CONTENTS

<table>
<thead>
<tr>
<th>PREFACE</th>
<th>iii</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>vi</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>viii</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF PHOTOGRAPHS</td>
<td>xxiii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>xxv</td>
</tr>
</tbody>
</table>

CHAPTER I INTRODUCTION

1.1 Description of the Study Area 1

1.1.1 Geology 3
1.1.2 Hydrology 5
1.1.3 Groundwater status 8

1.2 Objectives 9

1.3 Scope of the Study 10

1.4 Importance of the Study 10

1.5 Modeling Approach 11
CHAPTER II LITERATURE REVIEW

2.1 Hydrologic Cycle 13
2.2 Watershed Hydrology 14
2.3 Water Resources Management Problems 17
 2.3.1 Water resources problems in Malaysia 18
2.4 Soil Hydraulic Parameters 23
2.5 Ramsar Convention on Wetlands 25
 2.5.1 Ramsar listed wetlands of Malaysia 26
2.6 Modelling 27
 2.6.1 Watershed models 30

CHAPTER III MODELLING TOOL

3.1 Hydrological Description 46
3.2 Hydrological Description 47
 3.2.1 Interception and evapotranspiration components 49
 3.2.2 Overland and channel flow component 53
 3.2.3 Unsaturated zone components 56
 3.2.4 Saturated zone components 58

CHAPTER IV MODEL INPUT DATA

4.1 Hydro-meteorological Data 63
 4.1.1 Rainfall 63
 3.1.3 Evapotranspiration 66
4.2 Landuse and Vegetation 67
4.3 Surface Topography 69
4.4 Overland Flow and River Network 72
 4.4.1 Overland flow 73
 4.4.2 Flooded area 74
4.4.3 Cross sections and bathymetry data 75

4.5 Unsaturated Zone 77

4.5.1 Types of soils 77
4.5.2 Soil water 78
4.5.3 Soil sampling and insitu measurements 81
4.5.4 Soil characterization 84
4.5.5 Presentation of soil tests results 89

4.6 Saturated Zone 91

4.6.1 Geological model 91
4.6.2 Aquifers characteristics 95
4.6.3 Interactions between the surface and subsurface flow 96
4.6.4 Groundwater abstraction 96

4.7 Surface water and Groundwater Timeseries Data 98

4.8 Model Set-up 98

4.8.1 Boundary conditions 99
4.8.2 Surface water flow system 103

4.9 Conceptual Model 105

4.10 Model Domain and Discretization 108

4.11 Model Development 110

4.11.1 Simulation time step 111
4.11.2 Model Calibration 112
4.11.3 Model Validation 112
4.11.4 Model Performance 112

CHAPTER V MODEL CALIBRATION AND VALIDATION

5.1 Calibration 117

5.1.1 Calibration targets 118
5.1.2 Primary calibration parameters 119

5.2 Calibration Results 120

5.2.1 Simulation of surface water level 120
5.2.2 Simulated groundwater heads 127
5.2.3 Simulation of channel flow 132

5.3 Assessment of Calibrated Model 135
5.3.1 Performance of the coupled model 136
5.3.2 Assessment of model predictive capability 141

5.4 Validation 144
5.4.1 Validated surface water flow 145
5.4.2 Validated groundwater head 150
5.4.3 Validation of channel flow 151

5.5 Assessment of the Validated Model Performance 155
5.5.1 Performance of the coupled model 155
5.5.2 Assessment of model predictive capability 157

5.6 Sensitivity Analysis 159
5.6.1 Effect of increment of evapotranspiration rate 162
5.6.2 Effect of depletion of the inflow 165

CHAPTER VI MODEL OUTPUTS

6.1 Water Balance 170

6.2 Saturated and Unsaturated Flow Interactions 176
6.2.1 Overland flow 176
6.2.2 Flow exchange between unsaturated and saturated zones 177
6.2.3 Saturated zone and river lateral flow 180

6.3 Hydrological Impact of Groundwater Abstraction 181

CHAPTER VII SCENARIOS

7.1 Cyberjaya Development Flagship Zone: Phase II 186
7.2 Cyberjaya Full Development and the E-village 188
7.3 Replacement of Peat Layer 191
7.4 Groundwater over-abstraction 194
CHAPTER VIII SUMMARY AND CONCLUSIONS

8.1 Summary 196

8.2 Conclusions 197

CHAPTER IX RECOMMENDATIONS

9.1 challenging Issues 201

9.2 Recommendations 202

REFERENCES 204

APPENDICES

- **A** Criteria for the Designation of Wetlands of International Importance 220
- **B** Ramsar-nominated Wetlands of Malaysia 221
- **C** Polynomial Approximation of IDF Curves 226
- **D** Monthly Rainfall at the Paya Indah Wetland Catchment 232
- **E** Monthly Evapotranspiration at the Paya Indah Wetland Catchment 233
- **F** River-cross Section Data 234
- **G** Malaysian Soil Series 237
- **H** Soil Profile Definition and Soil Parameters used in the Model 238
- **I** Engineering Borehole Log for PI 1 241
- **J** Pumping Test Data 244
- **K** Album 254