Chapter 4
Results Presentation and Discussions

4.1: Introduction

This bchapter presents the results obtained by numerical methods as discussed in
chapter 3. The wave phenomena investigated in this study are the interference of two
beams and that of a diffraction grating. The objective in this investigation will be focused
on the formation of the fringes from the perspective of energy redistribution of the rays.

A mathematical proof will first be shown that the interference or superposition of
two beams is self-consistently defined in the eikonal formalism. The numerical results are
then presented in the subsequent sections. The ray traces are also presented. It will be the
main focus on how the ray leads to the occurrence of the first minimum.

Before investigating the interference effect, the numerical accuracy of the
numerical method is studied by the comparison with the analytical results of diffraction
of a Gaussian beam.

The last part is on the interference of the multiple slits. This can be

: orad 1

as the of the interference effect from the two beams. The
diffraction patterns are obtained for different number of slits on the grating. The changes
in the diffraction pattern when the parameters are changed are also shown. A ray trace of
a five slit interference is shown. The light rays give an indication of the redistribution of

the effect of interference from five slits.
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4.2: Linear Superposition of Waves

In this section, the proof that interference effect is self consistently defined in the

eikonal formalism will be discussed. We will prove that if ®, = ge* and @, = g,e*

satisfy the generalized eikonal equation and the equation of continuity, then

®; = ge"" = g™ +ge* also fulfills the generalized eikonal equation and the

equation of continuity
First, consider ®,, = ¢, ,¢*** fulfills

1
VL,f =n?+—— V¢
( 1,2)2 0 k02¢"2 1,2

V'(¢1,21VL|.2)= 0
Then, it is easy to show that
VI, = V(g +gye™)

=(v2g, )" +QikVL, -V 4, - k9, (VL, ! + VL g,
+(724, k" +QikVL, Vg, ~K26,(VL, ] +ikV? L, ™

= (V26 kg, (v, e +;1(V~(¢.’VA e
+(20, ) — kg, (VL F et +;1(V~(¢3’VLZ) o

Since ¢, # 0and ¢, # 0, from equation (4.2)

Vi, = (Vg b — kg (VL P et + (Vg b - kg, (VL et
from equation (4.1),

VD, =-n}(®, +D,)= -nl®,
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or
V0, +nld, =0 4.3).

Since @, can be expanded, as ¢,e* therefore it is solution to

1
VL,) =n? +——V4 4.4
W) =ng s, » 4.4)

v-(pvL,)=0 @5).

It has been shown that any complex solution that fulfills the stationary wave

equation also fulfills the lized eikonal equation and the inuity equation. If @,
and @, both are solutions of equations (4.1, 4.2) then according to the Principle of
Superposition, ®, =®, +®, must be a solution of equation (4.4) and equation (4.5).
Based on this deduction, the principle of linear superposition is shown to be self
consistently defined in the generalized eikonal formalism (GEF) even though its form

appears to be non-linear.
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4.3: Accuracy of Numerical Scheme

The diffraction of a Gaussian beam is one of those few cases where it can be
solved analytically or by using the Fresnel integral. Even though it had been solved using
the eikonal formalism before* *, it is solved again to ensure the numerical accuracy of the

present numerical scheme.
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Figure 4.1: Diffraction effect on a Gaussi pulse as it propagates from Om to 10m.

The figure above shows the diffraction effect of a Gaussian beam,

2
¢= Aex;{— x—zJ where A is the amplitude of the beam initially. In this case, the value
Ty

of A is assigned as unity. As the beam propagates from z=0 to z=10m, it can be

observed that diffraction effect takes place, indicated by the spread of the beam as it
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propagates forward. As the beam spreads out, the amplitude at x = Om reduces from
unity.

The accuracy of this formalism at z = 1m gives a relative error of the order of 10"
when compared to the results obtained using the Fresnel integral (table 4.1). The

parameters used in this case are givenas n, =1.0, o, = lmm at wavelength of 1m.

Amplitude, (V/m)

X(m) Fresnel integral GEF Relative Error
0.0 0.9761611 0.9761633 2.23E-06
0.0002 0.9413431 0.9413450 2.07E-06
0.0004 0.8441647 0.8441658 1.36E-06
0.0006 0.7039783 0.7039782 -1.69E-07
0.0008 0.5459391 0.5459377 -2.66E-06
0.0010 0.3937150 0.3937126 -6.16E-06
0.0012 0.2640418 0.2640389 -1.07E-05
0.0014 0.1646706 0.1646679 -1.65E-05
0.0016 0.0955020 0.0954997 -2.35E-05
0.0018 0.0515064 0.0515048 -3.18E-05
0.0020 0.0258323 0.0258313 -4.17E-05
0.0022 0.0120481 0.0120475 -5.30E-05
0.0024 0.0052255 0.0052251 -6.61E-05

Table 4.1: Comparison of diffraction amplitude obtained by GEF and Fresnel integral.

The ray trace of the diffraction effect has been obtained. The figure below shows

that the light rays are initially uniformly spaced at z =0 to being diffracted out from the

center to the side at 10m. The light rays from the side started to diffract out as it moves
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along the z-axis. This effect moves in from the side causing the light ray on the inside to
spread out to the side as it propagates forward. This indicated that the energy spreads out

as the beam propagates forward.
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Figure 4.2: Ray trace of diffraction effect.
The lized eikonal ion as a nonli ion, had been shown to be

able to produce diffraction effect. Two Gaussian beams of the same nature were allowed
to propagate, separately, and their phases and amplitudes were obtained at different
distances from the origin. These two beams were then linearly superposed according to
the principle of linear superposition. The resultant disturbance, in this case, was not only
the sum of the intensities of the two separate disturbances but takes on the value of the

magnitude of y3. These two disturbances were then shown to have interfered.
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However, the accuracy of this method, as shown in table 4.2, when compared to
that of the Fresnel integral is of the order of 10? in relative errors. The accuracy is not
very high but the method employed was able to describe the linear superposition effects

and thus, the interference of the two beams.

Amplitude at z = 4m from origin

X(m) Fresnel Integral | Linear Superposition by the GEF | Relative Error
0.0E+00 0.666203 0.666195 -1.19E-05
2.0E-04 0.646448 0.646456 1.32E-05
4.0E-04 0.601700 0.601732 5.27E-05
6.0E-04 0.569583 0.569585 3.98E-06
8.0E-04 0.584809 0.584820 1.92E-05
1.0E-03 0.644074 0.644091 2.69E-05
1.2E-03 0.713947 0.713944 -3.35E-06
1.4E-03 0.764590 0.764587 -4.22E-06
1.6E-03 0.782197 0.782926 9.32E-04
1.8E-03 0.765739 0.759392 -8.29E-03
2.0E-03 0.721026 0.714425 -9.15E-03
2.4E-03 0.578790 0.576994 -3.10E-03
2.6E-03 0.495682 0.495333 -7.04E-04

Table 4.2: Comparison of amplitudes obtained for the two-beam interference based on

linear superposition of two beams each generated separately by the GEF method.
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4.4: Interference of Two Beams

In the case of interference, the initial condition of the Gaussian beam is modified

to give out two beams that serve as the two slits used in interference experiments. The
initial condition is modified to ¢ = A[exp[— = ]+ exp[ (et x")'H. The

amplitudes of both beams, A, is again kept at unity while x, refers to the position of the
beam from the origin. In this study, x, = 0.0015m . The interference effect is achieved by
placing two beams at a certain distance, 2x,, from each other. As the beams propagate
forward along the z-axis, a spreading of each beam can be observed. The redistribution of
energy by each beam will have an effect on the beam next to it, thus giving rise to
interference effect.

The accuracy of this formalism (table 4.3) when it is used to generate the
interference effect gives a relative error of the order of 10~ at 4 meters from origin when
compared with the Fresnel integral. It is comparable to the relative error of linear
superposition of two beams by the generalized eikonal formalism, which is also of that
order of magnitude. The interference effect by generalized eikonal formalism is then

established.
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Amplitude at z=4m from origin
X(m) Fresnel Integral Interference by GEF Relative Error
0.0E+00 0.666203 0.666220 2.55E-05
2.0E-04 0.646448 0.645508 -1.45E-03
4.0E-04 0.601700 0.597994 -6.16E-03
6.0E-04 0.569583 0.564640 -8.68E-03
8.0E-04 0.584809 0.584015 -1.36E-03
1.0E-03 0.644074 0.648835 7.39E-03
1.2E-03 0.713947 0.719103 7.22E-03
1.4E-03 0.764590 0.767291 3.53E-03
1.6E-03 0.782197 0.781923 -3.49E-04
1.8E-03 0.765739 0.763622 -2.76E-03
2.0E-03 0.721026 0.718582 -3.39E-03
2.4E-03 0.578790 0.577881 -1.57E-03
2.6E-03 0.495682 0.495631 -1.03E-04

Table 4.3: Comparison of amplitudes obtained for the two-slit interference by the

GEF and the Fresnel integral.

As before, the ray trace of the interference effect can be obtained. The ray trace
represents the energy flow of the beams when they interfere. Figure 4.4 is obtained by
using the same parameters that was used to generate figure 4.3 that is the two beams are
separated by 0.003m with sigma taking the value of 0.001m. The density of light rays
near to the z-axis is higher when compared to other areas that are further away from the
z-axis. It starts building up after 2m, which leads to the building up of the principal

maxima, and it keeps on getting denser as the intensity of the maxima increases. This can
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be observed with each of the light rays bending into the z-axis before paralleling out to
propagate along each other near the region of the z-axis.

The initial beam with a peak situated at 0.0015m along the x-axis drops in
intensity with the light rays diffracting away to its side. In between Om to 0.0015m, the
light rays diffracted to compress together along the z-axis. At about 7m along the z-axis,
the light rays at the right of x = 0.0015m are bent towards the center while light rays at

the left are diffracted out. Thus the energy becomes less and it gives a minimum.
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Figure 4.3: Ray trace of interference effect.

From figure 4.4, interference of two beams placed 0.0015m at either side of the
origin was allowed to propagate up to 10m. The generalized eikonal formalism was able
to show interference effect that has a build up of second maximum as the principal

maximum builds up at x = Om axis.
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At 4m, the minimum that was formed was at 0.0006m, shifts away from the x = 0

axis and reduces in amplitude. The mini formed b more obvious, as the

beams propagate. The formation of the minimum at all the distances along z-axis agrees
with the calculation that was done based on the parameters used to generate this figure.
As was exbected from the interference effect, the minima shift away from the origin as
the distance in z-axis increases.

It can be seen that the conservation of energy is not violated. The build up of a
maximum along x = Om where the initial intensity is very low is compensated by the
drop of intensity where intensity was high when z = Om, giving a minimum. This was
shown in figure 4.4. However, these minima obtained do not go to zero as expected from
wave and geometrical optics. This is due to the fact that the initial value used here is a

Gaussian profile of finite extent somewhat larger than employed in the Young’s two-slit

experiment.
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Figure 4.4: Interference pattern of two Gaussian beams, separated by 0.003m
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When some of the p are ch d, other c} istics of interference

are also obvious. These observations are made by comparing figures 4.5, 4.6 and 4.7,
each with different values of x,. By varying the distance between the two beams,
changes to the size of the fringes formed was expected. As was known, if the slits are
closer together, they give widely spaced fringes, whereas slits farther apart give narrower
fringes.

By comparing the different values of x, used, the interference fringes of
X, =0.001m at 6m away from the origin has a minimum at around 0.0018m away from
the origin. An arrow on each of the figures marks the minimum location. When x, is
increased to 0.0012m, the minimum then decreases to 0.0013m and a further decrease is
noted for x, = 0.0015m at 0.001m. It is found that the minimum position is inversely
proportional to the separation of the beams, which is exactly predicted in Young’s

experiment. The h ical ion for the location of the mini Ymin in

P

relation to the separation of the beams, a is given as

—[m+l =
Fain 2)a

where s indicates the distance from the observation point to the source
m its value in integer and
A refers to the wavelength.
However, the maximum at x = 0 axis will also decrease in its intensity. The

intensity formed when x, = 0.001m is more than 1V/m but it decreases to less than 1V/m

as x, i This is

d by the formation of a second maximum that

'P
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increases in intensity as the initial two beams have a wider separation, in keeping with

conservation of energy.
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Figure 4.5: Two-beam interference pattern with x, at 0.001m.
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Figure 4.6: Two-beam interference pattern with x, at 0.0012m.
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Figure 4.7: Two-beam interference pattern with x, at 0.0015m.

As before, with all the other parameters kept at the same values, changes were
made to the sigma parameter, varying it from 0.0009m to 0.0014m as shown in figure
4.8. Observation of the changes brought to the fringe pattern was made at Sm away from
the origin along the z-axis. Comparison of the fringes shows that the interference effect
gives the maxima and the minima at the same points along the x-axis. It can be expected
that when the value of sigma was further reduced, the minima formed will be deeper. The

1

litude of the minima shows a

y to approach zero when the beam width is
reduced to the size of a slit as in the experiment. It can also be seen that the fringes for a
smaller sigma are more pronounced when compared to that of higher valued sigma. The
second peak then becomes more obvious. In other words, the smaller the value of sigma,

the fringe becomes sharper.
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When comparison of the ratio of second maximum to the minimum was made in
table 4.4 for different sigma values, it is obvious that the narrower beam has a higher
ratio. As was mentioned, it has a sharper fringe pattern. A sharper beam diffracts faster
than a less sharp beam thus and it goes through a more significant drop in amplitude.
However, there is a general drop in amplitude as sigma decreases in value. This is caused

by the total energy of the beams are less.

Sigma Phi(V/m) Ratio of
maximum over|
Minima Maxima minimum
0.0009m 5. 74E-01 6.56E-01 1.14E+00
0.0010m 6.25E-01 6.92E-01 1.11E+00
0.0012m 7.34E-01 7.48E-01 1.02E+00
0.0014m 8.42E-01 7.96E-01 9.45E-01

Table 4.4: Comparison of ratio of maximum over minimum for different values of sigma.
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Figure 4.8: Comparison of interterence pattern at Sm when the value of sigma is varied.
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4.5: Interference of Multiple Slits

The pattern formed from the interference of multiple slits is very similar to that of
the interference pattern of the double slits mentioned earlier. In this sense, the double slits
can be consitiered as an elementary grating. The pattern produced by multiple slits can be
considered‘as an extension to that of a two-beam interference.

The initial condition for multiple slits still uses Gaussian beam but it is modified
to include a number of beams at different distances from the origin. The initial condition

o 3]

nel )

can be written as ¢ = Aexp[—

(N + 1) indicates the number of slits present in the initial condition while X, represents
the separation between two slits

Employing the same method as discussed previously, the multiple slits were
obtained with only a modification of the initial condition as mentioned above. As the
number of slits is increased to three and later to five, a conclusion can be made that the
number of maxima formed will be one more than the number of slits.

The ray trace figure 4.9 was obtained from the interference of five beams
separated from each other at a distance of 0.003m. The figure shows a good correlation
between the intensity of light rays and that of the building up of the maxima as the beams
propagate. The maxima start to form at z = 2m are at points x = 0.0015m and x =
0.0045m from the origin. The light rays are more widely spaced on the outer side of these

maxima. This relates to the build up of lower amplitude maxima
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Figure 4.9: Ray trace of a five-slit interference pattern with a separation of 0.003m.

From figure 4.10, three slits are placed so that it is symmetrical along the z-axis.
At 8m from the origin, four maxima developed as a result of the interference between
beams. The intensity of the maximum nearest to the center is much higher compared to
the other maxima formed at the sides. The minimum at the z-axis at 8m has the lowest

intensity compared to the second minima
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Figure 4.10: Interference pattern formed from three slits.

When changes are made to the separation of the beams, the maximum is observed
to have shifted away from the z-axis as it propagates along the z-axis. This happens when
the separations of the beams are closer to each other. As the separations between the
beams are increased, the maxima that are formed from the minima of the initial condition
keeps on increasing in intensity without an obvious shifting from the z-axis. The fringe
pattern is sharper with narrower fringes replacing those of wide fringe pattern formed
from closely placed beams. This characteristic can also be observed when the value of
sigma is changed from 0.0009m to 0.0014m when the beam separations are kept at a
constant as shown in table 4.5. The same effect as in interference is observed for the
comparison of different sigma values The ratio however is much higher for the

interference of three slits when compared to the interference of two slits.
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Figure 411" Interference of three beams separated by 0.002m.
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Figure 4.12: Interterence of three beams separated by 0.0024m.
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Figure 4.13: Interference of three beams separated by 0.0036m.

Sigma Phi(V/m) Ratio of
maximum over
Minima Maxima minimum
0.0009m 4.90E-01 7.59E-01 1.5SE+00
0.0010m 5.65E-01 7.72E-01 1.37E+00
0.0012m 7.00E-01 8.11E-01 1.16E+00
0.0014m 8.23E-01 8.80E-01 1.07E+00

Table 4.5: Comparison of ratio of maximum over minimum for different values of sigma.
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Figure 4.14: Comparison of interference patterns of three slits at Sm from origin when the

value of sigma is changed from 0.0009m to 0.0014m.

To further observe the interaction of the beams, the number of slits is increased to
five. It gives the expected result that can be deduced by considering the results from
interference of two slits and that of three slits. The amplitudes of the maxima formed at
10m decrease as they move away from the z-axis with the maxima furthest away having
the smallest amplitude. Figure 4.15 below show the amplitude of an interference pattern

from five slits. The corresponding ray tracing for this figure was shown in figure 4.9.
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Figure 4.15: Interference pattern formed from five beams separated by 0.003m.
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