Chapter 2
Literature Review

2.1: Geometrical Optics

In geometrical optics, when the short wavelength approximation Ay — 0 is
fulfilled, the propagation of light is governed by three empirical laws. The law of
rectilinear propagation, the law of reflection and the law of refraction enable the
propagation path to be determined geometrically. Even though geometrical optics only
refers to the propagation properties of light and not the physical nature of light, it is
accurate in the classical regime

According to geometrical optics, the propagation paths are completely determined
by the initial values i.e. position and angle of incidence from a reference plane. Using the
law of rectilinear propagation, the law of refraction and the law of reflection, the position
and the angle of incidence at the final plane can be obtained By repeated applications of
these laws, the path of light rays through any surface and medium can be computed.

This ray tracing method is carried out not only for a single ray but also for a
number of suitably selected rays. For an optical system, the image can easily be
constructed at the image plane with the aids of these selected rays. Therefore, the
evaluation of these rays will give a good estimate of the optical performance of the

system.



2.2: The Generalized Eikonal Equation

In a few recent studies, the classical eikonal equation has been generalized to
include higher order terms" * . The higher order terms, which consist of the second
derivatives of spatial and temporal profiles of the wave leads to the time dependency and
local inhoﬁmgeneity of the effective refractive index i.e. a homogeneous material is
induced to become inhomogeneous. The generalized eikonal equation is able to show
wave phenomena through these terms. The time dependent generalized eikonal equation
is able to show the dispersion of a pulse in a linear and non-linear media. It is also able to
give the same results of soliton propagation obtained by the inverse scattering method. At
the same time, in the stationary case, this formalism can generate the phenomena of
diffraction, self-trapping and the self-focusing effects

The case of time dependent generalized eikonal equation has been derived in
Quek et al' and the case of generalized eikonal equation has been further developed by
Yap et al’. The following derivation is based on the textbook of Born and Wolf and
further developed by Quek et al' and Yap et al’

The stationary-wave equation in a homogeneous medium is given by
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where n is the refractive index, and k, == = == represents the wave number in free
P

A
space, @ being the angular frequency of the wave and 4, the free space wavelength.
When the field is polarized in the ¢ direction transverse to the beam-propagation

axis, the solution for the wave equation can be generally expressed in the following



I = d(r)explik, L(r)} 22)
where @(r) is a slowly varying envelope function and L(r) is a real scalar function of
position. Both are assumed to be independent of ,. The rapid variation of the optical
field is represented by the exponential term.

By substituting equation (2.2) into equation (2.1), two equations from the real part
and the imaginary part can be obtained. Both parts are separately equated to zero. The
imaginary part gives the following equation
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which is in the form of a continuity equation while the real part gives

(VL) =n* + "¢ Vg (2.4)
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In the limit of 2, — 0 i.e. k, —» 0, equation (2.4) is reduced to
(VL) =n* 2.5)
This equation is called the classical eikonal equation. The quantity L is called the
eikonal. However, retaining the second term in equation (2.4)
(VL) =n} (2.6)
allows one to obtain wave phenomena. Equation (2.6) is termed as the generalized

eikonal equation where 7, is the generalized index of refraction
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2.3: Ray Tracing and Its Geometrical Interpretation
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On account of the generalized eikonal equation, — is a unit vector § given by
ne

(2.8)

where § is in the direction of the time averaged Poynting vector. The geometrical light

rays are then defined as the orthogonal traj ies of the g ical wave fronts where

L is constant.

The unit vector is represented by
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where 7(s) denotes the position vector of a point P on a ray and s is the arc length of the

ray. From here, it was shown in Born and Wolf” that by ipulation, it then b
d dr
065 =ng (2.10a)
or
4 (91)=vn (@.10b)
e » .10b).

This shows that the ray vector is tangent to the ray.
Using these properties, the ray can be constructed from the generalized eikonal
equation

(VL) =nl.



By casting it into Cartesian coordinates™ >, the above equation becomes
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These partial terms in x, y and z direction can be represented by
L, o (2.12a)
=% (@12b)
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and L = Z—[: (2.12¢).

Since we only take into consideration two dimensions, the y term is then dropped

from equation (2.11),
L=n}-12 (2.13)
with z as the direction of propagation. Differentiation of equation (2.13) as a well-

behaved, continuous function, in the x and z direction yields two separate equations: -
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Casting the continuity equation, again in two dimensions in Cartesian coordinates, gives
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while equation (2.7) can be rewritten as



&7}# (2.17).

Calculation of ¢, L, L. and n} can be carried out from these four differential
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equations enabling the construction of rays
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2.4: Wave Phenomena

In optics, the geometrical model only gives information on the physical properties
of light propagation. There are certain regimes in which a simple geometrical model of
energy propagation is inadequate. These regimes involve the description of wave effects

on phenomena such as diffraction and interference. All of these cases involve beam size

of the same order of itude with the length

2.4.1: Diffraction

Diffraction phenomena® ' '*

refer to the spreading of waves into regions that are
blocked by an opaque obstacle, out of the direct line of sight of all oncoming waves.
Diffraction theory deals with the deviation from geometrical model in the immediate
neighbourhood of the boundaries of shadows and the region where a large number of rays
meet. These regions give an appearance of dark and bright fringes.

Wave theory, first proposed by Huygens, is sufficient to explain not only the
rectilinear propagation of light but also the minute deviations from it — diffraction
phenomenon. According to Huygens, every point of a wave front may be considered as a
center of a secondary disturbance, which may give rise to spherical wavelets. From the
above construction, Fresnel then accounted for diffraction with the postulate that the
secondary wavelets mutually interfere.

The Huygens-Fresnel principle has been given a mathematical basis developed by

Kirchhoff. He has exp d the solution of a h wave

at any

arbitrary point in the field, in terms of the values of the solution and its first derivatives at



all points on an arbitrary closed surface surrounding the point. However, the expression

governing the contributions from different elements of the surface is more complicated

than that assumed by Fresnel. In many cases, it can be approximated to the formulation of

Fresnel. The following approximations, referred to by Born and Wolf, are the

Kirchhoff’s. boundary conditions, making the following assumptions: -

O
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Over a surface B, which is far from the aperture (which lies just behind the
opaque portion of the screen) the field U and its derivative are zero.

ou
U=o0, —=0
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On the surface A (surface exposed to oncoming waves), the field along its

derivative has exactly the same value as it would have had if the screen has

been absent. The field on aperture A is assumed to be U = (ﬁJexp(—iks) for
s

ill where s

a point source P the di of an arbitrary

point on the aperture from the point source and A as the amplitude of the

wave.

It is further d that the di b the source and the aperture is large

P

d to that of length. Under these approximations” '*, the integral is then

reduced to
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which is known as the Kirchhoft integral, where s represents the distance of surface
element dSto a chosen origin. The unit vector / is a unit normal to the surface of the

aperture.

P(P, P, P)

Figure 2.1

The Kirchhoff integral above, equation (2.18), can be reduced to the Fresnel

integral by making a few assumptions. The source is assumed to be placed at the aperture

: N " N - ou .

instead of located at a distance from the aperture. From this point, the value . is then
on

equal to zero, leaving the integral theorem of Kirchoft with only one term
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The differentiation of

gives two terms and by considering k is large or A is small.

Therefore, only the leading term with constant k is maintained.
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The dot product of the unit vector of the distance between the aperture to the point
P and that of 7i gives cos6. The distance s is reduced by binomial expansion, and by
taking in the first term only, to
s= P +Ax+ Ay (2.21)
with Py, Py and P, as the location of point P in Cartesian coordinates while x, y and z
refers to the location of the source at the aperture Substitution of equation (2.21) into
equation (2.20) reduces the equation to
l/(/)):'jgjj‘(/ﬁ’i.' ’k(—w" FACE Mg @2)
where only the first term of cos@ expansion is taken into account. Then, it will reduce to
the one dimensional Fresnel integral form
Uy = ZHEPERE) 1 ek (2.23)
Anl’.
It is then used to compute results for comparison purposes of different cases of initial

conditions of U.



2.4.2: Interference

Another interesting and important wave phenomenon is the occurrence of
interference. It happens when two or more light beams are superposed, the resultant
disturbance can no longer be described in terms of rays. The intensity in the region of
superposition is found to vary from point to point between a maximum and a minimum
which may be zero. The two beams are said to have interfered. The maximum point is
formed from constructive interference with the resultant intensity greater than that of the
two separate intensities. The minimum point, formed from destructive interference, has
resultant intensity less than the sum of the separate intensities. Overall, it does not violate
the principle of conservation of energy.

For two monochromatic waves, E; and E,, superposed at some point P, the total
electric field at that point is

E=E,;+E;
and the total intensity is given by
E’=E’ + E;* ©2E,.E,.

giving an interference term of

J12=2<E.Ep>.

Taking into the 1 litudes of the two waves and the fact that the

P T

phases will produce a phase difference of &, caused by the difference of the optical
paths,

J12 = (ajby + azb; + azb;) cos &



The interference term depends on the amplitude of the components (a;, bi; i = 1, 2, 3) and

also the phase difference.

2.4.3: Diffraction Grating

Diffraction grating refers to any periodic arrangement of diffracting elements,
which causes the incident wave to be periodic variation in amplitude or phase, or both.
Elements of a grating, taken as narrow slits of the same width, act as sources of
disturbances that radiate uniformly. The properties of diffraction grating are associated
with the interference effects between disturbances from corresponding parts of the
separate elements i.e. the periodicity of diffracting elements. It is regarded as an
extension to that of a double slit for interference

For a one-dimensional grating of N-parallel grooves of arbitrary profiles, with
d as the separation of the elements in the grating, the light distribution is given by

Nl
U(P) = ”(u;(p)ze_mmp
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It is the same as that of a set of coherent secondary sources, each characterized by the
same amplitude function ‘(/“"(p)| with the same phase that differs from each other by an
integral multiple of kdp .

The most striking moditication'" in pattern as the number of slit increases consists

of the narrowing of the interference maxima. The sharpness of these principal maxima
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increases rapidly until they become narrow lines. There also exist secondary maxima
between principal maxima but they are of less importance, as they are quite weak in
intensity.

The three phenomena that were described above were only explainable by wave
optics and ﬁot by geometrical optics. However, we will demonstrate that these effects can

be reproduced using ray-tracing concepts by utilization of the lized eikonal

formalism.



2.5: Previous Work and Problems

Using the above method, the propagation of a Gaussian beam has been

investigated by Quek et al'. By using some approximations, the p ion of a
Gaussian beam has been analytically solved. It agrees with the previous work obtained by
using the Kirchhoff integral using Fresnel approximation.

However, the propagation of other finite beams has no simple analytic solution.
Therefore, a general numerical scheme is needed. The numerical scheme proposed by
Quek and Yap et al uses the following algorithm.

1. Calculate n,; using initial values.

2. Calculate aL’, oL,
0z 0z
%

3. Calculate .
0z
4. Obtain L,, L and g at z=2z,+3z.

5. Repeat1to4until z=2z,,.

In order to test this algorithm, two programs have been developed. The first

uses fixed di while the second is based on moving coordinates.

Gaussian beam has been used to test the stability and accuracy of these two programs. It
is found that both programs agree with the result obtained by Kirchoff integral to the
accuracy of 10 at Zfinal = 10m.

The first program based on fixed grid coordinate by Quek et al* focussed on the

formalism for the stationary beam propagation, time-dependent pulse propagation and

li di The above algorithm was first written in the

wave ion in

propagt



canonical Hamiltonian form, which allows the characteristic equations to maintain its
form after transformation to other curvilinear coordinates. It was used to investigate
different types of envelope functions of finite beams in a homogeneous media.

The envelope function of an infinite plane wave was applied to the above
algorithm. It reduces the generalized eikonal equation to the classical eikonal equation,
giving the propagation behaviour exactly as predicted by geometrical optics. When the
envelope function was changed to that of a Gaussian beam profile, it shows a spreading
of the beam indicating the diffraction effect due to higher order terms. It is similar to the
conventional diffraction results. This fact was verified by using an envelope function of a
non-diffractive beam. This was obtained by using cylindrical coordinates where the
lowest mode obtained is that of wave-guide solution in the core of a step function
cylindrical optical fibre. From the above, it was concluded that the higher order term
gives rise to the diffraction effect

Further study was carried out on the time-dependent generalized eikonal equation
written in the Hamiltonian-Jacobi form. It was found that the existence of the local
acceleration causes a spreading of the local velocity, distorting the pulse thus leading to
the dispersion effect. However, the space-time rays remain straight and parallel to each
other if the group velocity equals the phase velocity, giving propagation in non-dispersive
medium.

The generalized eikonal equation allows for the undertaking of the dispersive
effect. The storing of energy in the dispersive media causes the group velocity to be
different from the phase velocity. It then led to the reduction in the local velocity at the

center, dispersing the pulse
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Thus far, the generalized eikonal equation had been shown to be able to handle
diffraction and dispersion in a unified manner. It was shown that, while both effects have
similarity in showing greater effect when a narrower beam was used, they are different in
the aspect that the diffraction effect is not material dependent. Dispersion happens when
the material used has a group velocity that differs from the phase velocity. Diffraction
happens in all materials but can be modulated to achieve non-diffractive propagation as
in the transverse modes in a cylindrical fibre

The generalized eikonal equation was then extended" ® * to include the
propagation in a non-linear medium allowing the study of various effects such as self-
trapping, self-focussing and solitonic propagation. Self-trapped effect was obtained by
balancing the non-linear effect with the diffraction of a stationary beam causing the local
curvatures to vanish. The 1-D soliton effect was, however, obtained by balancing the
non-linear effect with the dispersion effect. This caused the local acceleration to vanish.

The numerical work used for the first program was based on the Lax-Wendroff
scheme. It is only able to give an accuracy of 107 for a fourth order super Gaussian beam
at Zgna = Im and 10 at zg, = Im for a Gaussian beam.

The second program developed by Yap® was based on moving grid. It shows a
stability problem when used for other type of profiles. This program was based on the
algorithm that is extended from the one discussed in the previous section. Yap utilized
the classical ray equation in the vector form and transforms it to other more suitable
forms to enable implementation of numerical method. The method by Puchalski was
adapted by replacing all refractive index with local refractive index. This method traces

the trajectories of each individual ray. The value of the variables are calculated
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corresponding to the new position of the ray, creating a non-uniform computing grid that

is self- d by the p ion properties.

The cases studied by Yap® using this program include the ion of a

Gaussian beam in graded index medium and lens design. In tracing the Gaussian beam in
a graded index medium, the higher order term in the generalized eikonal equation was
first dropped from the local refractive index. This condition shows a ray path that is
sinusoidal from the ray trace method. This result is in good agreement with the analytic

1 oh

solution. The higher order term was , ing the ray traj ies. Energy that

flows along these trajectories is focused to a narrow width, then the diffraction term takes

over, a stage where focusing effect is p d by the diffraction effect. The beam is

then diverged out. The trajectories never cross each other for a finite beam. Again, the
results from the calculation agree well with the analytical solution.

As for the numerical ray tracing in the lens design, the generalized eikonal
equation represents a way of determining the initial condition and the surface properties
that are required to produce certain final image. The diffraction effect prevents the beams
from being focused to an infinitesimal spot. The numerical results show that beams are
focused to a minimum spot size before starting to diverge again. The generalized eikonal

equation has a great advantage in its ability to carry out ray tracing in lens design when

the medium is linear. The inclusion of the li effect in lenses had been shown

to be able to focus a minimum spot size smaller than that set by diffraction effect.
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