

A

TABLE A.1 Criteria for the Designation of Wetlands of International Importance

Group A of the criteria Sites containing representative, rare or unique wetland types		Criterion 1: A wetland should be considered internationally important if it contains a representative, rare, or unique example of a natural or near-natural wetland type found within the appropriate biogeographic region.			
		Criterion 2: A wetland should be considered internationally important if it supports vulnerable, endangered, or critically endangered species or threatened ecological communities.			
	Criteria based on species and ecological communities	Criterion 3: A wetland should be considered internationally important if it supports populations of plant and/or animal species important for maintaining the biological diversity of a particular biogeographic region.			
		Criterion 4: A wetland should be considered internationally important if it supports plant and/or animal species at a critical stage in the life cycles, or provides refuge during adverse conditions.			
Group B of the	Specific criteria based	Criterion 5: A wetland should be considered internationally important if it regularly supports 20,000 or more waterbirds.			
criteria Sites of international importance	on waterbirds	Criterion 6: A wetland should be considered internationally important if it regularly supports 1% of the individuals in a population of one species or subspecies of waterbird.			
for conserving biodiversity	Specific criteria based on fish	Criterion 7: A wetland should be considered internationally important if it supports a significant proportion of indigenous fish subspecies, species or families, life-history stages, species interactions and/or populations that are representative of wetland benefits and/or values and thereby contributes to global biological diversity.			
		Criterion 8: A wetland should be considered internationally important if it is an important source of food for fishes, spawning ground, nursery and/or migration path on which fish stocks, either within the wetland or elsewhere, depend.			
	Specific criteria based on other taxa	Criterion 9: A wetland should be considered internationally important if it regularly supports 1% of the individuals in a population of one species or subspecies of wetland-dependent non-avian animal species.			

Source: Ramsar 2008b

В

RAMSAR-NOMINATED WETLANDS OF MALAYSIA

B.1 KUCHING WETLANDS NATIONAL PARK

Nominated as a Ramsar site on November 8th 2005. It is a National Park which is located in Sarawak (01°41'N 110°14'E); and covers an area of 6,610 ha; National Park. A saline mangrove system with flora comprising predominantly the genera Rhizophora, Avicennia and Sonneratia. The site harbours such noteworthy species as Estuarine Crocodile Crocodylus porosus, Proboscis Monkey Nasalis larvatus (endemic to Borneo and listed as 'Endangered', IUCN Red List), Lesser Adjutant Leptoptilos javanicus ('Vulnerable'), and Griffith's Silver Leaf Monkey *Trachypithecus villosus*. The site has value as a breeding and nursery ground for fish and prawn species - 43 families of fishes and 11 species of prawns have been recorded, many of which are commercially important. Its proximity to the city of Kuching, the Damai resort complex, and two other national parks renders it of high potential value for tourism, education and recreation. The area is historically important: there was a Chinese settlement there probably as early as the 1st century AD, and early Malay, Hindu and Buddhist relics from the 9th century AD have been excavated at Santubong Village. The discovery of gold made the area an important trading and iron mining centre from the 7th to 13th centuries; some enigmatic rock carvings of human figures remain from this period. In the 15th century, Santubong was the site of the original Brunei Malay capital of Sarawak. Ramsar site no. 1568. Most recent RIS information: 2005.

B.2 PULAU KUKUP

Nominated as Ramsar site on January 31st, 2003. It a State Park is located in Johor (01°19'N 103°25'E); and covers an area of 647 ha. It considers an uninhabited mangrove island located 1 km from the southwestern tip of the Malaysian peninsula, one of the few intact sites of this type left in Southeast Asia. The wetland supports such species as the Flying Fox Pteropus vampyrus, Smooth Otter Lutra perspicillata, Bearded Pig Sus barbatus, Long-tailed Macaque Macaca fascicularis, all listed as threatened, vulnerable or near-threatened under the IUCN Red Book. Pulau Kukup has been identified as one of the Important Bird Areas (IBA) for Malaysia. Globally vulnerable Lesser Adjutant Leptoptilos javanicus chooses this as a stop-over and breeding ground. Pulau Kukup is important for flood control, physical protection (e.g. as a wind-breaker), and shoreline stabilization as it shelters the mainland town from severe storm events. The coastal straits between Pulau Kukup and the mainland are a thriving industry for marine cage culture. The mudflats are rich with shellfish and provide food and income to local people. Tourism is another use of the island and the government has further plans to promote ecotourism. Ramsar site no. 1287. Most recent RIS information: 2003.

B.3 SUNGAI PULAI

Nominated as Ramsar site on January 31st, 2003. It is a Forest Reserve which located in Johor (01°23'N 103°32'E); covered an area of 9,126 ha. The largest riverine mangrove system in Johor State, located at the estuary of the Sungai Pulai River. With its associated seagrass beds, intertidal mudflats and inland freshwater riverine forest the site represents one of the best examples of a lowland tropical river basin, supporting a rich biodiversity dependent on mangrove. It is home for the rare and endemic small tree Avicennia lanata, animals such as near-threatened and vulnerable Long-tailed Macaque, Smooth Otter and rare Flat-headed Cat and threatened birds species as Mangrove Pitta and Mangrove Blue Flycatcher, all included in the IUCN Red List. Relatively undisturbed parts including the Nipah swamps may be nesting sites of the Estuarine Crocodile. The site fringes play a significant role in shoreline stabilization and severe flood prevention in the adjacent 38 villages. The local population depends on the estuary as its mudflats, an ideal feeding, spawning and fattening ground, support a significant proportion of fish species. Other mangrove uses include wood cutting, charcoal production, aquaculture activities and ecotourism. The current construction of a new port at the river estuary may represent a direct impact on the mangrove ecosystem, causing coastal erosion and water pollution from associated dredging and reclamation works and traffic. The site is managed in line with Integrated Management Plan for the sustainable use of mangroves in Johor state. Ramsar site no. 1288. Most recent RIS information: 2003.

B.4 TANJUNG PIAI

Nominated as Ramsar site on January 31st, 2003. It is a State Park which is located in Johor State (01°16'N 103°31'E); and covered an area of 526 ha. The site consists of coastal mangroves and intertidal mudflats located at the southernmost tip of continental Asia, especially important for protection from sea-water intrusion and coastal erosion. Tanjung Piai supports many threatened and vulnerable wetland-dependent species such as Pig-tailed Macaque and Long-tailed Macaque, birds like Mangrove Pitta, Mangrove Blue Flycatcher, Mangrove Whistler. Globally vulnerable Lesser Adjutant may be observed in the vicinity of the site. The Scaly Anteater, Common Porcupine, Smooth Otter and Bearded Pig are classified as vulnerable or near threatened listed in the IUCN Red Book 2000. Waters of the four main rivers traversing Tanjung Piai are abundant with commercially valuable species. The site enjoys the status of a State Park for eco-tourism -- a visitor centre with boardwalks near the southern tip of the park provides interpretive materials, guided walks, and overnight facilities, with a World Wetlands Day programme beginning in 2003. Due to increased sea traffic, the western side of Tanjung Piai has been affected by oil spills which caused natural erosion processes in nearly 70 ha of the mangrove forest. In addition, the new port being established in the estuary of Sungai Pulai will likely lead to increased wave energy reaching the east shore of Tanjung Piai, thus accelerating coastal erosion. Ramsar site no. 1289. Most recent RIS information: 2003.

B.5 TASEK BERA

Nominated as Ramsar site on November 10th, 1994. It is a Forest Reserve located in Pahang State (0258t'N 10236t'E); and covered an area of 38,446 ha. The site is considered a State Reserve for Conservation. An excellent example of a "blackwater" ecosystem which includes open water, a reed swamp area, and swamp forest with grasslands on the periphery. The site supports high species diversity, including 328 species of algae, 19 aquatic plants, 64 zooplankton, an abundance of aquatic insects, shrimp, crab and 95 species of fish (most indigenous, and including the endangered Asian Bonytongue or Arowana). All amphibians and reptiles of Malaysian tropical swamps are represented as well as 119 bird species, of which two, Masked Finfoot and Crested Fireback, are threatened. Indigenous people inhabit the area and depend on its natural resources, the fishery in particular, for their livelihood. Ecotourism is promoted. Other site uses include conservation education and scientific research. Ramsar site no. 712. Most recent RIS information: 1998.

 \mathbf{C}

POLYNOMIAL APPROXIMATION OF IDF CURVES

A total of 26 urban areas in the Peninsular of Malaysia have been given a maximum intensity-duration-frequency (Department of Irrigation and Drainage of Malaysia, 2000) using Equation C.1 which was, therefore, used to express the Rainfall Intensity-Duration-Frequency (IDF) Relationships for the Paya Indah wetland catchment.

$$\ln \binom{R}{I}_{t} = a + b \ln(t) + c [\ln(t)]^{2} + d [\ln(t)]^{3}$$
 (C.1)

where

I : I is the average rainfall intensity (mm/hr) for ARI R and duration t

R: is average return interval (years)

t: is duration (minutes)

a, b. c and d: are fitting constant dependent on ARI (the average recurrence interval)

Table C.1 presents values of the coefficients of fitness in Equation C. 1 for storm ARIs of between 2 years and 100 years for Kuala Lumpur.

TABLE C.1 Coefficients of the Fitted IDF Equation for Kuala Lumpur

Return Period (Year)	Parameter								
	a	b	c	d					
2	4.775	0.598	-0.231	0.012					
5	5.029	0.564	-0.231	0.012					
10	5.019	0.635	-0.247	0.013					
20	5.382	0.471	-0.217	0.012					
50	5.46	0.473	-0.216	0.012					
100	5.518	0.489	-0.218	0.012					

Source: Department of Irrigation and Drainage of Malaysia, 2000

Result of the average rainfall intensity (mm/hr) for ARI 100 years and for different durations are presented in Figures C.1 to C.7 and Table C.2

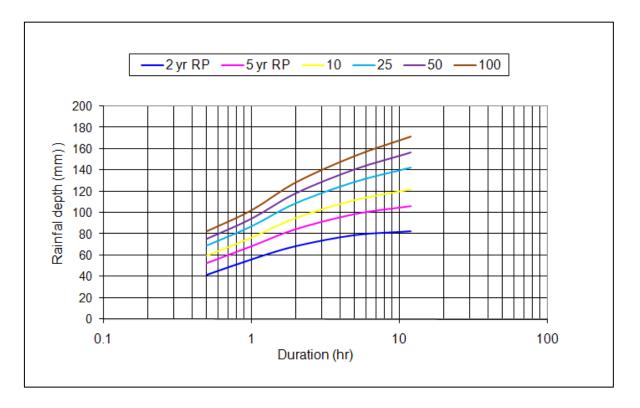


FIGURE C.1 Rainfall Intensity-duration-frequency (IDF) Curve for the Paya Indah Wetland Catchment

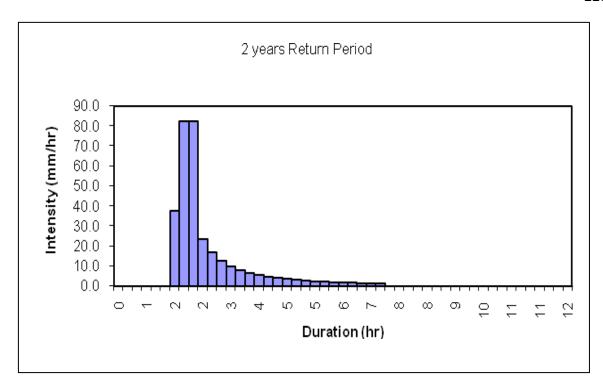


FIGURE C.2 Frequency of Storm Events in 2-years Period

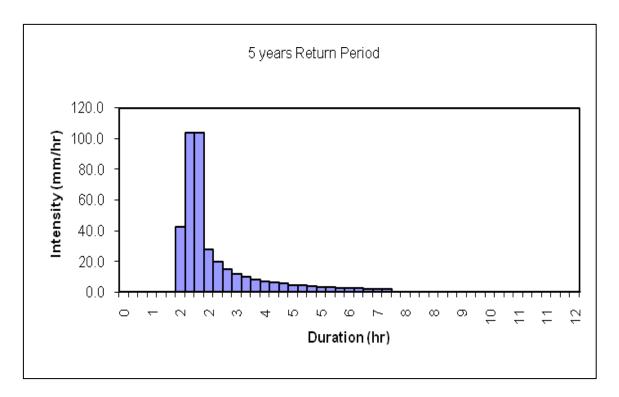


FIGURE C.3 Frequency of Storm Events in 5-years Period

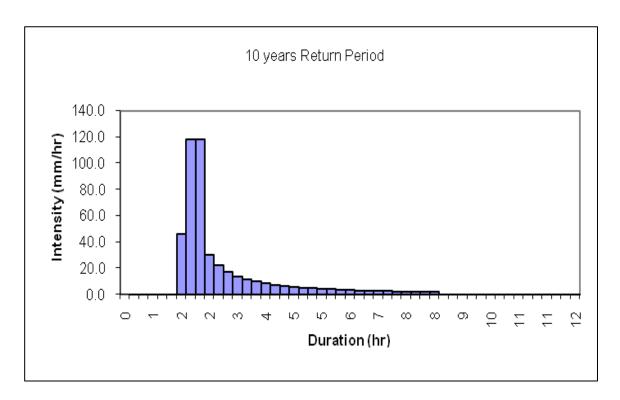


FIGURE C.4 Frequency of Storm Events in 10-years Period

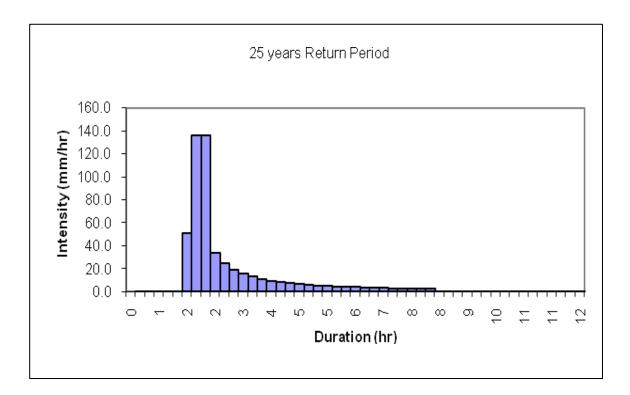


FIGURE C.5 Frequency of Storm Events in 25-years Period

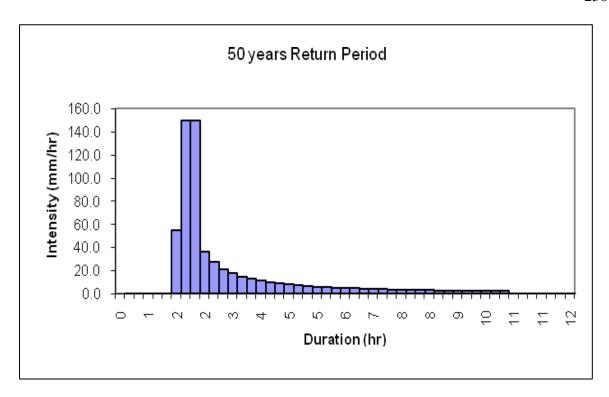


FIGURE C.6 Frequency of Storm Events in 50-years Period

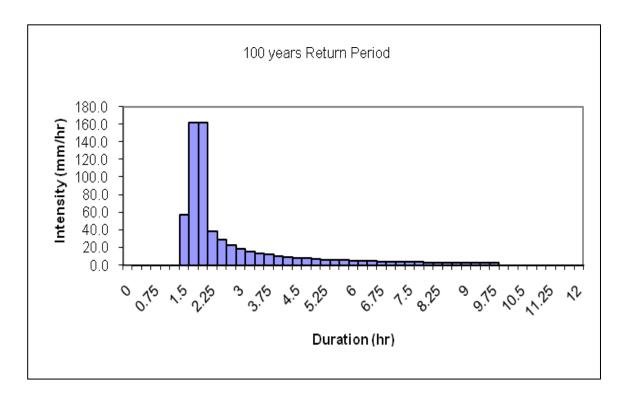


FIGURE C.7 Frequency of Storm Events in 100-years Period

TABLE C.2 Rainfall Intensity-duration-frequency (IDF) Estimation for the Paya Indah Wetland Catchment

Station	Duration		Average l	Rainfall De	pth (mm)	
Station	R Period	30 min	1 hr	2 hr	5 hr	12 hr
	200	90.16	107.3	149.76	199.15	220.58
	100	83.42	100.22	139.19	183.57	202.84
	50	76.65	93.12	128.58	167.92	185.03
Sungai	25	69.83	85.97	117.9	152.16	167.09
Kampung	10	60.63	76.32	103.49	130.92	142.91
Manggiss	5	53.36	68.69	92.09	114.11	123.77
	3	47.58	62.62	83.03	100.75	108.57
	2	42.36	57.15	74.87	88.71	94.86
	200	83.69	103.33	124.54	146.11	169.14
	100	77.66	96.52	116.02	135.64	156.05
	50	71.6	89.68	107.46	125.14	142.9
D	25	65.5	82.79	98.84	114.56	129.66
Prang Besar	10	57.28	73.5	87.21	100.3	111.82
besar	5	50.77	66.15	78.01	89.01	97.69
	3	45.6	60.31	70.71	80.05	86.48
	2	40.94	55.05	64.12	71.97	76.36
	200	94.77	119.35	141.17	151.54	169.14
	100	87.16	110.34	130.61	140.87	156.05
Londona	50	79.51	101.3	120.01	130.16	142.9
Landang Bukit	25	71.81	92.2	109.33	119.37	129.66
Cheeding	10	61.43	79.92	94.94	104.83	111.82
Cheeding	5	53.22	70.2	83.55	93.32	97.69
	3	46.69	62.48	74.51	84.18	86.48
	2	40.81	55.52	66.35	75.94	76.36

D

TABLE D.1 Monthly Rainfall at the Paya Indah Wetland Catchment*

Category	year	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec
	1999	201.60	43.000	113.65	82.300	175.80	136.85	184.85	159.80	366.70	103.90	366.70	103.90
	2000	183.13	102.78	186.96	128.26	89.420	178.42	118.16	174.34	260.47	153.46	242.53	159.71
	2001	155.83	216.79	69.690	246.60	81.700	79.380	173.43	84.010	157.86	199.70	217.64	200.57
-	2002	83.080	15.670	114.60	366.66	144.62	93.050	65.960	96.320	153.98	75.210	340.65	281.14
Rainfall	2003	220.87	138.45	110.86	243.71	74.390	92.480	128.55	112.47	81.370	119.96	310.53	173.02
.ai	2004	115.25	87.770	114.03	199.99	77.450	119.80	293.32	117.78	146.39	229.94	308.50	159.18
~	2005	54.140	106.09	86.430	146.44	82.490	107.10	93.900	30.200	40.800	108.30	212.00	155.10
	2006	81.100	124.30	75.170	116.63	250.12	131.00	190.5	138.00	40.500	281.00	460.00	209.00
	2007	169.00	151.00	200.10	237.50	175.50	48.500	174.2	189.00	204.50	252.00	171.30	233.00
	2008	218.00	82.000	328.50	157.00	79.500	138.10	159.5	164.50	-	-	-	-

^{*} Values are in mm

 \mathbf{E}

TABLE E.1 Monthly Evapotranspiration at the Paya Indah Wetland Catchment*

Category	year	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec
	1999	107.9	117.0	119.7	121.5	135.6	121.5	129.0	121.8	140.1	119.0	114.6	114.7
_	2000	113.2	118.6	123.7	134.1	108.5	121.2	131.1	122.5	140.1	122.8	114.9	113.5
ion	2001	109.7	114.0	125.2	132.0	122.8	123	131.1	124.0	140.7	121.8	117.6	116.6
irat	2002	120.6	123.8	130.5	134.4	124.9	124.5	132.4	125.6	138.9	123.7	114.6	115.3
apotranspiration	2003	112.2	116.2	125.2	131.4	124.0	123.9	128.7	124.9	139.8	120.3	114.0	115.6
rar	2004	119.4	122.7	126.2	135.3	124.6	124.2	126.5	124.3	141.0	121.8	117.0	116.3
pot	2005	120.3	123.5	134.2	138.3	125.9	127.5	131.8	128.3	147.6	123.1	117.6	115.0
Eva	2006	123.4	126.3	135.6	136.5	131.2	133.6	135.1	136.3	145.8	129.4	124.2	121.5
щ	2007	121.6	124.1	138.2	138.7	133.2	135.3	134.4	134.1	147.8	127.6	122.6	122.3
	2008	123.1	124.6	134.2	135.8	132.4	134.5	136.7	133.8	-	-	-	-

^{*} Values are in mm

F

TABLE F.1
Dimensions and Basic Statistics for the Cross sections of the River Network for the Modelled Catchment

Branch Name	Number of		Width (m)			Depth (m)	
Dranch Name	Cross-sections	Max.	Min.	Average	Max.	Min.	Average
Langat River	68	800	76.491	207.08	12.505	2.51	6.05
North Canal	09	10	3.20	5.47	9.20	1.00	5.35
North Canal_N1	03	3.20	3.20	3.20	6.50	5.824	6.06
North Canal_S1	03	3.20	3.20	3.20	5.602	5.00	5.20
North-Inlet- Canal (SWL1)	04	3.20	3.20	3.20	5.10	5.00	5.075
South-Inlet- Canal	07	15.40	3.20	8.43	6.50	3.00	4.83
Cyberjaya Canal	04	39.0	34.0	35.25	6.30	6.10	6.20
Outlet	14	4.25	4.25	4.25	9.69	1.125	3.85
Visitor Lake	08	550	70.0	331.25	3.0	2.0	2.50

TABLE F.1 Continued

Visitor-Main- Connect	02	12	12	12	1.0	1.0	1.0
Main Lake	06	520	470	505	6.40	2.0	2.89
Main-Palm- Connect	02	3.8	3.0	3.4	2.95	1.98	2.46
Driftwood Lake	03	200	200	200	4.5	3.45	4.17
Driftwood-Tin- Connect	02	6.0	6.0	6.0	3.5	3.5	3.5
Tin Lake	10	1430	100	810	16.66	1.74	8.96
Tin-Perch- Connect	02	10	10	10	2.5	2.5	2.5
Perch Lake	05	345	165	278	5.5	4.1	4.72
Perch-Marsh-Connect	02	12	12	12	1.25	1.2	1.225
Marsh Lake	07	250	160	201.43	6.5	4.15	5.47
Marsh-Padi- Connect *	02	06	06	06	1.0	1.0	1.0
Padi Lake *	04	305	220	276.25	6.3	3.90	5.30

TABLE F.1 Continued

Padi-Swamp-hen- Connect *	04	06	06	06	4.01	2.00	4.58
Swamp-hen Lake *	02	180	180	180	6.00	6.00	6.00
Swamp-hen-Lotus- Connect	2.0	6.0	6.0	6.0	1.4	1.4	1.4
Lotus lake	10	670	350	427	5.3	2.0	3.88
Chalet Lake	06	400	220	300	5.6	2.0	5.05
Croc-Hippo Lake	08	150	03	67.38	5.5	2.0	4.58
Lotus-Outlet (SWL2)	03	6.0	6.0	6.0	3.5	3.4	3.47

^{*} Dry Drainage

G

TABLE G.1

Malaysian Soil Series classified by USDA Soil Orders, Sub-orders and Great Groups

Order	Sub-order	Great group	Soll Series				
60	Fibrists	Haplofibrists	Anderson, Changkat Loba	k Igan, Mukah, Salleh	Peat soils require an intensive water management		
Histosols	Hemists	Hapiohemists	Bakri, Bayas, Pak Bong		system. Paims should be planted using the hole-in-		
ğ		Suffhemists	Arang, Nipis		hole technique. Cu and Zn usually required. Lime required to increase N release from organic matter.		
유	Saprists	Hapiosaprists	Linggi, Telok Bulch		-		
_		Suffisaprists	Penor				
	Aquents	Endoaquents	Binjai, Guan		Aquents must be drained before planting to oil paim.		
		Fluvaquents	Guan, Kalibong		After drainage Aquents become inceptisols.		
ક		Sulfaquents	Bergosong, Kranji, Linau				
Entisols	Fluvents	Udifluvents	Tenghilan		Too localized (riverbanks) for oil paim cultivation.		
<u></u>	Orthents	Udorthents	Paku, Pengalan, Ramuan, nong, Telemong	Sebat, Sebuau, Tama-	Too shallow for oil paim.		
	Psam-	Quartzipsamments	Jambu		Too sandy for oil palm.		
	ments	Udipsamments	Baging, Rompin, Sungel B	uloh, Usukan			
	Udepts	Distrudepts	Benuou, Kelawat, Lintang,		Well drained soils with high yield potential (>35 t		
		E-tdt-	bong, Penambang, Samad	ion	FFB/ ha).		
્ર	Aquepts	Eutrudepts Suffaquepts	Bombalal, Bulanat		Water manager and surface and to assure the		
울	Aquepts	Suffic Endoaquepts	Guan, Parit Botak, Sedu Bijat, Carey, Jawa, Metah,	Mundai Telok Tonokano	Water management system required to prevent the reduction of soil pH due to the oxidation of oxidation		
Inceptisols		Contract Encoded Chris	bijat, carey, sama, metan,	mariou, reloc, rongcarg	of jarosite. Also known as acid sulphate soils		
Inc		Typic Endoaquepts	Bangawat, Bernam, Briah, Manik, Perepat, Sabrang,		Clay soils, often derived from Entisois. Eutrudepts are more fertile than Distrudepts. High soil fertility status and yield potential (>35 t FFB/ha). Water management required.		
Moliisols	Rendoll	Haprendolls	Loc Sambuang		Shallow moliic hortzon (containing a large concen- tration of organic matter) overlying limestone. High soil pH.		
	Udox	Acrudox	Jerangau, Kampong Kolan mat, Senal, Sungel Mas, T		Structure better than Ultisols due to presence of Fe and Al oxides that impart reddish colours to the soil profile. Well drained but prone to drought due to high		
		Eutrudox	Sagu, Sungel Mas		porosity. Lower fertility status than Ultisois. Eutrox		
Oxtsols		Hapludox	Apas, Gading, Jarangan, K Munchong, Nobusu, Patan Tarat		soils are more fertile and less acid than Acrudox soils. Kandludox soils are susceptible to compaction and are difficult to manage when the surface horizon		
ő		Kandludox	Batang Merbau, Bungor, C Rengam, Tal Tak, Ulu Don		has been eroded and the kandic clay layer expose Empty that bunch mulching improves structure an nutrient holding capacity. Large response to K and fertilizers. Install soil conservation measures, especially on steep slopes.		
oso	Humod	Haplohumods	Balayo, Buso, Karamatol, I Silantek	Miri, Rhu Tapal, Rudua,	Developed from beach ridges, sandy riverine depos- its and sandstones. Nutrients (particularly K and Mg)		
Spodoso/	Orthod	Hapiorthods	Sibuga, Silimpopon, Stoh		are likely to be lost due to leaching due to sandy soil texture. Poor water availability under drought condi- tions. Increase the number of split fertilizer		
	Aquuts	Endoaquults	Inanam, Jabil		Ultisols are easily damaged due to compaction and		
		Kandlaquults	Jabil, Lunas, Sogomana		erosion. Mechanization should therefore be imple- mented with great care. Use low flotation tyres on		
		Kanhaplaquudults	Cherang Hangus		vehicles used in the field. Higher fertility status than		
		Paleaquuits	Inaanam/poor, Jelutong		Oxisols. Empty fruit bunch mulching improves		
	Udults	Hapludults	Asahan, Batu Anam, Daga		structure and nutrient holding capacity. Large re- sponse to K and P fertilizers. Install soil conservation		
Ultisols		Kandludults	Batang, Bungor, Gajah Ma Kasau, Lambak, Lanchang bau, Rengam, Serdang, Si Tebok, Tungau, Ulu Dong	j, Langkawai, Lelau, Mer- Bawan, Tai Tak, Tavy,	measures (platforms, terraces), especially on steep slopes.		
9		Kanhapludults	Apek, Gong Chenak, Kawa Marang, Nami	ang, Kening, Kuala Brang,			
		Paleudults	Abok, Bedup, Berkenu, Ins tan, Kulai, Lumisir, Merit, M Tanjong Lipat, Tok Yong, Y	Musang, Nyalau, Stom			
		Plinthuduits	Batang, Chuping, Sipit				
		Rhodudults	Jakar, Sarekel				
Alfisols	Aquaits	Endoaqualf	Batu Hitam, Buran		Higher soil fertility status than Ultisois. Easily dam-		
8	Udalfs	Hapludaifs	Kabuloh, Karabungan		aged by compaction. Mechanization should there- fore be implemented with great care. Use low flota-		
A		Paleudalfs	Darau, Kobovan		tion tyres on vehicles used in the field.		
Andisols	Melanu- dands	Typic melanudands			High P fixation capacity. Excellent physical proper- ties (water holding capacity, oil paim root develop- ment). Very high yield potential (>35 t/ha).		
•							
		Wetlands		Coastal clay	Inland soils		
Gelisals (for	und only in the	arctic), Aridisols (found or	nly in arid climates), and Vert	isols (only cultivated with rice	in Malaysia) have not been included.		

Source: (IPNI, 2007)

H

TABLE H.1 Soil Profile Definition and Soil Parameters used in the Model

MSHE ^a	Soil Type b	Cassini C	oordinates	Infiltration Rate	Saturated Water	Water Content at Field	Water Content at
Code	Soil Type b	X	Y	(k [m/s])		$\begin{array}{c} \textbf{Capacity} \\ (\Theta_{\mathbf{fc}}) \end{array}$	Wilting Point $(\Theta_{\mathbf{w}})$
	MDL	-3732.43	-33552.35	2.10E-08	0.28	0.15	0.16
	MDL	-4315.24	-33635.60	9.70E-09	0.31	0.11	0.15
	MDL	-3159.06	-33580.10	7.00E-08	0.30	0.14	0.16
	MDL	-4013.07	-32914.03	5.40E-08	0.33	0.16	0.18
1	MDL	-3846.16	-33739.22	8.30E-08	0.34	0.12	0.17
1	MDL	-4117.52	-32578.31	5.66E-08	0.28	0.11	0.17
	MDL	-5231.08	-32164.70	6.77E-08	0.34	0.11	0.16
	MDL	-5009.16	-33580.34	5.40E-08	0.31	0.10	0.20
	MDL	-5101.81	-34092.87	1.39E-09	0.24	0.09	0.17
	MDL	-49647.64	-33186.26	2.44E-08	0.30	0.17	0.20
	SBM	-6729.74	-31748.41	6.48E-07	0.38	0.29	0.23
	SBM	-7173.78	-30971.33	5.20E-07	0.41	0.34	0.22
	SBM	-6424.46	-30971.33	5.07E-07	0.42	0.27	0. 20
	SBM	-6979.51	-29999.97	4.40E-08	0.34	0.23	0.22
2	SBM	-6313.44	-28584.58	5.12E-07	0.33	0.31	0.25
2	SBM	-6813.00	-27613.22	3.90E-08	0.38	0.27	0.22
	SBM	-5258.83	-27280.19	3.67E-07	0.36	0.26	0.23
	SBM	-4537.26	-26142.32	1.40E-07	0.37	0.27	0.23
	SBM	-5169.76	-26947.54	8.56E-07	0.36	0.33	0.21
	SBM	-5294.83	-28036.41	8.93E-07	0.36	0.29	0.21

TABLE H.1 (Continued)

	Perang series	-2920.81	-25051.38	1.01E-07	0.38	0.26	0.15
	Perang series	-3645.98	-24985.45	7.05E-07	0.37	0.24	0.17
	Perang series	-4357.96	-24589.91	3.71E-06	0.37	0.28	0.16
	Perang series	-3487.76	-24260.29	3.22E-08	0.33	0.34	0.15
7	Perang series	-3250.43	-23561.49	2.80E-07	0.43	0.33	0.18
	Perang series	-3327.72	-24501.14	5.81E-08	0.34	0.35	0.17
	Perang series	-34451.2	-24961.33	5.35E-07	0.33	0.38	0.18
	Perang series	-4246.11	-25277.31	4.24E-07	0.35	0.32	0.16
	Perang series	-4363.17	-23320.24	4.11E-07	0.36	0.27	0.21
	Perang series	-3250.43	-24374.52	3.73E-07	0.86	0.24	0.18
	Peat series	-7877.520	-35988.19	2.02E-04	0.67	0.68	0.27
	Peat series	-9423.010	-35988.19	1.11E-05	0.77	0.67	0.27
	Peat series	-11249.50	-35988.19	8.64E-05	0.69	0.64	0.28
	Peat series	-8720.510	-34723.70	1.07E-04	0.68	0.64	0.26
12	Peat series	-9329.340	-34583.20	1.20E-06	0.78	0.73	0.31
	Peat series	-9797.670	-33494.33	1.18E-04	0.76	0.78	0.25
	Peat series	-10605.54	-34957.86	3.62E-05	0.69	0.68	0.27
	Peat series	-9200.550	-33997.79	5.71E-05	0.74	0.62	0.28
	Peat series	-9704.010	-34267.08	1.28E-05	0.73	0.66	0.29
	Peat series	-9802.220	-35796.21	1.15E-05	0.79	0.74	0.33

TABLE H.1 (Continued)

	SKG	-7590.080	-41628.44	3.42E-08	0.32	0.26	0.21
	SKG	-10282.11	-41683.94	3.06E-08	0.31	0.23	0.25
	SKG	-12308.07	-40379.56	6.88E-07	0.39	0.31	0.25
	SKG	-13889.99	-39019.67	3.63E-07	0.37	0.31	0.24
12	SKG	-15277.63	-38103.82	6.82E-07	0.39	0.25	0.23
13	SKG	-17636.63	-37632.02	5.14E-07	0.34	0.22	0.24
	SKG	-20439.67	-35189.77	3.23E-07	0.35	0.24	0.23
	SKG	-19867.42	-38472.04	2.16E-08	0.31	0.27	0.21
	SKG	-21028.17	-36802.81	7.78E-07	0.31	0.23	0.22
	SKG	-19742.56	-36613.29	5.12E-07	0.33	0.28	0.24

^a MSHE: MIKE SHE ^b Soil type:

MDL: Mined Land soil association

Serdang-Bungor-Munchong soil series; Selangor-Kanchung soil series SBM:

SKG:

I

TABLE I.1 Engineering Borehole Log for PI 1

Projec	et :	PENYIASATAN HID	ROGEOLO	GI KAV	VAS/	AN PA	YA I	NDAH								Sheet	1	of	3	
6		DAVA DIDAH SELA	NCOR													Borehole Job No:	No:	В	H 1	
Locat	on :	PAYA INDAH, SELA	INGOR													Reduced	Leve	al - 2	20 m	
Client	:	University of Mala	va	Rig type	9:		YBM		Drill	ler		-:	IBR	AHII	И	Final wat				
	ultant :		,-	Drill Met			ROTA	RY		ervi	sor	- :				Date start				
Archit	ect :			Casing	Type:		NW		Che	eck I	by	:	Maj	id		Date Con	nplete	d: 25	5.02.0	7
	Strata				SAME	PLING	DETAIL	_		SP	ТВ	LOW	CO	UN	Т					
Deoth	Thick-	Description of Strata	a Log	Sample		Dept	h (m)	Rec.		Pene	trafic	on in	mn	n	N	1	N	Valu	ıe	
(m)	ness		209	No.		From	• •	Ratio	-	_					Value		0 1	0 20	30 4	0 50
(my	IICOO		_	140.	Т	110111	10	11000	10	13	13	10	10	13	Value	0.00	+	-	_	$\overline{}$
-																				
-																				
_ 1																				
_																				
-		Medium stiff, organic ma	aterial	P1/D1		1.000	1.450		3	3	3	4	1	1	9	1.50	\perp	-	+	Щ
- 2																	17			
- [III			
-																	$\parallel \parallel \parallel$			
_					L															
_ 3		Very soft, grey, very fine	SS	P2/D0		3.000	3.450		0	0	0	0	0	0	0	3.00		Ш	_	Ш
_		sandy-CLAY	SS																	
-		SLIME	SS																	
- 4			ss																	
- 1			ss																	
-		SLIME	SS	P3/D0		4.500	4.950		0	0	0	0	0	0	0	4.50		Ш	\perp	Ш
_			ss													4.55	T			
_ 5			SS																	
-			SS																	
-			SS																	
- 6		SLIME	SS	P4/D0		6000	6.450		١	0	0	0	0	0	0	6.00		Ш	\perp	
- [02.11-12	ss			0.000	0.100		ľ	Ť	Ť	ŭ	Ť	Ť	ľ	0.00	T			
-			SS																	
_			ss																	
_ 7			ss																	
-		CLIBAT	SS	DEIDO	,,,,,,	7500	7.050		١						_	7.50				
-		SLIME	SS	P5/D0		7.500	7.950		0	0	0	0	0	0	0	7.50	T			
- 8			SS																	
- 1			ss																	
-			ss																	
_					L											9.00	1			
_ 9		Medium stiff, grey, very		P6/D2		9.000	9.450		1	1	1	2	2	1	6	3.00	T		Т	
-		fine sandy-CLAY																		
-																				
					·····					••••	••••	••••	••••	••••		1	Ш			
	END:		EMARK :		_				Exa	amp	e:					1 г	S	PT F	PLO	Т
		Pressuremeter Test							50/	120	= 50	Blo	ws/'	120r	nm	<u> </u>				
_	,,,,,,,,	Disturbed Sample	D-4- 1=-	D- "			D ~		1											
P		I	- 1	Depth of		epth of			0-1	en e è			٨	2	,	0	45	20	,	
UD [G		Undisturbed Sample Geonor Vane Test	hrs	hole (m	ı µası	ng (m)	water	(m)		hesiv I (N			0	2	4	8	15	30	'	
u VS	********	Vane Share Test							Joli	I IN	J	Vs	oft	sof	M.stiff	stiff	V.stiff	H	l ard	
C		Rock Coring							Nor	1-00	hesi		ρ	out	.4	10.		30	2.0	50
CL E	-	Core Length								l (N										Ĺ
CR	-	Core Recovery	ENG	EO BI	ILAAT		ITD		1			V.lo	ose		Loose	M.dens	e D	ense)	٧	.dense
		Rock Quality Designa	ENG	PEO BI	UVVI	CO.	LID.		1											

TABLE I.1 (cont'd)

Project Locat	ion :	PENYIASATAN HIDRO PAYA INDAH, SELANG		OGI KA	WAS	AN PA	AYA IN	DAH								Sheet Borehole Job No: Reduce		E	f 3H 1 3.29 m	3
Client Cons Archit	ultant :	University of Malaya		Rig type: Drill Meth Casing T	nod:		YBM ROTAF NW	RY		ler bervi		:	IBR/ Maji		М	Final wa Date sta Date Co	rted:	16.02	.07	7
	Strata				SAM	PLING (DETAIL			SP	T BI	LOW	CO	UN	Т					
Depth	Thick-	Description of Strata	Log	Sample		Dept	h (m)	Rec.				on in			N					
(m)	ness			No.		From	То	Ratio	75	75	75	75	75	75	Value			N Va	llue	
_ 10 _ _ _ 11		Stiff, grey CLAY with some organic material		P7/D3		10.500	10.950		2	1	2	2	3	3	10	10.5	0 1	0 20	30 4	0 50
12 12 		Loose, light grey , clayey-SAND with minor gravel		P8/D4		12.000	12.450		1	1	2	2	2	2	8	12.0				
13 14		Ditto (water lost)		P9/D0		13.500	13.950		1	1	1	2	2	2	7	13.5				
_ 15 		Very soft, grey, fine sandy CLAY with minor organic material SLIME	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$	P10/D0		15.000	15.450		2	0	0	0	0	0	2	15.0				
16 - - 17		SLIME	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$	P11/D5		16.500	16.950		1	1	1	1	0	0	2	16.5				
18 				P12/D6		18.000	18.450		1	1	1	1	2	2	8	18.0				
19 				P13/D0		19.500	19.950		1	1	1	2	2	2	7	19.5				
LEG PM D	END:	Pressuremeter Test Disturbed Sample		Depth of	1 -	lanth of	Danth -			ampl 120 :		Blov	ws/1	120r	mm		LS	PT	PLO	<u>r</u>
UD G VS C CL	-	Standard Penetration Date Undisturbed Sample Geonor Vane Test Vane Share Test Rock Coring Core Length	hrs	hole (m			Depth o water (Soil Nor	hesiv I (N n-coh) hesiv			2 soft	4 M.stif 4	8 stiff 10	15 V.sti		lard	50
CR RQD	-	Core Recovery Rock Quality Designa	EN	GEO B	UM	ı co.	LTD.					V.lo	ose		Loose	M.den	se	Dens	e V	.dense

TABLE I.1 (cont'd)

Proje	ct :	PENYIASATAN HIDROG	EOL	OGI KAW	VASA	N PAY	YA IND	AH								Sheet	3	of	_	3
Locat	tion :	PAYA INDAH, SELANGO	R													Job No: Reduce		BH 1: 8.2		
Clien	t :	University of Malaya		Rig type:			YBM		Drill	er		:	IBR	AHII	И	Final w				
Cons	ultant :	,-		Drill Meth			ROTAF	RY	Sup	ervi	sor	:				Date sta	rted: 16	6.02.0	7	
Archi	tect :			Casing T	ype:		NW		Che	eck l	by	:	Maj	id		Date Co	mplete	d: 25.	02.07	
	Strata					PLING D	ETAIL		Т	SP	T BI	OW	CO	UN'	Г					
Denth	Thick-	Description of Strata	Log	Sample		Dent	h (m)	Rec.	 	Dene	trafic	on in	mn	,	N					
Ι'.		boompoon or coda	Log	l		<u> </u>			-				_							
(m)	ness		SS	No.		From	То	Ratio	15	15	15	15	15	15	Value					
-			SS														N'	Value	•	
-			SS														0 10	20 30	40	50
- 21		SLIME	ss	P147D0		21.000	21.450		3	0	0	0	0	0	0	21.00	•	+ +	-	-
			ss						-	Ť	Ī		-	-	_					
 			ss																	
			ss																	
_ 22			ss																	
			ss	l L													\perp			
			ss	P15/D0		22.500	22.950		0	0	0	0	0	0	0	22.50	•	\top	\top	1
			SS																	
23			SS																	
-			SS																	
-			SS																	
- 24			SS	P167D0	,,,,,,	24.000	24.450		۱.	n	n	0	0	n	0	24.00	\bot	\perp	\perp	_
			ss			24.000	21.100		ľ	ŭ	ŭ	Ů	Ť	Ŭ	Ů		Τl			
-		SLIME	ss																	
 			ss																	
⁻ 25			ss																	
			ss																	
			ss	P177D0		25.500	25.950		0	0	0	0	0	0	0	25.50	• 	+	+	-
			ss														NΙ			
26			SS																	
-																	1 \			
-																	1 1			
- 27		Very stiff, grey, clayey-SAND		P187D7		27 000	27 450		1	2	4	3	3	3	13	27.00	\perp	Ш	\perp	_
<u> </u>		reng skin, greg, orageg or inde				-1.000	21.100		'	-	ľ	Ť	Ť	•				11		
-																	$\parallel \parallel$			
																	$\parallel \parallel$			
28																	$\parallel \parallel$			
				l L													$\parallel \parallel$			
		Very stiff,dark grey,		P197D0					7	5	6	2	4	4	16	28.50	+	+	+	
L		clayey-SAND, fine to				28.500	28.950										$\parallel \parallel$			
29		medium grained																		_
-																				
-																				
- 30		Same as above		P20/D8		30.500	30.950		9	5	4	2	2	2	10					
	END:		₹ K :	<u>K</u>					-	mpi				••••	•••••	ŀ	SF	РΤР	LOT	
PM		Pressuremeter Test							50/	120	= 50	Blo	ws/1	120r	nm					
D	,,,,	Disturbed Sample		-			_	_	\Box											
P		Standard Penetration Date	ı	Depth of			Depth o		_				_							
UD		Undisturbed Sample	hrs	hole (m)) cas	ang (m)	water (m)		nesi\			0	2 	4	8	15	30	ı	
G	********	Geonor Vane Test							501	(N)	W.	<u> </u>	008	M.stif	of#	V.stiff	Har	j d	
VS C		Vane Share Test Rock Coring		1					No	1-col	heci		οπ Ο	SOIL	M.SU	10.		nar 10		50
CL		Core Length								1-cor (N		VC	ľ		ľ	10	Ì	N		ĭ~
CR	_	Core Recovery		<u> </u>	_		<u> </u>		100	(14	1	V.In	ose		Loose	M.den	se D	ense	V.de	ense
RQD	_	Rock Quality Designa	ΕN	GEO B	UMI	CO.	LTD.													

J

PUMPING TEST DATA

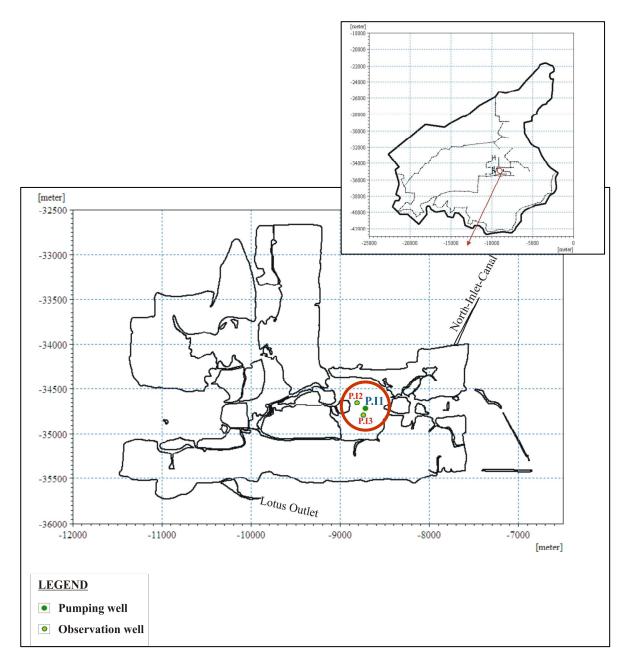


FIGURE J.1 Location of the Pumping Test

TABLE J.1
Data of Constant Rate Pumping Test at the Observation Well PI1

Well No.	: PI 1			Date & T	ime of Test	Kick-Start:	17.03.2007
							8:00 AM
Location	: Paya Inda	h Wetlands	,	Date & T	ime of Test	Stopping	17.03.2007
	Selangor :	D.E.					12:10 PM
Well Depth	:	30 m		Pump De	pth	:	0.00 m
Screen Position	:	29 - 30 m		Static Wa	ater Level	:	1.56 m
Well Collar Height	:	0.12 m		Pumping	Rate	:	0.88 m ³ /h
Distance from Pum	ping Well:	5.50 m					
Date	Time	Water	Drawdown	Date	Time	Water	Drawdown
Time	after	Level	Diawdowii	Time	after	Level	Diawdowii
Time	Pumping	(m)	(m)	Time	Pumping	(m)	(m)
	Started	(III)	(111)		Started	(111)	(111)
	(minute)				(minute)		
	(IIIIIIIII)				(IIIIIIIII)		
17.03.2007	0	1.56	0.00		120	4.34	2.78
8.00 am	0.2	1.59	0.03		160	4.44	2.88
	0.5	1.63	0.07		200	4.53	2.97
	1.0	1.71	0.15		250	4.66	3.10
	1.5	1.82	0.26		300		
	2.0	1.93	0.37		350		
	2.5	2.01	0.45		400		
	3.0	2.11	0.55		450		
	3.5	2.19	0.63		500		
	4.0	2.26	0.70		550		
	4.5	2.33	0.77		600		
	5.0	2.39	0.83		700		
	6.0	2.48	0.92		800		
	7.0	2.58	1.02		900		
	8.0	2.66	1.10		1000		
	9.0	2.71	1.15		1200		
	10.0	2.77	1.21		1400		
	15	3.12	1.56		1600		
	20	3.17	1.61		1800		
	25	3.32	1.76		2000		
	30	3.43	1.87		2440		<u> </u>
	35	3.66	2.10		2480		<u> </u>
	40	3.72	2.16		2720		
	45	3.77	2.21		2960		
	50	3.86	2.30		3200		
	55	3.92	2.36		3440		
	60	3.99	2.43	ļ	3680		
	70	4.08	2.52		3920		
	80	4.15	2.59		4160		
	90	4.25	2.69		4320		
	100	4.28	2.72				

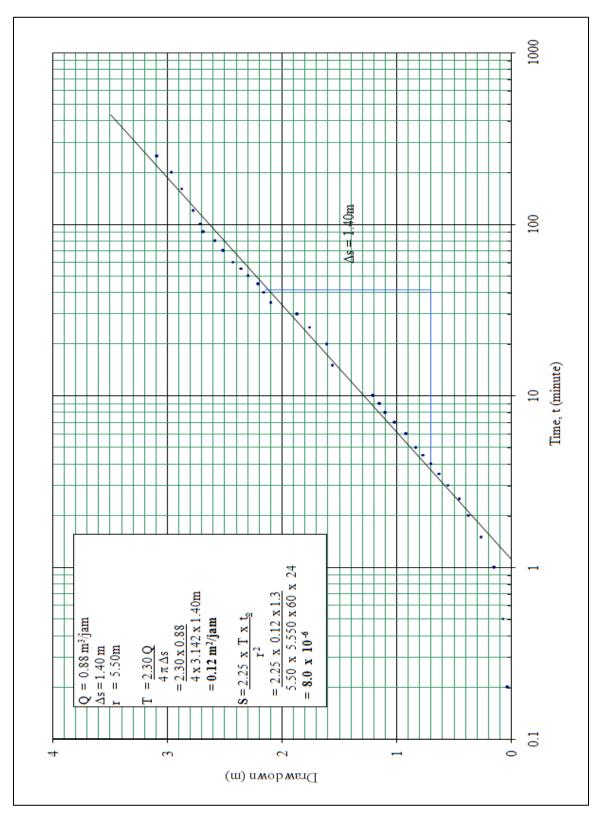


FIGURE J.2 Result of constant rate pumping test at Observation well PI1

TABLE J.2 Data of the Recovery Test at Observation Well PI1

Well No.		: PI 1				Date & Ti	me of Test	Kick-Start:	17.03.2007	7 - 8.00 am
Location:		: Paya Indal	wetlands	, Selangor	D.E.	Date & Ti	me of Test	Stopping :	17.03.2007	7 - 12.10 pm
Well Depth		: 30 m				Static Wa	ter Level	:	1.56 m	
Screen Posi	ition	:29 - 30 m				Well Colla	ar Height		0.12 m	
Serecii I osa		.27 30 11				, ca coa	a rreight	•	0.12 M	
Date/	Time	Time		Water	Residual	Time	Time		Water	Residual
Time	when	after	t / ť	Level	Drawdown	when	after	t / t'	Level	Drawdown
	Pumping	Pumping		(m)	(m)	Pumping			(m)	(m)
	Started	Stopped		` `	` '	Started	Stopped		1	
	t (minute)	t' (minute)				l	t' (minute)			
17.03.2007	0	250.0	Σ	4.54	2.98	70	320.0	4.6	2.95	1.39
8.00 am	0.5	250.5	501.0	4.30	2.74	80	330.0	4.1	2.87	1.31
	1.0	251.0	251.0	4.23	2.67	90	340.0	3.8	2.81	1.25
	1.5	251.5	167.7	4.18	2.62	100	350.0	3.5	2.75	1.19
	2.0	252.0	126.0	4.17	2.61	120	370.0	3.1	2.65	1.09
	2.5	252.5	101.0	4.15	2.59	140	390.0	2.8	2.56	1.00
	3.0	253.0	84.3	4.14	2.58	160	410.0	2.6	2.49	0.93
	3.5	253.5	72.4	4.13	2.57	180	430.0	2.4	2.40	0.84
	4.0	254.0	63.5	4.12	2.56	210	460.0	2.2	2.30	0.74
	4.5	254.5	56.6	4.09	2.53	240	490.0	2.0	2.22	0.66
	5.0	255.0	51.0	4.05	2.49	270	520.0	1.9	2.15	0.59
	6.0	256.0	42.7	4.03	2.47	300	550.0	1.8		
	7.0	257.0	36.7	4.00	2.44	360	610.0	1.7		
	8.0	258.0	32.3	3.93	2.37	420	670.0	1.6		
	9.0	259.0	28.8	3.89	2.33	480	730.0	1.5		
	10	260.0	26.0	3.85	2.29	540	790.0	1.5		
	15	265.0	17.7	3.66	2.10	600	850.0	1.4		
	20	270.0	13.5	3.54	1.98	660	910.0	1.4		
	25	275.0	11.0	3.45	1.89	720	970.0	1.3		
	30	280.0	9.3	3.36	1.80	780	1030.0	1.3		
	35	285.0	8.1	3.28	1.72	840	1090.0	1.3		
	40	290.0	7.3	3.20	1.64	900	1150.0	1.3		
	45	295.0	6.6	3.11	1.55	960	1210.0	1.3		
	50	300.0	6.0	3.07	1.51	1020	1270.0	1.2		
	55	305.0	5.5	3.03	1.47	1080	1330.0	1.2		
	60	310.0	5.2	2.99	1.43	1140	1390.0	1.2		

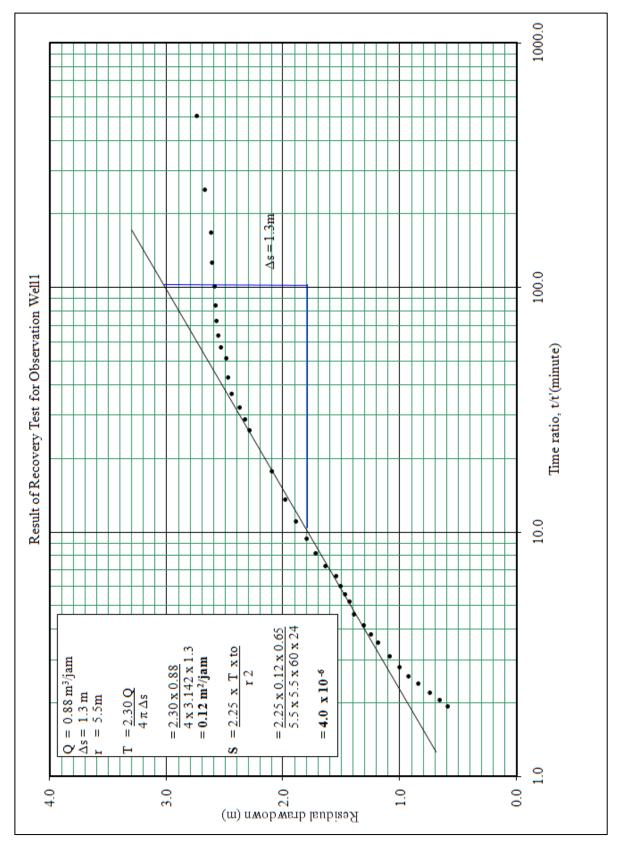


FIGURE J.3 Result of constant discharge pumping test at Observation well PI1

TABLE J.3

Determination of Hydraulic Conductivity for the Deep Aquifer Constant Head Permeability
Test at Borehole PI1

FIEL D	PERMEA	RILITY '	TEST					
Project				Modelling				
Location				Selangor I) F			
Boreho		•	vv ctiana,	ocializor L	У. 			
Date		/2/07						
Bute	. 20	, _, _,						
CONS	TANT HEA	D PERM	1EABILIT	Y TEST				
Test No	0				Test depth	30.0	m	
Water	table	0.	14 m.b.g.		Top of casin	ng 0.17	m b.g.l	
Ground	d elevation		m.b.g.l			f casing 11.43	cm	
Depth (of borehole	30	.0 m.b.g.l					
	Les		1			1	Т	
Time	Time	Total	Meter	Volume	Q	17. 0/511		
	intervel	head	reading	water	cc/sec	K=Q/FH		
	(sec)	Hc	(litre)	(cc)		cm/sec	🕈	0.16
	0	(cm)		0	0		-	0.16m
	60	31		0	0	0	<u> </u>	αl
	120	31		0	0	0	Hc	<u>gl</u>
	180	31		0	0	0	- 110	
	240	31		30	0.5	9.941 x10 ⁻⁴	-	
	360	31		25	0.3	4.135×10^{-4}	-	
	480	31		10	0.208	1.650×10^{-4}	★	
	600	31		15	0.003	2.485×10^{-4}		wt
	720	31		20	0.123	3.340×10^{-4}	0.14	
	840	31		15	0.105	2.485×10^{-4}		
	960	31		10	0.083	1.650×10^{-4}		
	1080	31		15	0.005	2.485×10^{-4}	30m	
	1200	31		10	0.083	1.650×10^{-4}		
	1500	31		30	0.100	1.988×10^{-4}		
	1800	31		10	0.033	6.560×10^{-5}	-	
	2100	31		20	0.067	1.332×10^{-4}		
	2400	31		20	0.067	1.332×10^{-4}		
	2700	31		10	0.033	6.560×10^{-5}		
	3000	31		15	0.050	9.940×10^{-5}		
	3300	31		5	0.017	3.380×10^{-5}		
	3600	31		15	0.050	9.940×10^{-5}		
	3900	31		15	0.050	9.940×10^{-5}		
E = 2.7	75D = 31.43				1			
K = Q		<u> </u>						
$\mathbf{r} = \mathbf{Q}$	/1 ¹ 11C							

TABLE J.4
Determination of Hydraulic Conductivity for the Second Layer using Constant Head Permeability Test at Borehole PI2

FIELD	PERMEA	BILITY	TEST									
Project				Modelling								
Locatio				Selangor I	D. E.							
Boreho			,									
Date		5/2/07										
CONST	ΓANT HEΑ	AD PERM	/IEABILI	ΓΥ TEST								
Т	Test No				Tes	t depth	20.0	m				
Wa	ater table		0.0 m.l	o.g.l	Top of	casing	0.16 m	b.g.l				
G	round eleva	ation	n	n.b.g.l	Diar	neter of casing	11.43	cm				
		I	Depth of b	orehole	20.0 m	ı.b.g.l						
Time	Time	Total	Meter	Volume	Q							
THIC	intervel	head	reading	water	cc/sec	K=Q/FH	0.16m					
	(sec)	Нс	(litre)	(cc)	CC/SCC	cm/sec						
	(500)	(cm)	(nac)	(66)		CITI SCC						
	0	16		0	0	0	H _c					
	60	16		45	0.750	1.49210 ⁻³] ↓ ↓	gl				
	120	16		45	0.750	1.492 x	* 	_ ~				
						10 ⁻³		wt- 0.0				
	180	16		35	0.583	1.160 x 10 ⁻	1					
						3						
	240	16		15	0.250	4.978×10^{-4}						
	300	16		25	0.416	8.283×10^{-4}						
	360	16		10	0.166	3.305×10^{-4}]					
	420	16		10	0.166	3.305×10^{-4}						
	480	16		20	0.333	6.630×10^{-4}						
	540	16		20	0.033	6.570×10^{-5}	20m					
	600	16		20	0.033	6.570×10^{-5}	2011					
	6300	16		20	0.0006	1.314×10^{-6}						
	6600	16		15	0.0005	9.950×10^{-7}						
	7200	16		15	0.0005	9.950×10^{-7}						
	7800	16		15	0.0005	9.950×10^{-7}						
	8400	16		15	0.0005	9.950×10^{-7}						
	9000	16		15	0.0005	9.950×10^{-7}						
F - 27	5D = 31.43	.25										
K = 2.7		43										
1X - Q/1	1110					1						
FHc= 5	02.92											

TABLE J.5

Determination of Hydraulic Conductivity for the Shallow Aquifer using Constant Head Permeability Test at Borehole PI3

Project : Paya Indah Wetland, Selangor D. E.	Project	· • • • • • • • • • • • • • • • • • • •	va Indah	Wetland	Modelling				
Depth of borehole FI3 Date E 21/2/07			•) E			
Date			-	W Ctiana,	ocializor i	У. Ц.			
Time intervel (sec)									
Test No Water table	Bute	. 21	12101						
Test No Water table 0.0 m.b.g.l m.b.g.l Diameter of casing 0.22 m b.g.l Diameter of casing 0.22 m b.g.l Diameter of casing 11.43 cm Time Time intervel (sec) Hc (cm) Hc (cm) (litre) (cc) (cc	CONS'	TANT HEA	AD PERM	/IEABILI	TY TEST				
Water table Ground elevation Depth of borehole 0.0 m.b.g.l m.b.g.l m.b.g.l Top of casing Diameter of casing 11.43 cm 0.22 m b.g.l Diameter of casing 11.43 cm Time intervel (sec) Total head (litre) Water reading (litre) Volume water (cc) Cc/sec K=Q/FH cm/sec K=Q/FH cm/sec 120 31 135 2.250 2.31 x 10³ degree (cc) Hc m/sec 120 31 175 2.917 2.99 x 10³ degree (cc) Hc m/sec 240 31 165 2.750 2.82 x 10³ degree (cc) Hc m/sec 300 31 165 2.750 2.82 x 10³ degree (cc) Hc m/sec 420 31 184 3.067 3.15 x 10³ degree (cc) 0.31m wt 420 31 184 3.067 3.15 x 10³ degree (cc) 0.31m wt 440 31 195 1.583 1.62 x 10³ degree (cc) 0.31m wt 540 31 140 2.33x 3 2.39 x 10³ degree (cc) 10m 6600 31 115 1.917 1.97 x 10³ degree (cc) 10m 7200 <	00110		12 1 2111						
Water table Ground elevation Depth of borehole 0.0 m.b.g.l m.b.g.l m.b.g.l Top of casing Diameter of casing 11.43 cm 0.22 m b.g.l Diameter of casing 11.43 cm Time intervel (sec) Total head (litre) Water (cc) Volume water (cc) Volume cc/sec K=Q/FH cm/sec 0 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Test No	0				Test dep	th 10	.0 m	
Ground elevation Depth of borehole m.b.g.l 10.0 m.b.g.l Diameter of casing 11.43 cm Time intervel (sec) Total head reading (litre) Water (cc) K=Q/FH cm/sec 0 31 0 0 0 120 31 175 2.917 2.99 x 10³-3 180 31 165 2.750 2.82 x 10³-3 240 31 85 1.417 1.45 x 10³-3 300 31 184 3.067 3.15 x 10³-3 420 31 136 2.267 2.33 x 10³-3 480 31 95 1.583 1.62 x 10³-3 480 31 140 2.333 2.39 x 10³-3 540 31 140 2.333 2.39 x 10³-3 600 31 115 1.917 1.97 x 10³-3 6600 31 205 0.683 7.01 x 10²-4 7200 31 215 0.071 7.36 x 10⁻5 7800 31 200 0.065 6.67 x 10⁻5	Water	table	0.	0 m.b.g.	1	-			b.g.l
Time Time nead nead neading (sec) Hc (litre) (cc)	Ground	d elevation		_		-	-	.43 c	m
intervel (sec)	Depth	of borehole	10	0.0 m.b.g.	1		_		
intervel (sec)									
intervel (sec)									
(sec) Hc (cm) (litre) (cc) cm/sec 0 31 0 0 0 0 120 31 175 2.250 2.31 x 10 ⁻³ 180 31 165 2.750 2.82 x 10 ⁻³ 240 31 85 1.417 1.45 x 10 ⁻³ 300 31 184 3.067 3.15 x 10 ⁻³ 420 31 95 1.583 1.62 x 10 ⁻³ 480 31 25 0.417 4.28 x 10 ⁻⁴ 540 31 140 2.333 2.39 x 10 ⁻³ 600 31 115 1.917 1.97 x 10 ⁻³ 6300 31 205 0.683 7.01 x 10 ⁻⁴ 6600 31 225 0.075 7.70 x 10 ⁻⁵ 7200 31 215 0.071 7.36 x 10 ⁻⁵ 7800 31 200 0.067 6.85 x 10 ⁻⁵ 8400 31 195 0.065 6.67 x 10 ⁻⁵	Time					_			
Com				_		cc/sec		l	_
0 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		(sec)		(litre)	(cc)		cm/sec		
135 2.250 2.31 x 10 ⁻³ 120 31 175 2.917 2.99 x 10 ⁻³ 180 31 165 2.750 2.82 x 10 ⁻³ 240 31 85 1.417 1.45 x 10 ⁻³ 300 31 184 3.067 3.15 x 10 ⁻³ 360 31 136 2.267 2.33 x 10 ⁻³ 420 31 95 1.583 1.62 x 10 ⁻³ 480 31 25 0.417 4.28 x 10 ⁻⁴ 540 31 140 2.333 2.39 x 10 ⁻³ 600 31 115 1.917 1.97 x 10 ⁻³ 6300 31 205 0.683 7.01 x 10 ⁻⁴ 6600 31 225 0.075 7.70 x 10 ⁻⁵ 7200 31 215 0.071 7.36 x 10 ⁻⁵ 7800 31 200 0.067 6.85 x 10 ⁻⁵ 8400 31 195 0.065 6.67 x 10 ⁻⁵ 8400 31 195 0.065 6.67 x 10 ⁻⁵			` /						
120 31 175 2.917 2.99 x 10 ⁻³ 180 31 165 2.750 2.82 x 10 ⁻³ 240 31 85 1.417 1.45 x 10 ⁻³ 300 31 184 3.067 3.15 x 10 ⁻³ 420 31 95 1.583 1.62 x 10 ⁻³ 480 31 25 0.417 4.28 x 10 ⁻⁴ 480 31 140 2.333 2.39 x 10 ⁻³ 600 31 115 1.917 1.97 x 10 ⁻³ 6300 31 205 0.683 7.01 x 10 ⁻⁴ 6600 31 225 0.075 7.70 x 10 ⁻⁵ 7200 31 215 0.071 7.36 x 10 ⁻⁵ 7800 31 200 0.067 6.85 x 10 ⁻⁵ 8400 31 195 0.065 6.67 x 10 ⁻⁵									gl
180 31								1 1	0.00
240 31							2.99 x 10 ⁻³	↓ ↓	0.90m
300 31 184 3.067 3.15 x10 ⁻³ 360 31 136 2.267 2.33 x10 ⁻³ 420 31 95 1.583 1.62 x10 ⁻³ 480 31 25 0.417 4.28 x 10 ⁻⁴ 540 31 140 2.333 2.39 x10 ⁻³ 600 31 115 1.917 1.97 x10 ⁻³ 6300 31 205 0.683 7.01 x10 ⁻⁴ 6600 31 225 0.075 7.70 x10 ⁻⁵ 7200 31 215 0.071 7.36 x10 ⁻⁵ 7800 31 200 0.067 6.85 x10 ⁻⁵ 8400 31 195 0.065 6.67 x10 ⁻⁵							2.82×10^{-3}		0.21m vyt
360 31 136 2.267 2.33 x 10 ⁻³ 420 31 95 1.583 1.62 x 10 ⁻³ 480 31 25 0.417 4.28 x 10 ⁻⁴ 540 31 140 2.333 2.39 x 10 ⁻³ 600 31 115 1.917 1.97 x 10 ⁻³ 6300 31 205 0.683 7.01 x 10 ⁻⁴ 6600 31 225 0.075 7.70 x 10 ⁻⁵ 7200 31 215 0.071 7.36 x 10 ⁻⁵ 7800 31 200 0.067 6.85 x 10 ⁻⁵ 8400 31 195 0.065 6.67 x 10 ⁻⁵									0.31111 Wt
420 31 95 1.583 1.62 x 10 ⁻³ 480 31 25 0.417 4.28 x 10 ⁻⁴ 540 31 140 2.333 2.39 x 10 ⁻³ 600 31 115 1.917 1.97 x 10 ⁻³ 6300 31 205 0.683 7.01 x 10 ⁻⁴ 6600 31 225 0.075 7.70 x 10 ⁻⁵ 7200 31 215 0.071 7.36 x 10 ⁻⁵ 7800 31 200 0.067 6.85 x 10 ⁻⁵ 8400 31 195 0.065 6.67 x 10 ⁻⁵									
480 31 25 0.417 4.28 x 10 ⁻⁴ 540 31 140 2.333 2.39 x 10 ⁻³ 600 31 115 1.917 1.97 x 10 ⁻³ 6300 31 205 0.683 7.01 x 10 ⁻⁴ 6600 31 225 0.075 7.70 x 10 ⁻⁵ 7200 31 215 0.071 7.36 x 10 ⁻⁵ 7800 31 200 0.067 6.85 x 10 ⁻⁵ 8400 31 195 0.065 6.67 x 10 ⁻⁵									
540 31 140 2.333 2.39 x 10 ⁻³ 600 31 115 1.917 1.97 x 10 ⁻³ 6300 31 205 0.683 7.01 x 10 ⁻⁴ 6600 31 225 0.075 7.70 x 10 ⁻⁵ 7200 31 215 0.071 7.36 x 10 ⁻⁵ 7800 31 200 0.067 6.85 x 10 ⁻⁵ 8400 31 195 0.065 6.67 x 10 ⁻⁵									
600 31 115 1.917 1.97 x10 ⁻³ 6300 31 205 0.683 7.01 x10 ⁻⁴ 6600 31 225 0.075 7.70 x10 ⁻⁵ 7200 31 215 0.071 7.36 x10 ⁻⁵ 7800 31 200 0.067 6.85 x10 ⁻⁵ 8400 31 195 0.065 6.67 x10 ⁻⁵									
6300 31 205 0.683 7.01 x10 ⁻⁴ 6600 31 225 0.075 7.70 x10 ⁻⁵ 7200 31 215 0.071 7.36 x10 ⁻⁵ 7800 31 200 0.067 6.85 x10 ⁻⁵ 8400 31 195 0.065 6.67 x10 ⁻⁵									
6600 31 225 0.075 7.70 x 10 ⁻⁵ 10m									
7200 31 215 0.071 7.36 x10 ⁻⁵ 7800 31 200 0.067 6.85 x10 ⁻⁵ 8400 31 195 0.065 6.67 x10 ⁻⁵			1					10m	
7800 31 200 0.067 6.85 x10 ⁻⁵ 8400 31 195 0.065 6.67 x10 ⁻⁵									_
8400 31 195 0.065 6.67 x10 ⁻⁵									
						-			
F = 2.75D = 31.4325		8400	31		195	0.065	6.67 X10		
F = 2.75D = 31.4325									
F = 2.75D = 31.4325								-	
F = 2.75D = 31.4325								-	
F = 2.75D = 31.4325								-	
F = 2.75D = 31.4325								1	
$\mathbf{I} = \mathbf{L}_{11} \mathbf{J} \mathbf{D} = \mathbf{J}_{11} \mathbf{T} \mathbf{J} \mathbf{L} \mathbf{J}$	F = 2.7	1 5D = 31 43	L 325		<u> </u>	1		<u> </u>	
K = Q/FHc			,						
FHc= 974.40							1		

TABLE J.6 Measurements of Ground Subsidence at Megasteel Co. Ltd. Area for the period 2001-2006 ^a

Bill	DP/BM Number ^b	Location	DP 2001 (m)	BM 2001 (m)	BM 2006 (m)	Ground Subsidence ^c (m)
1	4	Kg. Olak Lempit	4.92062	4.77087	4.73562	-0.185
2	6	JBA Olak Lempit	6.10016	5.67916	5.67916	-0.481
3	15	Penghujung Jalan Dahlia	3.29037	3.28042	3.15837	-0.132
4	16	Tadika Labohan Dagang	3.50590	3.54858	3.49690	-0.009
5	17	Ladang Felcra	4.42807	4.13413	4.12107	-0.307

Source: Mineral and Geoscience Department of Malaysia (2007)
 DP: datum point; BM: benchmark
 value is obtained by subtracting BM 2006 column from DP 2001 column; Negative sign represents ground subsidence

TABLE J.7 Measurements of Ground Subsidence at Megasteel Co. Ltd. Area for the period 2000 – 2007 ^a

Catagory	Bill	Point ^c	Epoch 3	Epoch 8	Epoch 12	Epoch 17	Epoch 23	Epoch 29	Epoch 35	Epoch40	GS d
Category ^b	БШ	Point	20/10/00	16/11/01	16/11/02	20/11/03	10/12/04	30/11/05	21/12/06	31/10/07	
	1	BM No.1	_	6.003	6.003	6.003	6.003	6.003	6.003	6.003	
DP/BM		Station JAI	4.764	4.764	4.764	-	-	-	-		
Number	2	Station SSCI	-	-	-	4.764	5.121	7.017	-		
		Station 100	-	-	-	-	-	-	5.670	4.570	-0.179
	3	PWM1	5.041	5.055	5.040	5.052	5.037	4.938	5.234	5.220	0.117
Well	4	PWM2	5.224	5.204	5.235	5.227	5.230	5.145	5.113	5.107	0.019
Reduced	5	PWM3	5.373	5.370	5.409	5.416	5.417	5.323	5.349	5.354	-0.156
Level	6	PWM4	4.974	4.987	4.990	5.054	5.028	4.937	5.159	5.130	-0.588
	7	MW1	-	4.869	4.904	4.929	4.911	4.811	5.642	5.457	-0.179 ^e

^a Source: Smart Survey Consultant (2007); each epoch represents the last measured reduce level in the specified year for the specified point; all units are in meters

^b DP: datum point BM: benchmark

^c There is uncertainties associated with the survey stations ^d GS: ground subsidence; values for ground subsidence are obtained by subtracting Epoch 40 column from Epoch 3 column

^e value is obtained by subtracting Epoch 40 column from Epoch 8 column; Negative sign represents ground subsidence

APPENDIX K ALBUM

PHOTO K.1 Kick-start Site Visit1: We were at the Bridge crossing the Channel Visitor-Main-Connection. "First day was a special day to me and to Ir. Miss Azizah too, I guess! (04/3/2006)"

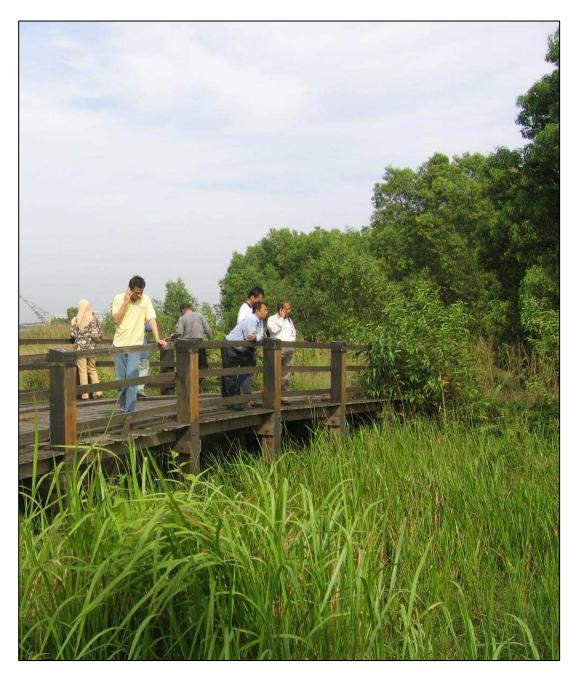


PHOTO K.2 Kick-start Site Visit2: Mr. Hj. Azmi Jeffri (Head of DID), Dr Zainudin, Ir. Miss Azizah (again) and the Suppliers (04/3/2006)"

PHOTO K.3

Peat Big Days:Dr Ismail and I were looking for any portion of peat within the area of Paya Indah lakes during soil survey fieldworks; but there was a big "none" waiting for us right there! (13/1/2007)

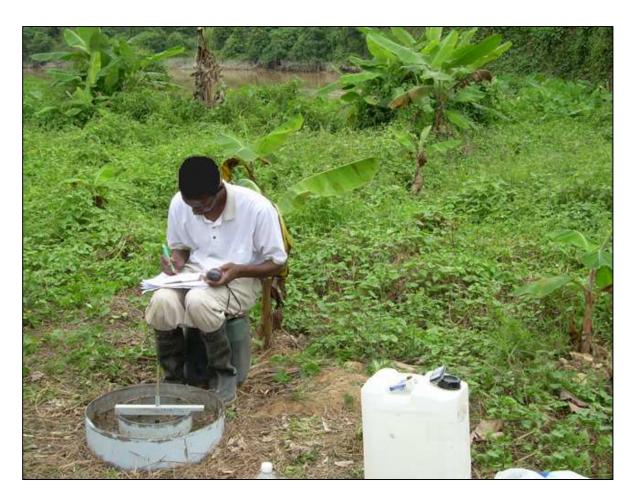


PHOTO K.4 Infiltration Test at the Village of Mangostine River (Kg. Sg. Manggis) although the river appears on the background was (and still) the Langat River! (14/4/2007)

PHOTO K.5 Infiltration Test near to the Marsh Lake where Dr. Zainudin jointed at that day as a teammate and referee at the same time! And yet it worked (21/4/2007)

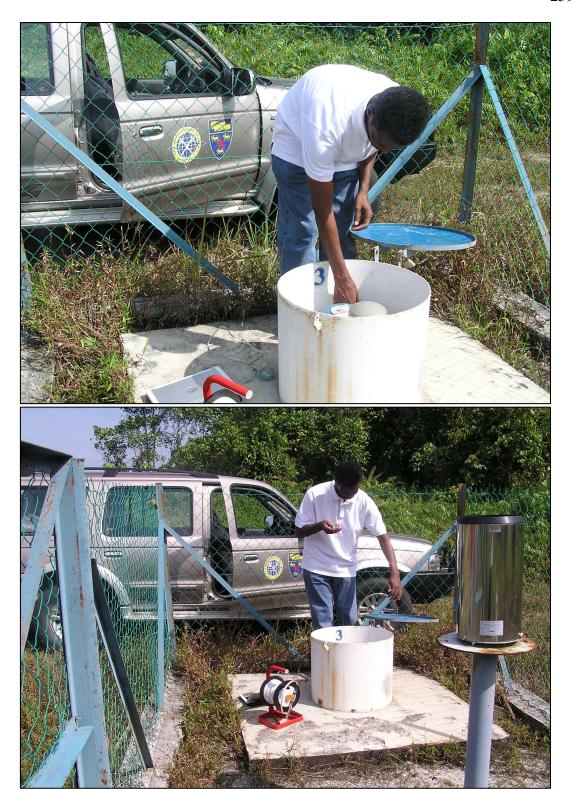


PHOTO K.6
Retrieving of Groundwater Level Data from the Automatic Logger at BH3 Well Site.
This is one of the most easily accessible locations. Photos are telling (14/1/2007)

PHOTO K.7 Checking the Coordinates of BH6 before Retrieving the Groundwater Level Data from the Automatic Logger.

This is one of the most uneasy locations to access. (21/2/2007)

РНОТО К.8

Heading towards BH6 across the Langat River: The Stony Bridge (Jambatan Batu) disappeared in a sudden!

Many Thanks to Brother Mohammad who made that possible many times by offering a precious ride. (21/2/2007)

PHOTO K.9 Gauging at SWL1. Everything was just nice except that we (DID staff and I) could not help thinking of crocodiles. (10/7/2006)

PHOTO K.10
Gauging at SWL2.
Rains can always give a surprise despite it is a pleasant one or not. (14/9/2006)

PHOTO K.11 Automatic Logger at SWL1 (18/5/2006). (This logger has been smashed together with nine months Data of 15-minute intervals!)

PHOTO K.12 Automatic Logger at SWL2 (18/5/2006)

PHOTO K.13 Automatic Logger at Main-Visitor Connection (18/5/2006)

PHOTO K.14
Inflow from Cyberjaya City on a Rainy Day heading towards the Paya Indah lakes system.
The North South Expressway Central Link (NSECL) also appears on the picture (14/9/2006)

PHOTO K.15 Visitor Lake Overview (26/3/2007)

PHOTO K.16 Main Lake Overview (19/8/2007)

PHOTO K.17 Culvert of Main-Palm-Connection (19/8/2007)

PHOTO K.18 Main Palm Connection heading towards Lotus Lake (19/8/2007)

PHOTO K.19 Overview of the Main and Driftwood Lakes: No Connection between Driftwood Lake (left) and Main Lake (right). Apparently Driftwood water level was higher than the Main Lake (26/3/2007)



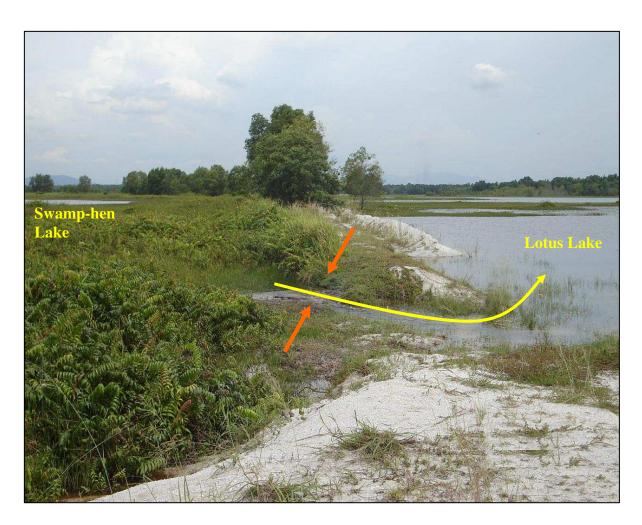

PHOTO K.20 Tin-Driftwood Connection (red arrows): Driftwood Lake (left) connects to Tin Lake (right) via a Channel of a ~10 m width (26/3/2007)

PHOTO K.21 Padi (ex-) Lake and Its Functionless Culvert (white arrow) (26/3/2007)

PHOTO K.22 Swamp-hen (semi-) Lake Overview (19/8/2007)

PHOTO K.23

Connection Point (between red arrows) of Lotus-Swamp-hen Connection and Lotus Lake (19/8/2007).

Thus, at very last the migrated water reached its semi-final destination at the Lotus Lake before resuming the journey towards Langat River.

PHOTO K.24 Typha Lake Overview (19/8/2007)

PHOTO K.25 Lotus Lake Overview (19/8/2007)

PHOTO K.26 Lotus-Outlet Control Gate: Front View (8/4/2007)

PHOTO K.27 Lotus-Outlet Control Gate: Back View (8/4/2007)

PHOTO K.28 Outflow heading towards Langat River (8/4/2007)

PHOTO K.29 Wildlife habitat. A group of buffalos were hanging around (8/4/2007)

PHOTO K.30 Deep inside Peat Blanket. Location: Peat Paradise area some 3km SW Lotus Lake (15/4/2007)