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CHAPTER 4 

THE FINITE DIFFERENCE METHOD FOR BIO-HEAT 1-D AND 2-D 

 

4.1 Introduction 

 

Modern clinical treatments and medicines such as cryosurgery, cryopreservation, cancer 

hyperthermia, and thermal disease diagnostics, require the understanding of thermal life 

phenomena and temperature behavior in living tissues (Jennifer et al., (2002). Studying 

Bio-heat transfer in human body has been a hot topic and is useful for designing clinical 

thermal treatment equipments, for accurately evaluating skin burn and for establishing 

thermal protections for various purposes. The Bio-Heat transfer is the heat exchange 

that takes place between the blood vessels and the surrounding tissues. Monitoring the 

blood flow using the techniques has great advantage in the study of human 

physiological aspects. This require a mathematical model which relate the heat transfer 

between the perfuse tissue and the blood. The theoretical analysis of heat transfer design 

has undergone a lot of research over years, from the popular Penne‟s Bio-heat transfer 

equation proposed in 1948 to the latest one proposed by (Deng & Liu, (2002)). Many of 

the Bio-heat transfer problem by Pennes‟s account for the ability of the tissue to remove 

heat by diffusion and perfusion of tissue by blood. Predictions of heat transport have 

been carried out in (Chinmay (2005) and Liu & Xu, (2001)). We begin the chapter by 

introducing the 1-D Bio-Heat Equation. Section 4.2 discusses the finite difference 

scheme for the 1-D Penne‟s Equation; section 4.3 discusses the stationary iterative 

methods on 1-D Bio-Heat, and formulation of the IADE scheme on 1-D Bio-Heat is 

treated in section 4.4. Section 4.5 introduces the 2-D Bio-Heat Equation and the 

stationary methods on 2-D Bio-Heat are treated in section 4.6 with section 4.7 

illustrating the ADI method on 2-D Bio-Heat. Section 4.8 treats the IADE-DY 
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implementation on 2-D Bio-Heat with the MF-DS scheme on 2-D Bio-Heat in section 

4.9.   

 

4.1:1 1-D Bio-Heat Transfer Problem  

 

An energy balance for a control volume of tissue with volumetric blood flow and 

metabolism yields the Bio-heat equation (Pennes (1948)).  
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This further simplifies into the form: 
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, we can obtain the simplified form of the 1-D Pennes‟s equation with the 

initial and boundary conditions given below: 
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0 0 1

0, 0

U(x, )= f(x) < x <

U( t)= g(t) < t T
                                       (4.5) 

and 

                                                1,U( t)= h(t)                                                                  (4.6) 
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where ρ , 
pc are densities, specific heat of tissue, b and 

bc are blood perfusion rate and 

specific heat of blood, '''

mq  is the volumetric metabolic heat generation, 
aU is the arterial 

temperature, U is the nodal temperature. 

 Liu et al., (1999), used a finite difference method to solve the Pennes‟s Bio-Heat 

equation in a tripled-layered skin structure composed of epidermis, dermis, and 

subcutaneous. Dai & Zhang (2002), developed a three level unconditional stable finite 

difference scheme and used a domain decomposition strategy for solving the 1-D 

Penne‟s equation for the same three-layered skin structure. 

 

4.2 Finite difference Scheme for the 1-D Penne’s Equation 

 

The finite difference method provides approximation solutions for the 1-D Pennes‟s 

equation such that the derivatives at a point are approximated by difference quotients 

over a small interval (Sun & Gustafson (1991)). The problems (4.1) – (4.6) can be 

solved by using the standard finite difference method. First, one divide [0,1] uniformly 

into M shares, the mesh size h =(b – a) / M. Define  0h l lΩ = x : x = a+ih, i M   as 

the set of all nodes in  1 1'

h i iΩ,Ω = x : x = a+ih, i M    as the set of all inner nodes 

and  h o MΓ = x = a, x =b  as the set of boundary nodes such that '

h hΩ =Ω Γ ,  let ∆t = 

T / N denote the time step size and nt = nΔt  for 1 .n N   For a function U(x,t), define 

the mesh function n n

i iU =U(x ,t ),and the difference operator 
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Applying Eq. (4.7) on Eq. (4.4), the temperature of the explicit node is given by: 
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when the Crank-Nicholson (C-N) implicit scheme is used, we write using the same 

finite difference scheme: 
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the difference scheme can be rewritten as: 
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Our construction implies that the difference schemes have a truncation error in the order 

2 2O(Δx +Δt )  for each interior grid point.  

 

4.3 Stationary Iterative Methods on 1-D Bio-Heat 

 

In reference to Eq. (3.29) and Eq. (3.30), let us view the system in its detailed form 

considering the matrix formed in Eq. (4.11) 
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Solving the ith  equation for the  ith  unknown term, we obtain an equation that 

describes the „Jacobi method‟: 
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Here, we assume that all diagonal elements are nonzero. If in the Jacobi method above, 

the equations are computed in order, the components 
)1( k

jx with ij  have already been 

updated and the corresponding new values 
)(k

jx can be used immediately in their place. 

If this is done, we have the “Gauss-Seidel method”: 
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An acceleration of the Gauss-Seidel method is possible by introduction of a relaxation 

factor  , resulting in the “SOR method”: 
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Clearly, the SOR method with 1  reduces to the Gauss-Seidel method. 

 

4.4 Formulation of the IADE Scheme (Mitchell-Fairweather Variant) 

 

With the Mitchell & Fairweather, (1964) variant, accuracy can be improved. The 

matrices derived from the discretization resulting into Eq. (4.11) from Eq. (4.4) at each 
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time level taking p as an iteration index. To retain the tridiagonal structure of A, the 

constituent matrices 1G and 2G must be bidiagonal (lower and upper respectively). The 

equation leads to, 
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for 1,2, , 1i m  . 

The IADE scheme is therefore executed at each of the intermediate levels by effecting 

the following computations: 

i) at level (p+1/2) 
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The IADE algorithm is completed explicitly by the Eq. (4.16) and Eq. (4.17) in alternate 

sweeps along the points in the interval (0,1). 
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4.5 2-D Bio-Heat Equation 

 

The well known Penne‟s equation and the energy balance for a control volume of tissue 

with volumetric blood flow and metabolism yields the general Bio-Heat transfer 

equations.  , pc are densities and specific heat of tissue, b and bc are blood perfusion 

rate and specific heat of blood, mq   is the volumetric metabolic heat generation, aU is 

the arterial temperature, U is the nodal temperature. The bio-heat problem is given as: 
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This further simplifies into the form: 
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assume mq   to be constant, and denote
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, we can obtain the simplified form of the 2-D Penne‟s equation with the 

initial and boundary conditions given below: 
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with initial condition 

                                ),()0,,( yxfyxU                                                                      (4.22) 
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when the explicit scheme is used, we write using the same finite-difference scheme: 
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the temperature of the node in the scheme formulation takes the form: 
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4.6 Stationary Methods for 2-D Bio-Heat Equation 

 

If we use the central differences for both xxU and yyU  and the forward difference for 

,tU into Eq. (4.21) and let 222  yx  we have: 
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it is stable in one spatial dimension (1-D) only if .2/1/ 2 t  In two dimensions (2-D) 

this becomes .4/1/ 2 t  Suppose we try to take the largest possible time step, and set 

.4/2tc  Then equation (4.25) becomes: 
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thus the algorithm consists of using the average of U at its four nearest neighbor points 

on the grid (plus contribution from the source). This procedure is then iterated until 

convergence. This method is in fact a classical method with origins dating back to the 

last century, called “Jacobi‟s method”. The method is impractical because it converges 

too slowly. However, it is the basis for understanding the modern methods, which are 

always compared with it.  
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Another classical method is the “Gauss-Seidel method”. Here we make use of 

updated values of U  on the right hand side of Eq. (4.26) as soon as they become 

available. In other words, the averaging is done “in place” instead of being “copied” 

from an earlier time step to a later one. If we are proceeding along the rows, 

incrementing j  for fixed i , we have the formula Eq.(4.26) as: 
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this method is also slowly converging and only of theoretical interest, but some analysis 

of it will be instructive. If we have approximate values of the unknowns at each grid 

point, this equation can be used to generate new values. We call )(nU the current values 

of the unknowns at each iteration k  and )1( nU  the value in the next iteration.  

 We define a scalar )20(  nn   and apply Eq.(4.27) to all interior points 

),( ji . Hence, we have:                               
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ji UGSU ,
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                   
                                                                                            

Where, GS is the calculated value of the Gauss-Seidel method and , is omega with 

values ranging from 20  .         

                                                                                                               

4.7 ADI Method (2-D Bio-Heat) 

 

The ADI method is originally developed by (Peaceman & Rachford, (1955)), a time 

step )1(  nn is provided into two half time steps )121(  nnn . The time 

derivative is represented by forward difference and the spatial derivatives are 

represented by central differences. In the first half time step )21(  nn , 22 xU  is 

expressed at the end 21n and 22 yU  is expressed at the start n . Therefore: 
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In the second time half-time step, 22 xU  is expressed at the start 21n and 

22 yU  is expressed at the end 1n . Therefore: 
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to see why the spatial derivatives can be written at different time in the two half-time 

steps in Eq. (4.28) and Eq. (4.29), we add them to get: 
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this shows that by going through the two half-time steps, the Bio-heat equation is 

effectively represented at the half-time step 2/1n , using central difference for the 

time derivative, central difference for the x-derivatives, and central difference for the y-

derivative by averaging at the thn )2/1(   and thn )1(  step. The ADI method for one 

complete time step is thus second-order accurate in both time and space. Re-arranging 

Eq. (4.29) and Eq. (4.30), we get: 
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(4.31) 

let xx FcbtbFa  ),22( . For various values of i and j , Eq. (4.31) can be 

written in a more compact matrix form at the thn )2/1(   time level as: 

                                               .,2,1,)2/1( njfAU n

n

j 
                                    (4.32) 
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where 
T

jmjj

T

jmjj ffffUUUU ),,(,),,,( ,,2,1,,2,1    

at the thn )1(  time level, sub-iteration 2 is given by:  
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(4.33) 

let yy FcbtbFa  ),22( . For various values of i and j , Eq. (4.33) can be 

written in a more compact matrix form as: 
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n
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where 
T

niii

T

niii

n

i ggggUUUU ),,,(,),,,( ,2,1,,2,1,

)1(  
       

and 
22 )(,)( ytcFxtcF yx  .  

 

4.8 IADE-DY (2-D Bio-Heat) 

 

The matrices derived from the discretization resulting to A in Eq. (4.32) and B in Eq. 

(4.34) are respectively tri-diagonal of size (mxm) and (nxn). Hence, at each of the 

thn )2/1(   and thn )1(   time levels, these matrices can be decomposed into 

1 2 1 2

1
,

6
G G G G  where 1 2G and G are lower and upper bi-diagonal matrices given 

respectively by 

                                  1 2[ ,1], [ , ],i i iG l and G e u                                              (4.35) 

where 

1 1

6 6 6 1 6
( 1), , ( 1), ( 6) 1,2, , 1

5 5 5 6 6
i i i i i i

i

c
e a u b e a l u l e i m

e
         


 

Hence, by taking p as an iteration index, and for a fixed acceleration parameter r > 0, 

the two-stage IADE-DY scheme of the form: 
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can be applied on each of the sweeps Eq. (4.32) and Eq. (4.34). Based on the fractional 

splitting strategy of D‟Yakonov, the iterative procedure is accuracy, and is found to be 

stable and convergent. By carrying out the relevant multiplications in Eq. (4.36), the 

following equations for computation at each of the intermediate levels are obtained: 

(i) at the ( 1/ 2)thp iterate, 
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where,  

^ ^6 (12 )
, , 1 , , , 1,2, ,

6 6
i i

r r r
g h d r s r g s r ge i m

 
         and

, 1,2, , 1i i i iv gl w gu i m      . 

(ii) at the ( 1)thp  iterate, 
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4.9 MF-DS (2-D Bio-Heat) 

 

The numerical representation of Eq. (4.31) and Eq. (4.33) using the Mitchell and 

Fairweather scheme is as follows: 
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the horizontal sweep Eq. (4.39) and the vertical sweep Eq. (4.40) formulas can be 

manipulated and written in a compact matrix form. Let 
212

1
,

6

5 x

x

F
cbFa  , 

for various values of i and j , Eq. (4.39) can be written in a more compact matrix form 

)2/1( n  time level as in (4.31). Similarly, at the )1( n time level

212

1
,

6

5 y

y

F
cbFa  , for various values of i and j  then Eq. (4.40) can be 

written in a more compact matrix form as in Eq. (4.34). By definition the resulting tri-

diagonal system of equations are solved using similar iterative procedure as in the DS-

PR, that is, the two-stage IADE-DY algorithm. 

 

 

 

 

 

 

 

 

 


