
229

APPENDIX A

Vector and Matrix Norms

The norm of a vector v is a positive real number which gives some measure of the size

of the vector and is denoted by v . The norm must satisfy the following axioms:

(i) 0v if 0v and 0v iff 0v

(ii) vccv  for a real or complex scalar c .

(iii) wvwv  (the triangular inequality)

If the 1n vector v has components ,,, 21 nvvv  then the three most commonly used

norms are defined as follows:

The 1-norm of v is the sum of the moduli of the components of v , that is

 



n

i

n vvvvv
1

121 

the infinity norm of v is the maximum of the moduli of the components of v , that is:

n

i

ivMaxv
1




the 2-norm of v is the square root of the sum of the squares of the moduli of the

components of v , that is:

   







 



n

i

in vvvvv
1

2222

2

2

12
 .

Thus, the 2-norm is just the length of the vector. The norm of matrix A is a real positive

number giving a measure of the size of a matrix and must satisfy the following axioms:

230

(i) 0A if 0A and 0A if 0A

(ii) cAccA  for a real or complex scalar c .

(iii) BABA  (the triangular inequality)

(iv) BAAB  (the Scharz inequality)

vectors and matrices occur together so it is essential that they satisfy a condition

equivalent to (iv). As a consequence, matrix and vector norms are said to be compatible

or consistent if :

 0,  vvAAv

let A be an nn matrix and v a member of the set S of 1n vectors whose norms are

unity, that is , Sv if 1v . In general, the norm of the vector Av will vary as v

varies. Let ov be a member of S that makes Av attain its maximum value. Then the

norm of the matrix A is defined by:

 AvMaxAvA
v

o
1



this matrix norm is said to be subordinate to the vector norm and automatically

compatibility condition, because if 1vv  is any member of S ,

 ,11 vAAAvAv o 

since 11 v . It follows that for all subordinate matrix norms,

 ,
1

1

vMaxIvMaxI
v

v






where I is the unit matrix. The definitions of the Eq. (3.11) and ∞ norms with 1v

lead to the following results: (1) the 1-norm of the matrix A is the maximum column

sum of the moduli of elements of A , (2) the ∞-norm of the matrix A is the maximum

row sum of the moduli of elements of A , (3) the 2-norm of the matrix A is the square

root of the spectra radius of ,AAT where TA is the transpose of the conjugate complex

231

of A and (4) the spectra radius of a matrix B written)(B and defined as the maximum

of the moduli of its eigenvalues),,1(nii  . Recall that eigenvalues are calculated

from 0)det( iB  . We will often meet real symmetric matrices for which AAT  . If

x is an eigenvector of the matrix A corresponding to the eigenvalue  then xAx 2 .

Hence,

 xAxxAAxAxA 222)( 

and thus,

 i
i

MaxAAA  )()(2

2
 [A.1]

we often encounter tridiagonal matrices. The eigenvalues of the nn tridiagonal matrix

are:

 nsnsbcas ,,1),1/cos(2   [A.2]

where ba, and c may be real or complex. Take the positive root; let i be an eigenvalue

of the nn matrix B and ix the corresponding eigenvector. Then we have

ii xBx  and so

 iiii xxBx  

thus for all compatible matrix and vector norms it follows that

 iiii xBBxx 

and so

 niBi ,,1 . Therefore,

 BB )( [A.3]

thus if 1)(B then 1B .

232

APPENDIX B

MPI Program for 1-D Explicit Parabolic

/******** MPI-1D *********/

#include "mpi.h"

#include <stdio.h>

#define ARRAYSIZE

#define MASTER 0

#define MAXWORKER

#define STEPS

#define NGHBOR1

#define NGHBOR2

int main(int argc, char *argv[])

{

 void prtdat();

 int numtasks, numworkers, taskid, dest, rc, i, ix, it, index, rows, start, end,

 extra, left, right, msgtag, arraymsg = 1, indexmsg = 2, source, chunksize,

arraysize;

 float data[ARRAYSIZE];

 float result[ARRAYSIZE];

 float result1[ARRAYSIZE];

 FILE *fp;

233

 MPI_Status status;

 /*********** Initializations *******************************/

 rc = MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &numtasks);

 MPI_Comm_rank(MPI_COMM_WORLD, &taskid);

 if (taskid != 0)

 printf ("error initializing MPI and obtaining task ID information\n");

 else

 printf ("mpi_heat1D MPI task ID = %d\n", taskid);

 printf("%d tasks, I am task %d\n", numtasks, taskid);

 numworkers = numtasks - 1;

 chunksize = (ARRAYSIZE/numworkers);

 /*****************************Master task ********************/

 if (taskid == MASTER)

 {

 printf("\n*********************Starting MPI Example 1 *****\n");

 printf("MASTER: number of worker tasks will be= %d\n",

numworkers);

 MPI_Finalize();

 /* Initialize the array */

 for (ix = 0; ix < ARRAYSIZE; ix++)

 data[ix] = 0.0;

 index = 0;

 /* Send each worker task its portion of the array */

 chunksize = ARRAYSIZE/numworkers;

 extra = ARRAYSIZE%numworkers;

234

 index = 0;

 for (i = 1; i <= numworkers; i++)

 {

 rows = (i <= extra) ? chunksize+1 : chunksize;

 /* Tell each worker who its neighbor are */

 if (i == 1)

 left = 0;

 else

 left = i - 1;

 if (i == numworkers)

 right = 0;

 else

 right = i + 1;

 /* Now send startup information to each worker */

 dest = i;

 msgtag = arraymsg;

MPI_Send(&index, 1, MPI_INT, dest, msgtag,

MPI_COMM_WORLD);

MPI_Send(&rows, 1, MPI_INT, dest, msgtag,

MPI_COMM_WORLD);

MPI_Send(&left, 1, MPI_INT, dest, msgtag,

MPI_COMM_WORLD);

MPI_Send(&right, 1, MPI_INT, dest, msgtag,

MPI_COMM_WORLD);

MPI_Send(&data[index], rows, MPI_FLOAT, dest, msgtag,

MPI_COMM_WORLD);

235

printf("Sent to= %d index= %d rows= %d left= %d right=

%d\n",dest,index,rows,left,right);

 index = index + rows;

 }

 /* Now wait for result from all worker task */

 for (i = 1; i < numworkers; i++)

 {

 source = i;

 msgtag = indexmsg;

MPI_Recv(&index, 1, MPI_INT, source, msgtag,

MPI_COMM_WORLD, &status);

MPI_Recv(&rows, 1, MPI_INT, source, msgtag,

MPI_COMM_WORLD, &status);

MPI_Recv(&result[index], rows, MPI_FLOAT, source, msgtag,

MPI_COMM_WORLD, &status);

 }

 /* write final output */

 printf("...\n");

 printf("MASTER: Sample results from worker task = %d\n", source);

 printf(" result1[%d]=%f\n", index, result1[index]);

 printf(" result1[%d]=%f\n", index+100, result1[index+100]);

 printf(" result1[%d]=%f\n\n", index+1000, result1[index+1000]);

 MPI_Finalize();

 }

 }

 /*****************************Worker task ************************/

236

 if (taskid != MASTER)

 {

 /* Receive my portion of array from the master task */

 source = MASTER;

 msgtag = arraysize;

MPI_Recv(&index, 1, MPI_INT, source, msgtag,

MPI_COMM_WORLD, &status);

MPI_Recv(&rows, 1, MPI_INT, source, msgtag,

MPI_COMM_WORLD, &status);

MPI_Recv(&left, 1, MPI_INT, source, msgtag, MPI_COMM_WORLD,

&status);

MPI_Recv(&right, 1, MPI_INT, source, msgtag,

MPI_COMM_WORLD, &status);

MPI_Recv(&data[index], rows, MPI_FLOAT, source, msgtag,

MPI_COMM_WORLD, &status);

 /* Copy my data into working array */

 result = malloc(sizeof(float) * (chunksize+2));

 result1 = malloc(sizeof(float) * (chunksize+2));

 if (index==0)

 start = 1;

 else

 start = index;

 if ((index+rows)==ARRAYSIZE)

 end = index + rows-2;

 else

 end = index + rows-1;

237

 for (i = index; i < index + chunksize; i++)

 result[i] = data[i];

 /* Do the step iteration */

 for (it = 1; it <= STEPS; it++)

 {

 if (left != 0)

 {

MPI_Send(&data[index], 1, rows, left, NGHBOR2,

MPI_COMM_WORLD);

 source = left;

 msgtag = NGHBOR1;

MPI_Recv(&data[index-1], 1, rows, source, msgtag,

MPI_COMM_WORLD, &status);

 }

 if (right != 0)

 {

MPI_Send(&data[index+rows-1], 1, rows, right,

indexmsg, MPI_COMM_WORLD);

 source = right;

 msgtag = NGHBOR2;

MPI_Recv(&data[index+rows], 1, rows, source, msgtag,

MPI_COMM_WORLD, &status);

 }

 /* do the calculation */

 for (ix = 1; ix <= rows; ix++)

 {

238

 result1[ix] = result[ix] + 0.5 * (result[ix-1] -

 2 * result[ix] + result[ix+1]);

 }

 }

 /* Send my results back to the master task */

MPI_Send(&index, 1, MPI_INT, MASTER, indexmsg,

MPI_COMM_WORLD);

MPI_Send(&rows, 1, MPI_INT, MASTER, indexmsg,

MPI_COMM_WORLD);

MPI_Send(&result1[index], rows, MPI_FLOAT, MASTER, indexmsg,

MPI_COMM_WORLD);

 }

 MPI_Finalize();

}

239

APPENDIX C

MPI Program for 2-D Explicit Parabolic Equation

/**

 * Heat-2D

 ***/

#include "mpi.h"

#include <stdio.h>

#define NXPROB /* x dimension of grid problem */

#define NYPROB /* y dimension of grid problem */

#define STEPS /* number of time steps */

#define MAXWORKER /* maximum number of worker task */

#define MINWORKER /* minimum number of worker task */

#define BEGIN /* message type */

#define NGHBOR1 /* message type */

#define NGHBOR2 /* message type */

#define NONE /* indicates no neighbor */

#define DONE /* message type */

#define MASTER /* taskid of first process */

struct Parms {

 float cx;

 float cy;

240

} parms = {0.1, 0.1};

main(int argc, char * argv[])

{

 void inidat(), prtdat(), update();

 float start_time, end_time;

 float u[2][NXPROB][NYPROB];

 int taskid, numworkers, numtasks, averow, rows,

 offset, extra, dest, source, neighbor1, neighbor2,

 msgtype, nbytes, rc, start, end,

 i, ix, iy, iz, it;

 MPI_Status status;

 /* First, find out my taskid and how many tasks are running */

 rc = MPI_Init(&argc, &argv);

 rc = MPI_Comm_size(MPI_COMM_WORLD, &numtasks);

 rc = MPI_Comm_rank(MPI_COMM_WORLD, &taskid);

 if (rc != 0)

 printf ("error initializing MPI and obtaining task ID information\n");

 else

 printf ("mpi_heat2D MPI task ID = %d\n", taskid);

 numworkers = numtasks - 1;

 if (taskid == MASTER)

 {

 /***************master code******************************/

 /* Check if numworkers is within range - quit if not */

 if ((numworkers > MAXWORKER) || (numworkers < MINWORKER))

 {

241

 printf("numworkers %d for this example\n", numworkers);

printf("MP_PROCS needs to be between %d and %d for this

exercise\n", MINWORKER, MAXWORKER);

 MPI_Finalize();

 // exit(-1);

 }

 /* Initialize grid */

printf("Grid size: X= %d Y= %d Time steps=

%d\n",NXPROB,NYPROB,STEPS);

 printf("Initializing grid and writing initial.dat file...\n");

 inidat(NXPROB, NYPROB, u);

 start_time = MPI_Wtime();

 prtdat(NXPROB, NYPROB, u, "initial.dat");

/* Distribute work to workers. Must first figure out how many rows to

send and what to do with extra rows */

 averow = NXPROB/numworkers;

 extra = NXPROB%numworkers;

 offset = 0;

 for (i = 1; i <= numworkers; i++)

 {

 rows = (i <= extra) ? averow+1 : averow;

/* Tell each worker who its neighbors are, since they must

exchange data with each other. */

 if (i == 1)

 neighbor1 = NONE;

 else

242

 neighbor1 = i - 1;

 if (i == numworkers)

 neighbor2 = NONE;

 else

 neighbor2 = i + 1;

 /* Now send startup information to each worker */

 dest = i;

 MPI_Send(&offset, 1, MPI_INT, dest, BEGIN,

MPI_COMM_WORLD);

MPI_Send(&rows, 1, MPI_INT, dest, BEGIN,

MPI_COMM_WORLD);

MPI_Send(&neighbor1, 1, MPI_INT, dest, BEGIN,

MPI_COMM_WORLD);

MPI_Send(&neighbor2, 1, MPI_INT, dest, BEGIN,

MPI_COMM_WORLD);

MPI_Send(&u[0][offset][0], rows*NYPROB, MPI_FLOAT,

dest, BEGIN, MPI_COMM_WORLD);

printf("Sent to= %d offset= %d rows= %d neighbor1= %d

neighbor2= %d\n", dest, offset, rows, neighbor1, neighbor2);

 offset = offset + rows;

 }

 /* Now wait for results from all worker tasks */

 for (i = 1; i <= numworkers; i++)

 {

 source = i;

 msgtype = DONE;

243

MPI_Recv(&offset, 1, MPI_INT, source, msgtype,

MPI_COMM_WORLD, &status);

MPI_Recv(&rows, 1, MPI_INT, source, msgtype,

MPI_COMM_WORLD, &status);

MPI_Recv(&u[0][offset][0], rows*NYPROB, MPI_FLOAT,

source, msgtype, MPI_COMM_WORLD, &status);

 }

 /* Write final output and call X graph */

 printf("Writing final.dat file and gegerating graph...\n");

 prtdat(NXPROB, NYPROB, &u[0][0][0], "final.dat");

 end_time = MPI_Wtime();

 printf("using %d processors and %f seconds \n\n",

 numworkers, end_time - start_time);

 MPI_Finalize();

 } /* End of master code */

 if (taskid != MASTER)

 {

 /********* Worker code ********************************/

 /* Initialize everything - including the borders - to zero */

 for (iz = 0; iz < 2; iz++)

 {

 for (ix = 0; ix < NXPROB; ix++)

 {

 for (iy = 0; iy < NYPROB; iy++)

 {

 u[iz][ix][iy];

244

 }

 }

 }

/* Now receive my offset, rows, neighbors, and grid partition from master

*/

 source = MASTER;

 msgtype = BEGIN;

MPI_Recv(&offset, 1, MPI_INT, source, msgtype,

MPI_COMM_WORLD, &status);

MPI_Recv(&rows, 1, MPI_INT, source, msgtype, MPI_COMM_WORLD,

&status);

 MPI_Recv(&neighbor1, 1, MPI_INT, source, msgtype,

MPI_COMM_WORLD, &status);

MPI_Recv(&neighbor2, 1, MPI_INT, source, msgtype,

MPI_COMM_WORLD, &status);

MPI_Recv(&u[0][offset][0], rows*NYPROB, MPI_FLOAT, source,

msgtype, MPI_COMM_WORLD, &status);

/* Determine border elements. Need to consider first and last columns.

Obviously, row 0 can't exchange with row 0-1. likewise, the last row can't

exchange with last+1. */

 if (offset==0)

 start = 1;

 else

 start = offset;

 if ((offset+rows)==NXPROB)

245

 end = offset + rows-2;

 else

 end = offset + rows-1;

/* Begin doing step iterations. Must communicate border elements with

neighbors. if i have the first or last grid row, then i only need to

communicate with one neighbor */

 iz = 0;

 for (it = 1; it <= STEPS; it++)

 {

 if (neighbor1 != NONE)

 {

MPI_Send(&u[iz][offset][0], NYPROB, MPI_FLOAT,

neighbor1, NGHBOR2, MPI_COMM_WORLD);

 source = neighbor1;

 msgtype = NGHBOR1;

 MPI_Recv(&u[iz][offset-1][0], NYPROB,

MPI_FLOAT, source, msgtype, MPI_COMM_WORLD,

&status);

 }

 if (neighbor2 != NONE)

 {

MPI_Send(&u[iz][offset+rows-1][0], NYPROB, MPI_FLOAT,

neighbor2, NGHBOR1, MPI_COMM_WORLD);

 source = neighbor2;

 msgtype = NGHBOR2;

246

 MPI_Recv(&u[iz][offset+rows][0], NYPROB, MPI_FLOAT,

 source, msgtype, MPI_COMM_WORLD, &status);

 }

 /* Now call update to update the value of grid points */

 update(start, end, NYPROB, &u[iz][0][0], &u[1-iz][0][0]);

 /* Finally, send my portion of final result back to master */

MPI_Send(&offset, 1, MPI_INT, MASTER, DONE,

MPI_COMM_WORLD);

 MPI_Send(&rows, 1, MPI_INT, MASTER, DONE,

MPI_COMM_WORLD);

MPI_Send(&u[iz][offset][0], rows*NYPROB, MPI_FLOAT, MASTER,

DONE, MPI_COMM_WORLD);

 }

 // MPI_Barrier(MPI_COMM_WORLD);

 MPI_Finalize();

}

/**

 * Initialize grid.

 *

**

***/

inidat(nx, ny, u);

prtdat(nx, ny, u, "inidat");

for (ix = 0; ix <= nx-1; ix++)

247

{

 u[1][ix][0] = u[0][ix][0];

 u[1][ix][ny-1] = u[0][ix][ny-1];

}

for (iy = 0; iy <= ny-1; iy++)

{

 u[1][0][iy] = u[0][0][iy];

 u[1][nx-1][iy] = u[0][nx-1][iy];

}

/***

 * Iterate over all timesteps.

 * **/

for (it = 1; it <= STEPS; it++)

{

 update(nx, ny, &u[iz][0][0], &u[1-iz][0][0]);

 iz = 1 - iz;

 prtdat(nx, ny, &u[iz][0][0], "final.dat");

}

/**

 * subroutine update

 *

**/

void update(int start, int end, float u[0][0][0])

{

 int ix, iy, iz;

248

 int nx;

 int ny ;

 for (ix = start; ix <= end; ix++)

 {

 for (iy = 1; iy <= ny-2; iy++)

 {

 u[1-iz][ix][iy] = u[iz][ix][iy] +

 parms.cx*(u[iz][ix-1][iy] + u[iz][ix+1][iy] -

 2*(u[iz][ix][iy])) +

 parms.cy*(u[iz][ix][iy-1] + u[iz][ix][iy+1] -

 2*(u[iz][ix][iy]));

 }

 }

}

/**

**

 * subroutine inidat

 *

**

*/

void inidat(int nx, int ny, float u[nx][ny])

{

 int ix, iy;

 int nx;

 int ny;

249

 for (ix = 0; ix <= nx-1; ix++)

 {

 for (iy = 0; iy <= ny-1; iy++)

 {

 u[ix][iy];

 }

 }

}

/**

 * subroutine prtdat

 *

**

**/

void prtdat(int nx, int ny, float u[nx][ny], char *fnam)

{

 int ix, iy;

 int nx;

 int ny;

 FILE *fp;

 fp = fopen(fnam, "w");

 for (iy = ny-1; iy >= 0; iy--)

 {

 for (ix = 0; ix <= nx-1; ix++)

 {

250

 fprintf(fp, "%8.3f", u[ix][iy]);

 if (ix != nx-1)

 fprintf(fp, " ");

 else

 fprintf(fp, "\n");

 }

 }

 fclose(fp);

}

251

APPENDIX D

Derivative by Finite Difference Method for Various Dimensions with Theorems

The finite difference method is based on the local approximations of the partial

derivatives in a PDE (Jain (1984)), which is derived by low order Taylor series

expansions. The matrices that result from this discretizations are often well structured,

which means that they typically consist of a non-zero diagonals. The general form of a

PDE:

0
2

22

2

2

























g

y

u
e

x

u
d

y

u
c

yx

u
b

x

u
a (D.1)

Eq.(D.1) is called Parabolic if 042  acb .

Heat equation diffusion problems are examples of parabolic equations (Saulev (1964)).

Methods to solve parabolic equations are: (a) Explicit Method and (b) Implicit Method.

If the boundary conditions are function values at the end point then the problem

is known as Dirichlet Problem (DP). If one or both boundary condition are derivatives

values, then the problem is known as Neumann Problem (NP). Suppose that

),,(yxUU  the value of u at the two points),(yx and),(kyhx  are related by the

Taylor‟s expansion:

252

n

n

RyxU
yx

kh

n

yxU
yx

kh
yxU

yx

kh
yxUkyhxU





































),(
)!1(

1

),(
!2

1
),()(),(),(

1

2



 (D.2)

where the remainder term is given by:

10),,(
!

1













  kyhxU

yx

kh

n
R

n

n (D.3)

that is,
n

n khR)(0  (D.4)

by (2.4) there exist a positive constant
n

n khMRM)( as both h and k tends to

zero. The space point),(yjxi  is called the grid points. Expanding in Taylor series for

jiU ,1 and jiU ,1 about the central value jiU , , we obtain:

 !4
)(

!3
)(

!2
)()(432

,,1

xxxxxxxxx

xjiji

U
x

U
x

U
xUxUU 

 !4
)(

!3
)(

!2
)()(432

,,1

xxxxxxxxx

xjiji

U
x

U
x

U
xUxUU 

 where ,,
2

2

x

u
U

x

u
U xxx









 etc. and all derivatives are evaluated at the grid point

),(ji . By taking these equations singly and by adding or subtracting one from another,

we obtain the following finite-difference formula for the first and second derivatives at

),(ji :

)(
)(

,,1
xO

x

UU

x

u jiji









 
 (D.5)

)(
)(

,1,
xO

x

UU

x

u jiji









 
 (D.6)

2,1,1
)(

)(2
xO

x

UU

x

u jiji









 
 (D.7)

2

2

,1,,1

2

2

)(
)(

2
xO

x

UUU

x

u jijiji









 
 (D.8)

253

formula (D.5) - (D.7) are known as the forward, backward and central difference forms

respectively. For convenience, the central-difference operator x will be used

occasionally. It is defined by:

2

,2/1,2/1

,
x

UU
U

jiji

ji






 (D.9)

whence
2

,1,,1

,
)(

2

x

UUU
Ux

jijiji

ji






 (D.10)

by Saulev (1964),

Ttxfor

x

U

t

U










0,10,

2

2

 (D.11)















TttgtU

TttgtU

xxfxU

o

0),(),1(

0),(),0(

10),()0,(

1

 (D.12)

Explicit Method

Our approach to solving Parabolic Partial Differential Equations by a numerical method

is to replace the Partial derivatives by finite-difference approximations. For the one

dimensional heat flow equation (McDonough (1994))

2

2

x

U

bc

k

t

U











 (D.13)

we can use the relations

tO
t

UU

t

u j

i

j

i

tt

xx

j

i









 




1

 (D.14)

and 2

2

,1,,1

2

2

)(
)(

2
xO

x

UUU

x

u jijiji









 
 (D.15)

we use subscripts to denote position and superscript for time. Note that the error terms

are of different orders, since a forward difference is used in equation (D.13). This

introduces some special limitations, but it does simplify the procedure. Substituting

254

(d.14) and (D.15) into (D.13) and solving for 1, jiU gives the equation for the forward-

difference method:

    jijijiji UxctkUU
xc

tk
U ,

2

,1,121,)(21
)(





  


 (D.16)

we have solved for 1, jiU in terms of the temperatures at time jt in equation (D.16) in

view of the normally known conditions for a Parabolic PDE. We subdivide the length

into uniform subintervals, and apply the finite difference approximation to equation

(D.13) at each point where u is not known, equation (D.16) then gives the values of u at

each point at 1tt  , since the values at 0tt  are given by the initial conditions. It can be

used to get values at 2t using the values at 1t as initial conditions, so we can step the

solution forward in time. At the endpoints, the boundary conditions will determineU . If

the ratio of rxtk  2)(is chosen so that 21)(2  xctk  , the equation is

simplified in that the last term vanishes and we have:

)(
2

1
,1,11, jijiji UUU   (D.17)

The value of r is critical, if the value of r is chosen as less than one-half there will be

improved accuracy and this is called a marching method. Similarly, if the value of r is

greater than one-half which would reduce the number of calculations required to

advance the solution through a given interval of time, the phenomenon of instability sets

in. The forward difference method is an explicit method since all the approximations

can be found directly based on the information from the initial and boundary conditions.

These conditions give us values at),(),,(),,(2211 txtxtx oo , from which we get an

approximation at),(11 tx . Adding the initial condition at),(3 otx gives us an

approximation at),(12 tx , and so on across the row.

Implicit Method of Solution (Carnahan et. al., 1969)

255

The explicit schemes outlined are simple to implement however they suffer from one

major problem. They typically only provide useful solutions when

2

)(2x
t


 (D.18)

Thus, as the spatial grid x is refined to improve accuracy, the number of calculations

to reach any fixed time ft increases enormously. For instance, for a particular problem

a grid 10 times as fine would required 100 times more steps and therefore 1000 times

more calculations. This deficiency can be a serious problem when solving multi-

dimensional equations. If niU , is known at a grid point then niU , can be calculated at

every point. In performing this calculation, knowledge of the value of niU , on ER and

FQ is not required. For fixed 2)(xtr  as 0x , the slope of EP 0 xrt and

hence in the limit EP tends to the true characteristics. Consequently, for finite x the

explicit finite difference approximation is an imperfect model for a parabolic equation,

although for xt  the gradient 0




x

t
. It is possible to bypass the limitation

(D.18)) and produce a scheme whereby boundary conditions are required to advance the

solution to the next point. We approximate the time derivatives in (D.11) by the

backward difference

 1,, 



jiji UU

t

u
 (D.19)

The truncation error in this case is)(tO  . Substituting Eq.(D.18) and Eq.(D.19) into

Eq.(D.11) gives us the following finite difference representation:

2

,1,,11,,

)(

2

x

UUU

t

UU ninininini








 
 (D.20)

In this case each value of U at time level n depends upon other values at this time level

as well as values at time level 1n .

256

Rearranging (D.20) and writing in terms of time levels 1n and n . In this way it

can be said that the PDE xxt UU  is approximated at the midpoint M with

)22(
)(2

1
1,11,1,1,,12  


 nininininixx UUUUU

x
U (D.21)

)(

1
,1, ninit UU

t
U 


 

 (D.22)

by equating the two approximations and multiplying by 2k and subsequent ordering, we

obtain the following difference equation for an interior point. Rearranging Eq.(D.21)

and Eq.(D.22) in Eq.(D.11) we have:

 nininininini rUUrrUrUUrrU ,1,,11,11,1,1)22()22(  (D.23)

the following conditions are based upon the initial boundary value problem Eq.(D.11)

and Eq.(D.12). The above is called an implicit finite-difference scheme as we can not

explicitly write),,0(1, miU ni  in terms of known quantities. We can write

Eq.(D.23) in matrix form as:

 nnn dUBU 1 (D.24)

where,

 

  ,0,,0,

,,,,

1,1,

,121

T

nmnon

T

nmn

rUrUd

UUUU













and B is the)1()1( mm matrix

































)21(

)21(

)21(

)21(

rr

rrr

rrr

rr

B 

multiplying both side of Eq. (D.24) by 1B gives

 nnn dBUBU 11

1



  (D.25)

257

thus, if we can invert the matrix B we can advance the solution forward in time. In

general matrix inversion is a difficult problem. However in the numerical solution of

PDE we often come across sparse matrices or matrices with some special structure. The

matrix B is a tridiagonal matrix which we can invert using the Thomas Algorithm

(Carnahan et. al., (1969)).

Theorem D.1 (McDonough (1994))

A necessary and sufficient condition for convergence of the iteration (D.29) - (D.32)

from any initial guess is:

 ,1)(G (D.38)

where

 NiGMaxG i  1),(,)( (D.39)

is the spectra radius of the iteration matrix G , and)(G is the notation for the

spectrum (set of all eigenvalues) of G . We remark (without proof) that this basically

follows from the contraction mapping principle and the fact that

 GG )( (D.40)

for all norms, ║.║. We also note that convergence may occur even when 1)(G

holds, but only restricted set of initial guesses. It should be clear that)(G corresponds

to the Lipchitz constant.

Definition D.1: The residual after n iterations is:

)(n

n Aubr  (D.41)

Definition D.2: The exact error after n iterations is:

)(n

n uue  (D.42)

Definition D.3: The iteration error after n iterations is:

)()1(nn

n uud   (D.43)

258

Hence, nr and ne are related by:

 nn rAe  (D.44)

from Eq.(D.33) and definition (D.32) that

 02

2

1 eGeGGee nnnn    (D.45)

and similarly for nd .

Definition D.4: The average convergence rate for iterations of (3.32) is given by

 nn G
n

GR log
1

)(


 (D.46)

Definition D.5: The asymptotic convergence rate is defined as

)(log)(GGR  (D.47)

It is the asymptotic convergence that is more important gauging performance of iterative

methods when they are to be used to produce highly-accurate solutions. Values of

(D.45) depend only on the spectral radius of the iteration matrix and are thus unique. It

is shown that

)(lim)(GRGR n
n 

  (D.48)

This relationship is used in obtaining estimates of total arithmetic required by iterative

methods. Hence, the iterative error and exact error are related by:

 nn eGd)1( (D.49)

or

 nn dGe 1)1( (D.50)

then

 nn dGe 1)1( (D.51)

 1)(,
)(1

1



 Gd

G
e nn 


 (D.52)

259

Theorem D.2 (Lee & Riess (1991)): Let ne and nd be as defined in Eq.(D.42) and

Eq.(D.43) respectively, and suppose 1)(G holds. Then for any norm ,

),(lim
1

G
d

d

n

n

n





and
)(1

1
lim

1 Gd

e

dn

n

n 





.

recall that ,1 nn Gdd which implies 1 nn dGd for compatible norms. In

particular, if we take the vector norm to be 2-norm we may use the spectra norm as the

matrix norm. Then if G is diagonalizable we have

)(GG 

thus,

)(
1

G
d

d

n

n




employing the Reyleigh quotient to arrive at nth reverse inequality

2

1

,1

2

1

1,1
)(










n

nn

n

nn

d

dd

d

Gdd
G

but Cauchy-Schwarz inequality follows that:

 ,)(
1

2

1

1






n

n

n

nn

d

d

d

dd
G

recall from Eq.(D.52) that:

)(1

1

Gd

e

n

n




from Eq.(D.49), we have:

 nn deG )1(and nn deG )1(which implies ,)1(nn eGd 

again, for compatible matrix and vector norms, using the matrix spectral norm and the

vector 2-norm, respectively, gives:

)(1

1

Gd

e

n

n




260

Background of the Fourth Order in Space

According to Jennifer et al., (2007), the problem which we considered here is the

numerical solution of Eq. (D.11). Let x and t denote spatial mesh size and time

increment, respectively. We assume that there exists an integer ,M such that

,1)1( xM and jiU , and jiUxx ,)(are used to represent the numerical approximations

of),(tjxiU  and),,(tjxiUxx  respectively. Also, we use ji, to represent the space

and time indexes and 1)(nTΔt  . The mesh ratio is taken as 2)(xt  where

10  ji and .0j

 The application of the well-known Crank-Nicolson type of scheme to Eq. (D.11)

results in the following expression at the point ()t,(x 1/2ji  is

 

MiU

UUUUU

ji

jijijijiji

,2,1)1(

)1(21)1()21(

,1

,,11,11,1,1













(D.53)

the above approximation corresponds to the fully implicit, the Crank-Nicolson and the

classical explicit methods when  takes the values 1, ½, and 0 respectively and Eq.

(D.53) is of order 2)(tO  in time . Sahimi et al., (2001) developed the Iterative

Alternating Decomposition Explicit (IADE) method to solve (D.11). The second-order

IADE scheme entailed the decomposition of a tridiagonal matrix which arises from the

difference method used to approximate the parabolic equation. By employing the

fractional scheme of Yanenko (Yanenko (1971)) and the Mitchell-Fairweather (MF)

variant, this method proves to be highly accurate, fast, convergent and stable. Here, we

will construct fourth-order approximations to the terms jiUxx ,)(and ,)(1, jiUxx so that

Eq. (D.53) is order)(4xO  in space.

The Interior Points (Jennifer et al., (2007))

261

The first part of our construction is for all interior points),,(ji tx where 12  Mi

and .1M The following compact scheme is used in order to derive a fourth-order

approximation to :)(, jiUxx

),(

),(),(
),(),(2),(

1

12

11

jixx

jixxjixx

jijiji

yxcU

yxbUyxaU
x

yxUyxUyxU














 (D.54)

where ba, and c are constants to be determined. The Taylor series expansions to terms

),(1 ji yxU  and),(1 ji yxU  on the left side of Eq. (D.54), at the point),(ji yx yield the

following result:

).(

),(
12

),(
),(),(2),(

4

2

2

11

xO

yxU
x

yxU
x

yxUyxUyxU
jixxxxjixx

jijiji








 

 (D.55)

Similarly, expansions for),(1 jixx yxU  and),,(1 jixx yxU  on the right side of Eq. (D.55)

at the same point yield the result below:

)(),(
!3

),(
2

),(),(),(

4
3

2

1

xOyxU
x

yxU
x

yxxUyxUyxU

jixxxxx

jixxxxjixxxjixxjixx









 (D.56)

the substitution of Eq. (D.54) into Eq. (D.55) and Eq. (D.56) give the next results:

).(

),(
6

),(
2

),()(

),()()(),(
12

),(

4

32

4
4

xO

yxUx
ca

yxUx
ca

yxxUca

yxUcbaxOyxU
x

yxU

jixxxxjixxxxjixxx

jixxjixxxxjixx
















 (D.57)

To turn both sides of Eq. (D.57) into fourth-order, we need to equate the corresponding

coefficients for terms involving 2,, xxxo  and 3x on both sides. This result in the

following set of linear equations in terms of ba, and c :

262

,0
6

,
12

1

2
,0,1 







caca
cacba

for which the solutions are

6

5
,

12

1
 bca

substituting these values into and Eq. (D.54) and changing

),(),,(),,(11 jijiji yxUyxUyxU  and),(),,(1 jixxjixx yxUyxU  and),(1 jixx yxU  to their

analogous notations, the following fourth-order relation at all interior points and any

time level is derived.

.1,12

),2(
5

6
)(

10

1
)()(

10

1
,1,,12,1,,1






 

MMi

UUU
x

UUU jijijijixxjixxjixx (D.58)

It can be seen that Eq. (D.58) is obtained from Taylor series only:

)(
2

)(2

2

11 xO
x

UUU
U iii

ixx 



  (D.59)

The Boundary Points (Jennifer et al., (2007))

We now develop similar fourth-order approximations for),)((1 jxx yxU and

),,(jMxx yxU where 1x and Mx are the two points next to the actual boundary points 0

and 1. We start with),(1 jyx first, where the following combined scheme is used:

),,(*

),(*(
1

)(*),(*),0(
*

2

12,21

j

jjxxjxxjx

yxUf

yxUe
x

yxUcyxUayU
x

b





 (D.60)

**,*,*, ecba and *f are constants to be determined. By multiplying both sides of Eq.

(D.60) by 2x we can rewrite it as follows:

),(*

),(*),(*),(*),0(*

2

1

22

1

2

j

jjxxjxxjx

yxUf

yxUeyxUxcyxUxayxUb 
 (D.61)

263

if each term of Eq. (D.61) is expanded in Taylor series at point),,0(jy we would obtain

the following results:

)(),0(
6

),0(
2

),0(),0(),(4
32

1 xOyU
x

yU
x

yxUyUyxU jxxxjxxjxjj 







(D.62)

)(

),0(
!3

)2(
),0(

!2

)2(
),0(2),0(),(

4

32

2

xO

yU
x

yU
x

yxUyUyxU jxxxjxxjxjj









 (D.63)

)(),0(),0(),(2

1 xOyxUyUyxU jxxxjxxjxx  (D.64)

).(),0(2),0(),(2

2 xOyxUyUyxU jxxxjxxjxx  (D.65)

The substitution into Eq. (D.61) of Eq. (D.62-D.65) and afterward simplifications give

the following result:

)(),0(
6

8

),0(*)2*(),0(*)2*(),0(*)*(

)(),0(*)2*(),0(*)*(),0(*

43

42

xOyUx
fe

yxUfeyxUfeyUfe

xOyUcayUxcayxUb

jxxx

jxxjxj

jxxxjxxjx








 (D.66)

to derive a fourth-order approximation in Eq. (D.66), we only need to equate the

corresponding coefficients for those terms involving 2,, xxxo  and 3x on both sides.

This results in the following system equations:

,
6

8
*2**,2

2

*
***,2**,0**

fe
caf

e
cafebfe


 (D.67)

with the solutions to be

***,

3

1
,,

6

11
* fefcfbfa  (D.68)

we take 1* f in the above solutions, and substitute it together with the corresponding

values of **,*,*,*, edcba into Eq. (D.61) get the following scheme:

x

yxUyxU
yU

x
yxUyxU

jj

jxjxxjxx










),(),(
),0(

1
),(

3

1
),(

6

11 12

21 (D.69)

264

after replacing),(ji yxU

to jiU ,
and applying the boundary condition

),(),0(1 jx yyjU  the following fourth-order scheme at the boundary point),(1 jyx is

obtained:

 .
)(

)(
3

1
)(

6

11
2

,1,21

,2,
x

UU

x

y
UU

jjj

jxxjixx











 (D.70)

Similarly, the following fourth-order scheme at the point),(1 jM yx  can also be derived:

 .
)(

)(
3

1
)(

6

11
2

,,12

,1,
x

UU

x

y
UU

jMjMj

jMxxjMxx













 (D.71)

Thus, the set of schemes, consisting of Eq. (D.53), (D.58), (D.70) and (D.71) have

overall order of),(42 xtO  which indicates that our set of schemes are consistent

with the differential equation.

Unconditional Stability for 2-D Telegraph Equation

The general way to verify the stability of a finite-difference kind algorithm is to put an

elemental solution into the algorithm and make sure that the amplitude of the

propagation gain is no more than one. By applying the Von Neumann analysis as in

Smith, (1985), we can analytically prove that the 2-D ADI method is unconditionally

stable. Consider the elemental solution of Eq. (D.4)

)(

,

kkyjkxikInn

ji
yxeKv




 (D.72)

where yx kandk are the wave numbers along the yandx direction, respectively, and

k is propagation gain. Putting this elemental solution into the 2-D ADI algorithm, and

with some manipulations, we get:

 0
)1)(1()1)(1(

)(2 12 










yx

yx

yx

oyx

RR

cRR
K

RR

cRR
K (D.73)

where

265

)2/(sin4 2 xkR xxx   (D.74)

)2/(sin4 2 ykR yyy   (D.75)

The solutions of Eq. (D.73) are equal to:

)1)(1(yx

o

RR

DcA
K




 (D.76)

where

))(1)(1()(1

2

0 cARRcAD yx 

 .yx RRA 

By examining the amplitude of K , we are able to prove that the 2-D ADI algorithm is

unconditional stable in the following theorem.

Theorem D.3: The 2-D ADI algorithm is unconditionally stable.

Proof: To prove that the 2-D ADI method is unconditionally stable, we need show the

amplitude of the gain factor K is less than or equal to K one. Let us consider the

following two cases.

 Case 1: 0D .

 From Eq. (5.28 – 5.31), we know that 0cA is greater or equal to zero. Hence

.

)1)(1(

100

0

0

ccRRcA

DcA

RyRx

DcA
K

yx 









 We only need to prove
2

10)(ccRRD yx  , since 10 cc  is also greater than

zero

 .0)1)(1)(()(2

10  yxyxyx RRRRccRRD

 Therefore, .1K

266

 Case 2: .0D

.1

1

2)(

1

2)(

1

)1)(1(

2

2

12























yx

yx

RRA

t

a

t

t

a

t
A

RR

cA
K

Therefore, the 2-D ADI method is unconditionally stable from the above derivations.

Linear Runtime

There are two sub iterations need to be preformed for each time step. By analysis the

runtime of each sub iteration, we are able to prove the computational load of the 2-D

ADI algorithm is linear time at each time step in the following theorem.

Theorem D.4: The runtime of the 2-D ADI algorithm is O(N) at each time step, where

yx xNNN  is the number of total nodes.

Proof: Let us consider Sub iteration 1. We can divide the set of these N nodes by

yx NxN subsets with each one containing xN points in the x direction. Since only two

unknown variables need to be solved in the updating equation with each),,(ji the

coefficient matrix ji , associated with updating
/

., jv s is a triangular matrix at each

subset. Therefore, the runtime of the updating
/

., jv s is linear with)(xNO . There are

yx NxN subsets in sub iteration 1. Hence, the computational load of the sub iteration 1 is

267

)(yx NxNO at each time step. The runtime of sub iteration 2 is also)(NO in a similar

way. Hence, the total runtime of the 2-D ADI algorithm is)(NO at each time step.

Stability Analysis for 3-D ADI Telegraphic Equation (Mohanty, (2009))

With reference to (Mohanty et. al. (2004)) we can analytically prove that the 3-D ADI

method is unconditionally stable. Consider the elemental solution of Eq. (D.103)

)(

,,

zkkyjkxikInn

kji
zyxeKv



 (D.77)

where yx kk , and zk are the wave numbers along the yx, and z direction, respectively,

and k is propagation gain. Putting this elemental solution into the 3-D ADI algorithm,

and with some manipulations, we get:

0
)1)(1)(1(

)1)(1)(1(

)(2

1

2












zyx

zyxxzzyyx

zyx

ozyxxzzyyx

RRR

cRRRRRRRRR

K
RRR

cRRRRRRRRR
K

 (D.78)

where

)2/(sin4 2 xkR xxx   (D.79)

)2/(sin4 2 ykR yyy   (D.80)

)2/(sin4 2 zkR zzz   (D.81)

The solutions of Eq. (D.78) are equal to:

)1)(1)(1(zyx

o

RRR

DcA
K




 (D.82)

where

))(1)(1)(1()(1

2

0 cARRRcAD zyx 

 .zyxxzzyyx RRRRRRRRRA 

268

by examining the amplitude of K , we are able to prove that the 3-D ADI algorithm is

unconditional stable in the following theorem.

Theorem D.5 The 3-D ADI algorithm is unconditionally stable (Mohanty, (2009)).

With reference to (Mohanty et al., (2004) and Mohanty (2009)), to prove that the 3-D

ADI method is unconditionally stable, we need show the amplitude of the gain factor K

is less than or equal to one. Let us consider the following two cases.

Case 1: 0D .

From Eq. (D.78) and Eq. (D.79) – Eq. (D.81), we know that 0cA is greater or equal to

zero. Hence

.

)1)(1)(1(

100

0

0

ccRRRcA

DcA

RzRyRx

DcA
K

zyx 









we only need to prove
2

10)(ccRRRD zyx  , since 10 cc  is also greater than

zero

 .0)1)(1)(1)(()(2

10  zyxzyxzyx RRRRRRccRRRD

Therefore, .1K

Case 2: .0D

.1

1

2)(

1

2)(

1

)1)(1)(1(

2

2

12























zyx

zyx

RRRA

t

a

t

t

a

t
A

RRR

cA
K

269

Therefore, the 3-D ADI method is unconditionally stable from the above derivations.

Linear Runtime

Mohanty (2009) presented three sub iterations need to be preformed for each time step.

By analysis the runtime of each sub-iteration as shown in Table 5.2, we are able to

prove the computational load of the 3-D ADI algorithm is linear time at each time step

in the following theorem.

Theorem D.6: The runtime of the 3-D ADI algorithm is)(NO at each time step, where

zyx NNNN  is the number of total nodes. Let us consider sub-iteration 1. We can

divide the set of these N nodes by zy NN  subsets with each one containing xN

points

in the x direction. Since only three unknown variables need to be solved in the updating

equation with each),,,(kji the coefficient matrix kj , associated with updating
/

,., kjv s is

a triangular matrix as at each subset. Therefore, the runtime of the updating
/

,., kjv s is

linear with)(xNO . There are zy NN  subsets in sub-iteration 1. Hence, the

computational load of the sub iteration 1 is)(zyx NNNO  at each time step.

The runtime of sub iteration 2 and 3 is also)(NO in a similar way. Hence, the

total runtime of the 3-D ADI algorithm is)(NO at each time step.



































00

00

00

,











kj (D.83)

270

APPENDIX E

Publications in International (ISI) Journals and Conferences

Ewedafe S. U. & Rio H. S. 2010. Armadillo Generation Distributed System and

Geranium Cad cam Cluster for Solving 2-D Telegraphic Equation with MPI and

PVM. International Journal of Computer Mathematics. Published
http://prod.informaworld.com/smpp/title~db=all~content=g772621578. 2008

impact factor: 0.546 and 2008 cited half-life: 6.7 years (2008 Journal Citation

Reports)

Ewedafe S. U. & Rio H. S. 2010. Parallel Implementation of 2-D Telegraphic Equation

on MPI/PVM Cluster (Domain Decomposition Implementation). International

Journal of Parallel Programming. Published

http://www.springerlink.com/content/t5182031p6192817/. Impact factor: 0.875

of Journal Citation Reports®, Thomson Reuters.

Ewedafe S. U., & Rio H. S. 2010. Unconditional Stable 3-D Alternating Direction

Implicit Method on 3-D Telegraph Equation. International Journal of

Mathematics and Engineering with Computers. Accepted in December.

Ewedafe S. U & Rio H. S. 2008. Solving 2-D Parabolic Problems on two Distributed

Platforms using Different Alternating Iterative Methods. International Journal

of Mathematics and Computer Science. 3 (4): 247 – 278

Ewedafe S. U. & Rio H. S. 2009. Using Geranium Cad cam Cluster for Solving 2-D

Bio-Heat Transfer Problem of the Iterative Alternating Direction Explicit

Method with MPI. 5
th

 Asian Mathematical Conference. Putra World Trade

Centre, Kuala Lumpur, Malaysia

Ewedafe S. U. & Rio H. S. 2009. Parallel Simulation of the Fourth-Order IADE Method

on Heat-equation with PVM. Proceedings of the 5
th

 International Conference on

Mathematics, Statistics and their Applications. West Sumatera, Indonesia, June

9
th

 – 11
th

Ewedafe S. U. & Rio H. S. 2009. Solving 2-D Telegraphic Problem on Distributed

System Using PVM. 3
rd

 International Conference on

Experiments/Process/System Modeling/Simulation/Optimization (3
rd

 IC-

EpsMsO). Greece, Athens 8
th

 – 11
th

 July

http://prod.informaworld.com/smpp/title~db=all~content=g772621578
http://www.springerlink.com/content/t5182031p6192817/

