LIST OF CONTENTS

	rage
ACKNOWLEDGEMENTS	iii
ABSTRACT	iv
ABSTRAK	vi
LIST OF CONTENTS	x
LIST OF TABLES	xv
LIST OF FIGURES	xix
LIST OF PLATES	xxi
ABBREVIATIONS AND ACRONYMS	XXV

CHAPTER ONE: INTRODUCTION

1.1	Importance of Bananas and Plantains	1
1.2	Genetic Improvement of Banana	5
1.3	The Objectives of the Study	6

CHAPTER TWO: LITERATURE REVIEW

2.1 General Introduction to Plant Breeding	8
2.2 Classification of Banana Germplasm	9
2.3 Banana Breeding Systems and Genetics	12
2.4 Propagation of banana germplasm	13
2.5 Strategies for Banana Improvement	15
2.6 Approaches to Banana Improvement 2.6.1 Conventional breeding of cultivated bananas 2.6.2.1 Somaclonal Breeding 2.6.2.1 Somaclonal variations 2.6.2.2 Mutation Breeding 2.6.2.2.1 Sources of Mutation (A) Natural Mutations (Spontaneous) (B) Induced Mutations and Mutagenesis (C) Mutation Breeding of Vegetatively propagated Crops Including Masa spp. 2.6.3 Success in Mutation Breeding 2.6.4 Constraints in Mutation Breeding 2.6.5 Ploidy Effects in Bananas Phenotypic Appearance	18 18 20 21 24 27 27 28 30 33 34 35
2.7 Flow Cytometry for Analysis of Musa genome	37

2.8	Molecular Markers in Musa Breeding Programs	39
	2.8.1 DNA Markers	40
	2.8.2 Polymerase Chain Reaction: PCR-Based Fingerprinting of Bananas	41
2.9	The role and potential of Gibberellic acid	43
	2.9.1 Detection of Dwarf off-types in Micropropagated Bananas	44
	2.9.1.1 The use of Gibberellic acid for detection of dwarf off-types	45
	2.9.1.2 The use of Molecular Marker for detection of dwarf off-types	47
2.10	0 Constraints in Banana Production	48
	2.10.1 Fusarium Wilt, distribution and spread	49
	2.10.1.1 Pathogen Variability	50
	2.10.2 Breeding for Disease Resistance/Tolerance	51

CHAPTER THREE: MATERIALS AND METHODS

3.1 Culture Initiation	56
3.2 Mutation Induction	58
3.2.1 Evaluation of gamma irradiated plants	59
3.2.2 Morphological variation evaluated in the Greenhouse and the field	60
3.3 Somaclonal Variation in Pisang Berangan (AAA)	62
3.3.1 Characterisation of variants and evaluation for Important agronomic traits	63
3.4 Analysis of Nuclear DNA Content	64
3.4.1 Plant Materials and Sample Preparation	65
3.4.2 Instrument setting and alignment	65
3.4.3 Sample analysis	66
3.5 Molecular Characterization of Mutants	66
3.5.1 Plant Material	66
3.5.2 DNA extraction	68
3.5.3 Quantification of DNA	69
3.5.4 RAPD Primers	70
3.5.5 Random Amplified DNA marker for the analysis of mutants	71
3.6 Detection of Dwarfism by using Gibberellic Acid	73
3.6.1 The growth Cabinet experiment	73
(i) During <i>in vitro</i> culture	73
(ii) At deflasking stage	74
3.6.2 The nursery experiment	75
3.6.3 The green house experiment	75
3.7 Screening for Tolerance to Fusarium wilt Disease by using 'double- tray' system and field evaluation	76

3.7.1 Plant materials	76
3.7.2 Isolates and inoculum preparation	77
3.7.3 Inoculation Procedure	78
3.7.4 Assessment of Disease symptoms	79
3.7.5 Field Screening for Tolerance to FOC Disease in the Fusarium 'Hot-spot'	81
3.8 Statistical Analysis	82

CHAPTER FOUR: RESULTS

4.1 Culture Initiation and Production of in vitro Explants	83
4.1.1 Mutation Induction, Post-irradiation recovery and Radiosensitivity	88
4.1.2 Variability Induced by Gamma Irradiation	97
4.1.2.1 Variation at culture stage	97
4.1.2.2 Variation at Nursery stage	100
4.1.2.3 Variation at Field stage (UP and UM fields)	108
4.1.3 Frequency of mutagenic changes	117
4.1.4 Mutagenic changes in quantitative traits	120
4.1.4.1 Frequency distribution of some characters in gamma Irradiated plants	122
(1) Plant height at flowering stage	122
(2) Girth circumference	125
(3) Days to flowering	126
4.1.4.2 Mutagenic Changes in Bunch characters	129
4.2 Somaclonal Variation in Pisang Berangan	136
4.2.1 Quantitative Aspects of Somaclonal Variation	137
4.2.1.1 Variation in Stature	139
4.2.1.2 Variation of Vegetative characters	142
4.2.1.3 Inflorescence and Fruit Variations	146
4.3 DNA content of variants induced by Gamma Irradiation	150
4.3.1 Flow cytometric analysis for ploidy and DNA content	151
4.3.2 DNA Content of different types of variants induced By gamma	
irradiation (mutants)	154
4.4 Molecular Analysis of variants induced by gamma-irradiation	161
4.4.1 Optimization and reproducibility of DNAamplification	162
4.4.2 Preliminary screening for polymorphism	164
4.4.3 Analysis of polymorphism	169
4.4.4 Association of RAPD markers with Dwarf variants	181
4.4.5 Association of radiation doses and variability	182
4.4.6 Data analysis	183
4.5 Detection of Dwarf off-types by using Gibberellic Acid (GA3)	185
4.5.1 Verification experiment	185
4.5.2 Growth Cabinet experiment	193
4.5.2.1 Response to GA3 at In vitro culture and Deflasking stages	193

xii

(1) Leaf sheath	194
(2) Leaf Petiole	201
(3) Pseudostem length	203
4.5.3 Nursery experiment	207
4.5.3.1 Response to GA ₃ at In vitro culture and deflasking stages	207
4.5.3.2 Deflasking stage	213
4.5.4 Greenhouse Experiment at deflasking stage	222
4.5.5 Useful results obtained from using GA3 in Detection of dwarfism	226
4.6 Screening for tolerance to Fusarium wilt disease of gamma-irradiated Plants 4.6.1 Screening for Fusarium wilt in the nursery plants using the double-tray	227
technique	227
4.6.1.1 External symptoms used for evaluation	228
4.6.1.2 Disease Tolerance Evaluation	233
4.6.2 Screening for tolerance to FOC in the field	241

CHAPTER FIVE: DISCUSSION

5.1 General Introduction	245
5.2 In vitro Propagation of Pisang Berangan	245
5.3 Exploitation of <i>In vitro</i> mutation for banana improvement by using gamma-ray. 5.3.1 Post-irradiation recovery and radio-sensitivity 5.3.2 Mutant evaluation	247 251 254
5.4 Detection of Dwarfism in Mutant plants	262
5.5 Screening for Disease tolerance to Fusarium wilt disease In Pisang Berangan	267
 5.6 Other Characteristics of the mutants 5.6.1 Flow Cytometry analysis 5.6.2 Random Amplified Polymorphic DNA (RAPD) by Polymerase Chain Reaction (PCR) of mutated plants 	270 271 274
5.7 Somaclonal Variation studies	277
CHAPTER SIX: SUMMARY	279

REFERENCES

٠

284

APPENDIX

(A) Preparation of Modified MS Medium	307
(B) Preparation of Potato Dextrose Agar	308
(C) Dendrogram generated from RAPD fingerprinting profile in mutated Pisang Berangan (Fig. 4.6-F).	309
(D) Proximity Matrix for dissimilarity distance values (Table 1).	310
(E) Statistical Analysis	311
(F) Optimization experiment of DNA concentration	315

LIST OF TABLES

Table	No.		Page
1.1	:	Fruit Hectareage in Peninsular Malaysia in 1997	2
2.1	:	Methods using Mutations in Plant Breeding	26
3.1	:	Composition of culture Medium used for banana culture	57
3.2	:	Number of meristem tips treated by Gamma-rays	58
3.3	:	The number of generated banana plants (irradiated and control) for field evaluation	60
3.4	:	Types and sample size of mutants (variants) used for RAPD analysis	67
3.5	:	Random oligonucleotide Sequences (Primers) for Preliminary evaluation	70
3.6	:	PCR reaction Mixture (reagent) used in RAPD method	72
3.7	:	The number of plants used for different GA_3 treatment in Growth Cabinet experiment	73
3.8	:	The number of plants used for different GA_3 treatments in nursery environment	75
3.9	:	The number of plantlets produced for the screening of FOC resistance by 'Double-tray' experiment	76
3.10	:	The age and number of plantlets inoculated with conidial suspension of FOC	78
3.11	:	Types and disease symptoms examined at double tray experiment	79
3.12	:	Scale of Leaf Symptom Index (LSI) and Rhizome Discolouration Index (RDI).	80
4.1	:	The Multiplication rates, Contamination $\%$ and number of shoot/bud per explant of different batches for 6 subcultures	85
4.2	:	Effects of gamma treatments on shoot multiplication	91
4.3	:	Variability induced by gamma irradiation observed at <i>in vitro</i> , ursery and field stages for 40 and 60 Gy, for all batches and Control.	98

4.4	:	Variability induced by gamma irradiation observed on field grown plants for 20 and 30 Gy	99
4.5	:	Types and frequency of variants of gamma-irradiated Pisang Berangan at UM and UP fields	119
4.6	:	Performance of Gamma irradiated plants (Pisang Berangan)	123
4.7	:	Bunch characteristics of gamma-irradiated plants	130
4.8	:	Materials used at different batches and planting dates	136
4.9	:	Frequency of Somaclonal variants at different growth stages of Pisang Berangan cv. Intan (AAA), among tissue culture derived plants	138
4.10	:	The early fruiting tissue cultured-plants (TC) as compared to those derived by suckers	138
4.11	:	Differences in characteristics of Dwarf variants and normal plants of Pisang Berangan (AAA) at field stage	140
4.12	:	Somaclonal variation of bunch characters amongst tissue cultured and conventionally propagated plants (from suckers)	147
4.13	:	Samples of different Variants induced by gamma-irradiation selected for ploidy analysis and DNA content	151
4.14-7	A :	Flow cytometric estimation of nuclear DNA content in short stature variant of gamma-irradiated Berangan (AAA) with comparison to non-irradiated (control)	156
4.1.4-1	B :	Flow cytometric estimation of nuclear DNA content in bunch abnormalities variants of gamma-irradiated Berangan (AAA) with comparison to non-irradiated (control)	157
4.1.4-0	C :	Flow cytometric estimation of nuclear DNA content in late to flowering variant of gamma-irradiated Berangan (AAA) with comparison to non-irradiated (control)	158
4.15	:	Summary and statistical analysis of results obtained by Flow cytometric estimation of nuclear DNA content in <i>Musa</i> (Pisang Berangan, AAA) for different types of selected variants	159
4.16	:	Summary and statistical analysis of results obtained by Flow Cytometric estimation of nuclear DNA content in <i>Musa</i> (Pisang Berangan, AAA) at different gamma doses	160

xvi

4.17 :	Types and number of mutagenic variants selected for RAPD Analysis	161
4.18 :	The nucleotide sequences (5' to 3') of the primers from OPERON Tech., USA, used for initial screening (RAPD) by PCR	162
4.19 :	Summary of results of optimization experiment	163
4.20-A):	The polymorphisms of primers used for the different gamma- irradiated variants and non-irradiated plants (N)	165
4.20-(B):	The polymorphisms of primers used for the different gamma-irradiated variants and non-irradiated plants (N)	166
4.21 :	The number of bands produced by each Four primers and percentage of polymorphism	167
4.22 :	50 Random samples representing one group of mutated (20, 30,40 and 60 Gy) and control plants collected from the field, used in RAPD technique	168
4.23 :	DNA patterns of mutated Berangan biotypes obtained by using primer	170
4.24 :	The number of variants at different gamma-doses that showed polymorphism with the four primers analyzed	182
4.25 :	The leaf sheath length (cm) of Pisang Berangan and Pisang Serendah after application of GA3 (0, 29 and 59 μ mol/L at <i>In vitro</i> and deflasking stages (289 μ mol/L) and their control	186
4.26 :	The length of leaf petiole (cm) of Pisang Berangan and Pisang Serendah after application of GA3 (0, 29 and 59 μ mol/L at <i>In vitro</i> and deflasking stages (289 μ mol/L) and their control	187
4.27 :	Pseudostem length (cm) of Pisang Berangan and Pisang Serendah after application of GA3 (0, 29 and 59 µmol/L at <i>In vitro</i> and deflasking stages (289 µmol/L) and their control	188
4.28-A :	Analysis of variance for leaf sheath at in vitro stage	190
4.28-B :	Analysis of variance for leaf sheath at deflasking stage	190
4.29-A :	Analysis of variance for leaf petiole at in vitro stage	191
4.29 - B :	Analysis of variance for leaf petiole at deflasking stage	191
4.30-A :	Analysis of variance for pseudostem length at in vitro stage	191
4.30-В :	Analysis of variance for pseudostem length at deflasking stage	191

4.31	:	The mean values of leaf sheath (cm) after Gibberellic Acid treatment on gamma-irradiated and dwarf Serendah at <i>in vitro</i> and deflasking stages	196
4.32	:	The mean values of leaf petiole (cm) after Gibberellic Acid treatment on gamma-irradiated and dwarf Serendah at <i>in vitro</i> and deflasking stages	202
4.33	:	The mean values of pseudostem length (cm) after Gibberellic Acid treatment on gamma-irradiated and dwarf Serendah at <i>in vitro</i> and deflasking stages	204
4.34	:	The mean values of the effect of Gibberellic acid on leaf sheath (cm) of gamma-irradiated and dwarf Serendah at <i>in vitro</i> and deflasking stages	209
4.35	:	The mean values of leaf petiole (cm) after treatment of Gibberellic acid on gamma-irradiated non-irradiated and dwarf Serendah at <i>in vitro</i> and deflasking stages	212
4.36	:	The mean values of pseudostem length (cm) after treatment of Gibberellic acid on gamma-irradiated non-irradiated and dwarf Serendah at <i>in vitro</i> and deflasking stages	212
4.37	:	The mean values of leaf sheath and plant height (leaf I) for mutated and non-irradiated plants treated with GA ₃ (289μ mol/L)	222
4.38	:	The mean values of leaf sheath and plant height (leaf 2) for mutated and non-irradiated plants treated with GA ₃ (289µ mol/L)	223
4.39	:	The number of gamma-irradiated and control plants used in "Double-tray" technique for screening <i>Fusarium</i> wilt tolerance	227
4.40	:	Results of leaf and Rhizome Scales for Fusarium wilt screening	234
4.41	:	Effect of inoculation of FOC on banana plants mutated and Control (Berangan and Novaria)	236
4.42	:	Survival of suckers obtained from gamma-irradiated plants in the <i>Fusarium</i> 'hot-spot'.	242

xix

-

LIST OF FIGURES

Figure No	•		rage
4.1	:	The mean of multiplication rates of four batches of Pisang Berangan at different for 6 subcultures	86
4.2		Number of buds/shoots produced by different subcultures for different Gamma-doses in 4 batches of mutation induction	93
4.3-A	:	Frequency Distribution of plant height at flowering in Pisang Berangan (AAA) gamma-irradiated at 0, 20, 30, 40 and 60 Gy's.	124
4.3-B	:	Frequency Distribution of Girth circumference in Pisang Berangan (AAA) gamma-irradiated at 0, 20, 30, 40 and 60 Gy	127
4.3-C	:	Frequency Distribution of Days to flowering in Pisang Berangan gamma-irradiated (AAA) at 0, 20, 30, 40 and 60 Gy	128
4.4-A	:	Frequency Distribution of Bunch weight in Pisang Berangan (AAA) gamma-irradiated at 0, 20, 30, 40 and 60 Gy	131
4.4-B	:	Frequency Distribution of Comb weight in Pisang Berangan (AAA) gamma-irradiated at 0, 20, 30, 40 and 60 Gy	133
4.4-C	:	Frequency Distribution of number of Comb/bunch in Pisang Berangan (AAA) gamma-irradiated at 0, 20, 30, 40 and 60 Gy	134
4.5	:	Histogram of relative nuclear DNA content obtained after analysis of nuclei isolated from young leaf tissues of Soya bean (<i>Glycine max</i> ev. palmetto) and Pisang Berangan (mutants)	153
4.6-(A,B, C and D)	:	RAPD profiles of mutated and normal (control) plants generated by Primers: (A) OPA-03 (B) OPA-05 (C) OPA-07 and (D) OPA-09	172
4.6-A ₁	:	RAPD profile generated by Primer OPA-03	173
4.6-A ₂	:	RAPD profile generated by Primer OPA-03	174
4.6-B ₁	:	RAPD profile generated by Primer OPA-05	175
4.6-B ₂	:	RAPD profile generated by Primer OPA-05	176
4.6-C1	:	RAPD profile generated by Primer OPA-07	177
4.6-C ₂	:	RAPD profile generated by Primer OPA-07	178
4.6-D ₁	:	RAPD profile generated by Primer OPA-09	179
4.6-D ₂	:	RAPD profile generated by Primer OPA-09	180

٠

4.6-E	:	Dendrogram- RAPD of 50 samples of mutated and control plants based on 4 random primers and Ward's method (1963)	184
4.7	:	Difference between gamma irradiated Berangan B(M), non-irradiated Berangan B(N) and Serendah (S) in leaf sheath and Pseudostem height at <i>in vitro</i> stage	197
4.7-1	:	Response of gamma irradiated Berangan and dwarf Serendah at In vitro stage, treated at 0, 29 and 59 μ mol/L GA ₃	198
4.7-2	:	Leaf sheath length (cm) control (non-irradiated), treated (gamma- irradiated) of Pisang Berangan and dwarf Serendah	200
4.7-3 4.7-4	:	of Pisang Berangan and dwarf Serendah	200
4.7-4		with 289 μ mol/L GA ₃ at leaf I stage, for leaf sheath, leaf petiole and pseudostem height	205
4.7-5	:	Response of mutated Berangan B(M) and dwarf Serendah (S) treated with 289 $\mu mol/L$ of GA3 at leaf II stage for leaf sheath, leaf petiole and pseudostem height	206
4.7-6	:	Leaf sheath, leaf petiole and pseudostem height at leaf I stage of gamma irradiated Berangan B(M), non-irradiated B(N) and Serendah (S) treated with 289 $\mu mol/L$ of GA ₃ (leaf I)	206
4.7-7	:	Leaf sheath, leaf petiole and pseudostem height at leaf II stage of gamma irradiated Berangan B(M), non-irradiated B(N) and Serendah (S) treated with 289 µmol/L of GA3 (leaf II)	208
4.7-8	:	Leaf sheath length and pseudostem height of gamma irradiated Berangan B(M), non-irradiated B(N) as compared to control Plants in leaf I stage	224
4.7-9	:	Leaf sheath length and pseudostem height of gamma irradiated Berangan B(M), non-irradiated B(N) as compared to control Plants in leaf II stage	225
5.1	:	The Development of Radiation Damage in Plant Cells	249
5.2	:	Earliest time for the identification of Somaclonal variation	278

LIST OF PLATES

Plate No.			Page
4.1	:	In vitro multiplication of Berangan on MS medium supplemented with 4.5mg/l of BAP	87
4.2	:	Meristem pieces of Pisang Berangan used for Gamma-irradiation.	87
4.3	:	 The meristem pieces of control, showing vigorous growth Gamma-irradiated meristem pieces at 40 Gy, showing partial survival 	
		(3) Gamma-irradiated meristem pieces at 60 Gy, showing non- survival and blackening	96
4.3.1	:	Compact leaf rosettes	101
4.3.2	:	Chlorotic and necrotic variants	101
4.3.3	:	Small and narrow leaves with uneven lamina	102
4.3.4	:	Leaf mottling (pale-green) with dark green and yellow strips running	103
4.3.5 (C and D)	:	along the veins Leaf discolouration, waxy and light yellowing stripes	103
4.3.6	:	Red patches (anthocyanin) on the surface of lamina	104
4.3.7	:	Leaf crinkling and rough surface	104
4.3.8	:	Red and wavy leaf margin	105
4.3.9	:	Yellow coloration of lamina	105
4.3.10	:	Flat pseudostem with yellow colour and brown spots	106
4.3.11	:	Narrow pseudostem with light brown streaking	106
4.3.12	:	Extensive browning of pseudostem sheath	107
4.3.13	:	Stunted growth (B) in comparison to normal plant (A)	107
4.3.14	:	Variegated leaf with red sectors	109
4.3.15	:	Uneven lamina with twisting midrib in the upper part of the leaf	109
4.3.16	:	Yellow midrib and rough leaf surface	110
4.3.17	:	Deformed lamina with yellow coloration	110
4.3.18	:	Bending of young leaf, crinkling of lamina, Compact and erect leaves	111
4.3.19	:	Petiole bases spreading or loose with erect margins	111

.

4.3.20	:	Red petiole margin and yellowish petiole with rough leaf surface	112
4.3.21		Twisting of midrib and rough surface	112
4.3.21		Red leaf margin	112
	:	0	113
4.3.23	:	Leaf deformation, rough-surface and red margins	115
4.3.24	:	Light pseudostem colour without powdery surface but abnormal suckers	114
4.3.25	:	Pseudostem with high proliferation of normal suckers	114
4.3.26	:	Waxy yellow pseudostem, absence of powder	115
4.3.27	:	Long peduncle with persistent male flowers	115
4.3.28	:	Abnormal bunch with lax and few number of combs.	116
4.3.29	:	Dwarf variant with stunted growth	116
4.3.30	:	(A) Normal finger distribution,(B) Loose finger orientation and	135
		(C) Fused fingers	155
4.4.1	:	Short variant with compact petioles	141
4.4.2	:	Stunted dwarf (right) compared to tall variant (left) (approximately 30% taller than the normal plants)	141
4.4.3	:	Mosaic variant, the upper leaf surface showing a pattern of bright spot (mottling) and is covered with depression and protuberances	143
4.4.4	:	Thick, rubbery, narrow and irregular lamina at hardening stage	143
4.4.5	:	Deformed lamina appearing as lobed blade at petiole edge or leaf midrib	144
4.4.6	:	Unfolded cigar-leaf	144
4.4.7	:	Variant showing decrease in black pigmentation and appearance of a reddish color on pseudostem, leaf sheath and petiole	145
4.4.8	:	Variation in bract color. (a) Purple red (b) yellowish red and (c) Deep purple red	148
4.4.9	:	Bunch variant showing persistent aborted inflorescence with long peduncle	148
4.4.10	:	Bunch variant with only male flowers or persistent flowers	149

4.4.11	:	Small, lax and split fingers	149
4.5.1	:	The growth cabinet with all treated plants and their control	195
4.5.2	:	Variation in growth responses to GA3 between <i>In vitro</i> plantlets and control (non-irradiated) $B(N)$ 1 and 2, gamma-irradiated $B(M)$ 3, and dwarf Serendah (S) 4-control	195
4.5.3	:	In vitro culture of gamma-irradiated Berangan showed different response to GA3 (59, 29 $\mu mol/L$) 30 days after application	210
4.5.4	:	The effect of GA3 (29 $\mu mol/L)$ on different plant types after 30 days after application	211
4.5.5	:	The effect of GA3 (59 $\mu mol/L)$ on different plant types 30 days from application	211
4.5.6	:	After 2 weeks (leaf I) stage, gamma-irradiated plants (40 Gy) treated with GA ₃ (289 μ mol/L) and (GA ₃ = 0)	218
4.5.7	:	Three categories in gamma irradiated plants treated with GA $_3$ (289 μ mol/L) after 2 weeks (leaf I)	219
4.5.8	:	After two weeks (leaf I) non-irradiated Berangan treated with GA_3 (289 μ mol/L), showed only two categories	219
4.5.9	:	Dwarf plants (Serendah) treated with 289 $\mu mol/L~GA_3$, showing length less than intermediate and longer than short	220
4.5.10	:	Three categories (Tall, intermediate and short) of gamma irradiated plants treated with 289 $\mu mol/L~GA_3$ after 4 weeks (leaf II)	221
4.5.11	:	Gamma irradiated plants (40 Gy) treated with 289 $\mu mol/L$ GA3 and GA3 = 0, after 4 weeks (leaf II)	221
4.6.1	:	Double-tray set up	230
4.6.2	:	External leaf symptoms characterized by the yellowing of the older leaf margin progressing towards the midrib of lamina	230
4.6.3	:	Gamma irradiated plants (40 Gy) at the third week after FOC race 4 inoculation	231
4.6.4	:	Gamma irradiated plants showing collapse of the petiole and splitting of pseudostem with wilting of leaves at 3 to 4 weeks after inoculation	231
4.6.5	:	Control Berangan plants (non-inoculated) showed vigorous growth with no Fusarium wilt symptoms	232

4.6.	.6	:	Internal Symptoms of discolouration found to be most pronounced in the rhizome area of 40 Gy treated plantlets	238
4.6.	7.(a-c)	:	Total discolouration of vascular tissues (level 6) using INIBAP Scale	238
4.6.	.8	:	Mutated plantlets (60 Gy) showed internal symptoms resembling level-6	239
4.6.	.9	:	Non-irradiated Berangan showing dark discolouration in the vascular corm (level 6)	239
4.6.	.10	:	Mutated Berangan at 40 Gy showing different levels of internal symptoms	240
4.6.	.11	:	An external symptom on the leaf (yellow colour) starting from the oldest leaf to the younger ones	243
4.6	.12	:	Splitting of pseudostem	243
4.6	.13	:	Collapsed field planted Berangan plants due to damage to vascular system	244

ABBREVIATIONS AND ACRONYMS

Dan		D
B(M)	-	Berangan mutant
B(N)	-	Berangan normal
bp	-	base pair
BW	-	bunch weight
°C	-	degrees Celsius
CaCl ₂	-	Calcium chloride
C/b	-	Comb per bunch
cm	-	centimeter
CW	-	Comb weight
dATP	-	deoxyadenosine triphosphate
dCTP	-	deoxycytidine triphosphate
DES	-	diethyl sulphate
dGTP	-	deoxyguanosine triphosphate
dNTPs	-	deoxyribonucleoside triphosphates
DNA	-	deoxyribonucleic acid
DMSO	-	dimethyl sulfoxide
DMRT	-	Duncan Multiple Range Test
dTTP	-	deoxythymidine triphosphate
EDTA	-	ethylene diaminetetra acetate
EMS	-	Ethylmethane sulfonate
g	-	gram
G	-	Girth
GA ₃	-	Gibberellic acid
GML	-	Ground magnesium limestone
Gy	-	Gray-unit of radiaotion rate
HCI	-	hydrochloric acid
IAA	-	indole-3-acetic acid
INIBAP	-	International Network for the Improvement of Banana and Plantain
kb	-	kilobases
kbp	-	kilobases pair
KČI	-	potassium chloride
L	-	litre
M	-	Molar
Mbp	-	Mega base pair
mg [°]	-	milligram
min	-	Minute
ml	-	Mililitre
mM	-	Millimolar
mmol	-	millimoles
MNU	-	N- methyl- N- nitrosourea
MS	-	Murashige and Skoog media
M.W	-	Molecular weight
NaCl	-	Sodium chloride
NaN ₃	-	Sodium azide

NaOH	-	Sodium hydroxide
Na_2SO_4	-	disodium phosphate
ng	-	nanogram
PCR	-	Polymerase Chain Reaction
PDA	-	Potato Dextrose Agar
pg	-	picogram
PPFD	-	Photosynthetic photon flux density
RAPD	-	Random Amplified Polymorphic DNA
RFLP	-	Restriction Fragment Length Polymorphism
Rnase	-	Ribonuclease
Sec	-	second
TBE	-	Tris- borate- EDTA
TE	-	Tris – EDTA
μg	-	microgram
μl	-	microliter
μ mol / L	-	micromol per litre
UV	-	ultra violet
VCG	-	Vegetative Compatibility Group
v/v	_	volume per volume
w/v	_	weight per volume
		weight per rotanie