## LIST OF FIGURES

|            |                                                                                                                     | Page |
|------------|---------------------------------------------------------------------------------------------------------------------|------|
| Figure 1.1 | Life cycle of mayfly (Ephemeroptera)                                                                                | 3    |
| Figure 2.1 | Map of Ulu Gombak Forest Reserve in Selangor, indicated by the red marker on the map (Source: Google Imagery ©2008) | 14   |
| Figure 2.2 | Sampling station at Sg. Batu 19 (shallow flowing water)                                                             | 16   |
| Figure 2.3 | Sampling station at Sg. Batu 19 (stones and leaves intercepting water flow, creating small riffle)                  | 16   |
| Figure 2.4 | Sampling station at Sg. Batu 19 (large-sized stones intercepted fast flowing water, creating small cascade)         | 17   |
| Figure 2.5 | Sampling station at Sg. Batu 19 (fast flowing water from a small waterfall)                                         | 17   |
| Figure 2.6 | Sampling station at Anak Sg. Gombak (stones and dried leaves intercepted water flow, creating small riffle)         | 18   |
| Figure 2.7 | Sampling station at Anak Sg. Gombak (slippery stones submerged in shallow and slow flowing water)                   | 18   |
| Figure 2.8 | Sampling station at Sg. Gombak (medium-sized stones along stream)                                                   | 19   |
| Figure 2.9 | Sampling station at Sg. Gombak (moderately fast flowing water)                                                      | 19   |
| Figure 3.1 | Aquatic net used for collecting ephemeropteran nymphs                                                               | 21   |
| Figure 3.2 | Leaf litters trapped between rocks were collected using aquatic nets and sorted out on white enamel trays           | 22   |
| Figure 3.3 | Ephemeropteran nymphs were collected using the white enamel tray                                                    | 22   |
| Figure 3.4 | Protein Standard Curve based on Lowry et al. (1951) method                                                          | 27   |
| Figure 3.5 | Standard curves of optical density for known concentrations of $\alpha$ -naphthol                                   | 31   |
| Figure 4.1 | Baetis sp. (Baetidae)                                                                                               | 37   |
| Figure 4.2 | Platybaetis sp. (Baetidae)                                                                                          | 38   |

Х

| Figure 4.3  | Thalerosphyrus sp. (Heptageniidae)                                                                                                                | 39 |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 4.4  | Campsoneuria sp. (Heptageniidae)                                                                                                                  | 40 |
| Figure 4.5  | Neurocaenis sp. (Tricorythidae)                                                                                                                   | 41 |
| Figure 4.6  | Prosopistoma sp. (Prosopistomatidae)                                                                                                              | 42 |
| Figure 4.7  | Relative abundance of ephemeropteran nymphs along the forest stream                                                                               | 44 |
| Figure 4.8  | Illuminance measurements from selected sampling spots at Sg. Gombak, Anak Sg. Gombak and Sg. Batu 19                                              | 50 |
| Figure 4.9  | pH from selected sampling spots at Sg. Gombak, Anak Sg. Gombak and Sg. Batu 19                                                                    | 50 |
| Figure 4.10 | Water temperature from selected sampling spots at Sg. Gombak,<br>Anak Sg. Gombak and Sg. Batu 19                                                  | 50 |
| Figure 4.11 | Dissolved oxygen from selected sampling spots at Sg. Gombak,<br>Anak Sg. Gombak and Sg. Batu 19                                                   | 51 |
| Figure 4.12 | Conductivity from selected sampling spots at Sg. Gombak, Anak Sg. Gombak and Sg. Batu 19                                                          | 51 |
| Figure 4.13 | Concentration of nitrate from selected sampling spots at Sg. Gombak, Anak Sg. Gombak and Sg. Batu 19                                              | 51 |
| Figure 4.14 | Concentration of phosphate from selected sampling spots at Sg. Gombak, Anak Sg. Gombak and Sg. Batu 19                                            | 52 |
| Figure 4.15 | Concentration of ammonical nitrogen from selected sampling spots at Sg. Gombak, Anak Sg. Gombak and Sg. Batu 19                                   | 52 |
| Figure 4.16 | Percentage of residual activity of AChE versus time (minutes) for <i>Baetis</i> sp.                                                               | 59 |
| Figure 4.17 | Percentage of residual activity of AChE versus time (minutes) for <i>Campsoneuria</i> sp.                                                         | 60 |
| Figure 4.18 | Bimolecular inhibition rate constant (Ki) value of selected inhibitors to acetylcholinesterase for <i>Baetis</i> spp. and <i>Campsoneuria</i> sp. | 61 |

## LIST OF TABLES

|           |                                                                                                                                                                                                                                    | <b>D</b>          |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Table 2.1 | Features of sampling station in Ulu Gombak Forest Reserve                                                                                                                                                                          | <b>Page</b><br>15 |
| Table 3.1 | Testing procedures for protein concentration                                                                                                                                                                                       | 26                |
| Table 3.2 | Testing procedures for specific activity and inhibition study of non-specific esterase                                                                                                                                             | 30                |
| Table 3.3 | Testing procedures for specific activity and inhibition study of acetylcholinesterase                                                                                                                                              | 32                |
| Table 3.4 | Testing procedures for specific activity of glutathione-s-<br>transferases                                                                                                                                                         | 34                |
| Table 4.1 | Ephemeropteran nymphs in rivers at Ulu Gombak, Selangor,<br>August 2006 to July 2007                                                                                                                                               | 43                |
| Table 4.2 | Calculated values of Diversity Indices for the three forest streams in Ulu Gombak Forest Reserve                                                                                                                                   | 46                |
| Table 4.3 | Variation of physical-chemical parameters in different locations<br>in Ulu Gombak Forest Reserve                                                                                                                                   | 49                |
| Table 4.4 | Pearson's Correlation Coefficient and p value between<br>parameter and number of nymphs in Ulu Gombak Forest<br>Reserve                                                                                                            | 54                |
| Table 4.5 | Protein content and selected biomarker specific activity of control strains of <i>Baetis</i> spp. and <i>Campsoneuria</i> sp.                                                                                                      | 56                |
| Table 4.6 | Average comparative 50% inhibition of non-specific esterase<br>and acetylcholinesterase from strains of <i>Baetis</i> sp. and<br><i>Campsoneuria</i> sp. by various pesticides and heavy metal in <i>in</i><br><i>vitro</i> assays | 58                |
| Table 4.7 | Calculated values of Ki of selected inhibitors on acetylcholinesterase from strains of <i>Baetis</i> sp. and <i>Campsoneuria</i> sp.                                                                                               | 60                |
| Table 5.1 | Proposed classification of water quality at stations in Ulu<br>Gombak Forest Reserve                                                                                                                                               | 67                |

## LIST OF APPENDICIES

| Appendix 3.1  | Data of protein standard curve based on Lowry <i>et al.</i> (1951)                                                                                | <b>Page</b><br>95 |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| rippendin 511 |                                                                                                                                                   | 20                |
| Appendix 3.2  | Data of alpha naphthol standard curve                                                                                                             | 95                |
| Appendix 4.1  | Cumulative abundance of ephemeropteran nymphs in Ulu<br>Gombak Forest Reserve                                                                     | 96                |
| Appendix 4.2  | Fluctuations of physical-chemical parameter along the sampling stations                                                                           | 96                |
| Appendix 4.3  | Significant comparison of ephemeropteran nymph abundance between Sg. Gombak, Anak Sg. Gombak and Sg. Batu 19 using student t-test at $p \le 0.05$ | 97                |
| Appendix 4.4  | Significant comparison of diversity indices between Sg. Gombak (downstream) and Sg. Batu 19 (upstream) using student t-test at $p \le 0.05$       | 97                |
| Appendix 4.5  | Scatterplot of Ephemeropteran nymphs vs illuminance (Lux) at Sg. Gombak                                                                           | 98                |
| Appendix 4.6  | Scatterplot of Ephemeropteran nymphs vs temperature at Sg. Gombak                                                                                 | 98                |
| Appendix 4.7  | Scatterplot of Ephemeropteran nymphs vs pH at Sg. Gombak                                                                                          | 99                |
| Appendix 4.8  | Scatterplot of Ephemeropteran nymphs vs conductivity at Sg. Gombak                                                                                | 99                |
| Appendix 4.9  | Scatterplot of Ephemeropteran nymphs dissolved oxygen at Sg. Gombak                                                                               | 100               |
| Appendix 4.10 | Scatterplot of Ephemeropteran nymphs vs nitrate at Sg. Gombak                                                                                     | 100               |
| Appendix 4.11 | Scatterplot of Ephemeropteran nymphs vs phosphate at Sg. Gombak                                                                                   | 101               |
| Appendix 4.12 | Scatterplot of Ephemeropteran nymphs vs ammonical nitrogen at Sg. Gombak                                                                          | 101               |
| Appendix 4.13 | Scatterplot of Ephemeropteran nymphs vs illuminance (Lux) at Anak Sg. Gombak                                                                      | 102               |

| Appendix 4.14 | Scatterplot of Ephemeropteran nymphs vs temperature at Anak<br>Sg. Gombak                                                                                                                                                                                      | 102 |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Appendix 4.15 | Scatterplot of Ephemeropteran nymphs vs pH at Anak Sg. Gombak                                                                                                                                                                                                  | 103 |
| Appendix 4.16 | Scatterplot of Ephemeropteran nymphs vs conductivity at Anak Sg. Gombak                                                                                                                                                                                        | 103 |
| Appendix 4.17 | Scatterplot of Ephemeropteran nymphs vs dissolved oxygen at Anak Sg. Gombak                                                                                                                                                                                    | 104 |
| Appendix 4.18 | Scatterplot of Ephemeropteran nymphs vs nitrate at Anak Sg. Gombak                                                                                                                                                                                             | 104 |
| Appendix 4.19 | Scatterplot of Ephemeropteran nymphs vs phosphate at Anak<br>Sg. Gombak                                                                                                                                                                                        | 105 |
| Appendix 4.20 | Scatterplot of Ephemeropteran nymphs vs ammonical nitrogen at Anak Sg. Gombak                                                                                                                                                                                  | 105 |
| Appendix 4.21 | Scatterplot of Ephemeropteran nymphs vs illuminance (Lux) at Sg. Batu 19                                                                                                                                                                                       | 106 |
| Appendix 4.22 | Scatterplot of Ephemeropteran nymphs vs temperature at Sg. Batu 19                                                                                                                                                                                             | 106 |
| Appendix 4.23 | Scatterplot of Ephemeropteran nymphs vs pH at Sg. Batu 19                                                                                                                                                                                                      | 107 |
| Appendix 4.24 | Scatterplot of Ephemeropteran nymphs vs conductivity at Sg. Batu 19                                                                                                                                                                                            | 107 |
| Appendix 4.25 | Scatterplot of Ephemeropteran nymphs vs dissolved oxygen at Sg. Batu 19                                                                                                                                                                                        | 108 |
| Appendix 4.26 | Scatterplot of Ephemeropteran nymphs vs nitrate at Sg. Batu<br>19                                                                                                                                                                                              | 108 |
| Appendix 4.27 | Scatterplot of Ephemeropteran nymphs vs phosphate at Sg. Batu 19                                                                                                                                                                                               | 109 |
| Appendix 4.28 | Scatterplot of Ephemeropteran nymphs vs ammonical nitrogen at Sg. Batu 19                                                                                                                                                                                      | 109 |
| Appendix 4.29 | Significant comparison of protein content and specific activity of non-specific esterase, acetylcholinesterase and glutathione-<br>s – transferases from control strains of <i>Baetis</i> sp. and <i>Campsoneuria</i> sp. using student t-test at $p \le 0.05$ | 110 |

| Appendix 4.30 | The inhibitory effect of Dichlorvos (DDVP) on non-specific esterase of <i>Baetis</i> sp.       | 110 |
|---------------|------------------------------------------------------------------------------------------------|-----|
| Appendix 4.31 | The inhibitory effect of Malathion on non-specific esterase of <i>Baetis</i> sp.               | 110 |
| Appendix 4.32 | The inhibitory effect of Fenitrothion on non-specific esterase of <i>Baetis</i> sp.            | 111 |
| Appendix 4.33 | The inhibitory effect of mercury (Hg) on non-specific esterase of <i>Baetis</i> sp.            | 111 |
| Appendix 4.34 | The inhibitory effect of cadmium (Cd) on non-specific esterase of <i>Baetis</i> sp.            | 111 |
| Appendix 4.35 | The inhibitory effect of lead (Pb) on non-specific esterase of <i>Baetis</i> spp.              | 112 |
| Appendix 4.36 | The inhibitory effect of copper (Cu) on non-specific esterase of <i>Baetis</i> sp.             | 112 |
| Appendix 4.37 | The inhibitory effect of Dichlorvos (DDVP) on non-specific esterase of <i>Campsoneuria</i> sp. | 112 |
| Appendix 4.38 | The inhibitory effect of Malathion on non-specific esterase of <i>Campsoneuria</i> sp.         | 113 |
| Appendix 4.39 | The inhibitory effect of Fenitrothion on non-specific esterase of <i>Campsoneuria</i> spp.     | 113 |
| Appendix 4.40 | The inhibitory effect of mercury (Hg) on non-specific esterase of <i>Campsoneuria</i> sp.      | 113 |
| Appendix 4.41 | The inhibitory effect of cadmium (Cd) on non-specific esterase of <i>Campsoneuria</i> sp.      | 114 |
| Appendix 4.42 | The inhibitory effect of lead (Pb) on non-specific esterase of <i>Campsoneuria</i> sp.         | 114 |
| Appendix 4.43 | The inhibitory effect of copper (Cu) on non-specific esterase of <i>Campsoneuria</i> sp.       | 114 |
| Appendix 4.44 | The inhibitory effect of Dichlorvos (DDVP) on acetylcholinesterase of <i>Baetis</i> sp.        | 115 |
| Appendix 4.45 | The inhibitory effect of Fenitrothion on acetylcholinesterase of <i>Baetis</i> sp.             | 115 |

xv

| Appendix 4.46 | The inhibitory effect of Malathion on acetylcholinesterase of <i>Baetis</i> sp.                                                                                                            | 115 |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Appendix 4.47 | The inhibitory effect of mercury (Hg) on acetylcholinesterase of <i>Baetis</i> sp                                                                                                          | 116 |
| Appendix 4.48 | The inhibitory effect of cadmium (Cd) on acetylcholinesterase of <i>Baetis</i> sp.                                                                                                         | 116 |
| Appendix 4.49 | The inhibitory effect of lead (Pb) on acetylcholinesterase of <i>Baetis</i> sp                                                                                                             | 116 |
| Appendix 4.50 | The inhibitory effect of copper (Cu) on acetylcholinesterase of <i>Baetis</i> sp.                                                                                                          | 117 |
| Appendix 4.51 | The inhibitory effect of Dichlorvos (DDVP) on acetylcholinesterase of <i>Campsoneuria</i> sp.                                                                                              | 117 |
| Appendix 4.52 | The inhibitory effect of Malathion on acetylcholinesterase of <i>Campsoneuria</i> sp.                                                                                                      | 117 |
| Appendix 4.53 | The inhibitory effect of Fenitrothion on acetylcholinesterase of <i>Campsoneuria</i> sp.                                                                                                   | 118 |
| Appendix 4.54 | The inhibitory effect of mercury (Hg) on acetylcholinesterase of <i>Campsoneuria</i> sp.                                                                                                   | 118 |
| Appendix 4.55 | The inhibitory effect of cadmium (Cd) on acetylcholinesterase of <i>Campsoneuria</i> sp.                                                                                                   | 118 |
| Appendix 4.56 | The inhibitory effect of lead (Pb) on acetylcholinesterase of <i>Campsoneuria</i> sp.                                                                                                      | 119 |
| Appendix 4.57 | The inhibitory effect of copper (Cu) on acetylcholinesterase of <i>Campsoneuria</i> sp.                                                                                                    | 119 |
| Appendix 4.58 | Data of inhibition percentage of selected inhibitors on non-<br>specific esterase from strains of <i>Baetis</i> sp. and <i>Campsoneuria</i><br>sp. by <i>in vitro</i> assays               | 120 |
| Appendix 4.59 | Data of inhibition percentage of selected inhibitors on acetylcholinesterase from strains of <i>Baetis</i> sp. and <i>Campsoneuria</i> sp. by <i>in vitro</i> assays                       | 122 |
| Appendix 4.60 | Significant comparison of $I_{50}$ of selected inhibitors on non-<br>specific esterase from strains of <i>Baetis</i> sp. and <i>Campsoneuria</i> sp. using student t-test at p $\leq 0.05$ | 123 |

xvi

- Appendix 4.61 Significant comparison of  $I_{50}$  of selected inhibitors on 123 acetylcholinesterase from strains of *Baetis* sp. and *Campsoneuria* sp. using student t-test at p $\leq 0.05$
- Appendix 4.62 Percentage of residual activity of acetylcholinesterase for 124 *Baetis* sp. used in determining the value of Ki
- Appendix 4.63 Percentage of residual activity of acetylcholinesterase for 124 *Campsoneuria* sp. used in determining the value of Ki
- Appendix 4.64Significant comparison of AChE Ki of selected inhibitors on<br/>acetylcholinesterase from strains of *Baetis* sp. and<br/>*Campsoneuria* sp. using student t-test at  $p \le 0.05$

## LIST OF ABBREVIATIONS

The following abbreviations have been used commonly throughout this thesis:

| α     | alpha                               |
|-------|-------------------------------------|
| °C    | degree Celcius                      |
| =     | equal                               |
| ≤     | less or same                        |
| ηmol  | nanomole                            |
| μl    | microliter                          |
| μg    | microgram                           |
| μS    | microsecond                         |
| >     | more than                           |
| %     | percent                             |
| ACh   | acetylcholine                       |
| AChE  | acetylcholinesterase                |
| AChR  | acetylcholine receptor              |
| ASChI | acetylthiocholine iodide            |
| BSA   | bovine serum albumin                |
| CDNB  | 1-chloro-2,4 -dinitrobenzene        |
| DBLS  | diazo-blue solution                 |
| DDT   | dichloro-diphenyl-trichloroethane   |
| DDVP  | dichlorvos                          |
| DTNB  | 5,5-dithiobis (2-nitrobenzoic acid) |

| Е                | East                                         |
|------------------|----------------------------------------------|
| EC <sub>50</sub> | Half maximal effective concentration         |
| DOT              |                                              |
| ESI              | esterase                                     |
| FBS              | fast blue salt                               |
| GSH              | reduced glutathione                          |
| GST              | glutathione-s-transferases                   |
| INWQS            | Interim Water Quality Standards for Malaysia |
| I <sub>50</sub>  | inhibition at 50%                            |
| М                | molar                                        |
| mg               | milligram                                    |
| mm               | millimeter                                   |
| Ν                | North                                        |
| NA               | naphthylacetate                              |
| nm               | nanometer                                    |
| OD               | optical density                              |
| РСВ              | polychlorinated biphenyl                     |
| rpm              | revolutions per minute                       |
| Sg.              | Sungai (River)                               |
| WQI              | Water Quality Index                          |