
 

 

 

CHAPTER III  

 

 

MODELLING TOOL 

 

 

In this section, the steps of the MIKE SHE model are described in details and its mathemat-

ical formulation is outlined. Furthermore the hydrological components of the model used in 

this study are described and their mathematical basis is presented. 

 

3.1 HYDROLOGICAL DESCRIPTION      

 

MIKE SHE simulates all the processes in the land phase of the hydrologic cycle, as stated 

in DHI (2004). Precipitation, falling from the atmosphere as snowfall or rainfall, is partly 

intercepted by vegetation and building structures. The intercepted precipitation is stored 

and later evaporated or passed to the soil surface. A significant amount of rainfall, reaching 

the soil surface, evaporates back to the atmosphere. Depending on the air temperature, the 

snow accumulates on the soil surface at temperature below 0 
o
C, while rainfall infiltrates 

through the unsaturated zone. When the top layer of the unsaturated zone becomes satu-

rated, there is surface ponding and eventually overland flow begins when all the surface 

depressions are filled. The infiltrated water in the unsaturated zone can be stored, evapo-

rated, taken up by plant roots and transpired through the leaves, or percolated down to the 
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saturated zone. The overland water flows along the surface topography, evaporates and 

infiltrates on the way, eventually reaching streams, rivers and other surface water bodies. 

The groundwater also contributes to streams and rivers as a base flow, while water in rivers 

and streams infiltrates back into the saturated zone as recharge (Danish Hydraulic Institute, 

2004).   

 

3.2 MATHEMATICAL DESCRIPTION 

 

The modular structure of MIKE SHE model composed of several module. These include a 

Water Movement module for hydrology (WM), an Advection/Dispersion of Solutes (AD) 

module for water quality, a Soil Erosion (SE) module for sediment transport, as well as 

others such as Dual Porosity (DP), Geochemical Processes (GC), Crop growth and Nitro-

gen processes in the root zone (CN), and IRrigation (IR). The Water Movement module of 

MIKE SHE has several components, each describing a specific physical process. These in-

clude evapotranspiration/interception, overland/channel flow (OC), unsaturated zone (UZ), 

saturated zone (SZ), snowmelt, and exchange between aquifer and rivers. Figure 3.1 gives a 

schematic representation of the MIKE SHE model. 

 

The hydrological processes are described mostly by physical laws (laws of conservation of 

mass, momentum and energy). The 1-D and 2-D diffusive wave Saint Venant equations 

describe channel and overland flow, respectively. The Kristensen and Jensen methods are 

used for evapotranspiration, the 1-D Richards‘s equation for unsaturated zone flow, and a 

3-D Boussinesq equation (Boussinesq, 1904) for saturated zone flow. These partial diffe-

rential equations are solved by finite difference methods, while other methods (intercep-

tion/evapotranspiration and snowmelt) in the model are empirical equations obtained from 
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independent experimental research (Danish Hydraulic Institute, 2004). The FRAME 

component enables components having different time steps to run in parallel and to ex-

change information (Abbott et al., 1986b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3.1  

Schematic Representation of MIKE SHE Model (Modified after Refsgaard and Storm, 

1995). 
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3.2.1 Interception and evapotranspiration components  

 

The interception component determines the net amount of rainfall reaching the ground, the 

canopy storage and evaporation from the canopy. The interception storage capacity depends 

on the vegetation type, its stage of development and density, rainfall intensity as well as 

other climatic conditions (Abbott et al., 1986b). The evapotranspiration component calcu-

lates the amount of water that evaporates from the soil and water surfaces, and that trans-

pires through the leaves. The latter is controlled by root zone water availability, aerody-

namic transport conditions and plant physiological factors, and it varies both spatially and 

temporally. The processes in the interception/evapotranspiration component are shown in 

Figure 3.2. The model provides two methods for determining interception and evapotrans-

piration: (i) the Kristensen-Jensen method and (ii) the Rutter model/Penman-Monteith equ-

ation. In this study, the first method was used. 
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FIGURE 3.2  

Schematic Diagram of Interception and Eva-

potranspiration 
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(a) Kristensen and Jensen method 

 

The processor of MIKE SHE calculates the actual evapotranspiration and actual soil water 

content in the root zone using a modified code based on empirical equations which were 

derived by Kristensen and Jensen (1975). The temperature is always assumed to be above 

0oC. Thus maximum interception storage capacity of vegetation, Imax (mm), can be defined 

as: 

 

Imax = Cint LAI                                                                                                                    (3.1) 

 

 

 

where 

Cint  is the interception coefficient, defining the interception storage capacity of the vege-

tation (mm) with the typical value of 0.05 mm. 

LAI  is the leaf area index (m2 m-2). 

 

Evaporation from the canopy storage, Ecan (mm), for a sufficient amount of intercepted wa-

ter, is given by: 

Ecan = min (Imax, Ep∆t)                                                                                                        (3.2) 

 

where 

Ep  is the potential evapotranspiration rate (mm hr-1) 

∆t  is the time step duration for the simulation (hr) 
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Actual Plant transpiration, Eat (mm) is determined as: 

 

Eat = f1(LAI) · f2(θ) · RDF · Ep                                                                                         (3.3)           

 

where 

f1(LAI) is a function based on the leaf area index, 

f2(θ)  is a function based on the soil moisture content, and 

RDF is a root distribution function. 

The LAI function is given by: 

 

f1(LAI) = C2 + C1·LAI                                                                                                       (3.4) 

 

where 

C1 and C2  are empirical parameters with usual values of 0.3 and 0.2, respectively. 

The soil moisture function is given by: 

 

                                                 (3.5) 

                                                                                                                                                                                                                                                                                                           

where 

θFC  is the volumetric moisture content at field capacity (m
3

 m
-3

), 

θW  is the volumetric moisture content at the wilting point (m
3

 m
-3

), is the actual volu-

metric moisture content (m
3

 m
-3

) 

C3  is an empirical parameter (mm/day), based on soil type and root density where a 

value of 20 mm/day is used in MIKE SHE. 
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The root distribution function is given as: 

 

      (3.6) 

 

 

where 

R(z) is the root extraction, calculated as: 

log R(z) = log Ro – AROOT · z              (3.7) 

 

where 

Ro   is the root extraction at soil surface (m), 

AROOT  is a parameter describing root mass distribution (m
-1

), where the typical val-

ue used is 0.25 m
-1

 

z is depth below the ground surface (m). 

Soil evaporation, Es (mm), is given by: 

Es = Ep·f3(θ) + (Ep – Eat - Ep· f3(θ))·f4(θ)·(1-f1(LAI))                 (3.8) 

 

where 

f3 and f4 are a function of soil moisture content. 

 

  

                                      (3.9) 
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where 

C2  is the empirical parameter with typical value of 0.2. 

 

  

 

                      (3.10) 

 

 

 

 

The f1(LAI) function and Eat are zero in the absence of vegetation, and evaporation from the 

soil occurs only from the upper node of the unsaturated zone. 

 

3.2.2 Overland and channel flow component 

 

Overland flow, influenced by topography, flow resistance, evaporation and infiltration 

along the path, occurs when the rainfall rate exceeds the infiltration rate, resulting in sur-

face ponding and eventually surface water flow. There are two methods for determining the 

overland flow which includes (i) the diffusive wave approximation of the St. Venant equa-

tions and (ii) simplified overland flow routing. The MIKE SHE uses the first method and 

also considers the interaction with other processes, such as evaporation, infiltration, tile 

drains, and drainage into the channel network.  
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(a) Diffusive wave approximation of St. Venant equations 

 

Diffusive wave approximation of the St. Venant equations is derived from the fully dynam-

ic St. Venant equations, wherein the last three terms of the momentum equations are neg-

lected in order to reduce the fully dynamic equations' complexity. The continuity equation 

(Equation 3.11) and momentum equations (Equations. 3.12 and 3.13) allow the simulation 

of significant variation in overland flow depth between neighbouring cells as well as that of 

backwater conditions. 

 

                 (3.11) 

 

where 

h  is the flow depth above ground surface (m) 

u  is the velocity (m s
-1

) in the x-direction 

v  is the velocity (m s
-1

) in the y-direction 

i  is the net input over overland flow (m s
-1

) 

 

The momentum equations are: 

 

     (3.12)  

 

     (3.13) 

where 

Sf  are the friction slopes (-) in the x and y directions 

So  are the slopes of the ground surface (–) in the x and y directions. 
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Using the diffusive wave approximations of the St. Venant equations and Manning‘s eq-

uations, one obtains: 

 

                 (3.14) 

 

                                                    (3.15) 

 

where 

uh and vh  are discharge per unit length along the cell boundary in x- and y- directions 

   respectively [m
2
 s

-1
] 

kx and ky  are Manning M or Stickler coefficient in x- and y- directions, respectively. 

 

Flow across any boundary between grids, from equations (3.14) and (3.15), is given by: 

 

               (3.16) 

 

 

where 

hu  is the depth of water that can freely flow into the next cell (actual water 

depth minus detention storage, mm) 

Zu and ZD  are the maximum and minimum water levels, respectively (mm). 
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The modified method of Gauss Seidel is applied for the numerical solution. Depending 

on the condition i.e. infiltration, recharge or evaporation, water is added or removed to the 

ponded water in the model grid at the beginning of every overland flow time step. During 

iteration, since the flow equations are explicitly defined, overland flows are reduced in 

some situations to avoid internal water balance errors and divergence of the solution 

scheme. Henceforth, outflow should be: 

                 (3.17) 

 

where 

Qin is the sum of inflows rates (m
3

 s
-1

) 

I  is (i∆x
2
) which is the net input into overland flow in each grid (m

3
 s

-1
) 

 

3.2.3 Unsaturated zone components 

 

The flow in the unsaturated zone is assumed to be vertical. The model provides three op-

tions to calculate flow: (i) full Richard‘s equation, (ii) a simplified gravity flow and (iii) a 

simple two-layer water balance method for shallow water tables. The full Richard‘s equa-

tion was used in this study. 

 

 (a) Richard’s equation 

 

The pressure head-based Richard’s equation (Richard, 1931), based on Darcy’s law (Darcy, 

1856) and continuity equation, assumes the soil matrix to be incompressible and soil water 

to be at constant density: 
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                 (3.18) 

 

 

where 

C  is the soil water capacity (mm
-1

), 

 
ψ  is the pressure head (mm), 

 

K  is the saturated hydraulic conductivity (mm s
-1

), 

 

Z  is the gravitational head (mm), and 

 

S  is the root extraction sink term (s
-1

). 

 

 

The Richard’s equation (Richard, 1931) is solved numerically using the finite difference 

implicit approximation method, associated with the Gauss-Seidal iteration formula, thus 

removing the stability and convergence problems due to heterogeneous soil properties. The 

unsaturated zone is defined by an upper boundary (ground surface) and a lower boundary 

(groundwater table). Whenever there is a constant head on the surface, such as ponded wa-

ter the upper boundary is considered as a Dirichlet boundary otherwise in case there is a 

constant head such as rainfall a Neuman boundary is applied to the surface. The lower 

boundary is generally a pressure boundary, but is a zero flux boundary when the water table 

falls below the impermeable bed, such that there is an upward flux in the lower part of the 

profile. The initial conditions set up by the model are hydrostatic conditions, defined by an 

equilibrium soil moisture-pressure profile, with no flow. The sink term in the Richard’s eq-

uation is the root extraction due to transpiration in the upper part of the unsaturated zone, 

which is the actual transpiration for the entire root zone. 
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(b) Coupling of unsaturated zone to the saturated zone 

 

Coupling is required to enable water table fluctuation, especially in shallow soils. The unsa-

turated zone (UZ) and saturated zone (SZ) are explicitly coupled to optimize the time steps 

used. The explicit interaction is solved by an iterative mass balance procedure that con-

serves mass for the entire column by considering outflows and source/sink terms in the sa-

turated zone. Mass balance errors normally occur when: 

(1)-  water table level is kept constant during the unsaturated zone time step 

(2)- an incorrect specific yield, Sy, is used in the saturated zone.  

 

The coupling is limited to the entire unsaturated zone and the uppermost calculation layer 

of the saturated zone. If the water table is below the bottom of the first SZ calculation layer, 

the UZ module treats the bottom of SZ calculation layer one as a free drainage boundary or 

a zero-flux boundary (Richard‘s equation). However, several geological layers can be spe-

cified within calculation layer number one if the lower levels of the SZ calculation layers 

are explicitly defined. 

 

3.2.4 Saturated zone components 

 

There are two methods for determining the flow in the saturated zone: (i) 3-D finite differ-

ence method and, (ii) linear reservoir method, where the first method was applied in the 

model set-up. 
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(a) 3-D Finite Difference Method 
 

In this method, the saturated flow is defined by the 3-dimensional Darcy equation (Darcy, 

1856) and equation of continuity, and it is solved by an iterative implicit finite difference 

technique. The two solvers provided by this method are preconditioned conjugate gradient 

and successive over-relaxation solution techniques, which differ somewhat in the formula-

tion of potential flow and sink/source terms. The preconditioned conjugate gradient was 

chosen as the solution technique in this model simulation. The SZ interacts with other com-

ponents of MIKE SHE using their boundary flows implicitly or explicitly, as sources and 

sinks. The governing 3-D partial differential equation is given as: 

 

     (3.19) 

 

where 

Kxx, Kyy, and Kzz  are the hydraulic conductivity along the x, y and z axes [mm s
-1

] 

h   is the hydraulic head (mm) 

Q   is the source/sink term (s
-1

) 

S    is the specific storage coefficient (m
-1

) 

 

The peculiarities of the equation are that:  

(1)- it is non-linear for unconfined flow 

(2)- the storage coefficient is not constant and changes from a specific storage coefficient 

for confined conditions to a specific yield for unconfined conditions. 
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(b) The PCG (Preconditioned Conjugate Gradient) solver 

 

The potential flow terms, based on Darcy’s law (Darcy, 1856), are given as: 

 

Q = ∆hC               (3.20) 

where 

h  is the piezometric head difference (mm), and 

C  is the conductance (m
2

 s
-1

). 

 

 The horizontal conductance is calculated from the harmonic mean of the horizontal con-

ductivity and the geometric mean of the layer thickness, while the vertical conductance is 

the weighted serial connection of the hydraulic conductivity, calculated from the middle of 

one layer to the middle of another layer. For dewatering conditions in SZ cells, where the 

bottom cell becomes dewatered, a correction term is added to the right-hand side of the fi-

nite difference equation, using the last computed head. The correction term is: 

 

qc = Cvk+½(hk+1 – ztop, k+1)              (3.21) 

 

where 

Cv  is the vertical conductance (m
2
s

-1
), 

z  layer thickness (m) 

k+1  is number of node 

 

 

 



 61 

( ) ( )
t

hZSZhS

t

w
n

toptop
n

∆

−+−
=

∆

∆
−112

The storage capacity is calculated by 

                 (3.22) 

 

 

where 

n is time step, 

S1  is the storage capacity at the start of the iteration at time step n, and 

S2  is the storage capacity at the last iteration. 

 

The boundary conditions of the saturated zone can be subject to 

(1)- Dirichlet‘s conditions based on hydraulic head 

(2)- Neumann‘s conditions based on gradient of hydraulic head, or 

(3)- Fourier‘s conditions based on head dependent flux. 

 

In MIKE SHE, the drainage flow is calculated as a linear reservoir and is controlled by the 

height of water table above the drain depth and the specified time constant. However, drai-

nage flow occurs only in the top layer of the saturated zone layer and when water table is 

above the drain depth. With the PCG solver, the drain flow is added directly in the matrix 

calculations as a head dependent boundary, and is solved implicitly as: 

 

q = (h- Zdr)Cdr               (3.23) 
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where 

h is head in the drain cell (m), 

Zdr  is the drainage level (m), and 

Cdr  is the drain conductance or time constant (m
2
s

-1
) 

 

The exchange of saturated zone flow and overland flow is calculated implicitly using the 

Darcy equation, with continuously updating of the overland water depth: 

Q = ∆hC
2

1

               (3.24) 

 

where 

C
2

1

  is the conductance from surface level to the middle of the top calculation layer  

(m
2

 s
-1

) 

 

In case of full contact or reduced contact between overland and saturated zones, the con-

ductance used in the Darcy equation is different for each case. The initial conditions ap-

plied for the saturated zone can be constant or distributed over the model domain, while the 

initial conditions in the boundary cells are kept constant during the simulation (Danish Hy-

draulic Institute, 2004). 

 

 


