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ABSTRACT 

In this thesis, a parallel implementation of explicit/implicit parallel algorithms such as 

the stationary iterative methods and the class of iterating alternating methods which 

includes: Alternating Direction Implicit (ADI), Iterative Alternating Direction Explicit 

(IADE), for D’Yakonov (IADE-DY), Double sweep Mitchell and Fairweather (MF-DS) 

and Alternating Group Explicit (AGE) method for solving 1-Dimensional (1-D), 2-

Dimensional (2-D) Parabolic (special examples including 1-D, 2-D Bio-Heat Equation)  

and 1-D, 2-D and 3-D Telegraphic Equations on a distributed environment of Message 

Passing Interface (MPI) and Parallel Virtual Machine (PVM) platform is presented. To 

correlate the communication activity with computation, we counted events between 

significant MPI/PVM call sites. All the required input files are generated during the 

partitioning phase. We implemented the scheduling of n-tridiagonal system of equations 

with the above mentioned methods to show improvement on speedup and efficiency 

with parallel strategies on two platforms. These integrate memory and communication 

resources in an efficient manner. This platform was designed to solve a wide variety of 

time-dependent Partial Differential Equations (PDE) for various applications. The ADI, 

IADE-DY, MF-DS and other classes of AGE are developed by the splitting of the 

implicit equation using the finite-difference discretization. These schemes are found to 

be convergent and possess unconditional stability, high order accuracy and above all 

explicitly, which is highly favorable for numerical parallel processing. Sequential 

experiments on the dimensional model equations confirm the convergence and 

accuracies of the schemes. The comparison of sequential performance of the methods 

provides us the order of increased accuracy and rapid convergence in the IADE class of 

MF-DS and AGE. Between these classes, AGE has the edge over the rest in terms of 

speedup and efficiency, because of the ability to perform independently due to the 

presence of non-overlapping sub-domain and the nature of the implicit block, which can 
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be easily converted to an explicit form. Here, the numerical solution of the Telegraph 

Equation in three space dimensions is obtained with 3-D ADI method. The method is 

shown to be computationally stable with linear runtime. The proposed algorithms in this 

thesis combine elements of numerical stability and parallel algorithm design that 

enhance overlap communication and computation to avoid unnecessary 

synchronization. Comparison of the parallel performance also indicates that the 

communication cost of class of AGE is minimum compared to the class of IADE and 

ADI. The parallelization of the program is implemented by a domain decomposition 

strategy. A Single Program Multiple Data (SPMD) model is employed for the 

implementation. The implementation is discussed in relation to means of parallel 

performance strategies and analysis. We present some analyses that are helpful for 

speedup and efficiency. Hence, the efficiency is strongly dependent on the grid size, 

block numbers and the number of processors for both MPI and PVM. Different 

strategies to improve the computational efficiency are proposed.    
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