CHAPTER 5 Pattern Recognition with Neural Network

5.1 Introduction

While feature analysis is an essential and important step towards designing effective
clustering and classification algorithms as discussed in Chapter 3. This chapter deals with
clustering method that looks for substructures present in a data set and partitions this data
set into homogeneous groups. A classifier, on the other hand, partitions the feature space
into appropriate classes as will be explained in Chapter 6.

First, we review some of the theory of neural network in Section 5.2 that is
necessary for us to understand how to perform battem recognition using neural
computation. In section 5.3 and 5.4 we present the development of Kalman Filter and
Extended Kalman Filter respectively for the weight optimization of the neural networks.
The training procedures for the neural networks are explained in Section 5.5.

5.2 Theory of Neural Network

If there is sufficient information available about the physical laws of the system,
then a mathematical approach may be suitable, where equations describing the underlying
mechanism responsible for time series generation are derived based on first principles. In
many real problems of interest, we do not have enough a priori information to attempt such
an approach. In fact, although systems have several dynamical variables that govern their
behaviour, often, only measurements of a single variable are available in the form of a
series of time-dependent data. In the absence of enough information to derive equations
mathematically, it is more attractive to use a model-based approach, where a network is
trained to mimic the generating equations of a time series. Therefore, instead of explicitly
deducing equations describing the underlying dynamics of the system, an implicit neural

model is built that approximates the ideal equations. Neural networks are attractive for

38

modelling nonlinear dynamic systems because they are well established function
approximators. It has been shown by the universal approximation theorem that a neural
network, with an arbitrary number of units and with two or more layers could approximate
any uniformly continuous function [68]. In the proposed modelling scheme, Multi Layer
Perceptron Network (MLPN) [69] is used as the infrastructure.

We present the MLPN model as shown in Figure 5.1, where each circle denotes a
neuron. The leftmost column is called input layer, the column in the middle is called hidden

layer and the rightmost column is called output layer.

Figure 5.1: MLPN Structure.
The weight, W,f,,‘ represents strength of the synaptic connection between the ith
neuron of the input layer and the jth neuron of the hidden layer whereas the weight,w’,

represents strength of the synaptic connection between the ith neuron of the hidden layer
and the jth neuron of the output layer. In order to model the neural activity, we denote the

weight matrices as described in the following.

39

FVVI/I—

wh = =
h

Wq -
W])’

wr=|. |=
s

6 h

o - {9}

pd

h
Wy el
h‘
Wq,n+1_
le,q*rl
W;,q-fl_d
h T
(w)
(w7
y T
(v ,)

w

p.g+1 |

(5.1)

(5.2)

(5.3)

where (/") is the ith row vector in (W") and (W,)is the ith row vector in (W”).

The MLPN model with the optimum parameter vector, € can be described by the following

equations,

40

G(k+1)=06(k) (5.4)

y(k) = y(k) + e, () 5.5)
where

A A . 1

y(k) = gl(k)., x(k) = 7 L S k))} (5.6)

and e, (k) € R” is assumed to be a white noise vector and regarded as a modelling error.

5.3 Development of Kalman Filter (KF)

The Extended Kalman Filter (EKF) is used to perform supervised training of Multi
Layer Perceptron Network (MLPN). To describe how to proceed with this approach, the
Kalman Filter (KF) method is first described in detail. After the foundation is laid, the
application of the Extended Kalman Filter (EKF) to neural network training is then
described.

Since the Kalman Filter (KF) is well suited for vector processes, we begin by

assuming that the random process to be estimated can be modelled in the form
O(n)=A(n-1)0(n-1)+ e (n) (5.7)
which is known as the signal (or state vector) model where
6(n) =p x | signal state vector at time #
A(n—1) = p x p matrix that relates 8(n—1) to 8(n) in absence of a forcing function
e(n) = p x | zero-mean white noise sequence with covariance matrix E, ()
The matrix A(n-1) is known as the state-transition matrix while e (n) is also known as

the modelling error vector.

The observation (or measurement) model is described using the linear relationship

y(n)=C(n)8(n)+ e,(n) (5.8)

41

where

y(n) =qx | signal state vector at time »
C(n) = q x p matrix that gives ideal linear relationship between 8(n) and y(n)
e,(n) = px | zero-mean white noise sequence with covariance matrix E,(n)
The matrix C(n) is known as the output matrix, and the sequence e,(n) is known as the
observation error.
In the development of the discrete Kalman Filter (KF), we will let g(n|n) denote the

best linear estimate of @(n) at time n given the observations y(i) for i =12,....,n, and we

A
will let 9(n’n —1) denote the best estimate given the observations up to time »n—1. With

ek(n]n) and ek(n[n - 1) the corresponding state estimation errors,
A
e, (nfn)=6(n) — &(nln) (5.9)

e, (nln—1)=6(n) - g’(n]n -1 (5.10)
and E, (nln) and Ek(nln —1) the error covariance matrices,

Assuming that the system is linear and that the noise is white and Gaussian, the
Kalman Filter (KF) is optimal in the sense that the mean squared error, £ ﬁlek (n‘n)”z} is

minimized. In the first step, since no new measurements are used to estimate &(#), all that
is known is that &(n) evolves according to the state equation

O(n)=A(n-16(n—-1)+ ¢ (n) (5.1
Since ¢(n) is a zero mean white noise process (and the values of e (n) are unknown), then

we may predict €(n) as follows,

é(nyn—1)=A(n~1)3(n—1}n—1) (5.12)

42

which has an estimation error given by

e, (njn—1)=0(n) - §(n|n -1 (5.13)

=A(n-DO(n-1)+ ¢(n) — A(n- 1)3(;1 o) (5.14)

=A(n-De,(n~1n-1)+ e (n) (5.15)

Note that since e,(n) has zero mean, if g(n - l'n —1) is an unbiased estimate of (n-1),
Le.,

Ele,(n-1n-1)}=0 (5.16)
then é(n[n —1) will be an unbiased estimate of 8(n),

Efe,(nn-1)} =0 (5.17)
Finally, since the estimation error e (n— l{n —1) 1s uncorrelated with e,(n) (a consequence
of the fact that e () is a white noise sequence), then

Ek(n[n -D=A(n-1)E, (n- lln -DA"(n-1)+ E (n) (5.18)
where £,(n) is the covariance matrix for the noise process ¢ (n). This completes the first

step of the Kalman Filter (KF).

In the second step, we incorporate the new measurement y(n) into the estimate
é(n(n —1). A linear estimate of @(n) that is based on §(n|n —1) and y(n) is of the form
O(rn) =K () 8nln — 1)+ K (n) y(n) (5.19)
O(n) - é(nyn) =0(n) - {K'(n)g’(n‘n -1+ K(n)y(n)} (5.20)
e, (njn)=6(n) = K'(n)[6(n) - e, (nn -)]+ K (n)[C(n)6(n) + e,(n)] (5.21)

e, (nn)=[1 - K (n)— K(n)C(n)16(n) + K (n)e, (njn-1) - K(n)e,(n) (5.22)

43

A
The requirement that is imposed on @(njn) is that it be unbiased, £{e,(nn)} =0,

A
since Ele,(n)} =0 & Ele, (n[n -1} =0, then 9(n|n) will be unbiased for any 6(n)
only if the term in brackets is zero,

K'(n)=1-K(n)C(n) (5.23)

A
With this constraint, it follows from Eq. (4.19) that 9(nln) has the form

(Aa(n\n) =[] - K(n)C(n)] (A;(nyn -1) +K(n)y(n) (5.24)
or
g?(nln) = g’(n‘n -1+ Km)[y(n) - C(n) g(n‘n -] (5.25)

and the error is

e, (nn)=K (n)e, (nln — 1) - K(n)e,(n) (5.26)
=[1 - K(n)C(n)]e, (njn —1) = K (n)e,(n) (5.27)

The error covariance matrix for e, (njn) is

E (nn)=[1 - K(MC(n)E (nn 1) (5.28)

The Kalman gain is

K(n)=E, (njn - 1C" (m)[C(n)E (njn = 1)C* (n) + E,(m)]" (5.29)

Derivation of the Discrete Kalman Filter (KF) algorithm is described in Appendix B.
5.4 Extended Kalman Filter (EKF) based Multi Layer Perceptron Network (MLPN)
There are two fundamental assumptions in the derivation of the Kalman Filter (KF).
The first is that the system is described by a linear state-space model and the second is that
the noise terms are white and Gaussian with zero-mean, and they are also assumed to be

uncorrelated with each other and with the initial state. When these assumptions are

44

satisfied, the Kalman Filter (KF) is optimal in the mean-squared error sense. When the
system under consideration is nonlinear such as the Multi Layer Perceptron Network
(MLPN) model, the first condition is violated and the Extended Kalman Filter (EKF) is
applied as a sub-optimal filter and employed in the training algorithm for the neural model.
In essence, the neural network’s training problem is cast into the framework of a classic
state estimation problem. In such a scenario, the neural network is described as a nonlinear
dynamical system in a state-space model where the weights are treated as the state of the
system and the goal is to use a series of measurements to determine the optimal estimate of
the state variables. In the EKF method, the output error, is scaled by the Kalman gain and
then used to update the weights according to the EKF equations. Training continues in this
fashion for several epochs through the training data until satisfactory neural model is
achieved i.e. In this study, the EKF training method is used due to its well-known superior
convergence speed and lower tendency to get stuck in local minima as compared to other
gradient descent methods 1.e. backpropagation (BP) algorithm. BP is a gradient decent
algorithm that tries to minimize the average squared error of the MLPN. BP was first
developed by P. Werbos in 1974 [70]. After it is popularized by Rummelhart et al. in 1986
[71], many variations of this algorithm is developed, such as BP with momentum and
variable learning rate, to improve its convergence speed and performance in avoiding
getting stuck into local minima. There are also many advanced learning algorithms for the
MLPN such as Fletcher-Powell, Polak-Ribire, Powell-Beale, One-Step-Secant, BFGS
quasi-Newton and Levenberg-Marquardt. These functions are available for batch training in
Matlab [72]. They are listed in Table 5.1 together with the relative time required to reach
convergence [73]. The EKF algorithm is applied in this research because it has superior
online learning capability over all such algorithms as demonstrated in Section 7.1. The EKF
is considered one of the most effective methods for both nonlinear state estimation and

45

parameter estimation (e.g., learning the weights of MLPN). The EKF has been applied
extensively to the field of nonlinear estimation, i.e. the training of feed-forward MLPN for

process fault-tolerant control based on neural networks by T.K. Chang [68, 69].

! Matlab Function | Technique Time Epochs Mflops
| traingdx BP(Variable Learning Rate) | 57.71 980 2.50
traincgf Fletcher-Powell 16.40 81 0.99
traincgp Polak-Ribire 19.16 89 0.75

- traincgb Powell-Beale 15.03 74 0.59
trainoss One-Step-Secant 18.46 101 0.75
trainbfg BEFGS quasi-Newton 10.86 44 1.02
trainlm Levenberg-Marquardt 1.87 6 0.46

Table 5.1: Learning algorithms for MLPN with a relative time to reach convergence [73].

System:
Ok +1) = A(k)O(k) + B(k)u(k) + e, (k) (5.30)
y(k) = C(RYO(K) + e, (k) (5.31)
Prediction:

B(k) = Ak) (k) + BUu(k) (5.32)
E,(k+1) = A(k)E,, (k) A(k)" + E, (k) (5.33)
Correction:

B(k) = Bk —1) + K, (M)y(k) - C(k) Bk = 1)] (5.34)
E, (k) =[I-K, (k)C(k)]E,(k) - (5.35)
K, (k)= E,(k)C(k)"[E, (k) + C(k)E,(k)C(k)] (5.36)

46

The EKF-based training algorithm for the MLPN is presented in the following whereby the
original vectors of K, (k),C(k),E,(k) are replaced by K (k),C, (k),E (k-1). The
observation error covariance matrix, £,(k) cannot be determined in this case and hence it

is replaced by an unknown priori error covariance matrix, R|,,_, .

(k) = Bk~ 1)+ K, ()[y(K) = ¥ e (5.37)
E, (k) =1 - K, (k)C,(OIE, (k-1) (5.38)
K, (k) = E, (k= D)C, (k)[R |y, +C,,(D)E, (k= 1)C, (k)T (5.39)
where

A A A
Y s = glO(k — 1), x(k)] and x(k) is used to denote the input vector to MLPN.

9 y(k)

C, (k) = W 9=0(k~1) (5.40)

R/, 1s an unknown priori error covariance matrix.

Rligr= Rk =D+ 10 = ¥ Ly 0 - ¥ T = RG=D) (5.41)

RO = RO=D+ D -y B)| L E 3@, T-RE=D} (542)

k)

. A
The C, (k) e RPUtD+2@Dl g the Jacobian matrix of model output, y(k) with respect to

8, and can be expressed as

A A A
v 260 | 6=0(k-1 00" le=6k-1y 5O |e=bk-1) '
A
o y(k)

N can be further expressed as
9=6(k-1)

From Eq. (5.43) the term By

gh

47

A A
0 y(k) _ | 8y(k) Oh(k) z(k)
00" |o=b-y | Bh(k) dz(k) 86" |
6=0(k-1)
by using the chain rule.
Where
[Ay AY
wilk=1) . . . wigk-1)
A . .
0y(k) _
(k)|
8=6(k-1) .
A AY
_W’p,l(k—].) c. Wp.q (k“l)d
and
[on, (k) 0 |
oz, (k)
onky |
oz(k)
0 oh (k)
L az‘i (k).Jezg(k—l)

This is a diagonal matrix.

Where

gf_% e O =10 Ji =10
h, (k)‘a=3(k—1> "1+ exp[-Z,»I(k)])eJ)(k—l)

2, = W\’ (k - 1){x(1k)11

(5.44)

(5.45)

(5.46)

(5.47)

(5.48)

(5.49)

48

2 y(k)

From Eq. (5.44) the term ———=| , can be further expressed as
08" |e=6(k-1)
—[-\'(k)f i ... O]x(n+l) |
dz(k) | ' '
. = : . : 5.50
00" |o=6uk-1) (5-50)
L le(nH) o [x(k)T l]-]qxq(nﬂ)
A
From Eq. (5.43), the term 9 y(lf) A can be expressed as
067 |6=6(k-1)
A d W\} (k— 1)[h(k)\9=3(k—l)J
9k) - 1 (5.51)
06" |o=a0-1 06’ ’
A
9 y(k)
oG’ 9:2(k—1)
- ,
[(k)‘ezg(k_” ... 01gen
= . : . (5.52)
T
_ Oy = - TR 50, I
where
Opeqeny = [O S O] is a row vector of (g +1) zeros.

Derivation of the EKF-based on-line learning algorithm for MLPN is described in detail in

Appendix B.

49

5.5 Neural Network Training Procedure

A neural network is an information processing system that is non-algorithmic, non-
digital and intensely parallel. Neural networks learn to solve problem; they are not
programmed to do so. Hence, neural networks have been applied to the problems where
domain knowledge is scarce but numerical data can be acquired easily. Multilayer neural
network can learn from data. However, if the trained network does not perform as we have
expected, we need to retrain the network changing the network size, the number of hidden
neurons or adding new training data. In addition, since the training is slow, repetition of
training is prohibitive especially for a large size network vwith a large number of training
data. In order to speed up training and avoid repetition on the same training data, we
explore the use of neural network ensemble method where each network is trained
dynamically, pattern by pattern, and has the ability to learn new patterns even when it is
already in use by clinicians. The ensemble method integrated with the use of online
learning provides great benefits not only in terms of classification performance but also in
providing clinicians with added flexibility in the way they use the tool. Neural network
ensembles adopt the divide-and-conquer strategy. Instead of using a single network to solve
a task, a neural network ensemble combines a set of neural networks which learn to
subdivide a task and thereby solve it more efficiently and elegantly. An ECG signal is
considered as NSR as long as all the P, Q, R, S, T waves are present in the waveform and
the heart rate is normal 1.e. between 60-80 cycle per minute for an adult. Hence, the NSR
class covers a broad range of ECG signals. Thus, we utilise an ensemble of neural networks
consisting of three neural networks cascaded in parallel to distinguish the various NSR
signals from the various abnormal ECG signals such as STDP, TINV and SVT. The first
MLPN with be trained to distinguish between the first form of NSR signal from STDP, the

second MLPN to distinguish between the second form of NSR signal from TINV, and the

50

S\

PLIGTUS TA

third MLPN to distinguish between the third form of NSR signal from SVT. After these
initial clustering of ECG data, a fuzzy inference system is used to further classify these

substructures into the appropriate classes as will be described in Section 7.1 with Figure

7.1.
30 : 15 : 1
Neural N
—»| Network 1 g
Neural Neural
Fuzzy
—
Neural , Networks Inference ECG .
Networks ——» Network 2 *| System Classification

Outputs

Inputs — ™ Neural
——»p Network 3 |-

Classification Strategies

The [* neural network clusters the
input ECG into 3 subgroups :

STDP —- UNKNOWN — NSR1

The 2™ neural network clusters the
input ECG into 3 subgroups :
TINV —- UNKNOWN — NSR2

The 3" neural network clusters the @ e @
input ECG into 3 subgroups :

SVT - UNKNOWN — NSR3

Figure 5.2: Fuzzy inference of the neural networks outputs.

As shown in Figure 5.2, each neural network has a structure of 30-15-1, i.e. it has
three layers of neurons: the 1* layer which is called the input layer has 30 neurons, the 2
layer which is called the hidden layer has 15 neurons and the 3™ layer which is called the
output layer has single neuron. The input raw signal was initially compressed using DWT
[8] since the digitized ECG data were no longer continuous variables. The main objective

51

behind using wavelet-compression was to increase computational speed. The actual input to
the network was obtained by passing a sampling window with a length of 30 time steps
over the signal. At each new iteration, the window will be shifted forward by one time-step.
The number of hidden neurons that maximized accuracy and generalization were
determined experimentally. The experimental study begins with 5 hidden neurons as the
starting point. Since the extra neuron will increase the non-linearity of the solution,
therefore a larger number of hidden neurons can be used to extract a more complicated
feature. However, if too many neurons are used, the resultivng minimized mean square error
may be very small compared to what a smaller number of hidden neurons gives, but this
also means that the noise has been included in the solution and that is undesirable.
Therefore, we increase the number of hidden neurons by 5 units each time the solution
diverges, until finally the network converges [72-75]. A well-designed neural network will
exhibit good generalisation when a correct input-output mapping is obtained even when the
input is slightly different from the examples used to train the network [74, 75]. In designing
a neural network, i.e. the MLPN, the designer must make a number of choices with regard
to the system architecture: what is the appropriate number of hidden layers to be included?
How many nodes should each layer have? Unfortunately, there is a shortage of evidence
available to designers that would enable them to make specific design choices based on a
clear scientific rationale and as a consequence, many designs are made on the basis of trial
and error. There are other design issues associated with the level and extent of training
required for such a network, in particular locating the point at which the network is
considered to be sufficiently trained. Conventional methods of training MLPN involve a
process whereby the network is trained to the point of minimum error based upon the
training data. Subsequently, the neural network’s internal parameters are fixed and it is

tested with unseen data to evaluate its performance. This has been the most common

52

approach in the development of neural network based ECG classifiers [76-78]. A danger
exists with this approach in that the neural network, during training, may memorise the
training data. If this becomes the case, then the neural network may be biased towards the
training data and hence not fully represent the underlying function that is to be modelled. In
such instances, poor generalisation is attained when unseen data is presented as input to the
neural network. Such a phenomenon is referred to as over-fitting. Hence, it is possible to
over-fit the neural network if training is not stopped at the correct point.

We utilize an ensemble of neural network consisting' of three MLPN that can only
learn from numerical data, there is no utilization of linguistic rules as developed by human
experts. Hence, the fuzzy inference system plays the role of extracting rules through
‘observation’ of the outputs from the ensemble of neural network. This kind of learning
through ‘observation’ is accomplished using the table-lookup training scheme as described
in Chapter 6. This learning scheme is simple and straightforward in the sense that it is a
one-pass build-up procedure that does not require time-consuming training as the MLPN.
5.6 Conclusions

A neural network ensemble offers several advantages over a monolithic neural
network. First, it can perform more complex tasks than any of its components (i.e.,
individual neural networks in the ensemble). Secondly, it can make an overall system easier
to understand and modify. Finally, it is more robust than a monolithic neural network and
can show graceful performance degradation in situations where only a subset of neural
networks in the ensemble is performing correctly. Given the advantages of neural network
ensembles and the complexity of the problems that are beginning to be investigated, it is
clear that the neural network ensemble method will be an important and pervasive problem-

solving technique [74, 75].

53

