APPENDICES
APPENDIX 1

Letter of Approval from Hydrology and Water Resources Division, Department of Irrigation and Drainage for using Paya Indah Water Quality Data
SEGERA DENGAN FAKS

EN. RIZUAN BIN AHMAD
402, Blok B-3
Seksyen 10 Wangsa Maju
53300 Kuala Lumpur

No. Faks: 03-41458921

Tuan,

PERMOHONAN MENDAPATKAN BEKALAN DATA KUALITI AIR PAYA INDAH WETLANDS DARI JURUPERUNDING DR. NIK AND ASSOCIATES DI BAWAH PROJEK JPS MALAYSIA

Dengan segala hormatnya saya merujuk kepada perkara di atas dan juga perbuahan telefon diantara tuan dengan saya pada 24 September 2007.

2. Pihak BHSA tiada halangan untuk tuan menggunakan data kualiti air Paya Indah Wetlands, Dengkil, Selangor yang dikumpul oleh Juruperunding DNA yang telah dilantik oleh JPS Malaysia di bawah projek Pernyataan Paya Indah Wetlands selain Bahagian Saliran Bandar.

3. Dengan ini, tuan dibenarkan untuk mengambil data tersebut dari pejabat Juruperunding DNA. Penggunaan data tersebut adalah bertujuan untuk tujuan akademik sahaja. Tuan juga diminta untuk mengemukakan sesuainan tesis tuan kepada Bahagian Hydrologi dan Sumber Air, JPS Malaysia untuk rujukan.

Sekian, terima kasih.

"BERKHIDMAT UNTUK NEGARA"

Saya yang menurut perintah,

(HJ. ROSLINA SHAHADAN)
b.p.: Pengarah
Bahagian Hydrologi dan Sumber Air
Jabatan Pengairan dan Saliran Malaysia.

s.k. Pengarah Bahagian Saliran Bandar (No. Faks: 26985310)
APPENDIX 2

Correction Factor of Oxygen Solubility and Salinity by USGS
CORRECTION FACTORS FOR OXYGEN SOLUBILITY AND SALINITY

Correction factors for the solubility of oxygen at various temperatures and pressures and for salinity based on conductivity are given in tables 6.2–6 and 6.2–7, respectively. Tables 6.2–6 and 6.2–7 were generated from the equations of Weiss (1970) and can be customized to cover the range and decimal places needed (see OWQ Technical Memorandum 81.11).

You can convert oxygen-saturation values for salinity using correction factors based on chloride concentration or conductivity. Refer to the manufacturer’s instructions for the DO instrument before applying a salinity correction.

► Correcting DO solubility for saline waters (salinities greater than 2,000 μS/cm or 1,000 mg/L chloride) varies with instrument type, calibration method, and the salts in solution.

► The correction based on conductivity (table 6.2–7) is more useful because accurate conductivity can be easily determined from a field measurement. Salinity correction factors based on chloride can be calculated using information provided in OWQ Technical Memorandum 79.10.

► Dissolved-oxygen instruments use either an automatic internal salinity correction, a manual salinity control knob for internal correction, or the calibration control knob for manual salinity correction.

► Check that instruments with automatic internal salinity correction use approved salinity correction factors.

Example of salinity correction:

\[8.2 \text{ mg/L} \times 0.951 = 7.8 \text{ mg/L} \]

where,

8.2 mg/L is 100 percent DO saturation from table 6.2–6,

0.951 is the correction factor from table 6.2–7, and

7.8 mg/L is the corrected value.

For this example, you would adjust the DO instrument to 7.8 mg/L from 8.2 mg/L.

To express results as percent saturation, use the following equation:

\[
DO (\text{percent saturation}) = \frac{\text{measured DO (mg/L)}}{\text{DO (mg/L at 100 percent saturation)}} \times 100
\]
Table 6.2-6. Solubility of oxygen in water at various temperatures and pressures
[From R.F. Weiss (1970). Temp °C, temperature in degrees Celsius; atmospheric pressures from 695 to 600 millimeters mercury begin after 40°C

<table>
<thead>
<tr>
<th>Temp</th>
<th>Atmospheric pressure, in millimeters of mercury</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>15.3 15.2 15.1 15.0 14.9 14.8 14.7 14.6 14.5 14.4 14.3 14.2 14.1 14.0 13.9 13.8 13.7 13.6 13.5 13.4 13.3 13.2 13.1 13.0 12.9 12.8 12.7 12.6 12.5 12.4 12.3 12.2 12.1 12.0</td>
</tr>
<tr>
<td>0.5</td>
<td>15.1 15.0 14.9 14.8 14.7 14.6 14.5 14.4 14.3 14.2 14.1 14.0 13.9 13.8 13.7 13.6 13.5 13.4 13.3 13.2 13.1 13.0 12.9 12.8 12.7 12.6 12.5 12.4 12.3 12.2 12.1 12.0</td>
</tr>
<tr>
<td>1.0</td>
<td>14.9 14.8 14.7 14.6 14.5 14.4 14.3 14.2 14.1 14.0 13.9 13.8 13.7 13.6 13.5 13.4 13.3 13.2 13.1 13.0 12.9 12.8 12.7 12.6 12.5 12.4 12.3 12.2 12.1 12.0</td>
</tr>
<tr>
<td>1.5</td>
<td>14.7 14.6 14.5 14.4 14.3 14.2 14.1 14.0 13.9 13.8 13.7 13.6 13.5 13.4 13.3 13.2 13.1 13.0 12.9 12.8 12.7 12.6 12.5 12.4 12.3 12.2 12.1 12.0</td>
</tr>
<tr>
<td>2.0</td>
<td>14.5 14.4 14.3 14.2 14.1 14.0 13.9 13.8 13.7 13.6 13.5 13.4 13.3 13.2 13.1 13.0 12.9 12.8 12.7 12.6 12.5 12.4 12.3 12.2 12.1 12.0</td>
</tr>
<tr>
<td>2.5</td>
<td>14.3 14.2 14.1 14.0 13.9 13.8 13.7 13.6 13.5 13.4 13.3 13.2 13.1 13.0 12.9 12.8 12.7 12.6 12.5 12.4 12.3 12.2 12.1 12.0 11.9</td>
</tr>
<tr>
<td>3.0</td>
<td>14.1 14.0 13.9 13.8 13.7 13.6 13.5 13.4 13.3 13.2 13.1 13.0 12.9 12.8 12.7 12.6 12.5 12.4 12.3 12.2 12.1 12.0</td>
</tr>
<tr>
<td>3.5</td>
<td>13.9 13.8 13.7 13.6 13.5 13.4 13.3 13.2 13.1 13.0 12.9 12.8 12.7 12.6 12.5 12.4 12.3 12.2 12.1 12.0 11.9</td>
</tr>
<tr>
<td>4.0</td>
<td>13.7 13.6 13.5 13.4 13.3 13.2 13.1 13.0 12.9 12.8 12.7 12.6 12.5 12.4 12.3 12.2 12.1 12.0 11.9</td>
</tr>
<tr>
<td>4.5</td>
<td>13.5 13.4 13.3 13.2 13.1 13.0 12.9 12.8 12.7 12.6 12.5 12.4 12.3 12.2 12.1 12.0 11.9 11.8 11.7 11.6 11.5 11.4 11.3 11.2 11.1</td>
</tr>
<tr>
<td>5.0</td>
<td>13.3 13.2 13.1 13.0 12.9 12.8 12.7 12.6 12.5 12.4 12.3 12.2 12.1 12.0 11.9 11.8 11.7 11.6 11.5 11.4 11.3 11.2</td>
</tr>
<tr>
<td>5.5</td>
<td>13.1 13.0 12.9 12.8 12.7 12.6 12.5 12.4 12.3 12.2 12.1 12.0 11.9 11.8 11.7 11.6 11.5 11.4 11.3 11.2 11.1</td>
</tr>
<tr>
<td>6.0</td>
<td>12.9 12.8 12.7 12.6 12.5 12.4 12.3 12.2 12.1 12.0 11.9 11.8 11.7 11.6 11.5 11.4 11.3 11.2 11.1</td>
</tr>
<tr>
<td>6.5</td>
<td>12.7 12.6 12.5 12.4 12.3 12.2 12.1 12.0 11.9 11.8 11.7 11.6 11.5 11.4 11.3 11.2 11.1</td>
</tr>
<tr>
<td>7.0</td>
<td>12.5 12.4 12.3 12.2 12.1 12.0 11.9 11.8 11.7 11.6 11.5 11.4 11.3 11.2 11.1</td>
</tr>
<tr>
<td>7.5</td>
<td>12.3 12.2 12.1 12.0 11.9 11.8 11.7 11.6 11.5 11.4 11.3 11.2 11.1</td>
</tr>
<tr>
<td>8.0</td>
<td>12.1 12.0 11.9 11.8 11.7 11.6 11.5 11.4 11.3 11.2 11.1</td>
</tr>
<tr>
<td>8.5</td>
<td>11.9 11.8 11.7 11.6 11.5 11.4 11.3 11.2 11.1</td>
</tr>
<tr>
<td>9.0</td>
<td>11.7 11.6 11.5 11.4 11.3 11.2 11.1</td>
</tr>
<tr>
<td>9.5</td>
<td>11.5 11.4 11.3 11.2 11.1</td>
</tr>
<tr>
<td>10.0</td>
<td>11.3 11.2 11.1 11.0 10.9</td>
</tr>
<tr>
<td>10.5</td>
<td>11.1 11.0 10.9 10.8</td>
</tr>
<tr>
<td>11.0</td>
<td>10.9 10.8 10.7</td>
</tr>
<tr>
<td>11.5</td>
<td>10.7 10.6 10.5</td>
</tr>
<tr>
<td>12.0</td>
<td>10.5 10.4 10.3</td>
</tr>
<tr>
<td>12.5</td>
<td>10.3 10.2 10.1</td>
</tr>
<tr>
<td>13.0</td>
<td>10.1 10.0 0.9</td>
</tr>
<tr>
<td>13.5</td>
<td>0.9 0.8 0.7</td>
</tr>
<tr>
<td>14.0</td>
<td>0.7 0.6 0.5</td>
</tr>
<tr>
<td>14.5</td>
<td>0.5 0.4 0.3</td>
</tr>
<tr>
<td>Temp, °C</td>
<td>795</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
</tr>
<tr>
<td>15.0</td>
<td>10.5</td>
</tr>
<tr>
<td>15.5</td>
<td>10.4</td>
</tr>
<tr>
<td>16.0</td>
<td>10.3</td>
</tr>
<tr>
<td>16.5</td>
<td>10.2</td>
</tr>
<tr>
<td>17.0</td>
<td>10.1</td>
</tr>
<tr>
<td>17.5</td>
<td>10.0</td>
</tr>
<tr>
<td>18.0</td>
<td>9.9</td>
</tr>
<tr>
<td>18.5</td>
<td>9.8</td>
</tr>
<tr>
<td>19.0</td>
<td>9.7</td>
</tr>
<tr>
<td>19.5</td>
<td>9.6</td>
</tr>
<tr>
<td>20.0</td>
<td>9.5</td>
</tr>
<tr>
<td>20.5</td>
<td>9.4</td>
</tr>
<tr>
<td>21.0</td>
<td>9.3</td>
</tr>
<tr>
<td>21.5</td>
<td>9.2</td>
</tr>
<tr>
<td>22.0</td>
<td>9.1</td>
</tr>
<tr>
<td>22.5</td>
<td>9.0</td>
</tr>
<tr>
<td>23.0</td>
<td>8.9</td>
</tr>
<tr>
<td>23.5</td>
<td>8.8</td>
</tr>
<tr>
<td>24.0</td>
<td>8.7</td>
</tr>
<tr>
<td>24.5</td>
<td>8.6</td>
</tr>
<tr>
<td>25.0</td>
<td>8.5</td>
</tr>
<tr>
<td>25.5</td>
<td>8.4</td>
</tr>
<tr>
<td>26.0</td>
<td>8.3</td>
</tr>
<tr>
<td>26.5</td>
<td>8.2</td>
</tr>
<tr>
<td>27.0</td>
<td>8.1</td>
</tr>
<tr>
<td>27.5</td>
<td>8.0</td>
</tr>
<tr>
<td>28.0</td>
<td>7.9</td>
</tr>
</tbody>
</table>

Table 6.2-6. Solubility of oxygen in water at various temperatures and pressures—Continued
Table 6.2-6. Solubility of oxygen in water at various temperatures and pressures—Continued

<table>
<thead>
<tr>
<th>Temp °C</th>
<th>755</th>
<th>760</th>
<th>765</th>
<th>770</th>
<th>775</th>
<th>780</th>
<th>785</th>
<th>790</th>
<th>795</th>
<th>800</th>
<th>805</th>
<th>810</th>
<th>815</th>
<th>820</th>
<th>825</th>
<th>830</th>
<th>835</th>
<th>840</th>
<th>845</th>
<th>850</th>
<th>855</th>
<th>860</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.0</td>
<td>7.9</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
<td>7.7</td>
<td>7.7</td>
<td>7.7</td>
<td>7.6</td>
<td>7.6</td>
<td>7.5</td>
<td>7.5</td>
<td>7.4</td>
<td>7.4</td>
<td>7.3</td>
<td>7.3</td>
<td>7.2</td>
<td>7.2</td>
<td>7.1</td>
<td>7.1</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>30.5</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
<td>7.7</td>
<td>7.7</td>
<td>7.6</td>
<td>7.6</td>
<td>7.5</td>
<td>7.5</td>
<td>7.4</td>
<td>7.4</td>
<td>7.3</td>
<td>7.3</td>
<td>7.2</td>
<td>7.2</td>
<td>7.1</td>
<td>7.1</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>6.9</td>
</tr>
<tr>
<td>31.0</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
<td>7.7</td>
<td>7.8</td>
<td>7.8</td>
<td>7.7</td>
<td>7.7</td>
<td>7.6</td>
<td>7.6</td>
<td>7.5</td>
<td>7.5</td>
<td>7.4</td>
<td>7.4</td>
<td>7.3</td>
<td>7.3</td>
<td>7.2</td>
<td>7.1</td>
<td>7.1</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>31.5</td>
<td>7.7</td>
<td>7.7</td>
<td>7.7</td>
<td>7.8</td>
<td>7.7</td>
<td>7.7</td>
<td>7.7</td>
<td>7.6</td>
<td>7.6</td>
<td>7.5</td>
<td>7.5</td>
<td>7.4</td>
<td>7.4</td>
<td>7.3</td>
<td>7.3</td>
<td>7.2</td>
<td>7.2</td>
<td>7.1</td>
<td>7.1</td>
<td>7.0</td>
<td>7.0</td>
<td>6.9</td>
</tr>
<tr>
<td>32.0</td>
<td>7.6</td>
<td>7.6</td>
<td>7.6</td>
<td>7.6</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.4</td>
<td>7.4</td>
<td>7.3</td>
<td>7.3</td>
<td>7.2</td>
<td>7.2</td>
<td>7.1</td>
<td>7.1</td>
<td>7.1</td>
<td>7.0</td>
<td>7.0</td>
<td>6.9</td>
<td>6.9</td>
<td>6.8</td>
<td>6.8</td>
</tr>
<tr>
<td>32.5</td>
<td>7.6</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.4</td>
<td>7.4</td>
<td>7.3</td>
<td>7.3</td>
<td>7.2</td>
<td>7.2</td>
<td>7.1</td>
<td>7.1</td>
<td>7.0</td>
<td>7.0</td>
<td>6.9</td>
<td>6.9</td>
<td>6.8</td>
<td>6.8</td>
<td>6.7</td>
<td>6.7</td>
</tr>
<tr>
<td>33.0</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.4</td>
<td>7.4</td>
<td>7.3</td>
<td>7.3</td>
<td>7.2</td>
<td>7.2</td>
<td>7.1</td>
<td>7.1</td>
<td>7.0</td>
<td>7.0</td>
<td>6.9</td>
<td>6.9</td>
<td>6.8</td>
<td>6.8</td>
<td>6.7</td>
<td>6.7</td>
<td>6.6</td>
<td>6.6</td>
</tr>
<tr>
<td>33.5</td>
<td>7.4</td>
<td>7.4</td>
<td>7.4</td>
<td>7.4</td>
<td>7.3</td>
<td>7.3</td>
<td>7.2</td>
<td>7.2</td>
<td>7.1</td>
<td>7.1</td>
<td>7.0</td>
<td>7.0</td>
<td>6.9</td>
<td>6.9</td>
<td>6.8</td>
<td>6.8</td>
<td>6.7</td>
<td>6.7</td>
<td>6.7</td>
<td>6.6</td>
<td>6.6</td>
<td>6.6</td>
</tr>
<tr>
<td>34.0</td>
<td>7.4</td>
<td>7.3</td>
<td>7.3</td>
<td>7.3</td>
<td>7.3</td>
<td>7.2</td>
<td>7.2</td>
<td>7.1</td>
<td>7.1</td>
<td>7.0</td>
<td>7.0</td>
<td>6.9</td>
<td>6.9</td>
<td>6.8</td>
<td>6.8</td>
<td>6.7</td>
<td>6.7</td>
<td>6.7</td>
<td>6.6</td>
<td>6.6</td>
<td>6.6</td>
<td>6.5</td>
</tr>
<tr>
<td>34.5</td>
<td>7.3</td>
<td>7.3</td>
<td>7.3</td>
<td>7.3</td>
<td>7.3</td>
<td>7.3</td>
<td>7.3</td>
<td>7.2</td>
<td>7.2</td>
<td>7.1</td>
<td>7.1</td>
<td>7.0</td>
<td>6.9</td>
<td>6.9</td>
<td>6.8</td>
<td>6.8</td>
<td>6.7</td>
<td>6.7</td>
<td>6.6</td>
<td>6.6</td>
<td>6.5</td>
<td>6.4</td>
</tr>
<tr>
<td>35.0</td>
<td>7.3</td>
<td>7.2</td>
<td>7.2</td>
<td>7.2</td>
<td>7.2</td>
<td>7.1</td>
<td>7.1</td>
<td>7.0</td>
<td>7.0</td>
<td>6.9</td>
<td>6.9</td>
<td>6.8</td>
<td>6.8</td>
<td>6.7</td>
<td>6.7</td>
<td>6.6</td>
<td>6.6</td>
<td>6.6</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
<td>6.4</td>
</tr>
<tr>
<td>35.5</td>
<td>7.2</td>
<td>7.2</td>
<td>7.2</td>
<td>7.1</td>
<td>7.1</td>
<td>7.0</td>
<td>7.0</td>
<td>6.9</td>
<td>6.8</td>
<td>6.8</td>
<td>6.8</td>
<td>6.7</td>
<td>6.7</td>
<td>6.7</td>
<td>6.7</td>
<td>6.7</td>
<td>6.6</td>
<td>6.6</td>
<td>6.6</td>
<td>6.6</td>
<td>6.6</td>
<td>6.4</td>
</tr>
<tr>
<td>36.0</td>
<td>7.2</td>
<td>7.1</td>
<td>7.1</td>
<td>7.1</td>
<td>7.0</td>
<td>6.9</td>
<td>6.9</td>
<td>6.8</td>
<td>6.7</td>
<td>6.7</td>
<td>6.7</td>
<td>6.7</td>
<td>6.6</td>
<td>6.6</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
<td>6.4</td>
</tr>
<tr>
<td>36.5</td>
<td>7.1</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>6.9</td>
<td>6.9</td>
<td>6.8</td>
<td>6.7</td>
<td>6.6</td>
<td>6.6</td>
<td>6.6</td>
<td>6.5</td>
<td>6.4</td>
</tr>
<tr>
<td>37.0</td>
<td>7.0</td>
<td>7.0</td>
<td>6.9</td>
<td>6.9</td>
<td>6.9</td>
<td>6.8</td>
<td>6.7</td>
<td>6.6</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
<td>6.3</td>
<td>6.3</td>
<td>6.3</td>
<td>6.3</td>
<td>6.3</td>
<td>6.3</td>
<td>6.3</td>
<td>6.2</td>
</tr>
<tr>
<td>37.5</td>
<td>7.0</td>
<td>6.9</td>
<td>6.9</td>
<td>6.9</td>
<td>6.8</td>
<td>6.8</td>
<td>6.7</td>
<td>6.6</td>
<td>6.6</td>
<td>6.5</td>
<td>6.5</td>
<td>6.4</td>
<td>6.4</td>
<td>6.3</td>
<td>6.3</td>
<td>6.3</td>
<td>6.3</td>
<td>6.2</td>
<td>6.2</td>
<td>6.2</td>
<td>6.1</td>
<td>6.1</td>
</tr>
<tr>
<td>38.0</td>
<td>6.9</td>
<td>6.9</td>
<td>6.8</td>
<td>6.8</td>
<td>6.8</td>
<td>6.7</td>
<td>6.6</td>
<td>6.6</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
<td>6.4</td>
<td>6.4</td>
<td>6.3</td>
<td>6.3</td>
<td>6.3</td>
<td>6.2</td>
<td>6.2</td>
<td>6.2</td>
<td>6.1</td>
<td>6.1</td>
<td>6.0</td>
</tr>
<tr>
<td>38.5</td>
<td>6.9</td>
<td>6.8</td>
<td>6.8</td>
<td>6.8</td>
<td>6.7</td>
<td>6.7</td>
<td>6.6</td>
<td>6.6</td>
<td>6.5</td>
<td>6.5</td>
<td>6.4</td>
<td>6.4</td>
<td>6.3</td>
<td>6.3</td>
<td>6.3</td>
<td>6.2</td>
<td>6.2</td>
<td>6.2</td>
<td>6.1</td>
<td>6.1</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>39.0</td>
<td>6.8</td>
<td>6.8</td>
<td>6.7</td>
<td>6.7</td>
<td>6.6</td>
<td>6.6</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
<td>6.3</td>
<td>6.3</td>
<td>6.3</td>
<td>6.2</td>
<td>6.2</td>
<td>6.2</td>
<td>6.1</td>
<td>6.1</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>39.5</td>
<td>6.8</td>
<td>6.7</td>
<td>6.7</td>
<td>6.6</td>
<td>6.6</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
<td>6.3</td>
<td>6.3</td>
<td>6.3</td>
<td>6.2</td>
<td>6.2</td>
<td>6.2</td>
<td>6.1</td>
<td>6.1</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>40.0</td>
<td>6.7</td>
<td>6.7</td>
<td>6.6</td>
<td>6.6</td>
<td>6.5</td>
<td>6.5</td>
<td>6.4</td>
<td>6.4</td>
<td>6.3</td>
<td>6.3</td>
<td>6.2</td>
<td>6.2</td>
<td>6.1</td>
<td>6.1</td>
<td>6.0</td>
<td>6.0</td>
<td>5.9</td>
<td>5.9</td>
<td>5.9</td>
<td>5.9</td>
<td>5.9</td>
<td>5.9</td>
</tr>
<tr>
<td>Temp (°C)</td>
<td>655</td>
<td>660</td>
<td>665</td>
<td>670</td>
<td>675</td>
<td>680</td>
<td>685</td>
<td>690</td>
<td>695</td>
<td>700</td>
<td>705</td>
<td>710</td>
<td>715</td>
<td>720</td>
<td>725</td>
<td>730</td>
<td>735</td>
<td>740</td>
<td>745</td>
<td>750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atmospheric pressure, in millimeters of mercury</td>
<td></td>
</tr>
</tbody>
</table>

Table 6.2-6. Solubility of oxygen in water at various temperatures and pressures—Continued
Temp (°C)	15.0	15.5	16.0	16.5	17.0	17.5	18.0	18.5	19.0	19.5	20.0	20.5	21.0	21.5	22.0	22.5	23.0	23.5	24.0	24.5	25.0	25.5	26.0	26.5	27.0	27.5	28.0	28.5	29.0	29.5		
	9.2	9.1	9.1	9.0	8.9	8.9	8.9	8.8	8.7	8.6	8.6	8.5	8.4	8.4	8.3	8.3	8.2	8.2	8.2	8.2	8.1	8.1	8.0	7.9	7.8	7.7	7.6	7.6	7.5	7.5	7.4	7.3
	9.1	9.0	9.0	8.9	8.9	8.8	8.7	8.6	8.6	8.5	8.5	8.4	8.4	8.3	8.3	8.2	8.2	8.2	8.2	8.1	8.1	8.0	7.9	7.8	7.7	7.6	7.6	7.5	7.5	7.4	7.3	7.3
	9.0	8.9	8.9	8.8	8.7	8.6	8.5	8.5	8.4	8.4	8.3	8.3	8.2	8.2	8.1	8.1	8.0	8.0	7.9	7.8	7.7	7.6	7.5	7.5	7.4	7.4	7.3	7.3	7.2	7.2	7.2	
	8.9	8.8	8.8	8.7	8.6	8.5	8.5	8.4	8.4	8.3	8.3	8.2	8.2	8.1	8.1	8.0	8.0	7.9	7.8	7.7	7.6	7.5	7.5	7.4	7.4	7.3	7.3	7.2	7.2	7.2	7.1	
	8.8	8.7	8.7	8.6	8.5	8.5	8.4	8.4	8.3	8.3	8.2	8.2	8.1	8.1	8.0	8.0	7.9	7.8	7.7	7.6	7.5	7.5	7.5	7.4	7.4	7.3	7.3	7.2	7.2	7.2	7.1	
	8.7	8.6	8.6	8.5	8.5	8.4	8.3	8.3	8.2	8.2	8.1	8.0	8.0	8.0	7.9	7.8	7.8	7.7	7.7	7.6	7.6	7.5	7.5	7.5	7.4	7.4	7.3	7.3	7.2	7.2	7.2	
	8.6	8.5	8.5	8.4	8.4	8.3	8.2	8.2	8.1	8.0	8.0	7.9	7.8	7.8	7.7	7.7	7.6	7.6	7.6	7.6	7.6	7.5	7.5	7.4	7.4	7.3	7.3	7.2	7.2	7.2	7.1	
	8.5	8.4	8.4	8.3	8.3	8.2	8.2	8.1	8.0	7.9	7.8	7.8	7.7	7.7	7.6	7.6	7.6	7.5	7.6	7.6	7.6	7.5	7.5	7.5	7.4	7.4	7.3	7.3	7.2	7.2	7.2	
	8.4	8.3	8.3	8.2	8.2	8.1	8.1	8.0	7.9	7.8	7.8	7.7	7.7	7.6	7.6	7.6	7.6	7.5	7.6	7.6	7.6	7.5	7.5	7.5	7.4	7.4	7.3	7.3	7.2	7.2	7.2	
	8.3	8.2	8.2	8.1	8.0	7.9	7.9	7.8	7.7	7.7	7.6	7.5	7.4	7.4	7.3	7.3	7.3	7.3	7.3	7.2	7.2	7.1	7.1	7.0	7.0	6.9	6.9	6.9	6.8	6.7	6.6	
	8.2	8.1	8.1	8.0	7.9	7.9	7.8	7.7	7.7	7.6	7.5	7.4	7.4	7.3	7.3	7.3	7.3	7.2	7.2	7.1	7.1	7.0	7.0	6.9	6.9	6.9	6.8	6.7	6.6	6.5	6.4	
	8.1	8.0	8.0	7.9	7.9	7.8	7.7	7.7	7.6	7.5	7.4	7.4	7.3	7.3	7.3	7.2	7.2	7.1	7.1	7.0	7.0	7.0	6.9	6.9	6.9	6.8	6.7	6.6	6.5	6.4	6.3	
	8.0	7.9	7.9	7.8	7.8	7.7	7.6	7.6	7.5	7.4	7.4	7.3	7.3	7.3	7.2	7.2	7.1	7.1	7.0	7.0	6.9	6.9	6.9	6.8	6.7	6.6	6.5	6.4	6.3	6.2		
	7.9	7.8	7.8	7.7	7.6	7.6	7.5	7.4	7.3	7.3	7.2	7.2	7.1	7.1	7.0	7.0	6.9	6.9	6.9	6.8	6.7	6.6	6.5	6.5	6.4	6.3	6.2	6.1	6.0	5.9	5.8	

Table 6.2-6. Solubility of oxygen in water at various temperatures and pressures—Continued.
<table>
<thead>
<tr>
<th>Temp °C</th>
<th>695</th>
<th>690</th>
<th>685</th>
<th>680</th>
<th>675</th>
<th>670</th>
<th>665</th>
<th>660</th>
<th>655</th>
<th>650</th>
<th>645</th>
<th>640</th>
<th>635</th>
<th>630</th>
<th>625</th>
<th>620</th>
<th>615</th>
<th>610</th>
<th>605</th>
<th>600</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.0</td>
<td>6.9</td>
<td>6.8</td>
<td>6.8</td>
<td>6.7</td>
<td>6.7</td>
<td>6.6</td>
<td>6.5</td>
<td>6.5</td>
<td>6.4</td>
<td>6.3</td>
<td>6.3</td>
<td>6.2</td>
<td>6.1</td>
<td>6.1</td>
<td>6.0</td>
<td>6.0</td>
<td>5.9</td>
<td>5.9</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>30.5</td>
<td>6.8</td>
<td>6.7</td>
<td>6.7</td>
<td>6.6</td>
<td>6.6</td>
<td>6.5</td>
<td>6.5</td>
<td>6.4</td>
<td>6.3</td>
<td>6.3</td>
<td>6.2</td>
<td>6.1</td>
<td>6.1</td>
<td>6.0</td>
<td>6.0</td>
<td>5.9</td>
<td>5.9</td>
<td>5.9</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>31.0</td>
<td>6.7</td>
<td>6.7</td>
<td>6.6</td>
<td>6.6</td>
<td>6.6</td>
<td>6.5</td>
<td>6.5</td>
<td>6.4</td>
<td>6.3</td>
<td>6.3</td>
<td>6.2</td>
<td>6.1</td>
<td>6.0</td>
<td>6.0</td>
<td>5.9</td>
<td>5.9</td>
<td>5.9</td>
<td>5.9</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>31.5</td>
<td>6.7</td>
<td>6.6</td>
<td>6.6</td>
<td>6.5</td>
<td>6.5</td>
<td>6.4</td>
<td>6.4</td>
<td>6.3</td>
<td>6.3</td>
<td>6.2</td>
<td>6.2</td>
<td>6.1</td>
<td>6.0</td>
<td>6.0</td>
<td>5.9</td>
<td>5.9</td>
<td>5.9</td>
<td>5.8</td>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td>32.0</td>
<td>6.6</td>
<td>6.6</td>
<td>6.5</td>
<td>6.5</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
<td>6.3</td>
<td>6.3</td>
<td>6.2</td>
<td>6.2</td>
<td>6.1</td>
<td>6.0</td>
<td>6.0</td>
<td>5.9</td>
<td>5.9</td>
<td>5.9</td>
<td>5.8</td>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td>32.5</td>
<td>6.6</td>
<td>6.5</td>
<td>6.5</td>
<td>6.4</td>
<td>6.4</td>
<td>6.3</td>
<td>6.3</td>
<td>6.2</td>
<td>6.2</td>
<td>6.1</td>
<td>6.0</td>
<td>6.0</td>
<td>5.9</td>
<td>5.9</td>
<td>5.8</td>
<td>5.8</td>
<td>5.7</td>
<td>5.7</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>33.0</td>
<td>6.5</td>
<td>6.5</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
<td>6.3</td>
<td>6.3</td>
<td>6.2</td>
<td>6.2</td>
<td>6.1</td>
<td>6.0</td>
<td>6.0</td>
<td>5.9</td>
<td>5.9</td>
<td>5.8</td>
<td>5.8</td>
<td>5.7</td>
<td>5.7</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>33.5</td>
<td>6.5</td>
<td>6.4</td>
<td>6.4</td>
<td>6.3</td>
<td>6.3</td>
<td>6.2</td>
<td>6.2</td>
<td>6.1</td>
<td>6.1</td>
<td>6.0</td>
<td>6.0</td>
<td>5.9</td>
<td>5.9</td>
<td>5.8</td>
<td>5.8</td>
<td>5.7</td>
<td>5.7</td>
<td>5.6</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>34.0</td>
<td>6.4</td>
<td>6.4</td>
<td>6.3</td>
<td>6.3</td>
<td>6.2</td>
<td>6.2</td>
<td>6.1</td>
<td>6.1</td>
<td>6.0</td>
<td>6.0</td>
<td>5.9</td>
<td>5.9</td>
<td>5.8</td>
<td>5.8</td>
<td>5.7</td>
<td>5.7</td>
<td>5.6</td>
<td>5.6</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>34.5</td>
<td>6.4</td>
<td>6.3</td>
<td>6.3</td>
<td>6.2</td>
<td>6.2</td>
<td>6.1</td>
<td>6.1</td>
<td>6.0</td>
<td>6.0</td>
<td>5.9</td>
<td>5.9</td>
<td>5.8</td>
<td>5.8</td>
<td>5.7</td>
<td>5.7</td>
<td>5.6</td>
<td>5.6</td>
<td>5.5</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>35.0</td>
<td>6.3</td>
<td>6.3</td>
<td>6.2</td>
<td>6.2</td>
<td>6.1</td>
<td>6.1</td>
<td>6.0</td>
<td>6.0</td>
<td>5.9</td>
<td>5.9</td>
<td>5.8</td>
<td>5.8</td>
<td>5.7</td>
<td>5.7</td>
<td>5.6</td>
<td>5.6</td>
<td>5.5</td>
<td>5.5</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>35.5</td>
<td>6.2</td>
<td>6.2</td>
<td>6.2</td>
<td>6.1</td>
<td>6.1</td>
<td>6.0</td>
<td>6.0</td>
<td>5.9</td>
<td>5.9</td>
<td>5.8</td>
<td>5.8</td>
<td>5.7</td>
<td>5.7</td>
<td>5.6</td>
<td>5.6</td>
<td>5.5</td>
<td>5.5</td>
<td>5.4</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>36.0</td>
<td>6.2</td>
<td>6.1</td>
<td>6.1</td>
<td>6.1</td>
<td>6.0</td>
<td>5.9</td>
<td>5.9</td>
<td>5.8</td>
<td>5.8</td>
<td>5.7</td>
<td>5.7</td>
<td>5.6</td>
<td>5.6</td>
<td>5.5</td>
<td>5.5</td>
<td>5.4</td>
<td>5.4</td>
<td>5.3</td>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td>36.5</td>
<td>6.1</td>
<td>6.1</td>
<td>6.1</td>
<td>6.0</td>
<td>6.0</td>
<td>5.9</td>
<td>5.9</td>
<td>5.8</td>
<td>5.8</td>
<td>5.7</td>
<td>5.7</td>
<td>5.6</td>
<td>5.6</td>
<td>5.5</td>
<td>5.5</td>
<td>5.4</td>
<td>5.4</td>
<td>5.3</td>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td>37.0</td>
<td>6.1</td>
<td>6.1</td>
<td>6.0</td>
<td>6.0</td>
<td>5.9</td>
<td>5.9</td>
<td>5.8</td>
<td>5.8</td>
<td>5.7</td>
<td>5.7</td>
<td>5.6</td>
<td>5.6</td>
<td>5.5</td>
<td>5.5</td>
<td>5.4</td>
<td>5.4</td>
<td>5.3</td>
<td>5.3</td>
<td>5.2</td>
<td></td>
</tr>
<tr>
<td>37.5</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>5.9</td>
<td>5.9</td>
<td>5.8</td>
<td>5.8</td>
<td>5.7</td>
<td>5.7</td>
<td>5.6</td>
<td>5.6</td>
<td>5.5</td>
<td>5.5</td>
<td>5.4</td>
<td>5.4</td>
<td>5.3</td>
<td>5.3</td>
<td>5.3</td>
<td>5.2</td>
<td></td>
</tr>
<tr>
<td>38.0</td>
<td>6.0</td>
<td>6.0</td>
<td>5.9</td>
<td>5.9</td>
<td>5.8</td>
<td>5.8</td>
<td>5.7</td>
<td>5.7</td>
<td>5.6</td>
<td>5.6</td>
<td>5.5</td>
<td>5.5</td>
<td>5.4</td>
<td>5.4</td>
<td>5.3</td>
<td>5.3</td>
<td>5.3</td>
<td>5.2</td>
<td>5.2</td>
<td></td>
</tr>
<tr>
<td>38.5</td>
<td>6.0</td>
<td>5.9</td>
<td>5.9</td>
<td>5.8</td>
<td>5.8</td>
<td>5.7</td>
<td>5.7</td>
<td>5.6</td>
<td>5.6</td>
<td>5.5</td>
<td>5.5</td>
<td>5.4</td>
<td>5.4</td>
<td>5.3</td>
<td>5.3</td>
<td>5.3</td>
<td>5.2</td>
<td>5.2</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>39.0</td>
<td>5.9</td>
<td>5.9</td>
<td>5.8</td>
<td>5.8</td>
<td>5.7</td>
<td>5.7</td>
<td>5.6</td>
<td>5.6</td>
<td>5.5</td>
<td>5.5</td>
<td>5.4</td>
<td>5.4</td>
<td>5.3</td>
<td>5.3</td>
<td>5.3</td>
<td>5.2</td>
<td>5.2</td>
<td>5.1</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>39.5</td>
<td>5.9</td>
<td>5.8</td>
<td>5.8</td>
<td>5.7</td>
<td>5.7</td>
<td>5.6</td>
<td>5.6</td>
<td>5.5</td>
<td>5.5</td>
<td>5.4</td>
<td>5.4</td>
<td>5.3</td>
<td>5.3</td>
<td>5.2</td>
<td>5.2</td>
<td>5.1</td>
<td>5.1</td>
<td>5.0</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>40.0</td>
<td>5.8</td>
<td>5.8</td>
<td>5.7</td>
<td>5.7</td>
<td>5.6</td>
<td>5.6</td>
<td>5.5</td>
<td>5.5</td>
<td>5.4</td>
<td>5.4</td>
<td>5.3</td>
<td>5.3</td>
<td>5.2</td>
<td>5.2</td>
<td>5.1</td>
<td>5.1</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX 3

Baseline Water Quality Results of Paya Indah
Appendix 3

First baseline water quality results of Paya Indah

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Unit</th>
<th>W1</th>
<th>W2</th>
<th>W3</th>
<th>W4</th>
<th>W5</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>-</td>
<td>5.0</td>
<td>4.7</td>
<td>5.6</td>
<td>4.9</td>
<td>6.4</td>
</tr>
<tr>
<td>Temperature*</td>
<td>°C</td>
<td>27.49</td>
<td>31.02</td>
<td>27.25</td>
<td>29.43</td>
<td>28.52</td>
</tr>
<tr>
<td>DO*</td>
<td>mg/l</td>
<td>1.17</td>
<td>3.07</td>
<td>0.68</td>
<td>0.94</td>
<td>0.82</td>
</tr>
<tr>
<td>BOD</td>
<td>mg/l</td>
<td>5</td>
<td>3</td>
<td>17</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>COD</td>
<td>mg/l</td>
<td>49</td>
<td>26</td>
<td>104</td>
<td>85</td>
<td>43</td>
</tr>
<tr>
<td>TSS</td>
<td>mg/l</td>
<td>4</td>
<td>28</td>
<td>21</td>
<td>86</td>
<td>19</td>
</tr>
<tr>
<td>Mercury as Hg</td>
<td>mg/l</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Cadmium as Cd</td>
<td>mg/l</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Arsenic as As</td>
<td>mg/l</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Total Chromium</td>
<td>mg/l</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Cyanide as CN</td>
<td>mg/l</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
</tr>
<tr>
<td>Lead as Pb</td>
<td>mg/l</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
</tr>
<tr>
<td>Copper as Cu</td>
<td>mg/l</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Managanese as Mn</td>
<td>mg/l</td>
<td>0.04</td>
<td>0.09</td>
<td>0.07</td>
<td>0.09</td>
<td>0.10</td>
</tr>
<tr>
<td>Nickel as Ni</td>
<td>mg/l</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
</tr>
<tr>
<td>Tin as Tn</td>
<td>mg/l</td>
<td><0.004</td>
<td><0.004</td>
<td><0.004</td>
<td><0.004</td>
<td><0.004</td>
</tr>
<tr>
<td>Zinc as Zn</td>
<td>mg/l</td>
<td><0.01</td>
<td>0.02</td>
<td>0.03</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Boron as B</td>
<td>mg/l</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Iron as Fe</td>
<td>mg/l</td>
<td>1.31</td>
<td>1.87</td>
<td>2.93</td>
<td>4.47</td>
<td>5.24</td>
</tr>
<tr>
<td>Phenol</td>
<td>mg/l</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Free Chlorine as Cl₂</td>
<td>mg/l</td>
<td><0.1</td>
<td><0.1</td>
<td>0.2</td>
<td>0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>Sulphide as S²⁻</td>
<td>mg/l</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
</tr>
<tr>
<td>Ammoniacal Nitrogen as N</td>
<td>mg/l</td>
<td>0.4</td>
<td>0.4</td>
<td>1.1</td>
<td>0.4</td>
<td>0.7</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>mg/l</td>
<td><0.1</td>
<td><0.1</td>
<td>0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>Oil & Grease</td>
<td>Mgf/l</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>E. coli</td>
<td>MPN/100 ml</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

*in-situ, ND: not detected, N/A: not available
Appendix 3 (cont’d)

First baseline water quality results of Paya Indah

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Unit</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>W6</td>
</tr>
<tr>
<td>pH</td>
<td>-</td>
<td>6.3</td>
</tr>
<tr>
<td>Temperature</td>
<td>°C</td>
<td>28.65</td>
</tr>
<tr>
<td>DO</td>
<td>mg/l</td>
<td>0.79</td>
</tr>
<tr>
<td>BOD</td>
<td>mg/l</td>
<td>4</td>
</tr>
<tr>
<td>COD</td>
<td>mg/l</td>
<td>34</td>
</tr>
<tr>
<td>TSS</td>
<td>mg/l</td>
<td>22</td>
</tr>
<tr>
<td>Mercury as Hg</td>
<td>mg/l</td>
<td><0.001</td>
</tr>
<tr>
<td>Cadmium as Cd</td>
<td>mg/l</td>
<td><0.001</td>
</tr>
<tr>
<td>Arsenic as As</td>
<td>mg/l</td>
<td><0.01</td>
</tr>
<tr>
<td>Total Chromium</td>
<td>mg/l</td>
<td><0.01</td>
</tr>
<tr>
<td>Cyanide as CN</td>
<td>mg/l</td>
<td><0.02</td>
</tr>
<tr>
<td>Lead as Pb</td>
<td>mg/l</td>
<td><0.02</td>
</tr>
<tr>
<td>Copper as Cu</td>
<td>mg/l</td>
<td>0.02</td>
</tr>
<tr>
<td>Managanese as Mn</td>
<td>mg/l</td>
<td>0.17</td>
</tr>
<tr>
<td>Nickel as Ni</td>
<td>mg/l</td>
<td><0.02</td>
</tr>
<tr>
<td>Tin as Tn</td>
<td>mg/l</td>
<td><0.004</td>
</tr>
<tr>
<td>Zinc as Zn</td>
<td>mg/l</td>
<td><0.01</td>
</tr>
<tr>
<td>Boron as B</td>
<td>mg/l</td>
<td>0.2</td>
</tr>
<tr>
<td>Iron as Fe</td>
<td>mg/l</td>
<td>4.12</td>
</tr>
<tr>
<td>Phenol</td>
<td>mg/l</td>
<td><0.001</td>
</tr>
<tr>
<td>Free Chlorine as Cl₂</td>
<td>mg/l</td>
<td><0.1</td>
</tr>
<tr>
<td>Sulphide as S²⁻</td>
<td>mg/l</td>
<td><0.05</td>
</tr>
<tr>
<td>Ammoniacal Nitrogen as N</td>
<td>mg/l</td>
<td>0.2</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>mg/l</td>
<td><0.1</td>
</tr>
<tr>
<td>Oil and Grease</td>
<td>mg/l</td>
<td>N/A</td>
</tr>
<tr>
<td>E. coli</td>
<td>MPN/100 ml</td>
<td>N/A</td>
</tr>
</tbody>
</table>

in-situ, ND: not detected, N/A: not available
First baseline water quality results of Paya Indah

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Unit</th>
<th>W11</th>
<th>W12</th>
<th>W13</th>
<th>W14</th>
<th>W15</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>-</td>
<td>5.7</td>
<td>5.6</td>
<td>6.0</td>
<td>7.7</td>
<td>4.8</td>
</tr>
<tr>
<td>Temperature*</td>
<td>°C</td>
<td>29.69</td>
<td>27.98</td>
<td>27.87</td>
<td>29.74</td>
<td>29.12</td>
</tr>
<tr>
<td>DO*</td>
<td>mg/l</td>
<td>2.55</td>
<td>0.78</td>
<td>2.05</td>
<td>3.55</td>
<td>0.79</td>
</tr>
<tr>
<td>BOD</td>
<td>mg/l</td>
<td>4</td>
<td><2</td>
<td><2</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>COD</td>
<td>mg/l</td>
<td>35</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>74</td>
</tr>
<tr>
<td>TSS</td>
<td>mg/l</td>
<td>86</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Mercury as Hg</td>
<td>mg/l</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Cadmium as Cd</td>
<td>mg/l</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Arsenic as As</td>
<td>mg/l</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Total Chromium</td>
<td>mg/l</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Cyanide as CN</td>
<td>mg/l</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
</tr>
<tr>
<td>Lead as Pb</td>
<td>mg/l</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
</tr>
<tr>
<td>Copper as Cu</td>
<td>mg/l</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Managanese as Mn</td>
<td>mg/l</td>
<td>0.08</td>
<td>0.10</td>
<td>0.10</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>Nickel as Ni</td>
<td>mg/l</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
</tr>
<tr>
<td>Tin as Tn</td>
<td>mg/l</td>
<td><0.004</td>
<td><0.004</td>
<td><0.004</td>
<td><0.004</td>
<td><0.004</td>
</tr>
<tr>
<td>Zinc as Zn</td>
<td>mg/l</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.03</td>
</tr>
<tr>
<td>Boron as B</td>
<td>mg/l</td>
<td>0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Iron as Fe</td>
<td>mg/l</td>
<td>1.23</td>
<td>1.19</td>
<td>0.96</td>
<td>1.16</td>
<td>3.80</td>
</tr>
<tr>
<td>Phenol</td>
<td>mg/l</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Free Chlorine as Cl2</td>
<td>mg/l</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>Sulphide as S²⁻</td>
<td>mg/l</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
</tr>
<tr>
<td>Ammoniacal Nitrogen as N</td>
<td>mg/l</td>
<td>0.8</td>
<td><0.1</td>
<td><0.1</td>
<td>0.3</td>
<td><0.1</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>mg/l</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>Oil and Grease</td>
<td>mg/l</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>E. coli</td>
<td>MPN/100 ml</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

*In-situ, ND: not detected, N/A: not available
<table>
<thead>
<tr>
<th>Parameters</th>
<th>Unit</th>
<th>W11</th>
<th>W12</th>
<th>W13</th>
<th>W14</th>
<th>W15</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>-</td>
<td>5.1</td>
<td>5.9</td>
<td>6.1</td>
<td>6.6</td>
<td>4.8</td>
</tr>
<tr>
<td>Temperature*</td>
<td>°C</td>
<td>31.04</td>
<td>29.39</td>
<td>28.60</td>
<td>31.32</td>
<td>30.53</td>
</tr>
<tr>
<td>DO*</td>
<td>mg/l</td>
<td>4.91</td>
<td>3.50</td>
<td>2.25</td>
<td>3.79</td>
<td>1.07</td>
</tr>
<tr>
<td>BOD</td>
<td>mg/l</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td><2</td>
</tr>
<tr>
<td>COD</td>
<td>mg/l</td>
<td>40</td>
<td>24</td>
<td>34</td>
<td>32</td>
<td>141</td>
</tr>
<tr>
<td>TSS</td>
<td>mg/l</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Mercury as Hg</td>
<td>mg/l</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Cadmium as Cd</td>
<td>mg/l</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Arsenic as As</td>
<td>mg/l</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Total Chromium</td>
<td>mg/l</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Cyanide as CN</td>
<td>mg/l</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
</tr>
<tr>
<td>Lead as Pb</td>
<td>mg/l</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
</tr>
<tr>
<td>Copper as Cu</td>
<td>mg/l</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Managanese as Mn</td>
<td>mg/l</td>
<td>0.12</td>
<td>0.13</td>
<td>0.05</td>
<td>0.12</td>
<td>0.06</td>
</tr>
<tr>
<td>Nickel as Ni</td>
<td>mg/l</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
</tr>
<tr>
<td>Tin as Tn</td>
<td>mg/l</td>
<td><0.004</td>
<td><0.004</td>
<td><0.004</td>
<td><0.004</td>
<td><0.004</td>
</tr>
<tr>
<td>Zinc as Zn</td>
<td>mg/l</td>
<td>0.20</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.22</td>
</tr>
<tr>
<td>Boron as B</td>
<td>mg/l</td>
<td>0.1</td>
<td><0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Iron as Fe</td>
<td>mg/l</td>
<td>9.18</td>
<td>9.89</td>
<td>4.74</td>
<td>11.98</td>
<td>6.94</td>
</tr>
<tr>
<td>Phenol</td>
<td>mg/l</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Free Chlorine as Cl₂</td>
<td>mg/l</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Sulphide as S²⁻</td>
<td>mg/l</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
</tr>
<tr>
<td>Ammoniacal Nitrogen as N</td>
<td>mg/l</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>mg/l</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Oil and Grease</td>
<td>mg/l</td>
<td>ND (<2)</td>
<td>ND (<2)</td>
<td>ND (<2)</td>
<td>ND (<2)</td>
<td>ND (<2)</td>
</tr>
<tr>
<td>E. coli</td>
<td>MPN/100 ml</td>
<td>24000</td>
<td>37000</td>
<td>31000</td>
<td>400</td>
<td>4200</td>
</tr>
</tbody>
</table>

*In-situ, ND: not detected, N/A: not available
APPENDIX 4

Water Quality Parameters’ Sub-Indices for WQI Calculation
Appendix 4

PARAMETERS SUB-INDEX FOR WATER QUALITY INDEX (WQI) CALCULATION

Dissolved Oxygen (DO)

<table>
<thead>
<tr>
<th></th>
<th>W1</th>
<th>W2</th>
<th>W3</th>
<th>W4</th>
<th>W5</th>
<th>W6</th>
<th>W7</th>
<th>W8</th>
<th>W9</th>
<th>W10</th>
<th>W11</th>
<th>W12</th>
<th>W13</th>
<th>W14</th>
<th>W15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>5.53551</td>
<td>36.9581</td>
<td>1.70017</td>
<td>3.71204</td>
<td>2.76571</td>
<td>2.54688</td>
<td>1.93986</td>
<td>2.405</td>
<td>32.5577</td>
<td>51.2264</td>
<td>26.4242</td>
<td>2.405</td>
<td>16.6965</td>
<td>45.6088</td>
<td>2.62189</td>
</tr>
<tr>
<td>Week 2</td>
<td>1.58227</td>
<td>46.1144</td>
<td>7.75031</td>
<td>2.405</td>
<td>19.1393</td>
<td>31.8405</td>
<td>78.005</td>
<td>0</td>
<td>79.1073</td>
<td>72.713</td>
<td>67.0021</td>
<td>19.2713</td>
<td>17.4004</td>
<td>67.0708</td>
<td>12.9708</td>
</tr>
<tr>
<td>Week 5</td>
<td>2.82888</td>
<td>30.9609</td>
<td>8.20466</td>
<td>3.68274</td>
<td>47.5222</td>
<td>100</td>
<td>72.6381</td>
<td>0.94282</td>
<td>45.8581</td>
<td>57.3769</td>
<td>48.805</td>
<td>18.9259</td>
<td>25.0704</td>
<td>51.381</td>
<td>5.68</td>
</tr>
<tr>
<td>Week 6</td>
<td>1.51193</td>
<td>25.3533</td>
<td>10.6858</td>
<td>0</td>
<td>38.586</td>
<td>52.6034</td>
<td>45.1104</td>
<td>42.8732</td>
<td>25.7534</td>
<td>46.4569</td>
<td>34.805</td>
<td>16.4854</td>
<td>15.4556</td>
<td>82.6087</td>
<td>9.52953</td>
</tr>
</tbody>
</table>

Biochemical Oxygen Demand (BOD)

<table>
<thead>
<tr>
<th></th>
<th>W1</th>
<th>W2</th>
<th>W3</th>
<th>W4</th>
<th>W5</th>
<th>W6</th>
<th>W7</th>
<th>W8</th>
<th>W9</th>
<th>W10</th>
<th>W11</th>
<th>W12</th>
<th>W13</th>
<th>W14</th>
<th>W15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>62.33</td>
<td>83.48</td>
<td>83.48</td>
<td>83.48</td>
<td>66.56</td>
<td>0</td>
<td>83.48</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>70.79</td>
</tr>
<tr>
<td>Week 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>83.48</td>
<td>91.94</td>
<td>91.94</td>
<td>91.94</td>
<td>79.25</td>
<td>0</td>
<td>72.7887</td>
<td>91.94</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>87.71</td>
</tr>
<tr>
<td>Week 3</td>
<td>0</td>
<td>91.94</td>
<td>87.71</td>
<td>87.71</td>
<td>0</td>
<td>0</td>
<td>79.25</td>
<td>83.48</td>
<td>0</td>
<td>91.94</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>77.0438</td>
<td></td>
</tr>
<tr>
<td>Week 4</td>
<td>83.48</td>
<td>87.71</td>
<td>77.0438</td>
<td>77.0438</td>
<td>79.25</td>
<td>87.71</td>
<td>87.71</td>
<td>77.0438</td>
<td>0</td>
<td>83.48</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>77.0438</td>
<td></td>
</tr>
<tr>
<td>Week 5</td>
<td>87.71</td>
<td>83.48</td>
<td>79.25</td>
<td>83.48</td>
<td>91.94</td>
<td>87.71</td>
<td>91.94</td>
<td>79.25</td>
<td>72.7887</td>
<td>0</td>
<td>91.94</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>83.48</td>
</tr>
<tr>
<td>Week 6</td>
<td>91.94</td>
<td>14.2865</td>
<td>79.25</td>
<td>83.48</td>
<td>91.94</td>
<td>91.94</td>
<td>91.94</td>
<td>83.48</td>
<td>91.94</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>87.71</td>
</tr>
</tbody>
</table>
Appendix 4

Suspended Solids (SS)

<table>
<thead>
<tr>
<th></th>
<th>W1</th>
<th>W2</th>
<th>W3</th>
<th>W4</th>
<th>W5</th>
<th>W6</th>
<th>W7</th>
<th>W8</th>
<th>W9</th>
<th>W10</th>
<th>W11</th>
<th>W12</th>
<th>W13</th>
<th>W14</th>
<th>W15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>95.0989</td>
<td>82.0866</td>
<td>85.6465</td>
<td>61.7438</td>
<td>86.698</td>
<td>85.1265</td>
<td>85.1265</td>
<td>95.6926</td>
<td>64.9699</td>
<td>93.9245</td>
<td>61.7438</td>
<td>0</td>
<td>0</td>
<td>96.2907</td>
<td>95.0989</td>
</tr>
<tr>
<td>Week 2</td>
<td>95.0989</td>
<td>84.6104</td>
<td>95.0989</td>
<td>58.037</td>
<td>83.5896</td>
<td>83.5896</td>
<td>88.8482</td>
<td>96.2907</td>
<td>79.655</td>
<td>79.655</td>
<td>43.1261</td>
<td>0</td>
<td>0</td>
<td>96.2907</td>
<td>92.7672</td>
</tr>
<tr>
<td>Week 3</td>
<td>87.2296</td>
<td>51.1727</td>
<td>87.7652</td>
<td>77.3124</td>
<td>76.8544</td>
<td>82.0866</td>
<td>89.3958</td>
<td>94.5096</td>
<td>94.5096</td>
<td>68.3821</td>
<td>46.9081</td>
<td>0</td>
<td>77.774</td>
<td>0</td>
<td>93.9245</td>
</tr>
<tr>
<td>Week 4</td>
<td>0</td>
<td>89.3958</td>
<td>90.5031</td>
<td>92.7672</td>
<td>58.4168</td>
<td>90.5031</td>
<td>95.0989</td>
<td>95.6926</td>
<td>91.0629</td>
<td>95.0989</td>
<td>53.7487</td>
<td>96.2907</td>
<td>96.2907</td>
<td>95.6926</td>
<td>95.6926</td>
</tr>
<tr>
<td>Week 5</td>
<td>95.0989</td>
<td>89.3958</td>
<td>96.2907</td>
<td>92.1949</td>
<td>92.7672</td>
<td>88.3047</td>
<td>91.0629</td>
<td>0</td>
<td>55.4441</td>
<td>95.6926</td>
<td>65.7079</td>
<td>96.2907</td>
<td>95.6926</td>
<td>96.2907</td>
<td>93.3438</td>
</tr>
<tr>
<td>Week 6</td>
<td>93.3438</td>
<td>66.8365</td>
<td>95.0989</td>
<td>88.3047</td>
<td>93.9245</td>
<td>80.1341</td>
<td>87.2296</td>
<td>95.0989</td>
<td>94.5096</td>
<td>95.6926</td>
<td>84.0981</td>
<td>0</td>
<td>0</td>
<td>96.2907</td>
<td>95.0989</td>
</tr>
</tbody>
</table>

pH

<table>
<thead>
<tr>
<th></th>
<th>W1</th>
<th>W2</th>
<th>W3</th>
<th>W4</th>
<th>W5</th>
<th>W6</th>
<th>W7</th>
<th>W8</th>
<th>W9</th>
<th>W10</th>
<th>W11</th>
<th>W12</th>
<th>W13</th>
<th>W14</th>
<th>W15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>56.7</td>
<td>47.2518</td>
<td>83.6288</td>
<td>53.4502</td>
<td>95.9968</td>
<td>94.9177</td>
<td>89.2673</td>
<td>38.7072</td>
<td>41.455</td>
<td>83.6288</td>
<td>85.6417</td>
<td>83.6288</td>
<td>90.88</td>
<td>94.7755</td>
<td>50.3008</td>
</tr>
<tr>
<td>Week 2</td>
<td>50.3008</td>
<td>97.7548</td>
<td>41.455</td>
<td>38.7072</td>
<td>63.5008</td>
<td>94.9177</td>
<td>92.3593</td>
<td>33.5128</td>
<td>47.2518</td>
<td>56.7</td>
<td>63.5008</td>
<td>67.0518</td>
<td>90.88</td>
<td>70.7032</td>
<td>60.0502</td>
</tr>
<tr>
<td>Week 3</td>
<td>41.455</td>
<td>83.6288</td>
<td>85.6417</td>
<td>53.4502</td>
<td>96.9425</td>
<td>98.9792</td>
<td>97.7548</td>
<td>47.2518</td>
<td>53.4502</td>
<td>67.0518</td>
<td>81.4825</td>
<td>81.4825</td>
<td>85.6417</td>
<td>99.3913</td>
<td>63.5008</td>
</tr>
<tr>
<td>Week 4</td>
<td>50.3008</td>
<td>44.3032</td>
<td>33.5128</td>
<td>38.7072</td>
<td>89.2673</td>
<td>90.88</td>
<td>90.88</td>
<td>36.0598</td>
<td>38.7072</td>
<td>53.4502</td>
<td>47.2518</td>
<td>63.5008</td>
<td>67.0518</td>
<td>97.7548</td>
<td>44.3032</td>
</tr>
<tr>
<td>Week 5</td>
<td>50.3008</td>
<td>63.5008</td>
<td>33.5128</td>
<td>53.4502</td>
<td>93.7052</td>
<td>90.88</td>
<td>92.3593</td>
<td>38.7072</td>
<td>41.455</td>
<td>50.3008</td>
<td>56.7</td>
<td>56.7</td>
<td>87.5212</td>
<td>93.7052</td>
<td>85.6417</td>
</tr>
<tr>
<td>Week 6</td>
<td>81.4825</td>
<td>118.62</td>
<td>87.1438</td>
<td>53.4502</td>
<td>99.0595</td>
<td>96.9425</td>
<td>97.7548</td>
<td>38.7072</td>
<td>36.0598</td>
<td>44.3032</td>
<td>99.35</td>
<td>67.0518</td>
<td>90.88</td>
<td>98.648</td>
<td>38.7072</td>
</tr>
</tbody>
</table>