PREPARATION AND CHARACTERIZATIONS OF LITHIUM TITANATE ($Li_4Ti_5O_{12}$)

NOR AINI ALIAS

FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2011

PREPARATION AND CHARACTERIZATIONS OF LITHIUM TITANATE (Li₄Ti₅O₁₂)

NOR AINI ALIAS

DISSERTATION SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

PHYSICS DEPARTMENT FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2011

DECLARATION

I hereby declare that the work reported in this dissertation is my own unless specified and duly acknowledged by quotation.

1st APRIL 2011

(NOR AINI ALIAS)

ACKNOWLEDGEMENT

First and foremost, in humble way I wish to give all the Praise to Allah S.W.T, the Almighty God for with His mercy has given me the strength, blessing and time to accomplish this study.

I am deeply indebted to Dr. Siti Rohana Majid who is my supervisor for her patience, supervision, encouragement and thoughtful guidance towards the completion of this dissertation. I am also very thankful to my co-supervisor, Prof Dr. Abdul Kariem Arof, for his guidance, critics and moral support. Without their continuous motivation and interest, this would not have resulted in the same manner as it is now.

Thanks and appreciations are also extended to staff from Physics Department especially Mr Ismail Che Lah and COMBICAT for their technical support during the experimental work. I wish to express special appreciation to all of my friends especially Wani, Kak Mazni, Teo, Sim, Zila, Fit, Bella, Rajam, Chu, Leena, Leeana, Fakhrul, Den, Hamdi, Yap, Thompson, Meor and Aziz for their timely and valuable advice and contribution for ideas during the research programme.

Last but not least, I would like to acknowledge my beloved family whose patience and love enabled me to complete this work.

NOR AINI ALIAS

PUBLICATIONS

List of Published Article in Journal:

1. <u>N.A. Alias.</u>, M.Z. Kufian., L.P. Teo., S.R. Majid and A.K. Arof. Synthesis and Characterizations of Li₄Ti₅O₁₂. Journal of Alloys and Compounds 486, 645-64.

List of Poster Presentations Presented at Conferences:

- <u>N.A. Alias.</u>, S.R. Majid and A.K. Arof. "Structural and Conductivity Studies of Li₄Ti₅O₁₂", presented at the National Workshop on Functional Materials (NWFM), 20-21 June 2009, University of Malaya, Kuala Lumpur.
- 2. <u>N.A. Alias.</u>, S.R. Majid and A.K. Arof. "Characterizations of PVA Doped with Li₄Ti₅O₁₂", presented at the 3rd International Conference on Functional Materials and Devices (ICFMD), 14-17 June 2010, Terengganu, Malaysia.

UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate:

(I.C/Passport No:

)

Registration/Matric No:

Name of Degree:

Title of Project/Research Report/Dissertation/Thesis ("this Work"):

Field of Study:

I do solemnly and sincerely declare that:

- (1) I am the sole author/writer of this Work;
- (2) This Work is original;
- (3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or references to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
- (4) I do not have any actual knowledge nor I do ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
- (5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya ("UM"), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by means whatsoever is prohibited without the written consent of UM having been first had and obtained;
- (6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate's Signature

Date

Subscribed and solemnly declared before,

Witness's Signature Name: Designation: Date

ABSTRACT

Li₄Ti₅O₁₂ is a potential anode material for lithium-ion batteries. This serves as the motivation for the present study. Li₄Ti₅O₁₂ compound has been obtained through the sol-gel technique. From thermo gravimetric analysis, Li₄Ti₅O₁₂ is thermally stable at temperatures above 700 °C. Organic compounds are observed to decompose at 600 °C and below. From XRD diffractograms peaks due to Li₂TiO₃ and anatase TiO₂ phases observed, Li₄Ti₅O₁₂ has a cubic structure. The lattice parameters for all Li₄Ti₅O₁₂ are sintered at different temperatures and times are approximately 8.3 Å. The discharge capacity of a cell employing Li₄Ti₅O₁₂ as electrode is ~60 mAh g⁻¹ for 20 cycles and the voltage plateau occurs at ~1.5 V corresponding to redox reaction of Ti⁴⁺ and Ti³⁺.

In the attempt to produce good dielectric materials particularly for use in capacitor, oxides have been incorporated in polymer host such as poly (vinyl alcohol), PVA. PVA films doped with different amounts of $Li_4Ti_5O_{12}$ have been prepared via the solvent cast technique. The semi-crystallinity of PVA decreases with addition of $Li_4Ti_5O_{12}$ as identified from the XRD diffractogram. C=C stretching band is observed to shift from lower to higher wavenumber i.e. from 1571 cm⁻¹ to 1583 cm⁻¹. From absorption spectroscopy analysis, the edge absorption is observed to shift from 272 nm to 254 nm. Morphology of PVA films doped $Li_4Ti_5O_{12}$ is coarser compared to that of pure PVA film which is homogeneous and smooth. The plot of real modulus versus log *f*, does not exhibit a relaxation peak. Argand plots clearly show viscoelastic relaxation due its tilted semicircle.

ABSTRAK

Sebatian Li₄Ti₅O₁₂ merupakan bahan anod berpotensi untuk bateri lithium-ion. Hakikat ini dijadikan motivasi untuk melangsungkan kajian ini. Sebatian Li₄Ti₅O₁₂ berjaya dihasilkan melalui teknik sol-gel. Daripada analisis thermo gravimetri, Li₄Ti₅O₁₂ stabil haba pada suhu melebihi 700 °C. Sebatian organik didapati terurai pada suhu 600 °C dan ke bawah. Daripada difraktogram XRD, puncak fasa Li₂TiO₃ dan anatase TiO₂ dikenalpasti. Li₄Ti₅O₁₂ berstruktur kubik. Parameter kekisi untuk semua Li₄Ti₅O₁₂ yang dihasilkan pada suhu dan masa pensinteran berlainan menghampiri 8.3 Å. Kapasiti discas sel yang menggunakan Li₄Ti₅O₁₂ sebagai elektrod adalah ~60 mAh g⁻¹ selama 20 kitaran dan daripada profile cas-discas dataran voltan berada pada ~1.5 V yang dikaitkan dengan tindak balas redoks antara Ti⁴⁺ dan Ti³⁺.

Dalam usaha untuk menghasilkan bahan dielektrik yang baik khusus untuk penggunaan dalam kapasitor, pelbagai jenis oksida telah digabungkan ke dalam hos polimer sepeerti poli (vinil alkohol), PVA. Filem-filem PVA terdop dengan jumlah $Li_4Ti_5O_{12}$ berlainan telah disediakan melalui teknik penuangan larutan. Fasa semi-hablur PVA berkurang seiring dengan penambahan $Li_4Ti_5O_{12}$ dan ini dikenalpasti melalui difraktogram XRD. Jalur peregangan C=C didapati berubah dari nombor gelombang rendah ke tinggi dengan penambahan $Li_4Ti_5O_{12}$ iaitu dari 1571 cm⁻¹ kepada 1583 cm⁻¹. Analisis spektrum serapan menunjukkan pinggiran serapan gelombang berubah daripada 272 nm kepada 254 nm. Morfologi filem PVA terdop $Li_4Ti_5O_{12}$ kasar berbanding morfologi PVA tulen yang licin dan sekata. Plot modulus nyata lawan log *f*, tidak menunjukkan puncak santaian. Plot Argand, menunjukkan dengan jelas santaian viskoelastik disebabkan bentuk semi-bulatan yang tersenget.

TABLE OF CONTENTS

DEC	CLARA	ΓΙΟΝ	i
ACI	KNOWL	EDGEMENT	ii
PUE	BLICAT	IONS	iii
ORI	GINAL	LITERARY WORK DECLARATION	iv
ABT	RACT		v
ABS	STRAK		vi
TAF	BLE OF	CONTENTS	vii
LIS	Г OF FI	GURES	Х
LIS	Г ОГ ТА	ABLES	xiii
LIS	Г OF AF	BREVIATIONS	xiv
CHA	APTER	1: INTRODUCTION TO DISSERTATION	1
CHA	APTER	2: LITERATURE REVIEW	4
2.1	Introd	luction	4
2.2	Anod	e materials for rechargeable lithium ion batteries	4
	2.2.1	Lithium metal	5
	2.2.2	Carbonaceous materials	7
		2.2.2.1 Graphite	7
		2.2.2.2 Soft carbon	9
		2.2.2.3 Hard carbon	11
	2.2.3	Li _{4.4} Sn	13
	2.2.4	Li ₂ Ti ₃ O ₇	14
	2.2.5	$Li_4Ti_5O_{12}$	14
2.3	Previo	ous Li ₄ Ti ₅ O ₁₂ synthesis techniques	17

	2.3.1 Solid state reaction	18
	2.3.2 Hybrid microwave technique	19
	2.3.3 Ball-milling technique	19
	2.3.4 Sol-gel technique	20
	2.3.5 Blend sample preparation	21
2.4	Electrochemical cell characterization	22
	2.4.1 Charge-discharge	22
2.5	Polymer composite	23
	2.5.1 Poly (vinyl alcohol), PVA	25
2.6	Summary	26
CHAPTER 3: METHODOLOGY		27
3.1	Introduction 27	
3.2	Sample preparation	27
	3.2.1 Powder synthesis	27
	3.2.2 Composite film	28
3.3	Sample characterizations	29
	3.3.1 Thermo gravimetry mass analysis	29
	3.3.2 X-ray diffraction (XRD)	31
	3.3.3 Electrochemistry impedance spectroscopy (EIS)	33
	3.3.4 Fourier transform infrared (FTIR) spectroscopy	34
	3.3.5 Scanning electron microscope (SEM)	35
	3.3.6 UV-Vis spectroscopy	35
3.4	Electrochemical cell fabrication and characterization	36
3.5	Summary	37
CHAPTER 4: STUDIES ON LITHIUM TITANATE 38		

4.1	Introduction	38
4.2	Thermo gravimetric-mass spectroscopy (TGMS)	38
4.3	X-ray diffraction (XRD)	43
4.4	Battery performance	48
4.5	Summary	50
CHAPTER 5: PVA DOPED WITH Li ₄ Ti ₅ O ₁₂ 51		
5.1	Introduction	51
5.2	X-ray diffraction (XRD)	52
5.3	Fourier transform infrared (FTIR)	53
5.4	UV-Vis spectroscopy	57
5.5	Scanning electron microscopy (SEM)	60
5.6	Dielectric studies	62
5.7	Dielectric relaxation process	70
5.8	Summary	73
CHAPTER 6: DISCUSSIONS 75		75
CHAPTER 7: CONCLUSIONS AND FUTURE WORKS 81		81
REFI	REFERENCES 8	

•

LIST OF FIGURES

Figures		Pages
Figure 2.1	Structure of hexagonal graphite showing ABAB stacking and schematic of cross-section of stacking layers considering the thickness of each carbon layer [Azuma <i>et al.</i> , 1999].	8
Figure 2.2	Micrograph of a mesocarbon fiber (MCF) [Takamura, 2002].	8
Figure 2.3	Structure of soft carbon [Azuma et al., 1999].	9
Figure 2.4	Structure of l soft carbon before and after doped with lithium ions [Azuma <i>et al.</i> , 1999].	9
Figure 2.5	Structure of hard carbon before and after doped with lithium ion [Azuma <i>et al.</i> , 1999].	12
Figure 2.6	Intercalation into the $Li_4Ti_5O_{12}$ spinel and de-intercalation out of the $LiCoO_2$ layered structure form an ideal cell couple [Jansen <i>et al.</i> , 1999].	16
Figure 2.7	SEM images for (a) $Li_4Ti_5O_{12}$ obtained by high temperature solid-state reaction between TiO ₂ (anatase) and LiOH and (b) submicron-sized TiO ₂ and Li ₂ CO ₃ dispersed in hexane followed by heating [Peramunage and Abraham, 1998].	19
Figure 2.8	SEM micrograph of $Li_{1.3}Al_{0.3}Ti_{1.7}(PO_4)_3$ sintered pellets prepared by (a) solid-state reaction and (b) sol-gel technique [Wu <i>et al.</i> , 2004].	21
Figure 2.9	SEM images of $Li_4Ti_5O_{12}$ (a) without and (b) with assist ball-milling technique [Yan <i>et al.</i> , 2009].	22
Figure 2.10	Charge and discharge profile of $\text{Li}_4\text{Ti}_5\text{O}_{12}$ samples in 1 M $\text{LiClO}_4/\text{EC} + \text{DEC}$ (1:1 in volume) at 0.1 C rate at various heat treatment (a) 500 °C for three hours, (b) 800 °C in an electric furnace for ten hours and (c) 800 °C in an infrared furnace for one minute [Kanamura <i>et al.</i> , 2006].	24
Figure 3.1	Powder synthesis flowchart.	28
Figure 3.2	TG and DSC curves of the codoped precursor solution with Zn:N:Al=1:3:0.05 [Zhang, 2009].	30
Figure 3.3	Mass spectra of HN_3 and H_2O in the resultant gases of the codoped precursor solution [Zhang, 2009].	30
Figure 3.4	XRD patterns of LiNi _{0.3} Co _{0.7} O ₂ sintered at different temperatures [Hernandez <i>et al.</i> , 2008].	32
Figure 3.5	Complex impedance plot at 300 °C for the Na _{1+x} Al _x Ge _{2-x} P ₃ O ₁₂ glass-ceramics calcined at 800 °C for 18 hours and the equivalent circuit is shown on the top left corner [Zhang <i>et al.</i> , 2009].	33
Figure 3.6	The variation of the absorption with the wavelength for different concentrations of $TiCl_3$ [Abdelaziz and Ghannam, 2010].	36
Figure 3.7	The systematic diagram of cell construction.	37
Figure 4.1	TG-MS profile for the powder precursors of $Li_4Ti_5O_{12}$ heated in oven at 100 °C for one hour.	40
Figure 4.2	Thermal degradation of powder precursors of $Li_4Ti_5O_{12}$ heated in oven at 100 °C for one hour	41

Figure 4.3	XRD profile for the powder precursors of $Li_4Ti_5O_{12}$ heated in oven at (a) 100 °C and (b) 600 °C for one hour	43
Figure 4.4	XRD pattern for Li ₄ Ti ₅ O ₁₂ sintered at (a) 700 °C, (b) 800 °C, (c) 900 °C and (d) 1000 °C for one hour. (*) indicates	44
Figure 1 5	Impurity due to $L_{12} I I O_3$. XRD profile of LitTi-Ore sintered at 800 °C for (a) one (b)	45
Figure 4.5	two (c) three (d) four and (e) five hours	45
Figure 4.6	The charge-discharge profile for the $Li//Li_{12}O_{12}$ cell	49
Figure 4.7	Discharge capacity of Li $_4$ Ti ₅ O ₁₂ at a constant current density	50
1 iguie 4.7	of 21 37 mA g^{-1}	50
Figure 5.1	PVA film doned with 8 wt % LivTicOn	51
Figure 5.2	XRD profile of (a) Li ₄ Ti ₅ O_{12} (b) film of PVA dissolved in	52
1 iguie 5.2	water (c) film of PVA dissolved in 1 % acetic acid and	52
	doped with (d) 2 wt % LitTicOre (e) A wt % LitTicOre (f)	
	6 wt % Li $_{12}$ Ti ₂ O ₁₂ (g) 8 wt % Li $_{12}$ Ti ₂ O ₁₂ and (h) 10 wt %	
	Li $Ti_{1}O_{12}$ (*) indicates Li $Ti_{2}O_{12}$	
Figure 5 3(a)	ETIR spectrum for film of PVA dissolve in water from 500	54
1 Iguie 5.5(a)	cm^{-1} to 4000 cm ⁻¹	54
Figure 5.3(b)	ETIR spectrum for film of PVA dissolved in 1 % of acetic	55
1 Iguie 5.5(0)	acid from 500 cm ⁻¹ to 4000 cm ⁻¹	55
Figure 5 /	ETIR spectra of PVA film (dissolved in 1 % acetic acid) and	56
I Iguie J.+	doped with (a) 2 wt % Li $_{12}$ Ti $_{12}$ O ₁₂ (b) 4 wt % Li $_{12}$ Ti $_{12}$ O ₁₂ (c)	50
	6 wt % Li $_{11}$ Li $_{12}$ (d) 8 wt % Li $_{11}$ Li $_{12}$ (e) 10 wt %	
	$L_{14}T_{15}O_{12}$	
Figure 5.5	ETIR spectra of PVA film (dissolved in 1 % acetic acid) and	57
1 iguie 5.5	doped with (a) 2 wt % Li Ti_2O_{12} (b) 4 wt % Li Ti_2O_{12} (c)	51
	6 wt % Li ₄ Ti ₅ O ₁₂ (d) 8 wt % Li ₄ Ti ₅ O ₁₂ and (e) 10 wt %	
	$L_{14}T_{15}O_{12}$ from 2000 cm ⁻¹ to 4000 cm ⁻¹	
Figure 5.6	The UV-Vis absorption spectra of pure PVA film obtained	58
1 19410 010	from casting the solution of the polymer in (a) water and (b)	20
	acetic acid	
Figure 5.7	The UV-Vis absorption spectra of PVA films (dissolved in	59
1 15010 011	acetic acid) and doped with (a) 2 wt. %, (b) 4 wt. %, (c) 6 wt.	07
	%. (d) 8 wt. % and (e) 10 wt. % $Li_4Ti_5O_{12}$.	
Figure 5.8(a)	SEM image of PVA film dissolved in water. Circles show	60
1 18012 010(0)	white spot.	00
Figure 5.8(b)	SEM images of PVA film dissolved in acetic acid.	61
5. 50		()
Figure 5.9	SEM images of PVA film doped with (a) 2 wt. %, (b) 4 wt.	62
F: 5.10	%, (c) 6 wt. %, (d) 8 wt. % and (d) 10 wt. % $L_{14}I_{15}O_{12}$.	(2)
Figure 5.10	Dielectric constant (ε_r) versus log frequency of (a) PVA	63
	water, (b) PVA acetic acid, PVA doped with (c) 2 wi. %, (d) 4 sut $9(-6)$ (a) 4 sut $9(-6)$ (c) 4 s	
	4 wt. %, (e) 6 wt. %, (f) 8 wt. % and (g) 10 wt. % of	
E	$L_{14} = 150_{12}$.	<i>C</i> 1
Figure 5.11	Real modulus versus log frequency of (a) PVA water, (b)	04
	$P \vee A$ accurately $P \vee A$ doped with (c) 2 wit. %, (d) 4 wit. %,	
Eigung 5 12	(e) 6 wt. %, (f) 8 wt. % and (g) 10 wt. % of $L_{14}I_{15}O_{12}$.	61
Figure 3.12	(b) DVA agentic acid DVA doned with (a) 2 wt 0((d) 4 wt	04
	(b) I v A accuc aciu, F v A doped with (c) 2 wt. $\%$, (d) 4 wt.	
Figure 5 12	Dissipation factor (tan δ) versus log frequency of (a) DVA	65
11guie 3.13	water (b) PVA acetic acid PVA doned with (c) 2 wt % (d)	05
	water, (0) i $\sqrt{2}$ with accure actu, i $\sqrt{2}$ with (0) 2 with (0) 2 with (0)	

	4 wt. %, (e) 6 wt. %, (f) 8 wt. % and (g) 10 wt. % of	
Figure 5.14	Tan δ versus log f (Hz) at various temperatures for film of PVA dissolved in water.	66
Figure 5.15	Tan δ versus log f (Hz) at various temperatures for film of PVA dissolved in acetic acid solvent.	67
Figure 5.16	Tan δ versus log f (Hz) at various temperatures for films of PVA doped with 2 wt. % Li ₄ Ti ₅ O ₁₂ .	67
Figure 5.17	Tan δ versus log f (Hz) at various temperatures for films of PVA doped with 4 wt. % Li ₄ Ti ₅ O ₁₂ .	68
Figure 5.18	Tan δ versus log f (Hz) at various temperatures for films of PVA doped with 6 wt. % Li ₄ Ti ₅ O ₁₂ .	69
Figure 5.19	Tan δ versus log f (Hz) at various temperatures for films of PVA doped with 8 wt. % Li ₄ Ti ₅ O ₁₂ .	69
Figure 5.20	Tan δ versus log f (Hz) at various temperatures for films of PVA doped with 10 wt. % Li ₄ Ti ₅ O ₁₂ .	70
Figure 5.21	Argand plots derived from the conductivity relaxation region for pure PVA based solvent (a) water and (b) acetic acid.	72
Figure 5.22	Argand plots PVA doped with different concentrations of $Li_4Ti_5O_{12}$ (a) 2 wt. %, (b) 4 wt. %, (c) 6 wt. %, (d) 8 wt. % and (e) 10 wt. %.	72-73

LIST OF TABLES

Tables		Pages
Table 2.1	Lists of components for lithium ion batteries.	5
Table 2.2	Characteristics of some anode materials for lithium battery.	6
Table 2.3	Physical properties of various coke materials [Tran <i>et al.</i> , 1999; Chen <i>et al.</i> , 1995].	11
Table 2.4	Lattice parameter (a) for spinel-type $Li_{3.95}M_{0.15}Ti_{4.9}O_{12}$ (M=Al, Ga and Co) and $Li_{3.9}Mg_{0.1}A_{10.15}Ti_{4.85}O_{12}$ materials [Huang <i>et al.</i> , 2007].	17
Table 2.5	Previous works on polymer composites.	25
Table 2.6	Properties of poly (vinyl alcohol).	25
Table 3.1	Composition of composite film studied in this work.	29
Table 4.1	List of weight losses for sample pre-treated at 100 °C.	42
Table 4.2	The list of lattice parameter and volume at different sintered temperatures.	46
Table 4.3	Density of $Li_4Ti_5O_{12}$ at different sintered temperatures.	46
Table 4.4	The list of lattice parameter and volume at different sintered times.	47
Table 4.5	Density of $Li_4Ti_5O_{12}$ at different sintered times.	48
Table 5.1	Infrared peak assignments of PVA polymer.	53

LIST OF ABBREVIATIONS

AE	Absorption edge
DEC	Diethyl carbonate
DME	Dimethoxyethane
DSC	Differential scanning calorimetry
DTA	Differential thermal analysis
EC	Ethylene carbonate
EGA	Evolved gas analyzer
EIS	Electrochemical impedance spectroscopy
FTIR	Fourier transform infrared
LiPON	Lithium phosphorus oxynitride
MCF	Mesocarbon fiber
MCMB	Mesocarbon microbeads
MS	Mass spectroscopy
PC	Propylene carbonate
PS	Poly styrene
PVA	Poly (vinyl alcohol)
PVDF	Poly (vinylidene fluoride)
SEI	Solid electrolyte interface
SEM	Scanning electron microscopy
SHE	Standard hydrogen electrode
TAB	Teflon acetylene black
TG	Thermo gravimetric
TGA	Thermo gravimetry analysis
TGA-MS	Thermo gravimetry analysis-mass spectroscopy
UV-Vis	Ultraviolet-visible
XRD	X-ray diffraction