ISOLATION AND IDENTIFICATION
OF STEROLS IN PALM OIL AND
THEIR ANALYSIS BY GC AND GC-MS

HAN AI CHEN

UNIVERSITY OF MALAYA
2000
ISOLATION AND IDENTIFICATION OF STEROLS IN PALM OIL AND THEIR ANALYSIS BY GC AND GC-MS

A PROJECT REPORT SUBMITTED TO THE FACULTY OF SCIENCE UNIVERSITY OF MALAYA IN THE PART-FULFILMENT OF SCGS 5189 FOR THE DEGREE OF MASTER OF SCIENCE IN ANALYTICAL CHEMISTRY AND INSTRUMENTAL ANALYSIS

BY
HAN AI CHEN

SUPERVISED BY
DR. KAMAL AZIZ KETULY

DEPARTMENT OF CHEMISTRY UNIVERSITY OF MALAYA KUALA LUMPUR MAY 2000
ACKNOWLEDGMENT

I wish to express my deepest gratitude to Dr. Kamal Aziz Ketuly for supervising and giving guidance throughout this project. Also not forget to thank Dr. Choo Yuen May (PORIM) for her collaborations on this project and supply of palm oil samples and some of the standard sterols. Their advice and comments are always in my appreciation. My special thanks to Professor C. J. W. Brooks (Chemistry Dept., Glasgow University, Scotland, United Kingdom) for donating the rest of the sterol standards.

Thanks also to Mr. Siew Yau Foo for his guidance and assistance in the use of GC-MS. I am indebted to many friends, especially Mr. Wong Chee Kong and Mr. Nasr Yousef M. J. Omar (MSc research student at Chemistry Dept., UM), for their assistance in various ways.

Finally, appreciation to Mr. Low Tek Sing and my beloved parents for their support and encouragement until completion of my study.
ABSTRACT

The unsaponifiable matters were separated from crude palm oil, crude palm kernel oil, and crude palm fibre oil. The sterol fractions were isolated by preparative thin layer chromatography and were then analysed by gas chromatography and combined gas chromatography-mass spectrometry. Qualitative separations of sterols are illustrated. Tables are presented showing the sterol composition determined in the oils, values obtained for individual contents are in broad agreement with other published results. There were no major differences between crude palm oil, crude palm kernel oil and crude palm fibre oil with respect to their sterols composition. \(\beta \)-sitosterol was found as the most predominant component in the sterol fraction from all oils. Sitostanol and ergosterol, of which their existence was not reported in any previous studies on palm oil, were found in the crude palm fibre oil samples, but were not detected in the crude palm oil and crude palm kernel oil samples.
CONTENTS

Acknowledgement ii
Abstract iii
Contents iv
Abbreviations 1
List of Figures 3
List of Tables 8

CHAPTER 1 INTRODUCTION

1.1 Introduction to Palm Oil 9
1.2 Non-Glyceride Components (Unsaponifiable Matter) and Their Nutritional Significance 11
1.3 Sterols 12
1.4 Sterol Composition in Vegetable Oils 17
1.5 Saponification 23
1.6 Separation Methods 24
1.6.1 Column Chromatography 24
1.6.2 Thin Layer Chromatography (TLC) 25
1.6.3 Reverse Phase High-Performance Liquid Chromatography 26
1.6.4 Gas Chromatography (GC) 26
1.7 Gas Chromatography-Mass Spectrometry (GC-MS) 27
CHAPTER 2 EXPERIMENTAL

2.1 General 32
2.2 Sources of Samples 32
2.3 Chemicals and Reagents 34
2.4 Sterol Reference Standards 34
2.5 Apparatus 34
2.6 Procedure 35
 2.6.1 Saponification 35
 2.6.2 Extraction 35
 2.6.3 Isolation of the Sterols by Thin Layer Chromatography 36
2.7 Derivatisation 38
2.8 Analysis of Sterol Fraction by GC 40
2.9 Identification and Confirmation by using GC-MS 41
 2.9.1 Scan Mode Identification 42
 2.9.2 Selected Ion Monitoring (SIM) 42

CHAPTER 3 RESULTS AND DISCUSSION 44

CHAPTER 4 CONCLUSIONS 67
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appx.</td>
<td>appendix</td>
</tr>
<tr>
<td>BSTFA</td>
<td>N,O-bis(trimethylsilyl)-trifluoroacetamide</td>
</tr>
<tr>
<td>cm</td>
<td>centimetre</td>
</tr>
<tr>
<td>CPO</td>
<td>crude palm oil</td>
</tr>
<tr>
<td>CPKO</td>
<td>crude palm kernel oil</td>
</tr>
<tr>
<td>CPFO</td>
<td>crude palm fibre oil</td>
</tr>
<tr>
<td>FID</td>
<td>flame ionisation detector</td>
</tr>
<tr>
<td>Fig.</td>
<td>Figure</td>
</tr>
<tr>
<td>g</td>
<td>gram (s)</td>
</tr>
<tr>
<td>GC</td>
<td>gas chromatography</td>
</tr>
<tr>
<td>GC-MS</td>
<td>gas chromatography-mass spectrometry</td>
</tr>
<tr>
<td>HDL</td>
<td>high-density lipoprotein</td>
</tr>
<tr>
<td>HPLC</td>
<td>high-performance liquid chromatography</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram (s)</td>
</tr>
<tr>
<td>i.d.</td>
<td>internal diameter</td>
</tr>
<tr>
<td>LDL</td>
<td>low-density lipoprotein</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectrometry</td>
</tr>
<tr>
<td>μg</td>
<td>microgram (s)</td>
</tr>
<tr>
<td>μl</td>
<td>microlitre (s)</td>
</tr>
<tr>
<td>Me</td>
<td>methyl</td>
</tr>
<tr>
<td>mg</td>
<td>miligram (s)</td>
</tr>
<tr>
<td>ml</td>
<td>mililitre (s)</td>
</tr>
</tbody>
</table>
mm milimetre (s)
m.p. melting point
MW molecular weight
m/z mass/ion charge
NMR nuclear magnetic resonance
PORIM Palm Oil Research Institute of Malaysia
ppm part per million
v/v volume over volume
w/v weight over volume
SIM selected ion monitoring
TIC total ion chromatogram
TLC thin layer chromatography
TMS trimethylsilyl ethers
TMSCI trimethylchlorosilane
LIST OF FIGURES

Fig. 1: Oil Palm Fruit (*tenea*)
Fig. 2: Structures of Selected Sterols
Fig. 3: Structures of Selected 4-Methylsterols
Fig. 4: Structures of Selected Terpene Alcohols (Dimethylsterols)
Fig. 5: Illustration of a Soxhlet Extraction in Progress
Fig. 6: TLC Chromatogram of Unsaponifiable Matters on Silica Plate
Fig. 7: Flow Chart of Sample Preparation
Fig. 8: GC Chromatogram of Standard Mixture (Cholesterol, Brassicasterol, Ergosterol, Campesterol, Stigmasterol, β-Sitosterol, Sitostanol)
Fig. 9: GC Chromatogram of Derivatised Standard Mixture (Cholesterol TMS, Brassicasterol TMS, Ergosterol TMS, Campesterol TMS, Stigmasterol TMS, β-Sitosterol TMS, Sitostanol TMS)
Fig. 10: Fragment A
Fig. 11: Fragmentation of A\(^{24(28)}\)Sterols
Appx. Fig. 1: GC-MS Chromatogram of Derivatised Standard Mixture (Cholesterol TMS, Brassicasterol TMS, Ergosterol TMS, Campesterol TMS, Stigmasterol TMS, β-Sitosterol TMS, Sitostanol TMS)
Appx. Fig. 1A: Mass Spectra of Cholesterol TMS
Appx. Fig. 1B: Mass Spectra of Brassicasterol TMS
Appx. Fig. 1C: Mass Spectra of Ergosterol TMS
Appx. Fig. 1D: Mass Spectra of Campesterol TMS
Appx. Fig. 3H: Mass Spectra of Peak t, 20.73
Appx. Fig. 4: GC-MS Chromatogram of CPFO Sample No.9 (TMS)
Appx. Fig. 4A: Mass Spectra of Peak t, 11.38
Appx. Fig. 4B: Mass Spectra of Peak t, 12.66
Appx. Fig. 4C: Mass Spectra of Peak t, 13.99
Appx. Fig. 4D: Mass Spectra of Peak t, 14.60
Appx. Fig. 4E: Mass Spectra of Peak t, 15.76
Appx. Fig. 4F: Mass Spectra of Peak t, 16.70
Appx. Fig. 4G: Mass Spectra of Peak t, 17.33
Appx. Fig. 4H: Mass Spectra of Peak t, 18.30
Appx. Fig. 4I: Mass Spectra of Peak t, 18.74
Appx. Fig. 4J: Mass Spectra of Peak t, 19.92
Appx. Fig. 4K: Mass Spectra of Peak t, 20.41
Appx. Fig. 4L: Mass Spectra of Peak t, 23.90
Appx. Fig. 4M: Mass Spectra of Peak t, 26.01
Appx. Fig. 5: GC-MS Chromatogram of CPO Sample No.6 (TMS)
Appx. Fig. 5A: TIC of SIM Mode Analysis, CPO Sample No.6 (TMS)
Appx. Fig. 5B: TIC of SIM Mode Analysis, CPO Sample No.6 (TMS), Spiked
Appx. Fig. 6: GC-MS Chromatogram of CPO Sample No.11 (TMS)
Appx. Fig. 6A: TIC of SIM Mode Analysis, CPO Sample No.11 (TMS)
Appx. Fig. 6B: TIC of SIM Mode Analysis, CPO Sample No.11 (TMS), Spiked
Appx. Fig. 7: GC-MS Chromatogram of CPO Sample No.18 (TMS)
Appx. Fig. 7A: TIC of SIM Mode Analysis, CPO Sample No.18 (TMS)
Appx. Fig. 7B: TIC of SIM Mode Analysis, CPO Sample No.18 (TMS), Spiked
Appx. Fig. 8: GC-MS Chromatogram of CPO Sample No.20 (TMS)
Appx. Fig. 8A: TIC of SIM Mode Analysis, CPO Sample No.20 (TMS)
Appx. Fig. 8B: TIC of SIM Mode Analysis, CPO Sample No.20 (TMS), Spiked
Appx. Fig. 9: GC-MS Chromatogram of CPKO Sample No.3 (TMS)
Appx. Fig. 9A: TIC of SIM Mode Analysis, CPKO Sample No.3 (TMS)
Appx. Fig. 9B: TIC of SIM Mode Analysis, CPKO Sample No.3 (TMS), Spiked
Appx. Fig. 10: GC-MS Chromatogram of CPKO Sample No.5 (TMS)
Appx. Fig. 10A: TIC of SIM Mode Analysis, CPKO Sample No.5 (TMS)
Appx. Fig. 10B: TIC of SIM Mode Analysis, CPKO Sample No.5 (TMS), Spiked
Appx. Fig. 11: GC-MS Chromatogram of CPKO Sample No.10 (TMS)
Appx. Fig. 11A: TIC of SIM Mode Analysis, CPKO Sample No.10 (TMS)
Appx. Fig. 11B: TIC of SIM Mode Analysis, CPKO Sample No.10 (TMS), Spiked
Appx. Fig. 12: GC-MS Chromatogram of CPKO Sample No.15 (TMS)
Appx. Fig. 12A: TIC of SIM Mode Analysis, CPKO Sample No.15 (TMS)
Appx. Fig. 12B: TIC of SIM Mode Analysis, CPKO Sample No.15 (TMS), Spiked
Appx. Fig. 13: GC-MS Chromatogram of CPFO Sample No.7 (TMS)
Appx. Fig. 13A: TIC of SIM Mode Analysis, CPFO Sample No.7 (TMS)
Appx. Fig. 13B: TIC of SIM Mode Analysis, CPFO Sample No.7 (TMS), Spiked
Appx. Fig. 14: GC-MS Chromatogram of CPFO Sample No.8 (TMS)
Appx. Fig. 14A: TIC of SIM Mode Analysis, CPFO Sample No.8 (TMS)
Appx. Fig. 14B: TIC of SIM Mode Analysis, CPFO Sample No.8 (TMS), Spiked
Appx. Fig. 15: GC-MS Chromatogram of CPFO Sample No.9 (TMS)
Appx. Fig. 15A: TIC of SIM Mode Analysis, CPFO Sample No. 9 (TMS)

Appx. Fig. 15B: TIC of SIM Mode Analysis, CPFO Sample No. 9 (TMS), Spiked

Appx. Fig. 16: GC-MS Chromatogram of CPFO Sample No. 13 (TMS)

Appx. Fig. 16A: TIC of SIM Mode Analysis, CPFO Sample No. 13 (TMS)

Appx. Fig. 16B: TIC of SIM Mode Analysis, CPFO Sample No. 13 (TMS), Spiked