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ABSTRACT

Automatic electrocardiogram (ECG) recognition is a very important branch of
biomedical signal processing. The ECG is a written record of the electrical activity of
the heart, which is very helpful in the diagnosis of cardiac diseases. The demand for
this non-invasive diagnostic procedure has stimulated a remarkable increase of
advanced signal analysis techniques.

This study presents the development of Extended Kalman Filter (EKF) based
Multi Layer Perceptron Network (MLPN) and Hybrid Fuizy Neural System for the
recognition of ECG signals. This system can distinguish various types of abnormal
ECG signal such as Ventricular Premature Cycle (VPC), T wave inversion (TINV),
ST segment depression (STDP), and Supraventricular Tachycardia (SVT) from
normal sinus rhythm (NSR) ECG signal.

In order to obtain high recognition accuracy, two feature extraction methods
have been developed. The method of unconstrained optimisation for a function of one
variable is applied in the detection of peak R for an ECG cycle. A simple state
transition model is devised for the detection of VPC presence in ECG signals.

The data sets consist of 24 patients’ ECG signals obtained from the MIT-BIH
Database. Each ECG signal had been recorded for approximately 16.67 minutes. We
subdivided these ECG signals into segments of 6.4 seconds, which consists of 1600
number of samples each, at sampling rate of 250 Hertz. The number of samples in
each segment was taken to be even for the Discrete Wavelet Transform (DWT) to
reduce computation cost. 12 patients’ ECG signals were used for training purposes
while the other 12 patients’ ECG signals were used for the testing of the system. The

overall average classification rate of the system is 91.8%. The two main objectives
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guiding the research were met: 1) developing a novel ECG classification system based
on online EKF learning and neuro fuzzy techniques and 2) implementing this novel

approach in computer software.
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