Vulnerable locations, such as the east coast of Peninsular Malaysia, Western Sarawak,
and the northeast coast of Sabah, endure intense downpours during the northeast monsoon
season (Lau et al., 2016). In contrast, inland regions or regions protected by mountain
ranges are largely unaffected by its effects. The best way to explain the country's rainfall
distribution is by season. Malaysia has high relative humidity levels, with a typical
monthly value that ranges from 70 to 90%, depending on the location and the month. The
range of mean monthly relative humidity for any given place ranges from a minimum of

around 3% to a maximum of about 15% (Zainal et al., 2002).

Despite the fact that the wind across the country is typically weak and unpredictable, the
patterns of the wind flow undergo some predictable periodic variations. Four distinct
seasons—the southwest monsoon, northeast monsoon, and two shorter inter-monsoon
seasons—can be identified as a result of these shifts. Due to its proximity to the equator,
Malaysia naturally experiences a lot of sunshine and solar radiation. Even in times of
intense drought, it is highly uncommon to spend an entire day with a clear sky. There is
a significant quantity of sunlight blocked by the cloud cover. Malaysia experiences

roughly 6 hours of sunshine on average each day (Irwanto et al., 2014).

3.7.2.1 Reservoir Inflow Data

The monthly flow data were regarded as historical time series data from 1 January 1989
to 31 December 2013. Sungai Pelaritat Kaki Bukit is the name of the station, and its
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identification number is 6602402 (6°35'38.0"N 100°13'15.4"E). The Department of
Irrigation and Drainage (DID) in Malaysia provided the Water Resources Management
and Hydrology Division with information regarding reservoir inflow. The allocated

reservoir inflow data have been used to train and test the suggested approach.

The natural monthly inflow over the 25-year period is shown in Figure 3.6. The inflow
has been seen to be random in character. This is so because the influx is a result of the
occurrence of rainfall, which might have varying levels. The maximum reservoir inflow
volume was measured in November 2011, while the lowest inflow volume was recorded
in February 1989. Each year's reservoir inflow values fall between the ranges of 0.01 and
62.49 MCM/month. In conclusion, the unrecognized pattern of the inflow over time

makes forecasting more challenging.

Figure 3.14: Historical naturalized reservoir inflow trends at the TTD for years
between (1989 to 2013)

The United States Geological Survey (USGS) (https://help.waterdata.usgs.gov 2011)
suggested classifying the flow data into three distinct groups at the early phase of the
research, including high, medium, and low classes. According to historical data, the high

category is defined as flow values representing the first 75% of all data, the medium
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category as flow data between 75% and 25%, and the low category as flow data with 25%
or less. Due to the data's extremely stochastic character, additional categorization has
been added to the earlier categories. The records less than 25% and more than 10% were
classified as medium-low, while two more categories for the inflow records, between 75%
and 90%, have been designated as medium-high. Five categories of reservoir inflow are
shown in Table 3.9. The second crucial factor that should be considered while creating
the operation guidelines for the dam's reservoir system is the pattern of water demand. In
Table 3.9, the monthly distribution of the water demand for irrigation usage is shown.

The current study solely takes irrigation into account when calculating water demand.

The months between September and November were shown to have the highest water
demand; this is probably because there are more agricultural operations during these three
months, which increases the need for irrigation. Contrarily, because there is no
agricultural activity in January and February, there is essentially no demand for water

(apart from the water designated for domestic use).

Table 3.9: The monthly inflow categories and the amount of demand for Timah
Tasoh Dam
Month Low |Medium Low | Medium | Medium-High| High Demand
oevy | MEM - vemy | MEM ) viemy | (viemy
January 1.2 1.88 4.17 7.09 9.73 0
February 0.7 1.06 2.03 2.96 3.83 0
March 1.81 2.22 3.79 5.66 7.18 3.28
April 2.12 2.25 343 6.8 9.71 5.36
May 1.67 1.87 3.37 5.92 8.73 3
June 1.83 2.04 3.26 5.34 7.16 3.22
July 1.2 1.48 5.71 10.74 11.75 3.22
August 2.63 3.42 6.31 10.93 14.8 1.24
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Table 3.9, Continued

Month Low | Medium Low | Medium | Medium-High| High Demand
MCM) (MCM) MCM) (MCM) MCM) | (MCM)
September 2.71 3.12 5.6 9.97 14.66 8.06
October 5.49 6.9 14.87 23.64 28.76 7.65
November 6.98 8.01 18.17 32.63 40.77 7.65
December 4.13 5.5 12.78 22.47 26.39 4.71

Table 3.10 presents the statistics of the raw data which were utilized to train and test the
models. For the years 1989 to 2013, the values of the mean inflow volume, standard
deviation, coefficient of variation, skewness, as well as the highest and minimum inflow
volumes are computed individually for each month (from January to December). There
are various variances in the calculated values of mean and standard deviation since the
historical data used for models are of a long duration. The monthly inflow data exhibits
high median values, especially from August to December, which demonstrates that the

data sets are dispersed over a wide range of values.

During the months of September to December, the fluctuation in monsoon rainfall
contributes to the inflow to a reservoir system. The calculated standard deviations have
greater values for these months, indicating that the annual flows have experienced
significant fluctuations. The pattern of the flows is quite consistent throughout each year.
The average monthly inflow series' annual regularity allows us to notice this. In addition,

the flow data shows very significant year-to-year variability.
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Table 3.10:  Statistical analysis of the monthly inflow data at the TTD for the
study period between (1989 to 2013).

Month Xmean Sx Cv (Sx/ Csx Xmax Xmin Median
MCM | (MCM | Xmean) (MCM | (MCM | MCM
month-1) | month-1) month-1) | month-1) | month-1)

January 4.04 3.51 0.87 1.10 13.66 0.09 3.16

February 1.70 1.17 0.69 0.30 4.41 0.01 1.6

March 342 2.61 0.76 1.70 12.1 0.21 3.1

April 3.96 3.02 0.76 1.58 12.37 0.75 2.84

May 3.19 2.16 0.68 1.36 9.62 0.7 3.06

June 3.38 2.47 0.73 1.62 11.37 0.06 3.08

July 5.14 5.63 1.10 2.18 254 0.71 3.52

August 6.16 4.64 0.75 1.15 17.67 0.78 4.58

September 9.63 11.37 1.18 1.87 41.77 1.06 5.03

October 15.39 12.83 0.83 1.45 53.74 1.37 11.45

November 18.87 16.82 0.89 1.24 62.49 0.42 13.07

December 13.52 12.70 0.94 1.77 56.11 0.3 10.6

Training

Period 6.39 9.04 1.41 3.1 56.11 0.01 32

Testing

Period 10.17 11.19 1.11 2.64 62.49 0.27 5.88

(Note: Xmean = mean value; Sx = standard deviation; Cv = coefficient of variation; Csx
= skewness; X—min = minimum value, Xmax = maximum and median value).

3.7.2.2 Reservoir Evaporation Data

The fundamental problem that has an impact on a wide range of both aquatic and
terrestrial life is evaporation from the reservoir system. The present study makes use of
the Timah Tasoh reservoir's monthly evaporation values. Monthly data spanning 20 years
(1994-2013) made up the data sample. Padang Katong in Kangar is the name of the
station, and its identification number is 6401302 (6°30'44.2"N 100°12'34.3"E). The
Department of Irrigation and Drainage (DID) of Malaysia's Water Resources
Management and Hydrology Division provided the information on reservoir evaporation.
Figure 3.7 displays the time-series data graph of the entire evaporation data. It is clear

that during the same year, the evaporation varies greatly from month to month. In
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actuality, during the duration of the study, the maximum and minimum values of the

evaporation records were 153.42 mm/month and 51.45 mm/month, respectively.

Figure 3.15: The time series of monthly evaporation records for Timah Tasoh
Dam (1994 to 2013).

Table 3.11 contains a list of the fundamental statistical indices for the evaporation data.
The highest standard deviation was observed and reported in August. According to the
statistical analysis, the minimum value of evaporation in the research period occurred in
January, while the largest volume of evaporation of the reservoir was observed in July.
The data sets are scattered over a wide range of values, as indicated by the high mean

values of Table 3.11, especially from June to September.

Table 3.11:  Statistical analysis of the monthly evaporation data at the TTD for
the study period between (1994 to 2013).

Month Xmean Sx Cv (Sx/ Csx Xmax Xmin | Median
(MCM | (MCM | Xmean) (MCM | (MCM | (MCM
month-1) month-1) month-1) month-1)| month-1)

January 63.94 8.47 0.13 0.01 75.61 51.45 63.15

February 69.83 7.79 0.11 -0.49 81.23 53.18 68.87
March 82.36 8.21 0.10 1.61 107.90 72.48 81.85
April 95.70 7.61 0.08 0.05 112.56 81.58 96.56
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Table 3.11, Continued

Month Xmean Sx Cv (Sx/ Csx Xmax Xmin | Median
(MCM | (MCM | Xmean) (MCM | (MCM | (MCM
month-1) month-1) month-1) month-1)| month-1)
May 107.70 9.46 0.09 -0.36 124.85 90.40 109.21
June 124.96 8.97 0.07 -0.08 145.82 105 125.53
July 137.77 6.39 0.05 041 153.42 124.87 137.74
August 128.94 17.99 0.14 -0.36 150.28 100.20 135.12
September | 110.47 16.78 0.15 0.12 143.74 82.45 108.85
October 94.13 14.74 0.16 0.45 123.87 71.42 92.08
November 82.38 11.96 0.15 0.56 108.50 62.45 80.18
December 71.69 8.91 0.12 0.09 87.40 58.42 72.10
Training 98.30 25.61 0.26 0.27 153.42 51.48 95.5
Period
Testing 92.06 27.91 0.31 0.48 146.92 51.45 82.45
Period

(Note: Xmean = mean value; Sx = standard deviation; Cv = coefficient of variation; Csx
= skewness; X—min = minimum value: Xmax = maximum and media value)
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CHAPTER 4: RESULTS AND DISCUSSION

4.1 Introduction

The research relied on developing a new machine learning (ML) model to predict two
major hydrological parameters in the dam and reservoir system: reservoir inflow and
evaporation. The study was conducted in two different regions, semi-arid and tropical
(Iraq and Malaysia). The proposed predictive method was emphasized from the latest
deep learning version and validated against two conventional ANN methods. The
modeling structure was initiated based on univariate modeling, where only the lead time
of previous records was used for the initial development of the learning algorithms. In
this context, the correlated lags were used as predictors for the prediction matrix. It is
worth highlighting that the prediction of the hydrological parameters using only lag times
is a distinguished modeling scheme where the merit of the ML models takes place in
mimicking the complex relationship between the predicted and actual values. Since this
research is conducted to predict two different parameters, the present chapter will include
three main sections: reservoir inflow forecasting, evaporation prediction, and reservoir
simulation. The last subsection in the second and third main sections focuses on the
feasibility of incorporating a feature selection algorithm prior to the prediction process.
There are several metrics calculated for the prediction evaluation that present the best-fit-
goodness (i.e., Nash-Sutcliffe efficiency (NSE), Willmott index (d)), absolute error
indicators (i.e., root mean square error (RMSE), mean absolute error (MAE), Nash), and

scatter index (SI), BIAS, MBE.

4.2 Reservoir inflow forecasting

Three different prediction models have been developed to forecast reservoir inflow at

semi-arid and tropical regions. This section of the current chapter includes two main
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scenarios for prediction. The first scenario involves applying the proposed models based
on relevant input variables selected by PAC. Whereas, in the second scenario, GA method

was used to select the relevant input variables for the prediction models.

4.2.1 Semi-arid case study

Table 4.1 tabulated the statistical results of the testing phase for the semi-arid region case
study. The introduced DLNN model reported superior results in comparison with the two
classical ANN algorithms. It can be observed that MLPNN and Radial Basis Function
Neural Network (RBFNN) attained almost similar forecasting results. In quantitative
explanation, the DLNN model attained minimum RMSE and MAE (39.62 and 23.67) and
maximum d and NSE (0.96 and 0.95). With respect to the benchmark models MLPNN
and RBFNN, the statistical indicators showed much lower prediction results MLPNN
attained (RMSE = 53.18, MAE = 36.79, d = 0.94, NSE = 0.91) and RBFNN reported
(RMSE = 52.19, MAE = 33.34, d = 0.95, NSE = 0.92). It can be noted here that in all
models for the semi-arid region, the second lag time series provided the best forecasting
results. However, the correlation was determined by the five lags using the auto-
correlation statistics. This gives credit to the fact that the applied ML models reported a
homogeneous mechanism in abstracting the essential information from the memorial time

series.

Table 4.1: The statistical indicators while testing phase for three methods of
"Semi-arid case study." The optimal model has been boldfaced.

Models | RMSE | MAE MBE NSE SI BIAS d CI

(m?¥/sec) | (m%/sec) (m?/sec)

MLPNN1 | 81.032 | 46.983 | 0.109 0.813 0.598 -5.570 | 0.896 | 0.728

MLPNN2 | 53.188 | 36.794 | 0.164 0.919 0.393 17.141 | 0.948 | 0.871

MLPNN3 | 66.727 | 45.720 | 0.245 0.873 0.494 17.276 | 0.927 | 0.809
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Table 4.1, Continued

Models RMSE | MAE MBE NSE SI BIAS d CI
(m3/sec) | (m3/sec) (m3/sec)
MLPNN4 | 71.482 | 47.623 | 0.229 0.854 0.529 | 14.492 | 0919 | 0.785
MLPNNS | 68.598 | 45949 | 0.226 0.866 0.508 | 20.233 | 0.924 | 0.800
RBFNN1 | 72.505 | 40.174 | 0.014 0.850 0.535 | 24.549 | 0916 | 0.778
RBFNN2 | 52.193 | 33.347 | -0.061 | 0.922 0.386 | 21.283 | 0.950 | 0.876
RBFNN3 | 71.537 | 47.540 | 0.148 0.854 0.530 | 30.092 | 0.921 | 0.787
RBFNN4 | 59987 | 41.991 | 0.199 0.897 0.444 | 16.716 | 0.938 | 0.842
RBFNNS | 65.299 | 44.097 | 0.230 0.878 0.484 | 16.682 | 0.930 | 0.816
DLNN1 48.763 | 27.322 | 0.052 0.932 0.360 9.766 | 0.954 | 0.889
DLNN2 39.627 | 23.678 | 0.125 0.955 0.293 2.578 | 0.967 | 0.923
DLNN3 45.795 | 27.632 | 0.169 0.940 0.339 3.010 | 0.958 | 0.901
DLNN4 53.427 | 34.548 | 0.140 0.918 0.396 9.788 | 0.948 | 0.871
DLNNS5 57.845 | 36.355 | 0.155 0.904 0.428 | 15.894 | 0.941 | 0.851

The distribution of anticipated data that matches real lake evaporating data along the line

of convenience can be usefully visualized. Figure 4.1 shows the scatter plots of the best

versions of the MLPNN method. It can be seen that the data predicted by MLPNN is far

from the right line. This indicates that MLPNN is not able to provide high-level accuracy

for evaporation prediction. It could be observed that the best correlation has been

achieved with two input variables (R = 0.85).

94



Figure 4.1:  Scatter plots for different input combinations using the MLPNN

method

The distribution of the actual data against the predicted data obtained by the RBFNN
method with different input variables is shown in Figure 4.2. The RBFNN method
achieves a high magnitude correlation between the predicted and real data using two past
values of inflow. In comparison among models, the second model has a substantially

higher level of predictability for inflow at the semi-arid case study.
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Figure 4.2:  Scatter plots for different input combinations using the RBFNN
method.

Figure 4.3 explains the deviation from the identical line in the form of scatter plots for
the applied ML models (i.e., DLNN) and for the five-input combination configured in the
first place. The maximum determination coefficient using the second input combination
for the DLNN model (R? = 0.90). The comparable models attained MLPNN (R? = 0.85)
and RBFNN (R? = 0.87). It can be observed from the presentation in Figure 5.3 that the
models, in general, performed well. Particularly, the DLNN attained identical predictions

for the whole range of the data, including minimum and maximum reservoir inflow data.
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Figure 4.3:  Scatter plots for different input combinations using the DLNN
method.

4.2.2 Tropical case study

The statistical results over the testing phases for the tropical region case study reported in
Table 4.2 Apparently, the developed DLNN model attained the best prediction results
with values of (RMSE = 4.69, MAE = 2.89, d = 0.94, NSE = 0.90). In contrast, MLPNN
attained (RMSE =5.66, MAE =3.67, d = 0.92, NSE = 0.85) and RBFNN attained (RMSE
=5.16, MAE =3.08, d = 0.93, NSE = 0.88). The best results indicated that the best results
were achieved using the second lags incorporating two months of previous inflow to

forecast one step ahead inflow for the DLNN and RBFNN models. On the other hand, the
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MLPNN showed that including three lags is the best scenario for the forecasting process.
The superiority of the DLNN clearly explains the enhancement of prediction
performance. Plus, this elaborates the merit of the DLNN in better understanding the
complicated relationship using the feasibility of the deep learning processes executed
using multiple layers of learning over the classical introduced ML algorithms over the

literature.

Table 4.2: The statistical indicators during the testing phase for three methods
of "Tropical case study." The optimal model has been boldfaced.
Models | RMSE | MAE MBE NSE SI BIAS d CI

MLPNN1 | 6.062 4.271 0.230 0.844 0.584 0.342 0916 | 0.773

MLPNN2 | 7.895 5.144 0.521 0.734 0.767 0.119 0.876 | 0.643

MLPNN3 | 5.661 3.676 0.048 0.859 0.567 1.567 0.922 | 0.792

MLPNN4 | 7.346 5.363 0.790 0.738 0.769 -1.466 | 0.865 | 0.639

MLPNNS | 7.020 4.711 0.433 0.760 0.741 0.687 0.883 0.671

RBFNN1 | 7.215 5.039 0.375 0.779 0.695 0.976 0.891 0.695

RBFNN2 | 5.160 3.084 0.093 0.887 0.501 0.826 0.934 | 0.828

RBFNN3 | 6.306 4.340 0.421 0.824 0.632 -0.433 | 0903 | 0.744

RBFNN4 | 6.544 4.758 0.667 0.792 0.685 -1.004 | 0.890 | 0.705

RBFNNS | 7.196 3.398 0.198 0.747 0.760 0.068 0.878 | 0.656

DLNN1 6.930 5.069 0.366 0.796 0.667 1.236 0.899 | 0.716

DLNN2 4.699 2.899 0.007 0.906 0.456 1.528 0.944 | 0.855

DLNN3 4.833 2.867 0.258 0.897 0.484 -0.020 | 0.939 | 0.842

DLNN4 5.381 3.786 0.423 0.859 0.564 0.461 0.921 0.791

DLNNS 6.756 4.672 0.433 0.777 0.713 1.128 0.889 | 0.691

For further statistical analysis, the correlation between actual and predicted inflow data
for MLPNN is presented in Figure 4.4. Prediction results for five different modeling
structures based on the MLPNN method are shown. It is noted that the distribution of data
around the fit line varies greatly from one model to another. The results reveal that the

performance of MLPNN improved when three input variables were considered. The
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optimal prediction was attained by Moldel-3, achieving maximum correlation (R2 = 0.78)

compared to the other models.

Figure 4.4:  Scatter plots for different input combinations using the MLPNN
method.

After viewing the performance of the proposed models based on the arithmetic indicators,
a comparison between the models according to the visualization of the predicted data
distribution corresponding to the observed data is critical. Accordingly, the correlation
plots of five models using RBFNN are illustrated in Figure 4.5. It is remarkable that the

second model obtains accurate inflow predictions.
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Figure 4.5:  Scatter plots for different input combinations using the RBFNN
method.

Figure 4.6 displays the scatter plots for the best prediction results when using the DLNN
method. The DLNN achieves a high correlation between the predicted and observed data.
Compared to previously used methods, the DLNN method has a substantially higher level
of predictability for reservoir inflow at Timah Tasoh Dam (TTD). This demonstrates that
during training, the DLNN method is able to map the link between input and output

values. As a result, it was capable of predicting the testing data very accurately.
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Figure 4.6:  Scatter plots for different input combinations using the DLNN
method.

4.2.3 Integrative predictive model results

Modeling reservoir inflow based on univariate modeling where only historical data of
inflow is used for the learning process is somehow a complex hydrological problem.
Hence, reducing the dimension of the prediction matrix through feature selection
integration can essentially provide a reliable and robust predictive model. Hence, the
results of the hypothesized integration of GA as a selection algorithm are presented in

this subsection.
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The results of the semi-arid indicated the variation between the best-selected lags between
the applied ML models. The best results configured using GA feature selection were
second and third lags according to several statistical indicators (i.e., GA-DLNN-2:
(RMSE =23.49, MAE = 15.55,d =0.98, NSE = 0.98) and GA-DLNN-3: (RMSE = 39.30,
MAE = 24.24, d = 0.96, NSE = 0.95)). On the other hand, prediction results were lower
using the first two lags. The results of the tropical case study revealed similar results with
respect to the optimal lags, with GA-MLPNN and GA-RBF-NN being the best results in
the first two lags. GA-DLNN has the best results using the second and third lags. In
quantitative results, (i.e., GA-DLNN-2: (RMSE = 2.92, MAE = 2.06, d = 0.97, NSE =
0.96) and GA-DLNN-3: (RMSE = 3.99, MAE = 2.57, d = 0.95, NSE = 0.93) are shown

in Table 4.3.

Table 4.3: The statistical indicators during the testing phase for three methods.
The optimal model has been boldfaced.

Semi-arid Case Study

Models RMSE | MAE | MBE NSE SI BIAS d CI

GA-MLPNN-2 |36.986 | 21.717 | -0.009 | 0.961 0.273 | 10.238 | 0.970 | 0.932

GA-MLPNN-5 |48.942 | 28943 | 0.037 | 0932 | 0362 | 16.034 | 0.955 | 0.889

GA-RBF-NN-1 | 40.561 | 25.641 | 0.160 0.953 0.299 | -8.349 | 0.965 | 0.920

GA-RBF-NN-2 |33.680 | 21.886 | 0.093 0.968 0.249 | -3.799 | 0974 | 0.943

GA-DLNN-2 23.493 | 15.556 | -0.008 | 0.984 0.174 2.882 | 0987 | 0.972

GA-DLNN-3 39.304 | 24.247 | -0.031 | 0.956 0.291 6.834 | 0967 | 0.924
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Table 4.3, Continued

Semi-arid Case Study
Models RMSE | MAE MBE NSE SI BIAS d CI
Tropical Case Study
GA-MLPNN-1 6.342 | 3.949 | 0.080 | 0.829 | 0.611 1.583 | 0912 | 0.756
GA-MLPNN-3 5.483 | 3.428 | 0.015 | 0.867 | 0.550 1.475 | 0.926 | 0.803
GA-RBF-NN-2 4216 | 2.612 | 0.019 | 0924 | 0.410 | 0.901 | 0.952 | 0.880
GA-RBF-NN-3 5.691 | 3939 | 0.276 | 0.857 | 0.570 | 0.075 | 0.919 | 0.788
GA-DLNN-2 2,922 | 2.063 | 0.001 | 0.964 | 0.284 | 0.061 | 0.974 | 0.939
GA-DLNN-3 3.993 | 2574 | 0.214 | 0.930 | 0.400 | -0.073 | 0.955 | 0.887

Figure 4.7 shows the scatter plots for the optimal model using different methods in the

Semi-arid region. It could be observed that the lowest regression is attained using the

MLPNN method (R? = 0.88). However, the MLPNN achieved attemptable prediction

results when considering two variables as input parameters. The results confirmed that

GA-DLNN is superior to other proposed methods. The higher determination of the

coefficient (R = 0.96) was achieved by the GA-DLNN method, as shown in Figure 4.7.
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Figure 4.7:  Scatter Plots between actual and predicted Qnow using integrated ML
models, a: GA-DLNN, b: GA-RBF-NN, c¢: GA-MLPNN "Semi-arid region."

Graphical results based on scatter plots for the Tropical Case study are presented in Figure
4.8. It was observed that the distribution of data around the line fit differed significantly
between the proposed methods. The correlation between predicted and actual inflow data
is better using GA-MLPNN and GA-DLNN methods. The maximum coefficient of
determination (R? = 0.96) was achieved by GA-DLNN with two different input variables.
The results showed a significant difference in prediction accuracy when changing the
input variables. The results confirmed that selecting relevant input variables can achieve

optimal prediction results. According to the scatter plots, GA-DLNN-2 achieved the best
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results for reservoir inflow prediction compared to the GA-MLPNN and GA-RBF-NN

methods.

Figure 4.8:  Scatter Plots between actual and predicted Qfow using integrated ML
models, a: GA-DLNN, b: GA-RBF-NN, ¢: GA-MLPNN "Tropical case study."

Graphical presentation tested for the research results model is the Taylor diagram (Taylor,
2001). Figures 4.9 and 4.10 presented the 2-dimensions of the Taylor diagram for the
conducted integrative ML models for both cases. Clearly, the GA-DLNN model showed

a nearer coordinate to the observed record of reservoir inflow.
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Figure 4.9: Taylor diagram for GA-model: GA-MLPNN, GA-RBF-NN and GA-
DLNN "Semi-arid case study."

Figure 4.10: Taylor diagram for GA-model: GA-MLPNN, GA-RBF-NN and GA-
DLNN "Tropical case study."

The relative error percentage and actual/forecasted time series graphics were calculated
and presented in Figure 4.11 for a semi-arid case study using the optimal method (GA-

DLNN-2). It can be seen that the relative error percentage ranged between + 30% for the
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semi-arid case study. It is noted that the method's performance was overestimated most
of the time. This may be due to the training period containing many outliers. On the other
hand, the pattern of the predicted data was close to the actual pattern on most days. The

results showed the ability of the method to reveal actual behavior.

Figure 4.11: (a) The relative error percentage for the integrative GA-DLNN
model for the Semi-arid case study, (b) The actual and predicted best results of the
integrative GA-DLNN model for the Semi-arid case study.

Figure 5.9 presents the relative error percentage of the best model (i.e., GA-DLNN-2)
during the test period for the tropical case study. The distribution of the original data
against the predicted data obtained by the best model is also shown in Figure 4.12.
According to the relative error-index, the proposed modelling (GA-DLNN-2) provided
the best prediction accuracy in the tropical region compared to the semi-arid case study.

The predictive model achieved a relative error of less than +25%. As highlighted by
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Figure 5.12b, GA-DLNN-2 has good performance in detecting and following the pattern

of actual data up to extreme values.

Figure 4.12: (a) The relative error percentage for the integrative GA-DLNN
model for the Tropical case study, (b) The actual and predicted best results of the
integrative GA-DLNN model for the Tropical case study.
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4.3 Reservoir evaporation prediction

4.3.1 Semi-arid case study

Several types of inputs have been utilized to foresee the reservoir evaporation using the
suggested methods. In reality, a suitable approach must be developed to choose the ideal
combination of inputs for modeling. Based on the auto-correlation technique, all feasible
input combinations were used to complete this assignment, which ranged from lag one
E(t-1) to lag four E(t-4). In general, the performance metrics shown in the mathematical
formulas provided in the methodology chapter will be used to determine which approach
is the best. Multiple models were looked at while taking into account various evaporation
quantities as prediction variables for input. The results of the prediction models were
compared to realistic reservoir evaporation records throughout the testing period in order

to get all indices.

In order to ensure more prediction regularity, it is necessary to assess a prediction method
using unobserved input data. This is due to the possibility that a model may perform well
during training but offer reduced accuracy throughout testing. In this regard, a number of
proposed metrics have been used throughout all stages of the model development to
ensure that the suggested architecture of the model could reach a stable range of accuracy.
Beginning with the testing phase of the data set, RMSE (summations of root mean square
errors) was used to moderately assure that the greatest forecasting error is within an

acceptable range.

The approach would then have an excellent capacity and potential to deliver equivalent
accuracy utilizing the unknown input pattern if all other statistical indices were used and

evaluated, and their values would have to be satisfactory. The eight analytical metrics for
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the models that were suggested with various input patterns have been generated and
assessed solely within the period of testing and are shown in Table 5.4 demonstrates that
all statistical index-based different modeling architectures exhibit a considerable degree
of variability. The third alternative model with three past evaporation records as inputs
clearly has the best chance of producing the most suitable analytical metrics out of all the
model designs. Using three past evaporation records as inputs (E (t-1), E (t-2), E (t-3))
and using the DLNN approach, the greatest and most dependable predicting accuracy has

been reached.

Table 4.4: The statistical indicators during the testing phase for three methods
""Semi-arid case study." The optimal model has been boldfaced.

Models RMSE MAE MBE | NSE SI BIAS d CI
(mm day™) | (mm day™) (mm day™)
MLPNN1 1.882 1.356 0.104 | 0.953 | 0.260 0.192 0.966 | 0.920
MLPNN2 1.767 1.262 0.056 | 0.958 | 0.245 0.136 0.969 | 0.929
MLPNN3 1.831 1.323 0.131 | 0.955 | 0.254 0.137 0.967 | 0.924
MLPNN4 1.880 1.361 0.139 | 0.953 | 0.260 0.110 0.966 | 0.920
RBF-NN1 2.087 1.528 0.123 | 0.942 | 0.289 0.320 0.960 | 0.904
RBF-NN2 2.202 1.548 0.127 | 0.935 | 0.305 0.314 0.956 | 0.894
RBF-NN3 2.331 1.739 0.139 | 0.927 | 0.323 0.536 0.953 | 0.883
RBF-NN4 2.345 1.665 0.127 | 0.927 | 0.325 0.491 0.951 | 0.881
DLNN1 2.032 1.432 0.123 | 0.945 | 0.281 0.100 0.961 | 0.908
DLNN2 2.344 1.912 0.566 | 0.927 | 0.324 -1.110 0.949 | 0.879
DLNN3 1.461 1.067 0.065 | 0.971 | 0.202 0.068 0.978 | 0.950
DLNN4 1.954 1.414 0.091 | 0.949 | 0.271 0.162 0.964 | 0.915

Figure 4.13 displays the scatter plot diagrams for the MLPNN method. A visual
comparison of the outcomes is possible to distribution of the observed and predicted
records around the fit line. The black line serves as a representation of the fit data

distribution line. In comparison to other models, Model II with MLPNN has regularly
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offered a better agreement. Additionally, the MLPNN technique achieved the worst
correlation between the anticipated and actual evaporation numbers with the first and

fourth models.

Figure 4.13: Scatter plots for different input combinations using the MLPNN
method.

The distribution of the observed evaporation data and predicted data around the fit line
based on the RBFNN method is presented in Figure 4.14. Four models with different
combinations of inputs were considered to verify the performance of the proposed
method. The results showed that RBFNN provided acceptable predictable results in all
cases. It can be seen that the first model made a better and more reliable prediction than
the other models. The maximum correlation magnitude (R> = 0.81) is attained by

employing three evaporation values as input variables.
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Figure 4.14: Scatter plots for different input combinations using the RBFNN
method.

The correlation between predicted and actual reservoir evaporation using the DLNN
method is presented in Figure 4.15. The predicted reservoir evaporation by the DLNN
technique produced more concentrated values along the fit line, even with peak data. This
shows that the DLNN approach can produce acceptable predictions for a larger variety of
data sets. The area of data distribution surrounding the fit line was significantly reduced
by the best input combination. The correlation index shows that the DLNN method

performs significantly better than other methods in predicting reservoir evaporation data.
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Figure 4.15: Scatter plots for different input combinations using the DLNN
method.

4.3.2 Tropical case study

The current research investigated how well the MLPNN, RBFNN, and DLNN might
predict monthly evaporation in the tropical region case study. After numerous tests, the
proposed prediction methods were used for the simulation of evaporation. The proposed
methodology was applied to a number of lags in the evaporation values using the
autocorrelation approach. The proposed methods, which are descended from ML, are
used in the present part to perform research on predicting the amounts of water loss by
evaporation. Due to the sensitivity to the initial conditions, the short-term prediction is
expected to be more accurate than the long-term prediction when the time series is
chaotic. In this context, the present research used one-step or one-month ahead

forecasting.
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The types of input sets that correspond to the chaos distribution throughout the training
phase will affect how well the prediction algorithms perform. The proposed approaches
are developed using the best input variables from the autocorrelation function. The
predictions of four models developed using MLPNN, RBFNN, and DLNN are
summarized in Table 4.5. It can be observed that all evaluation criteria clearly showed
that Model 3 with DLNN is a successful model to predict the evaporation values form the
reservoir system where it provided low prediction errors. The outcomes demonstrate that
the prediction errors for the MLPNN method are a little greater. In order to successfully
model the evaporation process, it was discovered that the prediction methods with Model
3 (i.e., Model 3 = E(t-1), E(t-2), and E(t-3)) can be utilized. Model 3 provided prediction
data that was most consistent with actual evaporation data, in accordance with the
assessment of the precision of the employed methods in predicting reservoir evaporation.
Accordingly, using the DLNN approach with three input variables, it is possible to

estimate monthly reservoir evaporation in the tropical region accurately.

Table 4.5: The statistical indicators during the testing phase for three methods
of "Tropical case study." The optimal model has been boldfaced.

Models RMSE MAE MBE | NSE SI BIAS d CI
(mm month™){(mm month™) (mm month™)

MLPNN1 16.089 11.296 0.04510.974 | 0.168 -1.988 0.979 | 0.953
MLPNN2 15.812 10.921 0.041 | 0.975 | 0.165 -1.624 0.980 | 0.955
MLPNN3 14.156 9.849 -0.023| 0.980 | 0.148 3.422 0.984 | 0.964
MLPNN4 14411 11.703 0.026 | 0.979 | 0.150 -0.425 0.983 | 0.962
RBF-NN1 13.008 8.914 0.008 | 0.983 | 0.136 1.034 0.986 | 0.969
RBF-NN2 12.952 8.794 0.013 | 0.983 | 0.135 0.385 0.986 | 0.969
RBF-NN3 12.362 8.082 -0.015| 0.984 | 0.129 3.156 0.987 | 0.972
RBF-NN4 12.507 8.800 0.017 ] 0.984 | 0.130 -0.290 0.987 ] 0.971

DLNN1 13.416 10.152 0.037 1 0.982 | 0.140 1.047 0.985 1 0.967
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Table 4.5, Continued

Models RMSE MAE MBE | NSE SI BIAS d CI
(mm month™)|(mm month™) (mm month™)

DLNN2 11.990 8.481 0.022 | 0.985 | 0.125 0.018 0.988 | 0.973

DLNN3 9.326 6.988 0.007 | 0.991 | 0.097 -1.316 0.992 | 0.983

DLNN4 11.700 8.443 0.026 | 0.986 | 0.122 -0.755 0.988 | 0.974

Additional comparisons between the methods suggested in the current section are made

by another indicator. The performance of the methods was examined by calculating the

size of the correlation between the expected and actual data, as shown in Figures 4.16,

4.17, as well as 4.18.

Figure 4.16 displays the distribution of the actual and predicted data obtained by the

MLPNN method. It was observed that the MLPNN achieved low prediction accuracy

with several input combinations. The scatter graph of the MLPNN algorithm shows that

the medium-range evaporation values had the smallest error, whereas the high and low

evaporation values had the largest error. The maximum correlation magnitude (R* = 0.73)

was attained by considering three input variables.
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Figure 4.16: Scatter plots for different input combinations using the MLPNN
method.

The scatter plots for the predicted data obtained by the RBFNN method are presented in
Figure 4.17. It can be seen that the predicted data provided by the RBFNN method have
acceptable distribution values around the fit line compared to the MLPNN model. The
scatter diagrams showed that RBFNN based on three lag times of evaporation values

achieved good prediction accuracy in the tropical case study.
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Figure 4.17: Scatter plots for different input combinations using the RBFNN
method.

For better visualization, Figure 4.18 demonstrates the performance of the DLNN method
and how its reliability in improving the prediction accuracy is based on scatter plots. It
should be noted that the maximum and minimum reservoir evaporation values are the
most important records that should be considered in the modeling. This is because this
data has a significant impact on drawing up the operating policy of the dam and reservoir
system. As mentioned, the predicted data obtained by MLPNN and RBFNN were slightly
distant from the observed pattern. Meanwhile, the DLNN method succeeded in achieving
acceptable prediction accuracy in most of the evapotranspiration data during the test
period. The maximum correlation (R? = 0.87) between the actual and predicted data was

achieved by integrating three input variables with the DLNN method.
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Figure 4.18: Scatter plots for different input combinations using the DLNN
method.

4.3.3 Integrative predictive model results

The evaporation time series was employed to predict the amount of water losses via
evaporation from the reservoir in both case studies (i.e., Semi-arid and Tropical). In the
current section, the study of predicting evaporation values was carried out by integrating
the GA with ML methods. The research demonstrates the sensitivity of predicting results
by analyzing the effect of input groups on the proposed method's performance. Prediction
results for the proposed methods based on the statistical indexes are shown in Table 4.6.
It should be noted that GA-MLPNN obtained the worst predictive results. Performance
indicators explore the reliability of the possibility of improving outcome prediction when
adopting the third model structure. The study reveals that the GA-DLNN-3 model
achieved a high level of accuracy. Based on standard indices, GA-DLNN-3 outperforms

other prediction models.
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Table 4.6: The statistical indicators during the testing phase for three methods.
The optimal model has been boldfaced.
Semi-arid Case Study
Models RMSE | MAE | MBE NSE SI BIAS d CI
GA-MLPNN-2 | 1.780 | 1.276 | 0.040 | 0.958 | 0.246 | 0.198 | 0.969 | 0.928
GA-MLPNN-3 | 1.832 | 1.286 | 0.054 | 0.955 | 0.254 | 0.193 | 0.967 | 0.924
GA-RBF-NN-3 | 1.501 | 1.133 | 0.048 | 0.970 | 0.208 | 0.079 | 0.977 | 0.947
GA-RBF-NN-4 | 1.765 | 1.249 | 0.021 | 0.958 | 0.244 | 0.174 | 0.969 | 0.929
GA-DLNN-2 | 0.730 | 0.304 | 0.006 | 0.993 | 0.101 | -0.044 | 0.994 | 0.986
GA-DLNN-3 | 0935 | 0.509 | 0.040 | 0.988 | 0.129 | -0.056 | 0.990 | 0.978
Tropical Case Study
GA-MLPNN-1 | 10.782 | 6.818 | 0.030 0.988 0.112 | -1.305 | 0.990 | 0.978
GA-MLPNN-2 | 10.080 | 5.245 | 0.006 | 0.990 | 0.105 | 0.517 | 0.991 | 0.981
GA-RBF-NN-2 | 12.656 | 8.904 | 0.026 0.984 0.132 | -0.774 | 0.986 | 0.970
GA-RBF-NN-3 | 13.080 | 8.993 | 0.000 0.983 0.136 1.520 | 0.986 | 0.968
GA-DLNN-2 | 8479 | 6.481 | 0.007 | 0.993 | 0.088 | 0.228 | 0.994 | 0.986
GA-DLNN-3 | 6.770 | 3.873 | 0.003 0.995 0.071 0.637 | 0.996 | 0.991

The scatter plots for the optimal prediction models are illustrated in Figure 4.19. The best

correlation (R? = 0.97) between actual and predicted evaporation data was obtained by

GA-DLNN-2. It can be seen that the distribution of the data around the fit line is better

than that of other models. Moreover, the fit line shown in the figure is closer to the perfect

line (0 = 45°). The correlation indicator confirmed that the GA significantly improves the

prediction accuracy of reservoir evaporation data.
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Figure 4.19: Scatter Plots between actual and predicted evaporation using
integrated ML models, a: GA-DLNN, b: GA-RBF-NN, ¢: GA-MLPNN "Semi-arid
region."

To better demonstrate the predictability of the proposed models, Figure 4.20 shows the
distribution of the actual against predicted data provided by prediction methods. It was
observed that lower correlation values were obtained using GA-RBF-NN. On the other
hand, the results revealed that GA-MLPNN has a good ability to provide an acceptable
agreement between the observed and predicted evaporation data. The study found that the
combination of the optimizer algorithm (i.e., GA) with DLNN achieved satisfactory

prediction results. Statistical indicators demonstrated that the GA-DLNN-3 is superior to

other models.
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Figure 4.20: Scatter Plots between actual and predicted evaporation using
integrated ML models, a: GA-DLNN, b: GA-RBF-NN, ¢: GA-MLPNN "Tropical
region."

Taylor diagram indicator has also been employed to evaluate the performance of the
proposed methods. Taylor diagrams for all models of semi-arid and tropical regions are
presented in Figure 4.21 and Figure 4.22, respectively. In both cases, the GA-DLNN
method was closer to the observed data compared to other predictive models. In more
detail, the best model (GA-DLNN) provided a higher level of prediction accuracy in the

semi-arid regions than in the tropical regions. The Taylor indicator confirmed that GA-

DLNN methods outperformed other models in predicting reservoir evaporation data.
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Figure 4.21: Taylor diagram for GA-model: GA-MLPNN, GA-RBF-NN, and GA-

DLNN "Semi-arid case study."

Figure 4.22: Taylor diagram for GA-model: GA-MLPNN, GA-RBF-NN, and GA-
DLNN "Tropical case study."

Choosing appropriate input groups adds to the improvement in prediction results, as
described in the above sections. The outcomes showed that the second model, when
employing the GA-DLNN approach, realizes the optimal prediction results. The research

contrasts the distribution of the predicted data against observed evaporation values to
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assess the performances of the ideal models after exhausting the preliminary round of
searching for the best input variables for each suggested approach. Figure 4.23a shows
the relative error percentage between actual and predicted values during the testing
period. It can be seen that the suggested predictive model (i.e., GA-DLNN-2) provided
excellent results where the maximum percentage error was less than (+25 or — 25). The
comparison of the pattern of expected values against the actual data is shown in Figure
4.23b. The study found that GA-DLNN-3 has great ability and reliability in following the

pattern of actual data.

Figure 4.23: (a) The relative error percentage for the integrative GA-DLNN
model for the Semi-arid case study, (b) The actual and predicted best results of the
integrative GA-DLNN model for the Semi-arid case study.
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In fact, one of the most important metrics for assessing the effectiveness of forecasting
models is relative error. Figure 4.24a displays the relative error distribution for the best
predictive model. The results show that the GA-DLNN-3 exhibits low relative errors in
the range of + 11% - 10%. Extreme reservoir evaporation must be studied from a practical
perspective because decision-makers rely heavily on these occurrences. In order to
evaluate the performance of the predictive model in predicting low and peak evaporation
events, it is helpful to investigate the pattern and levels of agreement between the
observed and predicted data during the testing phase. Figure 4.24b compares the
hydrograph pattern obtained using the third type model based on the GA-DLNN approach
to the real pattern. The GA-DLNN method yielded more concentrated results in predicting

reservoir evaporation data over the testing period, even with peak values.
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Figure 4.24: (a) The relative error percentage for the integrative GA-DLNN
model for the Tropical case study, (b) The actual and predicted best results of the

integrative GA-DLNN model for the Tropical case study.

4.4 The reservoir simulation

The study's final objective is to incorporate the predicted model's accuracy for the
reservoir's evaporation and inflow while in the reservoir simulation system. The new
simulation procedure will be performed based on the methodology described in the last
section of Chapter 3. The primary objective of this evaluation of optimization models is
to ensure that the process is applied under actual conditions based on the reservoir's
hidden inflow and evaporation. The above sections in the current chapter showed that in
the semi-arid region, GA-DLNN was the best model, and the worst model for predicting

inflow was MLPNN and RBFNN for predicting evaporation. Consequently, the
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simulation procedure in the semi-arid region was carried out based on the forecasted data
provided by GA-DLNN. This step could be considered as the first scenario of the
reservoir simulation. In the second scenario, the forecasted inflow values obtained by
MLPNN and the predicted evaporation values obtained by RBFNN are included in the

reservoir simulation.

To evaluate the new simulation procedure, Figure 4.25 presents the difference between
the reservoir storage computed using the predicted data provided by the best/worst model
and the reservoir storage obtained by the conventional simulation procedure. The
reservoir simulation in the semi-arid area was conducted during the last 90 days of the
collected data, within the predictive models' testing period. It was observed that the
difference values obtained using the worst models were high during the entire simulation
period. The results revealed that the storage values acquired by the best predictive model
are closer to the actual reservoir storage. The study found that the use of forecasted data

for inflow and evaporation coefficients has a significant impact on reservoir simulation.

Figure 4.25 Reservoir simulation of the semi-arid case study (a) using the worst

predictive model and (b) using the best predictive model.
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Figure 4.25 Continued

Similar procedures were applied to simulate the reservoir in the tropical region. The last
65 months of the collected data were considered to simulate the reservoir system. In the
tropical case study, the study found that the best predictive model is GA-DLNN, and the
worst model is MLPNN for forecasting both hydrological parameters. Figure 4.26
presents the difference values between the reservoir storage obtained by a new procedure
and the reservoir storage computed using the traditional simulation procedure. It is clear
that there are relatively large differences when adopting MLPNN as a predictive model
to provide predicted data, as shown in Figure 4.26a. On the other hand, the simulation
results indicated that the inclusion of GA-DLNN within the simulation procedure can
provide satisfactory results. It has been proven that the reservoir simulation based on GA-

DLNN is better accomplished than using the MLPNN model.
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Figure 4.26: Reservoir simulation of the tropical case study (a) using the worst

predictive model and (b) using the best predictive model.

Reservoir storage was unstable when using the predicted data, as storage was not within
reservoir limits several times when using the worst model. On the contrary, performing
the simulation based on the best model yielded excellent results. Indeed, the major
purpose of suggesting the new simulation procedure is to show the state of the reservoir
system under realistic simulation conditions, not to choose the best simulation procedure.
The study concluded that including predicted data with reservoir simulation has a
significant impact on reservoir conditions. Thus, the adoption of a new simulation
procedure can provide reliable and realistic operating policies for the dam and reservoir

system.
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4.5 Summary

The current study is significant because it helps to improve reservoir management by
using sophisticated forecasting models that increase water resource reliability,
particularly when dealing with stochastic hydrological characteristics. Three Al methods
MLP-NN, RBF-NN and DLNN have been applied with integrated Genetic algorithm to
obtain reliable and accurate prediction results.

The successful application of the proposed prediction models in two different climatic
zones not only proves their ability to predict key parameters, namely inflow and
evaporation, but also produces a novel reservoir simulation procedure. This simulation
procedure greatly improves the assessment of the dam reservoir condition.

According to the statistical indicators, the study finds that the integration of genetic
algorithm with the DLNN method provides high level prediction accuracy. GA-DLNN
model has a good ability to capture the pattern of the reservoir hydrological parameters.
The best model has a reliable mechanism to map the relationship between input and
output variables. The results confirmed that the GA-DLNN model can be adopted for
prediction and reservoir simulation.

The examination of the models’ performance under different climate conditions was
significant for evaluating the reliability of the proposed models. The DLNN attained high
levels of prediction accuracy in semi-arid and tropical regions. The time scale of the
databased in semi-arid region was daily for inflow and evaporation. Whereas the time
scale of the data in tropical region was monthly. The proposed model achieved good
prediction results with two different time scales. The results confirmed that the DLNN is
better than other prediction models, therefore, such model was generalist to simulate the
reservoir system in two different case studies.

The objectives of the current study were successfully achieved by developing three
models to predict reservoir flow and evaporation. The study found that GA significantly

129



improves the accuracy of model performance. The best GA-DLNN model showed
superior performance compared to other proposed models. The GA-DLNN model greatly
enhanced reservoir simulation and management. The introduction of a new simulation
procedure enhanced the evaluation of reservoir conditions, validating the research

objectives.
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CHAPTER 5: CONCLUSION

5.1 Conclusion

Forecasting reservoir inflow and evaporation data is essential for water resource
management and appropriate decision-making in practical hydrological practices. Indeed,
the reliability of the predictive models applied to forecast inflow and evaporation is
critical. This is because accurately predicting these hydrological parameters can provide
early warning of potential floods or droughts at an early enough stage to reduce damage
significantly. The current study was to roll out a new robust and reliable predictive model
to forecast reservoir inflow and evaporation data. This research used Radial Basis
Function Neural Network (RBFNN), Multi-Layer Perceptron Neural Network (MLPNN),
and Deep Learning Neural Network (DLNN) methods to model two main hydrological
parameters. In addition, transcriptomes of certified machine learning models were tested
where the genetic algorithm was incorporated to select reliable input variables. To
evaluate the diversity of the proposed methods, they were subjected to inflow and
evaporation prediction in two different case studies: Dokan Dam and Timah Tasoh Dam
(TTD), representing the semi-arid and tropical regions, respectively. The performance of
the suggested methods was evaluated using eight common indicators. Further analysis
was performed with scatter plots and relative errors, and the actual pattern data was
compared to the forecasted data to evaluate the visual data. Moreover, a new simulation
procedure to simulate the reservoir has been proposed. The suggested simulation was
performed based on integrating the predictive model during the simulation period. The

present study concluded with four main points:

1. The proposed methods RBFNN, MLPNN, and DLN are designed as individual

models for the prediction of hydrological parameters. The results revealed that the
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DLNN method is superior to other predictive methods. DLNN succeeded in

providing acceptable prediction results for inflow and evaporation parameters.

To improve and support the performance of the methods, the proposed methods
were modified by combining them with an optimizer algorithm (Genetic
Algorithm (GA)). With such modification, the predictive methods have become
more reliable and suitable to predict the hydrological parameters in the reservoir
system. The study showed that the GA-DLNN model achieved accurate prediction
results. Statistical indicators confirmed that GA-DLNN outperformed GA-RBF-

NN and GA-MLPNN in predicting inflow and evaporation.

The current research has examined the feasibility and generalization ability of the
proposed approaches by including two case studies. The study found that the GA-
DLNN is able to provide excellent predictions of inflow and evaporation in the
semi-arid region (i.e., Dukan Dam). The GA-DLNN model also made high-
accuracy predictions in the tropical case study (i.e., TTD). Based on the visual
indicators, the GA-DLNN attained more accurate results in the semi-arid region

than in the tropical region with both parameters.

To simulate the reservoir system under realistic conditions, the study introduced
a new simulation procedure to show the real state of the reservoir. The proposed
simulations were performed in two scenarios: integration with the worst and best
predictive models. The results showed that using the predicted data during the
simulation period has a significant impact on the state of the reservoir.
Incorporating the best predictive model into the water balance equation for

reservoir simulation provided excellent simulation results.
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5.2 Limitations

The results of the current study demonstrate some limitations or weaknesses in the

proposed methodology. It can list these limitations as the following:

1. The research's first restriction is its exploration of the potential for adding more

temporally and spatial data on short-term flow and evaporation predictions, that

is difficult to do in theoretical hydrological frameworks or standard time-series

equations. A sophisticated model for short-term inflow and evaporation

predictions should be created in order to accomplish this goal, and a number of

problems related to its application should be investigated.

2. Several methods for forecasting hydrologic reservoir variables have been

established in this research. These methods have been developed, however there

are still issues that need to be addressed. Managing nonstationary data, gleaning

important information from data, and calculating the degree of uncertainty in

expected values are some of these difficulties.

3. The reservoir simulation has been performed based on only two hydrological

parameters which are inflow and evaporation. Whereas there are other parameters

such as seepage also can effect on the simulation results. The losses by seepage

maybe have high impact on the simulation period.

5.3 Novelty

The present research focuses on the diversity of new versions of machine learning,

such as the deep learning neural network (DLNN) method, which can contribute to

overcoming traditional Al models. It is noted that identifying appropriate features for

developing a deep neural network (DLNN) model learning process is a key element

in developing a computational assistance model. Thus, a reliable, nature-inspired



optimization, known as a genetic algorithm, is incorporated as a feature selection
mechanism for timely prediction of reservoir flow and evaporation. Since the random
variability varies from dam to dam, the proposed technique can be applied to two
different inflow mechanisms, allowing the generalization of this hydrological
problem to be examined. Reservoir simulation is actually the first step in optimization
modeling that produces the best operating rules. Deterministic data for evaporation
and internal flow parameters remain essential for the simulation process. The
operation of the reservoir system assumes the possibility of achieving perfect
forecasting. Actually, such assumption is incorrect and does not represent the actual
condition of the reservoir system. As a result, the traditional reservoir and dam system
simulation process must be changed. In this regard, this study specifically presents a
new prediction model by integrating with genetic algorithm and integrating the

proposed model into a realistic reservoir system simulation.

5.4 Recommendation for Future Research

Although the GA-DLNN model described in the present research achieved great accuracy
results in forecasting two main hydrological reservoir parameters, the current study

suggests several recommendations for future research.

1.  Indeed, the prediction model learns the pattern of inflow and evaporation
parameters according to the training period data. As a result, it is important
to select the training phase containing most events that occurred during the
entire research period. To solve this problem, the researcher should consider
the data partitioning approach and then choose the data distribution that best
adds useful information to the models. The designer should select more

effective training techniques in data segmentation approaches that would be
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able to produce a robust model to mimic several patterns of inflow and
evaporation data. In this context, this study advises the use of a variety of data
segmentation techniques to test the effectiveness of the proposed models in
this situation. In order to create a robust predictive model, a variety of

approaches are used to separate the data.

Identification of the adoption of proper input selection techniques is one of
the major concerns in hydro-climatological methods. Evaluating the
relationship between input-output variables is the first deficiency. Secondly,
effective input parameters should be explored, and redundant inputs avoided,
even if these variables could help the ANN-based models. Such variables may
lead to an increase in the complexity and uncertainty of the model. These two
matters could appear with other Al-based models. Thus, attention should be
given to reducing uncertainty and improving the performance of the
predictive models. In this regard, pre-processing techniques, such as Wavelet
Transform (WT), Fast Orthogonal Research (FOS), and other techniques can

address the two aforementioned issues.

Most of the existing research papers are focused on applying and introducing
the optimization modeling of deterministic hydrological and climate
parameters. In fact, few of these studies attempted to improve the reliability
and efficiency of operation in a dynamic environment. It is useful to introduce
modern methodologies that can help decision-makers when they face
environmental uncertainty. With such a modern model, a viable and reliable
operation of the reservoir can be provided. This optimization procedure is

able to quickly deal with unexpected disturbances in the reservoir system, as
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required. The current study opened the door to enhancing optimization
modeling and thus establishing optimal operating rules. Using the new
simulation procedure proposed in this study and optimization modeling may

yield satisfactory results for the dam and reservoir system operation.
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