BAB 10 KAJIAN ANALISIS FILOGENETIK

10.1 PENGENALAN

Kajian analisis filogenetik adalah satu hipotesis hubungan perkongsian sejarah evolusi setiap ahli kumpulan sama ada mempunyai pertalian rapat dalam kumpulan yang sama atau kumpulan lain. Kajian ini merupakan kajian yang terkini dalam pengkelasan tumbuhan. Terdapat dua jenis perkongsian ciri iaitu plesiomorfik (ciri asalan atau primitif) dan sinapomorfik (berkongsi ciri-ciri terbitan). Ciri sinapomorfik merupakan asas dalam analisis filogenetik.

10.2 KAEDAH

Pemilihan ciri

Kebanyakan ciri ultrastruktur dalam tribus Hedychieae yang telah dikaji mempunyai persamaan dan sukar untuk mendapatkan kladogram yang baik. Lapanbelas ciri yang dipilihialah ciri yang berbeza di antara spesies-spesies dan genus yang dikaji. Ciri plesiomorfik dipilih berdasarkan kepada ciri yang diwarisi oleh setiap spesies. Sebagai contoh, kebanyakan spesies-spesies yang dikaji mempunyai debunga jenis psilat (ciri plesiomorfik), dan debunga jenis spinat, striat dan serebroid adalah ciri terbitan (ciri sinapomorfik) (Jadual 10.1).

Pemilihan ciri-ciri ini adalah berdasarkan kepada pemerhatian dan rujukan untuk mengklasifikasikan sesuatu ciri seperti ditunjukkan di bawah;

1. Striae pada permukaan abaksial daun
 0 tiada
 1 ada

2. Trikom pada permukaan abaksial daun 0 tiada 1 ada

3. Jenis stoma 0 hipostomatik 1 amfistomatik

4. Jenis stoma 0 tetrasitik 1 siklositik-tetrasitik 2 parasitik

5. Jenis debunga

<table>
<thead>
<tr>
<th>0</th>
<th>psilat</th>
<th>1</th>
<th>spinat</th>
<th>2</th>
<th>striat</th>
<th>3</th>
<th>serebroid</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>verukat</td>
<td>5</td>
<td>retikulat</td>
<td>6</td>
<td>skabrat</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kehadiran liang atau tiada liang, dan ornamentasi eksin debunga dalam Zingiberales boleh dibahagikan kepada dua jenis dan subjenis iaitu berliang, kolpat, porat atau forat dan tiada liang, jenis psilat, spinat, striat dan serebroid (Liang, 1988 dan Chen, 1989).

6. Bentuk debunga

| 0 | sfera | 1 | subsfera | 2 | ovoid |

7. Hujung papila pada stigma

| 0 | tiada | 1 | tajam | 2 | bulat |

8. Taburan papila pada stigma
 0 tiada 1 bukaan sahaja 2 padat

 Kebanyakan ahli tribus ini mempunyai papila pada bukaan tiub stigma sahaja
dan hanya genus *Scaphochlamys* mempunyai taburan papila dari tepi bukaan hingga ke
pangkal tiub stigma. Ciri ini boleh dijadikan data tambahan untuk pengcaman genus.
Kajian stigma dalam pembiakan seks tumbuhan adalah penting untuk memahami
struktur pistil. (Heslop-Harrison dan Shivanna, 1977; Heslop-Harrison, 1981 dan
Shivanna dan Johri, 1985). Ahli famili Zingiberaceae mempunyai stigma jenis basah
yang mempunyai rembesan dengan kehadiran papila atau tiada papila (Heslop-Harrison

9. Unjuran anter (anther crest)
 0 tiada 1 ada

 Ciri unjuran anter merupakan ciri yang penting dalam pengcaman genus
Kaempferia (Holttum, 1950). Unjuran dari anter mempunyai fungsi sebagai rembesan
dalam pendebungaan (Chaudhry dan Vijayaraghavan, 1992 dan Endress, 1994) dan ia

10. Kehadiran trikom pada permukaan labelum hujung
 0 tiada 1 ada

11. Kehadiran trikom pada permukaan labelum tengah
 0 tiada 1 ada

12. Kehadiran trikom pada permukaan labelum pangkal
 0 tiada 1 ada

13. Taburan trikom pada permukaan labelum hujung
 0 tiada 1 rawak 2 urat tengah

209
14. Taburan trikom pada permukaan
 labelum tengah
 0 tiada 1 rawak 2 urat tengah

15. Taburan trikom pada permukaan
 labelum pangkal
 0 tiada 1 rawak 2 urat tengah

Kebanyakan spesies-spesies tribus Hedychiaeae mempunyai trikom jenis ringkas
dan ekasel pada permukaan adaksial labelum, hanya beberapa spesies mempunyai
trikom berlengan, kurang padat, bertabur secara rawak dan hanya sebilangan kecil
mempunyai trikom padat pada urat tengah labelum, contohnya dalam genus
Boesenbergia.

16. Kehadiran papila pada permukaan labelum hujung
 0 tiada 1 ada

17. Kehadiran papila pada permukaan labelum tengah
 0 tiada 1 ada

18. Kehadiran papila pada permukaan labelum pangkal
 0 tiada 1 ada

Terdapat variasi pada permukaan labelum berdasarkan corak kutikel pada
| No. | Ciri yang dipilih dalam analisis filogenetik tribus Hedychieae dan kumpulan luaran (outgroup) terpilih
| (0=plesiomorfik, 1,2,3=sinapomorfik) |
|-----|--|
| 1. | Striae (abaksial) |
| | 0-tiada | 9. Unjuran anter (anther crest) |
| | 1-ada | |
| 2. | Trikom (abaksial) |
| | 0-tiada | 10. Kehadiran trikom pada adaksial labelum hujung (L_u) |
| | 1-ada | |
| 3. | Jenis stoma |
| | 0-hipostomatik | 11. Kehadiran trikom pada adaksial labelum tengah (L_m) |
| | 1-amfisomatik | |
| 4. | Jenis stoma |
| | 0-tetrasitik | 12. Kehadiran trikom pada adaksial labelum pangkal (L_b) |
| | 1-siklositik-tetrasitik | |
| | 2-parasitik | |
| 5. | Jenis debunga |
| | 0-psilat | 13. Taburan trikom pada L_u |
| | 1-spinat | |
| | 2-striat | |
| | 3-serebroid | 14. Taburan trikom pada L_m |
| | 4-verukat | |
| | 5-retikulat | |
| | 6-skabrat | |
| 6. | Bentuk debunga |
| | 0-sfera | 15. Taburan trikom pada L_b |
| | 1-subsfera | |
| | 2-ovoid | |
| 7. | Bentuk hujung papila (stigma) |
| | 0-tiada | 16. Kehadiran papila pada L_u |
| | 1-tajam | |
| | 2-bulat | |
| 8. | Taburan papila pada permukaan tiub stigma |
| | 0-tiada | 17. Kehadiran papila pada L_m |
| | 1-pada bukaan sahaja | |
| | 2-sangat padat | 18. Kehadiran papila pada L_b |
| | | |
Membina data matriks

Jadual 10.2 Data matriks analisis filogenetik tribus Hedychieae dan kumpulan luaran (outgroup) terpilih (0=plesiomorfik, 1,2,3=sinapomorfik, ?=tidak diketahui)

<table>
<thead>
<tr>
<th>Spesies</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boesenber gia curtisii</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. curtisii (AS22)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. plicata</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B. plicata</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(syn: B. plicata var. rubra)</td>
<td></td>
</tr>
<tr>
<td>B. rotunda</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camptandra latifolia</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. ovata</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. parvula</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curcuma domestica</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. sparganifolia</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. zeodaria</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hedychium coronarium</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaempferia angustifolia</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. elegans</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. galanga (Cekur betina)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaempferia sp. (Cekur jantan)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. parvula</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>K. pulchra</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Scaphochlamys biloba</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. concinna</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. klossi</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>S. kunstleri var. rubra</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>S. kunstleri varian 1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>S. kunstleri varian 2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>S. kunstleri varian 3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>S. kunstleri varian 4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>S. kunstleri varian 5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>S. sub-biloba</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. sylvetris</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Scaphochlamys sp. 1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Scaphochlamys sp. 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Globba cernea</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>G. francisii</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Zingiber ottensii</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Z. zerumbet</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Analisis filogenetik

Analisis filogenetik menggunakan perisian parsimoni PAUP 4.0b2 (Swofford, 1991) dengan beberapa kaedah analisis parsimoni untuk membuat perbandingan setiap kladogram yang terbentuk kerana terdapat sedikit kekeliruan dalam pengkelasan tribus Hedychieae berdasarkan kepada ciri-ciri yang dipilih. Analisis filogenetik telah dijalankan;

1. Analisis ‘Distance’ (Total difference): Neighbour-joining (NJ)
 a. Ciri-ciri teratur (ordered)- iaitu mengikut turutan posisi masing-masing seperti dalam senarai simbol. Senarai simbol ditunjukkan secara siri transformasi linear, contohnya; simbol “ABCDE” jadi aturan ciri-ciri mengikut urutan dari A ke E dan ciri-ciri mesti melalui B, C dan D.
 b. Ciri-ciri tak teratur (unordered)- menggunakan mana-mana arah transformasi dari A ke E. Ciri-ciri ini dibuat dari nod dalam pohon-pohon yang menggunakan langkah paling minimum.

2. Analisis “Maximum parsimony’ (MP)
 a. Pohon konsensus dengan menggunakan kaedah pencarian ‘Heuristic’ untuk mendapatkan pohon langkah evolusi yang paling rendah (terbaik) secara ‘swapping’.
 b. Pohon konstrain (monofili) menggunakan pohon konsensus yang terbentuk dari bahagian 2.a dengan menyusunatur semula kedudukan genus tribus Hedychieae. Jika langkah untuk mendapatkan penyelesaian suatu
pohon adalah sangat rendah, ia menggambarkan data ini boleh
dipertimbangkan kerana mana-mana pohon adalah lebih kurang sama.

10.3 KEPUTUSAN

Daripada analisis ‘Distance’ (Neighbour-joining) (rajah 10.1 dan rajah 10.2) pohon yang terjana menunjukkan terdapat dua klad yang utama iaitu klad genus Scaphochlamys dan klad campuran beberapa genus Boesenbergia, Hedychium, Kaempferia dan Zingiber, dan beberapa kumpulan genus Curcuma, Camptandra dan Globba (kumpulan luaran) yang terletak pada dahan yang paling luar. Pohon ini tidak menggambarkan perkaitan evolusi dengan jelas dan ia hanya menunjukkan perhubungan antara genus di dalam tribus Hedychieae sahaja.

Keputusan dari rajah 10.1 NJ (ciri tak tersusun) dan rajah 10.2 (ciri tersusun) menunjukkan genus Scaphochlamys masih kuat disokong dalam satu kelompok Scaphochlamys (klad S) yang mana telah terbahagi kepada dua subklad utama iaitu subklad pertama yang terdiri daripada S. biloba, S. concinna, dan S. kunstleri varian 3 dan subklad kedua yang terdiri daripada S. kunstleri var. rubra, S. kunstleri varian 1, s. kunstleri varian 2, S. kunstleri varian 4, S. kunstleri varian 5, Scaphochlamys sp.1, Scaphochlamys sp.2 dan S. sylvestris. S. kunstleri juga disokong kuat dalam subklad kedua iaitu S. kunstleri var. rubra mempunyai perkaitan rapat dengan S. kunstleri varian 1, S. kunstleri varian 2, S. kunstleri varian 4 dan S. kunstleri varian 5. Manakala S. kunstleri varian 3 lebih rapat dengan S. biloba dan S. concinna. Ini menunjukkan
Rajah 10.1 Pohon filogeni analisis ‘Distance’ (NJ) menggunakan ciri-ciri tak tersusun (kumpulan luaran, G-Globbeae dan Z-Zingibereae)
Rajah 10.2 Pohon filogeni analisis ‘Distance’ (NJ) menggunakan ciri-ciri tersusun (kumpulan luaran, G-Globbeae dan Z-Zingibereae)
bahawa varieti dan varian dalam *S. kunstleri* mempunyai hubungan yang rapat antara satu sama lain.

Perbandingan di antara rajah 10.1 dan rajah 10.2, didapati klad H dalam Rajah 10.2 adalah lebih berstruktur dan lebih baik berbanding dengan rajah 10.1. Ini adalah kerana merujuk kepada beberapa kes *B. plicata* dan *B. plicata var. rubra*, dan *Z. ottensii* dan *Z. zerumbet* yang telah terjana pada kedua-dua rajah. Dalam rajah 10.1, *B. plicata* dan *B. plicata var. rubra* terkeluar dari klad H dan genusnya sendiri, dan didapati lebih rapat kepada genus *Camptandra*, manakala rajah 10.2 pula *B. plicata* dan *B. plicata var. rubra* tergolong dalam klad H. Begitu juga *Zingiber ottensii* dan *Z. zerumbet* didapati kedua-dua spesies adalah sangat rapat antara satu sama lain di Rajah 10.2 manakala Rajah 10.1 kedua-duanya didapati terpisah antara satu sama lain iaitu *Z. zerumbet* di dapati lebih rapat kepada *C. sparganifolia* dan *Z. ottensii* pula didapati lebih rapat
kepada *G. franciscii* di klad H. Oleh demikian, rajah 10.2 boleh diterima berbanding dengan rajah 10.1 kerana lebih mengambarkan perkaitan antara genus di dalam tribus ini.

Terdapat beberapa klad yang lain telah terjana iaitu klad *Curcuma* dan *Camptandra* (Hedychieae), dan *G. cernua* (Globbeae) sebagai takson luaran. Klad *Curcuma* terdiri daripada *C. domestica* dan *C. zeodaria* manakala klad *Camptandra* pula terdiri daripada *C. latifolia* dan *C. parvula*. Klad *Curcuma* lebih rapat kepada dua klad utama dan klad *Camptandra* pula lebih rapat kepada klad *Curcuma*, dan *G. cernua* (kumpulan luaran) yang terjana pada dahan yang paling luar. Perhubungan evolusi tidak dapat dijelaskan dan hanya menunjukkan perhubungan sesetengah genus yang terdapat di dalam tribus Hedychieae.
Rajah 10.3 Pohon filogeni analisis MP. Nombor di atas cabangan menandakan peratus keyakinan (kumpulan luaran, G-Globeae dan Z-Zingibereae)
Keputusan daripada analisis MP (Heuristic) pula menunjukkan pohon paling parsimoni telah terjana menggunakan 86 langkah dengan nilai CI (Consistency Index) = 0.326 dan RCI (Retention Consistency Index) = 0.747, panjang langkah minimum yang mungkin = 28 dan panjang langkah maksimum yang mungkin = 257. Pohon konsensus tegas (155 pohon konsensus) telah ditunjukkan dalam rajah 10.3. Dua klad utama dan satu klad takson luaran telah terjana iaitu klad pertama yang terdiri daripada campuran genus *Boesenbergia, Kaempferia, Hedychium, Zingiber, G. franciscii* dan *C. ovata*, manakala klad kedua yang terdiri daripada campuran genus *Camptandra, Curcuma* dan *Scaphochlamys* dan klad *G. cernua* (Globbeae) pada klad yang ketiga.

Klad 2, genus *Scaphochlamys* telah disokong kuat dengan nilai keyakinan 100%, begitu juga dengan varieti dan varian-varian *S. kunstleri* yang mempunyai nilai keyakinan yang tinggi iaitu 81%. Genus *Curcuma* lebih rapat kepada klad *Scaphochlamys* dengan nilai keyakinan yang rendah iaitu hanya 58%.
Rajah 10.4 Pohon filogeni telah dikonstrain. Nombor di atas cabangan menandakan peratus keyakinan nilai butstrap (kumpulan luaran, G-Globbeae dan Z-Zingibereae)
Pohon konsensus (rajah 10.3) telah dikonstraining iaitu pohon ini telah disusun semula mengikut susunan genus-genus untuk mendapatkan langkah parsimoni yang paling rendah. Pengubahsuaian ini telah dibuat berdasarkan kepada keputusan yang telah diperolehi oleh Wood (2000) yang menggunakan analisis DNA ke atas tribus Hedychieae. Ini adalah kerana kita boleh menganggap bahawa keputusan analisis DNA adalah keputusan yang mungkin lebih tepat berbanding dengan keputusan morfologi. Pohon konstraining yang terjana telah menggunakan 105 langkah dengan nilai RI = 0.598 dan CI = 0.2333 dan replikat 500 butstrap. Pohon terjana ditunjukkan dalam raja 10.4.

Daripada raja 10.4, kesemua genus telah menunjukkan nilai peratus keyakinan yang tinggi iaitu 100% manakala peratus keyakinan antara spesies-spesies di dalam setiap genus di dapat adalah tinggi atau rendah. Genus Boesenbergia disokong kuat iaitu 79% nilai keyakinan bagi klad pertama yang terdiri daripada B. plicata dan B. plicata var. rubra (99%), rapat kepada B. curtisii (AS22) (70%) dan kepada B. curtisii (79%). Boesenbergia rotunda pula terdapat pada klad kedua yang berasingan.

Genus Kaempferia telah terbahagi kepada dua klad utama dengan nilai keyakinan setiap klad adalah sederhana iaitu 68% pada klad yang pertama dan 60% pada klad yang kedua. Klad pertama terdiri dari K. galanga (betina) dan K. galanga (jantan) yang sangat rapat antara satu sama lain dengan 82% nilai keyakinan dan kedua spesies ini di dapat lebih rapat kepada K. angustifolia dengan nilai keyakinan yang sederhana iaitu 68%. Manakala klad kedua pula terdiri dari K. elegans, K. parvula dan K. pulchra dengan nilai keyakinan yang sederhana iaitu 60% sahaja..
Untuk genus *Camptandra*, di dapat *C. latifolia* adalah lebih rapat kepada *C. parvula* berbanding dengan *C. ovata* dengan nilai keyakinan butstrap yang tinggi iaitu 74%. Genus *Curcuma* pula, menunjukkan *C. domestica* dan *C. zeodaria* adalah lebih rapat di antara satu sama lain dengan nilai keyakinan yang sederhana iaitu hanya 59% sahaja berbanding dengan *C. sparganifolia*. Genus *Hedychium* hanya diwakili oleh satu spesies iaitu *H. coronarium* maka perkaitan di antara spesies tidak dapat dijelaskan, ini hanya menunjukkan perhubungan antara genus sahaja iaitu genus ini adalah lebih rapat kepada genus *Boesenbergia* dan *Kaempferia*.

Genus *Scaphochlamys* terbagi kepada dua klad utama iaitu klad pertama yang terdiri dari *S. biloba, S. concinna, S. kunstleri* (varieti atau varian-variannya), *S. sylvestris, Scaphochlamys* sp.1 dan *Scaphochlamys* sp.2, manakala klad yang kedua hanya terdiri daripada *S. sub-biloba*. Klad *Scaphochlamys* masih disokong kuat dengan nilai keyakinan 100% dan klad pertama pula dengan nilai keyakinan yang tinggi iaitu sebanyak 73%. Kumpulan luaran, tribus Zingibereae adalah lebih rapat kepada tribus Hedychieae di mana lebih rapat kepada genus *Boesenbergia* dan *Kaempferia*. Tribus Globbeae pula terdapat pada klad yang paling luar dan ini boleh mengambarkan perkaitan di antara genus dan kumpulan luaran dengan lebih tepat. Walaupun begitu dua spesies dalam tribus ini iaitu *G. cernua* dan *G. fransciscii* tidak menunjukkan perhubungan yang tepat kerana kedua spesies ini berasal dari cabangan yang berlainan.
10.4 PERBINCANGAN DAN RUMUSAN

Daripada analisis ‘Distance’(NJ) dan MP (‘Heuristic’), keputusan yang diperolehi adalah hampir sama iaitu terdapat dua klad utama yang telah terjana iaitu klad pertama adalah klad campuran Boesenbergia, Kaempferia, Hedychium dan Zingiber, dan klad kedua adalah klad Scaphochlamys, dan beberapa klad Camptandra, Curcuma dan kumpulan luaran, Globba (dari rajah 10.1, rajah 10.2 dan rajah 10.3)

Dalam genus Boesenbergia, B. plicata dan B. plicata var. rubra adalah lebih rapat di antara satu sama lain, manakala B. curtisii pula adalah lebih rapat kepada B. curtisii (AS22), dan B. rotunda di dapat berbeza sedikit dari spesies-spesies lain dalam genus ini kerana ia mempunyai unjuran anter yang kecil dan terdapat papila jenis kon
pada permukaan abaksal daun dan permukaan adaksal labelum bahagian pangkal.
Genus ini di dapat mempunyai ciri utama yang berbeza dari genus-genus lain iaitu
mempunyai trikom yang padat pada urat tengah labelum terutama pada labelum
bahagian pangkal sama ada jenis ringkas atau jenis berlengan. *Boesenbergia plicata* dan
B. plicata var. rubra berbeza daripada spesies-spesies *Boesenbergia* yang lain dari segi
stoma dan debunganya.

Spesies *C. sparganifolia* (genus *Curcuma*) di dapat lebih rapat kepada genus
Boesenbergia berbanding dengan genusnya sendiri. Ini mungkin disebabkan oleh faktor
lokasi seperti dalam *B. curtisii* (AS22) dan *B. plicata var. rubra* yang juga berasal dari
Selatan Thailand. Perhubungan lokasi telah mempengaruhi keputusan ini kerana ciri
morfolofi mudah terubah suai terhadap persekutuan. Pengelompokan takson-takson
(genus *Scaphochlamys*) berdasarkan morfolofi adalah kurang jelas tetapi lebih
cenderung kepada pembahagian berdasarkan kepada taburan geografi bersifat setempat
(localised) (Aida, 2003).

Genus *Kaempferia* pula terbahagi kepada dua kumpulan iaitu kumpulan *K.
angustifolia*, *K. galanga* (cekur betina) dan *Kaempferia* sp. (cekur jantan), iaitu
mempunyai ciri striae pada permukaan abaksal daun dan debunga, dan mempunyai
trikom pada permukaan labelum bahagian pangkal. Kumpulan kedua pula terdiri
daripada *K. elegans*, *K. parvula* dan *K. pulchra* yang tidak mempunyai striae pada
permukaan daun dan debunga. Genus *Hedychium* pula mempunyai hubungan rapat
dengan kumpulan kedua genus *Kaempferia* iaitu mempunyai ciri trikom pada adaksal
daun, stoma jenis amfistomatik dan tiada trikom pada permukaan adaksal labelum. Ciri
utama genus *Kaempferia* ini ialah mempunyai stoma jenis amfistomatik dan terdapat unjuran pada bahagian anter.

Genus *Curcuma* juga terbahagi kepada dua kumpulan iaitu kumpulan *C. domestica* dan *C. zeodaria*, dan kumpulan *C. sparganifolia*. Ciri utama genus ini ialah tiada trikom pada permukaan daun. Kumpulan pertama mempunyai ciri debunga jenis subsfera, mempunyai trikom sama ada jenis silinder atau kelenjar pada permukaan labelum bahagian hujung, manakala kumpulan kedua pula mempunyai unjuran anter dan terdapat trikom pada permukaan labelum tengah dan pangkal. *Curcuma sparganifolia*

Ciri utama genus *Scaphochlamys* pula ialah mempunyai debunga yang berbentuk ovoid dan terdapat jenis psilat, verukat, retikulat dan skabrat, taburan papila adalah padat pada stigma dan kebanyakan spesies mempunyai trikom pada permukaan adaksial labelum dengan taburan secara rawak. Genus ini terbahagi kepada dua kumpulan utama iaitu kumpulan *S. biloba, S. sylvestris, S. sub-biloba* dan *S. klosii* yang tidak mempunyai trikom pada permukaan daun kecuali di *S. klosii* yang mempunyai trikom, manakala kumpulan kedua yang terdiri dari *S. concinna*, varieti dan varian-varian *S. kunstleri*, *Scaphochlamys* sp.1 dan *Scaphochlamys* sp.2 dengan mempunyai trikom pada permukaan abaksial daun.

Kumpulan pertama *Scaphochlamys* terbahagi kepada dua kumpulan lagi iaitu berdasarkan ciri kehadiran papila atau tiada papila pada permukaan adaksial labelum. *Scaphochlamys biloba, S. sylvestris* manakala *S. klosii* mempunyai papila dan *S. sub-biloba* pula tiada papila pada permukaan labelum. Kumpulan kedua juga terbahagi kepada dua kumpulan mengikut ciri sama ada stoma jenis hipostomatik atau amfistomatik, dan kehadiran atau tiada papila pada labelum. Kumpulan *S. concinna, S.*
kunstleri varian 4, S. kunstleri varian 5, Scaphochlamys sp.1 dan Scaphochlamys sp.2 mempunyai ciri stoma jenis hipostomatik dan tiada trikom pada permukaan adaksial labelum bahagian tengah dan labelum bahagian pangkal. Kumpulan S. kunstleri var. rubra, S. kunstleri varian 1, S. kunstleri varian 2 dan S. kunstleri varian 3 mempunyai ciri stoma jenis amfstomatik dan terdapat papila pada permukaan labelum. Scaphochlamys kunstleri var. rubra dan varian-varian S. kunstleri mempunyai taburan papila pada tepi bukaan stigma yang sederhana padat dan berkelompok.

spesies-spesies dengan lebih jelas dan pembahagian genus ini boleh dikelaskan dengan lebih tepat.

dan ini dapat menggambarkan kumpulan luaran dengan lebih tepat. Ciri anter apendaj juga perlu ditambah dalam genus ini untuk mendapat gambaran perhubungan antara spesies dan genus dengan lebih tepat.

Daripada rajah 10.4 pula, pohon konstrain yang telah terjana menunjukkan kesemua genus mempunyai nilai keyakinan yang tinggi iaitu 100%. Nilai ini amat tinggi walaupun telah diubah dan disusun semula mengikut genus masing-masing. Langkah parsimoni untuk membina pohon konstrain ini adalah rendah iaitu 19 langkah sahaja dariapada pohon konsensus, oleh itu keputusan ini boleh dipertimbangkan dan diterima. Ciri-ciri ultrastruktur yang telah dijadikan data analisis filogeni ini mungkin kurang maklumat iaitu terdapat kesan homoplasi atau ciri-ciri tidak bermaklumat. Ciri-ciri yang digunakan mungkin mudah terevolusi. iaitu ciri ini telah terevolusi banyak kali atau berlaku perubahan ciri berbalik. Topologi pohon yang diperolehi tidak dapat menentukan perhubungan evolusi dengan jelas dan tepat. Data yang dipilih ini juga mungkin data hingar (noisy) iaitu tiada petunjuk evolusi.
Untuk mengelakkan kekeliruan, ciri-ciri morfologi yang dipilih perlu diteliti terlebih dahulu sama ada sesuai atau tidak untuk dijadikan data analisis filogenetik. Kajian ini hanya tertumpu pada kajian SEM maka ciri-ciri yang dipilih adalah sangat terhad dan keputusan mungkin kurang lengkap dari segi perhubungan sebenar di antara spesies. Walau bagaimanapun keputusan ini masih boleh diterima kerana terdapat beberapa genus yang menunjukkan perkaitan antara spesies dan genus yang sangat jelas.