CHAPTER 3
THE FINITE DIFFERENCE METHOD FOR 1-D AND 2-D PARABOLIC

EQUATIONS

3.1 Introduction

Many problems in science and engineering are modeled by parabolic equations in one
or more dimensions. These so-called partial differential  equations
(PDE) involve two or more independent variables that determine the behavior of the
dependent variable. We shall concentrate on the so-called 1-D and 2-D Parabolic
Equations (Douglass & Rachford (1956), Mitchell & Griffiths (1980) and Burden &
Douglass (2000)). We begin the chapter by discussing the approximation of derivatives
by finite difference method. Section 3.2 and 3.3 discuss the explicit and implicit
method. Section 3.4 discusses the iterative solution of the linear system with the
formulation of the iterative alternating direction explicit (IADE) scheme on 1-D
Parabolic Equation (Sahimi et al., (1993)) and alternating group explicit (AGE) scheme
on 1-D are discussed in section 3.5 and 3.6. Section 3.8 and 3.9 treat the explicit and
implicit schemes on 2-D Parabolic Equation. Some alternating schemes are included in

the subsequent sections.

3.1:1 Crank-Nicolson Method on 1-D (Johnson & Riess (1982))

It is possible to keep the implicit nature of the finite difference scheme for backward
difference, whilst improving the accuracy of the scheme by using a central difference in
time. That is, using an approximating given by:

U U, Ui+1,n+1/2 - 2Ui,n+l/2 +Ui—l,n+1/2

A (AX)? 3D
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using such a scheme we have no way of calculating variables at the n+1/2 time level, so

we have:

U

ind

Ui,n _ 1 Ui+1,n+l B 2Ui,m—l +Ui—1,n+l +Ui+l,n B 2Ui,n +Ui—l,n (32)
At 2

2 (A%)?
that is, variables at the n+1/2 time level are replaced by the average of the variables at
the n and n+1time levels.

Rearranging (3.2) we obtain:
-rJ . +@2+2ry; ,-ru

rv,,, +(@2-2rny, +ru (3.3)

i—1,n+ i+Ln+ — i+1L,n

where r = At/(Ax)? . Once again we have a tridiagonal system of equations which can

be solved using the Thomas algorithm. We can write the system of equations (3.1) as:
BU,,=CU, +d,,

where U, =[U,,,U,.,-- U, .. [ B=21—rT, C=21+rT.

Here | isthe (m—1)x(m—1) identity matrix and

-2 1
-2 1

L d(m-1)x(m-1)
The matrix B and C are symmetric and so if Band C commute then B™'Cis also
symmetric. For matrices of the form: F(a) =a,l +a,A+a,A* +---, that is a polynomial
in A, the eigenvalues are given by f(1), where A is an eigenvalue of A. The
eigenvalues of [f,(A)]™ f,(A)are given by f,(1)/ f,(1) where A is an eigenvalue of

A.
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3.2 Iterative Solution of the Linear System (Ames 1977)

A system of linear algebraic equations can be sparse and banded. We will typically
employ the concise notation

Au=Db (3.4)

to represent such systems and the focus of this section is the study of methods for
efficiently solving equation (3.4) on a digital computer. The first iterative methods used
for solving large linear systems were based on relaxation of the coordinates. The
relaxation steps are aimed at annihilating one or a few components of the residual vector
b— Au. The convergence of these methods is rarely guaranteed for all matrices, but a
large body of theory exists for the case where the coefficient matrix arises from the
finite-difference discretization of the PDE. A desirable alternative, which preserve

sparseness and can achieve a high degree of accuracy even for large n, is an iterative

method such as Jacobi or Gauss-Seidel method.

N? (O Jacobi, Gauss-Seidel
N*° O ADI, ILU, Optical SOR
NL25 (O SSOR+CG, ILU+CG

NlogN (O Cyclic ADI, Fast Poison Solver 2-grid MG

N FMG, DDM FGM, DDM
O O
Rectangular domain Smooth General domain
& smooth coefficients coefficients & coefficients

Fig. 3.1: Comparison of required arithmetic for various iterative methods.
Thus, this summary figure by (Young (1967)) indicates that much is involved in

selecting a suitable solution method for any specific parabolic boundary value problem.
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3.2:1 Basic Theory (Jacobi Method) by (Young (1967))

We begin with the decomposition

A=D-E-F, (3.5)
in which D is the diagonal of A, — E is the strict lower part and — F is the strict upper
part. It is always assumed that the diagonal entries of A are all nonzero. The Jacobi
iteration determines the ith component of the next approximation so as to annihilate the
ith component of the residual vector.
Thus,

(b-Ax.,)=0 (3.6)
however, recall Eq.(3.4) and note that iterative methods for solving this system of linear
equations can essentially always be expressed in the form:

UM =gu™ +K (3.7)
where nis an iterative counter and G is the iteration matrix, it is related to the system
matrix A by

G=1-Q*'A

where | is the identity matrix and Q is generally called the splitting matrix. The Jacobi
scheme can be constructed as follows. Firstly, decompose A as in Eq.(3.5), substitute
into (3.4) to obtain

(D—L-U)U =b, or DU =(L+U)U +b (3.8)
hence, introducing iteration counter, (3.8) becomes

U™ =D(L+UU"+D™b (3.9)
fromEq. (3.9) L+U=D-A,so D*(L+U)=1-D"A
Thus, D is the splitting matrix and Eq.(3.9) is in the form (3.7) with

G=D?'(L+U)=1-D'A k=D (3.10)
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Hence, in matrix terms the definition of the Jacobi method can be expressed as
XD = pL+U)x® +D b asinEq.(3.9)

where

j#i

X :ai(bi =2 2%;) (3.11)
ij
suggesting an iterative method defined by

Xi(k+l) — ai (bl _ Zai,j XI;) (312)
L]

j=i
3.2:2 Gauss-Seidel (GS) Method (Bertsakas & Tsitsiklis (1998))

Consider again the linear equations; if we proceed as with the Jacobi method but not
assume that the equations are examined one at a time in sequence, and that previously

computed results are used as soon as they are available we obtain the Gauss-Seidel:

1

(k) () (k-)

X, N b, E a ;X E 3% (3.13)
i j<i j>i

the computation appear to be serial, since each component of the new iterate depends
upon all previously computed components. The update cannot be done simultaneously
as in the Jacobi method. Secondly, the new iterate x depends upon the order in which
the equations are examined. The GS is called the “Successive Displacement” to indicate
the dependence of iterates on the ordering. A poor choice of ordering can degrade the

rate of convergence. In matrix terms, the definition of GS method is:

X® =(D-L)Ux*P +Db) (3.14)
consider Eqg.(3.4) and A=D-L-Uas was done in Eq.(3.5) followed by some
rearrangement leads to:

(D-LU™ =y ®D 1 p (3.15)
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or

DA-DLU ™ =uy®™ 4,

and
Uur? =a-bD'L)"'DU™ +@1-D'L)'D'b (3.16)

we define

L=(1-D'L)'DW

K=@1-D*L)*D"
and write

U =Lu®™ + K (3.17)
3.2:3 Successive Overrelaxation (SOR) Method (Prasad, (2005))

SOR is obtained from GS iteration by introducing the relaxation parameter wvia the

extrapolation:

UM =(1-o)U™ + U " (3.18)
where U ™" has been obtained from Eq.(3.17). This leads us to the fixed-point formula
for SOR iterations:

UM =(1-@)U® + 0D LU +DU® + D b]
or
U =@1- a)D‘lL)‘l[a)D‘lu +(1- a))I]J ™+ ol-eD'L) D (3.19)
U =prLu™ +DU™ + D (3.20)
a rearrangement of Eq.(3.15). If we now define
lo=(1- D) oD U + (- )l | (3.21)
ko=w(l —oD L) D (3.22)

we can write Eq.(3.19) as:
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U™ =roU™ + ko (3.23)
the fixed-point form of SOR. The combination Eq.(3.8) and Eq.(3.10) should always be

used. Choosing the value of w, if @ =1,the SOR method simplifies to the GS method.

A theorem due to Kahan (1998) shows that SOR fails to converge if @ is outside the

interval (0,2). The term underrelaxation should be used when O<w<1, for
convenience the term overrelaxation is now used for any value of w € (0,2). If the

coefficient matrix A is symmetric and positive definite, the SOR iteration is guaranteed
to converge for any value of w between 0 and 2, the choice of @ can significantly

affect the rate of SOR convergence.
3.3 IADE Scheme on 1-D Parabolic Equation (Sahimi et al., (1993))

Consider a uniform spaced network whose mesh points arex =iAx,t. = jAt for
i=1...,mm+1 and j=0,1...,n,n+1lare used with Ax=1/(m+1),At=T/(n+1)and
A =At/(Ax?),the mesh ratio. That is, the interval 0< x <1is divided into a grid of
points of Axspacing and the T interval is divided into steps of At. The difference
operator in EQ.(3.1) is approximated by centred differences. A generalized finite
difference to the difference equation Eq.(3.1) at the point (x;t;,,,,) is given by:

A0, , ., +(1+220)U,

i+l
Q=6 i=12,...m

A, . = AA-0)U, +[1-241-0)]U, ; +

i+1, j+1

(3.24)

i+1,j?

This approximation can be displayed in a more compact matrix form as:
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[a b 1 —ul 1 _fl )
cab u, f,
cab B
c ab Uy o f. 4
L c a_(mxm) _um Jj+1 _fm .
ie,
Au= f (3.25)
where

c=-160 a=1+2160 b=-10

f,=AQ-0)(uy; +Uy;) + 10U, ;, +[1-22(1-0)]u, ;
fi=A0-0)(u,_y; +U., ;) +[1-241-O)]u;; 1=2,3,....m-2,m-1 (3.26)
fn=A0=0) (U, o ; +Up, ) +L-2240-O)]u,, ; + A(L-O),,,; + 46U

U= (Uy Uy oo Up jg) @nd £ =(F, f,, 0 f)

m+1, j m+1, j+1

we note that f is a column vector of order m consisting of the boundary values as well
as known u at time levels jwhile u are the values at time level (j+1) which we seek.

We also recall that Eq. (3.25) corresponds to the fully implicit, the Crank-Nicolson, the
Douglas and the classical explicit methods when & takes the values 1,1,%,—1/121 and

0, respectively. The corresponding  accuracies are of the order:

O[(AX)? + At], O[(AX)?+(At)*], O[(AX)* +(At)*]and O[(AX)* + At], respectively.
3.3:1 1ADE Scheme MF-DS (Mitchell & Fairweather (1980))

With the Mitchell-Fairweather variant accuracy can be improved by utilizing the

following:

(rl +G U2 = (rl —gG,)u® + f

3.27
(rl +G,)u®™® = (rl —gG)u®*? 4 gof (3:27)

where g = (6 + ) / 6. The coefficient matrix Aas in (3.25) however, is decomposed into
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A=G, +G, —%Gle (3.28)

to retain the tridiagonal structure of A as in Eq.(3.25), the constituent matrices G,and
G, must be bidiagonal (lower and upper, respectively). Eq.(3.28) leads to:

6

e =—(a-1
=2 (@-D)
uing, | =6¢c/(6-¢); e #6 (3.29)

1
e, ——a+ -1
( 6 )

fori=12,---,m-1.
Since G,and G,are bidiagonal, (G, +rl)and (G, +rl) can be inverted easily and take a

full lower and upper triangular form, respectively.

From (3.27) we have:

u®P2 = (rl +G) *(r1 = gG U™ +(rl +G)* f (3.30)
U = (rl +G,) (rl —gG)uY? + g(rl +G,)* f '
The IADE scheme is therefore executed at each of the intermediate levels by effecting
the following computations:

) at level (p+1/2)

uP Y = (A uS? +su® +wul® + £)/d fori=1,2,---,m,  (3.31)
where
d=1+r
l,=w,=0
s, =r—ge, i=12,...,m
W, =—gu,, i=12,....m-1
ii) at level (p+1)
U = (Va3 4 SUREEEY + 9T = U Uni2% ) /d

m+1-i (3.32)

fori=12,...,m where
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d, =r+e

v,=u, =0
s=r-g,
v=-—gl.

The IADE algorithm is completed explicitly by Eq.(3.31) and Eq.(3.32) in alternate

sweeps along the points in the interval (0,1) until a specified convergence criterion is

satisfied.

3.3:2 1ADE Scheme of D’Yakonov Fractional Splitting (IADE-DY)

Sahimi et al., (1993) proposed an accurate unconditionally stable 2-step method
involving the solution of tridiagonal sets of equations along lines parallel to the x- and
y- axes at the first and second steps. Fractional splitting of D’Yakonov was used to
obtain accurate, stable and convergent 2-stage iterative procedure for a fixed

acceleration parameter r > 0. Consider the iterative formula:

(rl + Lu®*? = (r1 —gL)(rl — gR)u‘™ + hf

(rl + R)u D =y #+112 (339
and
q-= 6+r’ he r(12+r)
6 6
note that by combining the two equations in (3.33) and eliminating tLJ“””Z’,we find that
as p — oo, We have:
1
(L+ R—ELR)u =f (3.34)
this suggests that the coefficient matrix A in (3.35) can be decomposed into:
1
A=L+R—€LR (3.35)
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to retain the tridiagonal structure of A. The constituent matrices L and R take the

bidiagonal forms (lower and upper, respectively), equating the entries of the matrices in

Eq.(3.35) leads to the determination of e, u,, i=1,2,...,m, in the recursion form:
_6(a-1)
5
5 =8 -5 e (3.36)
5 6-¢
6a+(Mg)-D
€= : , 1=1,2,...,m-1

the explicit form of Eq.(3.33) is given by:

y(PH2) (rI + L)—l{(rl _ gL)(rL— gR)u(p) + hf }, and

u(p+l) _ (rI + R)—l (p+1/2) (337)

Since L and R are bidiagonal, the inverse of (rl + L)and (rl + R) take a full lower and

upper triangular form given by:

( 1)| k+2 -1
ap =g Ll i=12m k=12, (3:38)
with
1 DRI k<i-
l; = I_l, k=i-1 (3.39)
I=k k=i
d=l+r (3.40)
and
j-1
[Tu
Boy=CDE— j=12..m  k=12..]j (3.41)
I
i=k
with
i1 U Uy ui—l’ k<J 1
[Tu =1u, k=j-1 (3.42)
i=k 1 k :J
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and

d;=r+e (3.43)
by carrying out the relevant multiplication in Eq.(3.8), we obtain the following
equations for computation at each of the intermediate levels:

(i) atthe (p+1/2)th iterate,

(p) Q)
LD _ s(su, ™ +wu,” +hf,)

1
d
ui(p+112) = (_Iiflui(fpl)rllZ) + Vi—lsi—lui(ﬂ.) + (Vi—lwi—l +S§ )ui(p)
+swu'? +hf )/d i=234,.,m-1 (3.44)

(p+1/2) (p)
_Im—lum—l +VinaSpaUma (Vm—lwm—l +

P2 _ ss,, )ub +hf
{ -

d
where
s=r—g, q=©1+9)r,
s, =r—ge, 1=12,...,m,
. (3.45)
W, =—gu,, i=12,....m-1
v, =—gl., i=12,...,m-1
Eq.(3.44) may be written fully in their explicit form as:
L) _ s(s,ul” +wulP +hf,
' d
- i-1 i-1 o i-1
ED™Har [hsw® DL Di+ j+1al] [1;0,.,w,, —sd)u’
u_(p+1/2) _ j=1 + j=2 k=j
! di di—j+2
i i-1
hY [0 £, T,
_(l . _ Qg (p) (P - o )
CRLU/S! Zss,d)u, T e < fori=2,3,...,m-1,m.
d d dl j+1
(3.46)
(ii) at the (p +Dthiterate,
u:ﬂPJrl) _ uﬁnp+1/2) |
d,
uPH2) _ gy y (P (3.47)
P = D j=m-1m-2,...,2,1

d
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the fully explicit form of (3.47) is given by:

> DL e e

ui(r”l) =X izk*fn ! (3.48)
(r+e,)

where

k+1, i odd
k, ieven, for i=12,...,m

The IADE algorithm is executed by using the equations (3.44) and (3.47) in alternate
sweeps along the points in the interval (0,1) until a specified convergence criterion is

satisfied.
3.3:3 Formulation of the IADE Fourth Order (Mohanty (2004))

A fourth-order Crank-Nicolson type scheme for the numerical solution of Eq.(3.1) is

given as follows:

1 1 1
E(Ui,m _Ui,j) = W[éf _55:}(ui,j+l +ui,j) (3-49)

where o, is the usual central difference operator. By defining constants such as:

Ay 24 4454, 24 4, 4-5 (3:50)
24 3 4 3 24 4

Eq. (3.49) becomes:

au; 5,y +0U; 0 +CU +dU g +EU, 5 =AU, —bu +

N

CU; —dumvj

—eu. i=23--,m-1

i+2,]

The above approximation can be displayed in a matrix form as
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c d e ] u, | £, ]
bcde 0 U, f,
abcde . .
a b c d e )
0 abc d U, f
L a b c d(m-2)x(m-2) _u m-1lju L fm—l _
where
u= (Uz,j+1,u3,j+1, ’um—l,j+1 )T’ f= (fz’f3’--- fm—l )T

N
f, =-b(u;; +u,;,,)+cu,; —du,; —eu,;
A
fy =-a(u,; +u,;,,)—bu,; +cuy; —du,; —eug;

f, =-au,_,; —bu; +<A:u”. —du;,; —eu;,;, fori=45,.m-3 (3.51)

meaj —DUp s +<A:um_2'j —duy,,; —e(Up; +Upig)

meaj —PUn o) +(A:umfl'j =AUy +Upia)

The column vector f of order m—2 consists of boundary values and known u values
at time level j. We seek to find the values of u at time level (j+1). The Mitchell-
Fairweather variant of the IADE scheme of Sahimi et al (1993) for a fixed acceleration

parameter r > 0is given by:

(rl + G U2 = (rl —gG,u® + f
(r1 +G,)u®® = (rl — gG)u**'? 4 of (3.52)

where
g=(6+r)/6

The coefficient matrix is decomposed into:

1
A=G,+G, -GG, (359)

The constituent matrices G, and G, must be in the form of lower and upper tridiagonal

matrices respectively, in order to retain the pentadiagonal structure of A. Eq.(3.53) leads

to:
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)
er=—(c-1
1 5( )
=24
5
\All—Ee, i=12,...m-4
5
6b
l, = -
6-e;

e :%(6(0—1)”1&1)
fori=23,....m-3:

C|l =%(6d +1. \/}ilj, rfl\qi—l = 6aA ,
6—-e;
Ii:——éj—(Gbﬁ-&paara)
6-e;
(;M = 1(G(C—l) +1; Gi+ f?]i—l\A/m—lj (3.54)
c .

Since G, and G, are three banded matrices, then (G, +rl) and (G, +rl)can be

inverted easily. From Eq.(3.52) we have:

U = (rl +G,) 7 (rl —gG,)u® +(rl +G,) * f
U = (r1 +G,) *(rl — gG U2 + g(r1 +G,)* f (3.55)

giving us the following computational formulae at each of the half-iterates

(i) at the (p+1/2)th iterate:

1
uiPa = E(Eluép) +W,ulP +V,ul® + fz)
(g _ 1 (E ® L Wou® £\Voul® — Ll 4o )
Us _E U™ FVLUT +VoU™ —1Up + 13
1 A
(p+1/2) _ (p) (p) (p) . (p+1/2) (p+1/2)
u; - E Ei—lui +Wi—1ui+l +Vi—lui+2 —Mis Ui, _Ii—zui—l + fi )
i=45 m-3 (3.56)
(p+1/2) 1 (p) (p) - (p+1/2) (p+1/2)
Un o = E Em—3um—2 +Wm—3um—1 —Mmn-s Uy, - Im—4um—3 + fm—2
) 1 O (p+1/2) (p+1/2)
Una = E Em—zum—l —Mm-a U5 - Im—3um—2 + fm—l
with

63



R=1+r

Ei:r—géi, 1=12,....m-2
W, = —gui, i=12,...,m-3 (3.57)
V. = —gui, i=12,..,m-4

(ii) at the (p+1)th iterate:

1
(p+l) _ (p+1/2) (p+1/2) (p+1/2)
um—l - (Sm 4um 3 +Qm 3u + Pum—l + gfm—l)

Zm—Z

1 A
Py = > (S uP? +Q,_ulPH? + PulPs’® —umsu®P + of )

m-3

1 A A
0P = (S U QA 4 PP U v ull? o,

45,. I; 3 (3.58)

| =

1 A
(p+1) _ (p+1/2) (p+1/2) (p+1) (p+1)
u; 7 (Qlu + Pu, U, 2U," = Va2 Ug +gf3j

ulP = i(Pu(p*“z) GlUéerl)—\A/lul(lpﬂ)-i-gfzj
Zl
with
P=r—-g
Z, =r+ei, i=12,..,m-2
Q, =-dl, i=12,....m-3 (3.59)
S, =—gmi, i=12,..m-4

the IADE algorithm is completed explicitly by using the required equations at levels
(p+1/2)thand (p+21th in alternate sweeps along all the points in the interval (0,1)

until convergence is reached.
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3.4  Formulation of the AGE Scheme on 1-D Parabolic Equation (Evans &

Sahimi (1989))

If we assume that we have odd (i.e., m odd) number of internal points on the line

0<x<1, we can then perform the following splitting of the coefficient in (3.25) as

follows:
A=G,+G, (3.60)
where
_a/22_' IR |
o : G, I
G=_ : G : (3.61)
i : : : DGy
_%._E e _
: G,
- . ... a/2 b
G, = : G, ., with Gs:{/ }
—_ — = — — c a2
L . a/z_mxm

Using the well-known fact of the parabolic correspondence in the earlier text, the
following stable and convergent two-stage iterative procedure of the (Peacemn-

Rachford (1955)) variant for a fixed acceleration parameter r >0can be employed

(Evans and Sahimi (1988b))
(G, +rNu®?? =(rl =G)u® + f

(G, +rHu®D = (rl =G )uP? 4 f (3.62)

or in the explicit form:

uP = (G, +r1)H{(rl =G, )u® + f |
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U = (G, +r1)H{(rl =G )uP*? + £} (3.63)

Note that (G, +rl)and (G,+rl)can be easily inverted by merely inverting block

diagonal entries. The approximations at each of the intermediate iteration can therefore
be computed from (3.63) as follows:

i) at level (p+1/2)th

(p+1/2) _ (p) (p)
u; =(ru” —bu,” + f)) /r,

(3.64)
u®? = (Au® +Bu® +Cul? + Du?) +E,)/ A
and
ulb™t? = (Aul? +Bu® +Cuf) + DuP) + E;))/ A
fori=2,4,...,m-1 where
a a
h=r=2, L=r+o, A=r}—bc
A=-cr,, B=nr,, C=-br, E, =r,f, -bf,,
0 for i=m-1
D=4, .
b otherwise
and
A=c? B=-cr, C=r1r,, E =r,f,, —cf,
0 for i=m-1
D= _
—br, otherwise
i) at level (p+1)
ui(p-*—l) — (Pui(i+1/2) +Qui(p+1/2) + Rui(fl+1/2) +Sui(+pg+1/2) +T|)/A
uh = (E’ u2 4 6 uP2 I‘?‘ui(fl*”z) s 2 +"I"i) /A
for i=13,...,m-2and
ulP = (—culP2 L pyPYD 4 f Y/, (3.65)
where
p-1” or =l oy, R=br, s=b
| -cr, for i=1' e e T
T=r, fi _bfi+1
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and

] 0 for i=1 ¢ : 0

P=<, ., Q=-cr, R=Q=rnr,, S=-br,
c for i=1

[

Ti=_Cfi+r2 fi+1

the AGE algorithm is completed explicitly by using the required equations at levels
(p+1/2)thand (p+21th in alternate sweeps along all the points in the interval (0,1)

until a specified convergence criterion is satisfied.

3.4:1 Formulation of the Fourth Order AGE Scheme (Evans & Sahimi (1988hb))

Using the Peaceman-Rachford variant (Peaceman & Rachford (1955)), the iterative

formulae at the two half iterates are given implicitly as:
uPtd = (G +rl)[(rl =G,)u® + ]
u®Ph = (G, +r) [(rl =G U2 4 ] (3.66)

where assuming that m is odd, for a fixed acceleration parameter r,

A=G, +G, (3.67)
where
éaeo AA
AN A AN A Cde
d b d AA
S D AT L A VI
b ¢ abcd A
o a bec
0 a bec
LIS
2 2 2
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from Eq. (3.66), we can obtain the following equations at level (p +1/2),

VASAY N N A N
(p) (p) (p) (p)
u(pﬂ,z)_i (c,r, +db)u,” +(—c,d—r, d)u;” +(-ce+dd)u,” +deu” +
. =

AN

Asle,t,—d t,

N N ANAN N N
ML _ 1| (=br,=bc)ul” +(bd+c,r,)u” + (be-c,d)ul” —ceul” -b f, +
A3 _Cl f3

for i=4812,...,m-5,

1
P2 = A—[Pui(_"z) +Qu® +Ru® +sul? +Tu®) +Wul?) + XuP) +YulR) + Zi]

i+2 i+5
1
LT . ) ) ) . . . -
TR = Pu® +Qu® +Ru® +Su® +Tu®) +Wul + Xu®) +Yul? +7;
1L _
1 A A A A A A A A A
uHv? = Pul? +Qul® +Ru{® +Sul? +Tul’) +Wul) + X ul?) +Yul) + Z;
1L
1 M~ ~ ~ ~ ~ ~ ~ ~ ~
TR = Pu® +Qu® +Ru® +Su® +Tu®) +Wul + Xu®) +Yul? +7;
1L _
and
(p+1/2) 1 (p) (p) (p)
Uy ~=—[-aUuys —buy”, +rug’ + foy
Cl
where
N N
C,=C+r, r,=r—c, A, =det(B)
N
c, d e O
N
b ¢ de , A
for B = | Ay=c;-bd,
a b c d
N
0 a b ¢

A

P--B,a Q=-B,b-B, R=B,,—B,b S=-B,d+B,r, T=B,r,—B,b,

W =-B, a"' B, X =-Bje— Bl4d’ Z, = Bllfi +By, fi+1 + B fi+2 +By, fi+3

S0 i i-m-s
~|-BLe otherwise

- A

- B,a, Q=-B,b-B,a R=B,r,—B,b S=-B,d+B,r,, T=B,r,-B,b

ol

W = _823 a+ Bz4r2' k = _ste_ Bz4d’ 2 = BZlfi + Bzz fi+l + st fi+2 + Bz4 fi+3
- {O if i=m-5

-B,,e  otherwise
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A

P=-B,a Q=-B,b-B,a R=B,r,~B,b S=-B,d+B,r, T=B,r,-Byb,

W = _Bss a"’ Bssrz’ )A< = —8336 - BSAd’ ﬁi = BSlfi + Bsz fi+1 + B33 fi+2 + Bs4 fi+3
A 0 if i=m-5
Y = ]
-B,e otherwise

P=-B,a Q=-B,b-B,a R=B,r,—B,b, S=-B,d+B,r, T=B.r,-B,b,

W =-B,,d+B,r,, X=-B,e-B,d, Zi=

{0 if

-B,e
-1

B, f+B,f

a1t wliat B43 fi+2 + B44]c

i+3

i=m-5
otherwise

Y =

and

1

= —det(B) (Bkl )

from Eq. (3.126), we obtain the following equations at level (p +1),

(p+1/2) (p+1/2) (p+1/2) (p+1/2) (p+1/2) (p+1/2)
4D 1 [ AupS 7 + Bug + Cu; + Du;; +Eu L7 + Fugy
i T A 1/2 1/2
Ayl +GuPt? 4 Hu(Y? + 3,
u(erl) ~ 1 Aui(f)2+l/2) + Bui(flJrlIZ) +Cui(p+112) + Dui(erl+1/2) + Eui(f;llz) + F ui(f;1/2)
i1 T
Arl a2y (H72) | 7
H+HGU Y +HUE ™" + i |
. 1 A2 L By L CuPD | DuBHID | Ey(d 4 F
i+2 A A A
(p+1/2) (p+1/2) i
HAGUL Y +HUETY + i |
u(p+1) ~ 1 AUi(P;l/Z) + Bui(,pfl/Z) +Cui(p+1/2) + Dui(er1+1/2) + Eui(ererUZ) + F ui(l);llz)
i3 T - - -
(p+1/2) (p+1/2) )
HHGUL, 7 + HUE " + i |
B A
(p+1/2) (p+1/2) (p+1/2)
yPD = 1 |—Cpauys = +(=Cb—ca)uy" 7 +(Cyuf, =€ D)uys
m-3 — i N
2 (p+1/2) (p+1/2)
|+ (=Cd+Cph U’y ™ +Cpahuy ™ +ey f g +ep f, +ef g
r A
(p+1/2) (p+1/2) (p+1/2)
uPD = 1 | =Cpaly’s ™ +(=Cob —Crpa)uy "™ + (Cpul, —C,pp DJULTS
m-2 T i n
2 (p+1/2) (p+1/2)
|+ (5Co A+ Copp UGS ™+ CoglUn?y 7 €y g +Co Fry €55 s
(p+1/2) (p+1/2) oy (pLl/2)
uPD = 1| —Cgy@Un’s ~ +(=Cyb—Caa)uy "™ +(Cyyl, — C5p DU
m-1 — T, N
2 (p+1/2) (p+1/2)
|+ (=Car A+ Capl Uy 7 + CaalpUp’y 7 +Cy g +Cop fry +Caafr g
where
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0 if i=2, S Jo -2
—B,,a otherwise ~ |-B,b—B,,a otherwise.
C=R, D=S, E=T, F=W, G=X, H=-Bye, J =2,

Lo -2, o _Jo it i=2,
|- B,, otherwise. ~ |-B,b-B,a otherwise.

:>_(l |:|:—Bl4e1 j|:i|’

~ |0 if 1=2, ~ |0 if =2,
A= B= )
—B,,b—B,,a otherwise.

O
Il
_ml
O
Il
_(I)I
m
Il
_—|
T
Il
=
[OX

C=R, D=S, E=T, F=W, G=X, H=-Bue, Ji=2,

L Jo iti=2 S _Jo it =2
~ |-B,, otherwise. ~ |-B,b-B,,a otherwise.

C=R, D=S, E=T, F=W, G=X, H=-B,e Ji=Zi,

clae
L1

:W(C)(Ckl)'

A, =det(C) for C=|b c, d| and
a b c

the AGE fourth order algorithm is completed explicitly by using the required equations

at levels (p+1/2) and (p+1) in alternate sweeps along the points in the interval (0,1)

until convergence is reached.
35 Introduction to 2-D Parabolic Equation

In this section we will treat a class of methods for solving the time-dependent heat
equation in two space dimensions. This section describes the explicit, implicit,
stationary iterative methods, ADI, double sweep IADE and the AGE class of schemes
on 2-D Parabolic (Rohalla & Paiviz (2007) and Sahimi et al., (1993)). We will discuss a

particular form of a boundary-value problem that can be used to find the temperature
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distribution U (x, y,t) of a homogeneous plate occupying a region of the x-y plane. In

this problem we are given values of U or its normal derivative on the boundary for all

t >0 and also an initial temperature distributionU (x, y,0) . For simplicity we assume

that the region R is rectangular, and the specific problem we consider is:

aU(x,y,t) az{azu (% y.1)  9°U(x

- = ay;y’t)} 0<x<L0<y<K,t>0 (3.68)
X

where U(x,y,0)=F(x,y)is the initial temperature distribution and U(x,y,t)is
specified on the boundary of R by U(x,y,t) =g(x,y). As with the one dimensional
problem we let Ax=L/M for some positive integer M and x, =iAx for 0<i<M.
We do the same in the y- direction: Ay=K/N and y; = jAyfor0O< j<N. For
simplicity of presentation we assume that M and N are chosen so that Ax = Ay, but this

assumption is not necessary. We also choose an increment int, At, and let t, = nAt for

n=012,--, wedenote U(x;,y;,t,) as U;,.

3.6 Explicit Finite Difference Scheme for 2-D Parabolic (Noye (1996))

Using central differences for both U, and U, and the forward difference for U,,we
can derive the order O(Ax* + At) explicit method given by:

Uir,]}rl = g? (Uin—l,j _2Uir,]j +Uin+l.j)+(uirji—1 _2Uirv]l' +U;

i, j+l

At (Ax)®
or

n+1 n n
Urt=rUy,; +U,

i-1,j i+1, ]

+Uir,]j—1 +Uirjj+1)+(1_4r)uir,]j (3.69)
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a’At

where r = >
X)

The points where approximations are related by Eq.(3.69). In a

convergence and stability analysis, thus for (3.69 ) we must have r <1/4. If Ax = Ay,
we need oAt /((AX)? +(Ay)?) <1/8.
We can obtain an order O((Ax)® + At) implicit method by using a backward-

difference approximation for U, (x;, y;,t,) yields

Vi,nj+1 _Vi,nj _ g2 (Viil,j - 2Vi,nj +Vizl,j)+ (Vi,nj—l B 2Vi,nj +Vi,nj+1)

At (AX)?

or
Vi = =1V =V + @AV -V -V (3.70)

3.7 Implicit Crank-Nicholson on 2-D Parabolic (Smith (1985))

To improve the order to O((Ax)® + (At)?)as in Crank-Nicolson, we again average the

forward-difference  approximation Eq.(3.69) with the backward-difference

approximation Eq.(3.70) to yield:

r (Vn+l —Zvi‘n;l +V'n+l)+(\/i21,j _Zvl,nj +Vn )+

n+l _V n _ 1 i-1,j i+1,] i+1,]

] ) v, —2Vi,nj+1 +Viih) + (Vi = 2V + Vi)

ij-1 i,j+1

(3.71)

the Crank-Nicolson method Eq.(3.71) is unconditionally stable but requires the solution

of an [(M—-1)(N-2)x(M —-1)(N —1)]linear system of equations to advance to

t=t +1 from t=t . The Eq.(3.71) involves five unknowns:

(Vn+1 V_n+1 V_n_+l V_n+l V_n+1

i-Ljr i iy o Vi Vi jHa
and hence the system is no longer tridiagonal and can lead to more computations. This
drawback is corrected by a modification known as the (Peaceman-Rachford (1955))

ADI scheme. The Truncation error (TE) is given by:
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2 4
TE(iAx,nAt):%aatU zaa—L:+(Ay)2 Lo, Ay (3T2)
X

U’
+0o(At)? =< (Ax
(A7~ 15 (4%) ox*

where U is the exact solution of the PDE.
3.8  Stationary Iterative Methods on 2-D Parabolic Equation (Ames 1977)

This section begins with methods involving splitting the sparse matrix that arises from
finite differencing and then iterating until a solution is found as in (Ames 1977). The
platform uses the finite-difference method which provides approximation solutions for
the Parabolic Equation such that the derivatives at a point are approximated by
difference quotients over a small interval (Smith 1985). We seek to discretize the

second order Parabolic Equation as used in (Lee & Riess 1991) Eq.(3.128):
3.8:1 Jacobi Scheme (McDonough (1994)):

If we use the central differences for both U, and U, and the forward difference for

U,,into (3.1), and let Ax* = Ay? = A> we have:

n+1 n At n
u :U”+E(U.

i+1, j

+UM UM U —Aun )i=1n, j=1.,m  (3.73)

ij+l i

it is stable in one spatial dimension only if At/A? <1/2. In two dimensions this
becomes At/A? <1/4. Suppose we try to take the largest possible time step, and set

At = A? | 4. Then equation (3.73) becomes:

Ui'j}rl = %(U i

nAUN UL Ul ) (3.74)

i,j+1
thus the algorithm consists of using the average of U at its four nearest neighbor points

on the grid (plus contribution from the source). This procedure is then iterated until

convergence. This method is in fact a classical method with origins dating back to the
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last century, called “Jacobi’s method”. The method is impractical because it converges
too slowly. However, it is the basis for understanding the modern methods, which are

always compared with it.
3.8:2 Gauss-Seidel Scheme (McDonough (1994)):

Another classical method is the Gauss-Seidel method. Here we make use of updated
values of U on the right hand side of (3.74) as soon as they become available. In other
words, the averaging is done “in place” instead of being “copied” from an earlier time

step to a later one. If we proceed along the rows, incrementing | for fixed i, we write

the computing formula Eq.(3.74) as:

i+1,j

Ut = %(U fay UL UL+ U (3.75)

This method is also slowly converging and only of theoretical interest, but some
analysis of it will be instructive. If we have approximate values of the unknowns at each
grid point, this equation can be used to generate new values. We call U ‘™ the current
values of the unknowns at each iteration k and U™ the value in the next iteration.
Moreover, the new values are used in this equation as soon as they become available.

The pseudocode for this method is:

Procedure Seidel (ay, ay, ny, Ny, h, itmax, (Ujj))
Real array (U;)0: ny 0:ny
Integer i, j, k, ny ny, itmax
for k=1to itmax do
for j=1tony—1 do

y<«a,+jh
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for i=1lton,—1do

X=a, +ih
v=U,,;+U;,;,; +U

i+1,]

U, =(v)/4

i,j+l+Ui,j—l
end for
end for
end for
end procedure Seidel
In using this procedure, one must decide on the number of iterative steps to be

computed, itmax.
3.8:3  Successive Over-relaxation (SOR) (McDonough (1994))

To show how successive overrelaxation can be applied to the 2-D Parabolic Equation,
we begin with Eq. (3.75), adding superscripts to show that a new value is computed

from previous iterates,

Ui Z%(U fay AU U U

i+1, j
We now both add and subtract Uif”j) on the right-hand side, getting

um 4y ym
(n+) _y () i+1, i-1,] ij+
Ui 7 =Uij +

4

(n+1) (n)
, HUND —4U

(3.76a)

The term in brackets is called the “residual”. We can consider the bracketed term in Eq.

(3.76a) to be an adjustment to the old value Uif”j), to give the new and improved value

U™ | If, instead of adding just the bracketed term, we add a larger value (thus

i

“overrelaxing”), we get the new iterating relation
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um sy y®™ 4y gy
(n+) _ () i+1,] i-1,j i,j+1 i,j—1 ij
Ui 7 =Uij +o 4

(3.76D)

Maximum acceleration is obtained for some optimum value of ®. This optimum value

will always lie between 1.0 and 2.0. We define a scalarw,(0 < w, <2) and apply
Eq.(3.75) to all interior points (i, j)and call it Ui"j . Hence, we have:

n+l / n
Ui =aoU;; +(1_a)n)Ui,j (3.76¢)

3.9  ADI Method on 2-D Parabolic Equation

In this section we treat a class of method introduced by Peaceman & Rachford (1955),
for solving the time-dependent heat equation in two space dimensions. It was quickly
recognized that the unconditional stability of the method might render it effective due to
the possibility of employing large steps for pseudo-time marching (McDonough 1994).
At each pseudo-time step the discrete equations are implicitly solved first in one spatial
direction, then in the other, leading to the terminology (ADI). The obtained two Systems
of Linear Algebraic Equations (SLAE), in the (n+1/2)time-layer are band tridiagonal
matrices, while the second one obtained in the (n+1) time layer is a block tridiagonal
matrix (Jiang & Wong (1991)). In order to solve the SLAE in the (n+1/2)time-layer in
parallel, we have to transform the corresponding matrix by means of permutation of
rows to a block tridiagonal matrix. This transformation involves transposition of the
right hand side (rhs) of the equation we solve when the rhs is represented as a matrix. It
is clear that such a transposition entails communication which may be reduced if a
parallel tridiagonal solver is exploited. Solving 2-D Parabolic Equations using the ADI
method, there are three main steps in constructing an ADI method in this context: i)

discretization of the PDE, ii) factorization of the discrete equation and iii) splitting of
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the factored equations. Many implementations of the ADI methods have been developed
such as Kellogg (1964), Dahlquist (1978) and Douglass & Rachford (1956). The
equation is parabolic in time and thus the solution can be obtained by marching along

the t-direction. Using the regular finite difference method, we have:

n Ui'nﬂ_ui'n n Ui+ 'n_ZUi'n +Ui— .
(Ut)i,j S (@] xx)i,j _ 1] 112 1,
At (AX) (3.77)
U, —2U, "+U, " '
(Uyy)i’jn — I,j+1 I,J2 I,j—l
(4y)
Eq. (3.68) becomes:
Uiyjn+1 =FU..,"+VU;)+F U " +U, ) +Q-2F -2F U, ", (3.78)
2 2
where F, = ¢ Atz and F, =C—At2 are the two grid Fourier numbers, and the subscripts
(AX) (Ay)

i, j and the subscript n denote the numbers of x,y and t intervals respectively. The
stability requirement can be shown to be

C?At 1
(A +(ay)* 8
for accuracy, Axand Ayare small, then Atis much smaller for stability. Due to

drawbacks, associated with the C-N methods, the ADI method was introduced. A time-

step (n—>n+1) is provided into two half time steps(n — (n+1/2) - n+1). In the
first half time step(n — (n+1/2), central difference in X is expressed at the end

(n+1/2), and central difference in y is expressed at the startn. Therefore,

n+1/2 n n+1/2 n+1/2 n+1/2 n n n
Ui Uy _¢? Uin” —2U 7" +U L +Ui,j+1_2Ui,j+Ui,j—l (3.79)
- 2 2 )
At/2 (AX) (Ay)

In the second half-time step, 6°U /x?is expressed at the start (n+1/2) and o°U /oy?

is expressed at the end (n+1). Therefore,
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n+1 n+1/2 n+1l/2 n+1/2 n+1/2 n+l n+1 n+1
Ui,j _Ui,j =02 Ui+l,j _2Ui,j +Ui—1,j +Ui,j+1_2Ui,j +Ui,j—1 (3.80)
At/2 (Ax)? (Ay)?

to see why the two spatial derivatives can be written at different time in the two half-

time steps in (3.79) and (3.80), we add them to get:

I Uinj+1 —-2U inj +Uinjfl |
, : =
Ui Ul _ o Ui - 200 00 1) ()’
—= - 2 TS 1 1 1 (381)
2(At/2) (&%) 2| Uiia —2U +U TS
_ (Ay)*

this shows that by going through the two half-time steps, the PDE is effectively

represented at the half-time step (n+1/2), using the central difference for the time
derivative, central difference for x-derivative, and central difference for y -derivative
by averaging at the n— and (n+21)th time-steps. The ADI method for one complete

time step is thus second-order accurate in both time and space. Rearranging Eq.(3.79)

we have:
FUMN?—(2F, +UN2 + FUML2 =—F UM +(2F, -2U, —-F UM, (3.82)

FUM, —(2F, + QUM + FUM, = —F UMY + (2F, —2UMY? —F U2 (3.83)

y—i -t | yohjH T x i ] X+,
where, F, = cAt/(AX)?, F, =cAt/(Ay)®.
The ADI method gives us an opportunity to exploit any method to solve the SLAE
obtained in the (n+1/2)and the (n+1) time layers. In this thesis, we use the

tridiagonal solver for the SLAE. Let us denote A for solving the system (3.68) with

SLAE.
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A X, =B,, k=12,.. canberepresented inthe following manner

1.Compute B, inthe (n +1/2)time layer usin g (2.8a) with the initial conditions.

2.Make permutations of vectors X”, B,, where X ¥ is initial solution in (n+1/2)layer.

3.Solve A X, = B, inthe (n+1/2)layer with thetridiagonal solves.

4.Compute B, inthe (n +1) — sttime layer,usin g (2.8b) fromstep1

5.Solve A, X, = B, inthe (n +1) — sttime layer with the tridiagonal solves.

6. Marchinthetime direction by repeating steps1to5 with the values obtained inthe
previoustime — steps.

The rhs of (3.82) and (3.83) has three coefficients of three consecutive grid points.
Thus, N systems and M tridiagonal equation are required to be stored in step 3 and
M systems of N tridiagonal equations are required to be solved in step 5. The systems
in each step can be combined so that only one system of M x N tridiagonal equations is
required to be solved in each step. The ADI method is second-order accurate. Since it

has the tridiagonal feature, it is fast and does not require excessive storage.

3.10 Double Sweep Two-Stage IADE Scheme on 2-D Parabolic Equation

The double sweep method is generally used to reduce a two-dimensional problem to a
succession of one-dimensional problems which form tridiagonal system of equations. At
each time increment, the execution of the method constitutes a horizontal sweep along
lines parallel to the x axis, followed by a vertical sweep along lines parallel to the y
axis. Here we shall solve the two-dimensional parabolic problem by using the double
sweep methods of Peaceman and Rachford (1955) (DS-PR) and Mitchell and
Fairweather (1964) (DS-MF). Each method involves the solution of sets of tridiagonal
equations along lines parallel to the x and y axes at the first and second time steps,
respectively. The Iterative Alternating Decomposition Explicit method of D’Yakonov
(IADE-DY) is executed by employing fractional splitting strategy applied alternatively

at each intermediate time step to the solution of the equations.
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We use two approaches of numerical schemes to approximate a two-dimensional
parabolic problem. The first is by employing the double sweep method of Peaceman and
Rachford (DS-PR) (1955), while the second is the Mitchell and Fairweather (DS-MF)
(1964). The tridiagonal system of equations that arises from the difference method
applied is then solved by using the two-stage Iterative Alternating Decomposition
Explicit method of D’Yakonov (IADE-DY) which was developed by Sahimi et al.,
(2001). By fractional splitting, each time step in the double sweep methods of DS-PR
and DS-MF is split into two steps of size At/2. In the horizontal sweep, Eq. (3.1)

advances from t, to t,.,,, by using a difference approximation that is implicit in only the
x-direction. Specifically, past values in the y-direction along the grid line x=x are
used, to yield the intermediate valueu, ;,.,,. Then, in the vertical sweep from t,,,,to
t..,, the solution is obtained by using an approximation implicit in only the y-direction
and uses past values in the x-direction along the grid liney =y, to yield the final value

U -
3.10:1 Peaceman and Rachford Double Sweep Method (DS-PR)

At the (k+1/2)time level of the DS-PR method, the solution of Eq. (3.128) uses a

backward-difference approximation as in Eq. (3.144).

A A
ui,j,k+1/2 _ui,j,k :E >(2ui,j,k+112 +E5;ui,j,k (3-84)

where &, and o, are the usual central difference operators in the x and y coordinates

respectively.

. A A
1. ui,j,k+1/2 _ui,j,k = E(ui—l,j,k+1/2 _2ui,j,k+112 +ui+1,j,k+1/2)+E(ui,j—l,k _Zui,j,k +ui,j+1,k)
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A A A A
_E ui—l,j,k+1/2 + (1+ ﬂ’)ui,j,kﬁ-l/z _Eui+1,j,k+112 = E ui,j+1,k + (1_ ﬂ’)ui,j,k + Eui,j—l,k (3-85)

from Eq. (3.85), for j=1,2,...,n

. A A A A
=1 (1+/1)u1,j,k+1/2 _Euz,j,kmz = Euo,j,ku/z +§u1,j+1,k + (1_/1)u1,j,k +Eu1,j—1,k (3.86)

. A A
=23, m-1: _Eui—l,j,k+1/2 + (1+/1)Ui,j,k+1/2 — Uk =

2 (3.87)
A A
Eui,jﬂ,k +(@= Ay +Eui,j—1,k

. A A
I=m: _Eum—l,j,k+l/2 + (1+/1)Um,j,k+1/2 = Eum+l,j,k+l/2 +
(3.88)

A A
Eum,j—l,k +(1- jv)um,j,k + Eum,jﬂ,k

let a=1+4, b:c:—%. Eq. (3.86) — (3.88) can be written in a more compact matrix

form as:

AU =f . j=12..,n, (3.89)

where

u:(ulvj,uzlj,...,um,j)T, f=(f f. fm'j)T

A A
fj= Eul,jﬂ,k + (1= AUy +E(u1,j—1,k +Ug j ke2)
(3.90)
fi;= %”i,ju,k +A=A)U; +§ui,jl,k i=23,..,m-1
A A
fm,j = Eum,ﬁl,k + (1_Z)um,j,k +E(um,j—1,k +um+l,j,k+1/2)
at the (k+1) time level, Eq. (3.68) is approximated by:
A A
ui,j,k+l _ui,j,k+1/2 = Eéfui,j,kﬂ/z +E5;ui,j,k+l (3-91)
ui,j,k+1 - ui,j,k+1/2 = E(ui—l,j,k+1/2 - 2ui,j,k+l/2 + ui+1,j,k+1/2) +
A
E(ui,j—l,k+l - 2ui,j,k+l + ui,j+1,k+1) (3-92)
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A A
_Eui,j—l,k+l + (1+2’)ui,j,k+1 _Eui,j+1,k+l =
3.93
i a (3.93)
Eui—l,j,k+1/2 + Q=D jcar2 +§ui+l,j,k+1/2

from Eq. (3.93), fori =1,2,..., m.

. A A
j=1:(1+ ﬂ’)ui,l,kJrl _Eui,z,kﬂ = Eui—l,l,k+1/2 +(1- ﬂ')ui,l,kJrl/Z +
(3.94)
A
Eui+l,1,k+l/2 +Eui,0,k+1
j=23,---,n-1
A A A
_Eui,j—l,kﬂ + 1+ ﬂ’)ui,j,kﬂ _Eui,j+l,k+1 = Eui—l,j,k+l/2 +
A
Q=D 02 T2 Uig iz
2 (3.95)
. A A
J=n: _Eui,n—l,kﬂ + QA+ A = Eui—l,n,kﬂ/z +
3.96
A B (3.96)
(R [V +Eui+l,n,k+1/2 +Eui,n+l,k+l

A

let a=1+4, b=c=—5. Eq. (3.94) — Eq. (3.96) can be displayed in a more compact

matrix form as:

Bui(kﬂ) = gk+112' I = 1! 2! ceey m (397)
where ui(k+l) = (ui,1’ ui,2""ui,n)T’ g= (gi,li Qioreeos gi,n)T
A A
0i,= 5 Uitz ore @ AU 10 + 5 (U 1110272 T Uio )
A A .
9ij =5 Yearjrewe T @= DU, j w2 LR ST by 2,3,...,n-1 (3.98)

A A
Oin= Eui+l,n,k+l/2 + (1_ l)ui,n,kﬂ/z + E (ui—l,n,k+l/2 + ui,n+1,k+1)
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3.10:2 IADE-DY (Sahimi et al., (2001))

The matrices A and B are respectively tridiagonal of size (mxm) and (nxn). Hence, at

each of the (k+1/2) and (k+1)time levels, these matrices can be decomposed into
G1+GZ—%GlGZ,Where G,and G, lower and upper bidiagonal matrices are given

respectively by:
G =[,1, and G,=[e,ul,
where

6 6 6 1 6c .
=—(a-1),u ==b,e, , =—(a+=lu -1, . =—— (e #6) i =12,....m-1
e=c@-D,u=ch e, =c@+rTlu -1 == (¢ #6)

hence, by taking pas an iteration index, and for a fixed acceleration parameter r >0,
the two-stage IADE-DY scheme of the form:

(rl +G U™ = (rl —gG,)(rl - gG,)u™ +hf and

(rl +G,)u™® =y (3.99)

can be applied on each of the sweeps Eq. (3.84) and Eq. (3.91). Based on the fractional
splitting strategy of D’Yakonov, the iterative procedure is accurate and found to be
stable and convergent. By carrying out the relevant multiplications in Eg. (3.99), the
following equations for computation at each of the intermediate levels are obtained:

(i) at the (p+1/2)th iterate,

1, "
uPt? == (s sul® +w, suf” +hf,)
d

i+1

1 N N
Ui(p+l/2) == (_Ii—lui(—pl+l/2) + Vi—lsi—lui(—pl) + (Vi Wy +5; S)Ui(p) +W, S u'®) + hf,),
q (3.100)
i=23,....,m=-1

1 N
(p+l/2) _ (p+1/2) (p) (p)
u, -~ (_Im—lum—l +VinaSpaUmy (Vm—lwm—l +S, S)um + hfm)
d

where,
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6+r r(12+r)

g =5 h= 5 d =1+r, gzr—g, ss=r—ge,i=12,...,m
and
v, =—gl, w=—-gu, i=12,...m-1.
(i) at the (p +Dthiterate,
m (3.101)

1 " .
uPt == (P —y, ul), where d, =r+e, i=m-1,m-2,...,2,1

i i+l
i

the two-stage iterative procedure in the IADE-DY algorithm corresponds to sweeping
through the mesh involving at each iterates the solution of an explicit equation. This is

continued until convergence is reached, that is when the convergence requirement

|u®® —u®® | <eis met, where  is the convergence criterion.

3.10:3 DS-MF (Mitchell & Fairweather (1964))

The numerical representative of Eq. (3.128) using the Mitchell and Fairweather scheme

is as follows:

(T W O P
L

the horizontal sweep Eq. (3.102) and the vertical sweep Eq. (3.103) formulas can be
manipulated and written in a compact matrix form as in Eq. (3.89) and Eq. (3.97)

respectively. At the (k+1/2) time level, for j=12,---,n, we have:
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1 5 1 A
fl,j = (_2+ j(ul,j—l,k +u1,j+1,k)+(g_/1j ul,j,k _(E_Ej uo,j,k+1/2
1 5 .
f, = TAE (uiyj71’k+ui'j+lvk)+ g—/i U o 1=2,3,...,m-1 (3.104)

1 2 5 1 A
fm,j :(E+Ej(um,jl,k +um,j+1,k)+(g_ﬁ“jum,j,k _(E_Ej Unia j k2

and at the (k +1) time level, for i =1,2,---,m, we have:

9, = 1.4 (u Y )+ 2l (L ANy
il 12 2 i-1,1,k+1/2 i+1,1,k+1/2 6 i,1,k+1/2 12 2 i,0,k+1

1 2 5 .
gi,j:( + j(ui—l,j,kﬂ/z+ui+l,j,k+1/2)+(E_Z’jui,j,k+1/2’ 122,3,---,71—1 (3-105)

H
[ N

12 2
g, = 1.2 (u +U )+ 2 il (LA
i,n 12 2 i-1,n,k+1/2 i+1,n,k+1/2 6 i,n k+1/2 12 2 i,n+1,k+1/2

by defining a =§+/1 and b=c =é—%,the resulting tridiagonal system of equations

are solved using similar iterative procedure as in the DS-PR, that is, the two-stage

IADE-DY algorithm.
3.11 Formulation of the AGE Scheme on 2-D Parabolic

In Evans & Sahimi (1988a), the Alternating Group explicit (AGE) method was
introduced for the solution of parabolic partial differential equations in one space
dimension and applied on 2-D problem in Evans & Yousif (1993). This technique was
extended to problems involving parabolic and hyperbolic partial differential equations
in Evans and Sahimi (1988). The AGE method can be readily extended to higher space
dimensions (see Abdullah (1991)). To ensure unconditional stability, the Douglas-
Rachford (DR) variant is used instead of Peaceman-Rachford (PR) formula.

In two space dimensions, for example, the specific problem we are considering is Eq.

(3.68) where for simplicity we assume that the region R of the xy-plane is a rectangle.
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Based on the AGE concept for the one-dimensional case, the formulation for higher
dimensional problems can be done in very much the same way by employing the

operator fractional splitting strategy introduced by Yanenko (1971).

A weighted finite-difference approximation to (3.68) at the point ( (i, j,k+%) IS given

by:

AU, 1
tAtJ = % {6’(5)(2 +5;)Ui,j,k+1 +(L-6)(5; +5;)ui,j,k}+ h ka2 (3.107)

which leads to the five-point formula:

—A0U; ;a0 t 1+ 410)ui,j,k+l - ﬂ“eui,j,kﬂ

—A0U; i 3y —AOU; 0 = l(l_g)ui—l,j,k +(1-44(1- ‘9))ui,j,k + ﬂ“(l_a)unl,j,k
+/1(1_9)ui,j—l,k +ﬂ“(1_9)ui,j+1,k +Athi,j,k+1/2’

for i=12,....m; j=12,...,n.

(3.108)

we note that when @ takes the values 0,1/2and 1, we obtain the classical explicit, the
Crank-Nicolson and the fully implicit schemes whose truncation errors are

O([AXT® + At), O(JAXT® +[At]?) and O([AX]* + At) respectively. The explicit scheme is
stable only for /IS% (if Ax = Ay, we need At [(Ax)2+(Ay)2]§;). The fully implicit

and the Crank-Nicolson schemes are, however, unconditionally stable.
The weighted finite-difference Eq. (3.108) can be expressed in the more compact matrix

form as:
[k+1] _ gkl
Aug, ™ =Bug; +b+g, (3.109)
=f
where u(“:)] are the unknown u -values at time level k ordered row-wise as denoted by the

suffix r and

Uy = (U, Uy,..0U)T With Uy = (U, Uyj,ennUyg) ', §=12,.00,0,
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thus, the mn internal mesh points on the rectangular grid system R are ordered row-

wise. The vector b consists of the boundary values where

b=(b,b,,....b)"
with

b, = (AA =)y + Ui ]+ A0[Ug s + Uil
AQ=O)U, o +AO0U, oo, A=, oy +AOU g
(1= 9)[um,o,k + um+l,1,k] + /le[um,o,ku + um+l,1,k+1])T ;
b, =(AA-0)u,;, + 40U, ;,.4,0,...,04L-)u,, ;, + 46U
for j=2,3,...,n-1,

and
b, = (AA= U,k + Uy ]+ A00Ug o a + U a ],

/1(1_ 9)u2,n+1,k + ﬂ’euZ,n+1,k+l' e ﬂ'(l_ H)um—l,m—l,k

+ AU g AA= O Up g+ Ungni]

T
+ j’e[um,m—l,kﬂ + um+l,n,k+l])

T

m+1, j, m+1, j,k+

and the vector g contains the source term of Eq. (3.108) given by:
9=(99---9,)
with

g; :(gljvgzj!“"gmj)T
:At(hl,j,kﬂ/z’hz,j,k+1/2'---fhm,j,k+1/2)T for j=12,...,n.

the coefficient matrix A in Eqg. (3.109) takes the block tri-diagonal form.
A, =diag(a,) of order (mxm)

where

c=1+446 and a =-416

Similarly, the matrix B is of the form:
B, =diag(e) of order (mxm)

where

d=1-44(1-6) and e =A(1-6)
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if we split A into the sum of its constituent symmetric and positive definite matrices
G,,G,,G; and G,, we have:
A=G +G,+G,+G,, (3.110)

with
. 1.
diag(G,+G,) = Edlag(A)
and
. 1.
dlag(Gg+G4)=§d|ag(A).

in particular, we let,

A, =diag(c/2) of order (mxm), we have

The Douglas-Rachford formula for the AGE fractional scheme then takes the form:

(G, + U = (rl =G, - 2G, - 2G, - 2G,)u® + 21,

(P+12) _ 34 (P) (p+1/4)
(G, +ru Y™ =Guy +ru ™,

(p+3/4) _ 5 (P (p+1/2)
(G +rDu ™" =Guuy +rugy ™,

(P _ 3 P 4 py (P34
(G, +rNuf™ =G,uy +ru ™.

(3.111)

we now consider the above iterative formulae at each of the four intermediate levels:

i) At the first intermediate level (the (p +1/4)th iterate)
since. A=G,+G,+G,;+G,,then using the first expression of Eqg. (3.111) and Eq.
(3.109) we obtain:

(G, +ruP* =((rl +G,)—2A)u

o (M 1 2BuM +2(b+ )

(r) (r)

or
U = (G, +rl) ™ [((rl +G) —2A)Y) +2But) +2(b+g)]. (3.112)

without loss of generality we assume that the size of the matrix is odd. By writing

D, =C -2A, D,=C,-2A, E =-2A,, F,=2B, and F, =2B, hence, using we obtain
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the following set of equations for computation of the AGE algorithm at the (p +1/4)th

iterate:
ulty? =CH (DU + Eusf) + Fule) + Fuyd) +2(b +9,)); (3.113)

(p+1/d) _ ~-1 ) ) (p) [k] k]
Uity = Co (BL(Uyry Ui ) + Dol + B (UG +UGinm)

- _ (3.114)
+FuUj,, +2(b; +9;)), for j=2,4,...n-1
(p+1/4) _ ~-1 ) » ) K] [k]
Uity =Co (Bo(Uayry +UcPiayn) + D) + B (Uiay + Uiy (3.115)
+Fuld, +2(b; +9;)), for j=35...,n-2
U9~ G BN + DU, + R, R 426,40, (3116

letey, =1, —2¢, a,=-2a, a;=2d and o, =2¢,. When the above equations are

written component-wise, we have:

(a) for Eq. (3.113)

(p+1/4) _ (p) (p) (p) [k] (k] (k]
U, °= |:a1u11 +a, (U +Upp” + oy + oy Uy + U ) +2(0y, + gy } I

S {nvi B ai\;i} /A} (3.117)

(PHY4)

(o :[—alvi+rl\;i/A for i=2,4,.... m-1
where

_ (p) (p) (p) (p) [k]
Vi=—aU, tal +a, (ui—l,l +Uip " +agU;
[k] [k] [k]
a, (U, +Uig, +Up’ +2(9;, +by)

and

v (p) (P (P (P k]
Vi=—aqly’ +oliy, +, (ui+2,1 + ui+1,2) +a3Ui,

[k] [k] [k]
a4, (uil TUio + Ui+1,2) + 2(bi+1,1 + gi+1,1)

with u, =0 for i>m;

b) for Eq. (3.114)
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1/4 .

ub :[rlvi'j —31Vi,j:|/A
1/4 y

ui(+p1,+j ) :[_aivi,j + EVi,J:l/A

j=2,4,...,n=1, i=13,...,m-2,

(p+l/4) _ (p) (p) (p) (p) [k]
umj _[alumj +a2(umfl,j +um,j—l+um,j+1)+a3umj
[k] [k] [k]
ta, (um—l,j +UpGa T um,j+1) + Z(bmj + O /',
j=2,4,...,n-1.
where
_ (p) (p) (p) (p) [k]
Vi = ot o (U U U )+ asUy

[k] [k] [k] [k] (p)
ta, (ui,j—l +Ui g HUig ) H UL )— Uiy + 2(bi+1,j + gi+1,j)

and
v — (P (p) (p) (p) k]
Vij =l ta, (ui+1,j—1 FUiy i T UL )+ Ui
[k] [k] [k] [k] (p)
ta, (ui,j + Ui jog Uiy T Ui2 )— aupy + 2(bi+1,j + gi+l,j)

with ug; =0.
c) for Eq. (3.115)

(p+1/4) _ (p) (p) (p) (p) [k]
U = [alulj +a2(u1,j—1 FU T U )+a3ul,j

k k k
+a4(ul[,j]—l +u1[,j]+1 +u£,})+2(b1j + glj)]/ f,

j=35,..,n-2,

ui(_p+1/4): rvvl_ \;vi. /A’
j [hw; —a 1] for j=3,5,...,n-2; i=2,4,...,m-1,

(p+1/4) _ »
uh o =[aw; +rwi]/ A

where,

— o ul® ® 4y L y®
W = aU” + o, (U + U+

[k]
i |,j+1) + a;3U;;

[k] [k] [k] [k] (p)
+a, (ui—l,j +Ui i U UL )— Uiy + z(bij + gij)

and

wi = U +a, (U, +ul?)

[k]
i+ ) +asu;

(p)
+U; i+, j

i+1, j-1 i+1, j+1 i+2,
[k] [k] [k] [k] (p)
ta, (ui,j + Uiy ja H Ui T UL )— auii + 2(bi+1,j + gi+l,i)

with u, ; =0 for i>m,

d) for Eq. (3.116)

(3.118)

(3.119)

(3.120)
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(p+1/4) _ (p) (p) (p) [k]
Ui, =[ayuy,” +a, (ul,n—l +U;, )+ o5u; +

a, (ul[,kn]—l + ugkg) +2(b, +9,)1/ 1,

U —Trz —a 7, /A,
i [n2 —a,2] for i=2,4,...,m-1, (3.121)

uiyY =[-az, +r,zi]/ A
_ (p) (p) (p) [k]
=i +q, (ui—l,n + ui,n—l) + a5l

(k] [k1 [k] (p)
+ a, (ui—l,n + ui,n—l + ui+1,n) - aiui+l,n + 2(bi,n + gi,n)
and

zi = Ul +a,(ul)  +ul?)

i+1,n i+ i+2,n

[k]
)+ U,

i+1,n
K] | K] [k] (p)
+a, (ui,n Uit ui+2,n) —au )+ Z(bi+1,n + gi+l,n)

with u; , =0 fori>m.
i) At the second intermediate level (the (p+1/2)th iterate):
From the second equation of Eq. (3.173) we have:

D ruh (3.122)

12 -
u(pr; )= (G, +r1) l[qu(r) (r)

let élzcl with the diagonal elements r replaced by c/4and ézECZ with the

diagonal elements r, replaced by c/4. For computational purposes, we will then have:

u(p+l/2) — Cgl[CZ u(p) + r.u(er1/4)]’

j(r) ] j(r) j(r) J :1,3’”.’n_2, 3193
uPH — A c, ul®, L+ ruPra] (3.123)
(J+1)(r) (I AR STEN () (j+1(n)ds
and
(p+12) _ ~-1f~ +.(p) (p+1/4)
Uney  =CoTCaupy +ruscy™ . (3.124)

by denoting r, =c/4r,and r, =r/r,the above equations can be written component-wise

as follows:

a) for Eq. (3.123) and Eq. (3.124),
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(p+l/2) _ -
uijp* =[nv; —a vi]/A

for j=13...,n; i=13,...

(p+1/2)
ui+1, j

=[-ayv; + Il\;ij]/A

and

1/2 1/4 H
(o2 (P9 j-13,.,n,

mj

ulP? = rul® +ru

where

C
_ (p) (p) (p+1/4)
Vij —Zuij +a1U + I’uij

i+1, j
and
vi —au® 4+ Syu® e
1 _aluij Zuiﬂ,j ui+l,j :

b) for the second Eq. (3.123)

(p+U2) _ ¢ 1,(P) (p+/4) 5 _
Uy = Uy + LUy , J=2,4,...,n-1,

(p+li2) _ -
uij‘” =[rnv; —a vi]/ A

j=2,4,...,n-1 i=2/4,...,m-1,

(p+1/2) _ "
ui+1,j - [_aivij - rlv'l]/A

where v, and \_/ij are given as in Eq. (3.125).

iii) At the third intermediate level (the (p + %)th iterate):

(3.125)

(3.126)

if we reorder the mesh points column-wise parallel to the y-axis, we have, by using the

suffix c,
Uy = (Uy, Uy, U )T With Uy = (U, Uy,enuty)T for i=1,2,
We also find that:

(G, +G4)u(r) =(G,+G,)u
and

(c)

Gy =G Uy, Gy =Gy U

hence the third equation of (3.111) is transformed to:

(3.127)
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~ (p+314) _ ~ 1,(P) (p+1/2)
(G+rHud™" =G u +rug

or (3.128)
U = (Ga+ r1) [Gau +ruf 1.
let the matrices P,and P, be exactly as the same forms as C,and C, but of order (nxn)

we will then have:
P, = B, with r; replaced by%
and

P, = P, with r; replaced by %
The following equations are therefore obtained for computation at the (p +%)th

Ul = P[P u®) +ru® ] fori=13...,m (3.129)

and

Ul = PR, U + rulp 2] for i =2,4,...,m-1. (3.130)

which component-wise yields:
a) for Eq. (3.129):

(p+3/4) _ (p) (p+1/2)  : _
Uiy =huy " + LUy , 1=13,...,m.

U <[ —a, W, ]/ A,
] M A i=13..m j=24,..n-1 (3131

(p+3/4) _ .
Ui —[_a1Wij + r1Wij]/A,

where

C
w, = 2u® +au®
4"

(p+1/2)
ij i,j+1 + ruij

and
- c
wij = au” + 2 ul® +ruP2,

i,j+1 i,j+1
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b) for Eq. (3.131):

3/4 .
ui(,?Jr ) =[rlvvij _alwij]/Al

i=2,4,...m-1 j=13..

(p+3/4) __ »
uh " =[aw; +nw /A,

(p+3/4) _ (p) (p+1/2)
ui,n - rZui,n + rSui,n ’

where w; = V\;ij are given as in Eq. (3.132).

iv) at the fourth intermediate level (the (p+1)th iterate:

The last equation of (3.111) is transformed to:

~ (p+) _ (p) (p+3/4)
(G, +ruy™ =Gaug +ru

or

(P+D) _ [ -1 (P (p+3/4)
Ug™” =(Ga+r)7[Guy +ru™™]

which leads to the following formulae:

(r+) _ p-Irp. (P (p+3/4)1 & _
Uy =P [P2uily +ruigy™ ], 1=13,...,m,

and

() _ p-1Ip
U =R [Piu

i(c) i(c)
for computational purposes, we have:

a) for Eq. (3.133):
Ui(,?+l) =[rz; —a, z;]/ A,

u?, = [_aizij +h Zij]/A’

i,j+1

ui( p+l)

n

—rym (p+3/4)
_rzui,n +r3ui‘n y |—113,...,m

and
b) for Eq. (3.134):

uP =Lu® +RuPY, i=23,...,m-1.

P +rull¥], i=2,4,...,m-

i=13,....,m; j=13,...,n—

-2,

(3.132)

(3.133)

1. (3.134)
2,

(3.135)

(3.136)
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Ui(,FjHl) =[rz; —a,7;]/ A,
ud —[-az, +1,2,]/ A,

i,j+1

where

C
_ (p) (p)
Z; = Zuij +a,u;

(p+3/4)
j i,j+1 + I’-uij

and

5 _an® S (p+3/4)
Zu—aluij +Zui'j+l+rui‘j+l .

i=124,...m-1 j=24,...

Hence, the AGE scheme corresponds to sweeping through the mesh parallel to the

coordinate x and y axes involving at each stage the solution of 2 x 2 block systems.

The iterative procedure is |u{""? —uP| < & is met where & is the convergence criterion.
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