Scatter plot of scavenging effect of BHA on DPPH radical for determination of EC$_{50}$ value

Scatter plot of scavenging effect of Ascorbic acid on DPPH radical for determination of EC$_{50}$ value.
Scatter plot of scavenging effect of hot aqueous extract from *A. auricula-judae* fresh fruitbodies on DPPH radical for determination of EC$_{50}$ value.

\[y = 0.5704x \]
\[R^2 = 0.8746 \]

Scatter plot of scavenging effect of methanol extract from *A. auricula-judae* fresh fruitbodies on DPPH radical for determination of EC$_{50}$ value.

\[y = 0.5315x \]
\[R^2 = 0.8902 \]
Scatter plot of scavenging effect of ethanol extract from *A. auricula-judae* fresh fruitbodies on DPPH radical for determination of EC$_{50}$ value.

Scatter plot of scavenging effect of dichloromethane extract from *A. auricula-judae* fresh fruitbodies on DPPH radical for determination of EC$_{50}$ value.
Scatter plot of scavenging effect of polysaccharides extract from *A. auricula-judae* fresh fruitbodies on DPPH radical for determination of EC₅₀ value.

The standard calibration curve for total phenolics content obtained from gallic acid using the Folin-Ciocalteau method. Ascorbic acid and BHA were used as standard for the assay.
Raw data of measurement of absorbances and scavenging effect percentages of fresh fruitbodies extracts of *A. auricula-judae* on DPPH radicals

Dichloromethane extract of *A. auricula-judae*

<table>
<thead>
<tr>
<th>Time (mg/ml)</th>
<th>Replicate1</th>
<th>Replicate2</th>
<th>Replicate3</th>
<th>Average</th>
<th>% Inhibition</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.373</td>
<td>0.375</td>
<td>0.383</td>
<td>0.377</td>
<td>7.14</td>
<td>0.004</td>
</tr>
<tr>
<td>1</td>
<td>0.364</td>
<td>0.366</td>
<td>0.375</td>
<td>0.368</td>
<td>9.36</td>
<td>0.005</td>
</tr>
<tr>
<td>2</td>
<td>0.357</td>
<td>0.36</td>
<td>0.368</td>
<td>0.362</td>
<td>10.84</td>
<td>0.005</td>
</tr>
<tr>
<td>15</td>
<td>0.344</td>
<td>0.347</td>
<td>0.358</td>
<td>0.350</td>
<td>13.79</td>
<td>0.006</td>
</tr>
<tr>
<td>30</td>
<td>0.341</td>
<td>0.346</td>
<td>0.358</td>
<td>0.348</td>
<td>14.29</td>
<td>0.007</td>
</tr>
<tr>
<td>45</td>
<td>0.341</td>
<td>0.345</td>
<td>0.359</td>
<td>0.348</td>
<td>14.29</td>
<td>0.008</td>
</tr>
<tr>
<td>50</td>
<td>0.419</td>
<td>0.433</td>
<td>0.46</td>
<td>0.437</td>
<td>28.71</td>
<td>0.017016</td>
</tr>
<tr>
<td>1</td>
<td>0.418</td>
<td>0.432</td>
<td>0.458</td>
<td>0.436</td>
<td>28.87</td>
<td>0.016573</td>
</tr>
<tr>
<td>2</td>
<td>0.414</td>
<td>0.43</td>
<td>0.451</td>
<td>0.432</td>
<td>29.53</td>
<td>0.015151</td>
</tr>
<tr>
<td>15</td>
<td>0.403</td>
<td>0.419</td>
<td>0.433</td>
<td>0.418</td>
<td>31.55</td>
<td>0.012257</td>
</tr>
<tr>
<td>30</td>
<td>0.373</td>
<td>0.389</td>
<td>0.401</td>
<td>0.388</td>
<td>36.6</td>
<td>0.01147</td>
</tr>
<tr>
<td>45</td>
<td>0.368</td>
<td>0.384</td>
<td>0.393</td>
<td>0.382</td>
<td>36.7</td>
<td>0.010339</td>
</tr>
<tr>
<td>100</td>
<td>0.419</td>
<td>0.433</td>
<td>0.46</td>
<td>0.437</td>
<td>28.71</td>
<td>0.017016</td>
</tr>
<tr>
<td>1</td>
<td>0.418</td>
<td>0.432</td>
<td>0.458</td>
<td>0.436</td>
<td>28.87</td>
<td>0.016573</td>
</tr>
<tr>
<td>2</td>
<td>0.414</td>
<td>0.43</td>
<td>0.451</td>
<td>0.432</td>
<td>29.53</td>
<td>0.015151</td>
</tr>
<tr>
<td>15</td>
<td>0.403</td>
<td>0.419</td>
<td>0.433</td>
<td>0.418</td>
<td>31.55</td>
<td>0.012257</td>
</tr>
<tr>
<td>30</td>
<td>0.373</td>
<td>0.389</td>
<td>0.401</td>
<td>0.388</td>
<td>36.6</td>
<td>0.01147</td>
</tr>
<tr>
<td>45</td>
<td>0.368</td>
<td>0.384</td>
<td>0.393</td>
<td>0.382</td>
<td>36.7</td>
<td>0.010339</td>
</tr>
<tr>
<td>150</td>
<td>0.359</td>
<td>0.362</td>
<td>0.358</td>
<td>0.359</td>
<td>33.76</td>
<td>0.0017</td>
</tr>
<tr>
<td>1</td>
<td>0.351</td>
<td>0.354</td>
<td>0.35</td>
<td>0.352</td>
<td>35.06</td>
<td>0.0017</td>
</tr>
<tr>
<td>2</td>
<td>0.345</td>
<td>0.34</td>
<td>0.34</td>
<td>0.342</td>
<td>36.9</td>
<td>0.002357</td>
</tr>
<tr>
<td>15</td>
<td>0.214</td>
<td>0.227</td>
<td>0.221</td>
<td>0.221</td>
<td>59.23</td>
<td>0.005312</td>
</tr>
<tr>
<td>30</td>
<td>0.186</td>
<td>0.201</td>
<td>0.194</td>
<td>0.194</td>
<td>64.21</td>
<td>0.006128</td>
</tr>
<tr>
<td>45</td>
<td>0.343</td>
<td>0.336</td>
<td>0.347</td>
<td>0.342</td>
<td>36.9</td>
<td>0.004546</td>
</tr>
<tr>
<td>200</td>
<td>0.333</td>
<td>0.325</td>
<td>0.335</td>
<td>0.331</td>
<td>38.9</td>
<td>0.00432</td>
</tr>
<tr>
<td>1</td>
<td>0.32</td>
<td>0.312</td>
<td>0.32</td>
<td>0.317</td>
<td>41.5</td>
<td>0.003771</td>
</tr>
<tr>
<td>2</td>
<td>0.189</td>
<td>0.18</td>
<td>0.183</td>
<td>0.184</td>
<td>66.1</td>
<td>0.003742</td>
</tr>
<tr>
<td>15</td>
<td>0.156</td>
<td>0.148</td>
<td>0.15</td>
<td>0.151</td>
<td>72.1</td>
<td>0.003399</td>
</tr>
<tr>
<td>30</td>
<td>0.134</td>
<td>0.128</td>
<td>0.128</td>
<td>0.13</td>
<td>76.8</td>
<td>0.002828</td>
</tr>
</tbody>
</table>

Measurements of DPPH radical absorbance as a control for concentrations; 20 mg/ml = 0.406 nm, 50 mg/ml = 0.6129 nm, 100 mg/ml = 0.6126 nm, 150 mg/ml and 200 mg/ml = 0.5419 nm.
Ethanol extract of *A. auricula-judae*

<table>
<thead>
<tr>
<th>Time</th>
<th>Replicate1</th>
<th>Replicate2</th>
<th>Replicate3</th>
<th>Average</th>
<th>% Inhibition</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 mg/ml</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.327</td>
<td>0.327</td>
<td>0.325</td>
<td>0.326</td>
<td>20.87</td>
<td>0.0009428</td>
</tr>
<tr>
<td>1</td>
<td>0.325</td>
<td>0.325</td>
<td>0.323</td>
<td>0.323</td>
<td>21.6</td>
<td>0.0009428</td>
</tr>
<tr>
<td>2</td>
<td>0.323</td>
<td>0.323</td>
<td>0.32</td>
<td>0.317</td>
<td>23.05</td>
<td>0.0014142</td>
</tr>
<tr>
<td>15</td>
<td>0.308</td>
<td>0.307</td>
<td>0.306</td>
<td>0.306</td>
<td>25.73</td>
<td>0.0008165</td>
</tr>
<tr>
<td>30</td>
<td>0.308</td>
<td>0.305</td>
<td>0.304</td>
<td>0.305</td>
<td>25.97</td>
<td>0.0016997</td>
</tr>
<tr>
<td>45</td>
<td>0.305</td>
<td>0.304</td>
<td>0.302</td>
<td>0.304</td>
<td>26.21</td>
<td>0.0012472</td>
</tr>
<tr>
<td>100 mg/ml</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.412</td>
<td>0.409</td>
<td>0.43</td>
<td>0.417</td>
<td>31.97</td>
<td>0.0092736</td>
</tr>
<tr>
<td>1</td>
<td>0.408</td>
<td>0.406</td>
<td>0.426</td>
<td>0.413</td>
<td>32.63</td>
<td>0.0089938</td>
</tr>
<tr>
<td>2</td>
<td>0.401</td>
<td>0.398</td>
<td>0.42</td>
<td>0.406</td>
<td>33.77</td>
<td>0.0097411</td>
</tr>
<tr>
<td>15</td>
<td>0.342</td>
<td>0.335</td>
<td>0.355</td>
<td>0.344</td>
<td>43.88</td>
<td>0.0082865</td>
</tr>
<tr>
<td>30</td>
<td>0.325</td>
<td>0.32</td>
<td>0.325</td>
<td>0.323</td>
<td>47.31</td>
<td>0.002357</td>
</tr>
<tr>
<td>45</td>
<td>0.32</td>
<td>0.317</td>
<td>0.32</td>
<td>0.319</td>
<td>47.96</td>
<td>0.0014142</td>
</tr>
<tr>
<td>150 mg/ml</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.231</td>
<td>0.244</td>
<td>0.27</td>
<td>0.248</td>
<td>54.24</td>
<td>0.0162138</td>
</tr>
<tr>
<td>1</td>
<td>0.231</td>
<td>0.244</td>
<td>0.27</td>
<td>0.248</td>
<td>54.24</td>
<td>0.0162138</td>
</tr>
<tr>
<td>2</td>
<td>0.222</td>
<td>0.236</td>
<td>0.264</td>
<td>0.241</td>
<td>55.54</td>
<td>0.0174611</td>
</tr>
<tr>
<td>15</td>
<td>0.158</td>
<td>0.175</td>
<td>0.217</td>
<td>0.183</td>
<td>66.24</td>
<td>0.024797</td>
</tr>
<tr>
<td>30</td>
<td>0.153</td>
<td>0.17</td>
<td>0.21</td>
<td>0.178</td>
<td>67.16</td>
<td>0.0238933</td>
</tr>
<tr>
<td>45</td>
<td>0.11</td>
<td>0.128</td>
<td>0.181</td>
<td>0.139</td>
<td>74.35</td>
<td>0.0301367</td>
</tr>
<tr>
<td>200 mg/ml</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.231</td>
<td>0.236</td>
<td>0.235</td>
<td>0.234</td>
<td>56.8</td>
<td>0.0021602</td>
</tr>
<tr>
<td>1</td>
<td>0.231</td>
<td>0.236</td>
<td>0.233</td>
<td>0.232</td>
<td>57</td>
<td>0.0020548</td>
</tr>
<tr>
<td>2</td>
<td>0.231</td>
<td>0.234</td>
<td>0.23</td>
<td>0.232</td>
<td>57.2</td>
<td>0.0016997</td>
</tr>
<tr>
<td>15</td>
<td>0.112</td>
<td>0.176</td>
<td>0.176</td>
<td>0.155</td>
<td>71.4</td>
<td>0.0301699</td>
</tr>
<tr>
<td>30</td>
<td>0.109</td>
<td>0.16</td>
<td>0.16</td>
<td>0.143</td>
<td>73.62</td>
<td>0.0240416</td>
</tr>
<tr>
<td>45</td>
<td>0.1</td>
<td>0.139</td>
<td>0.139</td>
<td>0.126</td>
<td>76.75</td>
<td>0.0183848</td>
</tr>
</tbody>
</table>

Measurements of DPPH radical absorbance as a control for concentrations; 20 mg/ml = 0.412 nm, 100 mg/ml = 0.6129 nm, 150 mg/ml = 0.6419 nm and 200 mg/ml = 0.5418 nm.

Methanol extract of *A. auricula-judae*

<table>
<thead>
<tr>
<th>Time</th>
<th>Replicate1</th>
<th>Replicate2</th>
<th>Replicate3</th>
<th>Average</th>
<th>% Inhibition</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 mg/ml</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.458</td>
<td>0.431</td>
<td>0.455</td>
<td>0.448</td>
<td>4.1</td>
<td>0.012083</td>
</tr>
<tr>
<td>1</td>
<td>0.457</td>
<td>0.429</td>
<td>0.455</td>
<td>0.447</td>
<td>4.3</td>
<td>0.012754</td>
</tr>
<tr>
<td>2</td>
<td>0.454</td>
<td>0.424</td>
<td>0.451</td>
<td>0.443</td>
<td>5.1</td>
<td>0.013491</td>
</tr>
<tr>
<td>15</td>
<td>0.451</td>
<td>0.395</td>
<td>0.441</td>
<td>0.429</td>
<td>8.1</td>
<td>0.024386</td>
</tr>
</tbody>
</table>
Measurements of DPPH radical absorbance as a control for concentrations; 50 mg/ml = 0.4672 nm, 60 mg/ml = 0.616 nm, 80 mg/ml = 0.542 nm, 100 mg/ml = 0.542 nm and 150 mg/ml = 0.5419 nm.

Hot aqueous extract of A. auricula-judae

<table>
<thead>
<tr>
<th>Time</th>
<th>Replicate1</th>
<th>Replicate2</th>
<th>Replicate3</th>
<th>Average</th>
<th>% Inhibition</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 mg/ml</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.434</td>
<td>0.425</td>
<td>0.437</td>
<td>0.432</td>
<td>14.20</td>
<td>0.0051</td>
</tr>
<tr>
<td>1</td>
<td>0.434</td>
<td>0.425</td>
<td>0.437</td>
<td>0.432</td>
<td>14.20</td>
<td>0.0051</td>
</tr>
<tr>
<td>2</td>
<td>0.433</td>
<td>0.423</td>
<td>0.435</td>
<td>0.43</td>
<td>14.50</td>
<td>0.0052</td>
</tr>
<tr>
<td>15</td>
<td>0.426</td>
<td>0.414</td>
<td>0.424</td>
<td>0.421</td>
<td>16.30</td>
<td>0.0052</td>
</tr>
<tr>
<td>30</td>
<td>0.424</td>
<td>0.412</td>
<td>0.42</td>
<td>0.419</td>
<td>16.70</td>
<td>0.0050</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>60 mg/ml</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.591</td>
<td>0.588</td>
<td>0.585</td>
<td>0.588</td>
<td>4.5</td>
<td>0.002449</td>
</tr>
<tr>
<td>1</td>
<td>0.59</td>
<td>0.587</td>
<td>0.585</td>
<td>0.587</td>
<td>4.7</td>
<td>0.002055</td>
</tr>
<tr>
<td>2</td>
<td>0.588</td>
<td>0.586</td>
<td>0.584</td>
<td>0.586</td>
<td>4.9</td>
<td>0.001633</td>
</tr>
<tr>
<td>15</td>
<td>0.586</td>
<td>0.585</td>
<td>0.584</td>
<td>0.585</td>
<td>5</td>
<td>0.000816</td>
</tr>
<tr>
<td>30</td>
<td>0.585</td>
<td>0.583</td>
<td>0.582</td>
<td>0.583</td>
<td>5.4</td>
<td>0.001247</td>
</tr>
<tr>
<td>45</td>
<td>0.57</td>
<td>0.58</td>
<td>0.58</td>
<td>0.576</td>
<td>6.5</td>
<td>0.004714</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>80 mg/ml</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.322</td>
<td>0.284</td>
<td>0.284</td>
<td>0.297</td>
<td>45.2</td>
<td>0.017913</td>
</tr>
<tr>
<td>1</td>
<td>0.319</td>
<td>0.281</td>
<td>0.281</td>
<td>0.294</td>
<td>45.8</td>
<td>0.017913</td>
</tr>
<tr>
<td>2</td>
<td>0.315</td>
<td>0.274</td>
<td>0.274</td>
<td>0.288</td>
<td>46.9</td>
<td>0.019328</td>
</tr>
<tr>
<td>15</td>
<td>0.31</td>
<td>0.238</td>
<td>0.238</td>
<td>0.262</td>
<td>51.7</td>
<td>0.033941</td>
</tr>
<tr>
<td>30</td>
<td>0.304</td>
<td>0.227</td>
<td>0.229</td>
<td>0.253</td>
<td>53.3</td>
<td>0.035836</td>
</tr>
<tr>
<td>45</td>
<td>0.299</td>
<td>0.217</td>
<td>0.22</td>
<td>0.245</td>
<td>54.8</td>
<td>0.037968</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>100 mg/ml</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.284</td>
<td>0.286</td>
<td>0.287</td>
<td>0.286</td>
<td>47.29397</td>
<td>0.001247</td>
</tr>
<tr>
<td>1</td>
<td>0.28</td>
<td>0.284</td>
<td>0.282</td>
<td>0.282</td>
<td>47.97048</td>
<td>0.001633</td>
</tr>
<tr>
<td>2</td>
<td>0.274</td>
<td>0.271</td>
<td>0.276</td>
<td>0.274</td>
<td>49.508</td>
<td>0.002055</td>
</tr>
<tr>
<td>15</td>
<td>0.27</td>
<td>0.267</td>
<td>0.272</td>
<td>0.270</td>
<td>50.246</td>
<td>0.002055</td>
</tr>
<tr>
<td>30</td>
<td>0.264</td>
<td>0.26</td>
<td>0.268</td>
<td>0.264</td>
<td>51.29151</td>
<td>0.003266</td>
</tr>
<tr>
<td>45</td>
<td>0.25</td>
<td>0.245</td>
<td>0.26</td>
<td>0.252</td>
<td>53.56704</td>
<td>0.006236</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>150 mg/ml</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.285</td>
<td>0.274</td>
<td>0.252</td>
<td>0.270</td>
<td>50.18</td>
<td>0.013719</td>
</tr>
<tr>
<td>1</td>
<td>0.277</td>
<td>0.266</td>
<td>0.245</td>
<td>0.263</td>
<td>51.48</td>
<td>0.013275</td>
</tr>
<tr>
<td>2</td>
<td>0.262</td>
<td>0.251</td>
<td>0.232</td>
<td>0.248</td>
<td>54.24</td>
<td>0.012392</td>
</tr>
<tr>
<td>15</td>
<td>0.189</td>
<td>0.171</td>
<td>0.157</td>
<td>0.172</td>
<td>68.27</td>
<td>0.013098</td>
</tr>
<tr>
<td>30</td>
<td>0.162</td>
<td>0.144</td>
<td>0.133</td>
<td>0.146</td>
<td>73.06</td>
<td>0.011954</td>
</tr>
<tr>
<td>45</td>
<td>0.142</td>
<td>0.123</td>
<td>0.115</td>
<td>0.127</td>
<td>76.57</td>
<td>0.011324</td>
</tr>
<tr>
<td>Time</td>
<td>20 mg/ml</td>
<td>50 mg/ml</td>
<td>100 mg/ml</td>
<td>150 mg/ml</td>
<td>200 mg/ml</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.568</td>
<td>0.371</td>
<td>0.27</td>
<td>0.164</td>
<td>0.093</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.568</td>
<td>0.366</td>
<td>0.257</td>
<td>0.154</td>
<td>0.096</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.561</td>
<td>0.366</td>
<td>0.256</td>
<td>0.147</td>
<td>0.095</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.561</td>
<td>0.357</td>
<td>0.209</td>
<td>0.128</td>
<td>0.045</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.546</td>
<td>0.368</td>
<td>0.185</td>
<td>0.092</td>
<td>0.024</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>0.539</td>
<td>0.334</td>
<td>0.167</td>
<td>0.075</td>
<td>0.021</td>
<td></td>
</tr>
</tbody>
</table>

Measurements of DPPH radical absorbance as a control for concentrations; 20mg/ml= 0.5433 nm, 50 mg/ml= 0.5027 nm, 100 mg/ml= 0.5029 nm, 150 mg/ml = 0.50295 nm and 200 mg/ml = 0.503 nm.

Polysaccharides extract of A. auricula-judae
<table>
<thead>
<tr>
<th>Ethanol Concentration</th>
<th>Replicate1</th>
<th>Replicate2</th>
<th>Replicate3</th>
<th>Average</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.576</td>
<td>0.547</td>
<td>0.592</td>
<td>0.5717</td>
<td>0.018625</td>
</tr>
<tr>
<td>10</td>
<td>0.993</td>
<td>0.992</td>
<td>0.995</td>
<td>0.9933</td>
<td>0.001247</td>
</tr>
<tr>
<td>15</td>
<td>1.137</td>
<td>1.154</td>
<td>1.152</td>
<td>1.1477</td>
<td>0.007587</td>
</tr>
<tr>
<td>20</td>
<td>1.211</td>
<td>1.212</td>
<td>1.202</td>
<td>1.2083</td>
<td>0.004497</td>
</tr>
</tbody>
</table>

Measurements of DPPH radical absorbance as a control for concentrations; 20mg/ml = 0.578 nm, 50 mg/ml = 0.5779 nm, 100 mg/ml = 0.5781 nm, 150 mg/ml = 0.5779 nm and 200 mg/ml = 0.5779 nm.

FRAP reducing power activity of *A. auricula-judae* fresh fruitbodies extracts. Absorbance was measured at 700 nm and the average represented by triplicate data and standard deviation.
Methanol

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Replicate1</th>
<th>Replicate2</th>
<th>Replicate3</th>
<th>Average</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.593</td>
<td>0.592</td>
<td>0.598</td>
<td>0.5943</td>
<td>0.002625</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1.08</td>
<td>1.09</td>
<td>1.0567</td>
<td>0.040277</td>
</tr>
<tr>
<td>15</td>
<td>1.29</td>
<td>1.28</td>
<td>1.21</td>
<td>1.2600</td>
<td>0.03559</td>
</tr>
<tr>
<td>20</td>
<td>1.465</td>
<td>1.43</td>
<td>1.494</td>
<td>1.4630</td>
<td>0.026166</td>
</tr>
</tbody>
</table>

Dichloromethane

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Replicate1</th>
<th>Replicate2</th>
<th>Replicate3</th>
<th>Average</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.382</td>
<td>0.412</td>
<td>0.465</td>
<td>0.4197</td>
<td>0.034316</td>
</tr>
<tr>
<td>10</td>
<td>0.945</td>
<td>0.924</td>
<td>0.914</td>
<td>0.9277</td>
<td>0.012919</td>
</tr>
<tr>
<td>15</td>
<td>1.053</td>
<td>0.9873</td>
<td>1.012</td>
<td>1.0174</td>
<td>0.027096</td>
</tr>
<tr>
<td>20</td>
<td>1.109</td>
<td>1.167</td>
<td>1.13</td>
<td>1.1353</td>
<td>0.023977</td>
</tr>
</tbody>
</table>

Hot aqueous

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Replicate1</th>
<th>Replicate2</th>
<th>Replicate3</th>
<th>Average</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1.634</td>
<td>1.672</td>
<td>1.669</td>
<td>1.6583</td>
<td>0.01725</td>
</tr>
<tr>
<td>10</td>
<td>1.718</td>
<td>1.71</td>
<td>1.7</td>
<td>1.7093</td>
<td>0.007364</td>
</tr>
<tr>
<td>15</td>
<td>1.859</td>
<td>1.821</td>
<td>1.891</td>
<td>1.8570</td>
<td>0.028612</td>
</tr>
<tr>
<td>20</td>
<td>1.905</td>
<td>1.9029</td>
<td>1.93</td>
<td>1.9126</td>
<td>0.01231</td>
</tr>
</tbody>
</table>

Polysaccharides

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Replicate1</th>
<th>Replicate2</th>
<th>Replicate3</th>
<th>Average</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.095</td>
<td>0.061</td>
<td>0.078</td>
<td>0.0780</td>
<td>0.01388</td>
</tr>
<tr>
<td>10</td>
<td>0.279</td>
<td>0.249</td>
<td>0.192</td>
<td>0.2400</td>
<td>0.036083</td>
</tr>
<tr>
<td>15</td>
<td>0.514</td>
<td>0.412</td>
<td>0.461</td>
<td>0.4623</td>
<td>0.041652</td>
</tr>
<tr>
<td>20</td>
<td>0.506</td>
<td>0.498</td>
<td>0.477</td>
<td>0.4937</td>
<td>0.012229</td>
</tr>
</tbody>
</table>
APPENDIX B: ANTI-HUMAN PAPILLOMAVIRUS-18 E6 ASSAY RESULT

<table>
<thead>
<tr>
<th>Extract</th>
<th>Concentration of extract</th>
<th>Morphology of cells</th>
<th>Intensity of reddish brown stain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol of A. auricula-judae fresh fruitbodies</td>
<td>25 µg/ml</td>
<td>Intact</td>
<td>+4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 µg/ml</td>
<td>Lysis</td>
<td></td>
</tr>
<tr>
<td>Methanol of A. auricula-judae fresh fruitbodies</td>
<td>25 µg/ml</td>
<td>Intact and seems to be swallowed in structure</td>
<td>+4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 µg/ml</td>
<td>Intact but some cells show lysis</td>
<td>+1</td>
</tr>
</tbody>
</table>

Appendix B Appearance of CaSki cells after treatment with ethanol and methanol extract of *A. auricula-judae* fresh fruitbodies (400x)
Note: Classification for the intensity of staining as no stain (-), weak (+1), moderate (+2), strong (+3) and very strong (+4).
Appendix B

Appearance of CaSki cells after treatment with dichloromethane and polysaccharides extract of *A. auricula-judae* fresh fruitbodies (400x)

Note: Classification for the intensity of staining as no stain (-), weak (+1), moderate (+2), strong (+3) and very strong (+4).

<table>
<thead>
<tr>
<th>Extract</th>
<th>Concentration of extract</th>
<th>Morphology of cells</th>
<th>Intensity of reddish brown stain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dichloromethane of A. auricula-judae fresh fruitbodies</td>
<td>25 µg/ml</td>
<td>Intact</td>
<td>+4</td>
</tr>
<tr>
<td></td>
<td>100 µg/ml</td>
<td>Lysis</td>
<td>+</td>
</tr>
<tr>
<td>Polysaccharides of A. auricula-judae fresh fruitbodies</td>
<td>25 µg/ml</td>
<td>Intact and swallowed structure</td>
<td>+3</td>
</tr>
<tr>
<td></td>
<td>100 µg/ml</td>
<td>Some cells show lysis</td>
<td>+</td>
</tr>
</tbody>
</table>
Appendix B

Appearance of CaSki cells after treatment with hot aqueous extract of *A. auricula-judae* fresh fruitbodies (400x)

Note: Classification for the intensity of staining as no stain (-), weak (+1), moderate (+2), strong (+3) and very strong (+4).

<table>
<thead>
<tr>
<th>Hot aqueous of A. auricula-judae fresh fruitbodies</th>
<th>Concentration of extract</th>
<th>Morphology of cells</th>
<th>Intensity of reddish brown</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25 µg/ml</td>
<td>Intact</td>
<td>+2</td>
</tr>
<tr>
<td></td>
<td>100 µg/ml</td>
<td>Intact but some lysis</td>
<td>+1</td>
</tr>
</tbody>
</table>
APPENDIX C: MEDIA AND EXTRACT PREPARATION FOR CYTOTOXICITY ASSAY

(1) Mushroom extracts stock serial dilution for cytotoxicity assay

- Preparation of mushroom stock solution (20mg/ml) (0.02g extract diluted in 1000µl DMSO)

- 10 µl of mushroom stock solution was added with 90 µl of DMSO 10% (2mg/ml)

- 2.0 µl from the upper mixture was used in the cytotoxicity test.
 (Prescreening at 20 µg/ml)

(2) Glassware preparation and sterilization techniques

Washing procedure

The glasswares such as pipettes, bottles, beakers and conical flasks were soaked overnight with 7X detergent (Flowlab). It is followed soaking in tap water for another 24 hours. All apparatus were rinsed with distilled water. Than they were dried in hot air oven (Memmert)
at 60°C. The white streaks observation on the glasswares or pipettes indicates inadequate rinsing procedure. Rinsing was repeated to avoid the occurrence of white streaks.

Autoclave procedure

Before the autoclaving, the bottles with plastic caps were loosely screwed to allow penetration and flee of steam during the sterilization cycle. Beakers were wrapped with aluminium foil while disposable blue tips, yellow tips and provials were sealed in plastic bags. All things were autoclaved for 20 min at 120°C and 1.1kg/cm² (15 lb) pressure. After cooling, the loose caps were tightened immediately. The wet disposable tips and provials were dried in an oven at 60°C.

Dry sterilization

Pipettes were plugged with cotton wool and placed inside aluminium pipette canister by locating the tips at the closed end of the canister. The canister was closed tightly and heat sterilized at 180°C for 2 hours in an oven (Memmert).

(3) Preparation of media and chemicals

Types of medium for different cancer cell culture

<table>
<thead>
<tr>
<th>Type of cancer cells</th>
<th>Type of medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaSki, MCF 7</td>
<td>Rosewell Park Memorial Institute (RPMI 1640)</td>
</tr>
<tr>
<td>MRC 5</td>
<td>Modified Eagle Medium (MEM)</td>
</tr>
<tr>
<td>KB</td>
<td>Medium 199</td>
</tr>
<tr>
<td>Skov</td>
<td>Dulbecco’s Modified Eagle Medium (DMEM)</td>
</tr>
<tr>
<td>HCT 119</td>
<td>McCoys Medium</td>
</tr>
</tbody>
</table>
Preparation of Basic Medium 199

One sachet of medium 199 (Flow Lab, Australia) containing Earle’s salt with L-Glutamine and HEPES (N-2-Hydroxyethyl-Piperazine-N-2-Ethane-Sulfonoc Acid, Sigma, USA) without sodium bicarbonate (Flow Lab.) was made up to 1 litre with distilled water. Two grams of sodium bicarbonate (NaHCO₃, Merck, Germany) was added to the medium. The medium was filter sterilized using a 0.22 µm filter membrane (Schleicher & Schuell) and stored at 4°C for up to 4 months.

Preparation of Basic RPMI 1640 Medium

Medium was prepared by dissolving 10.39 g of RPMI 1640 powder (Sigma) and 2.0 g of sodium bicarbonate in 1 litre of distilled water. The pH of the medium was calibrated to pH 7.4 (Hanna Instruments 8417). The medium was then filter sterilized using a 0.22 µm filter membrane (Schleicher & Schuell) into sterile bottles and kept at 4°C.

Preparation of Basic DMEM (without FBS)

Medium was prepared by dissolving 13.38 g of DMEM powder (Sigma) and 3.7 g of sodium bicarbonate in 1 litre of distilled water allowing mixing times between additions. The pH of the medium was calibrated to pH 7.0 (Hanna Instruments 8417). The medium was then filter sterilized using a 0.22 µm filter membrane ((Schleicher & Schuell) into sterile bottles and kept at 4°C.

10% Supplemented Medium 199 and RPMI 1640 Medium

100 ml of 10% supplemented medium 199 and RPMI 1640 were prepared using 90 ml of basic medium, supplemented with 10 ml inactivated Foetal Calf Serum (FCS, PAA Lab. Austria), 1 ml (100 μg/ml) and 1 ml (100 IU/ml) of streptomycin and penicillin (PAA Lab.
Austria) respectively and 1 ml of fungizone (PAA Lab Austria). The media was filter sterilized using a 0.22 µm filter membrane and stored at 4°C for up to 2 weeks.

10% DMEM

200 ml of 10 % supplemented DMEM was prepared using 180 ml basic medium, supplemented with 20 ml Fetal Bovine Serum (FBS).

20% Supplemented Medium 199 and RPMI 1640 Medium

50 ml of 20% supplemented medium 199 or RPMI 1640 was prepared using a 45 ml of 10% supplemented medium was added with 5 ml inactivated Fetal Calf Serum (FCS). The medium was filter sterilized using a 0.22 µm filter membrane and stored at 4°C for up to 2 weeks. This 20% supplemented medium was used to revive cells.

Phosphate Buffered Saline (PBS)

The phosphate buffered saline (PBS) was prepared using 1.52 g of sodium phosphate anhydrous (NaHPO₄, Merck), 0.58 g of potassium dihydrogen orthophosphate (KH₂PO₄, Merck) and 8.5 g of sodium chloride (NaCl) that were dissolved in distilled water and the volume was made up to 1 litre. The pH of the buffer was adjusted to 7.2 using a pH meter (Hanna Instruments). The buffer was then filtered using a 0.22 µm filter membrane and stored at room temperature.

10% Dimethysulfoxide (DMSO)

9 ml of sterilized distilled water was added to 1 ml of 99.9% dimethysulfoxide (Sigma)

Tryphan blue
0.2 g of trypan blue was weighed and diluted with 50 ml of distilled water to get 0.4% of trypan blue.

(4) Preparation of Solutions for Neutral Red cytotoxicity assay

Neutral Red Stock Solution

0.4 g of Neutral Red (ICN, USA) was dissolved in 100 ml distilled water. The solution was kept at 4°C.

Neutral Red Medium

The Neutral Red stock solution was diluted (1:80) in treatment culture medium to give a final concentration of 50 µg/ml. Prepared Neutral Red medium were incubated overnight at room temperature in the dark. This solution was centrifuged at 1000 rpm for 10 minutes before any use to remove any fine needle-like precipitate of dye crystals.

Neutral Red Washing Solution

10% of calcium chloride (Sigma) was dissolved in 1 ml formaldehyde (Sigma) and 89 ml of distilled water. The solution was kept at 4°C.

Neutral Red Resorb Solution

1 ml of glacial acetic acid (BDH) was dissolved in 50 ml of absolute ethanol (Hamburg) and 49 ml of distilled water. The solution was kept at 4°C.
Appendix C: Inhibition percentages of Skov, CaSki, MCF 7, KB, HCT 119, HT 29 and MRC 5 cells treated with *Auricularia auricula-judae* fresh fruitbodies (methanol, ethanol, dichloromethane, polysaccharides and hot aqueous) extracts.

<table>
<thead>
<tr>
<th>Types of cancer cells</th>
<th>Percentage of inhibition ± Standard deviation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ethanol</td>
</tr>
<tr>
<td>Skov (Human ovarian cancer cells)</td>
<td>27.1 ± 2.56</td>
</tr>
<tr>
<td>CaSki (Human cervical cancer cells)</td>
<td>25.4 ± 2.22</td>
</tr>
<tr>
<td>MCF 7 (Human breast cancer cells)</td>
<td>1.7 ± 1.05</td>
</tr>
<tr>
<td>KB (Human oral epidermoid cancer cells)</td>
<td>20.5 ± 4.38</td>
</tr>
<tr>
<td>HCT 119 (Human colon cancer cells)</td>
<td>13.9 ± 4.03</td>
</tr>
<tr>
<td>HT 29 (Human intestinal colon cancer cells)</td>
<td>11.7 ± 5.36</td>
</tr>
<tr>
<td>MRC 5 (Human fetal lung epithelium normal cells)</td>
<td>2.1 ± 2.98</td>
</tr>
</tbody>
</table>

The results represented in inhibition percentages mean of triplicate with standard deviation. The percentages of inhibition obtained at the concentration of 20 µg/ml prescreening with *A.auricula-judae* fresh fruitbodies extracts.
APPENDIX D: DATA AND STATISTICAL ANALYSIS

(1) One-Way ANOVA to compare decrease in absorbances values to determine time taken to reach steady state during scavenging of DPPH radicals. Results represented by absorbance in mean values of triplicate for each *Auricularia auricula-judae* fresh fruitbodies extracts.

Dichloromethane

<table>
<thead>
<tr>
<th>Time</th>
<th>20 mg/ml</th>
<th>50 mg/ml</th>
<th>100 mg/ml</th>
<th>150 mg/ml</th>
<th>200 mg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0287</td>
<td>0.059*</td>
<td>0.092*</td>
<td>0.1907*</td>
<td>0.219*</td>
</tr>
<tr>
<td>1</td>
<td>0.02*</td>
<td>0.0577*</td>
<td>0.0903*</td>
<td>0.1827*</td>
<td>0.209*</td>
</tr>
<tr>
<td>2</td>
<td>0.013*</td>
<td>0.0533*</td>
<td>0.0843*</td>
<td>0.1727*</td>
<td>0.195*</td>
</tr>
<tr>
<td>15</td>
<td>0.001*</td>
<td>0.04</td>
<td>0.0583*</td>
<td>0.0517*</td>
<td>0.062*</td>
</tr>
<tr>
<td>30</td>
<td>0.0</td>
<td>0.009333</td>
<td>0.021*</td>
<td>0.02467*</td>
<td>0.029*</td>
</tr>
<tr>
<td>45</td>
<td>0.0</td>
<td>0.003333</td>
<td>0.011*</td>
<td>0.0077*</td>
<td>0.0077</td>
</tr>
</tbody>
</table>

* denotes the significance level of mean absorbances achieved per time in minutes for each extracts in each different concentrations and the steady state achieved at 45 minutes time.

Ethanol

<table>
<thead>
<tr>
<th>Time</th>
<th>20 mg/ml</th>
<th>50 mg/ml</th>
<th>100 mg/ml</th>
<th>150 mg/ml</th>
<th>200 mg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.023*</td>
<td>0.0713*</td>
<td>0.1006*</td>
<td>0.1223*</td>
<td>0.1187*</td>
</tr>
<tr>
<td>1</td>
<td>0.021*</td>
<td>0.0447*</td>
<td>0.097*</td>
<td>0.1223*</td>
<td>0.118*</td>
</tr>
<tr>
<td>2</td>
<td>0.01167*</td>
<td>0.0257*</td>
<td>0.09*</td>
<td>0.115*</td>
<td>0.116*</td>
</tr>
<tr>
<td>15</td>
<td>0.00367</td>
<td>0.0173*</td>
<td>0.0277*</td>
<td>0.0573*</td>
<td>0.0393*</td>
</tr>
<tr>
<td>30</td>
<td>0.00233</td>
<td>0.01067</td>
<td>0.007</td>
<td>0.0517*</td>
<td>0.0277</td>
</tr>
<tr>
<td>45</td>
<td>0.000333</td>
<td>0.0023</td>
<td>0.00267</td>
<td>0.0137</td>
<td>0.01067</td>
</tr>
</tbody>
</table>

* denotes the significance level of mean absorbances achieved per time in minutes for each extracts in each different concentrations and the steady state achieved at 30 minutes time.

Methanol

<table>
<thead>
<tr>
<th>Time</th>
<th>50 mg/ml</th>
<th>60 mg/ml</th>
<th>80 mg/ml</th>
<th>100 mg/ml</th>
<th>150 mg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0493*</td>
<td>0.0826*</td>
<td>0.075*</td>
<td>0.058*</td>
<td>0.155*</td>
</tr>
<tr>
<td>1</td>
<td>0.0483*</td>
<td>0.082*</td>
<td>0.072*</td>
<td>0.0543*</td>
<td>0.148*</td>
</tr>
<tr>
<td>2</td>
<td>0.0443</td>
<td>0.08066*</td>
<td>0.066*</td>
<td>0.046*</td>
<td>0.134*</td>
</tr>
<tr>
<td>15</td>
<td>0.0303</td>
<td>0.0796*</td>
<td>0.0403</td>
<td>0.042*</td>
<td>0.058*</td>
</tr>
<tr>
<td>30</td>
<td>0.025</td>
<td>0.078*</td>
<td>0.03167</td>
<td>0.0363*</td>
<td>0.0376*</td>
</tr>
<tr>
<td>45</td>
<td>0.004</td>
<td>0.0713*</td>
<td>0.02367</td>
<td>0.024*</td>
<td>0.012</td>
</tr>
</tbody>
</table>

* denotes the significance level of mean absorbances achieved per time in minutes for each extracts in each different concentrations and the steady state achieved at 45 minutes time.
1.1) One-Way ANOVA to compare decrease in absorbances values to determine time taken to reach steady state during scavenging of DPPH radicals. Results represented by mean of the extracts and * denotes statistically significant at P-value of the F-test is less than 0.05 from one level time to another.

Dichloromethane extract

<table>
<thead>
<tr>
<th>Concentrations</th>
<th>Time Contrast</th>
<th>Mean Difference</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 mg/ml</td>
<td>0-1</td>
<td>0.00866667</td>
<td>0.0130882</td>
</tr>
<tr>
<td></td>
<td>0-2</td>
<td>*0.0153333</td>
<td>0.0130882</td>
</tr>
<tr>
<td></td>
<td>0-15</td>
<td>*0.0273333</td>
<td>0.0130882</td>
</tr>
<tr>
<td></td>
<td>0-30</td>
<td>*0.0286667</td>
<td>0.0130882</td>
</tr>
<tr>
<td></td>
<td>0-45</td>
<td>*0.0286667</td>
<td>0.0130882</td>
</tr>
<tr>
<td></td>
<td>0-60</td>
<td>*0.0286667</td>
<td>0.0130882</td>
</tr>
<tr>
<td></td>
<td>1-2</td>
<td>0.00666667</td>
<td>0.0130882</td>
</tr>
<tr>
<td></td>
<td>1-15</td>
<td>*0.0186667</td>
<td>0.0130882</td>
</tr>
<tr>
<td></td>
<td>1-30</td>
<td>*0.02</td>
<td>0.0130882</td>
</tr>
<tr>
<td></td>
<td>1-45</td>
<td>*0.02</td>
<td>0.0130882</td>
</tr>
<tr>
<td></td>
<td>1-60</td>
<td>*0.02</td>
<td>0.0130882</td>
</tr>
<tr>
<td></td>
<td>2-15</td>
<td>0.012</td>
<td>0.0130882</td>
</tr>
<tr>
<td>Concentrations</td>
<td>Time Contrast</td>
<td>Mean Difference</td>
<td>Limits</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>------------</td>
</tr>
<tr>
<td>150 mg/ml</td>
<td>0-1</td>
<td>0.008</td>
<td>0.0115974</td>
</tr>
<tr>
<td></td>
<td>0-2</td>
<td>*0.018</td>
<td>0.0115974</td>
</tr>
<tr>
<td></td>
<td>0-15</td>
<td>*0.139</td>
<td>0.0115974</td>
</tr>
<tr>
<td></td>
<td>0-30</td>
<td>*0.166</td>
<td>0.0115974</td>
</tr>
<tr>
<td></td>
<td>0-45</td>
<td>*0.183</td>
<td>0.0115974</td>
</tr>
<tr>
<td></td>
<td>0-60</td>
<td>*0.190667</td>
<td>0.0115974</td>
</tr>
<tr>
<td></td>
<td>1-2</td>
<td>0.01</td>
<td>0.0115974</td>
</tr>
<tr>
<td></td>
<td>1-15</td>
<td>*0.131</td>
<td>0.0115974</td>
</tr>
<tr>
<td></td>
<td>1-30</td>
<td>*0.158</td>
<td>0.0115974</td>
</tr>
<tr>
<td></td>
<td>1-45</td>
<td>*0.175</td>
<td>0.0115974</td>
</tr>
<tr>
<td></td>
<td>1-60</td>
<td>*0.182667</td>
<td>0.0115974</td>
</tr>
<tr>
<td></td>
<td>2-15</td>
<td>*0.121</td>
<td>0.0115974</td>
</tr>
</tbody>
</table>

Dichloromethane extract

<table>
<thead>
<tr>
<th>Concentrations</th>
<th>Time Contrast</th>
<th>Mean Difference</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mg/ml</td>
<td>0-1</td>
<td>0.00166667</td>
<td>0.00400799</td>
</tr>
<tr>
<td></td>
<td>0-2</td>
<td>*0.00766667</td>
<td>0.00400799</td>
</tr>
<tr>
<td></td>
<td>0-15</td>
<td>*0.0336667</td>
<td>0.00400799</td>
</tr>
<tr>
<td></td>
<td>0-30</td>
<td>*0.0713333</td>
<td>0.00400799</td>
</tr>
<tr>
<td></td>
<td>0-45</td>
<td>*0.0813333</td>
<td>0.00400799</td>
</tr>
<tr>
<td></td>
<td>0-60</td>
<td>*0.092</td>
<td>0.00400799</td>
</tr>
<tr>
<td></td>
<td>1-2</td>
<td>*0.006</td>
<td>0.00400799</td>
</tr>
<tr>
<td></td>
<td>1-15</td>
<td>*0.032</td>
<td>0.00400799</td>
</tr>
<tr>
<td></td>
<td>1-30</td>
<td>*0.0696667</td>
<td>0.00400799</td>
</tr>
<tr>
<td></td>
<td>1-45</td>
<td>*0.0796667</td>
<td>0.00400799</td>
</tr>
<tr>
<td></td>
<td>1-60</td>
<td>*0.0903333</td>
<td>0.00400799</td>
</tr>
<tr>
<td></td>
<td>2-15</td>
<td>*0.026</td>
<td>0.00400799</td>
</tr>
<tr>
<td></td>
<td>2-30</td>
<td>*0.0636667</td>
<td>0.00400799</td>
</tr>
<tr>
<td></td>
<td>2-45</td>
<td>*0.0736667</td>
<td>0.00400799</td>
</tr>
<tr>
<td></td>
<td>2-60</td>
<td>*0.0843333</td>
<td>0.00400799</td>
</tr>
<tr>
<td></td>
<td>15-30</td>
<td>*0.0376667</td>
<td>0.00400799</td>
</tr>
<tr>
<td></td>
<td>15-45</td>
<td>*0.0476667</td>
<td>0.00400799</td>
</tr>
<tr>
<td></td>
<td>15-60</td>
<td>*0.0583333</td>
<td>0.00400799</td>
</tr>
<tr>
<td></td>
<td>30-45</td>
<td>*0.01</td>
<td>0.00400799</td>
</tr>
<tr>
<td></td>
<td>30-60</td>
<td>*0.0206667</td>
<td>0.00400799</td>
</tr>
<tr>
<td></td>
<td>45-60</td>
<td>*0.0106667</td>
<td>0.00400799</td>
</tr>
<tr>
<td></td>
<td>Concentrations</td>
<td>Time Contrast</td>
<td>Mean Difference</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------</td>
<td>----------------</td>
</tr>
<tr>
<td>20 mg/ml</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>0.002</td>
<td></td>
<td>0.00452162</td>
</tr>
<tr>
<td>0-2</td>
<td>0.004333333</td>
<td></td>
<td>0.00452162</td>
</tr>
<tr>
<td>0-15</td>
<td>*0.0193333</td>
<td></td>
<td>0.00452162</td>
</tr>
<tr>
<td>0-30</td>
<td>*0.0206667</td>
<td></td>
<td>0.00452162</td>
</tr>
<tr>
<td>0-45</td>
<td>*0.0226667</td>
<td></td>
<td>0.00452162</td>
</tr>
<tr>
<td>0-60</td>
<td>*0.023</td>
<td></td>
<td>0.00452162</td>
</tr>
<tr>
<td>1-2</td>
<td>0.002333333</td>
<td></td>
<td>0.00452162</td>
</tr>
<tr>
<td>1-15</td>
<td>*0.0173333</td>
<td></td>
<td>0.00452162</td>
</tr>
<tr>
<td>1-30</td>
<td>*0.0186667</td>
<td></td>
<td>0.00452162</td>
</tr>
<tr>
<td>1-45</td>
<td>*0.029</td>
<td></td>
<td>0.00452162</td>
</tr>
<tr>
<td>1-60</td>
<td>*0.021</td>
<td></td>
<td>0.00452162</td>
</tr>
</tbody>
</table>

* denotes a statistically significant difference at p value <0.05

Ethanol extract

<table>
<thead>
<tr>
<th></th>
<th>Concentrations</th>
<th>Time Contrast</th>
<th>Mean Difference</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 mg/ml</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>0.002</td>
<td></td>
<td>0.00452162</td>
<td></td>
</tr>
<tr>
<td>0-2</td>
<td>0.004333333</td>
<td></td>
<td>0.00452162</td>
<td></td>
</tr>
<tr>
<td>0-15</td>
<td>*0.0193333</td>
<td></td>
<td>0.00452162</td>
<td></td>
</tr>
<tr>
<td>0-30</td>
<td>*0.0206667</td>
<td></td>
<td>0.00452162</td>
<td></td>
</tr>
<tr>
<td>0-45</td>
<td>*0.0226667</td>
<td></td>
<td>0.00452162</td>
<td></td>
</tr>
<tr>
<td>0-60</td>
<td>*0.023</td>
<td></td>
<td>0.00452162</td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>0.002333333</td>
<td></td>
<td>0.00452162</td>
<td></td>
</tr>
<tr>
<td>1-15</td>
<td>*0.0173333</td>
<td></td>
<td>0.00452162</td>
<td></td>
</tr>
<tr>
<td>1-30</td>
<td>*0.0186667</td>
<td></td>
<td>0.00452162</td>
<td></td>
</tr>
<tr>
<td>1-45</td>
<td>*0.029</td>
<td></td>
<td>0.00452162</td>
<td></td>
</tr>
<tr>
<td>1-60</td>
<td>*0.021</td>
<td></td>
<td>0.00452162</td>
<td></td>
</tr>
<tr>
<td>Time Range</td>
<td>Amount</td>
<td>Rate 1</td>
<td>Rate 2</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>2-15</td>
<td>*0.015</td>
<td>0.00452162</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-30</td>
<td>*0.0163333</td>
<td>0.00452162</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-45</td>
<td>*0.0183333</td>
<td>0.00452162</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-60</td>
<td>*0.0186667</td>
<td>0.00452162</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-30</td>
<td>0.00133333</td>
<td>0.00452162</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-45</td>
<td>0.00333333</td>
<td>0.00452162</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-60</td>
<td>0.00366667</td>
<td>0.00452162</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-45</td>
<td>0.002</td>
<td>0.00452162</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-60</td>
<td>0.00233333</td>
<td>0.00452162</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45-60</td>
<td>0.000333333</td>
<td>0.00452162</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 mg/ml</td>
<td>0-1</td>
<td>*0.0266667</td>
<td>0.013077</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-2</td>
<td>*0.0456667</td>
<td>0.013077</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-15</td>
<td>*0.054</td>
<td>0.013077</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-30</td>
<td>*0.0606667</td>
<td>0.013077</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-45</td>
<td>*0.069</td>
<td>0.013077</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-60</td>
<td>*0.0713333</td>
<td>0.013077</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-2</td>
<td>*0.019</td>
<td>0.013077</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-15</td>
<td>*0.0273333</td>
<td>0.013077</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-30</td>
<td>*0.034</td>
<td>0.013077</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-45</td>
<td>*0.0423333</td>
<td>0.013077</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-60</td>
<td>*0.0446667</td>
<td>0.013077</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-15</td>
<td>0.00833333</td>
<td>0.013077</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-30</td>
<td>*0.015</td>
<td>0.013077</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-45</td>
<td>*0.0233333</td>
<td>0.013077</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-60</td>
<td>*0.0256667</td>
<td>0.013077</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15-30</td>
<td>0.00666667</td>
<td>0.013077</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15-45</td>
<td>*0.015</td>
<td>0.013077</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15-60</td>
<td>*0.0173333</td>
<td>0.013077</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30-45</td>
<td>0.00833333</td>
<td>0.013077</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30-60</td>
<td>0.0106667</td>
<td>0.013077</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45-60</td>
<td>0.00233333</td>
<td>0.013077</td>
<td></td>
</tr>
<tr>
<td>100 mg/ml</td>
<td>0-1</td>
<td>0.00366667</td>
<td>0.014938</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-2</td>
<td>0.0106667</td>
<td>0.014938</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-15</td>
<td>*0.073</td>
<td>0.014938</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-30</td>
<td>*0.0936667</td>
<td>0.014938</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-45</td>
<td>*0.098</td>
<td>0.014938</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-60</td>
<td>*0.100667</td>
<td>0.014938</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-2</td>
<td>0.007</td>
<td>0.014938</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-15</td>
<td>*0.0693333</td>
<td>0.014938</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-30</td>
<td>*0.09</td>
<td>0.014938</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-45</td>
<td>*0.0943333</td>
<td>0.014938</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-60</td>
<td>*0.097</td>
<td>0.014938</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-15</td>
<td>*0.0623333</td>
<td>0.014938</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-30</td>
<td>*0.083</td>
<td>0.014938</td>
<td></td>
</tr>
<tr>
<td>Concentrations</td>
<td>Time</td>
<td>Contrast</td>
<td>Mean Difference</td>
<td>Limits</td>
</tr>
<tr>
<td>----------------</td>
<td>------</td>
<td>----------</td>
<td>-----------------</td>
<td>--------</td>
</tr>
<tr>
<td>200 mg/ml</td>
<td>0-1</td>
<td>0.000666667</td>
<td>0.0376894</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-2</td>
<td>0.00233333</td>
<td>0.0376894</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-15</td>
<td>*0.0793333</td>
<td>0.0376894</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-30</td>
<td>*0.091</td>
<td>0.0376894</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-45</td>
<td>*0.108</td>
<td>0.0376894</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-60</td>
<td>*0.118667</td>
<td>0.0376894</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-2</td>
<td>0.00166667</td>
<td>0.0376894</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-15</td>
<td>*0.0786667</td>
<td>0.0376894</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-30</td>
<td>*0.0903333</td>
<td>0.0376894</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-45</td>
<td>*0.1073333</td>
<td>0.0376894</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-60</td>
<td>*0.118</td>
<td>0.0376894</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-15</td>
<td>*0.077</td>
<td>0.0376894</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-30</td>
<td>*0.0886667</td>
<td>0.0376894</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-45</td>
<td>*0.105667</td>
<td>0.0376894</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concentrations</th>
<th>Time</th>
<th>Contrast</th>
<th>Mean Difference</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 mg/ml</td>
<td>0-1</td>
<td>0.00766667</td>
<td>0.0508542</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-2</td>
<td>0.00766667</td>
<td>0.0508542</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-15</td>
<td>*0.065</td>
<td>0.0508542</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-30</td>
<td>*0.0706667</td>
<td>0.0508542</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-45</td>
<td>*0.108667</td>
<td>0.0508542</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-60</td>
<td>*0.1223333</td>
<td>0.0508542</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-2</td>
<td>0.00766667</td>
<td>0.0508542</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-15</td>
<td>*0.065</td>
<td>0.0508542</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-30</td>
<td>*0.0706667</td>
<td>0.0508542</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-45</td>
<td>*0.108667</td>
<td>0.0508542</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-60</td>
<td>*0.1223333</td>
<td>0.0508542</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-15</td>
<td>*0.0573333</td>
<td>0.0508542</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-30</td>
<td>*0.063</td>
<td>0.0508542</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-45</td>
<td>*0.101</td>
<td>0.0508542</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-60</td>
<td>*0.114667</td>
<td>0.0508542</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15-30</td>
<td>0.00566667</td>
<td>0.0508542</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15-45</td>
<td>0.04366667</td>
<td>0.0508542</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15-60</td>
<td>*0.0573333</td>
<td>0.0508542</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30-45</td>
<td>0.038</td>
<td>0.0508542</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30-60</td>
<td>*0.0516667</td>
<td>0.0508542</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45-60</td>
<td>0.0136667</td>
<td>0.0508542</td>
<td></td>
</tr>
<tr>
<td>Concentrations</td>
<td>Time Contrast</td>
<td>Mean Difference</td>
<td>Limits</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>----------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>20 mg/ml</td>
<td>0-1</td>
<td>0.001</td>
<td>0.0482504</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-2</td>
<td>0.005</td>
<td>0.0482504</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-15</td>
<td>0.019</td>
<td>0.0482504</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-30</td>
<td>0.0243333</td>
<td>0.0482504</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-45</td>
<td>0.0453333</td>
<td>0.0482504</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-60</td>
<td>*0.0493333</td>
<td>0.0482504</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-2</td>
<td>0.004</td>
<td>0.0482504</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-15</td>
<td>0.018</td>
<td>0.0482504</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-30</td>
<td>0.0233333</td>
<td>0.0482504</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-45</td>
<td>0.0443333</td>
<td>0.0482504</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-60</td>
<td>*0.0483333</td>
<td>0.0482504</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-15</td>
<td>0.014</td>
<td>0.0482504</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-30</td>
<td>0.0193333</td>
<td>0.0482504</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-45</td>
<td>0.0403333</td>
<td>0.0482504</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-60</td>
<td>0.0443333</td>
<td>0.0482504</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15-30</td>
<td>0.00533333</td>
<td>0.0482504</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15-45</td>
<td>0.0263333</td>
<td>0.0482504</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15-60</td>
<td>0.0303333</td>
<td>0.0482504</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30-45</td>
<td>0.021</td>
<td>0.0482504</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30-60</td>
<td>0.025</td>
<td>0.0482504</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45-60</td>
<td>0.004</td>
<td>0.0482504</td>
<td></td>
</tr>
<tr>
<td>60 mg/ml</td>
<td>0-1</td>
<td>0.000666667</td>
<td>0.00656358</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-2</td>
<td>0.002</td>
<td>0.00656358</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-15</td>
<td>0.003</td>
<td>0.00656358</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-30</td>
<td>0.00466667</td>
<td>0.00656358</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-45</td>
<td>*0.0113333</td>
<td>0.00656358</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-60</td>
<td>*0.0826667</td>
<td>0.00656358</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-2</td>
<td>0.00133333</td>
<td>0.00656358</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-15</td>
<td>0.00233333</td>
<td>0.00656358</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-30</td>
<td>0.004</td>
<td>0.00656358</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-45</td>
<td>*0.0106667</td>
<td>0.00656358</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-60</td>
<td>*0.082</td>
<td>0.00656358</td>
<td></td>
</tr>
</tbody>
</table>

* denotes a statistically significant difference at p value <0.05

Methanol extract

<table>
<thead>
<tr>
<th>Concentrations</th>
<th>Mean Difference</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-60</td>
<td>*0.116333</td>
<td>0.0376894</td>
</tr>
<tr>
<td>15-30</td>
<td>0.0116667</td>
<td>0.0376894</td>
</tr>
<tr>
<td>15-45</td>
<td>0.0286667</td>
<td>0.0376894</td>
</tr>
<tr>
<td>15-60</td>
<td>*0.0393333</td>
<td>0.0376894</td>
</tr>
<tr>
<td>30-45</td>
<td>0.017</td>
<td>0.0376894</td>
</tr>
<tr>
<td>30-60</td>
<td>0.0276667</td>
<td>0.0376894</td>
</tr>
<tr>
<td>45-60</td>
<td>0.0106667</td>
<td>0.0376894</td>
</tr>
<tr>
<td>Time</td>
<td>80 mg/ml</td>
<td>100 mg/ml</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>2-15</td>
<td>0.001</td>
<td>0.00656358</td>
</tr>
<tr>
<td>2-30</td>
<td>0.00266667</td>
<td>0.00656358</td>
</tr>
<tr>
<td>2-45</td>
<td>*0.00933333</td>
<td>0.00656358</td>
</tr>
<tr>
<td>2-60</td>
<td>*0.0806667</td>
<td>0.00656358</td>
</tr>
<tr>
<td>15-30</td>
<td>0.00166667</td>
<td>0.00656358</td>
</tr>
<tr>
<td>15-45</td>
<td>*0.00833333</td>
<td>0.00656358</td>
</tr>
<tr>
<td>15-60</td>
<td>*0.0796667</td>
<td>0.00656358</td>
</tr>
<tr>
<td>30-45</td>
<td>*0.00666667</td>
<td>0.00656358</td>
</tr>
<tr>
<td>30-60</td>
<td>*0.078</td>
<td>0.00656358</td>
</tr>
<tr>
<td>45-60</td>
<td>*0.0713333</td>
<td>0.00656358</td>
</tr>
<tr>
<td>80 mg/ml</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>0.003</td>
<td>0.0576725</td>
</tr>
<tr>
<td>0-2</td>
<td>0.009</td>
<td>0.0576725</td>
</tr>
<tr>
<td>0-15</td>
<td>0.0346667</td>
<td>0.0576725</td>
</tr>
<tr>
<td>0-30</td>
<td>0.0433333</td>
<td>0.0576725</td>
</tr>
<tr>
<td>0-45</td>
<td>0.0513333</td>
<td>0.0576725</td>
</tr>
<tr>
<td>0-60</td>
<td>*0.075</td>
<td>0.0576725</td>
</tr>
<tr>
<td>1-2</td>
<td>0.006</td>
<td>0.0576725</td>
</tr>
<tr>
<td>1-15</td>
<td>0.0316667</td>
<td>0.0576725</td>
</tr>
<tr>
<td>1-30</td>
<td>0.0403333</td>
<td>0.0576725</td>
</tr>
<tr>
<td>1-45</td>
<td>0.0483333</td>
<td>0.0576725</td>
</tr>
<tr>
<td>1-60</td>
<td>*0.072</td>
<td>0.0576725</td>
</tr>
<tr>
<td>2-15</td>
<td>0.0256667</td>
<td>0.0576725</td>
</tr>
<tr>
<td>2-30</td>
<td>0.0343333</td>
<td>0.0576725</td>
</tr>
<tr>
<td>2-45</td>
<td>0.0423333</td>
<td>0.0576725</td>
</tr>
<tr>
<td>2-60</td>
<td>*0.066</td>
<td>0.0576725</td>
</tr>
<tr>
<td>15-30</td>
<td>0.00866667</td>
<td>0.0576725</td>
</tr>
<tr>
<td>15-45</td>
<td>0.0166667</td>
<td>0.0576725</td>
</tr>
<tr>
<td>15-60</td>
<td>0.0403333</td>
<td>0.0576725</td>
</tr>
<tr>
<td>30-45</td>
<td>0.008</td>
<td>0.0576725</td>
</tr>
<tr>
<td>30-60</td>
<td>0.0316667</td>
<td>0.0576725</td>
</tr>
<tr>
<td>45-60</td>
<td>0.0236667</td>
<td>0.0576725</td>
</tr>
<tr>
<td>100 mg/ml</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>0.0036667</td>
<td>0.00693151</td>
</tr>
<tr>
<td>0-2</td>
<td>*0.012</td>
<td>0.00693151</td>
</tr>
<tr>
<td>0-15</td>
<td>*0.016</td>
<td>0.00693151</td>
</tr>
<tr>
<td>0-30</td>
<td>*0.0216667</td>
<td>0.00693151</td>
</tr>
<tr>
<td>0-45</td>
<td>*0.034</td>
<td>0.00693151</td>
</tr>
<tr>
<td>0-60</td>
<td>*0.058</td>
<td>0.00693151</td>
</tr>
<tr>
<td>1-2</td>
<td>*0.00833333</td>
<td>0.00693151</td>
</tr>
<tr>
<td>1-15</td>
<td>*0.0123333</td>
<td>0.00693151</td>
</tr>
<tr>
<td>1-30</td>
<td>*0.018</td>
<td>0.00693151</td>
</tr>
<tr>
<td>1-45</td>
<td>*0.0303333</td>
<td>0.00693151</td>
</tr>
<tr>
<td>1-60</td>
<td>*0.0543333</td>
<td>0.00693151</td>
</tr>
<tr>
<td>2-15</td>
<td>0.004</td>
<td>0.00693151</td>
</tr>
<tr>
<td>2-30</td>
<td>*0.00966667</td>
<td>0.00693151</td>
</tr>
<tr>
<td>2-45</td>
<td>*0.022</td>
<td>0.00693151</td>
</tr>
<tr>
<td>Concentrations</td>
<td>Time Contrast</td>
<td>Mean Difference</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>20 mg/ml</td>
<td>0-1</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>0-2</td>
<td>0.00166667</td>
</tr>
<tr>
<td></td>
<td>0-15</td>
<td>*0.0106667</td>
</tr>
<tr>
<td></td>
<td>0-30</td>
<td>*0.0133333</td>
</tr>
<tr>
<td></td>
<td>0-45</td>
<td>*0.0143333</td>
</tr>
<tr>
<td></td>
<td>0-60</td>
<td>*0.014</td>
</tr>
<tr>
<td></td>
<td>1-2</td>
<td>0.00166667</td>
</tr>
<tr>
<td></td>
<td>1-15</td>
<td>*0.0106667</td>
</tr>
<tr>
<td></td>
<td>1-30</td>
<td>*0.0133333</td>
</tr>
</tbody>
</table>

Hot aqueous extract

<table>
<thead>
<tr>
<th>Concentrations</th>
<th>Time Contrast</th>
<th>Mean Difference</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 mg/ml</td>
<td>0-1</td>
<td>0.00766667</td>
<td>0.026978</td>
</tr>
<tr>
<td></td>
<td>0-2</td>
<td>0.022</td>
<td>0.026978</td>
</tr>
<tr>
<td></td>
<td>0-15</td>
<td>*0.098</td>
<td>0.026978</td>
</tr>
<tr>
<td></td>
<td>0-30</td>
<td>*0.124</td>
<td>0.026978</td>
</tr>
<tr>
<td></td>
<td>0-45</td>
<td>*0.143667</td>
<td>0.026978</td>
</tr>
<tr>
<td></td>
<td>0-60</td>
<td>*0.155667</td>
<td>0.026978</td>
</tr>
<tr>
<td></td>
<td>1-2</td>
<td>0.0143333</td>
<td>0.026978</td>
</tr>
<tr>
<td></td>
<td>1-15</td>
<td>*0.0903333</td>
<td>0.026978</td>
</tr>
<tr>
<td></td>
<td>1-30</td>
<td>*0.116333</td>
<td>0.026978</td>
</tr>
<tr>
<td></td>
<td>1-45</td>
<td>*0.136</td>
<td>0.026978</td>
</tr>
<tr>
<td></td>
<td>1-60</td>
<td>*0.148</td>
<td>0.026978</td>
</tr>
<tr>
<td></td>
<td>2-15</td>
<td>*0.076</td>
<td>0.026978</td>
</tr>
<tr>
<td></td>
<td>2-30</td>
<td>*0.102</td>
<td>0.026978</td>
</tr>
<tr>
<td></td>
<td>2-45</td>
<td>*0.121667</td>
<td>0.026978</td>
</tr>
<tr>
<td></td>
<td>2-60</td>
<td>*0.133667</td>
<td>0.026978</td>
</tr>
<tr>
<td></td>
<td>15-30</td>
<td>0.026</td>
<td>0.026978</td>
</tr>
<tr>
<td></td>
<td>15-45</td>
<td>*0.0456667</td>
<td>0.026978</td>
</tr>
<tr>
<td></td>
<td>15-60</td>
<td>*0.0576667</td>
<td>0.026978</td>
</tr>
<tr>
<td></td>
<td>30-45</td>
<td>0.0196667</td>
<td>0.026978</td>
</tr>
<tr>
<td></td>
<td>30-60</td>
<td>*0.0316667</td>
<td>0.026978</td>
</tr>
<tr>
<td></td>
<td>45-60</td>
<td>0.012</td>
<td>0.026978</td>
</tr>
</tbody>
</table>

* denotes a statistically significant difference at p value <0.05
<table>
<thead>
<tr>
<th>Time Range</th>
<th>Value</th>
<th>Remaining Time</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-45</td>
<td>0.0143333</td>
<td>0.010535</td>
<td></td>
</tr>
<tr>
<td>1-60</td>
<td>0.014</td>
<td>0.010535</td>
<td></td>
</tr>
<tr>
<td>2-15</td>
<td>0.009</td>
<td>0.010535</td>
<td></td>
</tr>
<tr>
<td>2-30</td>
<td>0.0116667</td>
<td>0.010535</td>
<td></td>
</tr>
<tr>
<td>2-45</td>
<td>0.0126667</td>
<td>0.010535</td>
<td></td>
</tr>
<tr>
<td>2-60</td>
<td>0.0123333</td>
<td>0.010535</td>
<td></td>
</tr>
<tr>
<td>15-30</td>
<td>0.0026667</td>
<td>0.010535</td>
<td></td>
</tr>
<tr>
<td>15-45</td>
<td>0.0036667</td>
<td>0.010535</td>
<td></td>
</tr>
<tr>
<td>15-60</td>
<td>0.0033333</td>
<td>0.010535</td>
<td></td>
</tr>
<tr>
<td>30-45</td>
<td>0.001</td>
<td>0.010535</td>
<td></td>
</tr>
<tr>
<td>30-60</td>
<td>0.000666667</td>
<td>0.010535</td>
<td></td>
</tr>
<tr>
<td>45-60</td>
<td>-0.000333333</td>
<td>0.010535</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time Range</th>
<th>Value</th>
<th>Remaining Time</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 mg/ml</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>0.0033333</td>
<td>0.0135864</td>
<td></td>
</tr>
<tr>
<td>0-2</td>
<td>0.0026667</td>
<td>0.0135864</td>
<td></td>
</tr>
<tr>
<td>0-15</td>
<td>*0.028</td>
<td>0.0135864</td>
<td></td>
</tr>
<tr>
<td>0-30</td>
<td>0.0038667</td>
<td>0.0135864</td>
<td></td>
</tr>
<tr>
<td>0-45</td>
<td>0.00476667</td>
<td>0.0135864</td>
<td></td>
</tr>
<tr>
<td>0-60</td>
<td>0.0051333</td>
<td>0.0135864</td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>0.00233333</td>
<td>0.0135864</td>
<td></td>
</tr>
<tr>
<td>1-15</td>
<td>*0.0276667</td>
<td>0.0135864</td>
<td></td>
</tr>
<tr>
<td>1-30</td>
<td>*0.0383333</td>
<td>0.0135864</td>
<td></td>
</tr>
<tr>
<td>1-45</td>
<td>*0.0473333</td>
<td>0.0135864</td>
<td></td>
</tr>
<tr>
<td>1-60</td>
<td>*0.051</td>
<td>0.0135864</td>
<td></td>
</tr>
<tr>
<td>2-15</td>
<td>*0.0253333</td>
<td>0.0135864</td>
<td></td>
</tr>
<tr>
<td>2-30</td>
<td>*0.036</td>
<td>0.0135864</td>
<td></td>
</tr>
<tr>
<td>2-45</td>
<td>*0.045</td>
<td>0.0135864</td>
<td></td>
</tr>
<tr>
<td>2-60</td>
<td>*0.0486667</td>
<td>0.0135864</td>
<td></td>
</tr>
<tr>
<td>15-30</td>
<td>0.0106667</td>
<td>0.0135864</td>
<td></td>
</tr>
<tr>
<td>15-45</td>
<td>*0.0196667</td>
<td>0.0135864</td>
<td></td>
</tr>
<tr>
<td>15-60</td>
<td>*0.0233333</td>
<td>0.0135864</td>
<td></td>
</tr>
<tr>
<td>30-45</td>
<td>0.009</td>
<td>0.0135864</td>
<td></td>
</tr>
<tr>
<td>30-60</td>
<td>0.0126667</td>
<td>0.0135864</td>
<td></td>
</tr>
<tr>
<td>45-60</td>
<td>0.00366667</td>
<td>0.0135864</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time Range</th>
<th>Value</th>
<th>Remaining Time</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mg/ml</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>0.000666667</td>
<td>0.0140306</td>
<td></td>
</tr>
<tr>
<td>0-2</td>
<td>0.00533333</td>
<td>0.0140306</td>
<td></td>
</tr>
<tr>
<td>0-15</td>
<td>*0.048</td>
<td>0.0140306</td>
<td></td>
</tr>
<tr>
<td>0-30</td>
<td>*0.0723333</td>
<td>0.0140306</td>
<td></td>
</tr>
<tr>
<td>0-45</td>
<td>*0.0903333</td>
<td>0.0140306</td>
<td></td>
</tr>
<tr>
<td>0-60</td>
<td>*0.1</td>
<td>0.0140306</td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>0.00466667</td>
<td>0.0140306</td>
<td></td>
</tr>
<tr>
<td>1-15</td>
<td>*0.0473333</td>
<td>0.0140306</td>
<td></td>
</tr>
<tr>
<td>1-30</td>
<td>*0.0716667</td>
<td>0.0140306</td>
<td></td>
</tr>
<tr>
<td>1-45</td>
<td>*0.0896667</td>
<td>0.0140306</td>
<td></td>
</tr>
<tr>
<td>1-60</td>
<td>*0.0993333</td>
<td>0.0140306</td>
<td></td>
</tr>
<tr>
<td>Time Range</td>
<td>Value</td>
<td>Error</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>2-15</td>
<td>0.0426667</td>
<td>0.0140306</td>
<td></td>
</tr>
<tr>
<td>2-30</td>
<td>0.067</td>
<td>0.0140306</td>
<td></td>
</tr>
<tr>
<td>2-45</td>
<td>0.085</td>
<td>0.0140306</td>
<td></td>
</tr>
<tr>
<td>2-60</td>
<td>0.0946667</td>
<td>0.0140306</td>
<td></td>
</tr>
<tr>
<td>15-30</td>
<td>0.0243333</td>
<td>0.0140306</td>
<td></td>
</tr>
<tr>
<td>15-45</td>
<td>0.0423333</td>
<td>0.0140306</td>
<td></td>
</tr>
<tr>
<td>15-60</td>
<td>0.052</td>
<td>0.0140306</td>
<td></td>
</tr>
<tr>
<td>30-45</td>
<td>0.018</td>
<td>0.0140306</td>
<td></td>
</tr>
<tr>
<td>30-60</td>
<td>0.0276667</td>
<td>0.0140306</td>
<td></td>
</tr>
<tr>
<td>45-60</td>
<td>0.0096667</td>
<td>0.0140306</td>
<td></td>
</tr>
<tr>
<td>150 mg/ml</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>0.00333333</td>
<td>0.0349011</td>
<td></td>
</tr>
<tr>
<td>0-2</td>
<td>0.007</td>
<td>0.0349011</td>
<td></td>
</tr>
<tr>
<td>0-15</td>
<td>0.066</td>
<td>0.0349011</td>
<td></td>
</tr>
<tr>
<td>0-30</td>
<td>0.1</td>
<td>0.0349011</td>
<td></td>
</tr>
<tr>
<td>0-45</td>
<td>0.11933333</td>
<td>0.0349011</td>
<td></td>
</tr>
<tr>
<td>0-60</td>
<td>0.12933333</td>
<td>0.0349011</td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>0.0066667</td>
<td>0.0349011</td>
<td></td>
</tr>
<tr>
<td>1-15</td>
<td>0.0656667</td>
<td>0.0349011</td>
<td></td>
</tr>
<tr>
<td>1-30</td>
<td>0.0996667</td>
<td>0.0349011</td>
<td></td>
</tr>
<tr>
<td>1-45</td>
<td>0.119</td>
<td>0.0349011</td>
<td></td>
</tr>
<tr>
<td>1-60</td>
<td>0.129</td>
<td>0.0349011</td>
<td></td>
</tr>
<tr>
<td>2-15</td>
<td>0.059</td>
<td>0.0349011</td>
<td></td>
</tr>
<tr>
<td>2-30</td>
<td>0.093</td>
<td>0.0349011</td>
<td></td>
</tr>
<tr>
<td>2-45</td>
<td>0.11233333</td>
<td>0.0349011</td>
<td></td>
</tr>
<tr>
<td>2-60</td>
<td>0.12233333</td>
<td>0.0349011</td>
<td></td>
</tr>
<tr>
<td>15-30</td>
<td>0.034</td>
<td>0.0349011</td>
<td></td>
</tr>
<tr>
<td>15-45</td>
<td>0.05333333</td>
<td>0.0349011</td>
<td></td>
</tr>
<tr>
<td>15-60</td>
<td>0.06333333</td>
<td>0.0349011</td>
<td></td>
</tr>
<tr>
<td>30-45</td>
<td>0.01933333</td>
<td>0.0349011</td>
<td></td>
</tr>
<tr>
<td>30-60</td>
<td>0.02933333</td>
<td>0.0349011</td>
<td></td>
</tr>
<tr>
<td>45-60</td>
<td>0.01</td>
<td>0.0349011</td>
<td></td>
</tr>
<tr>
<td>200 mg/ml</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>0.00066667</td>
<td>0.0128914</td>
<td></td>
</tr>
<tr>
<td>0-2</td>
<td>0.00266667</td>
<td>0.0128914</td>
<td></td>
</tr>
<tr>
<td>0-15</td>
<td>0.053</td>
<td>0.0128914</td>
<td></td>
</tr>
<tr>
<td>0-30</td>
<td>0.071</td>
<td>0.0128914</td>
<td></td>
</tr>
<tr>
<td>0-45</td>
<td>0.075</td>
<td>0.0128914</td>
<td></td>
</tr>
<tr>
<td>0-60</td>
<td>0.076</td>
<td>0.0128914</td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>0.002</td>
<td>0.0128914</td>
<td></td>
</tr>
<tr>
<td>1-15</td>
<td>0.05233333</td>
<td>0.0128914</td>
<td></td>
</tr>
<tr>
<td>1-30</td>
<td>0.07033333</td>
<td>0.0128914</td>
<td></td>
</tr>
<tr>
<td>1-45</td>
<td>0.07433333</td>
<td>0.0128914</td>
<td></td>
</tr>
<tr>
<td>1-60</td>
<td>0.07533333</td>
<td>0.0128914</td>
<td></td>
</tr>
<tr>
<td>2-15</td>
<td>0.05033333</td>
<td>0.0128914</td>
<td></td>
</tr>
<tr>
<td>2-30</td>
<td>0.06833333</td>
<td>0.0128914</td>
<td></td>
</tr>
<tr>
<td>2-45</td>
<td>0.07233333</td>
<td>0.0128914</td>
<td></td>
</tr>
<tr>
<td>Concentrations</td>
<td>Time Contrast</td>
<td>Mean Difference</td>
<td>Limits</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>20 mg/ml</td>
<td>0-1</td>
<td>0.0</td>
<td>0.0118033</td>
</tr>
<tr>
<td></td>
<td>0-2</td>
<td>0.005</td>
<td>0.0118033</td>
</tr>
<tr>
<td></td>
<td>0-15</td>
<td>0.00833333</td>
<td>0.0118033</td>
</tr>
<tr>
<td></td>
<td>0-30</td>
<td>*0.015</td>
<td>0.0118033</td>
</tr>
<tr>
<td></td>
<td>0-45</td>
<td>*0.0226667</td>
<td>0.0118033</td>
</tr>
<tr>
<td></td>
<td>0-60</td>
<td>*0.0246667</td>
<td>0.0118033</td>
</tr>
<tr>
<td></td>
<td>1-2</td>
<td>0.005</td>
<td>0.0118033</td>
</tr>
<tr>
<td></td>
<td>1-15</td>
<td>0.00833333</td>
<td>0.0118033</td>
</tr>
<tr>
<td></td>
<td>1-30</td>
<td>*0.015</td>
<td>0.0118033</td>
</tr>
<tr>
<td></td>
<td>1-45</td>
<td>*0.0226667</td>
<td>0.0118033</td>
</tr>
<tr>
<td></td>
<td>1-60</td>
<td>*0.0246667</td>
<td>0.0118033</td>
</tr>
<tr>
<td></td>
<td>2-15</td>
<td>0.00333333</td>
<td>0.0118033</td>
</tr>
<tr>
<td></td>
<td>2-30</td>
<td>0.01</td>
<td>0.0118033</td>
</tr>
<tr>
<td></td>
<td>2-45</td>
<td>*0.0176667</td>
<td>0.0118033</td>
</tr>
<tr>
<td></td>
<td>2-60</td>
<td>*0.0196667</td>
<td>0.0118033</td>
</tr>
<tr>
<td></td>
<td>15-30</td>
<td>0.00666667</td>
<td>0.0118033</td>
</tr>
<tr>
<td></td>
<td>15-45</td>
<td>*0.01433333</td>
<td>0.0118033</td>
</tr>
<tr>
<td></td>
<td>15-60</td>
<td>*0.01633333</td>
<td>0.0118033</td>
</tr>
<tr>
<td></td>
<td>30-45</td>
<td>0.00766667</td>
<td>0.0118033</td>
</tr>
<tr>
<td></td>
<td>30-60</td>
<td>0.00966667</td>
<td>0.0118033</td>
</tr>
<tr>
<td></td>
<td>45-60</td>
<td>0.002</td>
<td>0.0118033</td>
</tr>
<tr>
<td>50 mg/ml</td>
<td>0-1</td>
<td>0.00033333</td>
<td>0.0189037</td>
</tr>
<tr>
<td></td>
<td>0-2</td>
<td>0.00066666</td>
<td>0.0189037</td>
</tr>
<tr>
<td></td>
<td>0-15</td>
<td>0.00666667</td>
<td>0.0189037</td>
</tr>
<tr>
<td></td>
<td>0-30</td>
<td>0.009</td>
<td>0.0189037</td>
</tr>
<tr>
<td></td>
<td>0-45</td>
<td>0.01433333</td>
<td>0.0189037</td>
</tr>
<tr>
<td></td>
<td>0-60</td>
<td>*0.0236667</td>
<td>0.0189037</td>
</tr>
<tr>
<td></td>
<td>1-2</td>
<td>0.00033333</td>
<td>0.0189037</td>
</tr>
<tr>
<td></td>
<td>1-15</td>
<td>0.00633333</td>
<td>0.0189037</td>
</tr>
<tr>
<td></td>
<td>1-30</td>
<td>0.00866667</td>
<td>0.0189037</td>
</tr>
<tr>
<td></td>
<td>1-45</td>
<td>0.014</td>
<td>0.0189037</td>
</tr>
<tr>
<td></td>
<td>1-60</td>
<td>*0.02333333</td>
<td>0.0189037</td>
</tr>
<tr>
<td>100 mg/ml</td>
<td>0-1</td>
<td>0.000666667</td>
<td>0.0292061</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>0-2</td>
<td>0.00433333</td>
<td>0.0292061</td>
<td></td>
</tr>
<tr>
<td>0-15</td>
<td>0.0136667</td>
<td>0.0292061</td>
<td></td>
</tr>
<tr>
<td>0-30</td>
<td>0.01533333</td>
<td>0.0292061</td>
<td></td>
</tr>
<tr>
<td>0-45</td>
<td>0.0226667</td>
<td>0.0292061</td>
<td></td>
</tr>
<tr>
<td>0-60</td>
<td>0.0226667</td>
<td>0.0292061</td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>0.00366667</td>
<td>0.0292061</td>
<td></td>
</tr>
<tr>
<td>1-15</td>
<td>0.013</td>
<td>0.0292061</td>
<td></td>
</tr>
<tr>
<td>1-30</td>
<td>0.0146667</td>
<td>0.0292061</td>
<td></td>
</tr>
<tr>
<td>1-45</td>
<td>0.022</td>
<td>0.0292061</td>
<td></td>
</tr>
<tr>
<td>1-60</td>
<td>0.022</td>
<td>0.0292061</td>
<td></td>
</tr>
<tr>
<td>2-15</td>
<td>0.00933333</td>
<td>0.0292061</td>
<td></td>
</tr>
<tr>
<td>2-30</td>
<td>0.011</td>
<td>0.0292061</td>
<td></td>
</tr>
<tr>
<td>2-45</td>
<td>0.01833333</td>
<td>0.0292061</td>
<td></td>
</tr>
<tr>
<td>2-60</td>
<td>0.01833333</td>
<td>0.0292061</td>
<td></td>
</tr>
<tr>
<td>15-30</td>
<td>0.00166667</td>
<td>0.0292061</td>
<td></td>
</tr>
<tr>
<td>15-45</td>
<td>0.009</td>
<td>0.0292061</td>
<td></td>
</tr>
<tr>
<td>15-60</td>
<td>0.009</td>
<td>0.0292061</td>
<td></td>
</tr>
<tr>
<td>30-45</td>
<td>0.00733333</td>
<td>0.0292061</td>
<td></td>
</tr>
<tr>
<td>30-60</td>
<td>0.00733333</td>
<td>0.0292061</td>
<td></td>
</tr>
<tr>
<td>45-60</td>
<td>0.0</td>
<td>0.0292061</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>150 mg/ml</th>
<th>0-1</th>
<th>0.000666667</th>
<th>0.0120785</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2</td>
<td>0.001</td>
<td>0.0120785</td>
<td></td>
</tr>
<tr>
<td>0-15</td>
<td>0.0086667</td>
<td>0.0120785</td>
<td></td>
</tr>
<tr>
<td>0-30</td>
<td>0.011</td>
<td>0.0120785</td>
<td></td>
</tr>
<tr>
<td>0-45</td>
<td>*0.0146667</td>
<td>0.0120785</td>
<td></td>
</tr>
<tr>
<td>0-60</td>
<td>*0.02133333</td>
<td>0.0120785</td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>0.000333333</td>
<td>0.0120785</td>
<td></td>
</tr>
<tr>
<td>1-15</td>
<td>0.008</td>
<td>0.0120785</td>
<td></td>
</tr>
<tr>
<td>1-30</td>
<td>0.01033333</td>
<td>0.0120785</td>
<td></td>
</tr>
<tr>
<td>1-45</td>
<td>*0.014</td>
<td>0.0120785</td>
<td></td>
</tr>
<tr>
<td>1-60</td>
<td>*0.0206667</td>
<td>0.0120785</td>
<td></td>
</tr>
<tr>
<td>2-15</td>
<td>0.00766667</td>
<td>0.0120785</td>
<td></td>
</tr>
<tr>
<td>2-30</td>
<td>0.01</td>
<td>0.0120785</td>
<td></td>
</tr>
<tr>
<td>2-45</td>
<td>*0.0136667</td>
<td>0.0120785</td>
<td></td>
</tr>
<tr>
<td>2-60</td>
<td>*0.02033333</td>
<td>0.0120785</td>
<td></td>
</tr>
<tr>
<td>Concentration</td>
<td>Dichloromethane</td>
<td>Ethanol</td>
<td>Methanol</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>20</td>
<td>0.000</td>
<td>0.000</td>
<td>-</td>
</tr>
<tr>
<td>50</td>
<td>0.003</td>
<td>0.002</td>
<td>0.004</td>
</tr>
<tr>
<td>60</td>
<td>-</td>
<td>-</td>
<td>0.071</td>
</tr>
<tr>
<td>80</td>
<td>-</td>
<td>-</td>
<td>0.024</td>
</tr>
<tr>
<td>100</td>
<td>0.011</td>
<td>0.003</td>
<td>0.024</td>
</tr>
<tr>
<td>150</td>
<td>0.008</td>
<td>0.013</td>
<td>0.012</td>
</tr>
<tr>
<td>200</td>
<td>0.008</td>
<td>0.010</td>
<td>-</td>
</tr>
</tbody>
</table>

Table of absorbances which reaches steady state during scavenging of DPPH radicals (45 minutes). Results represented by absorbance in mean values of triplicate for each *Auricularia auricula-judae* fresh fruitbodies extracts
(2) One-Way ANOVA to compare increase in absorbance values to determine concentration needed to reach the steady state during ferric reducing power activity.

Comparison of FRAP value in between different concentration for ethanol extract of *A. auricula-judae* fresh fruitbodies

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Count</th>
<th>Mean</th>
<th>Homogeneous Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 mg/ml</td>
<td>3</td>
<td>0.0<sup>a</sup></td>
<td>X</td>
</tr>
<tr>
<td>5 mg/ml</td>
<td>3</td>
<td>0.571667<sup>b</sup></td>
<td>X</td>
</tr>
<tr>
<td>10 mg/ml</td>
<td>3</td>
<td>0.993333<sup>c</sup></td>
<td>X</td>
</tr>
<tr>
<td>15 mg/ml</td>
<td>3</td>
<td>1.14767<sup>d</sup></td>
<td>X</td>
</tr>
<tr>
<td>20 mg/ml</td>
<td>3</td>
<td>1.20833<sup>e</sup></td>
<td>X</td>
</tr>
</tbody>
</table>

5 homogenous groups are identified using columns of X's. Within each column, the levels containing X's form a group of means within which there are no statistically significant differences. Means with different letters (in superscript) within a column are significantly different (p < 0.05)

Comparison of FRAP value in between different concentration for methanol extract of *A. auricula-judae* fresh fruitbodies

<table>
<thead>
<tr>
<th>Concentration contrast</th>
<th>Mean difference</th>
<th>(+/-) Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 5</td>
<td>*0.571667</td>
<td>0.020572</td>
</tr>
<tr>
<td>0 - 10</td>
<td>*0.993333</td>
<td>0.020572</td>
</tr>
<tr>
<td>0 - 15</td>
<td>*1.14767</td>
<td>0.020572</td>
</tr>
<tr>
<td>0 - 20</td>
<td>*1.20833</td>
<td>0.020572</td>
</tr>
<tr>
<td>5 - 10</td>
<td>*0.421667</td>
<td>0.020572</td>
</tr>
<tr>
<td>5 - 15</td>
<td>*0.576</td>
<td>0.020572</td>
</tr>
<tr>
<td>5 - 20</td>
<td>*0.636667</td>
<td>0.020572</td>
</tr>
<tr>
<td>10 - 15</td>
<td>*0.154333</td>
<td>0.020572</td>
</tr>
<tr>
<td>10 - 20</td>
<td>*0.215</td>
<td>0.020572</td>
</tr>
<tr>
<td>15 - 20</td>
<td>*0.060667</td>
<td>0.020572</td>
</tr>
</tbody>
</table>

* denotes a statistically significant difference.
Comparison of FRAP value in between different concentration for dichloromethane extract of *A. auricula-judae* fresh fruitbodies

<table>
<thead>
<tr>
<th>Concentration contrast</th>
<th>Mean differences (+/-) Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 5 *0.594333</td>
<td>0.0596248</td>
</tr>
<tr>
<td>0 - 10 *1.05667</td>
<td>0.0596248</td>
</tr>
<tr>
<td>0 - 15 *1.26</td>
<td>0.0596248</td>
</tr>
<tr>
<td>0 - 20 *1.463</td>
<td>0.0596248</td>
</tr>
<tr>
<td>5 - 10 *0.462333</td>
<td>0.0596248</td>
</tr>
<tr>
<td>5 - 15 *0.665667</td>
<td>0.0596248</td>
</tr>
<tr>
<td>5 - 20 *0.868667</td>
<td>0.0596248</td>
</tr>
<tr>
<td>10 - 15 *0.203333</td>
<td>0.0596248</td>
</tr>
<tr>
<td>10 - 20 *0.406333</td>
<td>0.0596248</td>
</tr>
<tr>
<td>15 - 20 *0.003</td>
<td>0.0596248</td>
</tr>
</tbody>
</table>

* indicating that these pairs show statistically significant differences at the 95.0% confidence level; p< 0.05.

5 homogenous groups are identified using columns of X's. Within each column, the levels containing X's form a group of means within which there are no statistically significant differences. Means with different letters (in superscript) within a column are significantly different (p < 0.05)
Comparison of FRAP value in between different concentration for hot aqueous extract of *A. auricula-judae* fresh fruitbodies

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Count</th>
<th>Mean</th>
<th>Homogeneous Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 mg/ml</td>
<td>3</td>
<td>0.0a</td>
<td>X</td>
</tr>
<tr>
<td>5 mg/ml</td>
<td>3</td>
<td>1.65833b</td>
<td>X</td>
</tr>
<tr>
<td>10 mg/ml</td>
<td>3</td>
<td>1.70933c</td>
<td>X</td>
</tr>
<tr>
<td>15 mg/ml</td>
<td>3</td>
<td>1.857d</td>
<td>X</td>
</tr>
<tr>
<td>20 mg/ml</td>
<td>3</td>
<td>1.91263e</td>
<td>X</td>
</tr>
</tbody>
</table>

5 homogenous groups are identified using columns of X's. Within each column, the levels containing X's form a group of means within which there are no statistically significant differences. Means with different letters (in superscript) within a column are significantly different (p < 0.05)

<table>
<thead>
<tr>
<th>Concentration contrast</th>
<th>Mean difference</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 5</td>
<td>*1.65833</td>
<td>0.0362302</td>
</tr>
<tr>
<td>0 - 10</td>
<td>*1.70933</td>
<td>0.0362302</td>
</tr>
<tr>
<td>0 - 15</td>
<td>*1.857</td>
<td>0.0362302</td>
</tr>
<tr>
<td>0 - 20</td>
<td>*1.91263</td>
<td>0.0362302</td>
</tr>
<tr>
<td>5 - 10</td>
<td>*0.051</td>
<td>0.0362302</td>
</tr>
<tr>
<td>5 - 15</td>
<td>*0.198667</td>
<td>0.0362302</td>
</tr>
<tr>
<td>5 - 20</td>
<td>*0.2543</td>
<td>0.0362302</td>
</tr>
<tr>
<td>10 - 15</td>
<td>*0.147667</td>
<td>0.0362302</td>
</tr>
<tr>
<td>10 - 20</td>
<td>*0.2033</td>
<td>0.0362302</td>
</tr>
<tr>
<td>15 - 20</td>
<td>*0.0556333</td>
<td>0.0362302</td>
</tr>
</tbody>
</table>

* indicating that these pairs show statistically significant differences at the 95.0% confidence level; p< 0.05.

Comparison of FRAP value in between different concentration for polysaccharides extract of *A. auricula-judae* fresh fruitbodies

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Count</th>
<th>Mean</th>
<th>Homogeneous Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 mg/ml</td>
<td>3</td>
<td>0.0a</td>
<td>X</td>
</tr>
<tr>
<td>5 mg/ml</td>
<td>3</td>
<td>0.078b</td>
<td>X</td>
</tr>
<tr>
<td>10 mg/ml</td>
<td>3</td>
<td>0.24c</td>
<td>X</td>
</tr>
<tr>
<td>15 mg/ml</td>
<td>3</td>
<td>0.462333d</td>
<td>X</td>
</tr>
<tr>
<td>20 mg/ml</td>
<td>3</td>
<td>0.493667d</td>
<td>X</td>
</tr>
</tbody>
</table>

4 homogenous groups are identified using columns of X's. Within each column, the levels containing X's form a group of means within which there are no statistically significant differences. Means with different letters (in superscript) within a column are significantly different (p < 0.05)
Comparison of FRAP value in between different concentration for butylated hydroxyanisole (BHA) extract of *A. auricula-judae* fresh fruitbodies

<table>
<thead>
<tr>
<th>Concentration contrast</th>
<th>Mean difference</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 5</td>
<td>0.078</td>
<td>0.0579241</td>
</tr>
<tr>
<td>0 - 10</td>
<td>0.24</td>
<td>0.0579241</td>
</tr>
<tr>
<td>0 - 15</td>
<td>0.462333</td>
<td>0.0579241</td>
</tr>
<tr>
<td>0 - 20</td>
<td>0.493667</td>
<td>0.0579241</td>
</tr>
<tr>
<td>5 - 10</td>
<td>0.162</td>
<td>0.0579241</td>
</tr>
<tr>
<td>5 - 15</td>
<td>0.384333</td>
<td>0.0579241</td>
</tr>
<tr>
<td>5 - 20</td>
<td>0.415667</td>
<td>0.0579241</td>
</tr>
<tr>
<td>10 - 15</td>
<td>0.222333</td>
<td>0.0579241</td>
</tr>
<tr>
<td>10 - 20</td>
<td>0.253667</td>
<td>0.0579241</td>
</tr>
<tr>
<td>15 - 20</td>
<td>0.031333</td>
<td>0.0579241</td>
</tr>
</tbody>
</table>

* indicating that these pairs show statistically significant differences at the 95.0% confidence level; \(p < 0.05 \).

3 homogenous groups are identified using columns of X's. Within each column, the levels containing X's form a group of means within which there are no statistically significant differences. Means with different letters (in superscript) within a column are significantly different (\(p < 0.05 \)).
Comparison of FRAP value in between different concentration for ascorbic acid extract of *A. auricula-judae* fresh fruitbodies

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Count</th>
<th>Mean</th>
<th>Homogeneous Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 mg/ml</td>
<td>3</td>
<td>0.0(^a)</td>
<td>X</td>
</tr>
<tr>
<td>5 mg/ml</td>
<td>3</td>
<td>1.93256(^b)</td>
<td>X</td>
</tr>
<tr>
<td>10 mg/ml</td>
<td>3</td>
<td>1.99544(^bc)</td>
<td>XX</td>
</tr>
<tr>
<td>15 mg/ml</td>
<td>3</td>
<td>2.00811(^bc)</td>
<td>XX</td>
</tr>
<tr>
<td>20 mg/ml</td>
<td>3</td>
<td>2.155(^c)</td>
<td>X</td>
</tr>
</tbody>
</table>

3 homogenous groups are identified using columns of X's. Within each column, the levels containing X's form a group of means within which there are no statistically significant differences. Means with different letters (in superscript) within a column are significantly different (p < 0.05)

<table>
<thead>
<tr>
<th>Concentration contrast</th>
<th>Mean difference</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 5</td>
<td>*1.93256</td>
<td>0.197984</td>
</tr>
<tr>
<td>0 - 10</td>
<td>*1.99544</td>
<td>0.197984</td>
</tr>
<tr>
<td>0 - 15</td>
<td>*2.00811</td>
<td>0.197984</td>
</tr>
<tr>
<td>0 - 20</td>
<td>*2.155</td>
<td>0.197984</td>
</tr>
<tr>
<td>5 - 10</td>
<td>0.0628887</td>
<td>0.197984</td>
</tr>
<tr>
<td>5 - 15</td>
<td>0.0755543</td>
<td>0.197984</td>
</tr>
<tr>
<td>5 - 20</td>
<td>*0.222444</td>
<td>0.197984</td>
</tr>
<tr>
<td>10 - 15</td>
<td>0.0126657</td>
<td>0.197984</td>
</tr>
<tr>
<td>10 - 20</td>
<td>0.159556</td>
<td>0.197984</td>
</tr>
<tr>
<td>15 - 20</td>
<td>0.14689</td>
<td>0.197984</td>
</tr>
</tbody>
</table>

* indicating that these pairs show statistically significant differences at the 95.0% confidence level; p < 0.05.

(3) The Multiple Range Test to compare the total yield (percentage) in between different extracts of *A. auricula-judae* fresh fruitbodies.

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Count</th>
<th>Mean</th>
<th>Homogeneous Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol</td>
<td>3</td>
<td>0.057(^a)</td>
<td>X</td>
</tr>
<tr>
<td>Ethanol</td>
<td>3</td>
<td>0.071(^b)</td>
<td>X</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>3</td>
<td>0.098(^c)</td>
<td>X</td>
</tr>
<tr>
<td>Hot aqueous</td>
<td>3</td>
<td>0.357(^d)</td>
<td>X</td>
</tr>
<tr>
<td>Polysaccharides</td>
<td>3</td>
<td>0.968(^e)</td>
<td>X</td>
</tr>
</tbody>
</table>

5 homogenous groups are identified using columns of X's. Within each column, the levels containing X's form a group of means within which there are no statistically significant differences. Means with different letters (in superscript) within a column are significantly different (p < 0.05)

<table>
<thead>
<tr>
<th>Extracts contrast</th>
<th>Mean difference</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polysaccharide-Hot aqueous</td>
<td>*0.611</td>
<td>0.0</td>
</tr>
<tr>
<td>Polysaccharide-Dichloromethane</td>
<td>*0.87</td>
<td>0.0</td>
</tr>
<tr>
<td>Polysaccharide-Ethanol</td>
<td>*0.897</td>
<td>0.0</td>
</tr>
<tr>
<td>Polysaccharide-Methanol</td>
<td>*0.911</td>
<td>0.0</td>
</tr>
<tr>
<td>Hot aqueous-</td>
<td>*0.259</td>
<td>0.0</td>
</tr>
<tr>
<td>Compounds</td>
<td>t-value</td>
<td>p-value</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Dichloromethane-Ethanol</td>
<td>*0.276</td>
<td>0.0</td>
</tr>
<tr>
<td>Dichloromethane-Methanol</td>
<td>*0.027</td>
<td>0.0</td>
</tr>
<tr>
<td>Ethanol-Methanol</td>
<td>*0.014</td>
<td>0.0</td>
</tr>
</tbody>
</table>

* indicating that these pairs show statistically significant differences at the 95.0% confidence level; p< 0.05.

(4) The Multiple Range Test to compare the EC$_{50}$ values in between different extracts of _A. auricula-judae_ fresh fruitbodies.

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Count</th>
<th>Mean</th>
<th>Homogeneous Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot aqueous</td>
<td>3</td>
<td>87.66</td>
<td>X</td>
</tr>
<tr>
<td>Methanol</td>
<td>3</td>
<td>94.07</td>
<td>X</td>
</tr>
<tr>
<td>Ethanol</td>
<td>3</td>
<td>109.53</td>
<td>X</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>3</td>
<td>122.91</td>
<td>X</td>
</tr>
<tr>
<td>Polysaccharides</td>
<td>3</td>
<td>127.49</td>
<td>X</td>
</tr>
</tbody>
</table>

5 homogenous groups are identified using columns of X's. Within each column, the levels containing X's form a group of means within which there are no statistically significant differences. Means with different letters (in superscript) within a column are significantly different (p < 0.05)

<table>
<thead>
<tr>
<th>Extracts contrast</th>
<th>Mean difference of EC$_{50}$ values</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot aqueous- Methanol</td>
<td>*15.46</td>
<td>0.0</td>
</tr>
<tr>
<td>Hot aqueous- Ethanol</td>
<td>*13.38</td>
<td>0.0</td>
</tr>
<tr>
<td>Hot aqueous- Dichloromethane</td>
<td>*21.87</td>
<td>0.0</td>
</tr>
<tr>
<td>Hot aqueous- Polysaccharide</td>
<td>*17.96</td>
<td>0.0</td>
</tr>
<tr>
<td>Methanol-Ethanol</td>
<td>*28.84</td>
<td>0.0</td>
</tr>
<tr>
<td>Methanol-Dichloromethane</td>
<td>*6.41</td>
<td>0.0</td>
</tr>
<tr>
<td>Methanol-Polysaccharides</td>
<td>*33.42</td>
<td>0.0</td>
</tr>
<tr>
<td>Ethanol-Dichloromethane</td>
<td>*35.25</td>
<td>0.0</td>
</tr>
<tr>
<td>Ethanol-Polysaccharides</td>
<td>*4.58</td>
<td>0.0</td>
</tr>
<tr>
<td>Dichloromethane-Polysaccharides</td>
<td>*39.83</td>
<td>0.0</td>
</tr>
</tbody>
</table>

* indicating that these pairs show statistically significant differences at the 95.0% confidence level; p< 0.05.
(5) The Multiple Range Test to compare the Total Phenolic Content (TPC) in between different extracts of *Auricularia auricula-judae* fresh fruitbodies.

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Count</th>
<th>Mean</th>
<th>Homogeneous Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polysaccharides</td>
<td>3</td>
<td>0.923(^a)</td>
<td>X</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>3</td>
<td>1.35333(^b)</td>
<td>X</td>
</tr>
<tr>
<td>Ethanol</td>
<td>3</td>
<td>1.59(^c)</td>
<td>X</td>
</tr>
<tr>
<td>Methanol</td>
<td>3</td>
<td>1.93333(^d)</td>
<td>X</td>
</tr>
<tr>
<td>Hot aqueous</td>
<td>3</td>
<td>56.89(^e)</td>
<td>X</td>
</tr>
<tr>
<td>Ascorbic acid</td>
<td>3</td>
<td>932.9(^f)</td>
<td>X</td>
</tr>
<tr>
<td>BHA</td>
<td>3</td>
<td>1627.31(^g)</td>
<td>X</td>
</tr>
</tbody>
</table>

7 homogenous groups are identified using columns of X's. Within each column, the levels containing X's form a group of means within which there are no statistically significant differences. Means with different letters (in superscript) within a column are significantly different (p < 0.05)

<table>
<thead>
<tr>
<th>Extracts contrast</th>
<th>Mean difference of TPC values</th>
<th>(+/-) Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol-Methanol</td>
<td>* -0.343333</td>
<td>0.0170901</td>
</tr>
<tr>
<td>Ethanol-Dichloromethane</td>
<td>* 0.236667</td>
<td>0.0170901</td>
</tr>
<tr>
<td>Ethanol-Hot aqueous</td>
<td>* -55.3</td>
<td>0.0170901</td>
</tr>
<tr>
<td>Ethanol-Polysaccharides</td>
<td>* 0.667</td>
<td>0.0170901</td>
</tr>
<tr>
<td>Ethanol-BHA</td>
<td>* -1625.72</td>
<td>0.0170901</td>
</tr>
<tr>
<td>Ethanol-Ascorbic acid</td>
<td>* -931.31</td>
<td>0.0170901</td>
</tr>
<tr>
<td>Methanol-Dichloromethane</td>
<td>* 0.58</td>
<td>0.0170901</td>
</tr>
<tr>
<td>Methanol-Hot aqueous</td>
<td>* -54.9567</td>
<td>0.0170901</td>
</tr>
<tr>
<td>Methanol-Polysaccharides</td>
<td>*1.01033</td>
<td>0.0170901</td>
</tr>
<tr>
<td>Methanol-BHA</td>
<td>*-1625.37</td>
<td>0.0170901</td>
</tr>
<tr>
<td>Methanol-Ascorbic acid</td>
<td>* -930.967</td>
<td>0.0170901</td>
</tr>
<tr>
<td>Dichloromethane-Hot aqueous</td>
<td>* -55.5367</td>
<td>0.0170901</td>
</tr>
<tr>
<td>Dichloromethane-Polysaccharides</td>
<td>* 0.430333</td>
<td>0.0170901</td>
</tr>
<tr>
<td>Dichloromethane-BHA</td>
<td>*-1625.95</td>
<td>0.0170901</td>
</tr>
<tr>
<td>Dichloromethane-Ascorbic acid</td>
<td>* -931.547</td>
<td>0.0170901</td>
</tr>
<tr>
<td>Hot aqueous-Polysaccharides</td>
<td>* 55.967</td>
<td>0.0170901</td>
</tr>
<tr>
<td>Hot aqueous-BHA</td>
<td>* -1570.42</td>
<td>0.0170901</td>
</tr>
<tr>
<td>Hot aqueous-Ascorbic acid</td>
<td>* -876.01</td>
<td>0.0170901</td>
</tr>
<tr>
<td>Polysaccharides-BHA</td>
<td>* -1626.38</td>
<td>0.0170901</td>
</tr>
<tr>
<td>Polysaccharides-Ascorbic acid</td>
<td>* -931.977</td>
<td>0.0170901</td>
</tr>
<tr>
<td>BHA-Ascorbic acid</td>
<td>*694.406</td>
<td>0.0170901</td>
</tr>
</tbody>
</table>

* indicating that these pairs show statistically significant differences at the 95.0% confidence level; p< 0.05.