UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Wun Thiam Yew (L/C/Passport No: 640504-08-6117)

Registration/Matric No: PHA 060614

Name of Degree: Doctor of Philosophy

Field of Study: Mathematics Education

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this work;
(2) This work is original;
(3) Any use of any work in which exists was done by way of fair dealing and for permitted purposes and any extract form, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
(4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
(5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya ("UM"), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in an form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
(6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate Signature: [Signature]
Date: 2/6/2010

Subscribed and solemnly declared before,

Witness's Signature: [Signature]
Date: 2/6/10

Prof. Dr. Shariffah Norul Akmar Syed Zawawi
Ketua Jabatan

Name: Pendidikan Matematik & Sains
Designation: Fakulti Pendidikan
Universiti Malaya
SYNOPSIS

The purpose of this study was to investigate preservice secondary school mathematics teachers (PSSMTs)' subject matter knowledge (SMK) of perimeter and area. Specifically, this study aimed to investigate PSSMTs’ five basic types of knowledge of perimeter and area, namely conceptual knowledge (CK), procedural knowledge (PK), linguistic knowledge (LK), strategic knowledge (SK), and ethical knowledge (EK). This study also aimed to investigate PSSMTs' levels (low, medium, high) of SMK of perimeter and area.

Data of this study was collected using clinical interview technique. Interview sessions were recorded using digital video camera and tape recorder. Subjects of this study consisted of eight PSSMTs enrolled in a Mathematics Teaching Methods course at a public university in Peninsula Malaysia. They were selected based on their majors (mathematics, biology, chemistry, physics) and minors (mathematics, biology, chemistry, physics).

With regard to CK, findings of this study showed that all PSSMTs understand the inverse proportion between the number of units and the unit of measure. Six out of eight PSSMTs knew the relationship between area units and linear units of measurement that area units are derived from linear units based on squaring. Nevertheless, most of the PSSMTs did not know that there is no direct relationship between perimeter and area. None of the PSSMTs were able to develop the formula for the area of a rectangle. It was apparent that all of them lack conceptual knowledge underpinning the formula for the area of a rectangle.

With respect to PK, findings of this study depicted that at least half of the PSSMTs had adequate procedural knowledge of converting standard units of area measurement. Most of the PSSMTs had adequate procedural knowledge of calculating perimeter and area of composite figures. Five, two, and three PSSMTs were able to develop the formula for the area of a parallelogram, triangle, and trapezium, respectively.
Concerning the LK, findings of this study demonstrated that most of the PSSMTs used appropriate mathematical symbols to write the formula for the area of a rectangle, parallelogram, triangle, and trapezium. Most of the PSSMTs used appropriate mathematical terms to justify their selection of shapes that have a perimeter and an area. All the PSSMTs understand the general measurement convention that perimeter is measured in linear units while area is measured in square units. Nevertheless, they had limited knowledge about the conventions pertaining to writing and reading of Standard International (SI) area measurement units.

For the SK, findings of this study revealed that three types of strategies were employed by the PSSMTs to compare perimeters as well as areas, namely formal, semi-formal, and informal methods. Two types of strategies used to verify the answers for perimeters and areas were emerged, namely recalculating strategy and alternative method. Three types of strategies used to solve the fencing problem were identified, namely looking for a pattern strategy, trial-and-error strategy, and differentiation method. PSSMTs used the cut and paste strategy, partition strategy, and algebraic method to develop the formula for the area of a parallelogram, triangle, and trapezium, respectively.

With respect to EK, findings of this study exhibited that all PSSMTs had taken the effort to justify the selection of shapes that have a perimeter and an area. Several PSSMTs had attempted to examine the possible pattern of the relationship between perimeter and area, to formulate and test generalization pertaining to the relationship between perimeter and area. However, most of the PSSMTs did not check the correctness of the answers for the perimeters and areas. With regard to the overall level of SMK of perimeter and area, only one of the PSSMTs secured a high level of knowledge, six with medium level and one at low level. The findings of this study lead to the conclusion that many PSSMTs do in fact lack SMK of perimeter and area they are expected to teach.
PENGETAHUAN ISI KANDUNGAN GURU PRAPERKHIDMATAN MATEMATIK SEKOLAH MENENGAH BAGI PERIMETER DAN LUAS

SINOPSIS

Kajian ini bertujuan untuk menyelidiki pengetahuan isi kandungan (PIK) guru praperkhidmatan matematik sekolah menengah (GPMSM) bagi perimeter dan luas. Secara khusus, kajian ini bertujuan untuk menyelidiki lima jenis pengetahuan asas bagi perimeter dan luas yang dimiliki oleh GPMSM, iaitu pengetahuan konsep (PK), pengetahuan prosedur (PP), pengetahuan linguistik (PL), pengetahuan strategik (PS), dan pengetahuan etika (PE). Kajian ini juga bertujuan untuk menyelidiki peringkat (rendah, sederhana, tinggi) PIK yang dimiliki oleh GPMSM.

Berhubung dengan PK, dapatan kajian ini menunjukkan semua GPMSM memahami perkadaran songsang antara bilangan unit dan unit pengukuran. Enam daripada lapan GPMSM mengetahui hubungan antara unit luas dan unit linear di mana unit luas diterbitkan daripada unit linear berasaskan kuasa dua. Walau bagaimanapun, kebanyakan GPMSM tidak mengetahui bahawa tiada hubungan langsung antara perimeter dan luas. Tiada GPMSM yang dapat menerbitkan rumus bagi luas segiempat tepat. Ini menunjukkan kesemua mereka kekurangan PK di sebalik rumus bagi luas segiempat tepat.

Berkenaan dengan PP, hasil kajian ini menunjukkan sekurang-kurangnya separuh daripada GPMSM mempunyai pengetahuan yang mencukupi untuk menukar unit piawai...
ukuran luas. Kebanyakan GPMSM mempunyai pengetahuan yang mencukupi untuk menghitung perimeter dan luas rajah gubahan. Lima, dua, dan tiga orang GPMSM masing-masing dapat menerbitkan rumus bagi luas segiempat selari, segitiga, dan trapezium.

Berkenaan dengan PL, dapatan kajian ini menunjukkan kebanyakan GPMSM menggunakan symbol matematik yang sesuai untuk menulis rumus bagi luas segiempat tepat, segiempat selari, segitiga, dan trapezium. Kebanyakan GPMSM menggunakan istilah matematik yang sesuai untuk memberikan justifikasi ke atas pemilihan bentuk-bentuk yang mempunyai perimeter dan luas. Kesemua GPMSM memahami kelaziman am pengukuran di mana perimeter dan luas masing-masing diukur dalam unit linear dan unit persegi. Walau bagaimanapun, mereka mempunyai pengtahuan yang terhad tentang kelaziman penulisan dan pembacaan unit luas Sistem Antarabangsa.

Berkenaan dengan PS, hasil kajian ini menunjukkan tiga jenis strategi telah digunakan oleh GPMSM untuk membandingkan perimeter dan juga luas, iaitu kaedah formal, semi-formal, dan informal. Dua jenis strategi yang digunakan untuk menyemak jawapan bagi perimeter dan luas telah muncul, iaitu strategi penghitungan semula dan kaedah alternatif. Tiga jenis strategi yang digunakan untuk menyelesaikan masalah berpanggar telah dikenal pasti, iaitu strategi mencari pola, strategi cuba-jaya, dan kaedah pembezaan. GPMSM menggunakan strategi “potong dan tampal”, strategi pembahagian, dan kaedah algebra masing-masing untuk menerbitkan rumus bagi luas segiempat selari, segitiga, dan trapezium.

Berkenaan dengan PE, dapatan kajian ini menunjukkan semua GPMSM telah berusaha untuk member justifikasi ke atas pemilihan bentuk-bentuk yang mempunyai perimeter dan luas. Beberapa orang GPMSM telah mencuba untuk meneliti pola hubungan yang mungkin antara perimeter dan luas, membentuk dan menguji pengitlakan yang berkenaan dengan hubungan antara perimeter dan luas. Namun begitu, kebanyakan GPMSM tidak menyemak jawapan bagi
perimeter dan luas. Pada keseluruhannya, hanya seorang GPMSM mencapai peringkat tinggi untuk PIK bagi perimeter dan luas, enam orang dengan peringkat sederhana dan seorang pada peringkat rendah. Dapatan kajian ini menunjukkan ramai GPMSM kekurangan PIK bagi perimeter dan luas yang akan diajar.
ACKNOWLEDGEMENTS

First and foremost, I wish to express my heartiest appreciation to my supervisors, Associate Professor Dr. Sharifah Norul Akmar Syed Zamri and Dr. Lee Siew Eng, for their invaluable guidance, comments, suggestions, encouragement, and support throughout the process of writing the thesis. Without their guidance, comments, suggestions, encouragement, and support, I would not have been able to complete this study. I also wish to take this opportunity to express my appreciation to my sponsor, University of Science Malaysia, for granted me study leave under the Academic Staff Higher Education Scheme.

I am thankful to Professor Dr. Saedah Siraj, Dean, Faculty of Education, University of Malaya, for her encouragement and support. I am also thankful to Professor Dr. Nik Azis Nik Pa, Department of Mathematics and Science Education, Faculty of Education, University of Malaya, for his constructive comments and suggestions.

I would like to thank Professor Dr. Abdul Rashid Mohamed, Dean, School of Educational Studies, University of Science Malaysia, for his encouragement and support. I would also like to thank my colleagues from the School of Educational Studies, University of Science Malaysia, and my friends, for their encouragement and moral support.

I am grateful to the two university lecturers and a secondary school mathematics teacher for generously gave their valuable of time to validate the tasks used in the clinical interview. I would like to express my gratitude to the university mathematics education lecturer for his scholarly effort to verify the coding of data. I am also grateful to the preservice secondary school mathematics teachers at a public university for their willingness to participate in this study.

I would like to thank my parents and parents-in-law for their love, care, encouragement and support. I would also like to thank my brothers, sister, and relatives, for their moral support. Last but not least, I extend my deepest gratitude to my wife, Lim Hooi Lian, and to our child,
Wun Lim Zhe, for their love, care, encouragement, support, patience, and sacrifices in many ways that have given me the peace of mind to complete this study.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter/Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
</tr>
<tr>
<td>ORIGINAL LITERARY WORK DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>SYNOPSIS</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xxxvi</td>
</tr>
<tr>
<td>CHAPTER ONE INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Background of the Study</td>
<td>1</td>
</tr>
<tr>
<td>Teacher Education in Malaysia</td>
<td>3</td>
</tr>
<tr>
<td>Measurement in the Malaysian Mathematics Curriculum</td>
<td>4</td>
</tr>
<tr>
<td>Perimeter and Area in the Malaysian Mathematics Curriculum</td>
<td>5</td>
</tr>
<tr>
<td>Statement of the Problem</td>
<td>7</td>
</tr>
<tr>
<td>Research Questions</td>
<td>10</td>
</tr>
<tr>
<td>Definition of Terms</td>
<td>11</td>
</tr>
<tr>
<td>Significance of the Study</td>
<td>13</td>
</tr>
<tr>
<td>Limitations of the Study</td>
<td>14</td>
</tr>
<tr>
<td>CHAPTER TWO REVIEW OF LITERATURE</td>
<td>17</td>
</tr>
<tr>
<td>Introduction</td>
<td>17</td>
</tr>
<tr>
<td>Research on Teacher Education in Malaysia</td>
<td>17</td>
</tr>
<tr>
<td>Teachers' Knowledge</td>
<td>20</td>
</tr>
<tr>
<td>Subject Matter Knowledge</td>
<td>22</td>
</tr>
<tr>
<td>Research Related to Subject Matter Knowledge</td>
<td>27</td>
</tr>
<tr>
<td>Conceptual knowledge</td>
<td>28</td>
</tr>
<tr>
<td>Notion of Perimeter and Area</td>
<td>28</td>
</tr>
<tr>
<td>Notion of the Units of Area</td>
<td>31</td>
</tr>
<tr>
<td>Inverse Relationship between Number of Units and Unit of Measure</td>
<td>32</td>
</tr>
<tr>
<td>Relationship between the Standard Units of Area Measurement</td>
<td>33</td>
</tr>
<tr>
<td>Relationship between Area Units and Linear Units of Measurement</td>
<td>34</td>
</tr>
<tr>
<td>Relationship between Perimeter and Area</td>
<td>34</td>
</tr>
<tr>
<td>Relationship among Area Formulae</td>
<td>37</td>
</tr>
<tr>
<td>Procedural knowledge</td>
<td>38</td>
</tr>
<tr>
<td>Converting Standard Units of Area Measurement</td>
<td>38</td>
</tr>
<tr>
<td>Calculating Perimeter and area of Composite Figures</td>
<td>40</td>
</tr>
</tbody>
</table>
Developing Area Formulae

Linguistic knowledge
- Mathematical Symbols
- Mathematical Terms
- Standard Unit of Length Measurement (Linear Units) and Area Measurement (Square Units)

Conventions of Writing and Reading SI Area Measurement

Strategic knowledge
- Strategies for Comparing Perimeter and Area
- Strategies for Checking Answers
- Strategies for Solving Problem
- Strategies for Developing Area Formulae

Ethical knowledge
- Justifies One’s Mathematical Ideas
- Examines Pattern, Formulates and Test Generalization
- Develops Area Formulae
- Writes Units of Measurement upon Completed a Task
- Check the Correctness of Their Solutions or Answers

Level of Subject Matter Knowledge

Research Related to Malaysian Preservice Teachers' Subject Matter Knowledge

Research Related to Preservice Teachers' SMK of Perimeter and Area Measurement

Students' Performance in Measurement
- Malaysian Students' Performance in Perimeter and Area

Theoretical Framework of the Study

Conceptual Framework of the Study

CHAPTER THREE METHODOLOGY

Introduction

Research Design

Selection of Subjects

Data Collection

Administration of the Interview

Instrumentation
- Description of the Tasks

Pilot Study

Data Analysis

Content Validity

Reliability

CHAPTER FOUR FINDINGS OF THE STUDY

Introduction

Conceptual Knowledge

Notion of Perimeter
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notion of Area</td>
<td>115</td>
</tr>
<tr>
<td>Notion of the Units of Area</td>
<td>117</td>
</tr>
<tr>
<td>Number of Units and Unit of Measure</td>
<td>119</td>
</tr>
<tr>
<td>Comparing Perimeter with Nonstandard Units</td>
<td>119</td>
</tr>
<tr>
<td>Comparing Perimeter with Common Nonstandard Units</td>
<td>121</td>
</tr>
<tr>
<td>Comparing Perimeter with Common Standard Unit</td>
<td>122</td>
</tr>
<tr>
<td>Comparing Area with Nonstandard Units</td>
<td>123</td>
</tr>
<tr>
<td>Comparing Area with Common Nonstandard Units</td>
<td>125</td>
</tr>
<tr>
<td>Comparing Area with Common Standard Unit</td>
<td>126</td>
</tr>
<tr>
<td>Inverse Relationship between Number of Units and Unit of Measure</td>
<td>127</td>
</tr>
<tr>
<td>Perimeter</td>
<td>127</td>
</tr>
<tr>
<td>Area</td>
<td>128</td>
</tr>
<tr>
<td>Relationship between the Standard Units of Length Measurement</td>
<td>128</td>
</tr>
<tr>
<td>1 cm = 10 mm</td>
<td>128</td>
</tr>
<tr>
<td>1 m = 100 cm</td>
<td>130</td>
</tr>
<tr>
<td>1 km = 1000 m</td>
<td>131</td>
</tr>
<tr>
<td>Summary</td>
<td>132</td>
</tr>
<tr>
<td>Relationship between the Standard Units of Area Measurement</td>
<td>133</td>
</tr>
<tr>
<td>1 cm² = 100 mm²</td>
<td>133</td>
</tr>
<tr>
<td>1 m² = 10 000 cm²</td>
<td>134</td>
</tr>
<tr>
<td>1 km² = 1 000 000 m²</td>
<td>134</td>
</tr>
<tr>
<td>Summary</td>
<td>134</td>
</tr>
<tr>
<td>Relationship between Area Units and Linear Units of Measurement</td>
<td>135</td>
</tr>
<tr>
<td>Summary</td>
<td>135</td>
</tr>
<tr>
<td>Relationship between Perimeter and Area</td>
<td>140</td>
</tr>
<tr>
<td>Same Perimeter, Same Area?</td>
<td>140</td>
</tr>
<tr>
<td>Longer Perimeter, Larger Area</td>
<td>143</td>
</tr>
<tr>
<td>Perimeter Increases, Area Increases?</td>
<td>146</td>
</tr>
<tr>
<td>Relationship among Area Formulae</td>
<td>149</td>
</tr>
<tr>
<td>Rectangle</td>
<td>149</td>
</tr>
<tr>
<td>Parallelogram</td>
<td>150</td>
</tr>
<tr>
<td>Triangle</td>
<td>150</td>
</tr>
<tr>
<td>Trapezium</td>
<td>151</td>
</tr>
<tr>
<td>Procedural Knowledge</td>
<td>153</td>
</tr>
<tr>
<td>Converting Standard Units of Area Measurement</td>
<td>153</td>
</tr>
<tr>
<td>Converting 3 cm² to mm²</td>
<td>153</td>
</tr>
<tr>
<td>Converting 4.7 m² to cm²</td>
<td>156</td>
</tr>
<tr>
<td>Converting 1.25 km² to m²</td>
<td>158</td>
</tr>
<tr>
<td>Calculating Perimeter of Composite Figures</td>
<td>160</td>
</tr>
<tr>
<td>Calculating Perimeter of Diagram 1</td>
<td>161</td>
</tr>
<tr>
<td>Calculating Perimeter of Diagram 2</td>
<td>162</td>
</tr>
<tr>
<td>Calculating Area of Composite Figures</td>
<td>164</td>
</tr>
<tr>
<td>Calculating Area of Diagram 1</td>
<td>164</td>
</tr>
<tr>
<td>Calculating Area of Diagram 2</td>
<td>166</td>
</tr>
<tr>
<td>Developing Area Formulae</td>
<td>167</td>
</tr>
<tr>
<td>Rectangle</td>
<td>167</td>
</tr>
<tr>
<td>Parallelogram</td>
<td>168</td>
</tr>
<tr>
<td>Triangle</td>
<td>169</td>
</tr>
</tbody>
</table>
Examines Pattern

Two Shapes With The Same Perimeter Have The Same Area? 242
The Garden With The Longer Perimeter Has The Larger Area? 244

Formulates Generalization

Formulates Generalization That Two Shapes With The Same Perimeter Have The Same Area? 247
Formulates Generalization That the Garden With The Longer Perimeter Has The Larger Area? 248

Test Generalization

Test Generalization That Two Shapes With The Same Perimeter Have The Same Area? 250
Test Generalization That the Garden With The Longer Perimeter Has The Larger Area? 252
Test Generalization That as the Perimeter of A Closed Figure Increases, The Area Also Increases? 254

Develops Area Formulae

Attempting To Develop Area Formula for A Rectangle 257
Attempting To Develop Area Formula for A Parallelogram 257
Attempting To Develop Area Formula for A Triangle 258
Attempting To Develop Area Formula for A Trapezium 258

Writes Units of Measurement upon Completed A Task

Write Unit for Perimeter of Diagram 1 259
Write Unit for Area of Diagram 1 260
Write Unit for Perimeter of Diagram 2 260
Write Unit for Area of Diagram 2 260
Write Unit for the Largest Area Being Enclosed 260
Write Unit for the Dimension That Yield the Largest Area 261

Check the Correctness of Their Solutions or Answers

Check the Answer of the Perimeter of Diagram 1 262
Check the Answer of the Area of Diagram 1 263
Check the Answer of the Perimeter of Diagram 2 263
Check the Answer of the Area of Diagram 2 263
Check the Answer for the Fencing Problem 264

Level of Subject Matter Knowledge 265
Level of Conceptual Knowledge 265
Level of Procedural Knowledge 266
Level of Linguistic Knowledge 267
Level of Strategic Knowledge 268
Level of Ethical Knowledge 269
Overall Level of Subject Matter Knowledge 270

CHAPTER FIVE DISCUSSION AND CONCLUSIONS 272

Introduction 272
Summary of the Findings 272

Conceptual Knowledge 273
Notion of Perimeter, Area, and Units of Area 273
Number of Units and Unit of Measure 274
Inverse Proportion between Number of Units and Unit of Measure 275
Relationships between the Standard Units of Length Measurement 275
Relationship between the Standard Units of Area Measurement 275
Relationship between Area Units and Linear Units of Measurement 276
Relationship between Perimeter and Area 276
Relationship among Area Formulae 276

Procedural Knowledge
Converting Standard Units of Area Measurement 282
Calculating Perimeter and Area of Composite Figures 283
Developing Area Formulae 283

Linguistic Knowledge
Mathematical Symbols 285
Mathematical Terms 285
Standard Unit of Length Measurement (Linear Units) and Area Measurement (Square Units) 288
Conventions of Writing and Reading SI Area Measurement 289

Strategic Knowledge
Strategies for Comparing Perimeter 294
Strategies for Comparing Area 295
Strategies for Checking Answer for Perimeter 295
Strategies for Checking Answer for Area 296
Strategies for Solving the Fencing Problem 296
Strategies for Checking Answer for the Fencing Problem 296
Strategies for Developing Area Formulae 297

Ethical Knowledge
Justifies One’s Mathematical Ideas 300
Examines Pattern, Formulates and Test Generalization 301
Develops Area Formulae 303
Writes Units of Measurement upon Completed a Task 303
Checks the Correctness of Their Solutions or Answers 304

Level of Subject Matter Knowledge 309
Discussion and Conclusions 310
Implications of the Findings 325
Implications for Preservice Mathematics Teacher Education 325
Recommendations for Further Research 328

REFERENCES 330

APPENDICES

Appendix A Domain of Measurement in the Malaysian Primary and Secondary School Mathematics Curriculum 341
Appendix B Summary of the Learning Outcomes/Activities Related to Perimeter and Area in the Malaysian Primary and Secondary School Mathematics Curriculum 342
Appendix C Mathematics Content Courses for B.Sc.Ed. Program Students Who Majored or Minored in Mathematics 343
Appendix D Topic 11: Perimeter and Area 345
Appendix E Distribution of the Components of Each Type of Knowledge That Were Assessed During the Clinical Interview 347
Appendix F Background Information Form 352
Appendix G The Tasks 355
Appendix H Task Relevance Judgment Form 371
Appendix I Content Coverage Judgment Form 373
Appendix J Coding Rubrics for Determining Subject Matter Knowledge of Perimeter and Area 375
Appendix K Procedure for Determining the Overall Level of Preservice Secondary School Mathematics Teachers' SMK of Perimeter and Area 388
Appendix L Coding Rubrics for Determining Overall Level of …………. ’s SMK 400
Appendix M Sample of Coding Rubrics for Determining Overall Level of Beng’s SMK 418
Appendix N Case Studies 436

Beng

Notion of Perimeter
 Conceptual Knowledge
 Summary
 Linguistic Knowledge
 Ethical Knowledge
Notion of Area
 Conceptual Knowledge
 Summary
 Linguistic Knowledge
 Ethical Knowledge
Notion of the Units of Area
 Conceptual Knowledge
 Summary
 Linguistic Knowledge
 Ethical Knowledge
Comparing Perimeter (No Dimension Given)
 Strategic Knowledge
 Summary
Comparing Area (No Dimension Given)
 Strategic Knowledge
 Summary
Comparing Perimeter (Nonstandard and Standard Units)
 Conceptual Knowledge
 Summary
Comparing Area (Nonstandard and Standard Units)
 Conceptual Knowledge
 Summary
 Linguistic Knowledge
Converting Standard Units of Area Measurement
 Procedural Knowledge
 Summary
 Conceptual Knowledge
Relationship between Perimeter and Area (Same Perimeter, Same Area?)
 Conceptual Knowledge
 Summary
 Linguistic Knowledge
 Ethical Knowledge

xvi
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conceptual Knowledge</td>
<td>483</td>
</tr>
<tr>
<td>Summary</td>
<td>484</td>
</tr>
<tr>
<td>Linguistic Knowledge</td>
<td>484</td>
</tr>
<tr>
<td>Ethical Knowledge</td>
<td>484</td>
</tr>
<tr>
<td>Comparing Perimeter (No Dimension Given)</td>
<td>484</td>
</tr>
<tr>
<td>Strategic Knowledge</td>
<td>484</td>
</tr>
<tr>
<td>Summary</td>
<td>486</td>
</tr>
<tr>
<td>Comparing Area (No Dimension Given)</td>
<td>486</td>
</tr>
<tr>
<td>Strategic Knowledge</td>
<td>486</td>
</tr>
<tr>
<td>Summary</td>
<td>488</td>
</tr>
<tr>
<td>Comparing Perimeter (Nonstandard and Standard Units)</td>
<td>488</td>
</tr>
<tr>
<td>Conceptual Knowledge</td>
<td>488</td>
</tr>
<tr>
<td>Summary</td>
<td>490</td>
</tr>
<tr>
<td>Comparing Area (Nonstandard and Standard Units)</td>
<td>490</td>
</tr>
<tr>
<td>Conceptual Knowledge</td>
<td>490</td>
</tr>
<tr>
<td>Summary</td>
<td>492</td>
</tr>
<tr>
<td>Linguistic Knowledge</td>
<td>492</td>
</tr>
<tr>
<td>Converting Standard Units of Area Measurement</td>
<td>493</td>
</tr>
<tr>
<td>Procedural Knowledge</td>
<td>493</td>
</tr>
<tr>
<td>Summary</td>
<td>495</td>
</tr>
<tr>
<td>Conceptual Knowledge</td>
<td>495</td>
</tr>
<tr>
<td>Summary</td>
<td>496</td>
</tr>
<tr>
<td>Ethical Knowledge</td>
<td>496</td>
</tr>
<tr>
<td>Relationship between Perimeter and Area (Same Perimeter, Same Area?)</td>
<td>496</td>
</tr>
<tr>
<td>Conceptual Knowledge</td>
<td>495</td>
</tr>
<tr>
<td>Summary</td>
<td>496</td>
</tr>
<tr>
<td>Ethical Knowledge</td>
<td>496</td>
</tr>
<tr>
<td>Relationship between Perimeter and Area (Longer Perimeter, Larger Area?)</td>
<td>497</td>
</tr>
<tr>
<td>Conceptual Knowledge</td>
<td>497</td>
</tr>
<tr>
<td>Summary</td>
<td>497</td>
</tr>
<tr>
<td>Ethical Knowledge</td>
<td>497</td>
</tr>
<tr>
<td>Relationship between Perimeter and Area (Perimeter Increases, Area Increases?)</td>
<td>498</td>
</tr>
<tr>
<td>Conceptual Knowledge</td>
<td>498</td>
</tr>
<tr>
<td>Summary</td>
<td>500</td>
</tr>
<tr>
<td>Ethical Knowledge</td>
<td>500</td>
</tr>
<tr>
<td>Calculating Perimeter and Area (Rectangle and Parallelogram/Triangle)</td>
<td>500</td>
</tr>
<tr>
<td>Procedural Knowledge</td>
<td>500</td>
</tr>
<tr>
<td>Summary</td>
<td>502</td>
</tr>
<tr>
<td>Linguistic Knowledge</td>
<td>502</td>
</tr>
<tr>
<td>Strategic Knowledge</td>
<td>502</td>
</tr>
<tr>
<td>Ethical Knowledge</td>
<td>503</td>
</tr>
<tr>
<td>Calculating Perimeter and Area (Square and Trapezium/Triangle)</td>
<td>504</td>
</tr>
<tr>
<td>Procedural Knowledge</td>
<td>504</td>
</tr>
<tr>
<td>Summary</td>
<td>506</td>
</tr>
<tr>
<td>Linguistic Knowledge</td>
<td>506</td>
</tr>
<tr>
<td>Strategic Knowledge</td>
<td>506</td>
</tr>
<tr>
<td>Ethical Knowledge</td>
<td>506</td>
</tr>
<tr>
<td>Fencing Problem</td>
<td>507</td>
</tr>
<tr>
<td>Strategic Knowledge</td>
<td>507</td>
</tr>
</tbody>
</table>
Summary
Ethical Knowledge 508
Developing Area Formulae 508
 Procedural Knowledge 508
 Summary 511
 Conceptual Knowledge 511
 Linguistic Knowledge 512
 Strategic Knowledge 512
 Ethical Knowledge 512
Level of Subject Matter Knowledge 512

Mazlan
Notion of Perimeter 513
 Conceptual Knowledge 513
 Summary 516
 Linguistic Knowledge 516
 Ethical Knowledge 516
Notion of Area 517
 Conceptual Knowledge 517
 Summary 519
 Linguistic Knowledge 519
 Ethical Knowledge 519
Notion of the Units of Area 520
 Conceptual Knowledge 520
 Summary 521
 Linguistic Knowledge 521
 Ethical Knowledge 522
Comparing Perimeter (No Dimension Given) 522
 Strategic Knowledge 522
 Summary 523
Comparing Area (No Dimension Given) 523
 Strategic Knowledge 523
 Summary 525
Comparing Perimeter (Nonstandard and Standard Units) 525
 Conceptual Knowledge 525
 Summary 527
Comparing Area (Nonstandard and Standard Units) 527
 Conceptual Knowledge 527
 Summary 529
Linguistic Knowledge 529
Converting Standard Units of Area Measurement 529
 Procedural Knowledge 529
 Summary 531
 Conceptual Knowledge 531
Relationship between Perimeter and Area (Same Perimeter, Same Area?) 532
 Conceptual Knowledge 532
 Summary 533
 Ethical Knowledge 533
Developing Area Formulae

Procedural Knowledge
Summary
Conceptual Knowledge
Linguistic Knowledge
Strategic Knowledge
Ethical Knowledge

Level of Subject Matter Knowledge

Roslina

Notion of Perimeter
Conceptual Knowledge
Summary
Linguistic Knowledge
Ethical Knowledge

Notion of Area
Conceptual Knowledge
Summary
Linguistic Knowledge
Ethical Knowledge

Notion of the Units of Area
Conceptual Knowledge
Summary
Linguistic Knowledge
Ethical Knowledge

Comparing Perimeter (No Dimension Given)
Strategic Knowledge
Summary

Comparing Area (No Dimension Given)
Strategic Knowledge
Summary

Comparing Perimeter (Nonstandard and Standard Units)
Conceptual Knowledge
Summary

Comparing Area (Nonstandard and Standard Units)
Conceptual Knowledge
Summary
Linguistic Knowledge

Converting Standard Units of Area Measurement
Procedural Knowledge
Summary
Conceptual Knowledge

Relationship between Perimeter and Area (Same Perimeter, Same Area?)
Conceptual Knowledge
Summary
Ethical Knowledge

Relationship between Perimeter and Area (Longer Perimeter, Larger Area?)
Conceptual Knowledge

Summary 616
Ethical Knowledge 616

Relationship between Perimeter and Area (Perimeter Increases, Area Increases?) 617
Conceptual Knowledge 617
Summary 618
Ethical Knowledge 618

Calculating Perimeter and Area (Rectangle and Parallelogram/Triangle) 618
Procedural Knowledge 618
Summary 620
Linguistic Knowledge 620
Strategic Knowledge 620
Ethical Knowledge 621

Calculating Perimeter and Area (Square and Trapezium/Triangle) 621
Procedural Knowledge 621
Summary 623
Linguistic Knowledge 623
Strategic Knowledge 623
Ethical Knowledge 624

Fencing Problem 624
Strategic Knowledge 624
Summary 626
Ethical Knowledge 626

Developing Area Formulae 626
Procedural Knowledge 626
Summary 628
Conceptual Knowledge 629
Linguistic Knowledge 629
Strategic Knowledge 629
Ethical Knowledge 629

Level of Subject Matter Knowledge 630

Suhana 630

Notion of Perimeter 631
Conceptual Knowledge 631
Summary 633
Linguistic Knowledge 633
Ethical Knowledge 633

Notion of Area 634
Conceptual Knowledge 634
Summary 636
Linguistic Knowledge 636
Ethical Knowledge 636
Notion of the Units of Area 636
Conceptual Knowledge 636
Summary 638
Linguistic Knowledge 638
Ethical Knowledge 638
Comparing Perimeter (No Dimension Given) 638
 Strategic Knowledge 638
 Summary 641
Comparing Area (No Dimension Given) 642
 Strategic Knowledge 642
 Summary 644
Comparing Perimeter (Nonstandard and Standard Units) 645
 Conceptual Knowledge 645
 Summary 647
Comparing Area (Nonstandard and Standard Units) 647
 Conceptual Knowledge 647
 Summary 649
 Linguistic Knowledge 649
Converting Standard Units of Area Measurement 650
 Procedural Knowledge 650
 Summary 652
 Conceptual Knowledge 652
Relationship between Perimeter and Area (Same Perimeter, Same Area?) 652
 Conceptual Knowledge 652
 Summary 654
 Ethical Knowledge 654
Relationship between Perimeter and Area (Longer Perimeter, Larger Area?) 654
 Conceptual Knowledge 654
 Summary 658
 Ethical Knowledge 658
Relationship between Perimeter and Area (Perimeter Increases, Area Increases?) 659
 Conceptual Knowledge 659
 Summary 659
 Ethical Knowledge 659
Calculating Perimeter and Area (Rectangle and Parallelogram/Triangle) 660
 Procedural Knowledge 660
 Summary 662
 Linguistic Knowledge 662
 Strategic Knowledge 662
 Ethical Knowledge 662
Calculating Perimeter and Area (Square and Trapezium/Triangle) 663
 Procedural Knowledge 663
 Summary 665
 Linguistic Knowledge 665
 Strategic Knowledge 665
 Ethical Knowledge 666
Fencing Problem 666
 Strategic Knowledge 666
 Summary 668
 Ethical Knowledge 668
Developing Area Formulae 668
Procedural Knowledge 668
Summary 672
Conceptual Knowledge 668
Linguistic Knowledge 668
Strategic Knowledge 668
Ethical Knowledge 668
Level of Subject Matter Knowledge 668

Tan 674

Notion of Perimeter 675
Conceptual Knowledge 675
Summary 677
Linguistic Knowledge 677
Ethical Knowledge 677

Notion of Area 678
Conceptual Knowledge 678
Summary 680
Linguistic Knowledge 680
Ethical Knowledge 680

Notion of the Units of Area 679
Conceptual Knowledge 679
Summary 681
Linguistic Knowledge 681
Ethical Knowledge 681

Comparing Perimeter (No Dimension Given) 682
Strategic Knowledge 682
Summary 683

Comparing Area (No Dimension Given) 683
Strategic Knowledge 683
Summary 686

Comparing Perimeter (Nonstandard and Standard Units) 686
Conceptual Knowledge 686
Summary 688

Comparing Area (Nonstandard and Standard Units) 688
Conceptual Knowledge 688
Summary 690

Converting Standard Units of Area Measurement 691
Procedural Knowledge 691
Summary 693

Conceptual Knowledge 693

Relationship between Perimeter and Area (Same Perimeter, Same Area?) 694
Conceptual Knowledge 694
Summary 695

Ethical Knowledge 695

Relationship between Perimeter and Area (Longer Perimeter, Larger Area?) 695
Conceptual Knowledge 695
Summary 696
Ethical Knowledge 696

Relationship between Perimeter and Area (Perimeter Increases, Area Increases?) 696
 Conceptual Knowledge 696
 Summary 697
 Ethical Knowledge 697
Calculating Perimeter and Area (Rectangle and Parallelogram/Triangle) 698
 Procedural Knowledge 698
 Summary 700
 Linguistic Knowledge 700
 Strategic Knowledge 700
 Ethical Knowledge 701
Calculating Perimeter and Area (Square and Trapezium/Triangle) 701
 Procedural Knowledge 701
 Summary 703
 Linguistic Knowledge 703
 Strategic Knowledge 703
 Ethical Knowledge 704
Fencing Problem 704
 Strategic Knowledge 704
 Summary 706
 Ethical Knowledge 706
Developing Area Formulae 706
 Procedural Knowledge 706
 Summary 709
 Conceptual Knowledge 709
 Linguistic Knowledge 710
 Strategic Knowledge 711
 Ethical Knowledge 711
Level of Subject Matter Knowledge 711

Usha 712
Notion of Perimeter 712
 Conceptual Knowledge 712
 Summary 714
 Linguistic Knowledge 714
 Ethical Knowledge 715
Notion of Area 715
 Conceptual Knowledge 715
 Summary 717
 Linguistic Knowledge 717
 Ethical Knowledge 717
 Notion of the Units of Area 718
 Conceptual Knowledge 718
 Summary 718
 Linguistic Knowledge 718
 Ethical Knowledge 718
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparing Perimeter (No Dimension Given)</td>
<td>719</td>
</tr>
<tr>
<td>Strategic Knowledge</td>
<td>719</td>
</tr>
<tr>
<td>Summary</td>
<td>722</td>
</tr>
<tr>
<td>Comparing Area (No Dimension Given)</td>
<td>722</td>
</tr>
<tr>
<td>Strategic Knowledge</td>
<td>722</td>
</tr>
<tr>
<td>Summary</td>
<td>726</td>
</tr>
<tr>
<td>Comparing Perimeter (Nonstandard and Standard Units)</td>
<td>727</td>
</tr>
<tr>
<td>Conceptual Knowledge</td>
<td>727</td>
</tr>
<tr>
<td>Summary</td>
<td>729</td>
</tr>
<tr>
<td>Comparing Area (Nonstandard and Standard Units)</td>
<td>729</td>
</tr>
<tr>
<td>Conceptual Knowledge</td>
<td>729</td>
</tr>
<tr>
<td>Summary</td>
<td>731</td>
</tr>
<tr>
<td>Linguistic Knowledge</td>
<td>731</td>
</tr>
<tr>
<td>Converting Standard Units of Area Measurement</td>
<td>732</td>
</tr>
<tr>
<td>Procedural Knowledge</td>
<td>732</td>
</tr>
<tr>
<td>Summary</td>
<td>733</td>
</tr>
<tr>
<td>Conceptual Knowledge</td>
<td>733</td>
</tr>
<tr>
<td>Relationship between Perimeter and Area (Same Perimeter, Same Area?)</td>
<td>733</td>
</tr>
<tr>
<td>Conceptual Knowledge</td>
<td>734</td>
</tr>
<tr>
<td>Summary</td>
<td>734</td>
</tr>
<tr>
<td>Ethical Knowledge</td>
<td>734</td>
</tr>
<tr>
<td>Relationship between Perimeter and Area (Longer Perimeter, Larger Area?)</td>
<td>735</td>
</tr>
<tr>
<td>Conceptual Knowledge</td>
<td>735</td>
</tr>
<tr>
<td>Summary</td>
<td>736</td>
</tr>
<tr>
<td>Ethical Knowledge</td>
<td>736</td>
</tr>
<tr>
<td>Relationship between Perimeter and Area (Perimeter Increases, Area Increases?)</td>
<td>736</td>
</tr>
<tr>
<td>Conceptual Knowledge</td>
<td>736</td>
</tr>
<tr>
<td>Summary</td>
<td>737</td>
</tr>
<tr>
<td>Ethical Knowledge</td>
<td>737</td>
</tr>
<tr>
<td>Calculating Perimeter and Area (Rectangle and Parallelogram/Triangle)</td>
<td>737</td>
</tr>
<tr>
<td>Procedural Knowledge</td>
<td>737</td>
</tr>
<tr>
<td>Summary</td>
<td>739</td>
</tr>
<tr>
<td>Linguistic Knowledge</td>
<td>739</td>
</tr>
<tr>
<td>Strategic Knowledge</td>
<td>739</td>
</tr>
<tr>
<td>Ethical Knowledge</td>
<td>740</td>
</tr>
<tr>
<td>Calculating Perimeter and Area (Square and Trapezium/Triangle)</td>
<td>740</td>
</tr>
<tr>
<td>Procedural Knowledge</td>
<td>740</td>
</tr>
<tr>
<td>Summary</td>
<td>742</td>
</tr>
<tr>
<td>Linguistic Knowledge</td>
<td>742</td>
</tr>
<tr>
<td>Strategic Knowledge</td>
<td>742</td>
</tr>
<tr>
<td>Ethical Knowledge</td>
<td>742</td>
</tr>
<tr>
<td>Fencing Problem</td>
<td>743</td>
</tr>
<tr>
<td>Strategic Knowledge</td>
<td>743</td>
</tr>
<tr>
<td>Summary</td>
<td>744</td>
</tr>
<tr>
<td>Ethical Knowledge</td>
<td>744</td>
</tr>
<tr>
<td>Developing Area Formulae</td>
<td>745</td>
</tr>
<tr>
<td>Knowledge Area</td>
<td>Page</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Procedural Knowledge</td>
<td>745</td>
</tr>
<tr>
<td>Summary</td>
<td>747</td>
</tr>
<tr>
<td>Conceptual Knowledge</td>
<td>747</td>
</tr>
<tr>
<td>Linguistic Knowledge</td>
<td>747</td>
</tr>
<tr>
<td>Strategic Knowledge</td>
<td>748</td>
</tr>
<tr>
<td>Ethical Knowledge</td>
<td>748</td>
</tr>
<tr>
<td>Level of Subject Matter Knowledge</td>
<td>748</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>70</td>
</tr>
<tr>
<td>2.2</td>
<td>71</td>
</tr>
<tr>
<td>2.3</td>
<td>72</td>
</tr>
<tr>
<td>2.4</td>
<td>73</td>
</tr>
<tr>
<td>2.5</td>
<td>74</td>
</tr>
<tr>
<td>2.6</td>
<td>75</td>
</tr>
<tr>
<td>2.7</td>
<td>84</td>
</tr>
<tr>
<td>4.1</td>
<td>114</td>
</tr>
<tr>
<td>4.2</td>
<td>116</td>
</tr>
<tr>
<td>4.3</td>
<td>117</td>
</tr>
<tr>
<td>4.4</td>
<td>119</td>
</tr>
<tr>
<td>4.5</td>
<td>121</td>
</tr>
<tr>
<td>4.6</td>
<td>122</td>
</tr>
<tr>
<td>4.7</td>
<td>123</td>
</tr>
<tr>
<td>4.8</td>
<td>125</td>
</tr>
<tr>
<td>4.9</td>
<td>126</td>
</tr>
<tr>
<td>4.10</td>
<td>128</td>
</tr>
<tr>
<td>4.11</td>
<td>140</td>
</tr>
<tr>
<td>4.12</td>
<td>143</td>
</tr>
<tr>
<td>4.13</td>
<td>146</td>
</tr>
<tr>
<td>4.14</td>
<td>149</td>
</tr>
<tr>
<td>4.15</td>
<td>161</td>
</tr>
<tr>
<td>4.16</td>
<td>163</td>
</tr>
<tr>
<td>4.17</td>
<td>209</td>
</tr>
<tr>
<td>4.18</td>
<td>214</td>
</tr>
<tr>
<td>4.19</td>
<td>225</td>
</tr>
<tr>
<td>K1</td>
<td>388</td>
</tr>
<tr>
<td>N1</td>
<td>437</td>
</tr>
<tr>
<td>N2</td>
<td>440</td>
</tr>
<tr>
<td>N3</td>
<td>443</td>
</tr>
<tr>
<td>N4</td>
<td>443</td>
</tr>
<tr>
<td>N5</td>
<td>446</td>
</tr>
<tr>
<td>N6</td>
<td>447</td>
</tr>
<tr>
<td>N7</td>
<td>449</td>
</tr>
<tr>
<td>N8</td>
<td>449</td>
</tr>
<tr>
<td>N9</td>
<td>450</td>
</tr>
<tr>
<td>N10</td>
<td>450</td>
</tr>
<tr>
<td>N11</td>
<td>451</td>
</tr>
<tr>
<td>N12</td>
<td>451</td>
</tr>
<tr>
<td>N13</td>
<td>455</td>
</tr>
<tr>
<td>N14</td>
<td>456</td>
</tr>
<tr>
<td>N15</td>
<td>457</td>
</tr>
</tbody>
</table>
Beng converts 1.25 km² to m²

Beng draws two squares and labels them as A and B respectively

Beng calculates the perimeters and area of trapezium and rectangle that she has drawn

Beng labels the missing sides of Diagram 1

Beng calculates the perimeter of Diagram 1

Beng calculates the area of Diagram 1

Beng uses alternative method to calculate the area of Diagram 1

Beng labels the missing sides of Diagram 2

Beng calculates the perimeter of Diagram 2

Beng calculates the area of Diagram 2

Beng calculates the area of Diagram 2

Beng uses looking for a pattern strategy to solve the fencing problem

Beng draws the pattern of the area values

Beng draws the fence with the shortest length (2 m) and the longest width (41 m)

Beng draws a rectangle and writes its area formula

Beng draws a parallelogram and writes its area formula

Beng develops the formula for the area of a parallelogram

Beng draws a triangle and writes its area formula

Beng draws a trapezium and writes its area formula

Beng develops the formula for the area of a trapezium

Liana’s selection of shapes that have a perimeter

Liana’s selection of shapes that have an area

Liana measures the length of the top, the bottom, and the left sides of the T-shape by ruler and then calculates its perimeter

Liana measures the length and the width of the rectangle by ruler and then calculates its perimeter

Liana measures the length and the width of each rectangle by ruler and then calculates its area

Liana measures the length of two adjacent sides of the square by ruler and then calculates its area

Liana repartitions the L-shape into two rectangles and then calculates its area

Liana writes 16 cm² and 13 cm² in English words

Liana converts 3 cm² to mm²

Liana draws a diagram to illustrate the conversion from cm² to mm²

Liana converts 4.7 m² to cm²

Liana converts 1.25 km² to m²

Liana draws two triangles and then calculates its area respectively

Liana draws two circles and then writes the formula for the circumference and area respectively

Liana labels the missing sides of Diagram 1

Liana calculates the perimeter and the area of Diagram 1

Liana uses alternative method to calculate the area of Diagram 1

Liana labels the missing sides of Diagram 2

Liana calculates the length of MI, also labels as “a”

Liana calculates the perimeter of Diagram 2

Liana calculates the area of Diagram 2

Liana suggests alternative method to calculate the area of Diagram 2

Liana draws a diagram to represents the fencing of the rectangular garden

xxx
Lina writes an equation to represent the perimeter and area of the rectangular garden respectively.

Liana draws a rectangle and then writes its area formula.

Liana draws a parallelogram and writes its area formula.

Liana writes the area formula of a triangle.

Liana develops the formula for the area of a triangle.

Mazlan’s selection of shapes that have a perimeter.

Mazlan’s selection of shapes that have an area.

Mazlan draws a square, rectangle, and triangle and writes its respective area formula and unit.

Mazlan draws a square and then partitions it into two triangles.

Mazlan measures the length of each side by ruler and then calculates its perimeter respectively.

Mazlan measures the length of each side by ruler and then calculates its area.

Mazlan measures the length of two adjacent sides by ruler and then calculates its area.

Mazlan writes 16 cm2 and 13 cm2 in English words.

Mazlan converts 3 cm2 to mm2.

Mazlan converts 4.7 m2 to cm2.

Mazlan converts 1.25 km2 to m2.

Mazlan draws diagrams to show that the thread can be rearranged to form other shapes such as triangle, square, or circle besides rectangle.

Mazlan labels the missing sides of Diagram 1.

Mazlan calculates the perimeter and the area of Diagram 1.

Mazlan labels some of the missing sides of Diagram 2.

Mazlan calculates the perimeter and area of Diagram 2.

Mazlan uses alternative method to calculate the area of trapezium FIJK.

Mazlan uses trial and error strategy to solve the fencing problem.

Mazlan draws another rectangle and then calculates its area.

Mazlan draws a rectangle and writes its area formula.

Mazlan draws a parallelogram and writes its area formula.

Mazlan draws two triangles and writes its area formula.

Mazlan draws a trapezium and writes its area formula.

Mazlan tries to develop the formula for the area of a trapezium.

Patrick’s selection of shapes that have a perimeter.

Patrick’s selection of shapes that have an area.

Patrick draws a large rectangle and then calculates its area.

Patrick measures the length of each side of the T-shape and rectangle by ruler and then calculates its perimeter respectively.

Patrick calculates the perimeter of the T-shape.

Patrick calculates the perimeter of the rectangle.

Patrick measures the length and the width of each rectangle by ruler and then calculates its area.

Patrick measures the length of the two adjacent sides of the square by ruler and then calculates its area.

Patrick counts the number of the 2 cm by 2 cm grids required to cover the L-shape.
Patrick counts the number of the 2 cm by 2 cm grids required to cover the square.

Patrick writes 16 cm2 and 13 cm2 in English words.

Patrick converts 3 cm2 to mm2, 4.7 m2 to cm2, and 1.25 km2 to m2.

Patrick draws two rectangles, labels its dimensions, and then calculates its perimeter and area.

Patrick draws two equilateral triangles and then calculates its perimeters and areas.

Patrick labels the missing sides of Diagram 1.

Patrick calculates the length of TR.

Patrick calculates the perimeter of Diagram 1.

Patrick calculates the area of Diagram 1.

Patrick uses alternative method to calculate the area of Diagram 1.

Patrick labels the missing sides of Diagram 2.

Patrick calculates the value of “A” using Pythagoras' theorem.

Patrick calculates the perimeter of Diagram 2.

Patrick calculates the area of Diagram 2.

Patrick draws the possible rectangular gardens and calculates their areas.

Patrick continues to draw the possible rectangular gardens and calculates their areas.

Patrick draws a rectangle, parallelogram, triangle, and trapezium, and then writes their respective area formulae.

Roslina’s selection of shapes that have a perimeter.

Roslina’s selection of shapes that have an area.

Roslina draws a large square on a 1-cm grid paper.

Roslina draws a 1-cm square on the grid paper.

Roslina measures the length of each side of the T-shape by ruler and then calculates its perimeter.

Roslina measures the length of each side of the rectangle by ruler and then calculates its perimeter.

Roslina measures the length and the width of each rectangle by ruler and then calculates its area.

Roslina measures the length of the two adjacent sides of the square by ruler and then calculates its area.

Roslina traces the L-shape on the 1-cm grid paper and counts the number of 1-cm square enclosed by the shape.

Roslina traces the square on the 1-cm grid paper and counts the number of 1-cm square enclosed by the shape.

Roslina draws the length of a paper clip in shapes A and B.

Roslina writes 16 cm2 and 13 cm2 in English words.

Roslina converts 3 cm2 to mm2.

Roslina converts 4.7 m2 to cm2.

Roslina converts 1.25 km2 to m2.

Roslina draws a rectangle, labels its dimensions and calculates its area.

Roslina draws two rectangles and then calculate its area respectively.

Roslina labels the missing sides of Diagram 1.

Roslina calculates the perimeter of Diagram 1.

Roslina calculates the length of TR using Pythagoras' theorem.

Roslina calculates the area of Diagram 1.
Roslina labels the missing sides of Diagram 2
Roslina calculates the value of "a" using Pythagoras' theorem
Roslina calculates the perimeter of Diagram 2
Roslina calculates the area of Diagram 2
Roslina draws a rectangular garden and then calculates its area
Roslina draws another rectangular garden and then calculates its area
Roslina draws a rectangle and then writes its area formula
Roslina draws a parallelogram and then writes its area formula
Roslina draws a triangle and then writes its area formula
Roslina draws a prism instead of a trapezium
Suhana’s selection of shapes that have a perimeter
Suhana’s selection of shapes that have an area
Suhana draws a square, rectangle, and triangle and then writes the area formula for the triangle
Suhana measures the length of each side of the T-shape by ruler and then calculates its perimeter
Suhana measures the length of each side of the rectangle by ruler and then calculates its perimeter
Suhana puts the grid paper on the T-shape and then writes the length of each side on the grid paper
Suhana puts the grid paper on the rectangle and then writes the length of each side on the grid paper
Suhana measures the length of the two adjacent sides of the square by ruler and then calculates its area
Suhana measures the length and the width of each rectangle by ruler and then calculates its area
Suhana traces the square on the 1-cm grid paper and then calculates its area
Suhana traces the L-shape on the 1-cm grid paper and then calculates its area
Suhana calculates the perimeters of shapes A and B respectively
Suhana calculates the length of a paper clip in shape B
Suhana calculates the area of a square in shape B
Suhana writes 16 cm² and 13 cm² in English words
Suhana converts 3 cm² to mm²
Suhana converts 4.7 m² to cm²
Suhana converts 1.25 km² to m²
Suhana measures the perimeter and area of the traced leaf
Suhana draws a rectangle, labels its dimensions and calculates its area
Suhana traces “Mary’s garden” on a 1 cm grid paper and calculates its area
Suhana traces “Sarah’s garden” on a 1 cm grid paper and calculates its area
Suhana draws a rectangle and calculates its perimeter and area
Suhana draws a triangle and calculates its perimeter and area
Suhana draws a trapezium and calculates its perimeter and area
Suhana labels the missing sides of Diagram 1
Suhana calculates the perimeter of Diagram 1
Suhana calculates the length of TR using Pythagoras' theorem
Suhana calculates the area of Diagram 1
Suhana labels the missing sides of Diagram 2
Suhana measures the length of each side of the T-shape by ruler and then calculates its perimeter
Suhana measures the length of each side of the rectangle by ruler and then calculates its perimeter
Suhana puts the grid paper on the T-shape and then writes the length of each side on the grid paper
Suhana puts the grid paper on the rectangle and then writes the length of each side on the grid paper
Suhana measures the length of the two adjacent sides of the square by ruler and then calculates its area
Suhana measures the length and the width of each rectangle by ruler and then calculates its area
Suhana traces the square on the 1-cm grid paper and then calculates its area
Suhana traces the L-shape on the 1-cm grid paper and then calculates its area
Suhana calculates the perimeters of shapes A and B respectively
Suhana calculates the length of a paper clip in shape B
Suhana calculates the area of a square in shape B
Suhana writes 16 cm² and 13 cm² in English words
Suhana converts 3 cm² to mm²
Suhana converts 4.7 m² to cm²
Suhana converts 1.25 km² to m²
Suhana measures the perimeter and area of the traced leaf
Suhana draws a rectangle, labels its dimensions and calculates its area
Suhana traces “Mary’s garden” on a 1 cm grid paper and calculates its area
Suhana traces “Sarah’s garden” on a 1 cm grid paper and calculates its area
Suhana draws a rectangle and calculates its perimeter and area
Suhana draws a triangle and calculates its perimeter and area
Suhana draws a trapezium and calculates its perimeter and area
Suhana labels the missing sides of Diagram 1
Suhana calculates the perimeter of Diagram 1
Suhana calculates the length of TR using Pythagoras' theorem
Suhana calculates the area of Diagram 1
Suhana labels the missing sides of Diagram 2
Suhana calculates the length of ZI using Pythagoras' theorem
Suhana calculates the perimeter of Diagram 2
Suhana calculates the area of Diagram 2
Suhana draws a diagram to list down the possible factors of 84
Suhana uses trial and error method to solve the fencing problem
Suhana draws a rectangle and writes its area formula
Suhana develops the formula for the area of a parallelogram
Suhana draws a parallelogram and labels its tapak [base] and tinggi [height]
Suhana calculates the area of Diagram 2
Suhana uses trial and error method to solve the fencing problem
Suhana draws a rectangle and writes its area formula
Suhana develops the formula for the area of a parallelogram
Suhana draws a triangle and then writes its area formula
Suhana draws a rectangle and then writes its area formula
Suhana draws another triangle and then writes its area formula
Suhana draws a trapezium and then writes its area formula
Suhana develops the formula for the area of a trapezium
Tan's selection of shapes that have a perimeter
Tan's selection of shapes that have an area
Tan partitions the L-shape into two rectangles
Tan traces the L-shape on the 1-cm grid paper
Tan draws a diagram to illustrate the size of squares in shapes A and B
Tan writes 16 cm2 and 13 cm2 in English words
Tan converts 3 cm2 to mm2
Tan converts 4.7 m2 to cm2
Tan converts 1.25 km2 to m2
Tan draws an isosceles triangle and then calculates its area
Tan labels the missing sides of Diagram 1
Tan calculates the length of TR
Tan uses alternative method to calculate the area of Diagram 1
Tan draws a “long” rectangle
Tan calculates the perimeter of Diagram 1
Tan calculates the area of Diagram 1
Tan uses alternative method to calculate the area of Diagram 1
Tan labels the missing sides of Diagram 2
Tan calculates the length of AI using Pythagoras' theorem
Tan calculates the perimeter of Diagram 2
Tan calculates the area of Diagram 2
Tan uses alternative method to calculate the area of Diagram 2
Tan draws a diagram to represents the fencing of the rectangular Garden
Tan uses the differentiation method to solve the fencing problem
Tan draws with the dimension of 3 cm by 2 cm
Tan draws a parallelogram and then develops its area formula
Tan draws a right-angled triangle and then develops its area formula
Tan draws a trapezium
Tan develops the formula for the area of a trapezium
Usha’s selection of shapes that have a perimeter
Usha’s selection of shapes that have an area
Usha measures the length of each side of the T-shape by ruler and then calculates its perimeter
Usha measures the length of each side of the rectangle by ruler and then calculates its perimeter
N220 Usha traces the rectangle on the 1-cm grid paper and then counts the number of unit on its length and width 721
N221 Usha traces the T-shape on the 1-cm grid paper and then counts the number of unit on each side 721
N222 Usha measures the length of each side of the T-shape by compasses and then calculates its perimeter 722
N223 Usha measures the length of each side of the rectangle by compasses and then calculates its perimeter 722
N224 Usha measures the length and width of each rectangle by ruler and then calculates its area 723
N225 Usha measures the length of two adjacent sides of the square by ruler and then calculates its area 724
N226 Usha traces the L-shape on the 1-cm grid paper and counts the number of 1-cm square covered by the shape 724
N227 Usha traces the square on the 1-cm grid paper and counts the number of 1-cm square covered by the shape 725
N228 Usha measures the length and width of each rectangle by thread and ruler and then calculates its area 725
N229 Usha measures the length of two adjacent sides of the square by thread and ruler and then calculates its area 726
N230 Usha draws two paper clips 727
N231 Usha writes 16 cm² and 13 cm² in English words 731
N232 Usha writes the relationship between the standard units of area measurement 732
N233 Usha draws two rectangles and calculates its perimeter and area respect 735
N234 Usha labels the missing sides of Diagram 1 738
N235 Usha calculates the perimeter of Diagram 1 738
N236 Usha calculates the area of Diagram 1 739
N237 Usha labels the missing sides of Diagram 2 741
N238 Usha calculates the area of Diagram 2 741
N239 Usha uses looking for a pattern strategy to solve the fencing problem 743
N240 Usha draws a diagram and then writes its dimensions and area 743
N241 Usha draws a rectangle and writes its area formula 745
N242 Usha draws a parallelogram and writes its area formula 745
N243 Usha draws two triangles and writes its area formula 746
N244 Usha draws a trapezium and writes its area formula 746
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Some of the Definitions of Perimeter</td>
<td>29</td>
</tr>
<tr>
<td>2.2 Some of the Definitions of Area</td>
<td>30</td>
</tr>
<tr>
<td>2.3 Some Common Perimeter and Area Formulae</td>
<td>65</td>
</tr>
<tr>
<td>3.1 Characteristics of the Four Common Types of Qualitative Research in Education</td>
<td>85</td>
</tr>
<tr>
<td>3.2 Subjects’ Ethnicity, Gender, Age, Major, Minor, and CGPA</td>
<td>90</td>
</tr>
<tr>
<td>3.3 Distribution of SMK in the 8 Tasks</td>
<td>103</td>
</tr>
<tr>
<td>3.4 Summary of the Five Basic Types of Knowledge of Perimeter and Area and its Respective Components</td>
<td>106</td>
</tr>
<tr>
<td>3.5 The Judgment of Task Relevance</td>
<td>109</td>
</tr>
<tr>
<td>3.6 The Judgment of Content Coverage</td>
<td>110</td>
</tr>
<tr>
<td>4.1 The Components of Conceptual Knowledge of Perimeter and Area</td>
<td>113</td>
</tr>
<tr>
<td>4.2 PSSMTs’ Selection of Shapes That Have a Perimeter and Their Notion of Perimeter</td>
<td>114</td>
</tr>
<tr>
<td>4.3 PSSMTs’ Selection of Shapes That Have an Area and Their Notion of Area</td>
<td>116</td>
</tr>
<tr>
<td>4.4 PSSMTs’ Selection of Shapes That can be Used as the Units of Area and Their Notion of the Units of Area</td>
<td>118</td>
</tr>
<tr>
<td>4.5 PSSMTs’ Responses When Comparing Perimeters in Set 1 With Nonstandard Units</td>
<td>120</td>
</tr>
<tr>
<td>4.6 PSSMTs’ Responses When Comparing Perimeters in Set 2 With Common Nonstandard Units</td>
<td>122</td>
</tr>
<tr>
<td>4.7 PSSMTs’ Responses When Comparing Areas in Set 1 With Nonstandard Units</td>
<td>124</td>
</tr>
<tr>
<td>4.8 PSSMTs’ Responses When Comparing Areas in Set 2 With Common Nonstandard Units</td>
<td>126</td>
</tr>
<tr>
<td>4.9 PSSMTs who Knew and did not Know the Relationships Between the Standard Units of Length Measurement That 1 cm = 10 mm</td>
<td>129</td>
</tr>
<tr>
<td>4.10 PSSMTs who Knew and did not Know the Relationships Between the Standard Units of Length Measurement That 1 m = 100 cm</td>
<td>130</td>
</tr>
<tr>
<td>4.11 PSSMTs who Knew and did not Know the Relationships Between the Standard Units of Length Measurement That 1 km = 1000 m</td>
<td>132</td>
</tr>
<tr>
<td>4.12 PSSMTs who Knew and did not Know the Relationships Between Area Units and Linear Units of Measurement</td>
<td>139</td>
</tr>
<tr>
<td>4.13 PSSMTs’ Responses Towards a Student’s Method of Calculating the Area of a Leaf</td>
<td>141</td>
</tr>
<tr>
<td>4.14 PSSMTs’ Responses Towards Mary’s Claim That the Garden With the Longer Perimeter has the Larger Area</td>
<td>143</td>
</tr>
<tr>
<td>4.15 PSSMTs’ Responses Towards a Student’s “Theory” That as the Perimeter of a Closed Figure Increases, the Area Also Increases</td>
<td>146</td>
</tr>
<tr>
<td>4.16 The Components of Procedural Knowledge of Perimeter and Area</td>
<td>153</td>
</tr>
<tr>
<td>4.17 PSSMTs who had Successfully and Unsuccessfully Converting 3 cm² to mm²</td>
<td>154</td>
</tr>
<tr>
<td>4.18 PSSMTs who had Successfully and Unsuccessfully Converting 4.7 m² to cm²</td>
<td>156</td>
</tr>
<tr>
<td>4.19 PSSMTs who had Successfully and Unsuccessfully Converting 1.25 km² to m²</td>
<td>158</td>
</tr>
<tr>
<td>4.20 PSSMTs who have Successfully and Unsuccessfully Calculated the Perimeter of Diagram 1</td>
<td>161</td>
</tr>
<tr>
<td>4.21 The Algorithms Used by PSSMTs to Calculate the Perimeter of Diagram 1</td>
<td>162</td>
</tr>
<tr>
<td>4.22 The Algorithms Used by PSSMTs to Calculate the Perimeter of Diagram 2</td>
<td>164</td>
</tr>
<tr>
<td>4.23 PSSMTs who Have Successfully and Unsuccessfully Calculated the Area of Diagram 1</td>
<td>164</td>
</tr>
</tbody>
</table>
The Algorithms Used by PSSMTs to Calculate the Area of Diagram 1
The type of Partition-And-Sum Algorithms Used by PSSMTs to Calculate The Area of Diagram 2
PSSMTs who Could and Could not Recall the Formula for the Area of a Parallelogram
PSSMTs who Were Able and Unable to Develop the Formula for the Area of a Parallelogram
PSSMTs who Could and Could not Recall the Formula for the Area of a Triangle
PSSMTs who Were Able and Unable to Develop the Formula for the Area of a Triangle
PSSMTs who Could and Could not Recall the Formula for the Area of a Trapezium
PSSMTs who Were Able and Unable to Develop the Formula for the Area of a Trapezium
The Components of Linguistic Knowledge of Perimeter and Area
PSSMTs’ Selection of Shapes That Have a Perimeter and the Appropriateness of Their Justification
PSSMTs’ Appropriateness of Justification for not Selecting a Shape(s) as Having a Perimeter
PSSMTs’ Selection of Shapes That Have an Area and the Appropriateness of Their Justification
PSSMTs’ Appropriateness of Justification for not Selecting a Shape(s) as Having an Area
PSSMTs’ Selection of Shapes That can be Used as the Unit of Area and the Appropriateness of Their Justification
PSSMTs’ Selection of Shapes That Cannot be Used as the Unit of Area and the Appropriateness of Their Justification
PSSMTs who Used Appropriate and Inappropriate Mathematical Terms to State the Formula or to Explain the Meaning of the Mathematical Symbols That They Employed to Write the Formula for the Area of a Rectangle
PSSMTs who Used Appropriate and Inappropriate Mathematical Terms to State the Formula or to Explain the Meaning of the Mathematical Symbols That They Employed to Write the Formula for the Area of a Parallelogram
PSSMTs who Used Appropriate and Inappropriate Mathematical Terms to State the Formula or to Explain the Meaning of the Mathematical Symbols That They Employed to Write the Formula for the Area of a Triangle
The Measurement Unit for the Answer of the Perimeter of Diagram 2 Written by PSSMTs
The Measurement Unit for the Answer of the Area of Diagram 2 Written by PSSMTs
PSSMTs Read and Wrote Area Measurements 16 cm2 and 13 cm2 in English
The Components of Strategic Knowledge of Perimeter and Area
The Types of Method Used by PSSMTs to Compare Perimeter
The Types of Alternative Methods Used by PSSMTs to Compare Perimeter
The Types of Method Used by PSSMTs to Compare Area
The Types of Alternative Methods Used by PSSMTs to Compare Area
Strategies Suggested by PSSMTs to Check the Answer for the Perimeter of Diagram 1
4.51 Strategies Suggested by PSSMTs to Check the Answer for the Perimeter of Diagram 2
4.52 Strategies Suggested by PSSMTs to Check the Answer for the Area of Diagram 1
4.53 Strategies Suggested by PSSMTs to Check the Answer for the Area of Diagram 2
4.54 PSSMTs who Have Successfully and Unsuccessfully Solving the Fencing Problem
4.55 Strategies Used by PSSMTs to Solve the Fencing Problem
4.56 Strategies Used by PSSMTs to Check the Answer for the Fencing Problem
4.57 The Components of Ethical Knowledge of Perimeter and Area
4.58 PSSMTs who had and had not Attempted to Examine the Possible Pattern of the Relationship Between Perimeter and Area in Task 5.1
4.59 PSSMTs who had and had not Attempted to Examine the Possible Pattern of the Relationship Between Perimeter and Area in Task 5.2
4.60 PSSMTs who had and had not Attempted to Formulate Generalization Pertaining to the Relationship Between Perimeter and Area in Task 5.1
4.61 PSSMTs who had and had not Attempted to Formulate Generalization Pertaining to the Relationship Between Perimeter and Area in Task 5.2
4.62 PSSMTs who had and had not Attempted to Test Generalization Pertaining to the Relationship Between Perimeter and Area in Task 5.1
4.63 PSSMTs who had and had not Attempted to Test Generalization Pertaining to the Relationship Between Perimeter and Area in Task 5.2
4.64 PSSMTs who had and had not Attempted to Test Generalization Pertaining to the Relationship Between Perimeter and Area in Task 5.3
4.65 PSSMTs who Attempted and did not Attempt to Develop the Formula for the Area of a Rectangle
4.66 PSSMTs who Attempted and did not Attempt to Develop the Formula for the Area of a Parallelogram
4.67 PSSMTs who Attempted and did not Attempt to Develop the Formula for the Area of a Triangle
4.68 PSSMTs who Attempted and did not Attempt to Develop the Formula for the Area of a Trapezium
4.69 PSSMTs who Wrote and did not Write the Measurement Unit for the Largest Area Being Enclosed
4.70 PSSMTs who Wrote and did not Write the Measurement Unit for the Dimension That Would Yield the Largest Area Being Enclosed
4.71 PSSMTs who had and had not Checked the Correctness of the Answer for the Area of Diagram 2 Without Being Probed
4.72 PSSMTs who had and had not Checked the Correctness of the Answer for the Fencing Problem Without Being Probed
4.73 Percentage of Appropriate Mathematical Elements of Conceptual Knowledge Obtained by PSSMTs and Their Respective Level of Conceptual Knowledge
4.74 Percentage of Appropriate Mathematical Elements of Procedural Knowledge Obtained by PSSMTs and Their Respective Level of Procedural Knowledge
4.75 Percentage of Appropriate Mathematical Elements of Linguistic Knowledge Obtained by PSSMTs and Their Respective Level of Linguistic Knowledge
4.76 Percentage of Appropriate Mathematical Elements of Strategic Knowledge Obtained by PSSMTs and Their Respective Level of Strategic Knowledge
4.77 Percentage of Appropriate Mathematical Elements of Ethical Knowledge Obtained by PSSMTs and Their Respective Level of Ethical Knowledge 270
4.78 Percentage of Appropriate Mathematical Elements of Subject Matter Knowledge Obtained by PSSMTs and Their Respective Overall Level of Subject Matter Knowledge 271
5.1 Summary of PSSMTs’ Conceptual Knowledge of Perimeter and Area 278
5.2 Summary of PSSMTs’ Procedural Knowledge of Perimeter and Area 284
5.3 Summary of PSSMTs’ Linguistic Knowledge of Perimeter and Area 290
5.4 Summary of PSSMTs’ Strategic Knowledge of Perimeter and Area 298
5.5 Summary of PSSMTs’ Ethical Knowledge of Perimeter and Area 305
5.6 Summary of PSSMTs’ Levels of Conceptual Knowledge, Procedural Knowledge, Linguistic Knowledge, Strategic Knowledge, and Ethical Knowledge of Perimeter and Area as Well as the Overall Level SMK of Perimeter and Area 310
C1 Mathematics Content Courses for B.Sc.Ed. Program Students Who Majored in Mathematics 343
C2 Mathematics Content Courses for B.Sc.Ed. Program Students Who Minored in Mathematics 344
E1 Distribution of the Components of Conceptual Knowledge in the 8 Tasks 347
E2 Distribution of the Components of Procedural Knowledge in the 8 Tasks 348
E3 Distribution of the Components of Linguistic Knowledge in the 8 Tasks 349
E4 Distribution of the Components of Strategic Knowledge in the 8 Tasks 350
E5 Distribution of the Components of Ethical Knowledge in the 8 Tasks 351
K1 Range of Percentage of Appropriate Mathematical Elements of Conceptual Knowledge Obtained by the PSSMTs and Their Respective Levels of Conceptual Knowledge 391
N1 Mathematics Performance of Beng 436
N2 Dimensions of Rectangular Garden and its Area That Beng has Figured out 472
N3 Mathematics Performance of Liana 478
N4 Mathematics Performance of Mazlan 513
N5 Mathematics Performance of Patrick 549
N6 Dimensions of Rectangular Garden and its Area That Patrick has Figured out 586
N7 Mathematics Performance of Roslina 593
N8 Mathematics Performance of Suhana 630
N9 Mathematics Performance of Tan 674
N10 Mathematics Performance of Usha 712
N11 Dimensions of Rectangular Garden and its Area That Usha has Figured out 744