LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Life cycle of mayfly (Ephemeroptera)</td>
<td>3</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Map of Ulu Gombak Forest Reserve in Selangor, indicated by the red marker on the map (Source: Google Imagery ©2008)</td>
<td>14</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Sampling station at Sg. Batu 19 (shallow flowing water)</td>
<td>16</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Sampling station at Sg. Batu 19 (stones and leaves intercepting water flow, creating small riffle)</td>
<td>16</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Sampling station at Sg. Batu 19 (large-sized stones intercepted fast flowing water, creating small cascade)</td>
<td>17</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Sampling station at Sg. Batu 19 (fast flowing water from a small waterfall)</td>
<td>17</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Sampling station at Anak Sg. Gombak (stones and dried leaves intercepted water flow, creating small riffle)</td>
<td>18</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Sampling station at Anak Sg. Gombak (slippery stones submerged in shallow and slow flowing water)</td>
<td>18</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Sampling station at Sg. Gombak (medium-sized stones along stream)</td>
<td>19</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Sampling station at Sg. Gombak (moderately fast flowing water)</td>
<td>19</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Aquatic net used for collecting ephemeropteran nymphs</td>
<td>21</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Leaf litters trapped between rocks were collected using aquatic nets and sorted out on white enamel trays</td>
<td>22</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Ephemeropteran nymphs were collected using the white enamel tray</td>
<td>22</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Protein Standard Curve based on Lowry et al. (1951) method</td>
<td>27</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Standard curves of optical density for known concentrations of α-naphthol</td>
<td>31</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Baetis sp. (Baetidae)</td>
<td>37</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Platybaetis sp. (Baetidae)</td>
<td>38</td>
</tr>
</tbody>
</table>
Figure 4.3 *Thalerosphyrus* sp. (Heptageniidae)
Figure 4.4 *Campsoneuria* sp. (Heptageniidae)
Figure 4.5 *Neurocaenis* sp. (Tricorythidae)
Figure 4.6 *Prosopistoma* sp. (Prosopistomatidae)
Figure 4.7 Relative abundance of ephemeropteran nymphs along the forest stream
Figure 4.8 Illuminance measurements from selected sampling spots at Sg. Gombak, Anak Sg. Gombak and Sg. Batu 19
Figure 4.9 pH from selected sampling spots at Sg. Gombak, Anak Sg. Gombak and Sg. Batu 19
Figure 4.10 Water temperature from selected sampling spots at Sg. Gombak, Anak Sg. Gombak and Sg. Batu 19
Figure 4.11 Dissolved oxygen from selected sampling spots at Sg. Gombak, Anak Sg. Gombak and Sg. Batu 19
Figure 4.12 Conductivity from selected sampling spots at Sg. Gombak, Anak Sg. Gombak and Sg. Batu 19
Figure 4.13 Concentration of nitrate from selected sampling spots at Sg. Gombak, Anak Sg. Gombak and Sg. Batu 19
Figure 4.14 Concentration of phosphate from selected sampling spots at Sg. Gombak, Anak Sg. Gombak and Sg. Batu 19
Figure 4.15 Concentration of ammonical nitrogen from selected sampling spots at Sg. Gombak, Anak Sg. Gombak and Sg. Batu 19
Figure 4.16 Percentage of residual activity of AChE versus time (minutes) for *Baetis* sp.
Figure 4.17 Percentage of residual activity of AChE versus time (minutes) for *Campsoneuria* sp.
Figure 4.18 Bimolecular inhibition rate constant (Ki) value of selected inhibitors to acetylcholinesterase for *Baetis* spp. and *Campsoneuria* sp.
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Features of sampling station in Ulu Gombak Forest Reserve</td>
<td>15</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Testing procedures for protein concentration</td>
<td>26</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Testing procedures for specific activity and inhibition study of non-specific esterase</td>
<td>30</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Testing procedures for specific activity and inhibition study of acetylcholinesterase</td>
<td>32</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Testing procedures for specific activity of glutathione-s-transferases</td>
<td>34</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Ephemeropteran nymphs in rivers at Ulu Gombak, Selangor, August 2006 to July 2007</td>
<td>43</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Calculated values of Diversity Indices for the three forest streams in Ulu Gombak Forest Reserve</td>
<td>46</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Variation of physical-chemical parameters in different locations in Ulu Gombak Forest Reserve</td>
<td>49</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Pearson’s Correlation Coefficient and p value between parameter and number of nymphs in Ulu Gombak Forest Reserve</td>
<td>54</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Protein content and selected biomarker specific activity of control strains of Baetis spp. and Campsoneuria sp.</td>
<td>56</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Average comparative 50% inhibition of non-specific esterase and acetylcholinesterase from strains of Baetis sp. and Campsoneuria sp. by various pesticides and heavy metal in in vitro assays</td>
<td>58</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Calculated values of Ki of selected inhibitors on acetylcholinesterase from strains of Baetis sp. and Campsoneuria sp.</td>
<td>60</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Proposed classification of water quality at stations in Ulu Gombak Forest Reserve</td>
<td>67</td>
</tr>
<tr>
<td>Appendix 3.1</td>
<td>Data of protein standard curve based on Lowry et al. (1951)</td>
<td>Page</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Appendix 3.2</td>
<td>Data of alpha naphthol standard curve</td>
<td>95</td>
</tr>
<tr>
<td>Appendix 4.1</td>
<td>Cumulative abundance of ephemeropteran nymphs in Ulu Gombak Forest Reserve</td>
<td>96</td>
</tr>
<tr>
<td>Appendix 4.2</td>
<td>Fluctuations of physical-chemical parameter along the sampling stations</td>
<td>96</td>
</tr>
<tr>
<td>Appendix 4.3</td>
<td>Significant comparison of ephemeropteran nymph abundance between Sg. Gombak, Anak Sg. Gombak and Sg. Batu 19 using student t-test at $p \leq 0.05$</td>
<td>97</td>
</tr>
<tr>
<td>Appendix 4.4</td>
<td>Significant comparison of diversity indices between Sg. Gombak (downstream) and Sg. Batu 19 (upstream) using student t-test at $p \leq 0.05$</td>
<td>97</td>
</tr>
<tr>
<td>Appendix 4.5</td>
<td>Scatterplot of Ephemeropteran nymphs vs illuminance (Lux) at Sg. Gombak</td>
<td>98</td>
</tr>
<tr>
<td>Appendix 4.6</td>
<td>Scatterplot of Ephemeropteran nymphs vs temperature at Sg. Gombak</td>
<td>98</td>
</tr>
<tr>
<td>Appendix 4.7</td>
<td>Scatterplot of Ephemeropteran nymphs vs pH at Sg. Gombak</td>
<td>99</td>
</tr>
<tr>
<td>Appendix 4.8</td>
<td>Scatterplot of Ephemeropteran nymphs vs conductivity at Sg. Gombak</td>
<td>99</td>
</tr>
<tr>
<td>Appendix 4.9</td>
<td>Scatterplot of Ephemeropteran nymphs dissolved oxygen at Sg. Gombak</td>
<td>100</td>
</tr>
<tr>
<td>Appendix 4.10</td>
<td>Scatterplot of Ephemeropteran nymphs vs nitrate at Sg. Gombak</td>
<td>100</td>
</tr>
<tr>
<td>Appendix 4.11</td>
<td>Scatterplot of Ephemeropteran nymphs vs phosphate at Sg. Gombak</td>
<td>101</td>
</tr>
<tr>
<td>Appendix 4.12</td>
<td>Scatterplot of Ephemeropteran nymphs vs ammonical nitrogen at Sg. Gombak</td>
<td>101</td>
</tr>
<tr>
<td>Appendix 4.13</td>
<td>Scatterplot of Ephemeropteran nymphs vs illuminance (Lux) at Anak Sg. Gombak</td>
<td>102</td>
</tr>
</tbody>
</table>
Appendix 4.14 Scatterplot of Ephemeropteran nymphs vs temperature at Anak Sg. Gombak
Appendix 4.15 Scatterplot of Ephemeropteran nymphs vs pH at Anak Sg. Gombak
Appendix 4.16 Scatterplot of Ephemeropteran nymphs vs conductivity at Anak Sg. Gombak
Appendix 4.17 Scatterplot of Ephemeropteran nymphs vs dissolved oxygen at Anak Sg. Gombak
Appendix 4.18 Scatterplot of Ephemeropteran nymphs vs nitrate at Anak Sg. Gombak
Appendix 4.19 Scatterplot of Ephemeropteran nymphs vs phosphate at Anak Sg. Gombak
Appendix 4.20 Scatterplot of Ephemeropteran nymphs vs ammonical nitrogen at Anak Sg. Gombak
Appendix 4.21 Scatterplot of Ephemeropteran nymphs vs illuminance (Lux) at Sg. Batu 19
Appendix 4.22 Scatterplot of Ephemeropteran nymphs vs temperature at Sg. Batu 19
Appendix 4.23 Scatterplot of Ephemeropteran nymphs vs pH at Sg. Batu 19
Appendix 4.24 Scatterplot of Ephemeropteran nymphs vs conductivity at Sg. Batu 19
Appendix 4.25 Scatterplot of Ephemeropteran nymphs vs dissolved oxygen at Sg. Batu 19
Appendix 4.26 Scatterplot of Ephemeropteran nymphs vs nitrate at Sg. Batu 19
Appendix 4.27 Scatterplot of Ephemeropteran nymphs vs phosphate at Sg. Batu 19
Appendix 4.28 Scatterplot of Ephemeropteran nymphs vs ammonical nitrogen at Sg. Batu 19
Appendix 4.29 Significant comparison of protein content and specific activity of non-specific esterase, acetylcholinesterase and glutathione-s – transferases from control strains of *Baetis* sp. and *Campsoneuria* sp. using student t-test at \(p \leq 0.05 \)
Appendix 4.30 The inhibitory effect of Dichlorvos (DDVP) on non-specific esterase of *Baetis* sp.
Appendix 4.31 The inhibitory effect of Malathion on non-specific esterase of *Baetis* sp.
Appendix 4.32 The inhibitory effect of Fenitrothion on non-specific esterase of *Baetis* sp.
Appendix 4.33 The inhibitory effect of mercury (Hg) on non-specific esterase of *Baetis* sp.
Appendix 4.34 The inhibitory effect of cadmium (Cd) on non-specific esterase of *Baetis* sp.
Appendix 4.35 The inhibitory effect of lead (Pb) on non-specific esterase of *Baetis* spp.
Appendix 4.36 The inhibitory effect of copper (Cu) on non-specific esterase of *Baetis* sp.
Appendix 4.37 The inhibitory effect of Dichlorvos (DDVP) on non-specific esterase of *Campsoneuria* sp.
Appendix 4.38 The inhibitory effect of Malathion on non-specific esterase of *Campsoneuria* sp.
Appendix 4.39 The inhibitory effect of Fenitrothion on non-specific esterase of *Campsoneuria* spp.
Appendix 4.40 The inhibitory effect of mercury (Hg) on non-specific esterase of *Campsoneuria* sp.
Appendix 4.41 The inhibitory effect of cadmium (Cd) on non-specific esterase of *Campsoneuria* sp.
Appendix 4.42 The inhibitory effect of lead (Pb) on non-specific esterase of *Campsoneuria* sp.
Appendix 4.43 The inhibitory effect of copper (Cu) on non-specific esterase of *Campsoneuria* sp.
Appendix 4.44 The inhibitory effect of Dichlorvos (DDVP) on acetylcholinesterase of *Baetis* sp.
Appendix 4.45 The inhibitory effect of Fenitrothion on acetylcholinesterase of *Baetis* sp.
Appendix 4.46 The inhibitory effect of Malathion on acetylcholinesterase of *Baetis* sp. 115

Appendix 4.47 The inhibitory effect of mercury (Hg) on acetylcholinesterase of *Baetis* sp 116

Appendix 4.48 The inhibitory effect of cadmium (Cd) on acetylcholinesterase of *Baetis* sp. 116

Appendix 4.49 The inhibitory effect of lead (Pb) on acetylcholinesterase of *Baetis* sp 116

Appendix 4.50 The inhibitory effect of copper (Cu) on acetylcholinesterase of *Baetis* sp. 117

Appendix 4.51 The inhibitory effect of Dichlorvos (DDVP) on acetylcholinesterase of *Campsoneuria* sp. 117

Appendix 4.52 The inhibitory effect of Malathion on acetylcholinesterase of *Campsoneuria* sp. 117

Appendix 4.53 The inhibitory effect of Fenitrothion on acetylcholinesterase of *Campsoneuria* sp. 118

Appendix 4.54 The inhibitory effect of mercury (Hg) on acetylcholinesterase of *Campsoneuria* sp. 118

Appendix 4.55 The inhibitory effect of cadmium (Cd) on acetylcholinesterase of *Campsoneuria* sp. 118

Appendix 4.56 The inhibitory effect of lead (Pb) on acetylcholinesterase of *Campsoneuria* sp. 119

Appendix 4.57 The inhibitory effect of copper (Cu) on acetylcholinesterase of *Campsoneuria* sp. 119

Appendix 4.58 Data of inhibition percentage of selected inhibitors on non-specific esterase from strains of *Baetis* sp. and *Campsoneuria* sp. by *in vitro* assays 120

Appendix 4.59 Data of inhibition percentage of selected inhibitors on acetylcholinesterase from strains of *Baetis* sp. and *Campsoneuria* sp. by *in vitro* assays 122

Appendix 4.60 Significant comparison of I$_{50}$ of selected inhibitors on non-specific esterase from strains of *Baetis* sp. and *Campsoneuria* sp. using student t-test at p≤0.05 123
Appendix 4.61 Significant comparison of I_{50} of selected inhibitors on acetylcholinesterase from strains of *Baetis* sp. and *Campsoneuria* sp. using student t-test at p≤0.05

Appendix 4.62 Percentage of residual activity of acetylcholinesterase for *Baetis* sp. used in determining the value of Ki

Appendix 4.63 Percentage of residual activity of acetylcholinesterase for *Campsoneuria* sp. used in determining the value of Ki

Appendix 4.64 Significant comparison of AChE Ki of selected inhibitors on acetylcholinesterase from strains of *Baetis* sp. and *Campsoneuria* sp. using student t-test at p≤0.05
LIST OF ABBREVIATIONS

The following abbreviations have been used commonly throughout this thesis:

- α
 alpha
- °C
 degree Celcius
- =
 equal
- \leq
 less or same
- ηmol
 nanomole
- μl
 microliter
- μg
 microgram
- μS
 microsecond
- >
 more than
- %
 percent
- ACh
 acetylcholine
- AChE
 acetylcholinesterase
- AChR
 acetylcholine receptor
- ASChI
 acetylthiocholine iodide
- BSA
 bovine serum albumin
- CDNB
 1-chloro-2,4–dinitrobenzene
- DBLS
 diazo-blue solution
- DDT
 dichloro-diphenyl-trichloroethane
- DDVP
 dichlorvos
- DTNB
 5,5-dithiobis (2-nitrobenzoic acid)
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>East</td>
</tr>
<tr>
<td>EC<sub>50</sub></td>
<td>Half maximal effective concentration</td>
</tr>
<tr>
<td>EST</td>
<td>esterase</td>
</tr>
<tr>
<td>FBS</td>
<td>fast blue salt</td>
</tr>
<tr>
<td>GSH</td>
<td>reduced glutathione</td>
</tr>
<tr>
<td>GST</td>
<td>glutathione-s-transferases</td>
</tr>
<tr>
<td>INWQS</td>
<td>Interim Water Quality Standards for Malaysia</td>
</tr>
<tr>
<td>I<sub>50</sub></td>
<td>inhibition at 50%</td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>mm</td>
<td>millimeter</td>
</tr>
<tr>
<td>N</td>
<td>North</td>
</tr>
<tr>
<td>NA</td>
<td>naphthylacetate</td>
</tr>
<tr>
<td>nm</td>
<td>nanometer</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>PCB</td>
<td>polychlorinated biphenyl</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>Sg.</td>
<td>Sungai (River)</td>
</tr>
<tr>
<td>WQI</td>
<td>Water Quality Index</td>
</tr>
</tbody>
</table>