ANALGESIC EFFECT OF ERECTOR SPINAE PLANE BLOCK IN LUMBAR SPINE SURGERY: A SYSTEMATIC REVIEW AND META-ANALYSIS OF RANDOMISED CONTROLLED TRIAL

LEE TZI SEN

FACULTY OF MEDICINE UNIVERSITI MALAYA KUALA LUMPUR

2024

ANALGESIC EFFECT OF ERECTOR SPINAE PLANE BLOCK IN LUMBAR SPINE SURGERY: A SYSTEMATIC REVIEW AND META-ANALYSIS OF RANDOMISED CONTROLLED TRIAL

LEE TZI SEN

DISSERTATION SUBMITTED IN FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER ANAESTHESIOLOGY

FACULTY OF MEDICINE UNIVERSITI MALAYA KUALA LUMPUR

2024

ORIGINAL LITERARY WORK DECLARATION

ame of candidate: Lee Tzi Sen
egistration/Matric No: S2030959
ame of Degree: Master of Anesthesiology
tle of Project Paper/Research Report/Dissertation/Thesis ("this work")
nalgesic Effect of Erector Spinae Plane Block in Lumbar Spine Surgery: review and meta-analysis of randomised controlled trial Systemati
lo solemnly and sincerely declare that:
m the sole author/writer of this Work;
 This work is original Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work; I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work; I hereby assign all and every rights in the copyright to this Work to the University of Malaya ("UM"), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained; I am fully aware that if in the course of making the Work, I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as many determined by UM.
andidate's Signature Date
bscribed and solemnly declared before,
itness Signature Date
ame: esignation:

Abstract

Introduction: The use of ESP block has gained popularity in multiple types of surgeries which include lumbar spine surgeries. It is a relatively new technique in lumbar spine surgery and its advantages includes analysis effect and also reducing opioid consumption, hence promoting ERAS. The purpose of this meta-analysis is to evaluate the analysis effect of ESP block in lumbar spine surgery.

Method: Randomized controlled trials of ESP block in lumbar spine surgery was searched in Pubmed and clinicaltrial, gov. Data was selected and was reviewed by two author which included a total of 7 RCTs.

Result: Meta-analysis suggested that there is a statistical significant difference in ESP block providing lower pain scores at rest at 0 hour (MD, -1.60; 95% CI, -2.74 to -0.46; I2 = 93%; P = 0.006) and 24 hours (MD, -0.54; 95% CI, -0.98 to -0.10; I2 = 70%; P = 0.02) postoperatively as compared to patients who do not receive ESP block. There is no statistically significant difference in postoperative pain scores between patients who receive and did not receive ESP block at 4 hours (MD, -0.97; 95% CI, -2.21 to 0.27; I2 = 94%; P = 0.13) and 12 hours (MD, -1.28; 95% CI, -2.54 to -0.03; I2 = 96%; P = 0.05). It also showed that patient with ESP block had lower 24-h opioid consumption (MD, -50.95; 95% CI, -68.09 to -33.80; I2= 100%; P < 0.00001) and significant reduction in incidence of PONV (RR, 0.39; 95% CI, 0.20 to 0.77; I2 = 55%; P = 0.007).

Conclusion: Our meta-analysis found that ESP block proven to be effective in reducing post operatively pain score, post operative opioid consumption and PONV in lumbar spine surgery. However, due to high heterogeneity, further studies need to be carried out to determine the efficacy.

Abstrak

Pengenalan: Penggunaan blok ESP telah mendapat populariti dalam pelbagai jenis pembedahan termasuk pembedahan tulang belakang lumbar. Ia adalah teknik yang agak baru dalam pembedahan tulang belakang lumbar dan kelebihannya termasuk kesan analgesik dan juga mengurangkan penggunaan opioid, justeru menggalakkan ERAS. Tujuan meta-analisis ini adalah untuk menilai kesan analgesik blok ESP dalam pembedahan tulang belakang lumbar. Kaedah: Percubaan terkawal rawak blok ESP dalam pembedahan tulang belakang lumbar telah dicari di Pubmed dan clinicaltrial,gov. Data telah dipilih dan disemak oleh dua pengarang yang merangkumi sejumlah 7 RCT.

Keputusan: Meta-analisis mencadangkan bahawa terdapat perbezaan statistik yang signifikan dalam blok ESP yang memberikan skor kesakitan yang lebih rendah semasa rehat pada 0 jam (MD, -1.60; 95% CI, -2.74 hingga -0.46; I2 = 93%; P = 0.006) dan 24 jam (MD, -0.54; 95% CI, -0.98 hingga -0.10; I2 = 70%; P = 0.02) selepas pembedahan berbanding pesakit yang tidak menerima blok ESP. Tiada perbezaan yang signifikan secara statistik dalam skor kesakitan selepas pembedahan antara pesakit yang menerima dan tidak menerima blok ESP pada 4 jam (MD, -0.97; 95% CI, -2.21 hingga 0.27; I2 = 94%; P = 0.13) dan 12 jam (MD, -1.28; 95% CI, -2.54 hingga -0.03; I2 = 96%; P = 0.05). Ia juga menunjukkan bahawa pesakit dengan blok ESP mempunyai penggunaan opioid 24 jam yang lebih rendah (MD, -50.95; 95% CI, -68.09 hingga -33.80; I2= 100%; P <0.00001) dan pengurangan ketara dalam kejadian PONV (RR, 0.39; 95% CI, 0.20 hingga 0.77; I2 = 55%; P =0.007).

Kesimpulan: Meta-analisis kami mendapati bahawa blok ESP terbukti berkesan dalam mengurangkan skor kesakitan selepas pembedahan, penggunaan opioid selepas pembedahan dan PONV dalam pembedahan tulang belakang lumbar. Walau bagaimanapun, disebabkan heterogeniti yang tinggi, kajian lanjut perlu dijalankan untuk menentukan keberkesanannya.

ACKNOWLEDGEMENT

I am deeply indebted to my supervisor, Dr Jeyaganesh Veerakumaran and Prof Dr Dharmendra Ganesan for his tirelessly guidance, invaluable patience, and feedback at every stage of this study. A special thanks to also to my co-author, Shee Loke Yuan for his enthusiastic guidance and support.

TABLE OF CONTENTS

Abstract iii
Abstrakiv
Acknowledgements
Table of Contents
List of Tables vii
List of figuresvi
List of Symbols and abbreviations ix
CHAPTER 1: INTRODUCTION1
CHAPTER 2: LITERATURE REVIEW2
CHAPTER 3: METHODOLOGY
3.1 Database search
3.2 Screening
3.3 Inclusion criteria
3.4 Data collection
3.5 Assurance of quality of study
CHAPTER 4: RESULTS 6
4.1 Study included
4.2 Data extraction and analysis
4.3 Result analysed and result
CHAPTER 5: DISCUSSION
CHAPTER 6: CONCLUSION23
References 24

List of Tables

Table 1: Flow chart in for search data

Table 2: Studies that were included in assessing analgesic effects of ESP block in lumbar spine surgeries

Table 3: Risk of bias assessment conducted using version 2 of the Cochrane risk-of-bias tool for randomized trials (RoB2)

Table 4: Table for data analysis on post operative pain score at 0,4,12,24 hours

Table 5: Table for data analysis on 24 hours post operative opioid consumption and PONV

List of Figures

Figure 1: Post operative pain score at 0 hour

Figure 2: Post operative pain score at 4 hour

Figure 3: Post operative pain score at 12 hour

Figure 4: Post operative pain score at 24 hour

Figure 5: Mean opioid consumption

Figure 6: Post operative Nausea and vomiting

LIST OF SYMBOLS AND ABBREVATIONS

ESP: Erector Spinae Plane

VAS: Visual Analog scale

NRS: Numeric rating scale

RCT: Randomized controlled trial

SAS: Sedation Agitation Scale

POD: Post operative delirium

PACU: Post Anesthesia care unit

PCA: Patient controlled analgesia

ERAS: Enhanced recovery after surgery

Chapter 1: Introduction

Spine surgery being one of the few surgeries that can caused high degree of postsurgical pain and pain is an important factor regarding the quality of perioperative care. However, so far there is yet to be real consensus regarding pain control in lumbar spine surgery.

As we know that, insufficient pain relief can cause perioperative and postoperative morbidity which further result in prolonged hospital stay. This will also have significant impact to both patient's mental and physical health. Moreover, prolonged hospital stay will also increase hospital expenses.

Erector spinae plane (ESP) block is a plane block where local anaesthetic is injected in a plane below the erector spinae muscle. Local anaesthetic that was introduced in ESP block was aimed to block the ventral and dorsal rami of the spinal nerves and to achieve a multi-dermatomal sensory block of the posterior, anterior, and lateral thoracic and abdominal walls. Therefore, it can provide lower extremity, abdominal and thoracic analgesia. It was also said that erector spinae block able to reduce opioid use and use for pain relief in lumbar surgery.

With the addition of ESP block into the multimodal approach of pain management in for lumbar spine surgery perioperatively, it was foreseen to reduce perioperative and postoperative morbidity by giving better pain control.

CHAPTER 2: LITERATURE REVIEW

As the population grow older, the incidence of disc degeneration increases as it as directly correlated with increasing age. ² This degenerative disc disease can cause great discomfort, pain and disability. ³ This leads to increasing number of cases of lumbar spine surgery especially in elderly age group. ⁴

Lumbar spine surgery is one of the most painful procedures⁵ and yet there is no real consensus for optimal pain management for perioperative lumbar spine surgery. Pain will have serious impact on recovery and length of stay in hospital.⁶ Pain will also potentiate the development of postoperative chronic pain and increase the overall morbidity and mortality.⁷

Erector spinae plane block (ESPB) is a new block with potential application.⁸ It has analgesia effect in in multiple surgical procedures including cervical, thoracic, cardiovascular, breast, open abdominal, laparoscopic, and spinal surgery.⁹ The application of ESPB has markedly reduced the post operation analgesia requirement especially the opioid usage. This will result in less side effects of opioid experienced by the patient, subsequently improve the quality of care.

There are many studies which showed that ESPB had been successfully used in many surgeries, ¹⁰ ¹¹ including spine surgery. ¹² ¹³ ¹⁴

According to H.Lin et al. 2022 study, there is a significant reduction of 55% in morphine consumption in first 24 hours post operation, improved Qor-15 and reduction in pain score.

Whereas in Zhang et al. 2020 study, it showed that bilateral ESPB can enhance recovery and reduce perioperative opioid consumption.

This showed the feasibility of incorporating ESPB into ERAS program.

ERAS is a multimodal approach for post operative patient aiming to improve outcomes of patient after surgery. ¹⁵ This includes multimodal analgesic method that would lead to a better outcome, short hospital stay, less adverse effect and costing savings. ¹⁶ ERAS also reduces use of opioid consumption post operatively. ¹⁷

The use of opioid will lead to other adverse effect which will in turn leads to prolonged stay and recovery.¹⁸

However, there are controversy which showed that ESPB combined with the ERAS which includes multimodal analgesia showed limited benefit in major spine surgery. ¹⁹

In Geoffrey Avis et al. 2022 study, ESPB did not showed significant reduction in morphine consumption in first 24 hours and had limited benefit in ERAS program.

Chapter 3 Methodology

3.1 Database Search

We search databases on Pubmed and clinicalTrial.gov. We included trial which are randomised controlled trial. Search terms that are being used including "Erector spinae plane block in lumbar spine surgery". We aimed to compare analgesic effect of ESP block vs non-ESP block in adult patients who undergo lumbar spine surgeries.

3.2 Screening

All accumulated studies where screened and decided which were eligible for inclusion separately by two authors.

3.3 Inclusion criteria

The inclusion criteria including,

- 1) Randomised control trial
- 2) Article published in English
- 3) Preoperative ESP block vs control group
- 4) Adult human patients
- 5) undergoing lumbar spine surgery

3.4 Data collection

Of all the random control studies that we had reviewed, 2 independent authors collected the data which included the author, year of study, type of operation, type and dosage of ESP block, adverse event due to ESP block, pain score (NRS or VAS).

3.5 Assurance of quality of study

Revised Cochrane risk of bias tools for randomized trial (Rob 2) as shown in table 2 were used to evaluate the quality of the study. 5 domains which are assessed including risk of randomisation process, deviation from the intended interventions, missing outcome data, measurement of outcomes and selection of reports.

4. Result

4.1 Study included

7 studies were included in this systemic review. All of them were RCT. A total of 602 patients were included. The follow up timing of all these studies ranged from post operative up to 3 months. All these studies utilised single injection ESP block on bilateral side with different dosage. All ESP blocks were done under ultrasound guidance.

Most used LA being ropivacaine or bupivacaine at various concentrations with frequent quantities of 20ml injected at bilateral side each. All the studies did not have any ESP block related complication and were able to reduce pain score as well as reduce opioid consumption.

Table 1: Search Flow Chart

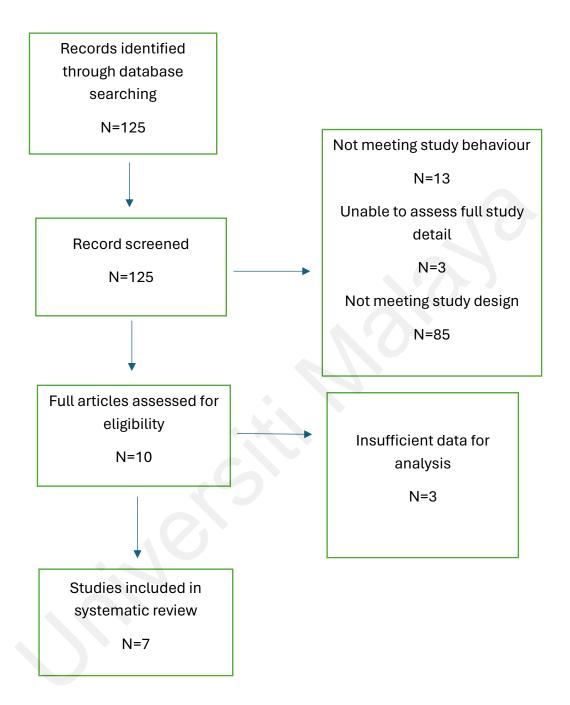


Table 2
Studies that were included in assessing analgesic effects of ESPB in lumbar spine surgeries.

Year of	Samp	Type of	ESP	Outcome	Side	Post	Conclusion
publicati	le	operation	block	measure	effe	operatio	
on and	size				ct of	n follow	
author					ESP	up	
					bloc k	duration	
Masoud	40	One- or	Bilateral	Post-	Nil	24	ESPB is
NASHI Di et el		two-level	single	operative		hours	safe for
BI et al. (2022)		lumbar laminectom	shot ESPB	pain score, amount of			pain reduction
(2022)		у	under	meperidine			for lumbar
		J	ultrasoun	used in 24 h,			spine
			d	number of			surgery
			guidance	patients			that
			after anesthesia	requiring			reduces
			containin	meperidine as rescue			pain scores and opioid
			g 20 cc of	analgesic			used
			bupivacai				patients. ²⁰
			ne 0.25%				
			on each				
Masoud	70	Lumbar	side 20 cc of	Intropporative	Nil	Post-	ESPB
NASHI	/0	posterior	0.25%	Intraoperativ e amount of	INII	anesthe	reduces
B et al.		spinal	bupivacai	opioids and		sia care	intraoperat
(2023)		fusion of	ne was	isoflurane,		unit 1	ive
		two or three	injected	emergence		hour	hypnotic/
		levels with	into each	timing,		after	opioid use
		or without laminectom	side under	PONV,		admissi	and
		y or	ultrasoun	postoperativ e shivering,		on	emergence time in
		discectomy	d	postoperativ			lumbar
			guidance(e pain			spine
			1 or 2				surgery
			levels				and 1-h
			cephalad to the				pain scores also
			surgical				reduced ²¹
			level)				
Aijia	230	Posterior	20 mL	NRS pain	Nil	72	Bilateral
Zhang et		lumbar	0.4%	score after		hours	ultrasound-
al. (2023)		decompressi on or fusion	ropivacai ne	12 hours of			guided T12 ESPB is a
(2023)		surgery	injected	surgery, NRS pain			effective
			over each	score and			regional
			ESP at	use of			anesthesia

			level t12	tramadol in			for lumbar
			under	72 h			spine
			ultrasoun	postoperativ			surgery
			d	ely,			and
			guidance	intraoperativ			associated
			garaanee	е			with faster
				remifentanil			recovery in
				use,			elderly
				hemodynami			patients by
				c, extubation			giving
				timing, SAS			appropriate
				score post			postoperati
				extubation,			ve
				incidence of			analgesia.
				POD and			22
				PONV,			
				complication			
				s, time of			
				ambulation,			
				and length			
				of hospital			
				stay			
Swati	40	Lumbar	20 mL of	Total	Nil	24	US-guided
Singh et	10	spine	0.5%	morphine	1111	hours	ESP block
al.		surgery-	bupivacai	consumption		nours	reduces
(2019)		elective	ne was	during the			postoperati
(=01)		(prolapsed	injected	first 24			ve opioid
		lumbar	over each	hours, pain			requiremen
		intervertebr	side	score at rest			t and
		al disk,	under	and patient			improves
		lumbar	ultrasoun	satisfaction			patient
		stenosis, or	d	score			satisfaction
		laminectom	guidance				23
		y)	at t10				
Yu	80	Elective	30 mL of	Numeric	Nil	3	Ultrasound
longyu		posterior	0.25%	pain scale at		months	-guided
et al.		internal	bupivacai	rest and			lumbar
(2020)		fixation for	ne at each	movement,			ESP block
		a single	side	postoperativ			is good for
		level lumbar	under	e sufentanil			postoperati
		fracture	ultrasoun	consumption			ve
			d	, and total			analgesia
			guidance	bolus			in lumbar
				presses and			spine
				effective			surgery
				bolus			and can
				presses of			lessen
				PCA at 6,			postoperati
				12, 24, and			ve opioid
				48 hours			usage and

				postoperativ			promote
				ely			postoperati
				The			ve
				incidence of			rehabilitati
				PONV			on. ²⁴
				during the			
				first 24-48			
				hours,			
				pruritus, and			
				chronic			
				postoperativ			
				e pain; pethidine			
				dose for			
				rescue pain			
				relief, and			
				length of			
				hospital stay			
Li	40	Lumbar	0.375%	Total	Nil	48	Ultrasound
Junzhu		fusion	ropivacai	oxycodone		hours	-guided
(2021)			ne (20	consumption			lumbar
			mL) at	,			ESPB
			each side	remifentanil			reduces the
			under	consumption			amount of
			ultrasoun	in surgery;			analgesics
			d	the number			required
			guidance at level	of pain-			during and after
			L2	relieving doses of			lumbar
			LZ	sufentanil in			fusion and
				the PACU,			reduces the
				the resting			postoperati
				and exercise			ve VAS
				pain scores,			pain
				the			score ²⁵
				consumption			
				of			
				oxycodone			
				at various			
				time periods,			
				range of cold			
				hypoesthesia			
				after the			
				block at 10,			
				20, and 30			
				minutes			
Vipin	102	Single level	20 ml of	Blood loss,	Nil	48	Ultrasound
Kumar		Transforami	0.25%	length of		hours	-guided
Goel et		nal Lumbar	Bupivacai	surgery,			ESP block

al.	Inter-body	ne on	opioid		for single-
(2021)	Fusion	each side	consumption		level
	surgery	under	, total		lumbar
	(elective)	ultrasoun	muscle		fusion
		d	relaxants		surgery is
		guidance	used,		a good
		at	Numeric		multimoda
		surgical	Pain		l analgesia,
		level	Intensity,		reduced
			Modified		blood loss,
			observer's		total opioid
			assessment		usage and
			of alertness		side
			and/or		effects, and
			sedation		postoperati
			score, the		ve pain
			total opioids	_ (with better
			use at 24		patient
			hours up to		satisfaction
			48 hours,		26
			total		
			satisfaction		
			score at 48		
		\limits	hours		

Table 3-Risk of bias assessment conducted using version 2 of the Cochrane risk-of-bias tool for randomized trials (RoB2)

Study	Domain 1: Risk of bias arising from the randomisation process	Domain 2.1: Risk of bias due to deviations from the intended interventions (effect of assignment to intervention)	Domain 2.2: Risk of bias due to deviations from the intended interventions (effect of adhering to intervention)	Domain 3: Missing outcome data	Domain 4: Risk of bias in measurement of the outcome	Domain 5: Risk of bias in selection of the reported result	Overall risk of bias
Goel et al., 2021	Low	Low	Low	Low	Some concerns	Low	Some concerns
Nashibi et al., 2022	Low	Low	Low	Low	Some concerns	Low	Some concerns
Nashibi et al., 2023	Low	Low	Low	Low	Some concerns	Low	Some concerns
Singh et al., 2019	Low	Low	Low	Low	Some concerns	Low	Some concerns
Yu et al., 2020	Low	Low	Low	Low	Some concerns	Low	Some concerns
Zhang et al., 2023	Low	Low	Low	Low	Some concerns	Low	Some concerns
Zhu et al., 2021	Low	Low	Low	Low	Some concerns	Low	Some concerns

4.2 Data Extraction and Analysis

Methods – Outcomes of Interest

The primary outcomes of interest for this study are the postoperative resting pain score at 0 hour, 4 hours, 12 hours and 24 hours. For studies providing median and interquartile range, the estimated mean is calculated according to Luo et al. (2018) [1] while the estimated standard deviation is calculated according to Wan et al. (2014) [2]. The secondary outcomes include 24-hour postoperative opioid consumption and incidence of post-operative nausea and vomiting.

Methods - Data Analysis

Statistical analysis was performed using Review Manager (v5.4). The DerSimonian and Laird random effects model was used to calculate risk ratio (RR) with 95% confidence intervals (CIs) for dichotomous data, while the mean difference (MD) with 95% CI were calculated for continuous variables. Heterogeneity was assessed statistically using the χ 2 and I2 statistics. Heterogeneity is significant when the p value by χ 2 test was <0.10, or the I2 statistic was \geq 50%. An overall p value of <0.05 is considered statistically significant.

- [1] D. Luo, X. Wan, J. Liu and T. Tong (2018), "Optimally estimating the sample mean from the sample size, median, mid-range and/or mid-quartile range", Statistical Methods in Medical Research, 27: 1785-1805.
- [2] X. Wan, W. Wang, J. Liu and T. Tong (2014), "Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range", BMC Medical Research Methodology, 14: 135.

4.3 Data Analysed and result

Postoperative Pain Scores

Six studies contained information regarding postoperative pain scores with the use of ESP block in patients as compared to control. Meta-analysis suggested that there is a statistical significant difference in ESP block providing lower pain scores at rest at 0 hour (MD, -1.60; 95% CI, -2.74 to -0.46; I2 = 93%; P = 0.006) [Figure 1] and 24 hours (MD, -0.54; 95% CI, -0.98 to -0.10; I2 = 70%; P = 0.02) [Figure 4] postoperatively as compared to patients who do not receive ESP block. There is no statistically significant difference in postoperative pain scores between patients who receive and did not receive ESP block at 4 hours (MD, -0.97; 95% CI, -2.21 to 0.27; I2 = 94%; P = 0.13) [Figure 2] and 12 hours (MD, -1.28; 95% CI, -2.54 to -0.03; I2 = 96%; P = 0.05) [Figure 3] respectively. Heterogeneity is significant across all outcome groups.

24-hour postoperative opioid consumption

Six studies provided opioid consumption data within the first 24 hours after surgery. Meta-analysis suggested that patients receiving ESP block have a statistically significant difference in having lower 24-h opioid consumption (MD, -50.95; 95% CI, -68.09 to -33.80; I2= 100%; P < 0.00001) when compared with the control group who did not receive the block [Figure 5].

Postoperative Side Effects of Nausea and Vomiting

Four studies investigated the impact of the ESP block on the incidence of postoperative nausea and vomiting (PONV) among patients. Meta-analysis revealed that ESP block have a statistically significant reduction in incidence of PONV (RR, 0.39; 95% CI, 0.20 to 0.77; I2 = 55%; P = 0.007) when compared with the control group [Figure 6].

Table 4-Table for data analysis on post operative pain score at 0,4,12,24 hours

Title of Study	Total Participants	nts	Pain Sco	Pain Score at 0 hour	Ę		Pain Sc	Pain Score at 4 hours	ours		Pain Sco	ore at 12 hours	ours		Pain Sco	Pain Score at 24 hours	ours	
	Intervention	Control	Intervention	tion	Control		Intervention	ition	Control		Intervention	ntion	Control		Intervention	tion	Control	
			Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Goel et al., 2021	51	50	1.52	1.03	4.08	1.78	1.9	0.92	2.14	0.83	1.78	0.81	2.1	0.78	1.09	0.64	1.46	0.68
Nashibi et al., 2022	20	20	1.65	1.14	3.65	1.63	2.2	1.15	3.65	1.27	1.75	0.79	2.75	0.97	1.5	0.76	2.6	1.05
Nashibi et al., 2023	35	30																
Singh et al., 2019	20	20	2.3598	2.3935	3.6403	0.7978	2.3598	2.3935	2	1.5957	2	1.5957	2	1.5957	2	1.5957	2	1.5957
Yu et al., 2020	40	40									0	0	1.3549	0.7689	1	1.5379	1	1.5379
Zhang et al., 2023	108	105	0.1067	0.3959	0.7037	1.5034	1	1.5034	3.3518	2.2542	2	1.5034	3	1.5028	1.8241	1.1275	2	1.5028
Zhu et al., 2021	20	20									3.3037	1.117	7.3927	2.234	5.0814	1.9547	6.8741	1.9547

Table 5- Table for data analysis on 24 hours post operative opioid consumption and PONV

Title of Study	Total Participants	Its		Mean O	pioid C	Mean Opioid Consumption	tion	PONV				
	Intervention	Control		Intervention	ition	Control		Interven	vention	Control		
				Number	Total	Number	Total	Number	Total	Number	Total	
Goel et al., 2021	51	50	Fentanyl (mcg)	100.98	15.15	158	23.38					
Nashibi et al., 2022	20	20	Meperidine (mg)	22.5	32.34	57.5	45.95	ယ	20	6	20	Number
Nashibi et al., 2023	35	30	Fentanyl (ug)	14.29	21.25	73.33	65.96	0.34	0.68	0.6	0.81	Score
Singh et al., 2019	20	20	Morphine (mg)	1.4	1.5	7.2	2	0	20	2	20	Number
Yu et al., 2020	40	40	Pethidine (mg)	96.25	13.68	245	13.13 7	7	40	33	40	Number
Zhang et al., 2023	108	105						23	108	38	108	Number
Zhu et al., 2021	20	20	Remifentanil (mg)	0.69	0.03	0.85	0.04					

Figure 1 Post operative pain score at 0 hour

	Exp	erimenta	ı	(ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
Goel et al., 2021	1.52	1.03	51	4.08	1.78	50	26.2%	-2.56 (-3.13, -1.99)	-
Nashibi et al., 2022	1.65	1.14	20	3.65	1.63	20	24.1%	-2.00 [-2.87, -1.13]	
Singh et al., 2019	2.3598	2.3935	20	3.6403	0.7978	20	22.2%	-1.28 [-2.39, -0.17]	
Zhang et al., 2023	0.1067	0.3959	108	0.7037	1.5034	105	27.5%	-0.60 [-0.89, -0.30]	*
Total (95% CI)			199			195	100.0%	-1.60 [-2.74, -0.46]	
Heterogeneity: Tau ² =	1.21/ Chi	P= 40.53	df = 3	(P < 0.00	0001); [2:	= 93%			1 1 1 1
Test for overall effect:	Table 1 Street Co.			2 177	-14				Favours (experimental) Favours (control)

Figure 2 Post operative pain score at 4 hour

	Exp	erimenta	ı	(Control			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Goel et al., 2021	1,9	0.92	51	2.14	0.83	50	27.1%	-0.24 [-0.58, 0.10]	
Nashibi et al., 2022	2,2	1.15	20	3.65	1.27	20	25.1%	-1.45 [-2.20, -0.70]	
Singh et al., 2019	2.3598	2.3935	20	2	1.5957	20	21.5%	0.36 [-0.90, 1.62]	
Zhang et al., 2023	1	1.5034	108	3.3518	2.2542	105	26.4%	-2.35 [-2.87, -1.84]	-
Total (95% CI)			199			195	100.0%	-0.97 [-2.21, 0.27]	
Heterogeneity: Tau*=	1.45; Ch	r= 50.64	, df = 3	(P < 0.00	0001); l²=	94%			1 1 1 1
Test for overall effect	Z=1.53	(P = 0.13)							Favours (experimental) Favours (control)

Figure 3 Post operative pain score at 12 hour

	Exp	erimenta	il	(Control			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Goel et al., 2021	1.78	0.81	51	2,1	0.78	50	20.7%	-0.32 [-0.63, -0.01]	*
Nashibi et al., 2023	1.75	0.79	20	2.75	0.97	20	20.2%	-1.00 [-1.55, -0.45]	- 4 -
Singh et al., 2019	2	1.5957	20	2	1.5957	30	19.0%	0.00 [-0.90, 0.90]	
Yu et al., 2020	0	0	40	1.3549	0.7689	20		Not estimable	
Zhang et al., 2023	2	1.5034	108	3	1.5028	40	20.2%	-1.00 [-1.55, -0.45]	
Zhu et al., 2021	3.3037	1.117	20	7.3927	2.234	105	19.9%	-4.09 [-4.74, -3.44]	
Total (95% CI)			259			265	100.0%	-1,28 [-2,54, -0,03]	•
Heterogeneity: Tau ² =	1.96; Chi	² =109.8	2, df=	4 (P ≤ 0.0	00001); [3	= 96%			- t
Test for overall effect				\$	71.				-4 -2 0 2 4 Fayours (experimental) Fayours (control)

Figure 4 Post operative pain score at 24 hour

	Experimental			Control			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
Goel et al., 2021	1.09	0.64	51	1.46	0.68	50	24.2%	-0.37 [-0.63, -0.11]	-
Nashibi et al., 2022	1.5	0.76	20	2,6	1.05	20	18.3%	-1.10 [-1.67, -0.53]	
Singh et al., 2019	2	1.5957	20	2	1.5957	30	12.4%	0.00 [-0.90, 0.90]	
Yu et al., 2020	1	1.5379	40	1	1.5379	20	13.6%	0.00 [-0.83, 0.83]	
Zhang et al., 2023	1.8241	1.1275	108	2	1.5028	40	19.4%	-0.18 [-0.69, 0.34]	
Zhu et al., 2021	5.0814	1.9547	20	6.8741	1.9547	105	12.0%	-1.79 [-2.73, -0.86]	
Total (95% CI)			259			265	100.0%	-0.54 [-0.98, -0.10]	
Heterogeneity: Tau ² =	0.19; Ch	i²= 16.52	. df = 5	(P = 0.0)	$(5); 1^2 = 7$	0%			+ + + + + + + + + + + + + + + + + + + +
Test for overall effect			1 20		1050				-4 -2 U 2 4 Favours [experimental] Fayours (control)
									markets ballostutistical palonic (tolino)

Figure 5- Mean opioid consumption

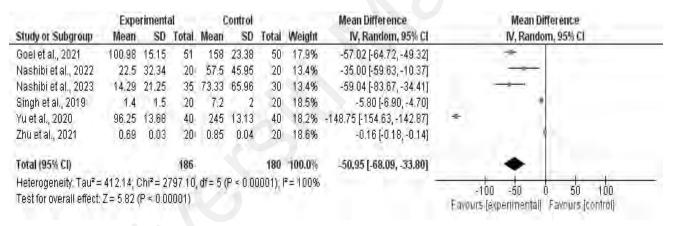


Figure 6- Post operative nausea and vomiting

	Experim	ental	Control			Risk Ratio	Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl		
Nashibi et al., 2022	3	.20	6	20	19.1%	0.50 [0.14, 1.73]	-		
Singh et al., 2019	0	.20	2	20	4.8%	0.20 [0.01, 3.92]			
Yu et al., 2020	7	40	33	40	33.8%	0.21 [0.11, 0.42]			
Zhang et al., 2023	23	108	38	108	42.3%	0.61 [0.39, 0.94]	- 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1		
Total (95% CI)		188		188	100,0%	0.39 [0.20, 0.77]	•		
Total events	33		79						
Heterogeneity: Tau*=	0.23; Chi ²	= 6.70,	df = 3 (P	= 0.083); F= 55%	6	ta di di di		
Test for overall effect							0.01 0.1 1 10 100 Favours (experimental) Favours (control)		

Discussion

Lumbar spine surgery has been increasing in trend in view of aging of the population. Being one of the most painful surgeries, yet no real consensus for pain management in lumbar spine surgery has been developed. ESP block had been recently introduced in multiple types of surgeries including lumbar spine surgery as method to help in pain control and minimise opioid usage.

In our meta-analysis which included 7 RCTs, ESP block was found to be useful in lumbar spine surgery. On patients receiving ESP block, it was found out that they had significant less pain score at 0 hours and 24 hours post operatively. Moreover, this meta-analysis also revealed that ESP block in lumbar spine surgery had significantly reduced 24 hours opioid consumption and PONV post operatively. No patient was found to develop complications from ESP block in all 7 RCTs.

However, there are several limitations were found in this study. Pain score in ESP block and non-ESP block patients show no statistically significant difference in postoperative pain score at 4 and 12 hours respectively. This might be attributed to high heterogeneity across all outcomes. However, due to the limited number of studies, meta-regression could not be performed to assess the impact of these potential confounders.

First, heterogeneity was found in type of surgery performed. Different types of lumbar spine surgery might affect the degree of pain. Potential confounders such as duration of surgery, intraoperative complications and length of incision were not included in majority of studies for further analysis.

Secondly, different local anaesthetic agents used could contribute to potential confounders, including different type of medication, volume, concentration and the site of injection. Among included studies in this meta-analysis, the type of local anaesthesia used include ropivacaine

and bupivacaine with concentration ranging from 0.25% to 0.5% and the location of injection was either at the lumbar or lower thoracic level.

Thirdly, the type of post-operative opioid rescue given differs among studies, including meperidine, oxycodone, pethidine, morphine and sufentanil. Although belonging to the same class of drugs, there are differing duration of action (short/long) and time of onset which can cause difference in pain score perceived.

Conclusion

In conclusion, this meta-analysis suggests that the ESP block significantly improved postoperative pain score, results in reduced opioid consumption and postoperative nausea vomiting. Future randomised controlled trials with controlled confounding factors mentioned above should be carried out to provide a more comprehensive overview for further analysis.

References

- ³ Kim HS, Wu PH, Jang IT. Lumbar Degenerative Disease Part 1: Anatomy and Pathophysiology of Intervertebral Discogenic Pain and Radiofrequency Ablation of Basivertebral and Sinuvertebral Nerve Treatment for Chronic Discogenic Back Pain: A Prospective Case Series and Review of Literature. Int J Mol Sci. 2020 Feb 21;21(4):1483. doi: 10.3390/ijms21041483. PMID: 32098249; PMCID: PMC7073116.
- ⁴ Grotle M, Småstuen MC, Fjeld O, Grøvle L, Helgeland J, Storheim K, Solberg TK, Zwart JA. Lumbar spine surgery across 15 years: trends, complications and reoperations in a longitudinal observational study from Norway. BMJ Open. 2019 Aug 1;9(8):e028743. doi: 10.1136/bmjopen-2018-028743. PMID: 31375617; PMCID: PMC6688683.
- ⁵ Bajwa SJ, Haldar R. Pain management following spinal surgeries: An appraisal of the available options. J Craniovertebr Junction Spine. 2015 Jul-Sep;6(3):105-10. doi: 10.4103/0974-8237.161589. PMID: 26288544; PMCID: PMC4530508.
- ⁶ Tan M, Law LS, Gan TJ. Optimizing pain management to facilitate Enhanced Recovery After Surgery pathways. Can J Anaesth. 2015 Feb;62(2):203-18. doi: 10.1007/s12630-014-0275-x. Epub 2014 Dec 10. PMID: 25501696.
- ⁷ Gan TJ. Poorly controlled postoperative pain: prevalence, consequences, and prevention. J Pain Res. 2017 Sep 25;10:2287-2298. doi: 10.2147/JPR.S144066. PMID: 29026331; PMCID: PMC5626380.
- ⁸ Jain K, Jaiswal V, Puri A. Erector spinae plane block: Relatively new block on horizon with a wide spectrum of application A case series. Indian J Anaesth. 2018 Oct;62(10):809-813. doi: 10.4103/ija.IJA 263 18. PMID: 30443066; PMCID: PMC6190410.
- ⁹ Kot P, Rodriguez P, Granell M, Cano B, Rovira L, Morales J, Broseta A, Andrés J. The erector spinae plane block: a narrative review. Korean J Anesthesiol. 2019 Jun;72(3):209-220. doi: 10.4097/kja.d.19.00012. Epub 2019 Mar 19. PMID: 30886130; PMCID: PMC6547235.
- ¹⁰ Canıtez A, Kozanhan B, Aksoy N, Yildiz M, Tutar MS. Effect of erector spinae plane block on the postoperative quality of recovery after laparoscopic cholecystectomy: a prospective double-blind study. Br J Anaesth. 2021 Oct;127(4):629-635. doi: 10.1016/j.bja.2021.06.030. Epub 2021 Jul 31. PMID: 34340839.
- ¹¹ Vaughan BN, Bartone CL, McCarthy CM, Answini GA, Hurford WE. Ultrasound-Guided Continuous Bilateral Erector Spinae Plane Blocks Are Associated with Reduced Opioid Consumption and Length of Stay for Open Cardiac Surgery: A Retrospective Cohort Study. J

¹ Krishnan S, Cascella M. Erector Spinae Plane Block. [Updated 2022 Apr 30]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-.

² Donnally III CJ, Hanna A, Varacallo M. Lumbar Degenerative Disk Disease. [Updated 2023 Jan 15]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK448134/

Clin Med. 2021 Oct 28;10(21):5022. doi: 10.3390/jcm10215022. PMID: 34768541; PMCID: PMC8584924.

- ¹² Lin H, Guan J, Luo S, Chen S, Jiang J. Bilateral Erector Spinae Plane Block for Quality of Recovery Following Posterior Lumbar Interbody Fusion: A Randomized Controlled Trial. Pain Ther. 2022 Sep;11(3):861-871. doi: 10.1007/s40122-022-00395-9. Epub 2022 May 23. PMID: 35604613; PMCID: PMC9314466.
- ¹³ Jin Y, Zhao S, Cai J, Blessing M, Zhao X, Tan H, Li J. Erector Spinae Plane Block for Perioperative Pain Control and Short-term Outcomes in Lumbar Laminoplasty: A Randomized Clinical Trial. J Pain Res. 2021 Sep 3;14:2717-2727. doi: 10.2147/JPR.S321514. PMID: 34512011; PMCID: PMC8423490.
- ¹⁴ Zhang TJ, Zhang JJ, Qu ZY, Zhang HY, Qiu Y, Hua Z. Bilateral Erector Spinae Plane Blocks for Open Posterior Lumbar Surgery. J Pain Res. 2020 Apr 5;13:709-717. doi: 10.2147/JPR.S248171. PMID: 32308470; PMCID: PMC7148416.
- ¹⁵ Bhardwaj N. Enhanced recovery after surgery. J Anaesthesiol Clin Pharmacol. 2019 Apr;35(Suppl 1):S3-S4. doi: 10.4103/joacp.JOACP_57_19. PMID: 31142952; PMCID: PMC6515718.
- ¹⁶ Kaye AD, Urman RD, Rappaport Y, Siddaiah H, Cornett EM, Belani K, Salinas OJ, Fox CJ. Multimodal analgesia as an essential part of enhanced recovery protocols in the ambulatory settings. J Anaesthesiol Clin Pharmacol. 2019 Apr;35(Suppl 1):S40-S45. doi: 10.4103/joacp.JOACP_51_18. PMID: 31142958; PMCID: PMC6515722.
- ¹⁸ Neuman MD, Bateman BT, Wunsch H. Inappropriate opioid prescription after surgery. Lancet. 2019 Apr 13;393(10180):1547-1557. doi: 10.1016/S0140-6736(19)30428-3. PMID: 30983590; PMCID: PMC6556783.
- ¹⁹ Avis G, Gricourt Y, Vialatte PB, Meunier V, Perin M, Simon N, Claret PG, El Fertit H, Lefrant JY, Bertrand M, Cuvillon P. Analgesic efficacy of erector spinae plane blocks for lumbar spine surgery: a randomized double-blind controlled clinical trial. Reg Anesth Pain Med. 2022 Jul 21:rapm-2022-103737. doi: 10.1136/rapm-2022-103737. Epub ahead of print. PMID: 35863786.
- ²⁰ Nashibi M, Tafrishinejad A, Safari F, Asgari S, Sezari P, Mottaghi K. Evaluation of ultrasound guided erector spinae plane block efficacy on post operative pain in lumbar spine surgery: a randomized clinical trial. Agri. 2022 Jul;34(3):174-179. English. doi: 10.14744/agri.2021.04864. PMID: 35792689.

²¹ Nashibi M, Sezari P, Safari F, Teymourian H, Asgari S, Mottaghi K. The effect of erector spinae plane block on the use of anesthetic medications in lumbar spine surgery. Agri. 2023 Oct;35(4):228-235. English. doi: 10.14744/agri.2022.48992. PMID: 37886866.

- ²³ Singh S, Choudhary NK, Lalin D, Verma VK. Bilateral Ultrasound-guided Erector Spinae Plane Block for Postoperative Analgesia in Lumbar Spine Surgery: A Randomized Control Trial. J Neurosurg Anesthesiol. 2020 Oct;32(4):330-334. doi: 10.1097/ANA.000000000000000003. PMID: 31033625.
- ²⁴ Yu Y, Wang M, Ying H, Ding J, Wang H, Wang Y. The Analgesic Efficacy of Erector Spinae Plane Blocks in Patients Undergoing Posterior Lumbar Spinal Surgery for Lumbar Fracture. World Neurosurg. 2021 Mar;147:e1-e7. doi: 10.1016/j.wneu.2020.10.175. Epub 2020 Dec 16. PMID: 33340727.
- ²⁵ Zhu L, Wang M, Wang X, Wang Y, Chen L, Li J. Changes of Opioid Consumption After Lumbar Fusion Using Ultrasound-Guided Lumbar Erector Spinae Plane Block: A Randomized Controlled Trial. Pain Physician. 2021 Mar;24(2):E161-E168. PMID: 33740348.
- ²⁶ Goel VK, Chandramohan M, Murugan C, Shetty AP, Subramanian B, Kanna RM, Rajasekaran S. Clinical efficacy of ultrasound guided bilateral erector spinae block for single-level lumbar fusion surgery: a prospective, randomized, case-control study. Spine J. 2021 Nov;21(11):1873-1880. doi: 10.1016/j.spinee.2021.06.015. Epub 2021 Jun 23. PMID: 34171466.

²² Zhang A, Chen J, Zhang X, Jiang T, Li D, Cai X, Wang H, Ding W. Twelfth thoracic vertebra erector spinae plane block for postoperative analgesia and early recovery after lumbar spine surgery in elderly patients: a single-blind randomized controlled trial. BMC Anesthesiol. 2023 Dec 7;23(1):402. doi: 10.1186/s12871-023-02351-2. PMID: 38062374; PMCID: PMC10701994.