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CHAPTER 3 

THE FINITE DIFFERENCE METHOD FOR 1-D AND 2-D PARABOLIC 

EQUATIONS 

 

3.1 Introduction 

 

Many problems in science and engineering are modeled by parabolic equations in one 

or more dimensions. These so-called partial differential equations  

(PDE) involve two or more independent variables that determine the behavior of the 

dependent variable. We shall concentrate on the so-called 1-D and 2-D Parabolic 

Equations (Douglass & Rachford (1956), Mitchell & Griffiths (1980) and Burden & 

Douglass (2000)). We begin the chapter by discussing the approximation of derivatives 

by finite difference method. Section 3.2 and 3.3 discuss the explicit and implicit 

method. Section 3.4 discusses the iterative solution of the linear system with the 

formulation of the iterative alternating direction explicit (IADE) scheme on 1-D 

Parabolic Equation (Sahimi et al., (1993)) and alternating group explicit (AGE) scheme 

on 1-D are discussed in section 3.5 and 3.6. Section 3.8 and 3.9 treat the explicit and 

implicit schemes on 2-D Parabolic Equation. Some alternating schemes are included in 

the subsequent sections.  

 

3.1:1 Crank-Nicolson Method on 1-D (Johnson & Riess (1982)) 

 

It is possible to keep the implicit nature of the finite difference scheme for backward 

difference, whilst improving the accuracy of the scheme by using a central difference in 

time. That is, using an approximating given by: 
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using such a scheme we have no way of calculating variables at the n+1/2 time level, so 

we have:  
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(3.2) 

that is, variables at the 2/1n  time level are replaced by the average of the variables at 

the n  and 1n time levels. 

Rearranging (3.2) we obtain: 

              nininininini rUUrrUrUUrrU ,1,,11,11,1,1 )22()22(            (3.3) 

where 2)( xtr  . Once again we have a tridiagonal system of equations which can 

be solved using the Thomas algorithm. We can write the system of equations (3.1) as: 

                                                    ,1 nnn dCUBU   

where   ,,,, ,1,2,1

T
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Here I  is the )1()1(  mm  identity matrix and 
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The matrix B  and C  are symmetric and so if B and C  commute then CB 1 is also 

symmetric. For matrices of the form: ,)( 2

21  AaAaIaaF o that is a polynomial 

in A , the eigenvalues are given by )(f , where   is an eigenvalue of A . The 

eigenvalues of )()]([ 2

1

1 AfAf  are given by )(/)( 12  ff  where   is an eigenvalue of

A . 
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3.2 Iterative Solution of the Linear System (Ames 1977) 

A system of linear algebraic equations can be sparse and banded. We will typically 

employ the concise notation 

                                                          bAu                                                               (3.4) 

to represent such systems and the focus of this section is the study of methods for 

efficiently solving equation (3.4) on a digital computer. The first iterative methods used 

for solving large linear systems were based on relaxation of the coordinates. The 

relaxation steps are aimed at annihilating one or a few components of the residual vector 

.Aub   The convergence of these methods is rarely guaranteed for all matrices, but a 

large body of theory exists for the case where the coefficient matrix arises from the 

finite-difference discretization of the PDE. A desirable alternative, which preserve 

sparseness and can achieve a high degree of accuracy even for large ,n  is an iterative 

method such as Jacobi or Gauss-Seidel method. 

 

 

 

 

 

 

 

 

 

Figure 1.7: Comparison of required arithmetic for various iterative methods. 

Fig. 3.1: Comparison of required arithmetic for various iterative methods. 

Thus, this summary figure by (Young (1967)) indicates that much is involved in 

selecting a suitable solution method for any specific parabolic boundary value problem.  
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3.2:1 Basic Theory (Jacobi Method) by (Young (1967)) 

 

We begin with the decomposition 

                                                       ,FEDA                                                     (3.5) 

in which D is the diagonal of A , E  is the strict lower part and F  is the strict upper 

part. It is always assumed that the diagonal entries of A  are all nonzero. The Jacobi 

iteration determines the ith component of the next approximation so as to annihilate the 

ith component of the residual vector. 

Thus,  

                                                    0)( 1  kAxb                                                        (3.6) 

however, recall Eq.(3.4) and note that iterative methods for solving this system of linear 

equations can essentially always be expressed in the form: 

                                                 KGUU nn  )()1(                                                    (3.7) 

where n is an iterative counter and G  is the iteration matrix, it is related to the system 

matrix A  by  

                                                   AQIG 1  

where I  is the identity matrix and Q is generally called the splitting matrix. The Jacobi 

scheme can be constructed as follows. Firstly, decompose A  as in Eq.(3.5), substitute 

into (3.4) to obtain 

                                       bUULDUorbUULD  )(,)(                         (3.8) 

hence, introducing iteration counter, (3.8) becomes 

                                       bDUULDU nn 11)1( )(                                              (3.9) 

from Eq. (3.9) ADUL  , so .)( 11 ADIULD    

Thus, D  is the splitting matrix and Eq.(3.9) is in the form (3.7) with 

                                    bDkADULDG 111 ,1)(                                     (3.10) 
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Hence, in matrix terms the definition of the Jacobi method can be expressed as 

                                  bDxULDX kk 1)(1)1( )(      as in Eq.(3.9) 

where  
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suggesting an iterative method defined by  
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3.2:2 Gauss-Seidel (GS) Method (Bertsakas & Tsitsiklis (1998)) 

 

Consider again the linear equations; if we proceed as with the Jacobi method but not 

assume that the equations are examined one at a time in sequence, and that previously 

computed results are used as soon as they are available we obtain the Gauss-Seidel:  
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the computation appear to be serial, since each component of the new iterate depends 

upon all previously computed components. The update cannot be done simultaneously 

as in the Jacobi method. Secondly, the new iterate )(kx depends upon the order in which 

the equations are examined. The GS is called the “Successive Displacement” to indicate 

the dependence of iterates on the ordering. A poor choice of ordering can degrade the 

rate of convergence. In matrix terms, the definition of GS method is: 

                                            )()( )1(1)( bUxLDX kk                                           (3.14) 

consider Eq.(3.4) and ULDA  as was done in Eq.(3.5) followed by some 

rearrangement leads to: 

                                                   bUULD nn   )1()1()(                                        (3.15) 



54 
 

or 

                                            ,)1( )()1(1 bUULDD nn          

and 

                          bDLDUDLDU nn 111)(111)1( )1()1(                              (3.16) 

we define       

                                               UDLDL 111 )1(            

                                               bDLDK 111 )1(                        

and write      

                                                KLUU nn  )()1(                                                     (3.17) 

      

3.2:3 Successive Overrelaxation (SOR) Method (Prasad, (2005)) 

 

SOR is obtained from GS iteration by introducing the relaxation parameter  via the 

extrapolation: 

                                              )*1()()1( )1(   nnn UUU                                       (3.18) 

where )*1( nU has been obtained from Eq.(3.17). This leads us to the fixed-point formula 

for SOR iterations:  

                               bDUDLUDUU nnnn 1)(1)1(1)()1( )1(     

or 

              bDLDUIUDLDU nn 111)(111)1( )1()1()1(              (3.19) 

                                         bDUDLUDU nnn 1)(1)1(1)*1(                               (3.20) 

a rearrangement of Eq.(3.15). If we now define 

                                          IUDLD )1()1( 111                                 (3.21) 

                                                  bDLDIk 111 )(                                         (3.22) 

we can write Eq.(3.19) as: 
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                                                 kUU nn  )()1(                                                   (3.23) 

the fixed-point form of SOR. The combination Eq.(3.8) and Eq.(3.10) should always be 

used. Choosing the value of ,  if ,1 the SOR method simplifies to the GS method. 

A theorem due to Kahan (1998) shows that SOR fails to converge if   is outside the 

interval )2,0( . The term underrelaxation should be used when ,10   for 

convenience the term overrelaxation is now used for any value of )2,0( . If the 

coefficient matrix A is symmetric and positive definite, the SOR iteration is guaranteed 

to converge for any value of   between 0 and 2, the choice of   can significantly 

affect the rate of SOR convergence. 

 

3.3 IADE Scheme on 1-D Parabolic Equation (Sahimi et al., (1993)) 

 

Consider a uniform spaced network whose mesh points are ,i jx i x t j t    for 

1, , , 1i m m   and 0,1, , , 1j n n  are used with 1 ( 1), ( 1)x m t T n      and 

2( ),t x    the mesh ratio. That is, the interval 10  x is divided into a grid of 

points of x spacing and the T interval is divided into steps of t . The difference 

operator in Eq.(3.1) is approximated by centred differences. A generalized finite 

difference to the difference equation Eq.(3.1) at the point 
, 1/2( )i jx t 

is given by: 
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       (3.24)      

This approximation can be displayed in a more compact matrix form as: 
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i.e, 

                                                  Au f                             (3.25) 

where  
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         (3.26) 

we note that f  is a column vector of order m consisting of the boundary values as well 

as known u at time levels j while u  are the values at time level )1( j  which we seek. 

We also recall that Eq. (3.25) corresponds to the fully implicit, the Crank-Nicolson, the 

Douglas and the classical explicit methods when   takes the values 
1 1

1, , , 1 12
2 2

 and 

0, respectively. The corresponding accuracies are of the order:     

2 2 2 4 20[( ) ], 0[( ) ( ) ], 0[( ) ( ) ]x t x t x t        and 20[( ) ],x t  respectively. 

 

3.3:1 IADE Scheme MF-DS (Mitchell & Fairweather (1980))   

 

With the Mitchell-Fairweather variant accuracy can be improved by utilizing the 

following: 
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                         (3.27) 

where g = (6 + r) / 6. The coefficient matrix A as in (3.25) however, is decomposed into 
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1 2 1 2

1

6
A G G G G                                                 (3.28) 

to retain the tridiagonal structure of A  as in Eq.(3.25), the constituent matrices 1G and 

2G must be bidiagonal (lower and upper, respectively). Eq.(3.28) leads to: 
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                              (3.29) 

for 1,2, , 1i m  . 

Since 1G and 2G are bidiagonal, 1( )G rI and 2( )G rI can be inverted easily and take a 

full lower and upper triangular form, respectively. 

From (3.27) we have: 
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          (3.30) 

The IADE scheme is therefore executed at each of the intermediate levels by effecting 

the following computations: 

i) at level (p+1/2) 

                          ( 1/2) ( 1/2) ( ) ( )

1 1 1( ) /p p p p
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       for 1,2, , ,i m        (3.31) 
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ii) at level (p+1) 
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for 1,2, , ,i m where 
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The IADE algorithm is completed explicitly by Eq.(3.31) and Eq.(3.32) in alternate 

sweeps along the points in the interval )1,0(  until a specified convergence criterion is 

satisfied. 

 

3.3:2 IADE Scheme of D’Yakonov Fractional Splitting (IADE-DY) 

 

Sahimi et al., (1993) proposed an accurate unconditionally stable 2-step method 

involving the solution of tridiagonal sets of equations along lines parallel to the x- and 

y- axes at the first and second steps. Fractional splitting of D‟Yakonov was used to 

obtain accurate, stable and convergent 2-stage iterative procedure for a fixed 

acceleration parameter r > 0. Consider the iterative formula: 
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note that by combining the two equations in (3.33) and eliminating 
( 1/2)

,
p
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we find that 

as ,p we have:               

                                         fuLRRL  )
6
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(                                                          (3.34)  

this suggests that the coefficient matrix A  in (3.35) can be decomposed into: 

                                        
1

6
A L R LR                                                                   (3.35) 
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to retain the tridiagonal structure of A . The constituent matrices L  and R  take the 

bidiagonal forms (lower and upper, respectively), equating the entries of the matrices in 

Eq.(3.35) leads to the determination of ie , iu , 1,2, ,i m , in the recursion form: 
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the explicit form of Eq.(3.33) is given by: 
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Since L  and R  are bidiagonal, the inverse of )( LrI  and )( RrI  take a full lower and 

upper triangular form given by:                    
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and 

                                                i id r e                                                                     (3.43) 

by carrying out the relevant multiplication in Eq.(3.8), we obtain the following 

equations for computation at each of the intermediate levels: 

(i) at the thp )2/1(  iterate, 
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Eq.(3.44) may be written fully in their explicit form as: 
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                                                                                                                                    (3.46) 

(ii) at the thp )1(  iterate, 

                            

( 1/2)
( 1)

( 1/2) ( 1)
( 1) 1

,

, 1, 2, , 2,1

p
p m

m

m

p p
p i i i

i

i

u
u

d

u u u
u i m m

d




 
 




   

                          (3.47) 



61 
 

the fully explicit form of (3.47) is given by:  
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The IADE algorithm is executed by using the equations (3.44) and (3.47) in alternate 

sweeps along the points in the interval )1,0(  until a specified convergence criterion is 

satisfied. 

 

3.3:3 Formulation of the IADE Fourth Order (Mohanty (2004)) 

 

A fourth-order Crank-Nicolson type scheme for the numerical solution of Eq.(3.1) is 

given as follows: 
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where x is the usual central difference operator. By defining constants such as:  
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Eq. (3.49) becomes: 
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The above approximation can be displayed in a matrix form as  



62 
 

                         






























































































 1

2

3

2

11

2

3

2

)2()2(

..

0

0

m

m

jm

m

mxm
f

f

f

f

u

u

u

u

cba

dcba

edcba

edcba

edcb

edc










                                                                                                            

where 

               
)ud(uucbuauf

)ue(uduucbuauf

,m,,ifor,euduucbuauf

euduucbu)ua(uf

euduuc)ub(uf

)f,,f(ff,),uu(uu

m,jm,j,jm,jm,jmm

m,jm,j,jm,jm,jm,jmm

,ji,jii,j,ji,jii

,j,j,j,j,j,j

,j,j,j,j,j

T

m

T

,jm,,j,,j

11231

112342

2112

54321113

4321112

132111312

354













































        (3.51) 

The column vector f of order 2m  consists of boundary values and known u  values 

at time level j . We seek to find the values of u at time level )1( j . The Mitchell-

Fairweather variant of the IADE scheme of Sahimi et al (1993) for a fixed acceleration 

parameter 0r is given by: 
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where 

                             
6)6( rg 

.  

The coefficient matrix is decomposed into: 
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                                                         (3.53) 

The constituent matrices 1G  and 2G  must be in the form of lower and upper tridiagonal 

matrices respectively, in order to retain the pentadiagonal structure of A . Eq.(3.53) leads 

to: 
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                                                  (3.54) 

Since 1G  and 2G  are three banded matrices, then )( 1 rIG   and )( 2 rIG  can be 

inverted easily. From Eq.(3.52) we have: 
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             (3.55) 

giving us the following computational formulae at each of the half-iterates 

(i) at the thp )2/1(   iterate: 

     

 

 



























































































1

)2/1(

23

)2/1(

34
)(

12

)2/1(

1

2

)2/1(

34

)2/1(

45
)(

13

)(

23

)2/1(

2

)2/1(

12

)2/1(

23
)(

21

)(

11

)(

1

)2/1(

3

)2/1(

21

)(

32

)(

42

)(

32

)2/1(

3

2

)(

41

)(

31

)(

21

)2/1(

2

1

1

3,,5,4

,
1

1

1

m

p

mm

p

mm
p

mm

p

m

m

p

mm

p

mm
p

mm

p

mm

p

m

i

p

ii

p

ii
p

ii

p

ii

p

ii

p

i

ppppp

pppp

fulumuE
R

u

fulumuWuE
R

u

mi

fulumuVuWuE
R

u

fuluVuWuE
R

u

fuVuWuE
R

u


      (3.56) 

with 
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(ii) at the thp )1(   iterate: 
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                                       (3.59) 

the IADE algorithm is completed explicitly by using the required equations at levels 

thp )2/1(  and thp )1(   in alternate sweeps along all the points in the interval )1,0(

until convergence is reached. 
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3.4 Formulation of the AGE Scheme on 1-D Parabolic Equation (Evans & 

Sahimi (1989))  

 

If we assume that we have odd (i.e., m odd) number of internal points on the line

0 1x  , we can then perform the following splitting of the coefficient in (3.25) as 

follows:  

                                                 1 2A G G                                                               (3.60) 

where  
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Using the well-known fact of the parabolic correspondence in the earlier text, the 

following stable and convergent two-stage iterative procedure of the (Peacemn-

Rachford (1955)) variant for a fixed acceleration parameter 0r can be employed 

(Evans and Sahimi (1988b)) 

                                       ( 1/2) ( )

1 2( ) ( )p pG rI u rI G u f                                                                                             

                                       ( 1) ( 1/2)

2 1( ) ( )p pG rI u rI G u f                                      (3.62) 

or in the explicit form: 

                                         ( 1/2) 1 ( )

1 2( ) ( )p pu G rI rI G u f                                                                                                                                        
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                                         ( 1) 1 ( 1/2)

2 1( ) ( )p pu G rI rI G u f                               (3.63) 

Note that )( 1 rIG  and 2( )G rI can be easily inverted by merely inverting block 

diagonal entries. The approximations at each of the intermediate iteration can therefore 

be computed from (3.63) as follows: 
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the AGE algorithm is completed explicitly by using the required equations at levels 

thp )2/1(  and thp )1(   in alternate sweeps along all the points in the interval )1,0(  

until a specified convergence criterion is satisfied. 

 

3.4:1 Formulation of the Fourth Order AGE Scheme (Evans & Sahimi (1988b)) 

 

Using the Peaceman-Rachford variant (Peaceman & Rachford (1955)), the iterative 

formulae at the two half iterates are given implicitly as: 
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where assuming that m  is odd, for a fixed acceleration parameter r , 
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from Eq. (3.66), we can obtain the following equations at level ),2/1( p  
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from Eq. (3.126), we obtain the following equations at level )1( p , 
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  the AGE fourth order algorithm is completed explicitly by using the required equations 

 

at levels )2/1( p  and )1( p  in alternate sweeps along the points in the interval )1,0(  

until convergence is reached. 

 

3.5 Introduction to 2-D Parabolic Equation 

 

In this section we will treat a class of methods for solving the time-dependent heat 

equation in two space dimensions. This section describes the explicit, implicit, 

stationary iterative methods, ADI, double sweep IADE and the AGE class of schemes 

on 2-D Parabolic (Rohalla & Paiviz (2007) and Sahimi et al., (1993)). We will discuss a 

particular form of a boundary-value problem that can be used to find the temperature 
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distribution ( , , )U x y t of a homogeneous plate occupying a region of the x-y plane. In 

this problem we are given values of U  or its normal derivative on the boundary for all 

0t  and also an initial temperature distribution )0,,( yxU . For simplicity we assume 

that the region R is rectangular, and the specific problem we consider is: 

       0,0,0
),,(),,(),,(
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2

2

2
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x
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      (3.68) 

where ),()0,,( yxFyxU  is the initial temperature distribution and ),,( tyxU is 

specified on the boundary of R by ),(),,( yxgtyxU  . As with the one dimensional 

problem we let MLx   for some positive integer M  and xixi   for .0 Mi   

We do the same in the y - direction: NKy   and yjy j  for Nj 0 . For 

simplicity of presentation we assume that M and N  are chosen so that ,yx  but this 

assumption is not necessary. We also choose an increment in tt , , and let tntn  for 

,2,1,0n , we denote ),,( nji tyxU  as 
n

jiU , . 

 

3.6 Explicit Finite Difference Scheme for 2-D Parabolic (Noye (1996)) 

 

Using central differences for both xxU and yyU  and the forward difference for ,tU we 

can derive the order )( 2 txO  explicit method given by: 
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where .
)( 2

2

x

t
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 The points where approximations are related by Eq.(3.69). In a 

convergence and stability analysis, thus for (3.69 ) we must have 41r . If yx  , 

we need 81))()/(( 222  yxt . 

We can obtain an order ))(( 2 txO   implicit method by using a backward-

difference approximation for ),,( njit tyxU yields   
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3.7 Implicit Crank-Nicholson on 2-D Parabolic (Smith (1985)) 

     

To improve the order to ))()(( 22 txO  as in Crank-Nicolson, we again average the 

forward-difference approximation Eq.(3.69) with the backward-difference 

approximation Eq.(3.70) to yield: 
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the Crank-Nicolson method Eq.(3.71) is unconditionally stable but requires the solution 

of an )]1)(1()1)(1[(  NMNM linear system of equations to advance to 

1 ntt  from ntt  . The Eq.(3.71) involves five unknowns:   
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and hence the system is no longer tridiagonal and can lead to more computations. This 

drawback is corrected by a modification known as the (Peaceman-Rachford (1955)) 

ADI scheme.  The Truncation error (TE) is given by: 
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where U  is the exact solution of the PDE.  

 

3.8 Stationary Iterative Methods on 2-D Parabolic Equation (Ames 1977) 

 

This section begins with methods involving splitting the sparse matrix that arises from 

finite differencing and then iterating until a solution is found as in (Ames 1977). The 

platform uses the finite-difference method which provides approximation solutions for 

the Parabolic Equation such that the derivatives at a point are approximated by 

difference quotients over a small interval (Smith 1985). We seek to discretize the 

second order Parabolic Equation as used in (Lee & Riess 1991) Eq.(3.128): 

 

3.8:1   Jacobi Scheme (McDonough (1994)): 

 

If we use the central differences for both xxU and yyU  and the forward difference for 

,tU into (3.1), and let 222  yx  we have: 
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it is stable in one spatial dimension only if .2/1/ 2 t  In two dimensions this 

becomes .4/1/ 2 t  Suppose we try to take the largest possible time step, and set 

.4/2t Then equation (3.73) becomes: 
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                                 (3.74) 

thus the algorithm consists of using the average of U at its four nearest neighbor points 

on the grid (plus contribution from the source). This procedure is then iterated until 

convergence. This method is in fact a classical method with origins dating back to the 
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last century, called “Jacobi‟s method”. The method is impractical because it converges 

too slowly. However, it is the basis for understanding the modern methods, which are 

always compared with it.  

 

3.8:2 Gauss-Seidel Scheme (McDonough (1994)): 

 

Another classical method is the Gauss-Seidel method. Here we make use of updated 

values of U  on the right hand side of (3.74) as soon as they become available. In other 

words, the averaging is done “in place” instead of being “copied” from an earlier time 

step to a later one. If we proceed along the rows, incrementing j for fixed i , we write 

the computing formula Eq.(3.74) as: 
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This method is also slowly converging and only of theoretical interest, but some 

analysis of it will be instructive. If we have approximate values of the unknowns at each 

grid point, this equation can be used to generate new values. We call )(nU the current 

values of the unknowns at each iteration k  and )1( nU  the value in the next iteration. 

Moreover, the new values are used in this equation as soon as they become available. 

The pseudocode for this method is: 

 

Procedure Seidel (ax, ay, nx, ny, h, itmax, (Uij)) 

Real array (Uij)0: nx, 0:ny 

Integer   i,   j,  k,  nx, ny,  itmax 

for  k = 1 to itmax  do 

    for  j = 1 to ny – 1  do 

          jhay y   
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         for  i = 1 to nx – 1 do  

            

4/)(,
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       end for 

  end for 

end for 

end procedure Seidel 

In using this procedure, one must decide on the number of iterative steps to be 

computed, itmax.   

 

3.8:3     Successive Over-relaxation (SOR) (McDonough (1994))  

 

To show how successive overrelaxation can be applied to the 2-D Parabolic Equation, 

we begin with Eq. (3.75), adding superscripts to show that a new value is computed 

from previous iterates,  
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The term in brackets is called the “residual”. We can consider the bracketed term in Eq. 

(3.76a) to be an adjustment to the old value 
)(

,

n

jiU , to give the new and improved value 

)1(

,

n

jiU . If, instead of adding just the bracketed term, we add a larger value (thus 

“overrelaxing”), we get the new iterating relation 
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Maximum acceleration is obtained for some optimum value of  . This optimum value 

will always lie between 1.0 and 2.0. We define a scalar )20(  nn   and apply 

Eq.(3.75) to all interior points ),( ji and call it 
/

, jiU . Hence, we have: 

                                     
n

jinjin

n

ji UUU ,

/

,

1

, )1(  
                                              (3.76c) 

 

3.9       ADI Method on 2-D Parabolic Equation 

 

In this section we treat a class of method introduced by Peaceman & Rachford (1955), 

for solving the time-dependent heat equation in two space dimensions. It was quickly 

recognized that the unconditional stability of the method might render it effective due to 

the possibility of employing large steps for pseudo-time marching (McDonough 1994). 

At each pseudo-time step the discrete equations are implicitly solved first in one spatial 

direction, then in the other, leading to the terminology (ADI). The obtained two Systems 

of Linear Algebraic Equations (SLAE), in the )2/1( n time-layer are band tridiagonal 

matrices, while the second one obtained in the )1( n  time layer is a block tridiagonal 

matrix (Jiang & Wong (1991)). In order to solve the SLAE in the )2/1( n time-layer in 

parallel, we have to transform the corresponding matrix by means of permutation of 

rows to a block tridiagonal matrix. This transformation involves transposition of the 

right hand side (rhs) of the equation we solve when the rhs is represented as a matrix. It 

is clear that such a transposition entails communication which may be reduced if a 

parallel tridiagonal solver is exploited.  Solving 2-D Parabolic Equations using the ADI 

method, there are three main steps in constructing an ADI method in this context: i) 

discretization of the PDE, ii) factorization of the discrete equation and iii) splitting of 
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the factored equations. Many implementations of the ADI methods have been developed 

such as Kellogg (1964), Dahlquist (1978) and Douglass & Rachford (1956). The 

equation is parabolic in time and thus the solution can be obtained by marching along 

the t -direction. Using the regular finite difference method, we have: 
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Eq. (3.68) becomes: 

n

jiyx

n
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n
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jix

n

ji UFFUUFUUFU ,1,1,,1,1

1

, )221()()(  


,            (3.78)  

where 
2

2

)( x

tc
Fx




 and

2

2

)( y

tc
Fy




  are the two grid Fourier numbers, and the subscripts 

ji,  and the subscript n  denote the numbers of yx,  and t  intervals respectively. The 

stability requirement can be shown to be 
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for accuracy, x and y are small, then t is much smaller for stability. Due to 

drawbacks, associated with the C-N methods, the ADI method was introduced. A time-

step )1(  nn  is provided into two half time steps )1)2/1((  nnn . In the 

first half time step )2/1((  nn , central difference in x  is expressed at the end 

)2/1( n , and central difference in y  is expressed at the start n . Therefore, 
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In the second half-time step, 22 / xU  is expressed at the start )2/1( n  and 22 / yU 

is expressed at the end )1( n . Therefore, 
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to see why the two spatial derivatives can be written at different time in the two half-

time steps in (3.79) and (3.80), we add them to get: 
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this shows that by going through the two half-time steps, the PDE is effectively 

represented at the half-time step )2/1( n , using the central difference for the time 

derivative, central difference for x -derivative, and central difference for y -derivative 

by averaging at the n  and thn )1(   time-steps. The ADI method for one complete 

time step is thus second-order accurate in both time and space. Rearranging Eq.(3.79)  

we have: 
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jiy
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jiy UFUFUFUFUFUF        (3.83) 

where, 
22 )/(,)/( ytcFxtcF yx  .  

The ADI method gives us an opportunity to exploit any method to solve the SLAE 

obtained in the )2/1( n and the )1( n  time layers. In this thesis, we use the 

tridiagonal solver for the SLAE. Let us denote A  for solving the system (3.68) with 

SLAE.  



79 
 

.

51.6

.)1(.5

1)8.2(sin,)1(.4

.)2/1(.3

.)2/1(,,.2

.)8.2(sin)2/1(.1

...,2,1,

222

2

111

)0(

11

)0(

1

1

stepstimeprevious

theinobtainedvaluesthewithtostepsrepeatingbydirectiontimetheinMarch

solvesltridiagonathewithlayertimestntheinBXASolve

stepfrombgulayertimestntheinBCompute

solvesltridiagonathewithlayerntheinBXASolve

layerninsolutioninitialisXwhereBXvectorsofnspermutatioMake

conditionsinitialthewithagulayertimentheinBCompute

mannerfollowingtheindrepresentebecankBXA kkk















      

The rhs of (3.82) and (3.83) has three coefficients of three consecutive grid points. 

Thus, N  systems and M  tridiagonal equation are required to be stored in step 3 and 

M  systems of N  tridiagonal equations are required to be solved in step 5. The systems 

in each step can be combined so that only one system of NM   tridiagonal equations is 

required to be solved in each step. The ADI method is second-order accurate. Since it 

has the tridiagonal feature, it is fast and does not require excessive storage. 

 

3.10 Double Sweep Two-Stage IADE Scheme on 2-D Parabolic Equation 

 

The double sweep method is generally used to reduce a two-dimensional problem to a 

succession of one-dimensional problems which form tridiagonal system of equations. At 

each time increment, the execution of the method constitutes a horizontal sweep along 

lines parallel to the x axis, followed by a vertical sweep along lines parallel to the y 

axis. Here we shall solve the two-dimensional parabolic problem by using the double 

sweep methods of Peaceman and Rachford (1955) (DS-PR) and Mitchell and 

Fairweather (1964) (DS-MF). Each method involves the solution of sets of tridiagonal 

equations along lines parallel to the x and y axes at the first and second time steps, 

respectively. The Iterative Alternating Decomposition Explicit method of D‟Yakonov 

(IADE-DY) is executed by employing fractional splitting strategy applied alternatively 

at each intermediate time step to the solution of the equations.  
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We use two approaches of numerical schemes to approximate a two-dimensional 

parabolic problem. The first is by employing the double sweep method of Peaceman and 

Rachford (DS-PR) (1955), while the second is the Mitchell and Fairweather (DS-MF) 

(1964). The tridiagonal system of equations that arises from the difference method 

applied is then solved by using the two-stage Iterative Alternating Decomposition 

Explicit method of D‟Yakonov (IADE-DY) which was developed by Sahimi et al., 

(2001). By fractional splitting, each time step in the double sweep methods of DS-PR 

and DS-MF is split into two steps of size / 2t . In the horizontal sweep, Eq. (3.1) 

advances from kt to 1/2kt  by using a difference approximation that is implicit in only the 

x-direction. Specifically, past values in the y-direction along the grid line ix x are 

used, to yield the intermediate value
, , 1/2i j ku 

. Then, in the vertical sweep from 1/2kt  to

1kt  , the solution is obtained by using an approximation implicit in only the y-direction 

and uses past values in the x-direction along the grid line
jy y , to yield the final value

, ,i j ku .   

 

3.10:1 Peaceman and Rachford Double Sweep Method (DS-PR) 

 

At the ( 1/ 2)k  time level of the DS-PR method, the solution of Eq. (3.128) uses a 

backward-difference approximation as in Eq. (3.144). 

                                2 2

, , 1/2 , , , , 1/2 , ,
2 2

i j k i j k x i j k y i j ku u u u
 
                                       (3.84) 

where x yand  are the usual central difference operators in the x and y coordinates 

respectively.  

i.e.: 
, , 1/2 , , 1, , 1/2 , , 1/2 1, , 1/2 , 1, , , , 1,( 2 ) ( 2 )

2 2
i j k i j k i j k i j k i j k i j k i j k i j ku u u u u u u u
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1, , 1/2 , , 1/2 1, , 1/2 , 1, , , , 1,(1 ) (1 )
2 2 2 2

i j k i j k i j k i j k i j k i j ku u u u u u
   

                        (3.85) 

from Eq. (3.85), for 1,2, ,j n  

1, , 1/2 2, , 1/2 0, , 1/2 1, 1, 1, , 1, 1,1: (1 ) (1 )
2 2 2 2

j k j k j k j k j k j ki u u u u u u
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let 1 ,
2

a b c


     . Eq. (3.86) – (3.88) can be written in a more compact matrix 

form as: 
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at the (k+1) time level, Eq. (3.68) is approximated by: 
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from Eq. (3.93), for i  = 1, 2, . . . , m. 
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let 1 ,
2

a b c


     . Eq. (3.94) – Eq. (3.96) can be displayed in a more compact 

matrix form as: 
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i kBu g i m
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where 
( 1)

,1 ,2 , ,1 ,2 ,( , , ) , ( , , , )k T T
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3.10:2 IADE-DY (Sahimi et al., (2001)) 

 

The matrices A and B are respectively tridiagonal of size )( mm  and )( nn . Hence, at 

each of the )2/1( k  and )1( k time levels, these matrices can be decomposed into 

1 2 1 2

1
,

6
G G G G  where 1 2G and G

 
lower and upper bidiagonal matrices are given 

respectively by: 

                                  1 2[ ,1], [ , ],i i iG l and G e u                                                    

where                

1 1

6 6 6 1 6
( 1), , ( 1), ( 6) 1,2, , 1

5 5 5 6 6
i i i i i i

i

c
e a u b e a l u l e i m

e
         


 

hence, by taking p as an iteration index, and for a fixed acceleration parameter 0r , 

the two-stage IADE-DY scheme of the form: 

             

( 1/2) ( )

1 1 2

( 1) ( 1/2)

2

( ) ( )( )

( )

p p

p p

rI G u rI gG rI gG u hf and

rI G u u



 

    

 
                                (3.99) 

can be applied on each of the sweeps Eq. (3.84) and Eq. (3.91). Based on the fractional 

splitting strategy of D‟Yakonov, the iterative procedure is accurate and found to be 

stable and convergent. By carrying out the relevant multiplications in Eq. (3.99), the 

following equations for computation at each of the intermediate levels are obtained: 

(i) at the thp )2/1(  iterate,       

   

^
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          (3.100) 

where,  
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                  (3.101)   

the two-stage iterative procedure in the IADE-DY algorithm corresponds to sweeping 

through the mesh involving at each iterates the solution of an explicit equation. This is 

continued until convergence is reached, that is when the convergence requirement                               

( 1) ( )p pu u  is met, where  is the convergence criterion. 

 

3.10:3 DS-MF (Mitchell & Fairweather (1964)) 

 

The numerical representative of Eq. (3.128) using the Mitchell and Fairweather scheme 

is as follows: 

                     2 2

, , 1/2 , ,

1 1 1 1
1 1

2 6 2 6
x i j k y i j ku u   

      
          

      
                           (3.102) 

                     2 2

, , 1 , , 1/2

1 1 1 1
1 1

2 6 2 6
y i j k x i j ku u    

      
          

      
                        (3.103) 

the horizontal sweep Eq. (3.102) and the vertical sweep Eq. (3.103) formulas can be 

manipulated and written in a compact matrix form as in Eq. (3.89) and Eq. (3.97) 

respectively. At the )2/1( k  time level, for nj ,,2,1  , we have: 
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           (3.104) 

and at the )1( k time level, for mi ,,2,1  , we have: 
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     (3.105) 

by defining 
5

6
a   and 

1
,

12 2
b c


   the resulting tridiagonal system of equations 

are solved using similar iterative procedure as in the DS-PR, that is, the two-stage 

IADE-DY algorithm. 

 

3.11 Formulation of the AGE Scheme on 2-D Parabolic 

 

In Evans & Sahimi (1988a), the Alternating Group explicit (AGE) method was 

introduced for the solution of parabolic partial differential equations in one space 

dimension and applied on 2-D problem in Evans & Yousif (1993). This technique was 

extended to problems involving parabolic and hyperbolic partial differential equations 

in Evans and Sahimi (1988). The AGE method can be readily extended to higher space 

dimensions (see Abdullah (1991)). To ensure unconditional stability, the Douglas-

Rachford (DR) variant is used instead of Peaceman-Rachford (PR) formula. 

 In two space dimensions, for example, the specific problem we are considering is Eq. 

(3.68) where for simplicity we assume that the region R of the xy-plane is a rectangle.  
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Based on the AGE concept for the one-dimensional case, the formulation for higher 

dimensional problems can be done in very much the same way by employing the 

operator fractional splitting strategy introduced by Yanenko (1971).   

A weighted finite-difference approximation to (3.68) at the point (
1

( , , )
2

i j k  is given 

by: 

             , , 2 2 2 2

, , 1 , , , , 1/22

1
( ) (1 )( )

( )
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x y i j k x y i j k i j k

u
u u h

t x
      


     

 
             (3.107) 

which leads to the five-point formula: 
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    (3.108) 

we note that when   takes the values 2/1,0 and 1, we obtain the classical explicit, the 

Crank-Nicolson and the fully implicit schemes whose truncation errors are 

2 2 2 20([ ] ), 0([ ] [ ] ) 0([ ] )x t x t and x t       respectively. The explicit scheme is 

stable only for 
1

4
  2 2 1

( , [( ) ( ) ] )
8

if x y weneed t x y        . The fully implicit 

and the Crank-Nicolson schemes are, however, unconditionally stable.  

The weighted finite-difference Eq. (3.108) can be expressed in the more compact matrix 

form as: 

                                              
[ 1] [ ]

( ) ( ) ,k k

r rAu Bu b g                                                   (3.109) 

                                                    f                                                                             

where 
[ ]

( )

k

ru are the unknown u -values at time level k ordered row-wise as denoted by the 

suffix r  and 

                             ( ) 1 2 1 2( , , , ) ( , , , ) , 1,2, ,T T

r n j j j mju u u u with u u u u j n   . 
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thus, the mn  internal mesh points on the rectangular grid system R  are ordered row-

wise. The vector b  consists of the boundary values where 

                                           
1 2( , , , )T

nb b b b  

with 
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and the vector g contains the source term of Eq. (3.108) given by: 

                                                 
1 2( , , , )T

ng g g g  

with 

                          
1 2

1, , 1/2 2, , 1/2 , , 1/2

( , , , )

( , , , ) 1,2, , .

T

j j j mj

T

j k j k m j k

g g g g

t h h h for j n  



  
 

the coefficient matrix A  in Eq. (3.109) takes the block tri-diagonal form. 

                            2 1( ) ( )A diag a of order m m                                                     

where 

                                   11 4c and a                                                          

Similarly, the matrix B  is of the form: 

                               2 1( ) ( )B diag e of order m m                                                   

where 

                             11 4 (1 ) (1 )d and e                                                       
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if we split A  into the sum of its constituent symmetric and positive definite matrices 

321 ,, GGG  and 4G , we have: 

                                         1 2 3 4 ,A G G G G                                                         (3.110) 

with  

                                        
1 2

1
( ) ( )

2
diag G G diag A   

and  

                                       
3 4

1
( ) ( )

2
diag G G diag A  . 

in particular, we let,  

                               4 ( / 2) ( ),A diag c of order m m we have   

                               

The Douglas-Rachford formula for the AGE fractional scheme then takes the form: 

                          

( 1/4) ( )

1 ( ) 1 2 3 4 ( )

( 1/2) ( ) ( 1/4)

2 ( ) 2 ( ) ( )

( 3/4) ( ) ( 1/2)

3 ( ) 3 ( ) ( )

( 1) ( ) ( 3/4)

4 ( ) 4 ( ) ( )

( ) ( 2 2 2 ) 2 ,

( ) ,

( ) ,

( ) .

p p

r r

p p p

r r r

p p p

r r r

p p p

r r r

G rI u rI G G G G u f

G rI u G u ru

G rI u G u ru

G rI u G u ru



 

 

 

      


   


   


   

              (3.111) 

we now consider the above iterative formulae at each of the four intermediate levels: 

i) At the first intermediate level (the thp )4/1(  iterate) 

since 1 2 3 4 ,A G G G G    then using the first expression of Eq. (3.111) and Eq. 

(3.109) we obtain: 

                    
( 1/4) ( ) [ ]

1 ( ) 1 ( ) ( )( ) (( ) 2 ) 2 2( )p p k

r r rG rI u rI G A u Bu b g        

or 

                   
( 1/4) 1 ( ) [ ]

( ) 1 1 ( ) ( )( ) [(( ) 2 ) 2 2( )].p p k

r r ru G rI rI G A u Bu b g                       (3.112) 

without loss of generality we assume that the size of the matrix is odd. By writing 

1 1 1 2 2 1 1 2 1 12 , 2 , 2 , 2D C A D C A E A F B and       2 22F B  hence, using we obtain 
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the following set of equations for computation of the AGE algorithm at the thp )4/1(   

iterate: 

            
( 1/4) 1 ( ) ( ) [ ] [ ]

( ) 1 1 1( ) 1 2( ) 1 1( ) 2 2( ) 1 1( 2( ));p p p k k

j r r r r ru C D u E u Fu F u b g                               (3.113) 

              

( 1/4) 1 ( ) ( ) ( ) [ ] [ ]

( ) 2 1 ( 1)( ) ( 1)( ) 2 ( ) 2 ( 1)( ) ( 1)( )

[ ]

1 ( )

( ( ) ( )

2( )), 2,4, , 1;

p p p p k k

j r j r j r j r j r j r

k

j r j j

u C E u u D u F u u

Fu b g for j n

 

       

    
            (3.114) 

               

( 1/4) 1 ( ) ( ) ( ) [ ] [ ]

( ) 1 1 ( 1)( ) ( 1)( ) 1 ( ) 2 ( 1)( ) ( 1)( )

[ ]

1 ( )

( ( ) (

2( )), 3,5, , 2;

p p p p k k

j r j r j r j r j r j r

k

j r j j

u C E u u D u F u u

Fu b g for j n

 

       

    
              (3.115) 

               
( 1/4) 1 ( ) ( ) [ ] [ ]

( ) 1 1 ( 1)( ) 1 ( ) 2 ( 1)( ) 1 ( )( 2( )).p p p k k

n r n r n r n r n r n nu C E u Du F u Fu b g 

                  (3.116) 

let 1 1 2 1 3 4 12 , 2 , 2 2r c a d and e         . When the above equations are 

written component-wise, we have: 

(a) for Eq. (3.113) 

         

( 1/4) ( ) ( ) ( ) [ ] [ ] [ ]

11 1 11 2 21 12 3 11 4 21 12 11 11) 1

( 1/4)

1 1 1

( 1/4)

1,1 1 1

( ( ) 2( /

[ 2,4, , 1,

p p p p k k k

p

i i i

p

i i i

u u u u u u u b g r

u rv a v

u a v r v for i m

   









         

 
     

     

     (3.117) 

where  

                         

( ) ( ) ( ) ( ) [ ]

1 1,1 1 ,1 2 1,1 2 3 1

[ ] [ ] [ ]

4 1,1 1,1 2 1 1

( ) ( ) ( ) ( ) [ ]

1 1 1 1,1 2 2,1 1,2 3 1,1

[ ] [ ] [ ]

4 1 2,1 1,2 1,1

(

( 2( )

( )

( ) 2(

p p p p k

i i i i i i

k k k

i i i i i

p p p p k
i i i i i i

k k k

i i i i i

v a u u u u u

u u u g b

and

v a u u u u u

u u u b g

  



  



 

 



   

  

     

   

     

    1,1

1

)

0 ;iwith u for i m





 

b) for Eq. (3.114) 
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( 1/4)
,, 1 , 1

( 1/4)
,1, 1 , 1

( 1/4) ( ) ( ) ( ) ( ) [ ]

1 2 1, , 1 , 1 3

[ ] [ ] [ ]

4 1, , 1 , 1

2,4, , 1, 1,3, , 2,

[ ( )

( ) 2(

p
i ji j i j

p
i ji j i j

p p p p p k

mj mj m j m j m j mj

k k k

m j m j m j

u rv a v

j n i m

u a v r v

u u u u u u

u u u

  













  

  

 
      

   
         

    

    1)] / ,

2,4, , 1.

mj mjb g r

j n



 

      (3.118) 

where 

                 

( ) ( ) ( ) ( ) [ ]

, 1 , 2 , 1 , 1 1, 3 ,

[ ] [ ] [ ] [ ] ( )

4 , 1 , 1 1, 1, 1 1, 1, 1,

( ) ( ) ( ) ( ) [
, 1 1, 2 1, 1 1, 1 2, 3 1,

( )

( ) 2( )

( )

p p p p k

i j i j i j i j i j i j

k k k k p

i j i j i j i j i j i j i j

p p p p k
i j i j i j i j i j i j

v u u u u u

u u u u a u b g

and

v u u u u u

  



  

  

      



      

    

      

     ]

[ ] [ ] [ ] [ ] ( )

4 , 1, 1 1, 1 2, 1 , 1, 1,

0

( ) 2( )

0.

k k k k p

i j i j i j i j i j i j i j

j

u u u u a u b g

with u

             



 

c) for Eq. (3.115) 

                          

( 1/4) ( ) ( ) ( ) ( ) [ ]

1 1 1 2 1, 1 1, 1 2, 3 1,

[ ] [ ] [ ]

4 1, 1 1, 1 2, 1 1 1

[ ( )

( ) 2( )] / ,

3,5, , 2,

p p p p p k

j j j j j j

k k k

j j j j j

u u u u u u

u u u b g r

j n

  





 

 

    

    

 

                       (3.119) 

                

( 1/4)

1 1

( 1/4)

1, 1 1

[ ] / ,
3,5, , 2; 2,4, , 1,

[ ] /

p
ijij ij

p
iji j ij

u r w a w
for j n i m

u a w r w










   

   
   

      (3.120) 

where, 

                     

( ) ( ) ( ) ( ) [ ]

1 2 1, , 1 , 1 3

[ ] [ ] [ ] [ ] ( )

4 1, , 1 , 1 1, 1 1,

( ) ( ) ( ) ( ) [ ]

1 1, 2 1, 1 1, 1 2, 3 1,

[

4 ,

( )

( ) 2( )

( )

(

p p p p k

ij ij i j i j i j ij

k k k k p

i j i j i j i j i j ij ij

p p p p k
ij i j i j i j i j i j

i j

w u u u u u

u u u u a u b g

and

w u u u u u

u

  



  



  

    



      

    

      

    

 ] [ ] [ ] [ ] ( )

1, 1 1, 1 2, 1 , 1, 1,

,

) 2( )

0 ,

k k k k p

i j i j i j i j i j i j

i j

u u u a u b g

with u for i m

           

 

 

d) for Eq. (3.116) 
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( 1/4) ( ) ( ) ( ) [ ]

1 1 1 2 1, 1 2, 3 1,

[ ] [ ]

4 1, 1 2, 1 1 1

[ ( )

( ) 2( )] /

p p p p k

n n n n n

k k

n n n n

u u u u u

u u b g r

  









    

    

                               

( 1/4)

1 1

( 1/4)

1, 1 1

[ ] / ,
2,4, , 1,

[ ] /

p
iin i

p
ii n i

u r z a z
for i m

u a z r z










   

 
   

                    (3.121) 

                              

ii) At the second intermediate level (the thp )2/1(   iterate): 

From the second equation of Eq. (3.173) we have: 

                                       
1/2) 1 ( ) ( 1/4)

( ) 2 2 ( ) ( )( ) [ ]p p p

r r ru G rI G u ru                                    (3.122) 

let 1 1C C


  with the diagonal elements 1r replaced by / 4c and 2 2C C


  with the 

diagonal elements 1r replaced by / 4c . For computational purposes, we will then have: 

                     

( 1/2) 1 ( ) ( 1/4)
2( ) 2 ( ) ( )

( 1/2) 1 ( ) ( 1/4)

( 1)( ) 1 1 ( 1)( ) ( 1)( )

[ ],
1,3, , 2,

[ ],

p p p

j r j r j r

p p p

j r j r j r

u C C u ru
j n

u C C u ru


  


  

  


  

 
  

                     (3.123)                                                                                                                                 

and 

                             
( 1/2) 1 ( ) ( 1/4)

2( ) 2 ( ) ( )[ ].p p p

n r n r n ru C C u ru


                                                     (3.124) 

by denoting 2 1/ 4r c r and 3 1/r r r the above equations can be written component-wise 

as follows: 

a) for Eq. (3.123) and Eq. (3.124), 

( ) ( ) ( ) [ ]

1 , 2 1, , 1 3 ,

[ ] [ ] [ ] ( )

4 1, , 1 1, 1 1, , ,

( ) ( ) ( ) [ ]

1 1, 2 1, 1 2, 3 1,

[ ] [ ] [ ]

4 , 1, 1 2, 1

( )

( ) 2( )

( )

( )

p p p k

i i n i n i n i n

k k k p

i n i n i n i n i n i n

p p p k
i i n i n i n i n

k k k

i n i n i n i

z u u u u

u u u a u b g

and

z u u u u

u u u a u

  



  



 

   



    

  

   

     

   

    ( )

, 1, 1,

,

2( )

0 .

p

n i n i n

i n

b g

with u for i m
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( 1/2)

1 1

( 1/2)

1, 1 1

[ ] /
1,3, , ; 1,3, , 2,

[ ] /

p
ijij ij

p
iji j ij

u rv a v
for j n i m

u a v r v










   

  
   

              (3.125) 

and 

                                  
( 1/2) ( ) ( 1/4)

2 3 , 1,3, , .p p p

mj mj mju r u r u j n     

where 

                                           

( ) ( ) ( 1/4)

1 1,

( ) ( ) ( 1/4)

1 1, 1,

4

.
4

p p p

ij ij i j ij

p p p
ij ij i j i j

c
v u a u ru

and

c
v a u u ru








 

  

  

 

b) for the second Eq. (3.123) 

                                  
( 1/2) ( ) ( 1/4)

1 2 1 3 1 , 2,4, , 1,p p p

j j ju r u r u j n    
 

                    

( 1/2)

1 1

( 1/2)

1, 1 1

[ ] /
2,4, , 1; 2,4, , 1,

[ ] /

p
ijij ij

p
iji j ij

u rv a v
j n i m

u a v r v










   

   
   

          (3.126) 

where 
ijv and ijv



are given as in Eq. (3.125). 

iii) At the third intermediate level (the (p + ¾)th iterate): 

if we reorder the mesh points column-wise parallel to the y-axis, we have, by using the 

suffix c, 

( ) 1 2 1 2( , , , ) ( , , ) 1,2, , .T T

c m i i i inu u u u with u u u u for i m    

We also find that: 

                                 

3 4 ( ) 1 2 ( )

3 ( ) 1 ( ) 4 ( ) 2 ( )

( ) ( )

, .

r c

r c r c

G G u G G u

and

G u G u G u G u

 

 

  

 

                                               (3.127) 

hence the third equation of (3.111) is transformed to:  
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( 3/4) ( ) ( 1/2)

1 ( ) 1 ( ) ( )

( 3/4) 1 ( ) ( 1/2)
1 1( ) ( ) ( )

( )

( ) [ ].

p p p

c c c

p p p

c c c

G rI u G u ru

or

u G rI G u ru

 
 

 
  

  

  

                                      (3.128) 

let the matrices 
1P and 

2P be exactly as the same forms as 
1C and 2C  but of order ( )n n  

we will then have: 

                                            1 1 1
4

c
P P with r replaced by


  

and 

                                           2 2 1
4

c
P P with r replaced by


 . 

The following equations are therefore obtained for computation at the 
3

( )
4

p th  

                           
( 3/4) 1 ( ) ( 1/2)

( ) 1 1 ( ) ( )[ ] 1,3, ,p p p

i c i c i cu P P u ru for i m


                              (3.129) 

and 

                            
( 3/4) 1 ( ) ( 1/2)

( ) 2 2 ( ) ( )[ ] 2,4, , 1p p p

i c i c i cu P P u ru for i m


      .                  (3.130) 

which component-wise yields: 

a) for Eq. (3.129): 

                              ( 3/4) ( ) ( 1/2)

1 2 1 3 1 , 1,3, , .p p p

i i iu r u r u i m     

                       

( 3/4)

, 1 1

( 3/4)

, 1 1 1

[ ] / ,
1,3, , ; 2,4, , 1,

[ ] / ,

p

i j ij ij

p

i j ij ij

u r w a w
i m j n

u a w r w










   

  
    

        (3.131) 

where 

                                        
( ) ( ) ( 1/2)

1 , 1
4

p p p

ij ij i j ij

c
w u a u ru 

  
 

and 

                                         ( ) ( ) ( 1/2)

1 , 1 , 1 ,
4

p p p
ij ij i j i j

c
w a u u ru
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b) for Eq. (3.131): 

                

( 3/4)

, 1 1

( 3/4)

, 1 1 1

( 3/4) ( ) ( 1/2)

, 2 , 3 ,

[ ] / ,
2,4, , 1; 1,3, , 2,

[ ] / ,

,

p

i j ij ij

p

i j ij ij

p p p

i n i n i n

u r w a w
i m j n

u a w r w

u r u r u









 


   

   
    

 

          (3.132) 

where ij ijw w


 are given as in Eq. (3.132). 

iv) at the fourth intermediate level (the (p+1)th iterate: 

The last equation of (3.111) is transformed to:  

                                          
( 1) ( ) ( 3/4)

22 ( ) ( ) ( )( ) p p p

c c cG rI u G u ru
 

     

or 

                                         
( 1) 1 ( ) ( 3/4)

2( ) 2 ( ) ( )( ) [ ]p p p

c c cu G rI G u ru
 

      

which leads to the following formulae: 

                                    
( 1) 1 ( ) ( 3/4)

2( ) 2 ( ) ( )[ ], 1,3, , ,p p p

i c i c i cu P P u ru i m


                           (3.133) 

and 

                                  
( 1) 1 ( ) ( 3/4)

1( ) 1 ( ) ( )[ ], 2,4, , 1.p p p

i c i c i cu P P u ru i m


                      (3.134) 

for computational purposes, we have: 

a) for Eq. (3.133): 

                     

( 1)

, 1 1

( )

, 1 1 1

( 1) ( ) ( 3/4)

, 2 , 3 ,

[ ] / ,
1,3, , ; 1,3, , 2,

[ ] / ,

, 1,3, ,

p

i j ij ij

p

i j ij ij

p p p

i n i n i n

u r z a z
i m j n

u a z r z

u r u r u i m








 


   

  
    

  

               (3.135) 

and 

b) for Eq. (3.134): 

                      
( 1) ( ) ( 3/4)

,1 2 ,1 3 ,1 , 2,3, , 1.p p p

i i iu r u r u i m                                             (3.136) 
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( 1)

, 1 1

( 1)

, 1 1 1

[ ] / ,
1,2,4, , 1; 2,4, , 1,

[ ] / ,

p

i j ij ij

p

i j ij ij

u r z a z
i m j n

u a z r z










   

   
    

 

where 

                                            ( ) ( ) ( 3/4)

1 , 1
4

p p p

ij ij i j ij

c
z u a u ru 

    

and 

                                           ( ) ( ) ( 3/4)

1 , 1 , 1 .
4

p p p
ij ij i j i j

c
z a u u ru




     

Hence, the AGE scheme corresponds to sweeping through the mesh parallel to the 

coordinate x  and y  axes involving at each stage the solution of 2 x 2 block systems. 

The iterative procedure is ( 1) ( )p p

ij iju u    is met where   is the convergence criterion.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


