CHAPTER 3

THE EFFECTIVE HAMILTONIAN FOR THE P° <> P° TRANSITION

3.1 INTRODUCTION

In this chapter, we consider in detail the P® <> P° transition of neutral meson
systems in the Standard Model where P is either B, or B,. The Bj meson is composed
of a b quark and a  quark while the B? meson is composed of a b quark and a §
quark. In Section 3.2, we calculate the amplitudes arising from the Feynman diagrams for
the P° <> P° transition in the ’t Hooft-Feynman gauge. These calculations are
performed in n=4-¢ space time dimensions, adopting the dimensional regularization
procedure to control divergences. Finally in Section 3.3, we derive the expression for the

effective Hamiltonian for the P° <> P° transition.

3.2 THE AMPLITUDES FOR THE P° < P° TRANSITION
The P° meson is composed of one heavy quark Q, and one light quark g.
Box diagrams contributing to the P° «> P° transition in the ‘t Hooft-Feynman gauge are

shown in Fig. 3.1
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Fig. 3.1. Box diagrams contributing to the P° <> P° transition in the 't Hooft-Feynman
gauge



In Fig. 3.1, Q represents the external b quark while q denotes either the d or
s quark. p,,p, are the incoming momenta while p;, p, are the outgoing momenta. Both
the Q quark and ¢ quark are on mass shell. The indices i,/ represent the internal u, ¢
or ¢ quark. As our calculations are being done in the ’t Hooft-Feynman gauge, we have to
take into-account the contribution from the unphysical charged Higgs scalar, ¢* (Fig.
3.1(b), (c), (d), (f), (g) and (h)) in addition to the W exchange diagrams (Fig. 3.1(a) and
(b)).
We shall now calculate the amplitude for the box diagram in Fig. 3.1(a).

From the Feynman rules in Chapter 2, the amplitude, M|, is given by
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where L——z— dR— .InEq. (3,1),A,=V@V k -V V where V is the

iq>
KM matrix element and i,j=u,c or  quark. In both the B) —BY and B? - B!
systems, the momentum and mass of the light quark, ¢ is much smaller than those of the

heavy quark, Qand can be neglected. Eq.(3.1) then becomes:
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The denominators in Eq. (3.3) can be cast in the following form:
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Feynman p izing the d i of the integral in Eq. (3.4) with the help of Eq.
[A.13] given in the Appendix and using the on shell condition for O:
pi=Mp, (33

we obtain:
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where
Dy = My(1+x,[x* - x])
D, = My ([ = 2]+ x,[1-x] + xx,)
Dy = My (14 5[ -]+ [, -1y
D, = My (5[ — ]+ x,[1- 2]+ ) (67
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In Eq. (3.6),x, = m%wz and x; =m%’1wz . Generalizing to n=4-¢ space time

dimensions and making the shift k= ky — px inEq. (3.6), we obtain
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Carrying out the momentum integration in Eq. (3.8) using Eq. [A.15] and omitting all

terms that contain odd powers in k, we get after some algebra
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Substituting Eq. (3.10) into Eq.(3.2) and noting that
WL @y o, L@ = 4 L@y L@ @
and using the Dirac equations
7Ny - m) =

0 .
V(Z)(pl +mg)=0 (3.12)

we obtain
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The amplitudes for the ining di ns in Fig. 1 are calculated in a similar manner.
We obtain :
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21



Making use of the following Fiertz transforms:

@3y, LU FQ)v* L) = [73)y , LA DI[F(2)y* LA(4)] } 61
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we find that the amplitudes of diagrams (e) to (h) in Fig. 1 are related to the amplitudes of
diagrams of diagrams (a) to (d) as follows:

M, =M,

M, =M,
7 b
(3.18)
My =M,
M, =M,
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h
The effective Hamiltonian, H,y, is the sum over all the amplitudes, z M,,

a=a

calculated in Sect. (3.2). It is given by

Hy = GiénM’” {@ya[l 1slo) Zx B, +(5[1+y5]Q)ZZA,.A,C,.,} (3.19)

In Eq. (3.19), B; and C; are the form factors and are given by
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Ay :x,,xz +(x,- -x; —x,,)x+xj
A, = x,,xz —x,x+1 3.2)
Ay =xx2 +(1-xj—x,,)x+x, .

Ay =52 +(x, =z, = )x+1

The H,; derived in Eq. (3.19) is composed of two form factors, B; and C;

and is in with that obtained by previous authors [9-10]. As given in Egs.
(3.20) and (3.21), these form factors are expressed as integrals over the x variable.
Another feature is the presence of both the ¥ — 4 and S+ P type of operators. In the
next chapter, we will show how the off-diagonal mass matrix and decay matrix elements

can be obtained from the effective Hamiltonian.
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