LIST OF CONTENTS

		Page
ABSTRACT	5.2	ii
ABSTRAK		v
ACKNOWLEDGMENTS		ix
LIST OF CONTENTS		x
ABBREVIATIONS		xviii
LIST OF FIGURES		xix
LIST OF TABLES		xxii
CHAPTER ONE :	INTRODUCTION	
1.1 :	Introduction	1
1.2 :	Yarrowia lipolytica	8
1.2.1 :	Morphology and life cycle	8
1.2.2 :	Biochemical properties	10
1.2.3 :	Genetics	13
1.3 :	Genetic application in obtaining high	
	producers of citric acid	14
1.3.1 :	Mutation	15
1.3.2 :	Cloning in yeast	17
1.3.2.1:	Genetic marker for yeast transformation	17
1.3.2.2 :	Selection of enhanced producers	
	of citric acid	18
1.3.2.3 :	Yeast cloning vectors	19
1.3.2.4 :	Transformation of yeast cells	22
1.4 : :	Palm oil- its composition	24
1.4.1 :	NBD palm olein	27
1.4.2 :	NBD palm olein as the carbon source	29
1.5 :	Citric acid fermentation	31
1.5.1	Effects of fermentation medium on	
	citric acid production	31
1.5.2 :	pН	35
1.5.3 :	Aeration and agitation	36
1.5.4 :	Temperature and duration of incubations	36
1.6 :	Citric acid production from lipids as the	
	carbon source	37
1.6.1 :	Utilisation of lipids	37
1.6.2 :	Tricarboxylic acid cycle and citric acid	
	formation	42

	1.7	:	The objectives of the project	45
CHAPTER T	wo	:	MATERIALS AND METHODS	
	2.1	:	Yarrowia lipolytica strains	46
	2.2	:	Escherichia coli strains	47
	2.3	:	Plasmids	47
	2.4	:	Materials	47
	2.5	:	Storage and maintenance of bacterial and yeast strains	49
	2.6	:	Sterilisation	50
	2.7	:	Storage	51
	2.8	:	Culture media of Yarrowia lipolytica	51
	2.8.1	:	Yeast extract peptone glucose (YEPD) medium	51
	2.8.2	:	Yeast extract potassium acetate	
			(YEPA) medium	51
	2.8.3	:	Minimal solid medium	51
	2.8.4	:	Minimal medium with	
			0.1 % bromocresol green	52
	2.8.5	:	Tricarboxylic acid medium	52
	2.8.6		Fermentation medium	53
	2.8.7		Seed medium	54
	2.8.8	:	Yeast extract-malt extract medium (YM)	54
	2.8.9	:	Restrictive growth medium (RG)	55
	2.9		Culture media of Escherichia coli	55
	2.9.1	:	Luria-Bertani medium (LB)	55
	2.9.2		LB with ampicillin	55
	2.9.3		LB with tetracycline	56
	2.9.4		M9 minimal medium	56
	2.9.5		M9 minimal medium with	
	2.7.0		0.01% bromocresol green	56
	2.10	:	Solutions	57
	2.10.	1:	80% (v/v) Glycerol stock solution	57
	2.10.		0.1 M Phosphate buffer, pH 7.0	57

2.10.3 :	0.05 M Phosphate buffer, pH 7.0	57
2.10.4 :	20% (v/v) Sodium thiosulphate solution	57
2.10.5 :	N-methyl-N'-nitro-N-nitrosoguanidine	
	(NTG) stock solution	58
2.10.6 :	3:2 (v/v) Dioxane:ethyl acetate solution	58
2.10.7 :	1 M Sodium hydroxide	58
2.10.8 :	10 M Sodium hydroxide	58
2.10.9 :	0.01 M Calcium chloride	59
2.10.10:	0.1 M Citric acid	59
2.10.11:	1 % (w/v) Citric acid	59
2.10.12:	1 % (w/v) threo-D _s [+] isocitric acid	59
2.10.13:	0.5 % (w/v) di-Ammonium	
	orthophosphate	59
2.11 :	Lipase assay solutions	60
2.11.1 :	2 % (v/v) Polyvinyl alcohol (PVA)	
	solution	60
2.11.2 :	Foamy emulsion	60
2.11.3 :	1:2 (v/v) Acetone: ethanol	60
2.11.4 :	0.05 M NaOH	61
2.11.5 :	0.1 M NaOH	61
2.11.6 :	5% (w/v) Phenopthalen	61
2.12 :	Protein determination solutions	62
2.12.1 :	Bovine serum albumin (BSA) stock	
	solution	62
2.12.2 :	Solution A	62
2.12.3 :	1% (w/v) Sodium citrate	62
2.12.4 :	Solution B	62
2.12.5 :	Solution C	62
2.12.6 :	Solution D	63
2.12.7 :	0.1 M Tris-HCL, pH 7.8	63
2.13 :	Citrate synthase assay solutions	63
2.13.1 :	3 M Tris-base, pH 8.0	63
2.13.2 :	20 mM tris-HCL	63
2.13.3 :	0.05 M 5, 5'-dithio-bis(2-nitrobenzoic acid)	
	(DTNB)	63
2.13.4 :	0.2 M Oxaloacetate	64
2.13.5 :	100 mM Acetyl-CoA	64
2.14 :	Aconitate hydratase assay solutions	64
2.14.1 :	1 M Potassium phosphate	64
2.14.2 :	1 M di-Potassium phosphate	64
2.14.3 :	0.5 M Phosphate buffer, pH 6.0	65
2.14.4 :	1 mM cis-Aconitic acid	65

		xiii
2.15 :	lsocitrate lyase assay solutions	65
2.15.1 :	0.5 M Phosphate buffer, pH 6.8	65
2.15.2 :	15 mM Magnesium chloride	65
2.15.3 :	10 mM Phenylhydrazine HCL	65
2.15.4 :	6 mM Cysteine HCL	66
2.15.5 :	0.5 mM Isocitric acid	66
2.16 :	Malate synthase assay solutions	66
2.16.1 :	18 mM Tris-HCL	66
2.16.2 :	15 mM Magnesium chloride	66
2.16.3 :	0.2 μM Acetyl-CoA	66
2.16.4 :	1 mM Glyoxylate	67
2.17 :	Isocitrate dehydrogenase assay	
	solutions	67
2.17.1 :	0.5 M Phosphate buffer	67
2.17.2 :	0.1 M Magnesium chloride	67
2.17.3 :	25 mM Diphosphopyridine nucleotide	
	(DPN)	67
2.17.4 :	5 mM Isocitric acid	61
2.18 :	Electrophoresis gel and solutions	68
2.18.1 :	0.7 % Agarose gel	68
2.18.2 :	10X strengh TBE buffer	68
2.18.3 :	6X strengh Bromocresol blue (BPB)	
	loading dye	68
2.18.4 :	Ethidium bromide	69
2.19 :	Solutions for the isolation of the	
	chromosomal DNA of Yarrowia lipolytica	69
2.19.1 :	0.89 % (w/v) Saline solution	69
2.19:2 :	Solution A (0.2 M Tris-base, pH 10.3)	69
2.19.3 :	Solution B	70
2.19.4 :	0.8 M Sodium chloride	70
2.19.5 :	0.4 M Ethylenediaminetetra-acetic acid,	
	disodium salt (EDTA), pH 8.0	70
2.19.6 :	20 % (w/v) Sodium dodecyl sulphate	
	(SDS)	70
2.19.7 :	0.2 M Tris-HCL, pH 8.5	7
2.19.8 :	Solution C	7
2.19.9 :	1 M Tris-HCL, pH 8.0	7
2.19.10:	Neutral phenol	7
2.19.11:	lsoamyl-chloroform (1:24, v/v)	72
2.19.12:	Buffered Phenol-chloroform (1:1, v/v)	7.
2.19.13:	20 mM Tris-HCL, pH 7.5	7.
2.19.14:	30 mM Sodium chloride	7:
2.19.15:	RNase A (10 mg/ml)	7.

		xiv
2.19.16:	0.02 M Tris-HCL, pH 8.0	73
2.19.17:	0.002 M EDTA disodium salt	73
2.19.18:	Tris-HCL-EDTA (TE) buffer,	-
	pH 8.0	73
2.19.19:	3 M Sodium acetate	73
2.17.17.		,,,
2.20 :	Solutions for plasmid DNA isolation	
	from Escherichia coli	74
2.20.1 :	1 M Glucose	74
2.20.2 :	1M Tris-HCL, pH 8.0	74
2.20.3 :	0.25 M EDTA disodium salt, pH 8.0	74
2.20.4 :	Solution I	75
2.20.5 :	0.4 M Sodium hydroxide	75
2.20.6 :	2 % (w/v) Sodium dodecyl sulphate	75
2.20.7 :	Solution II	75
2.20.8 :	5 M Potassium acetate	76
2.20.9 :	Solution III	76
2.21 :	Solutions for the transformation of	
2.21 .	Yarrowia lipolytica	76
2 21 1 .	0.1 M Citric acid	76
2.21.1 :		76
2.21.2 :	0.1 M Lithium acetate	76
2.21.3 :	Carrier DNA for transformation of	
	Yarrowia lipolytica	77
2.21.4 :	40% PEG 4000 in 0.1 M lithium	
	acetate	77
2.22 :	Citric acid fermentation	77
2.22.1 :	Seed culture preparation	77
2.22.2 :	Fermentation	78
2.22.3 :	Determination of optical density	78
2.22:4 :	Measuring of the pH	78
2.22.5 :	Dry weight	78
2.23 :	Analysis of citric acid	79
2.23 . 2.23.1 :	Samples preparation	79
		19
2.23.2 :	Analysis of citric acid by High Performance	79
	Liquid Chromatography (HPLC)	/9
2.24 :	Induction of the mutants with high citric acid	
	production	80
2.24.1 :	Culture preparation for mutagenesis	80
2.24.2 :	Mutagenesis of Yarrowia lipolytica	
	M240 (ATCC 8661) with NTG	80
2.24.3 :	Selection of the mutants	82

		xv
2.24.4 :	Screening for citric acid over	
	producer	82
2.25 :	Lipase activity	83
2.25.1 :	Fermentation	83
2.25.2 :	Samples preparation for lipase	
	activity	83
2.25.3 :	Lipase activity	83
2.26 :	Tricarboxylic acid cycle enzyme activities	84
2.26.1 :	Fermentation	84
2.26.2 :	Sample preparation for enzyme activities	84
2.26.3 :	Protein preparation for standard curve	85
2.26.4 :	Protein determination	85
2.27 :	Citrate synthase activity	85
2.28 :	Aconitate hydratase activity	86
2.29 :	Isocitrate lyase activity	87
2.30 :	Malate synthase activity	88
2.31 :	Isocitrate dehydrogenase activity	89
2.32 :	Genetic analysis	89
2.32.1 :	Mutagenesis	89
2.32.2 :	Screening of the auxotrophic colonies	90
2.32.3 :	Characterisation of auxotrophic mutants	90
2.32.4 :	Genetic crossing by mass mating	91
2.33 :	Isolation of high molecular weight DNA	
	of Yarrowia lipolytica	92
2.33.1 :	Culture preparation	92
2.33.2 :	Isolation of chromosomal DNA	92
2.34 :	Transformation of Escherichia coli	93
2.34.1 :	Preparation of competent cells	93
2.34.2 :	Transformation experiments	94

Small scale plasmid isolation

Large scale preparation of plasmid DNA

Elution and purification of plasmid from the agarose gel using the GENECLEAN II

94

95

96

2.35 :

2.36 : 2.36.1 :

	2.27		1	xvi
	2.37	:	Large scale preparation of pure covalently closed circular (ccc) DNA from	
			Escherichia coli	97
	2.38	:	Electrophoresis of DNA	97
	2.56		Electrophoresis of DIVA	71
	2.39	:	Determination of DNA concentrations	98
			· · · · · · · · · · · · · · · · · · ·	-
	2.40	:	Lithium acetate method for the transformation	98
	2.40.1		of Yarrowia lipolytica Preparation of recipient cells	98
	2.40.1		Transformation of the yeast cells	99
	2.40.2		Transformation of the yeast cens	99
	2.41	:	Digestion of high molecular weight DNA	
			of Yarrowia lipolytica by Sau 3AI and gel	
			electrophoresis	99
	2.42	:	Restriction endonuclease digestion of	
			plasmid DNA	100
	2.43		Ligations of fragments DNIA with	
	2.43	:	Ligations of fragments DNA with compatible ends	100
			companione ends	100
	2.44	:	Production of citric acid in continous culture	101
CHAPTER T		:	Production of citric acid in continous culture RESULTS	101
CHAPTER T		: :	RESULTS	101
CHAPTER T	HREE	: :		101
CHAPTER T	HREE	: :	RESULTS Isolation of strains with high level of citric acid production	
CHAPTER T	HREE 3.1	: : :	RESULTS Isolation of strains with high level of citric acid	
CHAPTER T	HREE 3.1	: :	RESULTS Isolation of strains with high level of citric acid production Growth and production of citric acid on Glucose	103
CHAPTER T	3.1 3.2	: :	RESULTS Isolation of strains with high level of citric acid production Growth and production of citric acid on Glucose and NBD palm olein	103 110
СНАРТЕК Т	3.1 3.2 3.2.1	:	RESULTS Isolation of strains with high level of citric acid production Growth and production of citric acid on Glucose and NBD palm olein On glucose	103 110 110
	3.1 3.2 3.2.1 3.2.2	:	RESULTS Isolation of strains with high level of citric acid production Growth and production of citric acid on Glucose and NBD palm olein On glucose On 2% NBD palm olein On 4% NBD palm olein	103 110 110 112 114
3	3.1 3.2 3.2.1 3.2.2 3.3.3	:	RESULTS Isolation of strains with high level of citric acid production Growth and production of citric acid on Glucose and NBD palm olein On glucose On 2% NBD palm olein On 4% NBD palm olein Lipase production	103 110 110 112 114
9	3.1 3.2 3.2.1 3.2.2 3.3.3	:	RESULTS Isolation of strains with high level of citric acid production Growth and production of citric acid on Glucose and NBD palm olein On glucose On 2% NBD palm olein On 4% NBD palm olein	103 110 110 112 114
9	3.1 3.2 3.2.1 3.2.2 3.3.3 3.3.3 3.3.1 3.3.2	:	RESULTS Isolation of strains with high level of citric acid production Growth and production of citric acid on Glucose and NBD palm olein On glucose On 2% NBD palm olein On 4% NBD palm olein Lipase production On 2 % NBD palm olein On 4 % NBD palm olein On 4 % NBD palm olein	103 110 110 112 114 116 116
9	3.1 3.2 3.2.1 3.2.2 3.3.3 3.3.3 3.3.1 3.3.2 3.4	:	RESULTS Isolation of strains with high level of citric acid production Growth and production of citric acid on Glucose and NBD palm olein On glucose On 2% NBD palm olein On 4% NBD palm olein Lipase production On 2 % NBD palm olein On 4 % NBD palm olein Activity of key enzymes in TCA cycle	103 110 110 112 114 116 116 117
9	3.1 3.2 3.2.1 3.2.2 3.3.3 3.3.3 3.3.1 3.3.2 3.4 3.4.1	:	RESULTS Isolation of strains with high level of citric acid production Growth and production of citric acid on Glucose and NBD palm olein On glucose On 2% NBD palm olein Lipase production On 4 % NBD palm olein On 4 % NBD palm olein Activity of key enzymes in TCA cycle On 2 % glucose	103 110 110 112 114 116 117 117 120
9	3.1 3.2 3.2.1 3.2.2 3.3.3 3.3.3 3.3.1 3.3.2 3.4 3.4.1 3.4.2	:	RESULTS Isolation of strains with high level of citric acid production Growth and production of citric acid on Glucose and NBD palm olein On glucose On 2% NBD palm olein On 4% NBD palm olein Lipase production On 2 % NBD palm olein On 4 % NBD palm olein Activity of key enzymes in TCA cycle On 2 % NBD palm olein Activity of key by enzymes in TCA cycle On 2 % NBD palm olein	103 110 110 112 114 116 117 117 120 122
9	3.1 3.2 3.2.1 3.2.2 3.3.3 3.3.3 3.3.1 3.3.2 3.4 3.4.1	:	RESULTS Isolation of strains with high level of citric acid production Growth and production of citric acid on Glucose and NBD palm olein On glucose On 2% NBD palm olein Lipase production On 4 % NBD palm olein On 4 % NBD palm olein Activity of key enzymes in TCA cycle On 2 % glucose	103 110 110 112 114 116 117 117 120
9	3.1 3.2 3.2.1 3.2.2 3.3.3 3.3 3.3.1 3.3.2 3.4 3.4.1 3.4.2 3.4.3 3.5	:	RESULTS Isolation of strains with high level of citric acid production Growth and production of citric acid on Glucose and NBD palm olein On glucose On 2% NBD palm olein Lipase production On 2 % NBD palm olein Activity of key enzymes in TCA cycle On 2 % NBD palm olein Activity of key enzymes in TCA cycle On 2 % NBD palm olein On 4 % NBD palm olein Involvement of glyoxylate cycle	103 110 110 112 114 116 117 117 120 122
9	3.1 3.2 3.2.1 3.2.2 3.3.3 3.3.1 3.3.2 3.4 3.4.1 3.4.2 3.4.3	:	RESULTS Isolation of strains with high level of citric acid production Growth and production of citric acid on Glucose and NBD palm olein On glucose On 2% NBD palm olein On 4% NBD palm olein Lipase production On 2 % NBD palm olein On 4 % NBD palm olein On 2 % NBD palm olein On 2 % NBD palm olein On 4 % NBD palm olein	103 110 112 114 116 117 117 120 122 124

				XVI
	3.5.3	:	On 4 % NBD palm olein	130
	3.6	:	Production of citric acid by Yarrowia lipolytica	
			F21A at fermenter level	133
	3.7		Genetic analysis of strain F21A	135
	3.7.1	:	Screening of auxotrophic mutants	136
				130
	3.7.2	:	Induction of sporulation in auxotrophic	
			derivatives of strain M240 and F21A	137
	3.7.3	:	Mating of auxotropic deravative of M240 and	
			F21A	137
	3.8	:	Improved citric acid production in	
			Yarrowia lipolytica via DNA recombinant	
			tehniques	138
	3.8.1		Assessment of vectors to be used as cloning	150
	3.6.1			120
			vehicles	138
	3.8.1.		pINA62	139
	3.8.1.2	2:	Digestion pINA62 with Pst I	141
	3.8.1.3	3:	pINA214 and pINA230	145
	3.8.1.4	4:	Digestion pINA230 with Bam HI	151
	3.8.2	:	Digestion of chromosomal DNA of Yarrowia	
			lipolytica with Sau 3AI	152
	3.8.3	:	Cloning of Sau 3Al-generated DNA fragments of	
	5.6.5			
			Yarrowia lipolytica with vector DNA of	
			Bam HI-digested of pINA230	152
CHAPTER !	FOUR	:	DISCUSSION	
	4.1		Isolation of mutants with altered ability to	
	7.1		produce citric acid	156
			produce cruic acid	150
	4.2		Growth and citric acid production of glucose	
	1.2		and NBD palm olein	161
			and 1430 paint ofeni	101
	4.3		Production of citric acid by Yarrowia lipolytica	
			at fermenter level	171
			at termemer level	1/1
	4.4		Mating type determination and genetic analysis	175
	-11		wating type determination and genetic analysis	175
	4.5		Improved citric acid production in	
			Yarrowia lipolytica via DNA recombinant	
			techniques	177
			teemiques	1//
DEFEDENCE	r.c			100
REFERENC	ES			190
APPENDIX				210

ABBREVIATIONS

ACH Aconitate hydratase
BPB Bromophenol blue
BSA Bovine serum albumin

CIAP Calf intestinal alkaline phosphatase
DTNB 5,5'-dithio-bis(2-nitrobenzoic acid)
EDTA Ethylenediaminetetra-acetic acid

EMS Ethylmethane sulphonate

HPLC High performance liquid chromatography

ICDH Isocitrate dehydrogenase

MFA Monofluoroacetate
MFC Monofluorocitrate

MgSO₄.7H₂O Magnesium sulphate 7-hydrate

uM Micromolar

NBD Neutralised bleached deodorised
NTG N-methyl-N'-nitro-N-nitrosoguanidine

PEG Polyethylene glycol

PVA Polyvinyl alcohol
SDS Sodium dodecyl sulphate

TBE Tris-Boric-EDTA

TPN Triphosphopyridine nucleotide

µg Microgram

TE

YEPA Yeast extract peptone potassium acetate

Tris-HCL-EDTA

YEPD Yeast extract peptone glucose

LIST OF FIGURES

Figure		Page
1	Growth of Yarrowia lipolytica on YEPD medium	3
2	Oil palm tree (Elaeis guineensis)	5
3	Life cycle of Yarrowia (Saccharomycopsis) lipolytica	9
4	The lipase reaction	11
5	The net lipase reaction	11
6	Structure of alkylating agents	16
7	Plasmid pINA62 with LEU2 marker from Yarrowia lipolytica	20
8	Plasmid transformation of yeast using either spheroplasts or lithium-treated cells	23
9	A. Fruit bunch of <i>Elaeis guineensis</i> hybrid <i>Tenera</i> B. Ripe palm oil fruit	25
10	Production of various refined fractions from crude palm oil	28
11	NBD palm olein at 28°C	30
12	Possible roles of peroxisomes in connection with mitochondria and microsomes in alkane assimilation yeasts	40
13	A Oxidation pathway of alkanes to the corresponding fatty acids B. Fatty acid $\beta\text{-}oxidation$ system in yeast peroxisomes	41
14	The citric acid cycle and glyoxylate cycles	43
15	HPLC of standard mixture of citric acid and isocitric acid	81
16	The anatomy of fermenter	102
17	Growth and citric acid production of <i>Yarrowia lipolytica</i> (F21) utilising 2% NBD palm olein as the carbon source	10 5

18	Acid forming capacity as shown by size of halo formed on minimal medium incoporated with bromocresol green	106
19	Two different morphological colonies Yarrowia lipolytica grown on YEPD plate medium after 48 hours incubation	109
20	Growth and citric acid production by different strains of Yarrowia lipolytica utilising 2% glucose as the carbon source	111
21	Growth and citric acid production by different strains of <i>Yarrowia lipolytica</i> utilising 2% NBD palm olein as the carbon source	113
22	Growth and citric acid production by different strains of <i>Yarrowia lipolytica</i> utilising 4% NBD palm olein as the carbon source	115
23	Growth and extracellular lipases activity by different strains of Yarrowia lipolytica utilising 2% NBD palm olein as the carbon source	118
24	Growth and extracellular lipases activity by different strains of <i>Yarrowia lipolytica</i> 4% NBD palm olein as the carbon source	119
25	The TCA cycle enzymes activity of by different strains Yarrowia lipolytica utilising 2% glucose as the carbon source	121
26	The TCA cycle enzymes activity by different strains of <i>Yarrowia lipolytica</i> utilising 2% NBD palm olein as the carbon source	123
27	The TCA cycle enzymes activity by different strains of <i>Yarrowia lipolytica</i> utilising 4% NBD palm olein as the carbon source	125
28	The glyoxylate cycle enzymes activity by different strains of <i>Yarrowia lipolytica</i> utilising 2% glucose as the carbon source	128
29	The glyoxylate cycle enzymes activity by different strains of Yarrowia lipolytica utilising 2% NBD palm olein as the carbon source	129
30	The glyoxylate cycle enzymes activity by different strains of Yarrowia lipolytica utilising 4% NBD palm olein as the carbon source	131

31	Growth and production of citric acid on 2% NBD palm olein at fermenter level	134
32	Growth and production of citric acid on 4% NBD palm olein at fermenter level	134
33	Growth of Escherichia coli (HB101) transformant on M9 medium without leucine	140
34	Agarose (0.7%) gel electrophoresis of plasmid pINA62 extracted from <i>Escherichia coli</i> transformant	142
35	Agarose (0.7%) gel electrophoresis of chromosomal DNA and plasmid pINA62 extracted from <i>Escherichia coli</i> JM109 transformant	143
36	Genetic map of plasmid pINA214	146
37	Genetic map of plasmid pINA230	147
38	Growth of Yarrowia lipolytica strains M240, F21A and non-reversable leu strain M24062 on minimal medium after 48 hours incubation	149
39	Agarose (0.7%) gel electrophoresis of plasmid pINA230 extracted from Escherichia coli JM109 transformant	153
40	Agarose (0.7%) gel electrophoresis of chromosomal DNA Yarrowia lipolytica digested with Sau 3AI	154
41	A method for cloning segments of foreign DNA into Yarrowia lipolytica	181
42	 A. A cleavage of two strands of DNA results by restriction endonuclease Bam HI B. Ligation of identical cohesive Bam HI end with T₄ DNA ligase 	185
43	Ligation of a fragment with compatible cohesive ends into plasmid vector treated with calf intestinal alkaline phosphatase	188

LIST OF TABLES

Table		Page
1	Oil palm: Area, production and yield	6
2	World's requirement and Malaysian production	6
3	Composition of palm oil	26
4	Fatty acid composition of palm oil	27
5	Fatty acid components of NBD palm olein	29
6	Composition of citric acid producing media by	
	Yarrowia lipolytica utilising coconut and olive oil as the	
	carbon source	32
7	Yarrowia lipolytica strains used in this study	46
8	Enzymes used in this study	49
9	Amino acids and nucleic acids used in this study	52
10	Substituted substrates in place of sodium acetate in the	
	tricarboxylic acid medium	53
11	Components in 1 ml reaction mixture of	
	citrate synthase activities	85
12	Components in 1 ml reaction mixture of	
	aconitate hydratase activities	87
13	Components in 1 ml reaction mixture of	
	isocitrate lyase activities	87
14	Components in 1 ml reaction mixture of	
	malate synthase activities	88
15	Components in 1 ml reaction mixture of	
	isocitrate dehydrogenase activities	89
16	Minimal medium supplemented with appropriate	
	amino acids or nucleic acid bases	91
17	Effects of sodium monofluoroacetate (MFA) on growth	
	of Yarrowia lipolytica	107

18	Utilisation by different strains <i>Yarrowia lipolitica</i> of carbon sources related to TCA cycle after 24 hours incubation	108
19	Morphology of colonies and cells of different strains of Yarrowia. lipolytica grown on YEPD plate medium after 48 hours incubation	108
20	The maximum activity of TCA cycle enzymes assayed during growth of different strains of <i>Yarrowia lipolytica</i> on glucose, 2% and 4% NBD palm olein as the carbon source	126
21	The maximum activity attained by enzymes of the glyoxylate cycle during growth of by different strains of <i>Yarrowia lipolytica</i> on glucose, 2% and 4% NBD palm olein as the carbon source	132
22	Auxotrophic mutants of <i>Yarrowia lipolytica</i> derived from M240 (A) and its mutants F21A (B)	136
23	Transformants obtained after transformation of Yarrowia lipolytica with pINA62	144
24	Transformants population of <i>Escherichia coli</i> (HB101) after transformation with pINA230 (<i>Bam</i> HI-digested) ligated of <i>Sau</i> 3AI-generated fragments of tetracyline in <i>Yarrowia lipolytica</i>	155
25	The utilisation of carbon sources by <i>Yarrowia lipolytica</i> strains ATCC 201111, K-20 and S-22 (M243) on medium containing di- or tricarboxylic acids	157