CHAPTER 4

THE OFF-DIAGONAL MASS MATRIX AND DECAY MATRIX ELEMENTS
4.1 INTRODUCTION

. In this chapter, we calculate the off-diagonal mass matrix and decay matrix
elements, M, + % I, forthe P° «> P° transition. In Section 4.2, we demonstrate how
M,, and T, can be obtained from the effective Hamiltonian derived in Chapter 3. In
Sections 4.3 and 4.4 we derive the analytical expressions for I'; and M,,. Finally, in

Section 4.4, we present the behaviour of the form factors.

4.2 DERIVATION OF M,, AND I}, FROM THE EFFECTIVE HAMILTONIAN

The off diagonal mass matrix elements, M, and I, can be obtained by
‘sandwiching’ the effective Hamiltonian, H,; obtained in Eq. (3.18) between the P°
and P° states, using a strategy originally due to Gaillard and Lee [4],

P%)= M, —%rll

_GiMj,
16n?

%x,x, {(P"[(V - A)”F)BU +(Pl(s + P)’F)CU} @.1)

where

V-d=gr,(1-v;)0 and S+ P=g(1+75)0

One aspect of this calculation involves the estimation of the matrix

forthe ¥ — 4 and S+ P type of operators appearing in Eq. (4.1). A precise calculation is
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not feasible yet because of the traditional difficulties arising from the hadron structure and
strong interactions. The simplest approximation is the vacuum-saturation method where
one formally inserts a complete set of intermediate states in all possible ways and then
assumes that the vacuum saturates [41]. Using the vacuum saturation method and the

partial conservation of axial-vector current, we obtain

o 8 B
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where f is the meson decay constant and m) is the meson mass. Here, we have put in

the factor B, , which is the is the bag parameter. In the vacuum saturation method, B, is
equal to unity. In Eqgs. (4.2) and (4.3), the (2m,,)_l factor arises from the normalization of

the state, and the factor 83 corresponds to the 4 ways of Wick contraction multiplied by

a colour factor of % :

However, in principle one must use a complete set of low lying intermediate
states which are not accounted for by vacuum saturation. Deviation of B, from one
indicates the importance of low-energy intermediate states beyond the vacuum.
Theoretically, the value of B, can be determined using the Bag model, and may assume
different values for Egs. (4.2) and (4.3). For simplicity, we shall assume that B , takes the
same value. This is of minor consequence because the role of T}, for the calculation of

the mixing parameters, as we shall see, is a small one [3].
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The off diagonal mass matrix elements can then be obtained using Egs.
(4.1), (4.2) and (4.3) with M,, and T, being the dispersive (d) and absorptive(a) parts
respectively and are given by

2 2
GF M, w

My =2EZL S 0 [0, B +@g,,C0 ] (4.4)
16n” 73
GEM} (a
;= ]’;mzw Zx,xj[qn,_AB,!f’ +g, ,C} ’] (4.5)
Ly

From Egs. (4.2), (4.3), (4.4) and (4.5), we observe that the form factors come in the

following linear combination:

5
Ao = plad) _ s cled) “.6)

4.3 THE ABSORPTIVE PART
To calculate the absorptive part, we first note that the functions
Ay k=124 defined in Eq. (3.22) are of the quadratic form f(x)= Ax* +Bx+C,

with 4 andC positive and can be written as (x =X )(.x . x,) where

—B-+B -44C

X = A 4.7
and
~B+VB? -44C
M= (4.8)
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The calculation then involves the computation of integrals of the following type:
1
1, = [ x"In(4x* + Bx+ C)ax, n=0,12.
0
The integral above can be rewritten it in the following form:

I =xfx" In(Ax? +Bx+C)dx+]Lx" In(Ax? + Bx+ Clx
0 X

+jx" ln(sz +Bx+C)dx (4.9)

When x,and x, fall outside the range (0,1), we find that Ax* + Bx+C is always
positive. On the other hand, when x,and x, fall in the range and when Ax? + Bx+C
becomes negative an absorptive part is generated. Since In(- 1) = in, an imaginary part is

now introduced to the integral. As a result, Eq. (4.9) can now be written as

I, = '}:X" ln(A)c2 +Bx+ C)rix + Tx" ln(A,wr2 +Bx +C)dx
0 X

+j]x" In(Ax® + Bx + C)dx +1n?x"dx (4.10)

%

X
where me”dx is the absorptive part we are interested in.

%o

Inspection of the behaviour of A, in the range (0,1) shows that only A, is

negative in this range when i, j = u,c. Then, from Eq. (4.10) an absorptive part which is
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equal to mjx"dx is generated. On the other hand, when i,/ = ¢, A, is always positive and
X

no absorptive part is generated. The values of x, and x, can be found using Egs. (4.7)
and (4.8) with 4=x,, B=x;~x; -x, and C=x, for i,/ =u,c.
Using the method outlined above and carrying out the integrations in Eqs.

(3.20) and (3.21), we easily obtain the following analytical expressions for B,.}") and

~(a) .
c

iy (x; —r) +x}-2x, (x; +x;)
B = ‘/ P xl)(l h) {( _4_.](4x,,[x +x ] —2[ ]z)

+3x,,(x,+xlx,\',,-x,—xl)j| (4.11)

4 (x,-x,) =2x,( )
C;-ﬂ ( i} )‘{S:,, 1ix,)(:fhx/) il (x,,[x +x/]+x,f—2[x,—/\'f]z)

(4.12)
From Eqgs. (4.6),(4.11) and (4.12), we finally obtain:
(% -x,)? +v,,-2x,,(x+x)|— XX,
o™ (1+22) ot - s
b 4x,, )(1_ ) I_ 1+ 2 (31,, x,,[x, + ‘,,]
—Z[X,—I/]z )+2xh(x,+x/)(.x,+xj—x,,) j| i,j=uc. C(413)
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Our analytical expression for A,.j(.") is sy ic for i and j . We have compared our result

and it is in agreement with that of Buras, Slominski and Staeger [9].

4.4 THE DISPERSIVE PART
The computation of the dispersive part is more complicated. The dispersive
part occurs when the quadratic function in the logarithms in Egs. (3.20) and (3.21) is

positive in the range (0,1). The i 1 d for the ion of the dispersive

part are of the form Ix"ln(sz+Bx+C)dx,n=O,l,2, We shall first calculate
0

1 1
Ix"]nA,dx analytically and then show how the remaining integrals Ix"lnAzdx,
0 0

1 1
Ix" InA;dx and I x"InAdx can be calculated. Depending on the values of x; and x 7N
0 0

1

the evaluation of the integral,j.x" InA dx, can be divided into two cases:
0

® D(x.x,) >0

(I D(x, ,.xl) <0

2
whereD(x,,x/)=(x,. -x; -x,,) —4x,x;. Case (I) arises when 7,/ = u,c,t but excludes
the case when i,j=¢. Case (I) is for i,j =t After some algebra, we obtain the

following results:
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CASE (0: D(x,,x,) > 0

Iln/\dx —2+( 7 )ln———+ lnxx ——‘ x S X ln{Q(x x;

1
JxlnA,dx:—H-
0

rsonf, (imsmn)
+ P Inx; + e A(x, ,x/) lnlﬂ(x, ,.rl)l

3 Sx-x; 1fx-x ?ox X; = X; =X
"‘xl ln/\ldx——l— _ ( /) —Mln[ﬂ}
0

18 6x, 3\ x, 2x} %

e sz,
CEENEEY

where
A(x,,xj)=(x,. -x; -—x,,)z —4x,x;

_ X +Xx; - X, +,{A(x,.,x})
Q(X,.X,)— X+ X=Xy —,'A(x,-,xj)

’ 2
X=X, 1[[x-x
o, +2x (x Inx; —x; lnx) 4[{ x ] —1] Inx;

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)



CASE (II):D(x,.,xJ) <0

ilnAldx=—2+(x'2—;:—j—)lnf—'+%lnx,x,
+———_ A(X',XJ) tan"[ Fh+ % -,X' J —ta.n"[ ] Bkl J (4.19)
n H’“"J) \/- A(x,-,xj)

X,—,

2
J:xlnA,dx=-l+ Zx: +ﬁ{xilnx,-—x/lnxj)—%[[xi;hxj} —l]lnx,
2
=X~ X=X, =X +x; -
+(X Z;,f xh) lnx,—( 2;: ") —A(x,,x/){ tan"[—xh = x/}
X+ X=X
-l (4.20)
[ —A(x,-‘xj)J }

1 2

13 Sx-x, 1(x-x; Xi\x; —x; =X X
j.lenAldx=—— /__(/ /) _’(—’_L)n[x'J
0

18" 6x, 3\ x 2x2 .

J

3 3
1 Xp =X, =X, 1 x—x;—x
+—[2+[ - h:|]lnx,——[ L )'] Inx;
6 X, 6 X,
[(X:_x/'_xh)z_xjxh] W Xntx—x)
e e— -A(.r,»,x/) tan” | F———

3x; = A(x,,x/)



| X +X - X,
_A(x,.,xl) } @20

We will now demonstrate how the three remaining integrals,

1
_“x” InA,dx, n=234 can be evaluated. By writing A, = A,(x,,xj),we are able to
5 .

1
express them in terms of _‘.x” lnAl(x,. ,xj)dx as follows:
0

1
[x"InAdx = jx" InA(x = 1,x, = 4.22)
0 0
1
[ %" InAsdx = jl'x" InA,(x, = 1,x, ) @23)
0 0
_‘Lx"lnA‘dx = jx" InAl(x,.,xl =l)dx (4.24)
0 0

2
Depending on whether D(x,,xl ) = (x, -x; = x,,) —4x,x; is greater than or less than

zero, the integrals in Egs. (4.22)- (4.24) will be evaluated using the results obtained for

1

Jx"InAdx under Case (1) or Case (D). For Eq(4.22), since D(x, =1,x, =1)<0,
0

1

_fx” InA,dx will be calculated using the results obtained under Case (II). On the other
0

1
hand, for the integrals | x” InAdx and jx" InAyds, D(x = 1.x,) and D(x.x; = 1) are
0 0

both greater than zero for i, =u,c,t and these integrals will be calculated using the

results obtained under Case (I). Performing the integrations in Eqs. (3.20)-(3.21) using
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Egs. (4.22)<(4.24), we obtain the following expressions for B,ﬁ") and C,ﬁ") for 2 cases:

(1)D(x.x;) > 0 and (1) D(x,,x;) <0:

CASE (1): D(x,x;) > 0

By = ———1—{(2 +ﬁJB, +B, } (4.25)
(l—x-)(l—xj) 2

where

4-x, |4 n 1 1 ( 3 3)
B, = 3 Z—l tan y 1 +H [x,-xj—x,,] —[l—x/—x,,] Inx,

+ﬁ([xi —l—x,,]3 —[x,- -x; —x,,]s) Inx; +5J1;(1—x/z)lnx, —::—;(l—xj)lnx,

+L(xl "‘1)2 +[M+(i<—>j)]—€1:([l—x,]z +[i<—>/’])

6x,, 2x,

+ ﬁA(X, 8 (x, ) mie ) _ﬁ(A(x, )l ) e, )+ fi o /])

(4.26)



B, = %—l{tan" 4] J(‘vh[x,+xl]—4x,xj)
g =1

h

+Zi7(x,—2[l+x,z]+x [ X, + X )+x (x +xl—l)—1]lnx,+[i¢->f] )

+ %,[A(x, 1) tnfo(x, ,1)|(x,. +x; 4 & ;hx’ - j—; X+ 3x/]+[i © j])

y

. % W Inio, X/)}[@

and for C;

wal e, ]} “27)

G = (- x,)(l x,)(“”) @29

where

1 1 4 2 N 1
e e (B0 R 2 PN = e

n (L) (R N ) e ()
4_&1?[[):’ ~% ‘xhr —[l—xj -x,,]l)lnx/
+é([x, _X;.—I]] —[x, =X, —x,,]s)ln.r,



1

+ EE(2[J;, -x; ]2 _ x,,[x, +x;+ thmlnln(x,,xjx
+ih~{(2[l—xllx, +x,,]+[x, —xj]2 ‘[1—x,-]z)lnx,. o J)}
+ TZE?{(X’I [1 +x; + X;,]" 2[1 -X; ]Z )m lntQ(X, ,l)l + (i “ j)} (4.29)

Collecting all the terms in Egs. (4.25)-(4.29) and using Eq. (4.6), we finally obtain the

following analytical expression for A,ﬁd) :

4D =%([2 ﬂj|A A»] 430
j (1—x,)(1-x1) oA, (4.30)

where

1,
1 4 4 "2 l+xx-x - x
2-3 - == o 256 =%
4( x;,) % 1 [tan [Xh 1] ]+ ™y

lGx,,{ X x - +4x,,[x —l]+2[(1 X; )3 (x,. —xj)z] )Inxj+[i<—>j] }
16x,, (3 =2|x; - x; —x,, X +x D‘ x 2 X ln‘ﬂ(x,
161 { [ =11 + 3 +1]- 302 ) a1 e 1) + [I(—)j]} @31)

4 - 4 1
4y = ;—1 tan 7 ] (x,,[x,.+x/]—4x,.xj)
*n

+é{ (X/z(x, +xJ]+[x, —xj]+2x,»xl X —l]+2x,x,,[1—x]]—2x,z)lnx,. +[,'4_>j] }
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+%[—(x, +xj)+(x' ;:J) +4x;:j} \ A(x,,xl)ln|Q(x,,xI)'
+%{[[x,. +x,]+[l%]—j—; x; +3xj]]m1n‘ﬂ(x,,l)|+[l "’J]}

CASE(ID), D (x,.x,)<0

where

By =B, - ﬁA(x,,;cj)1 A(x,,xj)lniﬂ(x,,xjx

- e -l [m{ }[I «ulJ

—A(x,,xj)

1 BERLIRE
sl sl

with B, and B, defined respectively as in Egs. (4.26) and (4.27).

(4.32)

(4.33)

(434)

(4.35)



Similarly, for C; we obtain :
Cc@ = A—l—(4+x,»x )Cz
/ (1 = x,)(l -x j) /

where

1
C,=C - (Z[x -x; —x, X +x +x,,D‘, x JX; ln|Qx x;
12x}

612(2,( x/]Z—x,,[x,+xj+x,,D -A(x, “"/)
x [lan«lI:x'_"A’(‘;::;h)}+[i < ,I]J

with C, given by Eq. (4.29). From Egs. (4.33-4.37) and Eq. (4.6) we obtain

r
A‘yn 1 x)(l I)L(2+——JA3+A‘}

where

4y = 4 -ﬁ(kf =2[x; —xj]z —x,,[x,. +xlD,’A(x,,xj)lnIQ(x,,xj)

_&%(Sx,f -2|x, —xj]Z -Xh["r +x,]) —A(x,,xj)
h

x [tmrl[ f—;(;“x/")}g[z © /]]

(4.36)

(4.37)

(4.38)

(4.39)



1| xx
A4=AZ‘Z 4*";]-—[x,+.\' ,, x,,x/ lntﬂ( X, j

4 (s =n)

X, X X, —x

! xhl_[x’+xJ]+x—,,l —A(x,,x])

x| tan | S e ] (4.40)

- A(x, X /)
Our final expressions for the dispersive part, Al ) for D(x,,xj) >0 and D(x,,x,) <0
are symmetric with respect to i and ;. Our final expressions for the dispersive part, A,ﬁ‘”
for D(x,,xj} >0 and D(x,,xj) < 0 are symmetric with respect to i and j. Using Eqgs.

(4.2)(4.6), M, and I}, can now be expressed as

GEM 1
My =—~ ;’2”2 E ”Zn 49 (4.41)
iGEME fim
r,=—0 IWZ’; ‘ ”Zu A (4.42)

with 4\ either given by Eq. (4.30) or Eq. (4.38) and 4{® by Eq. (4.13).
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4.4. THE BEHAVIOUR OF THE FORM FACTORS.

We have shown in previous sections the method used to obtain analytical
expressions A,.ﬁ.‘"”). We now display the behaviour of the form factors and we shall
use the following set of values for the quark masses involved:

m, =0 GeV
m, =13 GeV
m, =176 GeV

m, =43 GeV

The form factors d ate a strong depend on the internal quark
masses. First, let us look at AE’"’), where both of the internal quarks are of the same
kind. Fig. 4.1 shows the behaviour of Aj(f) for values of m; up to 600 GeV. AI(]'” is

seen to increase almost linearly as m; increases from 100 to 600 GeV. When m; is

large, the expression for AJ(-,") of Eq. (4.38) reduces to:

sex)i-x,) ~1)(x2 -4)t
-ty e Lt lizn) sl i e
-

(4.43)

From Eq. (4.13), it is seen that the absorptive part develops whenever x? >
4x,,x ;. The behaviour of A}I"‘ as a function of m; is displayed in Fig. 4.2. Tt can be
seen that A}l") decreases in magnitude as m, increases. When m; ~ 2.1 GeV, Ai,")

becomes zero. Putting i = ; it is straight forward to see that Eq. (4.13) reduces to the

following form:
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Fig. 4.1. The behaviour of Al(,’” as a function of m,
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Fig. 4.2. The behaviour of A as a function of m,
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Fig. 4.3. The behaviour of A;"’ as a function of m;
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Fig. 4.4. The behaviour of A% as a function of m,
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)
- x; )2 x
Aj,"’z—’L—"L[l—Lx—’] (3-24] (4.44)

“h n
We now tumn to the behaviour of the form factors when the two

internal quarks are different. To see a typical behaviour, we display Aﬁf’ and A;")

versus m;’in Figs. 4.3 and 4.4 respectively. It is observed that Ac(;” drops sharply as

my ir hereas A i in
The values of the form factors at physical masses of the internal quarks
are given in Table 4.1:

Table 4.1: Numerical values for A,.(jd“’)

49D =1.0012 | 49 = -677x107

AD 210012 | 49 =-593x107

A =21241 | 49 =-507x107

uc

AD =10011
AD =01775
A = 01801

The values in Table 4.1 were obtained using a computer program called FORTRAN.
In order to check the correctness of these values, we recalculated A,J(."“’) analytically,

and obtained results that are consistent with that given by Table 4.1.

In the next chapter, we shall analyse the behaviour of M), and I,

using the numerical values in Table 4.1 and calculate the mixing p which

account for particle antiparticle mixing in the Bj <> B and By <> By systems.
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