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ABSTRACT 

 

 

 

During the electron-proton collision at HERA, the long-lived neutral hadrons in their final 

states may travel from the centre of the ZEUS detector to reach the calorimeter and deposit its 

energy in the calorimeter as islands of energies. The neutral hadrons travel in straight path and 

were not deflected by the magnetic field in the ZEUS detector. 

In this thesis, measurements of the long-lived neutral hadrons 0
LK  and neutron in the final 

states in the calorimeter of the ZEUS detector has been carried out using the energy deposited by 

ZEUS Unidentified Flow Objects (ZUFOs) that were not associated with any tracks.. The 

kinematic variables of 0
LK  has been measured with virtual photon gain 22 1500 GeVQ <<  and 

centre-of-mass for intermediate boson-proton GeVWJB 25= . The reconstruction of invariant 

mass of vector meson )1020(φ using decay 00)1020( SL KK→φ  and baryon Λ  through decay 

channel 0πn→Λ  has been carried out, with both showing good agreement with the standard 

invariant mass [35] of )1020(φ  and Λ . The differential cross sections of )1020(φ  and  Λ and 

their respective daughter of 0
LK  and neutron with respect to their momentum were also 

calculated. 
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PREFACE 

 

 

 

In quest for knowledge, the endeavors put together by all parties to make a project 

undertaken a success is much more meaningful, than an individual alone. Such quest for the 

understanding the structure of matter to its most basic building block is an infinity. Save for the 

occasional tiredness of the mind and body, the hunger to understand more of nature’s phenomena 

will perhaps push one’s mind and capability towards excellence.  

Thus, this project is dedicated to all mankind in pursuit of knowledge, may we be united by 

the knowledge that knowledge knows no boundaries. 
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