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APPENDIX A 

Vector and Matrix Norms 

 

The norm of a vector v  is a positive real number which gives some measure of the size 

of the vector and is denoted by v . The norm must satisfy the following axioms: 

(i) 0v  if 0v  and 0v  iff 0v  

(ii) vccv   for a real or complex scalar c . 

(iii) wvwv   (the triangular inequality) 

If the 1n vector v  has components ,,, 21 nvvv   then the three most commonly used 

norms are defined as follows: 

The 1-norm of v  is the sum of the moduli of the components of v , that is  

                                               
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the infinity norm of v  is the maximum of the moduli of the components of v , that is:  
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the 2-norm of v  is the square root of the sum of the squares of the moduli of the 

components of v , that is: 

                                   







 



n

i

in vvvvv
1

2222

2

2

12
 .                                                                                                                                                            

Thus, the 2-norm is just the length of the vector. The norm of matrix A  is a real positive 

number giving a measure of the size of a matrix and must satisfy the following axioms: 
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(i) 0A if 0A and 0A if 0A  

(ii) cAccA   for a real or complex scalar c . 

(iii) BABA   (the triangular inequality) 

(iv) BAAB   (the Scharz inequality) 

vectors and matrices occur together so it is essential that they satisfy a condition 

equivalent to (iv). As a consequence, matrix and vector norms are said to be compatible 

or consistent if : 

                                                      0,  vvAAv  

let A  be an nn  matrix and v  a member of the set S  of 1n  vectors whose norms are 

unity, that is , Sv  if 1v . In general, the norm of the vector  Av will vary as v  

varies. Let ov  be a member of S  that makes Av  attain its maximum value. Then the 

norm of the matrix  A  is defined by:  

                                                 AvMaxAvA
v

o
1

                                      

this matrix norm is said to be subordinate to the vector norm and automatically 

compatibility condition, because if 1vv   is any member of S , 

                         ,11 vAAAvAv o   

since 11 v . It follows that for all subordinate matrix norms, 

                                                 ,
1

1

vMaxIvMaxI
v

v




  

where I  is the unit matrix. The definitions of the Eq. (3.11) and ∞ norms with 1v

lead to the following results: (1) the 1-norm of the matrix A  is the maximum column 

sum of the moduli of elements of A , (2) the ∞-norm of the matrix A  is the maximum 

row sum of the moduli of elements of A , (3) the 2-norm of the matrix A  is the square 

root of the spectra radius of ,AAT  where TA is the transpose of the conjugate complex 
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of A  and (4) the spectra radius of a matrix B written )(B  and defined as the maximum 

of the moduli of its eigenvalues ),,1( nii  . Recall that eigenvalues are calculated 

from 0)det(  iB  . We will often meet real symmetric matrices for which AAT  . If 

x  is an eigenvector of the matrix A  corresponding to the eigenvalue   then xAx 2 . 

Hence, 

                                           xAxxAAxAxA 222 )(    

and thus, 

                                            i
i

MaxAAA   )()( 2

2
                                   [A.1]  

we often encounter tridiagonal matrices. The eigenvalues of the nn  tridiagonal matrix 

are: 

                                          nsnsbcas ,,1),1/cos(2                         [A.2] 

where ba, and c may be real or complex. Take the positive root; let i  be an eigenvalue 

of the nn  matrix B  and ix  the corresponding eigenvector. Then we have    

ii xBx  and so 

                                                   iiii xxBx    

thus for all compatible matrix and vector norms it follows that  

                                                    iiii xBBxx   

and so       

                                      niBi ,,1 . Therefore, 

                                                       BB )(                                                             [A.3] 

thus if 1)( B  then 1B . 
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APPENDIX B 

MPI Program for 1-D Explicit Parabolic 

 

/******** MPI-1D *********/ 

#include "mpi.h" 

#include <stdio.h> 

#define ARRAYSIZE  

#define MASTER    0 

#define MAXWORKER  

#define STEPS                                                                  

#define NGHBOR1    

#define NGHBOR2    

int main(int argc, char *argv[]) 

{ 

 void prtdat(); 

 int numtasks, numworkers, taskid, dest, rc, i, ix, it, index, rows, start, end, 

 extra, left, right, msgtag, arraymsg = 1, indexmsg = 2, source, chunksize,   

arraysize; 

 float data[ARRAYSIZE]; 

 float result[ARRAYSIZE]; 

 float result1[ARRAYSIZE]; 

 FILE *fp; 
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 MPI_Status status;                                                                                                                          

 /*********** Initializations *******************************/                                                                                                                           

 rc = MPI_Init(&argc, &argv); 

 MPI_Comm_size(MPI_COMM_WORLD, &numtasks); 

 MPI_Comm_rank(MPI_COMM_WORLD, &taskid); 

 if (taskid != 0) 

  printf ("error initializing MPI and obtaining task ID information\n"); 

 else 

  printf ("mpi_heat1D MPI task ID = %d\n", taskid); 

 printf("%d tasks, I am task %d\n", numtasks, taskid); 

 numworkers = numtasks - 1; 

 chunksize = (ARRAYSIZE/numworkers); 

 /*****************************Master task ********************/ 

 if (taskid == MASTER) 

 { 

  printf("\n*********************Starting MPI Example 1 *****\n"); 

  printf("MASTER: number of worker tasks will be= %d\n", 

numworkers); 

  MPI_Finalize(); 

         /* Initialize the array */ 

         for (ix = 0; ix < ARRAYSIZE; ix++) 

   data[ix] = 0.0; 

         index = 0; 

         /* Send each worker task its portion of the array */ 

         chunksize = ARRAYSIZE/numworkers; 

         extra = ARRAYSIZE%numworkers; 
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         index = 0; 

         for (i = 1; i <= numworkers; i++) 

  { 

   rows = (i <= extra) ? chunksize+1 : chunksize; 

          /* Tell each worker who its neighbor are */ 

          if (i == 1) 

    left = 0; 

   else 

    left = i - 1; 

   if (i == numworkers) 

    right = 0; 

   else 

    right = i + 1; 

          /* Now send startup information to each worker */ 

          dest = i; 

   msgtag = arraymsg; 

MPI_Send(&index, 1, MPI_INT, dest, msgtag, 

MPI_COMM_WORLD); 

MPI_Send(&rows, 1, MPI_INT, dest, msgtag, 

MPI_COMM_WORLD); 

MPI_Send(&left, 1, MPI_INT, dest, msgtag, 

MPI_COMM_WORLD); 

MPI_Send(&right, 1, MPI_INT, dest, msgtag, 

MPI_COMM_WORLD); 

MPI_Send(&data[index], rows, MPI_FLOAT, dest, msgtag, 

MPI_COMM_WORLD); 
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printf("Sent to= %d index= %d rows= %d left= %d right= 

%d\n",dest,index,rows,left,right); 

          index = index + rows; 

  } 

  /* Now wait for result from all worker task */ 

          for (i = 1; i < numworkers; i++) 

  { 

   source = i; 

   msgtag = indexmsg; 

MPI_Recv(&index, 1, MPI_INT, source, msgtag, 

MPI_COMM_WORLD, &status); 

MPI_Recv(&rows, 1, MPI_INT, source, msgtag, 

MPI_COMM_WORLD, &status); 

MPI_Recv(&result[index], rows, MPI_FLOAT, source, msgtag, 

MPI_COMM_WORLD, &status); 

  } 

  /* write final output */ 

          printf("...........................................\n"); 

  printf("MASTER: Sample results from worker task = %d\n", source); 

          printf(" result1[%d]=%f\n", index, result1[index]); 

  printf(" result1[%d]=%f\n", index+100, result1[index+100]); 

  printf(" result1[%d]=%f\n\n", index+1000, result1[index+1000]); 

  MPI_Finalize(); 

  } 

  } 

         /*****************************Worker task ************************/ 
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 if (taskid != MASTER) 

 { 

  /* Receive my portion of array from the master task */ 

  source = MASTER; 

  msgtag = arraysize; 

MPI_Recv(&index, 1, MPI_INT, source, msgtag, 

MPI_COMM_WORLD, &status); 

MPI_Recv(&rows, 1, MPI_INT, source, msgtag, 

MPI_COMM_WORLD, &status); 

MPI_Recv(&left, 1, MPI_INT, source, msgtag, MPI_COMM_WORLD, 

&status); 

MPI_Recv(&right, 1, MPI_INT, source, msgtag, 

MPI_COMM_WORLD, &status); 

MPI_Recv(&data[index], rows, MPI_FLOAT, source, msgtag, 

MPI_COMM_WORLD, &status); 

  /* Copy my data into working array */ 

             result = malloc(sizeof(float) * (chunksize+2)); 

  result1 = malloc(sizeof(float) * (chunksize+2)); 

  if (index==0) 

   start = 1; 

  else 

   start = index; 

  if ((index+rows)==ARRAYSIZE) 

   end = index + rows-2; 

  else 

   end = index + rows-1;       
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            for (i = index; i < index + chunksize; i++) 

   result[i] = data[i];  

  /* Do the step iteration */ 

  for (it = 1; it <= STEPS; it++) 

  { 

   if (left != 0) 

   { 

MPI_Send(&data[index], 1, rows, left, NGHBOR2, 

MPI_COMM_WORLD);         

    source = left; 

    msgtag = NGHBOR1; 

MPI_Recv(&data[index-1], 1, rows, source, msgtag, 

MPI_COMM_WORLD, &status); 

   } 

   if (right != 0) 

   { 

MPI_Send(&data[index+rows-1], 1, rows, right, 

indexmsg, MPI_COMM_WORLD); 

    source = right; 

    msgtag = NGHBOR2; 

MPI_Recv(&data[index+rows], 1, rows, source, msgtag, 

MPI_COMM_WORLD, &status); 

           } 

   /* do the calculation */ 

   for (ix = 1; ix <= rows; ix++) 

   { 
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     result1[ix] = result[ix] + 0.5 * (result[ix-1] -  

       2 * result[ix] + result[ix+1]); 

   } 

  } 

  /* Send my results back to the master task */ 

MPI_Send(&index, 1, MPI_INT, MASTER, indexmsg, 

MPI_COMM_WORLD); 

MPI_Send(&rows, 1, MPI_INT, MASTER, indexmsg, 

MPI_COMM_WORLD); 

MPI_Send(&result1[index], rows, MPI_FLOAT, MASTER, indexmsg, 

MPI_COMM_WORLD); 

  } 

  MPI_Finalize();  

} 
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APPENDIX C 

MPI Program for 2-D Explicit Parabolic Equation 

 

/**************************************************************** 

 * Heat-2D  

 *****************************************************************/ 

#include "mpi.h" 

#include <stdio.h> 

#define NXPROB  /* x dimension of grid problem */ 

#define NYPROB                /* y dimension of grid problem */ 

#define STEPS                   /* number of time steps       */ 

#define MAXWORKER  /* maximum number of worker task */ 

#define MINWORKER /* minimum number of worker task */ 

#define BEGIN       /* message type   */ 

#define NGHBOR1             /* message type */ 

#define NGHBOR2      /* message type */ 

#define NONE                    /* indicates no neighbor */ 

#define DONE                    /* message type */ 

#define MASTER                /* taskid of first process */ 

struct Parms { 

 float cx; 

 float cy; 
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} parms = {0.1, 0.1}; 

main(int argc, char * argv[]) 

{ 

 void inidat(), prtdat(), update(); 

 float start_time, end_time; 

        float u[2][NXPROB][NYPROB]; 

 int taskid, numworkers, numtasks, averow, rows, 

     offset, extra, dest, source, neighbor1, neighbor2, 

     msgtype, nbytes, rc, start, end, 

     i, ix, iy, iz, it; 

 MPI_Status status; 

 /* First, find out my taskid and how many tasks are running */ 

 rc = MPI_Init(&argc, &argv); 

 rc = MPI_Comm_size(MPI_COMM_WORLD, &numtasks); 

 rc = MPI_Comm_rank(MPI_COMM_WORLD, &taskid); 

 if (rc != 0) 

  printf ("error initializing MPI and obtaining task ID information\n"); 

 else 

  printf ("mpi_heat2D MPI task ID = %d\n", taskid); 

 numworkers = numtasks - 1; 

 if (taskid == MASTER)  

 { 

  /***************master code******************************/ 

  /* Check if numworkers is within range - quit if not */ 

  if ((numworkers > MAXWORKER) || (numworkers < MINWORKER)) 

  { 
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   printf("numworkers %d for this example\n", numworkers); 

printf("MP_PROCS needs to be between %d and %d for this 

exercise\n", MINWORKER, MAXWORKER); 

   MPI_Finalize(); 

  // exit(-1); 

  } 

  /* Initialize grid */ 

printf("Grid size: X= %d Y= %d Time steps= 

%d\n",NXPROB,NYPROB,STEPS); 

  printf("Initializing grid and writing initial.dat file...\n"); 

  inidat(NXPROB, NYPROB, u); 

  start_time = MPI_Wtime(); 

  prtdat(NXPROB, NYPROB, u, "initial.dat"); 

/* Distribute work to workers. Must first figure out how many rows to 

send and what to do with extra rows */ 

  averow = NXPROB/numworkers; 

  extra = NXPROB%numworkers; 

  offset = 0; 

  for (i = 1; i <= numworkers; i++) 

  { 

   rows = (i <= extra) ? averow+1 : averow; 

/* Tell each worker who its neighbors are, since they must 

exchange data with each other. */ 

   if (i == 1) 

    neighbor1 = NONE; 

   else 
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    neighbor1 = i - 1; 

   if (i == numworkers) 

    neighbor2 = NONE; 

   else 

    neighbor2 = i + 1; 

   /* Now send startup information to each worker */ 

   dest = i; 

  MPI_Send(&offset, 1, MPI_INT, dest, BEGIN, 

MPI_COMM_WORLD); 

MPI_Send(&rows, 1, MPI_INT, dest, BEGIN, 

MPI_COMM_WORLD); 

MPI_Send(&neighbor1, 1, MPI_INT, dest, BEGIN, 

MPI_COMM_WORLD); 

MPI_Send(&neighbor2, 1, MPI_INT, dest, BEGIN, 

MPI_COMM_WORLD); 

MPI_Send(&u[0][offset][0], rows*NYPROB, MPI_FLOAT, 

dest, BEGIN, MPI_COMM_WORLD); 

printf("Sent to= %d offset= %d rows= %d neighbor1= %d 

neighbor2= %d\n", dest, offset, rows, neighbor1, neighbor2); 

           offset = offset + rows; 

  } 

  /* Now wait for results from all worker tasks */ 

  for (i = 1; i <= numworkers; i++) 

  { 

   source = i; 

   msgtype = DONE; 
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MPI_Recv(&offset, 1, MPI_INT, source, msgtype, 

MPI_COMM_WORLD, &status); 

MPI_Recv(&rows, 1, MPI_INT, source, msgtype, 

MPI_COMM_WORLD, &status); 

MPI_Recv(&u[0][offset][0], rows*NYPROB, MPI_FLOAT, 

source, msgtype, MPI_COMM_WORLD, &status); 

  } 

  /* Write final output and call X graph */ 

  printf("Writing final.dat file and gegerating graph...\n"); 

  prtdat(NXPROB, NYPROB, &u[0][0][0], "final.dat"); 

  end_time = MPI_Wtime(); 

  printf("using %d processors and %f seconds \n\n", 

    numworkers, end_time - start_time); 

  MPI_Finalize(); 

 }  /* End of master code */ 

 if (taskid != MASTER) 

 { 

  /********* Worker code ********************************/ 

  /* Initialize everything - including the borders - to zero */ 

  for (iz = 0; iz < 2; iz++) 

  { 

   for ( ix = 0; ix < NXPROB; ix++) 

   { 

    for (iy = 0; iy < NYPROB; iy++) 

    { 

     u[iz][ix][iy]; 
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    } 

   } 

  } 

 

/* Now receive my offset, rows, neighbors, and grid partition from master 

*/ 

         source = MASTER; 

         msgtype = BEGIN; 

MPI_Recv(&offset, 1, MPI_INT, source, msgtype,  

MPI_COMM_WORLD, &status); 

MPI_Recv(&rows, 1, MPI_INT, source, msgtype, MPI_COMM_WORLD, 

&status); 

 MPI_Recv(&neighbor1, 1, MPI_INT, source, msgtype,  

MPI_COMM_WORLD, &status); 

MPI_Recv(&neighbor2, 1, MPI_INT, source, msgtype, 

MPI_COMM_WORLD, &status); 

MPI_Recv(&u[0][offset][0], rows*NYPROB, MPI_FLOAT, source, 

msgtype, MPI_COMM_WORLD, &status); 

/* Determine border elements. Need to consider first and last columns. 

Obviously, row 0 can't exchange with row 0-1. likewise, the last row can't 

exchange with last+1. */ 

         if (offset==0) 

     start = 1; 

         else 

     start = offset; 

         if ((offset+rows)==NXPROB) 
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     end = offset + rows-2; 

         else 

     end = offset + rows-1; 

 

/* Begin doing step iterations. Must communicate border elements with 

neighbors. if i have the first or last grid row, then i only need to 

communicate with one neighbor */ 

         iz = 0; 

         for ( it = 1; it <= STEPS; it++) 

         { 

     if (neighbor1 != NONE) 

     { 

MPI_Send(&u[iz][offset][0], NYPROB, MPI_FLOAT, 

neighbor1, NGHBOR2, MPI_COMM_WORLD); 

      source = neighbor1; 

      msgtype = NGHBOR1; 

  MPI_Recv(&u[iz][offset-1][0], NYPROB,  

MPI_FLOAT, source, msgtype, MPI_COMM_WORLD, 

&status); 

     } 

     if (neighbor2 != NONE) 

     { 

MPI_Send(&u[iz][offset+rows-1][0], NYPROB, MPI_FLOAT, 

neighbor2, NGHBOR1, MPI_COMM_WORLD); 

      source = neighbor2; 

      msgtype = NGHBOR2; 
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      MPI_Recv(&u[iz][offset+rows][0], NYPROB, MPI_FLOAT, 

   source, msgtype, MPI_COMM_WORLD, &status); 

     } 

     /* Now call update to update the value of grid points */ 

     update(start, end, NYPROB, &u[iz][0][0], &u[1-iz][0][0]); 

         /* Finally, send my portion of final result back to master */ 

MPI_Send(&offset, 1, MPI_INT, MASTER, DONE,  

MPI_COMM_WORLD); 

 MPI_Send(&rows, 1, MPI_INT, MASTER, DONE,  

MPI_COMM_WORLD); 

MPI_Send(&u[iz][offset][0], rows*NYPROB, MPI_FLOAT, MASTER, 

DONE, MPI_COMM_WORLD); 

 } 

       //  MPI_Barrier(MPI_COMM_WORLD); 

 MPI_Finalize(); 

} 

 

/**********************************************************************

***** 

 * Initialize grid. 

 * 

**********************************************************************

***/ 

inidat(nx, ny, u); 

prtdat(nx, ny, u, "inidat"); 

for (ix = 0; ix <= nx-1; ix++) 
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{ 

 u[1][ix][0] = u[0][ix][0]; 

 u[1][ix][ny-1] = u[0][ix][ny-1]; 

} 

for (iy = 0; iy <= ny-1; iy++) 

{ 

 u[1][0][iy] = u[0][0][iy]; 

 u[1][nx-1][iy] = u[0][nx-1][iy]; 

} 

 

/********************************************************************* 

 * Iterate over all timesteps. 

 * ********************************************************************/ 

for (it = 1; it <= STEPS; it++) 

{ 

 update(nx, ny, &u[iz][0][0], &u[1-iz][0][0]); 

 iz = 1 - iz; 

 prtdat(nx, ny, &u[iz][0][0], "final.dat"); 

} 

/********************************************************************** 

 * subroutine update 

 * 

**********************************************************************/ 

void update(int start, int end, float u[0][0][0]) 

{ 

 int ix, iy, iz; 
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 int nx; 

            int ny ; 

 for (ix = start; ix <= end; ix++) 

 { 

  for (iy = 1; iy <= ny-2; iy++) 

  { 

   u[1-iz][ix][iy] = u[iz][ix][iy] + 

         parms.cx*(u[iz][ix-1][iy] + u[iz][ix+1][iy] -  

                    2*(u[iz][ix][iy])) +          

         parms.cy*(u[iz][ix][iy-1] + u[iz][ix][iy+1] - 

      2*(u[iz][ix][iy])); 

  } 

 } 

} 

 

/**********************************************************************

** 

 * subroutine inidat 

 * 

**********************************************************************

*/ 

void inidat(int nx, int ny, float u[nx][ny]) 

{ 

 int ix, iy; 

 int nx; 

 int ny; 
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 for (ix = 0; ix <= nx-1; ix++) 

 { 

  for (iy = 0; iy <= ny-1; iy++) 

  { 

   u[ix][iy]; 

  } 

 } 

} 

 

/**********************************************************************

*** 

 * subroutine prtdat 

 * 

**********************************************************************

**/ 

void prtdat(int nx, int ny, float u[nx][ny], char *fnam) 

{ 

 int ix, iy; 

 int nx; 

 int ny; 

 FILE *fp; 

 fp = fopen(fnam, "w"); 

 for (iy = ny-1; iy >= 0; iy--) 

 { 

  for (ix = 0; ix <= nx-1; ix++) 

  { 
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   fprintf(fp, "%8.3f", u[ix][iy]); 

   if (ix != nx-1) 

    fprintf(fp, " "); 

   else 

    fprintf(fp, "\n"); 

  } 

 } 

 fclose(fp); 

} 
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APPENDIX D 

 

Derivative by Finite Difference Method for Various Dimensions with Theorems 

 

The finite difference method is based on the local approximations of the partial 

derivatives in a PDE (Jain (1984)), which is derived by low order Taylor series 

expansions. The matrices that result from this discretizations are often well structured, 

which means that they typically consist of a non-zero diagonals. The general form of a 

PDE: 
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Eq.(D.1) is called Parabolic if 042  acb .  

Heat equation diffusion problems are examples of parabolic equations (Saulev (1964)). 

Methods to solve parabolic equations are:  (a) Explicit Method and (b) Implicit Method.  

If the boundary conditions are function values at the end point then the problem 

is known as Dirichlet Problem (DP). If one or both boundary condition are derivatives 

values, then the problem is known as Neumann Problem (NP). Suppose that 

),,( yxUU  the value of u at the two points ),( yx and ),( kyhx  are related by the 

Taylor‟s expansion: 
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where the remainder term is given by: 
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that is, 
n

n khR )(0                                                                                                 (D.4) 

by (2.4) there exist a positive constant 
n

n khMRM )(  as both h and k tends to 

zero. The space point ),( yjxi   is called the grid points. Expanding in Taylor series for 

jiU ,1  and jiU ,1  about the central value jiU , , we obtain: 
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  etc. and all derivatives are evaluated at the grid point 

),( ji . By taking these equations singly and by adding or subtracting one from another, 

we obtain the following finite-difference formula for the first and second derivatives at

),( ji : 
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formula (D.5) - (D.7) are known as the forward, backward and central difference forms 

respectively. For convenience, the central-difference operator x  will be used 

occasionally. It is defined by: 
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by Saulev (1964),                                 
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Explicit Method 

Our approach to solving Parabolic Partial Differential Equations by a numerical method 

is to replace the Partial derivatives by finite-difference approximations. For the one 

dimensional heat flow equation (McDonough (1994)) 
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we can use the relations 
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and                                 2
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we use subscripts to denote position and superscript for time. Note that the error terms 

are of different orders, since a forward difference is used in equation (D.13). This 

introduces some special limitations, but it does simplify the procedure. Substituting 
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(d.14) and (D.15) into (D.13) and solving for 1, jiU  gives the equation for the forward-

difference method: 

                     

    jijijiji UxctkUU
xc

tk
U ,

2

,1,121, )(21
)(





  


                  (D.16) 

we have solved for 1, jiU in terms of the temperatures at time jt in equation (D.16) in 

view of the normally known conditions for a Parabolic PDE. We subdivide the length 

into uniform subintervals, and apply the finite difference approximation to equation 

(D.13) at each point where u is not known, equation (D.16) then gives the values of u at 

each point at 1tt  , since the values at 0tt   are given by the initial conditions. It can be 

used to get values at 2t  using the values at 1t  as initial conditions, so we can step the 

solution forward in time. At the endpoints, the boundary conditions will determineU . If 

the ratio of rxtk  2)( is chosen so that 21)( 2  xctk  , the equation is 

simplified in that the last term vanishes and we have:  

                                         )(
2

1
,1,11, jijiji UUU                                                    (D.17)                                  

The value of r is critical, if the value of r is chosen as less than one-half there will be 

improved accuracy and this is called a marching method. Similarly, if the value of r is 

greater than one-half which would reduce the number of calculations required to 

advance the solution through a given interval of time, the phenomenon of instability sets 

in. The forward difference method is an explicit method since all the approximations 

can be found directly based on the information from the initial and boundary conditions. 

These conditions give us values at ),(),,(),,( 2211 txtxtx oo , from which we get an 

approximation at ),( 11 tx . Adding the initial condition at ),( 3 otx gives us an 

approximation at ),( 12 tx , and so on across the row.  

 

Implicit Method of Solution (Carnahan et. al., 1969) 
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The explicit schemes outlined are simple to implement however they suffer from one 

major problem. They typically only provide useful solutions when 

                                                     
2

)( 2x
t


                                                            (D.18)                            

Thus, as the spatial grid x is refined to improve accuracy, the number of calculations 

to reach any fixed time ft  increases enormously. For instance, for a particular problem 

a grid 10 times as fine would required 100 times more steps and therefore 1000 times 

more calculations. This deficiency can be a serious problem when solving multi-

dimensional equations. If niU , is known at a grid point then niU , can be calculated at 

every point. In performing this calculation, knowledge of the value of niU , on ER and 

FQ is not required. For fixed 2)( xtr  as 0x , the slope of EP 0 xrt and 

hence in the limit EP tends to the true characteristics. Consequently, for finite x the 

explicit finite difference approximation is an imperfect model for a parabolic equation, 

although for xt  the gradient 0




x

t
. It is possible to bypass the limitation 

(D.18)) and produce a scheme whereby boundary conditions are required to advance the 

solution to the next point. We approximate the time derivatives in (D.11) by the 

backward difference 

                                                   1,, 
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
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u
                                                                        (D.19) 

The truncation error in this case is )( tO  . Substituting Eq.(D.18) and Eq.(D.19) into 

Eq.(D.11) gives us the following finite difference representation: 
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In this case each value of U  at time level n  depends upon other values at this time level 

as well as values at time level 1n . 
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Rearranging (D.20) and writing in terms of time levels 1n  and n . In this way it 

can be said that the PDE xxt UU  is approximated at the midpoint M with 

                         )22(
)(2

1
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x
U                (D.21) 
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                                                                     (D.22) 

by equating the two approximations and multiplying by 2k and subsequent ordering, we 

obtain the following difference equation for an interior point. Rearranging Eq.(D.21) 

and Eq.(D.22) in Eq.(D.11) we have: 

           nininininini rUUrrUrUUrrU ,1,,11,11,1,1 )22()22(              (D.23) 

the following conditions are based upon the initial boundary value problem Eq.(D.11) 

and Eq.(D.12). The above is called an implicit finite-difference scheme as we can not 

explicitly write ),,0(1, miU ni  in terms of known quantities. We can write 

Eq.(D.23) in matrix form as: 

                                           nnn dUBU 1                                                             (D.24) 

where, 
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and B  is the )1()1(  mm matrix 
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multiplying both side of Eq. (D.24) by 1B  gives 

                                nnn dBUBU 11

1



                                                                 (D.25) 
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thus, if we can invert the matrix B we can advance the solution forward in time. In 

general matrix inversion is a difficult problem. However in the numerical solution of 

PDE we often come across sparse matrices or matrices with some special structure. The 

matrix B is a tridiagonal matrix which we can invert using the Thomas Algorithm 

(Carnahan et. al., (1969)). 

 

Theorem D.1 (McDonough (1994))   

A necessary and sufficient condition for convergence of the iteration (D.29) - (D.32) 

from any initial guess is:  

                                            ,1)( G                                                                        (D.38) 

where  

                                     NiGMaxG i  1),(,)(                                   (D.39) 

is the spectra radius of the iteration matrix G , and )(G  is the notation for the 

spectrum (set of all eigenvalues) of G . We remark (without proof) that this basically 

follows from the contraction mapping principle and the fact that 

                                                  GG )(                                                               (D.40)  

for all norms, ║.║. We also note that convergence may occur even when 1)( G

holds, but only restricted set of initial guesses. It should be clear that )(G corresponds 

to the Lipchitz constant. 

Definition D.1:   The residual after n  iterations is: 

                                                     )(n

n Aubr                                                         (D.41) 

Definition D.2: The exact error after n  iterations is:  

                                                    )(n

n uue                                                            (D.42) 

Definition D.3:  The iteration error after n  iterations is:   

                                                    )()1( nn

n uud                                                      (D.43) 
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Hence, nr and ne  are related by:  

                                                        nn rAe                                                              (D.44) 

from Eq.(D.33) and definition (D.32) that  

                                           02

2

1 eGeGGee nnnn                                       (D.45)    

and similarly for nd . 

Definition D.4: The average convergence rate for iterations of (3.32) is given by 
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Definition D.5:  The asymptotic convergence rate is defined as 

                                           )(log)( GGR                                                         (D.47) 

It is the asymptotic convergence that is more important gauging performance of iterative 

methods when they are to be used to produce highly-accurate solutions. Values of 

(D.45) depend only on the spectral radius of the iteration matrix and are thus unique. It 

is shown that  

                                                     )(lim)( GRGR n
n 

                                               (D.48) 

This relationship is used in obtaining estimates of total arithmetic required by iterative 

methods. Hence, the iterative error and exact error are related by: 

                                                     nn eGd )1(                                                        (D.49)            

or 

                                                    nn dGe 1)1(                                                      (D.50) 

then        

                                                  nn dGe 1)1(                                                 (D.51) 
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Theorem D.2 (Lee & Riess (1991)):  Let ne  and nd  be as defined in Eq.(D.42) and 

Eq.(D.43) respectively, and suppose  1)( G holds. Then for any norm ,  
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. 

recall that ,1 nn Gdd which implies 1 nn dGd for compatible norms. In 

particular, if we take the vector norm to be 2-norm we may use the spectra norm as the 

matrix norm. Then if G is diagonalizable we have 
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employing the Reyleigh quotient to arrive at nth reverse inequality 
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but Cauchy-Schwarz inequality follows that: 
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recall from Eq.(D.52) that:  
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from Eq.(D.49), we have:  

               nn deG  )1( and nn deG  )1( which implies ,)1( nn eGd   

again, for compatible matrix and vector norms, using the  matrix spectral norm and the 

vector 2-norm, respectively, gives: 
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Background of the Fourth Order in Space 

 

According to Jennifer et al., (2007), the problem which we considered here is the 

numerical solution of Eq. (D.11). Let x and t denote spatial mesh size and time 

increment, respectively. We assume that there exists an integer ,M such that 

,1)1(  xM and jiU , and jiUxx ,)( are used to represent the numerical approximations 

of ),( tjxiU  and ),,( tjxiUxx  respectively. Also, we use ji, to represent the space 

and time indexes and 1)(nTΔt  . The mesh ratio is taken as 2)( xt  where 

10  ji and .0j  

 The application of the well-known Crank-Nicolson type of scheme to Eq. (D.11) 

results in the following expression at the point ( )t,(x 1/2ji  is 
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UUUUU
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jijijijiji

,2,1)1(
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,,11,11,1,1
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(D.53) 

the above approximation corresponds to the fully implicit, the Crank-Nicolson and the 

classical explicit methods when   takes the values 1, ½, and 0 respectively and Eq. 

(D.53) is of order 2)( tO  in time . Sahimi et al., (2001) developed the Iterative 

Alternating Decomposition Explicit (IADE) method to solve (D.11). The second-order 

IADE scheme entailed the decomposition of a tridiagonal matrix which arises from the 

difference method used to approximate the parabolic equation. By employing the 

fractional scheme of Yanenko (Yanenko (1971)) and the Mitchell-Fairweather (MF) 

variant, this method proves to be highly accurate, fast, convergent and stable. Here, we 

will construct fourth-order approximations to the terms jiUxx ,)( and ,)( 1, jiUxx so that 

Eq. (D.53) is order )( 4xO  in space.  

 

The Interior Points (Jennifer et al., (2007)) 
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The first part of our construction is for all interior points ),,( ji tx where 12  Mi

and .1M  The following compact scheme is used in order to derive a fourth-order 

approximation to :)( , jiUxx  

),(

),(),(
),(),(2),(

1

12

11

jixx

jixxjixx

jijiji

yxcU

yxbUyxaU
x

yxUyxUyxU














             (D.54) 

where ba, and c are constants to be determined. The Taylor series expansions to terms 

),( 1 ji yxU  and ),( 1 ji yxU  on the left side of Eq. (D.54), at the point ),( ji yx yield the 

following result: 
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                  (D.55) 

Similarly, expansions for ),( 1 jixx yxU  and ),,( 1 jixx yxU  on the right side of Eq. (D.55) 

at the same point yield the result below: 
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                    (D.56) 

the substitution of Eq. (D.54) into Eq. (D.55) and Eq. (D.56) give the next results: 
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    (D.57) 

To turn both sides of Eq. (D.57) into fourth-order, we need to equate the corresponding 

coefficients for terms involving 2,, xxxo  and 3x on both sides. This result in the 

following set of linear equations in terms of ba, and c : 
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for which the solutions are  

    
6

5
,

12

1
 bca  

substituting these values into and Eq. (D.54) and changing  

),(),,(),,( 11 jijiji yxUyxUyxU  and ),(),,( 1 jixxjixx yxUyxU  and ),( 1 jixx yxU  to their 

analogous notations, the following fourth-order relation at all interior points and any 

time level is derived. 
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It can be seen that Eq. (D.58) is obtained from Taylor series only: 
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The Boundary Points (Jennifer et al., (2007)) 

 

We now develop similar fourth-order approximations for ),)(( 1 jxx yxU and 

),,( jMxx yxU where 1x and Mx are the two points next to the actual boundary points 0 

and 1. We start with ),( 1 jyx first, where the following combined scheme is used: 
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**,*,*, ecba and *f are constants to be determined. By multiplying both sides of Eq. 

(D.60) by 2x we can rewrite it as follows: 
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if each term of Eq. (D.61) is expanded in Taylor series at point ),,0( jy we would obtain 

the following results: 
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The substitution into Eq. (D.61) of Eq. (D.62-D.65) and afterward simplifications give 

the following result: 
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to derive a fourth-order approximation in Eq. (D.66), we only need to equate the 

corresponding coefficients for those terms involving 2,, xxxo  and 3x on both sides. 

This results in the following system equations: 
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with the solutions to be  
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we take 1* f in the above solutions, and substitute it together with the corresponding 

values of **,*,*,*, edcba into Eq. (D.61) get the following scheme: 
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after replacing ),( ji yxU
 

to jiU ,  
and applying the boundary condition 

),(),0( 1 jx yyjU  the following fourth-order scheme at the boundary point ),( 1 jyx is 

obtained: 
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Similarly, the following fourth-order scheme at the point ),( 1 jM yx  can also be derived: 
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Thus, the set of schemes, consisting of Eq. (D.53), (D.58), (D.70) and (D.71) have 

overall order of ),( 42 xtO  which indicates that our set of schemes are consistent 

with the differential equation. 

 

Unconditional Stability for 2-D Telegraph Equation 

 

The general way to verify the stability of a finite-difference kind algorithm is to put an 

elemental solution into the algorithm and make sure that the amplitude of the 

propagation gain is no more than one. By applying the Von Neumann analysis as in 

Smith, (1985), we can analytically prove that the 2-D ADI method is unconditionally 

stable. Consider the elemental solution of Eq. (D.4) 
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                                                    (D.72) 

where yx kandk  are the wave numbers along the yandx direction, respectively, and 

k is propagation gain. Putting this elemental solution into the 2-D ADI algorithm, and 

with some manipulations, we get: 
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where  
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                                    )2/(sin4 2 xkR xxx                                                         (D.74) 

                                   )2/(sin4 2 ykR yyy                                                         (D.75) 

The solutions of Eq. (D.73) are equal to: 
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where  

  ))(1)(1()( 1

2

0 cARRcAD yx   

  .yx RRA   

By examining the amplitude of K , we are able to prove that the 2-D ADI algorithm is 

unconditional stable in the following theorem. 

 

Theorem D.3: The 2-D ADI algorithm is unconditionally stable. 

Proof: To prove that the 2-D ADI method is unconditionally stable, we need show the 

amplitude of the gain factor K is less than or equal to K  one. Let us consider the 

following two cases. 

 Case 1: 0D . 

 From Eq. (5.28 – 5.31), we know that 0cA is greater or equal to zero. Hence  
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 We only need to prove
2

10 )( ccRRD yx  , since 10 cc  is also greater than 

zero 
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 Case 2: .0D  
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Therefore, the 2-D ADI method is unconditionally stable from the above derivations. 

 

Linear Runtime 

 

There are two sub iterations need to be preformed for each time step. By analysis the 

runtime of each sub iteration, we are able to prove the computational load of the 2-D 

ADI algorithm is linear time at each time step in the following theorem. 

 

Theorem D.4: The runtime of the 2-D ADI algorithm is O(N) at each time step, where 

yx xNNN   is the number of total nodes. 

 

Proof:  Let us consider Sub iteration 1. We can divide the set of these N nodes by 

yx NxN subsets with each one containing xN points in the x direction. Since only two 

unknown variables need to be solved in the updating equation with each ),,( ji  the 

coefficient matrix ji , associated with updating 
/

., jv s is a triangular matrix at each 

subset. Therefore, the runtime of the updating 
/

., jv s is linear with )( xNO . There are 

yx NxN subsets in sub iteration 1. Hence, the computational load of the sub iteration 1 is 
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)( yx NxNO at each time step. The runtime of sub iteration 2 is also )(NO in a similar 

way. Hence, the total runtime of the 2-D ADI algorithm is )(NO at each time step. 

Stability Analysis for 3-D ADI Telegraphic Equation (Mohanty, (2009)) 

 

With reference to (Mohanty et. al. (2004)) we can analytically prove that the 3-D ADI 

method is unconditionally stable. Consider the elemental solution of Eq. (D.103) 
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where yx kk ,  and zk  are the wave numbers along the yx, and z direction, respectively, 

and k is propagation gain. Putting this elemental solution into the 3-D ADI algorithm, 

and with some manipulations, we get: 
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where  

                                    )2/(sin4 2 xkR xxx                                                         (D.79) 

                                   )2/(sin4 2 ykR yyy                                                         (D.80) 

                                   )2/(sin4 2 zkR zzz                                                          (D.81) 

The solutions of Eq. (D.78) are equal to: 
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by examining the amplitude of K , we are able to prove that the 3-D ADI algorithm is 

unconditional stable in the following theorem. 

 

 

Theorem D.5 The 3-D ADI algorithm is unconditionally stable (Mohanty, (2009)). 

 

With reference to (Mohanty et al., (2004) and Mohanty (2009)), to prove that the 3-D 

ADI method is unconditionally stable, we need show the amplitude of the gain factor K

is less than or equal to one. Let us consider the following two cases. 

Case 1: 0D . 

From Eq. (D.78) and Eq. (D.79) – Eq. (D.81), we know that 0cA is greater or equal to 

zero. Hence  
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Therefore, the 3-D ADI method is unconditionally stable from the above derivations. 

 

 

 

Linear Runtime  

Mohanty (2009) presented three sub iterations need to be preformed for each time step. 

By analysis the runtime of each sub-iteration as shown in Table 5.2, we are able to 

prove the computational load of the 3-D ADI algorithm is linear time at each time step 

in the following theorem. 

Theorem D.6: The runtime of the 3-D ADI algorithm is )(NO  at each time step, where 

zyx NNNN   is the number of total nodes. Let us consider sub-iteration 1. We can 

divide the set of these N nodes by zy NN  subsets with each one containing xN
 
points 

in the x direction. Since only three unknown variables need to be solved in the updating 

equation with each ),,,( kji  the coefficient matrix kj , associated with updating 
/

,., kjv s is 

a triangular matrix as at each subset. Therefore, the runtime of the updating 
/

,., kjv s is 

linear with )( xNO . There are zy NN  subsets in sub-iteration 1. Hence, the 

computational load of the sub iteration 1 is )( zyx NNNO  at each time step.  

The runtime of sub iteration 2 and 3 is also )(NO in a similar way. Hence, the 

total runtime of the 3-D ADI algorithm is )(NO at each time step. 
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