NUMERICAL MODELLING OF SURFACE AND SUBSURFACE FLOW INTERACTIONS IN PAYA INDAH WETLAND OF SELANGOR D. E., MALAYSIA

BAHAA-ELDIN ELWALI ABDEL RAHIM ELWALI

THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY OF SCIENCE (PH. D.)

FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR 2009

PEMODELAN NUMERIKAL INTERAKSI ALIRAN PERMUKAAN DAN SUB-PERMUKAAN DI TANAH LEMBAB PAYA INDAH, SELANGOR DE, MALAYSIA

BAHAA-ELDIN ELWALI ABDEL RAHIM ELWALI

TESIS YANG DIKEMUKAKAN UNTUK MEMPEROLEH IJAZAH DOKTOR FASAFAH SAINS

FAKULTI SAINS UNIVERSITI MALAYA KUALA LUMPUR 2009

PREFACE

This thesis was prepared as one of the requirements for the Ph.D. Degree as well as a contribution to the formulation of the Paya Indah Water Resources Management Plan. The study has been carried out from March 2006 to December 2008. The Paya Indah Wetland Sanctuary with its ex-mining ponds at the southern portion and peat swamp forest at the northern portion may act as natural flood detention storage and therefore it is essential to understand the complex water balance of this wetland.

The research focused on the mathematical modelling approach to model the hydrology and the water balance of the Paya Indah wetland and the surrounding peat swamp forest. The mathematical model is based on the integrated hydrological modeling system, MIKE SHE.

This modeling system is particularly suited for wetland modeling because of its integration nature and the ability to count for both surface and subsurface flows and their interactions. Current and future researches will undoubtedly improve understanding of the basic concepts involved in this modelling project and may lead to more sophisticated flow and/or transport modelling(s).

The modelling protocol and related procedures in this thesis are therefore validated and aimed to be used as a management tool, thus the model subject to continuous refinement as new data become available and new questions arise.

This Ph.D. thesis contributes to the literature via participation in different national and international conferences; and publication in a few journals. Selective papers may include:

Bahaa-eldin E. A. R., Yusoff I., Azmi M. J, and Zainuddin O. 2009. Numerical modelling of tropical wetland catchment using MIKE SHE system: Calibration and Validation. *Water Resources Research*. Submitted

Bahaa-eldin E. A. R., Yusoff I., Azmi M. J, and Zainuddin O. 2009. Application of MIKE SHE modelling system to set up a water balance for Paya Indah wetland. *Journal of hydrology*. Submitted

Bahaa-eldin E. A. R., Yusoff I., Azmi M. J, and Zainuddin O. 2009. Predictions of hydrological modification on Paya Indah Wetland in Malaysia. *Water Resources Management*. Submitted.

Bahaa-eldin E. A. R., Yusoff I., Azmi M. J, and Zainuddin O. 2009. Simulation of integrated surface-water/groundwater flow for a freshwater wetland in Selangor State, Malaysia. *Geological Society of Malaysia, Bulletin* **55**: 95 – 100.

Bahaa-eldin E. A. R., Yusoff I., Azmi M. J, and Zainuddin O. 2007. MIKE SHE modelling of surface water and groundwater interaction. *National Geoscience Conference*. Kota Kinabalu, Sabah; Malaysia. 7-9 June. P5A-4.

Bahaa-eldin E. A.Rahim, Yusoff, I., Azmi M.J. and Zainudin O. 2006. Modelling of hydrological interactions at Paya Indah Wetland, Malaysia. *Proceedings of the* 2^{nd} *Mathematics and Physical Science Graduate Conference*. Faculty of Science, Building, National University of Singapore. Singapore, 12 – 14 December.

ACKNOWLEDGEMENTS

The production of this thesis was made possible by the complementary funding from two different bodies including the Malaysian Ministry of Sciences, Technology & Environment under IRPA grant No. 02-03-08-003-EA003 and the University of Malaya under the Fellowship Scheme. Thanks are extended to the Department of Geology, Faculty of Science, and University of Malaya for all the provided facilities and assistance.

My sincerest thanks are due to my Advisor Assoc. Prof. Dr. Ismail Yusoff for his constant guidance and encouragement throughout the study period. The author duly appreciates the cooperation and support of Hj. Mr. Azmi M. Jaffri the Head of Department of Drainage and Irrigation Department (DID) of Malaysia; Dr. Zainudin Othman from the Malaysian Nuclear Agency.

Special gratefulness and appreciation are due to the helpfulness and gentleness of Mr. Salim from Drainage and Irrigation Department of Malaysia; Mr. Yagambaram V. (Baram) from Minerals and Geoscience Department of Malaysia/Selangor State Office; and Mr Ahamed Zaki from Malaysia Meteorological Department. I am also thankful Brother Mohammed who kindly and generously rescued the flow of work of this research project (Appendix K; Photo K.8).

I am so grateful for Ir. Miss Azizah Abdul Gadir and Ir. Mrs. Atikah Shafae from Drainage and Irrigation Department of Malaysia for their special treatment. A sincere gratitude is extended also to all the staff of Department of Geology of University of Malaya, Drainage and Irrigation Department of Malaysia and Minerals and Geoscience Department of Malaysia.

My final and special gratefulness and appreciation are due to my parents, sisters and brothers for their putting up with me and being patient all this while.

UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate. Bahaa-eldin Elwah (I.C./Passport No: C 0605298)

Registration/Matric No: SHC 050025

Name of Degree: Ph.D

Title of Project Paper/Research Report/Dissertation/Thesis ("this Work"):

Numerical Modelling of Surface and Subsurface Flow, Interactions in Paya Indah Wetand of Selanger D.E., Malaysia Field of Study: Water Resource Management

I do solemnly and sincerely declare that:

- (1) I am the sole author/writer of this Work;
- (2) This Work is original;
- (3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
- (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
- (5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya ("UM"), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
- (6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate's Signature

Subscribed and solemnly declared before,

Witness's Signature

Nameirof. Madya Dr. Ismail Yusoff Designation: Jabatan Geologi Universiti Malaya 50603 Kuala Lumpur

Date 24 November 2009

Date 24/11/09

ABSTRACT

MIKE SHE modelling system was used to simulate the surface and subsurface flow interactions at the Paya Indah wetland catchment which covers an area of 242.21 km² and lies in Selangor State in west of Malaysian peninsular. The watershed hydrology has been changed considerably due to the increased anthropogenic activities, producing different hydro-ecological problems for the catchment. These include frequent peat forest fires and dropping of the surface water level in the Paya Indah lakes system. Being physically-based distributed hydrologic model, the MIKE SHE model set-up, therefore, requires a vast set of input data which precisely include rainfall, evapotranspiration, river cross-section, detailed soil hydraulic properties and aquifer characteristics. The model was calibrated and validated against three targets including surface water, channel flow and groundwater head. The multi-criteria evaluation and hydrographs visual judgments revealed that the model performance was satisfactory which allowed running the water balance and assessing the impact of the predicted future scenarios. Results revealed that elevated rate of the evapotranspiration losses and the landuse change impacts considerably influence the water level in the Paya Indah lakes system at rechargeable area of peat cover. On contrast during both calibration and validation periods it was found that groundwater abstraction controlled the dynamics of the groundwater within a large zone covered most of the downstream area of the catchment. The impact of over-abstraction at the Megasteel Co. Ltd. property on surface water level of the Paya Indah lakes system was investigated. It was found that the exchangeable flow between unsaturated zone and saturated is very limited at the area of the lakes system due to occurrence of impermeable clay layer of 10 m - 15 m thick and of a low permeability of an average value of 4.8E-7 m/s which acts as barrier that controls exchangeable flow between the unsaturated and saturated zones at this part of the catchment. Nonetheless, it was found that the current rate of pumping had influenced the groundwater table to drop as low as ~ 4.0 m below sea level within the influenced zone of the Megasteel pumping wells which in turn, may rise up the potentiality of seawater intrusion and deep aquifer collapse. Looking at the overall water balance it is clear that evapotranspiration accounted for the largest water loss of ~ 60 % of the total rainfall. The model was slightly underestimated the total water balances by 0.45 % and 0.21 % the total rainfall for the calibration and validation periods respectively. Hydrological scenarios that likely might alter the quantity and timing of water exiting the Paya Indah wetland catchment were simulated with the validated model (baseline scenario) in order to evaluate their impacts on the watershed's hydrology. In this context, decreasing of the North-Inlet-Canal (SWL1) inflow as a result of launching the flood mitigation new channel that diverts Cyberjaya water towards Klang River Basin is one of the expected impacts of the full development of the adjacent Cyberjaya City and E-village. While as the results revealed that the deep aquifer might deplete partially or totally depending on the quantity of the groundwater withdrawal.

PEMODELAN NUMERIKAL INTERAKSI ALIRAN PERMUKAAN DAN SUB-PERMUKAAN DI TANAH LEMBAB PAYA INDAH, SELANGOR D.E., MALAYSIA

ABSTRAK

Sistem pemodelan MIKE SHE telah digunakan untuk mengsimulasi interaksi aliran air permukaan dan sub-permukaan di lembangan tanah lembab Paya Indah yang merangkumi kawasan seluas 242.21 km² yang terletak di Negeri Selangor, di barat Semenanjung Malaysia. Hidrologi lembangan ini telah berubah secara ketara akibat peningkatan aktiviti antropogenik yang menyumbang kepada masalah hidro-ekologi lembangan. Ini termasuklah kekerapan kebakaran hutan paya bakau dan kejatuhan paras air di sistem tasiktasik Paya Indah. MIKE SHE merupakan model hidrologi dasaran fizikal yang memerlukan pemasukan data yang banyak yang diantaranya termasuklah data kerpasan, evapotranspirasi, keratan rentas sungai, sifat hidraulik tanih dan ciri-ciri akuifer. Model ini telah dikalibrasi dan divalidasi dengan tiga sasaran kalibrasi termasuklah aras air permukaan, saliran dan air tanah. Penilaian yang dibuat menggunakan multi-kriteria dan pengvisualan hidrograf menunjukkan kebolehan model ini adalah memuaskan dan membolehkan kajian keseimbangan air dan kesan senario masa depan diramalkan. Hasil kajian ini menunjukkan peningkatan kadar kehilangan air secara evapotranspirasi dan perubahan guna tanah memberi perubahan ketara kepada aras air di dalam sistem tasik Paya Indah di kawasan imbuhan yang ditutupi oleh tanah gambut. Secara perbandingannya pula, sepanjang tempoh masa kalibrasi dan validasi adalah didapati pengambilan air tanah yang mengawal dinamik air tanah di dalam zon luas yang merangkumi sebahagian besar kawasan hilir lembangan. Kesan pengambilan air tanah secara ketara oleh Syarikat MegaSteel Sdn. Bhd kepada aras air di tasik-tasik Paya Indah juga dikaji. Adalah didapati aliran yang bertukarganti di antara zon tak tepu dan zon tepu amat terhad bagi kawasan tasik dimana terdapatnya lapisan lempung tak telap yang berketebalan antara 10 m-15 m dengan kadar ketelapan yang rendah dengan nilai puratanya adalah 4.8E-7 m/s yang juga bertindak sebagai penghalang kepada aliran tukarganti di antara zon tak tepu dan zon tepu di sebahagian lembangan ini. Apapun adalah didapati kadar pengepaman air tanah pada masa ini telah menyebabkan aras air tanah jatuh sedalam 4.0 m di bawah paras laut bagi kawasan yang dipengaruhi oleh telaga pengepaman Megasteel yang berpotensi besar menjadi penyebab kepada intrusi air laut dan kegagalan akuifer dalam. Berdasarkan keseimbangan air secara keseluruhan adalah jelas didapati evapotranspirasi menjadi penyumbang besar kepada kehilangan air lembangan sehingga mencapai 60 % dari keseluruhan kerpasan. Model ini memberi kurangan anggaran keseimbangan air semasa proses kalibrasi dan validasi masing-masing sebanyak 0.45% dan 0.21% dari jumlah hujan keseluruhan. Model yang telah divalidasi digunakan untuk melihat senario hidrologi yang bakal mengubah kuantiti dan masa kedapatan air di lembagan tanah lembab Paya Indah bagi menilai kesan perubahan kepada tindakbalas hidrologi lembangan. Bagi kontek ini, pembangunan sepenuhnya kawasan Bandar Cyberjaya dan E-Village yang bersebelahan dengan model lembangan akan meyebabkan terbentuknya saliran pemulihan baru yang mengalihkan aliran air dari Cyberjaya ke lembagan Sg. Klang dan menghilangkan kemasukan air dari saluran North-Inlet (SWL1). Disamping itu, keputusan pemodelan menunjukkan akuifer dalam mungkin mengalami kejatuhan secara separa atau keseluruhan bergantung kepada kuantiti pengeluaran air tanah.

CONTENTS

		Page
PREFACE		iii
ACKNOWLED	GEMENTS	V
DECLARATION	Ň	vi
ABSTRACT		vii
ABSTRAK		viii
CONTENTS		ix
LIST OF FIGUR	RES	xiv
LIST OF TABLI	ES	xxi
LIST OF PHOT	OGRAPHS	xxiii
LIST OF SYMB	OLS AND ABBREVIATIONS	XXV
CHAPTER I	INTRODUCTION	
1.1	Description of the Study Area	1
	1.1.1 Geology1.1.2 Hydrology1.1.3 Groundwater status	3 5 8
1.2	Objectives	9
1.3	Scope of the Study	10
1.4	Importance of the Study	10
1.5	Modeling Approach	11

CHAPTER II	LITERATURE REVIEW	
2.1	Hydrologic Cycle	13
2.2	Watershed Hydrology	14
2.3	Water Resources Management Problems	17
	2.3.1 Water resources problems in Malaysia	18
2.4	Soil Hydraulic Parameters	23
2.5	Ramsar Convention on Wetlands	25
	2.5.1 Ramsar listed wetlands of Malaysia	26
2.6	Modelling	27
	2.6.1 Watershed models	30
CHAPTER III	MODELLING TOOL	
3.1	Hydrological Description	46
3.2	Hydrological Description	47
	 3.2.1 Interception and evapotranspiration components 3.2.2 Overland and channel flow component 3.2.3 Unsaturated zone components 3.2.4 Saturated zone components 	49 53 56 58
CHAPTER IV	MODEL INPUT DATA	
4.1	Hydro-meteorological Data	63
	4.1.1 Rainfall3.1.3 Evapotranspiration	63 66
4.2	Landuse and Vegetation	67
4.3	Surface Topography	69
4.4	Overland Flow and River Network	72
	4.4.1 Overland flow4.4.2 Flooded area	73 74

	4.4.3	Cross sections and bathymetry data	75
4.5	Unsatı	urated Zone	77
	4.5.1	Types of soils	77
		Soil water	78
	4.5.3	Soil sampling and insitu measurements	81
		Soil characterization	84
	4.5.5	Presentation of soil tests results	89
4.6	Satura	ted Zone	91
		Geological model	91
		Aquifers characteristics	95
	4.6.3	Interactions between the surface and subsurface flow	96
	4.6.4	Groundwater abstraction	96
4.7	Surfac	e water and Groundwater Timeseries Data	98
4.8	Model	Set-up	98
		Boundary conditions	99
	4.8.2	Surface water flow system	103
4.9	Conce	ptual Model	105
4.10	Model	Domain and Discretization	108
4.11	Model	Development	110
	4.11.1	Simulation time step	111
		Model Calibration	112
	4.11.3	Model Validation	112
	4.11.4	Model Performance	112
CHAPTER V	MOD	EL CALIBRATION AND VALIDATION	
5.1	Calibr	ation	117
	5.1.1 5.1.2	Calibration targets Primary calibration parameters	118 119
5.2	Calibr	ation Results	120
	5.2.1	Simulation of surface water level	120
	5.2.2	Simulated groundwater heads	127

	5.2.3	Simulation of channel flow	132
5.3	Assess	ment of Calibrated Model	135
	5.3.1 5.3.2	Performance of the coupled model Assessment of model predictive capability	136 141
5.4	Valida	tion	144
	5.4.1 5.4.2 5.4.3	Validated surface water flow Validated groundwater head Validation of channel flow	145 150 151
5.5	Assess	ment of the Validated Model Performance	155
	5.5.1 5.5.2	Performance of the coupled model Assessment of model predictive capability	155 157
5.6	Sensiti	vity Analysis	159
	5.6.1 5.6.2	Effect of increment of evapotranspiration rate Effect of depletion of the inflow	162 165
CHAPTER V1	MODI	EL OUTPUTS	
CHAPTER V1 6.1		E L OUTPUTS Balance	170
	Water		170 176
6.1	Water	Balance ted and Unsaturated Flow Interactions Overland flow Flow exchange between unsaturated	
6.1	Water Saturat	Balance ted and Unsaturated Flow Interactions Overland flow	176 176
6.1	Water Saturat 6.2.1 6.2.2 6.2.3	Balance ted and Unsaturated Flow Interactions Overland flow Flow exchange between unsaturated and saturated zones	176 176 177
6.1 6.2	Water Saturat 6.2.1 6.2.2 6.2.3 Hydrol	Balance ted and Unsaturated Flow Interactions Overland flow Flow exchange between unsaturated and saturated zones Saturated zone and river lateral flow	176 176 177 180
6.16.26.3	Water Saturat 6.2.1 6.2.2 6.2.3 Hydrol SCEN	Balance ted and Unsaturated Flow Interactions Overland flow Flow exchange between unsaturated and saturated zones Saturated zone and river lateral flow logical Impact of Groundwater Abstraction	176 176 177 180
 6.1 6.2 6.3 CHAPTER V11 	Water Saturat 6.2.1 6.2.2 6.2.3 Hydrol SCEN Cyberj	Balance ted and Unsaturated Flow Interactions Overland flow Flow exchange between unsaturated and saturated zones Saturated zone and river lateral flow logical Impact of Groundwater Abstraction ARIOS	176 176 177 180 181
 6.1 6.2 6.3 CHAPTER V1I 7.1 	Water Saturat 6.2.1 6.2.2 6.2.3 Hydrol SCEN Cyberj Cyberj	Balance ted and Unsaturated Flow Interactions Overland flow Flow exchange between unsaturated and saturated zones Saturated zone and river lateral flow logical Impact of Groundwater Abstraction ARIOS aya Development Flagship Zone: Phase II	176 176 177 180 181

CHAPTER	V1II SUMMARY AND CONCLUSIONS	
8.1	Summary	196
8.2	Conclusions	197
CHAPTER I	X RECOMMENDATIONS	
9.1	challenging Issues	201
9.2	Recommendations	202
REFERENC	ES	204
APPENDIC	ES	
А	Criteria for the Designation of Wetlands of International Importance	220
В	Ramsar-nominated Wetlands of Malaysia	221
С	Polynomial Approximation of IDF Curves	226
D	Monthly Rainall atthe Paya Indah Wetland Catchment	232
E	Monthly Evapotranspiration at the Paya Indah Wetland Catchment	233
F	River-cross Section Data	234
G	Malaysian Soil Series	237
Н	Soil Profile Definition and Soil Parameters used in the Model	238
Ι	Engineering Borehole Log for PI 1	241
J	Pumping Test Data	244
Κ	Album	254

LIST OF FIGURES

Figure No.		Page
1.1	Index map of the Study Area	2
1.2	Geological and Location Map of the Study Area	4
1.3	Components of the Paya Indah Lakes System	6
1.4	Land Phase Components of the Hydrologic Cylce	12
2.1	A System Representation of the Hydrologic Cycle	14
2.2	Hydrologic cylce components with golobal annual average water balance given in units relative to value of 100 for the precitiparion rate on land	15
2.3	Classification of hydrologic models	28
2.4	The modelling protocol and schedule proposed for the present study	29
3.1	Schematic Representation of MIKE SHE Model	48
3.2	Schematic Diagram of Interception and Evapotranspiration	49
4.1	Estimated Rainfall Fields for the Catchment using Thiessen-polygon Method	64
4.2	Hyetograph of the Paya Indah Wetland Catchment 65	
4.3	Daily Evapotranspiration for the Paya Indah Wetland Catchment	66
4.4	Landuse Map of the Paya Indah Wetland Catchment	67
4.5	Topography Data	70
4.6	Layout of Paya Indah Lakes System showing the Locations of the Spot Level Data	71
4.7	Topographic Model of the Paya Indah Wetland Catchment	71
4.8	Zooming-in for Set-up of Channel Flow Network the Location of Hydrodynamic Boundaries, Cross-sections, Culvert and the Lotus Lake Outlet Controlled Gate	72

4.9	Flooded Areas within of the Paya Indah Wetland Catchment: Lakes names and their representing code number	74
4.10	Bathymetry model	75
4.11	Longitudinal Profile for Tin Lake, Tin-Perch-Connect and Perch Lake	76
4.12	Longitudinal Profile for Tin Lake, Tin-Perch-Connect and Chalet Lake	77
4.13	Soil Map of the Paya Indah Wetland Catchment	78
4.14	Overview of Soil Volume/Weight Relationship: "V" and "W" represent volume and weight, respectively; "soil" refers to the fine earth fraction (any combination of sand, silt and clay minerals mixed with soil organic matter and pores), but excludes coarse fragments (CF); "soil particles" refer to fine earth minerals and organic matter. Solid refers to fine earth +CF. Total volume refers to fine earth, CF and pores.	79
4.15	Locations of Soil Sampling and Insitu Measurements	82
4.16	Infiltration Test for the Selangor-Kanchung Series. Location: Kg Sg Manggis (Mangostine River Village)	88
4.17	Presentation of a Geological Cross-section across the Modelled Area	91
4.18	Thickness of the Geological Layer 1	93
4.19	Thickness of the Geological Layer 2	94
4.20	Thickness of the Geological Layer 3	94
4.21	Location of Monitoring and Production Wells within the Modelled Area	97
4.22	Boundary Conditions for the Study Area	100
4.23	Conceptual Model of the Paya Indah Wetland Catchment	107
4.24	Model Domain and Grid	109
4.25	Mesh Discretization for the Study Area	110

5.1	Calibrated Water Level Hydrograph for North-Inlet-Canal (SWL1) 121
5.2	Calibrated Water Level Hydrograph for Visitor Lake	122
5.3	Calibrated Water Level Hydrograph for Main Lake	122
5.4	Calibrated Water Level Hydrograph for Driftwood Lake	123
5.5	Calibrated Water Level Hydrograph for Perch Lake	123
5.6	Calibrated Water Level Hydrograph for Marsh Lake	124
5.7	Calibrated Water Level Hydrograph for Crocodile Lake	124
5.8	Calibrated Water Level Hydrograph for Hippo Lake	125
5.9	Calibrated Water Level Hydrograph for Chalet Lake	125
5.10	Calibrated Water Level Hydrograph for Typha Lake	126
5.11	Calibrated Water Level Hydrograph for Lotus Lake	126
5.12	Calibrated Water Level Hydrograph for Lotus-Outlet (SWL2)	127
5.13	Calibrated Groundwater Head Hydrograph for BH1	128
5.14	Calibrated Groundwater Head Hydrograph for BH2	129
5.15	Calibrated Groundwater Head Hydrograph for BH3	129
5.16	Calibrated Groundwater Head Hydrograph for BH4	130
5.17	Calibrated Groundwater Head Hydrograph for BH5	130
5.18	Calibrated Groundwater Head Hydrograph for BH6	131
5.19	Calibrated Groundwater Head Hydrograph for BH7	131
5.20	Calibrated Groundwater Head Hydrograph for BH8	132
5.21	Calibrated Channel Flow Hydrograph for SWL1	133
5.22	Hyetograph and Hydrographs for SWL1	133
5.23	Calibrated Channel Flow Hydrograph for SWL2	134
5.24	Hyetograph and Hydrographs for SWL2	135

5.25	Scattered Plot for the Observed and Simulated Channel Flow at SWL1 during Calibration Period	142
5.26	Scattered Plot for the Observed and Simulated Channel Flow at SWL1 during Calibration Period	143
5.27	Validated Water Level Hydrograph at Visitor Lake	146
5.28	Validated Water Level Hydrograph at Main Lake	146
5.29	Validated Water Level Hydrograph at Tin Lake	147
5.30	Validated Water Level Hydrograph at Crocodile Lake	147
5.31	Validated Water Level Hydrograph at Hippo Lake	148
5.32	Validated Water Level Hydrograph at Chalet Lake	148
5.33	Validated Water Level Hydrograph at Typha Lake	149
5.34	Validated Water Level Hydrograph at Lotus Lake	149
5.35	Validated Groundwater Head Hydrograph at BH3	150
5.36	Validated Groundwater Head Hydrograph at BH5	151
5.37	Validated Channel Flow Hydrograph for the Reach of Langat River	152
5.38	Validated Channel Flow Hydrograph for SWL2	153
5.39	Hyetograph and Validation Hydrographs for Reach of the Langat River	154
5.40	Hyetograph and Validation Hydrographs for SWL2	154
5.41	Scattered Plot for the Observed and Simulated Channel Flow at the Reach of Langat River during Validation Period	158
5.42	Scattered Plot for the Observed and Simulated Channel Flow at SWL1 during validation Period	158
5.43	Sensitivity Run for Assessing the Effect of ET Increment on Surface water Level at SWL1	163
5.44	Sensitivity Run for Assessing the Effect of ET Increment on Surface water Level at Typha Lake	163

5.45	Sensitivity Run for Assessing the Effect of ET Increment on Surface water Level at BH3	164
5.46	Sensitivity Run for Assessing the Effect of ET Increment on Surface water Level at BH5	164
5.47	Sensitivity Run for Assessing the Effect of Flow Depletion at Visitor Lake	166
5.48	Sensitivity Run for Assessing the Effect of Flow Depletion at Main Lake	167
5.49	Sensitivity Run for Assessing the Effect of Flow Depletion at Crocodile Lake	167
5.50	Sensitivity Run for Assessing the Effect of Flow Depletion at Chalet Lake	168
5.51	Sensitivity Run for Assessing the Effect of Flow Depletion at Lotus Lake	168
5.52	Sensitivity Run for Assessing the Effect of Flow Depletion at SWL2	169
6.1	Water Balance for Paya Indah Wetland Catchment (~ 242 km ²) for the Simulation Period 1/July/1999 to 31/October/2004	171
6.2	Water Balance for Paya Indah Wetland Catchment (~ 242 km ²) for the Simulation Period 1/August/2007 to 2/August/2008	172
6.3	Distribution of Actual evapotranspiration at Paya Indah Wetland Catchment during a Normal Day in the Wet Season	174
6.4	Distribution of Actual evapotranspiration at Paya Indah Wetland Catchment during a Normal Day in the Dry Season	175
6.5	Depth of Overland Water during a Normal Day in Wet season	177
6.6	Unsaturated-Saturated Zones Flow Exchange during a Normal Day during Wet Season.	178
6.7	Unsaturated-Saturated Zones Flow Exchange during a Normal Day during Dry Season.	179
6.8	Flow Exchange between Saturated Zone and Channel Flow 180	
6.9	Impact of Groundwater Pumping at the Megasteel Wells on the Groundwater Head Elevation	182

6.10	Impact of Groundwater Pumping at the Megasteel on Groundwater Flow Direction	183
7.1	Layout of Baseline Scenario	186
7.2	Layout of Phase II of Cyberjaya Development Scenario	187
7.3	Impact of Phase II Development of Cyberjaya on the Groundwater Table in the Peat Layer	188
7.4	Effect of Depletion of the Inflow from Cyberjaya on Main Lake	189
7.5	Effect of Depletion of the Inflow from Cyberjaya on Crocodile Lake	189
7.6	Effect of Depletion of the Inflow from Cyberjaya on Chalet Lake	190
7.7	Effect of Depletion of the Inflow from Cyberjaya on Lotus Lake	190
7.8	Impact of Full Development of Cyberjaya and E-village on the Groundwater Table in the Peat Layer	191
7.9	Layout of the Peat Basin	192
7.10	Effect of Replacement of the Peat Layer by a Low Permeability Soil Material on Tin Lake	193
7.11	Effect of Replacement of the Peat Layer by a Low Permeability Soil Material on BH3	193
7.12	Effect of Replacement of the Peat Layer by a Low Permeability Soil Material on BH5	194
C.1	Rainfall Intensity-duration-frequency (IDF) Curve for the Paya Indah Wetland Catchment of the Pumping Test	227
C.2	Frequency of Storm Events in 2-years Period	228
C.3	Frequency of Storm Events in 5-years Period	228
C.4	Frequency of Storm Events in 10-years Period	229
C.5	Frequency of Storm Events in 25-years Period	229
C.6	Frequency of Storm Events in 50-years Period	230
C.7	Frequency of Storm Events in 25-years Period	230

J.1	Location of the Pumping Test	244
J.2	Result of constant rate pumping test at Observation well PI1	246
J.3	Result of constant discharge pumping test at Observation well PI1	248

LIST OF TABLES

Table No.		Page
1.1	Names and lengths of the Hydrologic System Components of the Paya Indah Wetland Catchment Model	7
2.1	Water Resources in Malaysia	19
4.1	Rainfall Area Weighted Factors for the Paya Indah Wetland Catchment	64
4.2	Properties of Vegetation within the Paya Indah Wetland Catchment	68
4.3	Soil Hydraulic Properties used in for the Model	89
4.4	Characteristics of Shallow and Deep Aquifers at the Paya Indah Wetland Catchment	95
4.5	Roughness Coefficient (Manning's coefficient) used for the Channels in the study area	104
5.1	Statistical Evaluation Criteria for the Calibrated Model	139
5.2	Evaluation of the Predictive Accuracy of the Calibrated Model	141
5.3	Statistical Evaluation Criteria for the Validated Model	156
5.4	Evaluation of the Predictive Accuracy of the Validated Model	157
5.5	Model Parameters and Statistical Evaluation of Each Calibration and Validation Simulation Run	160
5.6	Sensitivity of Different Flow Rate Modifications at SWL1	166
6.1	Water Balance Estimation at the Paya Indah Wetland Catchment: Contribution of each Component	173
7.1	Impacts of Groundwater Over-abstraction Scenarios	195
A.1	Criteria for the Designation of Wetland of International Importance	220
C.1	Coefficients of the Fitted IDF Equation for Kuala Lumpur	227
C.2	Rainfall Intensity-duration-frequency (IDF) Estimation for the	231

D.1	Monthly Rainfall at for the Paya Indah Wetland Catchment	232
E.1	Monthly Evapotranspiration at for the Paya Indah Wetland Catchment	233
F.1	Dimensions and Basic Statistics for the Cross sections of the River Network for the Modelled catchment	234
G.1	Malaysian Soil Series	237
H.1	Soil Profile Definition and Soil Parameters used in the Model	238
I.1	Engineering Borehole Log for PI1	241
J.1	Data of Constant Rate Pumping Test a the Observation Well PI1	245
J.2	Data of the Recovery Test a the Observation Well PI1	247
J.3	Determination of Hydraulic Conductivity for the Deep Aquifer Using Constant Head Permeability Test at Borehole PI1	249
J.4	Determination of Hydraulic Conductivity for the Second Layer Using Constant Head Permeability Test at Borehole PI2	250
J.5	Determination of Hydraulic Conductivity for the Shallow Aquifer Using Constant Head Permeability Test at Borehole PI3	251
J.6	Measurements of Ground Subsidence at Megasteel Co. Ltd Area for the period 2001 – 2006	252
J.7	Measurements of Ground Subsidence at Megasteel Co. Ltd Area for the period 2000 – 2007	253

LIST OF PHOTOGRAPHS

PHOTO No.		Page
K.1	Kick-start Visit1	254
K.2	Kick-start Visi2	255
K.3	Peat Big Days	256
K.4	Infiltration Test at Kg Sg Manggis	257
K.5	Infiltration Test near the marsh Lake	258
K.6	Retrieving Groundwater Data of BH3	259
K.7	Checking the Coordinates of BH6 before Retrieving the Groundwater Level Data from the Automatic Logger.	260
K.8	Heading towards BH6 across the Langat River	260
K.9	Gauging at SWL1	261
K.10	Gauging at SWL2	262
K.11	Automatic logger at SWL1	263
K.12	Automatic logger at SWL2	264
K.13	Automatic logger at Main-Visitor Connection	264
K.14	Inflow from Cyberjaya City on a Rainy Day. The North South Expressway Central Link (NSECL) also appears on the picture	265
K.15	Visitor Lake Overview	266
K.16	Main Lake Overview	266
K.17	Culvert of the Main-Palm Connection	267
K.18	Main-Palm Connection heading towards the Lotus Lake	267
K.19	Overview of the Main and Driftwood Lakes	268
K.20	Tin-Driftwood Connection	268
K.21	Padi (ex-) Lake and it Functionless Culvert	269

K.22	Swamp-hen (semi-) Lake Overview	270
K.23	Connection Point between Lotus-Swamp-hen Connection and Lotus Lake	271
K.24	Typha Lake Overview	272
K.25	Lotus lake Overview	272
K.26	Lotus-outlet Control Gate: Front View	273
K.27	Lotus-outlet Control Gate: Front View	273
K.28	Outlet heading towards Langat River	274
K.29	Wildlife Habitats	274
K.30	Deep inside the Peat Paradise's Blanket	275

LIST OF SYMBOLS AND ABBREVIATIONS

b.s.l.:	below the sea level
BH:	Borehole
CE:	Coefficient of efficiency
DID:	Drainage and Irrigation Department of Malaysia
ET:	Actual Evapotranspiration
Evap:	Evaporation
Exfilt:	Exfiltration
GIS:	Geographic information system
Infilt:	Infiltration
<i>k</i> :	Hydraulic conductivity
Kg:	Kampung (village)
KLIA:	Kuala Lumpur International Airport
m:	Meter
M:	The reciprocal of Manning's n
MAE:	Mean average error
ME:	Mean error
MLD:	Mined Land
MMD:	Malaysia Meteorological Department
n:	Manning's number
NSECL:	North-South Expressway Central Link
OL:	Overland flow
<i>P</i> :	Probability
P:	Precipitation

PRG:	Perang soil series
QG,in:	Groundwater flow into the model area
QG,out:	Groundwater flow out of the model area
QS:	Surface water inflow
QS,out:	Surface water flow out of the model area
<i>R</i> :	hydraulic radius
R:	Coefficient of correlation
R ² :	Pearson type-I distribution index
RMSE:	Root mean square error
Sc:	Storage coefficient of groundwater
<i>S</i> :	channel bed slope
SBM.	Serdang-Bungor-Munchong soil series
Sg:	Sungai (River)
SKG:	Selangor-Kanchung soil series
STD _{res} :	Standard deviation of the residuals
SZ:	Saturated zone
UZ:	Unsaturated zone
<i>T</i> :	Transmissivity
Trans:	Transpiration
<i>V</i> :	Flow velocity
ΔS :	Change in storage of surface water, unsaturated zone and groundwater (Ss+(Suz+(S sz)